]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - fs/buffer.c
Merge branch 'x86-cpu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-zesty-kernel.git] / fs / buffer.c
1 /*
2 * linux/fs/buffer.c
3 *
4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
5 */
6
7 /*
8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9 *
10 * Removed a lot of unnecessary code and simplified things now that
11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12 *
13 * Speed up hash, lru, and free list operations. Use gfp() for allocating
14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
15 *
16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17 *
18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19 */
20
21 #include <linux/kernel.h>
22 #include <linux/syscalls.h>
23 #include <linux/fs.h>
24 #include <linux/mm.h>
25 #include <linux/percpu.h>
26 #include <linux/slab.h>
27 #include <linux/capability.h>
28 #include <linux/blkdev.h>
29 #include <linux/file.h>
30 #include <linux/quotaops.h>
31 #include <linux/highmem.h>
32 #include <linux/export.h>
33 #include <linux/writeback.h>
34 #include <linux/hash.h>
35 #include <linux/suspend.h>
36 #include <linux/buffer_head.h>
37 #include <linux/task_io_accounting_ops.h>
38 #include <linux/bio.h>
39 #include <linux/notifier.h>
40 #include <linux/cpu.h>
41 #include <linux/bitops.h>
42 #include <linux/mpage.h>
43 #include <linux/bit_spinlock.h>
44 #include <trace/events/block.h>
45
46 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
47
48 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
49
50 void init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
51 {
52 bh->b_end_io = handler;
53 bh->b_private = private;
54 }
55 EXPORT_SYMBOL(init_buffer);
56
57 inline void touch_buffer(struct buffer_head *bh)
58 {
59 trace_block_touch_buffer(bh);
60 mark_page_accessed(bh->b_page);
61 }
62 EXPORT_SYMBOL(touch_buffer);
63
64 void __lock_buffer(struct buffer_head *bh)
65 {
66 wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
67 }
68 EXPORT_SYMBOL(__lock_buffer);
69
70 void unlock_buffer(struct buffer_head *bh)
71 {
72 clear_bit_unlock(BH_Lock, &bh->b_state);
73 smp_mb__after_atomic();
74 wake_up_bit(&bh->b_state, BH_Lock);
75 }
76 EXPORT_SYMBOL(unlock_buffer);
77
78 /*
79 * Returns if the page has dirty or writeback buffers. If all the buffers
80 * are unlocked and clean then the PageDirty information is stale. If
81 * any of the pages are locked, it is assumed they are locked for IO.
82 */
83 void buffer_check_dirty_writeback(struct page *page,
84 bool *dirty, bool *writeback)
85 {
86 struct buffer_head *head, *bh;
87 *dirty = false;
88 *writeback = false;
89
90 BUG_ON(!PageLocked(page));
91
92 if (!page_has_buffers(page))
93 return;
94
95 if (PageWriteback(page))
96 *writeback = true;
97
98 head = page_buffers(page);
99 bh = head;
100 do {
101 if (buffer_locked(bh))
102 *writeback = true;
103
104 if (buffer_dirty(bh))
105 *dirty = true;
106
107 bh = bh->b_this_page;
108 } while (bh != head);
109 }
110 EXPORT_SYMBOL(buffer_check_dirty_writeback);
111
112 /*
113 * Block until a buffer comes unlocked. This doesn't stop it
114 * from becoming locked again - you have to lock it yourself
115 * if you want to preserve its state.
116 */
117 void __wait_on_buffer(struct buffer_head * bh)
118 {
119 wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
120 }
121 EXPORT_SYMBOL(__wait_on_buffer);
122
123 static void
124 __clear_page_buffers(struct page *page)
125 {
126 ClearPagePrivate(page);
127 set_page_private(page, 0);
128 page_cache_release(page);
129 }
130
131
132 static int quiet_error(struct buffer_head *bh)
133 {
134 if (!test_bit(BH_Quiet, &bh->b_state) && printk_ratelimit())
135 return 0;
136 return 1;
137 }
138
139
140 static void buffer_io_error(struct buffer_head *bh)
141 {
142 char b[BDEVNAME_SIZE];
143 printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
144 bdevname(bh->b_bdev, b),
145 (unsigned long long)bh->b_blocknr);
146 }
147
148 /*
149 * End-of-IO handler helper function which does not touch the bh after
150 * unlocking it.
151 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
152 * a race there is benign: unlock_buffer() only use the bh's address for
153 * hashing after unlocking the buffer, so it doesn't actually touch the bh
154 * itself.
155 */
156 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
157 {
158 if (uptodate) {
159 set_buffer_uptodate(bh);
160 } else {
161 /* This happens, due to failed READA attempts. */
162 clear_buffer_uptodate(bh);
163 }
164 unlock_buffer(bh);
165 }
166
167 /*
168 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
169 * unlock the buffer. This is what ll_rw_block uses too.
170 */
171 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
172 {
173 __end_buffer_read_notouch(bh, uptodate);
174 put_bh(bh);
175 }
176 EXPORT_SYMBOL(end_buffer_read_sync);
177
178 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
179 {
180 char b[BDEVNAME_SIZE];
181
182 if (uptodate) {
183 set_buffer_uptodate(bh);
184 } else {
185 if (!quiet_error(bh)) {
186 buffer_io_error(bh);
187 printk(KERN_WARNING "lost page write due to "
188 "I/O error on %s\n",
189 bdevname(bh->b_bdev, b));
190 }
191 set_buffer_write_io_error(bh);
192 clear_buffer_uptodate(bh);
193 }
194 unlock_buffer(bh);
195 put_bh(bh);
196 }
197 EXPORT_SYMBOL(end_buffer_write_sync);
198
199 /*
200 * Various filesystems appear to want __find_get_block to be non-blocking.
201 * But it's the page lock which protects the buffers. To get around this,
202 * we get exclusion from try_to_free_buffers with the blockdev mapping's
203 * private_lock.
204 *
205 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
206 * may be quite high. This code could TryLock the page, and if that
207 * succeeds, there is no need to take private_lock. (But if
208 * private_lock is contended then so is mapping->tree_lock).
209 */
210 static struct buffer_head *
211 __find_get_block_slow(struct block_device *bdev, sector_t block)
212 {
213 struct inode *bd_inode = bdev->bd_inode;
214 struct address_space *bd_mapping = bd_inode->i_mapping;
215 struct buffer_head *ret = NULL;
216 pgoff_t index;
217 struct buffer_head *bh;
218 struct buffer_head *head;
219 struct page *page;
220 int all_mapped = 1;
221
222 index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
223 page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED);
224 if (!page)
225 goto out;
226
227 spin_lock(&bd_mapping->private_lock);
228 if (!page_has_buffers(page))
229 goto out_unlock;
230 head = page_buffers(page);
231 bh = head;
232 do {
233 if (!buffer_mapped(bh))
234 all_mapped = 0;
235 else if (bh->b_blocknr == block) {
236 ret = bh;
237 get_bh(bh);
238 goto out_unlock;
239 }
240 bh = bh->b_this_page;
241 } while (bh != head);
242
243 /* we might be here because some of the buffers on this page are
244 * not mapped. This is due to various races between
245 * file io on the block device and getblk. It gets dealt with
246 * elsewhere, don't buffer_error if we had some unmapped buffers
247 */
248 if (all_mapped) {
249 char b[BDEVNAME_SIZE];
250
251 printk("__find_get_block_slow() failed. "
252 "block=%llu, b_blocknr=%llu\n",
253 (unsigned long long)block,
254 (unsigned long long)bh->b_blocknr);
255 printk("b_state=0x%08lx, b_size=%zu\n",
256 bh->b_state, bh->b_size);
257 printk("device %s blocksize: %d\n", bdevname(bdev, b),
258 1 << bd_inode->i_blkbits);
259 }
260 out_unlock:
261 spin_unlock(&bd_mapping->private_lock);
262 page_cache_release(page);
263 out:
264 return ret;
265 }
266
267 /*
268 * Kick the writeback threads then try to free up some ZONE_NORMAL memory.
269 */
270 static void free_more_memory(void)
271 {
272 struct zone *zone;
273 int nid;
274
275 wakeup_flusher_threads(1024, WB_REASON_FREE_MORE_MEM);
276 yield();
277
278 for_each_online_node(nid) {
279 (void)first_zones_zonelist(node_zonelist(nid, GFP_NOFS),
280 gfp_zone(GFP_NOFS), NULL,
281 &zone);
282 if (zone)
283 try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0,
284 GFP_NOFS, NULL);
285 }
286 }
287
288 /*
289 * I/O completion handler for block_read_full_page() - pages
290 * which come unlocked at the end of I/O.
291 */
292 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
293 {
294 unsigned long flags;
295 struct buffer_head *first;
296 struct buffer_head *tmp;
297 struct page *page;
298 int page_uptodate = 1;
299
300 BUG_ON(!buffer_async_read(bh));
301
302 page = bh->b_page;
303 if (uptodate) {
304 set_buffer_uptodate(bh);
305 } else {
306 clear_buffer_uptodate(bh);
307 if (!quiet_error(bh))
308 buffer_io_error(bh);
309 SetPageError(page);
310 }
311
312 /*
313 * Be _very_ careful from here on. Bad things can happen if
314 * two buffer heads end IO at almost the same time and both
315 * decide that the page is now completely done.
316 */
317 first = page_buffers(page);
318 local_irq_save(flags);
319 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
320 clear_buffer_async_read(bh);
321 unlock_buffer(bh);
322 tmp = bh;
323 do {
324 if (!buffer_uptodate(tmp))
325 page_uptodate = 0;
326 if (buffer_async_read(tmp)) {
327 BUG_ON(!buffer_locked(tmp));
328 goto still_busy;
329 }
330 tmp = tmp->b_this_page;
331 } while (tmp != bh);
332 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
333 local_irq_restore(flags);
334
335 /*
336 * If none of the buffers had errors and they are all
337 * uptodate then we can set the page uptodate.
338 */
339 if (page_uptodate && !PageError(page))
340 SetPageUptodate(page);
341 unlock_page(page);
342 return;
343
344 still_busy:
345 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
346 local_irq_restore(flags);
347 return;
348 }
349
350 /*
351 * Completion handler for block_write_full_page() - pages which are unlocked
352 * during I/O, and which have PageWriteback cleared upon I/O completion.
353 */
354 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
355 {
356 char b[BDEVNAME_SIZE];
357 unsigned long flags;
358 struct buffer_head *first;
359 struct buffer_head *tmp;
360 struct page *page;
361
362 BUG_ON(!buffer_async_write(bh));
363
364 page = bh->b_page;
365 if (uptodate) {
366 set_buffer_uptodate(bh);
367 } else {
368 if (!quiet_error(bh)) {
369 buffer_io_error(bh);
370 printk(KERN_WARNING "lost page write due to "
371 "I/O error on %s\n",
372 bdevname(bh->b_bdev, b));
373 }
374 set_bit(AS_EIO, &page->mapping->flags);
375 set_buffer_write_io_error(bh);
376 clear_buffer_uptodate(bh);
377 SetPageError(page);
378 }
379
380 first = page_buffers(page);
381 local_irq_save(flags);
382 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
383
384 clear_buffer_async_write(bh);
385 unlock_buffer(bh);
386 tmp = bh->b_this_page;
387 while (tmp != bh) {
388 if (buffer_async_write(tmp)) {
389 BUG_ON(!buffer_locked(tmp));
390 goto still_busy;
391 }
392 tmp = tmp->b_this_page;
393 }
394 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
395 local_irq_restore(flags);
396 end_page_writeback(page);
397 return;
398
399 still_busy:
400 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
401 local_irq_restore(flags);
402 return;
403 }
404 EXPORT_SYMBOL(end_buffer_async_write);
405
406 /*
407 * If a page's buffers are under async readin (end_buffer_async_read
408 * completion) then there is a possibility that another thread of
409 * control could lock one of the buffers after it has completed
410 * but while some of the other buffers have not completed. This
411 * locked buffer would confuse end_buffer_async_read() into not unlocking
412 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
413 * that this buffer is not under async I/O.
414 *
415 * The page comes unlocked when it has no locked buffer_async buffers
416 * left.
417 *
418 * PageLocked prevents anyone starting new async I/O reads any of
419 * the buffers.
420 *
421 * PageWriteback is used to prevent simultaneous writeout of the same
422 * page.
423 *
424 * PageLocked prevents anyone from starting writeback of a page which is
425 * under read I/O (PageWriteback is only ever set against a locked page).
426 */
427 static void mark_buffer_async_read(struct buffer_head *bh)
428 {
429 bh->b_end_io = end_buffer_async_read;
430 set_buffer_async_read(bh);
431 }
432
433 static void mark_buffer_async_write_endio(struct buffer_head *bh,
434 bh_end_io_t *handler)
435 {
436 bh->b_end_io = handler;
437 set_buffer_async_write(bh);
438 }
439
440 void mark_buffer_async_write(struct buffer_head *bh)
441 {
442 mark_buffer_async_write_endio(bh, end_buffer_async_write);
443 }
444 EXPORT_SYMBOL(mark_buffer_async_write);
445
446
447 /*
448 * fs/buffer.c contains helper functions for buffer-backed address space's
449 * fsync functions. A common requirement for buffer-based filesystems is
450 * that certain data from the backing blockdev needs to be written out for
451 * a successful fsync(). For example, ext2 indirect blocks need to be
452 * written back and waited upon before fsync() returns.
453 *
454 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
455 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
456 * management of a list of dependent buffers at ->i_mapping->private_list.
457 *
458 * Locking is a little subtle: try_to_free_buffers() will remove buffers
459 * from their controlling inode's queue when they are being freed. But
460 * try_to_free_buffers() will be operating against the *blockdev* mapping
461 * at the time, not against the S_ISREG file which depends on those buffers.
462 * So the locking for private_list is via the private_lock in the address_space
463 * which backs the buffers. Which is different from the address_space
464 * against which the buffers are listed. So for a particular address_space,
465 * mapping->private_lock does *not* protect mapping->private_list! In fact,
466 * mapping->private_list will always be protected by the backing blockdev's
467 * ->private_lock.
468 *
469 * Which introduces a requirement: all buffers on an address_space's
470 * ->private_list must be from the same address_space: the blockdev's.
471 *
472 * address_spaces which do not place buffers at ->private_list via these
473 * utility functions are free to use private_lock and private_list for
474 * whatever they want. The only requirement is that list_empty(private_list)
475 * be true at clear_inode() time.
476 *
477 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
478 * filesystems should do that. invalidate_inode_buffers() should just go
479 * BUG_ON(!list_empty).
480 *
481 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
482 * take an address_space, not an inode. And it should be called
483 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
484 * queued up.
485 *
486 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
487 * list if it is already on a list. Because if the buffer is on a list,
488 * it *must* already be on the right one. If not, the filesystem is being
489 * silly. This will save a ton of locking. But first we have to ensure
490 * that buffers are taken *off* the old inode's list when they are freed
491 * (presumably in truncate). That requires careful auditing of all
492 * filesystems (do it inside bforget()). It could also be done by bringing
493 * b_inode back.
494 */
495
496 /*
497 * The buffer's backing address_space's private_lock must be held
498 */
499 static void __remove_assoc_queue(struct buffer_head *bh)
500 {
501 list_del_init(&bh->b_assoc_buffers);
502 WARN_ON(!bh->b_assoc_map);
503 if (buffer_write_io_error(bh))
504 set_bit(AS_EIO, &bh->b_assoc_map->flags);
505 bh->b_assoc_map = NULL;
506 }
507
508 int inode_has_buffers(struct inode *inode)
509 {
510 return !list_empty(&inode->i_data.private_list);
511 }
512
513 /*
514 * osync is designed to support O_SYNC io. It waits synchronously for
515 * all already-submitted IO to complete, but does not queue any new
516 * writes to the disk.
517 *
518 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
519 * you dirty the buffers, and then use osync_inode_buffers to wait for
520 * completion. Any other dirty buffers which are not yet queued for
521 * write will not be flushed to disk by the osync.
522 */
523 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
524 {
525 struct buffer_head *bh;
526 struct list_head *p;
527 int err = 0;
528
529 spin_lock(lock);
530 repeat:
531 list_for_each_prev(p, list) {
532 bh = BH_ENTRY(p);
533 if (buffer_locked(bh)) {
534 get_bh(bh);
535 spin_unlock(lock);
536 wait_on_buffer(bh);
537 if (!buffer_uptodate(bh))
538 err = -EIO;
539 brelse(bh);
540 spin_lock(lock);
541 goto repeat;
542 }
543 }
544 spin_unlock(lock);
545 return err;
546 }
547
548 static void do_thaw_one(struct super_block *sb, void *unused)
549 {
550 char b[BDEVNAME_SIZE];
551 while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
552 printk(KERN_WARNING "Emergency Thaw on %s\n",
553 bdevname(sb->s_bdev, b));
554 }
555
556 static void do_thaw_all(struct work_struct *work)
557 {
558 iterate_supers(do_thaw_one, NULL);
559 kfree(work);
560 printk(KERN_WARNING "Emergency Thaw complete\n");
561 }
562
563 /**
564 * emergency_thaw_all -- forcibly thaw every frozen filesystem
565 *
566 * Used for emergency unfreeze of all filesystems via SysRq
567 */
568 void emergency_thaw_all(void)
569 {
570 struct work_struct *work;
571
572 work = kmalloc(sizeof(*work), GFP_ATOMIC);
573 if (work) {
574 INIT_WORK(work, do_thaw_all);
575 schedule_work(work);
576 }
577 }
578
579 /**
580 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
581 * @mapping: the mapping which wants those buffers written
582 *
583 * Starts I/O against the buffers at mapping->private_list, and waits upon
584 * that I/O.
585 *
586 * Basically, this is a convenience function for fsync().
587 * @mapping is a file or directory which needs those buffers to be written for
588 * a successful fsync().
589 */
590 int sync_mapping_buffers(struct address_space *mapping)
591 {
592 struct address_space *buffer_mapping = mapping->private_data;
593
594 if (buffer_mapping == NULL || list_empty(&mapping->private_list))
595 return 0;
596
597 return fsync_buffers_list(&buffer_mapping->private_lock,
598 &mapping->private_list);
599 }
600 EXPORT_SYMBOL(sync_mapping_buffers);
601
602 /*
603 * Called when we've recently written block `bblock', and it is known that
604 * `bblock' was for a buffer_boundary() buffer. This means that the block at
605 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
606 * dirty, schedule it for IO. So that indirects merge nicely with their data.
607 */
608 void write_boundary_block(struct block_device *bdev,
609 sector_t bblock, unsigned blocksize)
610 {
611 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
612 if (bh) {
613 if (buffer_dirty(bh))
614 ll_rw_block(WRITE, 1, &bh);
615 put_bh(bh);
616 }
617 }
618
619 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
620 {
621 struct address_space *mapping = inode->i_mapping;
622 struct address_space *buffer_mapping = bh->b_page->mapping;
623
624 mark_buffer_dirty(bh);
625 if (!mapping->private_data) {
626 mapping->private_data = buffer_mapping;
627 } else {
628 BUG_ON(mapping->private_data != buffer_mapping);
629 }
630 if (!bh->b_assoc_map) {
631 spin_lock(&buffer_mapping->private_lock);
632 list_move_tail(&bh->b_assoc_buffers,
633 &mapping->private_list);
634 bh->b_assoc_map = mapping;
635 spin_unlock(&buffer_mapping->private_lock);
636 }
637 }
638 EXPORT_SYMBOL(mark_buffer_dirty_inode);
639
640 /*
641 * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
642 * dirty.
643 *
644 * If warn is true, then emit a warning if the page is not uptodate and has
645 * not been truncated.
646 */
647 static void __set_page_dirty(struct page *page,
648 struct address_space *mapping, int warn)
649 {
650 unsigned long flags;
651
652 spin_lock_irqsave(&mapping->tree_lock, flags);
653 if (page->mapping) { /* Race with truncate? */
654 WARN_ON_ONCE(warn && !PageUptodate(page));
655 account_page_dirtied(page, mapping);
656 radix_tree_tag_set(&mapping->page_tree,
657 page_index(page), PAGECACHE_TAG_DIRTY);
658 }
659 spin_unlock_irqrestore(&mapping->tree_lock, flags);
660 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
661 }
662
663 /*
664 * Add a page to the dirty page list.
665 *
666 * It is a sad fact of life that this function is called from several places
667 * deeply under spinlocking. It may not sleep.
668 *
669 * If the page has buffers, the uptodate buffers are set dirty, to preserve
670 * dirty-state coherency between the page and the buffers. It the page does
671 * not have buffers then when they are later attached they will all be set
672 * dirty.
673 *
674 * The buffers are dirtied before the page is dirtied. There's a small race
675 * window in which a writepage caller may see the page cleanness but not the
676 * buffer dirtiness. That's fine. If this code were to set the page dirty
677 * before the buffers, a concurrent writepage caller could clear the page dirty
678 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
679 * page on the dirty page list.
680 *
681 * We use private_lock to lock against try_to_free_buffers while using the
682 * page's buffer list. Also use this to protect against clean buffers being
683 * added to the page after it was set dirty.
684 *
685 * FIXME: may need to call ->reservepage here as well. That's rather up to the
686 * address_space though.
687 */
688 int __set_page_dirty_buffers(struct page *page)
689 {
690 int newly_dirty;
691 struct address_space *mapping = page_mapping(page);
692
693 if (unlikely(!mapping))
694 return !TestSetPageDirty(page);
695
696 spin_lock(&mapping->private_lock);
697 if (page_has_buffers(page)) {
698 struct buffer_head *head = page_buffers(page);
699 struct buffer_head *bh = head;
700
701 do {
702 set_buffer_dirty(bh);
703 bh = bh->b_this_page;
704 } while (bh != head);
705 }
706 newly_dirty = !TestSetPageDirty(page);
707 spin_unlock(&mapping->private_lock);
708
709 if (newly_dirty)
710 __set_page_dirty(page, mapping, 1);
711 return newly_dirty;
712 }
713 EXPORT_SYMBOL(__set_page_dirty_buffers);
714
715 /*
716 * Write out and wait upon a list of buffers.
717 *
718 * We have conflicting pressures: we want to make sure that all
719 * initially dirty buffers get waited on, but that any subsequently
720 * dirtied buffers don't. After all, we don't want fsync to last
721 * forever if somebody is actively writing to the file.
722 *
723 * Do this in two main stages: first we copy dirty buffers to a
724 * temporary inode list, queueing the writes as we go. Then we clean
725 * up, waiting for those writes to complete.
726 *
727 * During this second stage, any subsequent updates to the file may end
728 * up refiling the buffer on the original inode's dirty list again, so
729 * there is a chance we will end up with a buffer queued for write but
730 * not yet completed on that list. So, as a final cleanup we go through
731 * the osync code to catch these locked, dirty buffers without requeuing
732 * any newly dirty buffers for write.
733 */
734 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
735 {
736 struct buffer_head *bh;
737 struct list_head tmp;
738 struct address_space *mapping;
739 int err = 0, err2;
740 struct blk_plug plug;
741
742 INIT_LIST_HEAD(&tmp);
743 blk_start_plug(&plug);
744
745 spin_lock(lock);
746 while (!list_empty(list)) {
747 bh = BH_ENTRY(list->next);
748 mapping = bh->b_assoc_map;
749 __remove_assoc_queue(bh);
750 /* Avoid race with mark_buffer_dirty_inode() which does
751 * a lockless check and we rely on seeing the dirty bit */
752 smp_mb();
753 if (buffer_dirty(bh) || buffer_locked(bh)) {
754 list_add(&bh->b_assoc_buffers, &tmp);
755 bh->b_assoc_map = mapping;
756 if (buffer_dirty(bh)) {
757 get_bh(bh);
758 spin_unlock(lock);
759 /*
760 * Ensure any pending I/O completes so that
761 * write_dirty_buffer() actually writes the
762 * current contents - it is a noop if I/O is
763 * still in flight on potentially older
764 * contents.
765 */
766 write_dirty_buffer(bh, WRITE_SYNC);
767
768 /*
769 * Kick off IO for the previous mapping. Note
770 * that we will not run the very last mapping,
771 * wait_on_buffer() will do that for us
772 * through sync_buffer().
773 */
774 brelse(bh);
775 spin_lock(lock);
776 }
777 }
778 }
779
780 spin_unlock(lock);
781 blk_finish_plug(&plug);
782 spin_lock(lock);
783
784 while (!list_empty(&tmp)) {
785 bh = BH_ENTRY(tmp.prev);
786 get_bh(bh);
787 mapping = bh->b_assoc_map;
788 __remove_assoc_queue(bh);
789 /* Avoid race with mark_buffer_dirty_inode() which does
790 * a lockless check and we rely on seeing the dirty bit */
791 smp_mb();
792 if (buffer_dirty(bh)) {
793 list_add(&bh->b_assoc_buffers,
794 &mapping->private_list);
795 bh->b_assoc_map = mapping;
796 }
797 spin_unlock(lock);
798 wait_on_buffer(bh);
799 if (!buffer_uptodate(bh))
800 err = -EIO;
801 brelse(bh);
802 spin_lock(lock);
803 }
804
805 spin_unlock(lock);
806 err2 = osync_buffers_list(lock, list);
807 if (err)
808 return err;
809 else
810 return err2;
811 }
812
813 /*
814 * Invalidate any and all dirty buffers on a given inode. We are
815 * probably unmounting the fs, but that doesn't mean we have already
816 * done a sync(). Just drop the buffers from the inode list.
817 *
818 * NOTE: we take the inode's blockdev's mapping's private_lock. Which
819 * assumes that all the buffers are against the blockdev. Not true
820 * for reiserfs.
821 */
822 void invalidate_inode_buffers(struct inode *inode)
823 {
824 if (inode_has_buffers(inode)) {
825 struct address_space *mapping = &inode->i_data;
826 struct list_head *list = &mapping->private_list;
827 struct address_space *buffer_mapping = mapping->private_data;
828
829 spin_lock(&buffer_mapping->private_lock);
830 while (!list_empty(list))
831 __remove_assoc_queue(BH_ENTRY(list->next));
832 spin_unlock(&buffer_mapping->private_lock);
833 }
834 }
835 EXPORT_SYMBOL(invalidate_inode_buffers);
836
837 /*
838 * Remove any clean buffers from the inode's buffer list. This is called
839 * when we're trying to free the inode itself. Those buffers can pin it.
840 *
841 * Returns true if all buffers were removed.
842 */
843 int remove_inode_buffers(struct inode *inode)
844 {
845 int ret = 1;
846
847 if (inode_has_buffers(inode)) {
848 struct address_space *mapping = &inode->i_data;
849 struct list_head *list = &mapping->private_list;
850 struct address_space *buffer_mapping = mapping->private_data;
851
852 spin_lock(&buffer_mapping->private_lock);
853 while (!list_empty(list)) {
854 struct buffer_head *bh = BH_ENTRY(list->next);
855 if (buffer_dirty(bh)) {
856 ret = 0;
857 break;
858 }
859 __remove_assoc_queue(bh);
860 }
861 spin_unlock(&buffer_mapping->private_lock);
862 }
863 return ret;
864 }
865
866 /*
867 * Create the appropriate buffers when given a page for data area and
868 * the size of each buffer.. Use the bh->b_this_page linked list to
869 * follow the buffers created. Return NULL if unable to create more
870 * buffers.
871 *
872 * The retry flag is used to differentiate async IO (paging, swapping)
873 * which may not fail from ordinary buffer allocations.
874 */
875 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
876 int retry)
877 {
878 struct buffer_head *bh, *head;
879 long offset;
880
881 try_again:
882 head = NULL;
883 offset = PAGE_SIZE;
884 while ((offset -= size) >= 0) {
885 bh = alloc_buffer_head(GFP_NOFS);
886 if (!bh)
887 goto no_grow;
888
889 bh->b_this_page = head;
890 bh->b_blocknr = -1;
891 head = bh;
892
893 bh->b_size = size;
894
895 /* Link the buffer to its page */
896 set_bh_page(bh, page, offset);
897 }
898 return head;
899 /*
900 * In case anything failed, we just free everything we got.
901 */
902 no_grow:
903 if (head) {
904 do {
905 bh = head;
906 head = head->b_this_page;
907 free_buffer_head(bh);
908 } while (head);
909 }
910
911 /*
912 * Return failure for non-async IO requests. Async IO requests
913 * are not allowed to fail, so we have to wait until buffer heads
914 * become available. But we don't want tasks sleeping with
915 * partially complete buffers, so all were released above.
916 */
917 if (!retry)
918 return NULL;
919
920 /* We're _really_ low on memory. Now we just
921 * wait for old buffer heads to become free due to
922 * finishing IO. Since this is an async request and
923 * the reserve list is empty, we're sure there are
924 * async buffer heads in use.
925 */
926 free_more_memory();
927 goto try_again;
928 }
929 EXPORT_SYMBOL_GPL(alloc_page_buffers);
930
931 static inline void
932 link_dev_buffers(struct page *page, struct buffer_head *head)
933 {
934 struct buffer_head *bh, *tail;
935
936 bh = head;
937 do {
938 tail = bh;
939 bh = bh->b_this_page;
940 } while (bh);
941 tail->b_this_page = head;
942 attach_page_buffers(page, head);
943 }
944
945 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
946 {
947 sector_t retval = ~((sector_t)0);
948 loff_t sz = i_size_read(bdev->bd_inode);
949
950 if (sz) {
951 unsigned int sizebits = blksize_bits(size);
952 retval = (sz >> sizebits);
953 }
954 return retval;
955 }
956
957 /*
958 * Initialise the state of a blockdev page's buffers.
959 */
960 static sector_t
961 init_page_buffers(struct page *page, struct block_device *bdev,
962 sector_t block, int size)
963 {
964 struct buffer_head *head = page_buffers(page);
965 struct buffer_head *bh = head;
966 int uptodate = PageUptodate(page);
967 sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size);
968
969 do {
970 if (!buffer_mapped(bh)) {
971 init_buffer(bh, NULL, NULL);
972 bh->b_bdev = bdev;
973 bh->b_blocknr = block;
974 if (uptodate)
975 set_buffer_uptodate(bh);
976 if (block < end_block)
977 set_buffer_mapped(bh);
978 }
979 block++;
980 bh = bh->b_this_page;
981 } while (bh != head);
982
983 /*
984 * Caller needs to validate requested block against end of device.
985 */
986 return end_block;
987 }
988
989 /*
990 * Create the page-cache page that contains the requested block.
991 *
992 * This is used purely for blockdev mappings.
993 */
994 static int
995 grow_dev_page(struct block_device *bdev, sector_t block,
996 pgoff_t index, int size, int sizebits)
997 {
998 struct inode *inode = bdev->bd_inode;
999 struct page *page;
1000 struct buffer_head *bh;
1001 sector_t end_block;
1002 int ret = 0; /* Will call free_more_memory() */
1003 gfp_t gfp_mask;
1004
1005 gfp_mask = mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS;
1006 gfp_mask |= __GFP_MOVABLE;
1007 /*
1008 * XXX: __getblk_slow() can not really deal with failure and
1009 * will endlessly loop on improvised global reclaim. Prefer
1010 * looping in the allocator rather than here, at least that
1011 * code knows what it's doing.
1012 */
1013 gfp_mask |= __GFP_NOFAIL;
1014
1015 page = find_or_create_page(inode->i_mapping, index, gfp_mask);
1016 if (!page)
1017 return ret;
1018
1019 BUG_ON(!PageLocked(page));
1020
1021 if (page_has_buffers(page)) {
1022 bh = page_buffers(page);
1023 if (bh->b_size == size) {
1024 end_block = init_page_buffers(page, bdev,
1025 (sector_t)index << sizebits,
1026 size);
1027 goto done;
1028 }
1029 if (!try_to_free_buffers(page))
1030 goto failed;
1031 }
1032
1033 /*
1034 * Allocate some buffers for this page
1035 */
1036 bh = alloc_page_buffers(page, size, 0);
1037 if (!bh)
1038 goto failed;
1039
1040 /*
1041 * Link the page to the buffers and initialise them. Take the
1042 * lock to be atomic wrt __find_get_block(), which does not
1043 * run under the page lock.
1044 */
1045 spin_lock(&inode->i_mapping->private_lock);
1046 link_dev_buffers(page, bh);
1047 end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits,
1048 size);
1049 spin_unlock(&inode->i_mapping->private_lock);
1050 done:
1051 ret = (block < end_block) ? 1 : -ENXIO;
1052 failed:
1053 unlock_page(page);
1054 page_cache_release(page);
1055 return ret;
1056 }
1057
1058 /*
1059 * Create buffers for the specified block device block's page. If
1060 * that page was dirty, the buffers are set dirty also.
1061 */
1062 static int
1063 grow_buffers(struct block_device *bdev, sector_t block, int size)
1064 {
1065 pgoff_t index;
1066 int sizebits;
1067
1068 sizebits = -1;
1069 do {
1070 sizebits++;
1071 } while ((size << sizebits) < PAGE_SIZE);
1072
1073 index = block >> sizebits;
1074
1075 /*
1076 * Check for a block which wants to lie outside our maximum possible
1077 * pagecache index. (this comparison is done using sector_t types).
1078 */
1079 if (unlikely(index != block >> sizebits)) {
1080 char b[BDEVNAME_SIZE];
1081
1082 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1083 "device %s\n",
1084 __func__, (unsigned long long)block,
1085 bdevname(bdev, b));
1086 return -EIO;
1087 }
1088
1089 /* Create a page with the proper size buffers.. */
1090 return grow_dev_page(bdev, block, index, size, sizebits);
1091 }
1092
1093 static struct buffer_head *
1094 __getblk_slow(struct block_device *bdev, sector_t block, int size)
1095 {
1096 /* Size must be multiple of hard sectorsize */
1097 if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1098 (size < 512 || size > PAGE_SIZE))) {
1099 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1100 size);
1101 printk(KERN_ERR "logical block size: %d\n",
1102 bdev_logical_block_size(bdev));
1103
1104 dump_stack();
1105 return NULL;
1106 }
1107
1108 for (;;) {
1109 struct buffer_head *bh;
1110 int ret;
1111
1112 bh = __find_get_block(bdev, block, size);
1113 if (bh)
1114 return bh;
1115
1116 ret = grow_buffers(bdev, block, size);
1117 if (ret < 0)
1118 return NULL;
1119 if (ret == 0)
1120 free_more_memory();
1121 }
1122 }
1123
1124 /*
1125 * The relationship between dirty buffers and dirty pages:
1126 *
1127 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1128 * the page is tagged dirty in its radix tree.
1129 *
1130 * At all times, the dirtiness of the buffers represents the dirtiness of
1131 * subsections of the page. If the page has buffers, the page dirty bit is
1132 * merely a hint about the true dirty state.
1133 *
1134 * When a page is set dirty in its entirety, all its buffers are marked dirty
1135 * (if the page has buffers).
1136 *
1137 * When a buffer is marked dirty, its page is dirtied, but the page's other
1138 * buffers are not.
1139 *
1140 * Also. When blockdev buffers are explicitly read with bread(), they
1141 * individually become uptodate. But their backing page remains not
1142 * uptodate - even if all of its buffers are uptodate. A subsequent
1143 * block_read_full_page() against that page will discover all the uptodate
1144 * buffers, will set the page uptodate and will perform no I/O.
1145 */
1146
1147 /**
1148 * mark_buffer_dirty - mark a buffer_head as needing writeout
1149 * @bh: the buffer_head to mark dirty
1150 *
1151 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1152 * backing page dirty, then tag the page as dirty in its address_space's radix
1153 * tree and then attach the address_space's inode to its superblock's dirty
1154 * inode list.
1155 *
1156 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock,
1157 * mapping->tree_lock and mapping->host->i_lock.
1158 */
1159 void mark_buffer_dirty(struct buffer_head *bh)
1160 {
1161 WARN_ON_ONCE(!buffer_uptodate(bh));
1162
1163 trace_block_dirty_buffer(bh);
1164
1165 /*
1166 * Very *carefully* optimize the it-is-already-dirty case.
1167 *
1168 * Don't let the final "is it dirty" escape to before we
1169 * perhaps modified the buffer.
1170 */
1171 if (buffer_dirty(bh)) {
1172 smp_mb();
1173 if (buffer_dirty(bh))
1174 return;
1175 }
1176
1177 if (!test_set_buffer_dirty(bh)) {
1178 struct page *page = bh->b_page;
1179 if (!TestSetPageDirty(page)) {
1180 struct address_space *mapping = page_mapping(page);
1181 if (mapping)
1182 __set_page_dirty(page, mapping, 0);
1183 }
1184 }
1185 }
1186 EXPORT_SYMBOL(mark_buffer_dirty);
1187
1188 /*
1189 * Decrement a buffer_head's reference count. If all buffers against a page
1190 * have zero reference count, are clean and unlocked, and if the page is clean
1191 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1192 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1193 * a page but it ends up not being freed, and buffers may later be reattached).
1194 */
1195 void __brelse(struct buffer_head * buf)
1196 {
1197 if (atomic_read(&buf->b_count)) {
1198 put_bh(buf);
1199 return;
1200 }
1201 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1202 }
1203 EXPORT_SYMBOL(__brelse);
1204
1205 /*
1206 * bforget() is like brelse(), except it discards any
1207 * potentially dirty data.
1208 */
1209 void __bforget(struct buffer_head *bh)
1210 {
1211 clear_buffer_dirty(bh);
1212 if (bh->b_assoc_map) {
1213 struct address_space *buffer_mapping = bh->b_page->mapping;
1214
1215 spin_lock(&buffer_mapping->private_lock);
1216 list_del_init(&bh->b_assoc_buffers);
1217 bh->b_assoc_map = NULL;
1218 spin_unlock(&buffer_mapping->private_lock);
1219 }
1220 __brelse(bh);
1221 }
1222 EXPORT_SYMBOL(__bforget);
1223
1224 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1225 {
1226 lock_buffer(bh);
1227 if (buffer_uptodate(bh)) {
1228 unlock_buffer(bh);
1229 return bh;
1230 } else {
1231 get_bh(bh);
1232 bh->b_end_io = end_buffer_read_sync;
1233 submit_bh(READ, bh);
1234 wait_on_buffer(bh);
1235 if (buffer_uptodate(bh))
1236 return bh;
1237 }
1238 brelse(bh);
1239 return NULL;
1240 }
1241
1242 /*
1243 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1244 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1245 * refcount elevated by one when they're in an LRU. A buffer can only appear
1246 * once in a particular CPU's LRU. A single buffer can be present in multiple
1247 * CPU's LRUs at the same time.
1248 *
1249 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1250 * sb_find_get_block().
1251 *
1252 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1253 * a local interrupt disable for that.
1254 */
1255
1256 #define BH_LRU_SIZE 16
1257
1258 struct bh_lru {
1259 struct buffer_head *bhs[BH_LRU_SIZE];
1260 };
1261
1262 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1263
1264 #ifdef CONFIG_SMP
1265 #define bh_lru_lock() local_irq_disable()
1266 #define bh_lru_unlock() local_irq_enable()
1267 #else
1268 #define bh_lru_lock() preempt_disable()
1269 #define bh_lru_unlock() preempt_enable()
1270 #endif
1271
1272 static inline void check_irqs_on(void)
1273 {
1274 #ifdef irqs_disabled
1275 BUG_ON(irqs_disabled());
1276 #endif
1277 }
1278
1279 /*
1280 * The LRU management algorithm is dopey-but-simple. Sorry.
1281 */
1282 static void bh_lru_install(struct buffer_head *bh)
1283 {
1284 struct buffer_head *evictee = NULL;
1285
1286 check_irqs_on();
1287 bh_lru_lock();
1288 if (__this_cpu_read(bh_lrus.bhs[0]) != bh) {
1289 struct buffer_head *bhs[BH_LRU_SIZE];
1290 int in;
1291 int out = 0;
1292
1293 get_bh(bh);
1294 bhs[out++] = bh;
1295 for (in = 0; in < BH_LRU_SIZE; in++) {
1296 struct buffer_head *bh2 =
1297 __this_cpu_read(bh_lrus.bhs[in]);
1298
1299 if (bh2 == bh) {
1300 __brelse(bh2);
1301 } else {
1302 if (out >= BH_LRU_SIZE) {
1303 BUG_ON(evictee != NULL);
1304 evictee = bh2;
1305 } else {
1306 bhs[out++] = bh2;
1307 }
1308 }
1309 }
1310 while (out < BH_LRU_SIZE)
1311 bhs[out++] = NULL;
1312 memcpy(this_cpu_ptr(&bh_lrus.bhs), bhs, sizeof(bhs));
1313 }
1314 bh_lru_unlock();
1315
1316 if (evictee)
1317 __brelse(evictee);
1318 }
1319
1320 /*
1321 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1322 */
1323 static struct buffer_head *
1324 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1325 {
1326 struct buffer_head *ret = NULL;
1327 unsigned int i;
1328
1329 check_irqs_on();
1330 bh_lru_lock();
1331 for (i = 0; i < BH_LRU_SIZE; i++) {
1332 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1333
1334 if (bh && bh->b_bdev == bdev &&
1335 bh->b_blocknr == block && bh->b_size == size) {
1336 if (i) {
1337 while (i) {
1338 __this_cpu_write(bh_lrus.bhs[i],
1339 __this_cpu_read(bh_lrus.bhs[i - 1]));
1340 i--;
1341 }
1342 __this_cpu_write(bh_lrus.bhs[0], bh);
1343 }
1344 get_bh(bh);
1345 ret = bh;
1346 break;
1347 }
1348 }
1349 bh_lru_unlock();
1350 return ret;
1351 }
1352
1353 /*
1354 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1355 * it in the LRU and mark it as accessed. If it is not present then return
1356 * NULL
1357 */
1358 struct buffer_head *
1359 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1360 {
1361 struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1362
1363 if (bh == NULL) {
1364 /* __find_get_block_slow will mark the page accessed */
1365 bh = __find_get_block_slow(bdev, block);
1366 if (bh)
1367 bh_lru_install(bh);
1368 } else
1369 touch_buffer(bh);
1370
1371 return bh;
1372 }
1373 EXPORT_SYMBOL(__find_get_block);
1374
1375 /*
1376 * __getblk will locate (and, if necessary, create) the buffer_head
1377 * which corresponds to the passed block_device, block and size. The
1378 * returned buffer has its reference count incremented.
1379 *
1380 * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1381 * attempt is failing. FIXME, perhaps?
1382 */
1383 struct buffer_head *
1384 __getblk(struct block_device *bdev, sector_t block, unsigned size)
1385 {
1386 struct buffer_head *bh = __find_get_block(bdev, block, size);
1387
1388 might_sleep();
1389 if (bh == NULL)
1390 bh = __getblk_slow(bdev, block, size);
1391 return bh;
1392 }
1393 EXPORT_SYMBOL(__getblk);
1394
1395 /*
1396 * Do async read-ahead on a buffer..
1397 */
1398 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1399 {
1400 struct buffer_head *bh = __getblk(bdev, block, size);
1401 if (likely(bh)) {
1402 ll_rw_block(READA, 1, &bh);
1403 brelse(bh);
1404 }
1405 }
1406 EXPORT_SYMBOL(__breadahead);
1407
1408 /**
1409 * __bread() - reads a specified block and returns the bh
1410 * @bdev: the block_device to read from
1411 * @block: number of block
1412 * @size: size (in bytes) to read
1413 *
1414 * Reads a specified block, and returns buffer head that contains it.
1415 * It returns NULL if the block was unreadable.
1416 */
1417 struct buffer_head *
1418 __bread(struct block_device *bdev, sector_t block, unsigned size)
1419 {
1420 struct buffer_head *bh = __getblk(bdev, block, size);
1421
1422 if (likely(bh) && !buffer_uptodate(bh))
1423 bh = __bread_slow(bh);
1424 return bh;
1425 }
1426 EXPORT_SYMBOL(__bread);
1427
1428 /*
1429 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1430 * This doesn't race because it runs in each cpu either in irq
1431 * or with preempt disabled.
1432 */
1433 static void invalidate_bh_lru(void *arg)
1434 {
1435 struct bh_lru *b = &get_cpu_var(bh_lrus);
1436 int i;
1437
1438 for (i = 0; i < BH_LRU_SIZE; i++) {
1439 brelse(b->bhs[i]);
1440 b->bhs[i] = NULL;
1441 }
1442 put_cpu_var(bh_lrus);
1443 }
1444
1445 static bool has_bh_in_lru(int cpu, void *dummy)
1446 {
1447 struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1448 int i;
1449
1450 for (i = 0; i < BH_LRU_SIZE; i++) {
1451 if (b->bhs[i])
1452 return 1;
1453 }
1454
1455 return 0;
1456 }
1457
1458 void invalidate_bh_lrus(void)
1459 {
1460 on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL);
1461 }
1462 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1463
1464 void set_bh_page(struct buffer_head *bh,
1465 struct page *page, unsigned long offset)
1466 {
1467 bh->b_page = page;
1468 BUG_ON(offset >= PAGE_SIZE);
1469 if (PageHighMem(page))
1470 /*
1471 * This catches illegal uses and preserves the offset:
1472 */
1473 bh->b_data = (char *)(0 + offset);
1474 else
1475 bh->b_data = page_address(page) + offset;
1476 }
1477 EXPORT_SYMBOL(set_bh_page);
1478
1479 /*
1480 * Called when truncating a buffer on a page completely.
1481 */
1482
1483 /* Bits that are cleared during an invalidate */
1484 #define BUFFER_FLAGS_DISCARD \
1485 (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1486 1 << BH_Delay | 1 << BH_Unwritten)
1487
1488 static void discard_buffer(struct buffer_head * bh)
1489 {
1490 unsigned long b_state, b_state_old;
1491
1492 lock_buffer(bh);
1493 clear_buffer_dirty(bh);
1494 bh->b_bdev = NULL;
1495 b_state = bh->b_state;
1496 for (;;) {
1497 b_state_old = cmpxchg(&bh->b_state, b_state,
1498 (b_state & ~BUFFER_FLAGS_DISCARD));
1499 if (b_state_old == b_state)
1500 break;
1501 b_state = b_state_old;
1502 }
1503 unlock_buffer(bh);
1504 }
1505
1506 /**
1507 * block_invalidatepage - invalidate part or all of a buffer-backed page
1508 *
1509 * @page: the page which is affected
1510 * @offset: start of the range to invalidate
1511 * @length: length of the range to invalidate
1512 *
1513 * block_invalidatepage() is called when all or part of the page has become
1514 * invalidated by a truncate operation.
1515 *
1516 * block_invalidatepage() does not have to release all buffers, but it must
1517 * ensure that no dirty buffer is left outside @offset and that no I/O
1518 * is underway against any of the blocks which are outside the truncation
1519 * point. Because the caller is about to free (and possibly reuse) those
1520 * blocks on-disk.
1521 */
1522 void block_invalidatepage(struct page *page, unsigned int offset,
1523 unsigned int length)
1524 {
1525 struct buffer_head *head, *bh, *next;
1526 unsigned int curr_off = 0;
1527 unsigned int stop = length + offset;
1528
1529 BUG_ON(!PageLocked(page));
1530 if (!page_has_buffers(page))
1531 goto out;
1532
1533 /*
1534 * Check for overflow
1535 */
1536 BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1537
1538 head = page_buffers(page);
1539 bh = head;
1540 do {
1541 unsigned int next_off = curr_off + bh->b_size;
1542 next = bh->b_this_page;
1543
1544 /*
1545 * Are we still fully in range ?
1546 */
1547 if (next_off > stop)
1548 goto out;
1549
1550 /*
1551 * is this block fully invalidated?
1552 */
1553 if (offset <= curr_off)
1554 discard_buffer(bh);
1555 curr_off = next_off;
1556 bh = next;
1557 } while (bh != head);
1558
1559 /*
1560 * We release buffers only if the entire page is being invalidated.
1561 * The get_block cached value has been unconditionally invalidated,
1562 * so real IO is not possible anymore.
1563 */
1564 if (offset == 0)
1565 try_to_release_page(page, 0);
1566 out:
1567 return;
1568 }
1569 EXPORT_SYMBOL(block_invalidatepage);
1570
1571
1572 /*
1573 * We attach and possibly dirty the buffers atomically wrt
1574 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers
1575 * is already excluded via the page lock.
1576 */
1577 void create_empty_buffers(struct page *page,
1578 unsigned long blocksize, unsigned long b_state)
1579 {
1580 struct buffer_head *bh, *head, *tail;
1581
1582 head = alloc_page_buffers(page, blocksize, 1);
1583 bh = head;
1584 do {
1585 bh->b_state |= b_state;
1586 tail = bh;
1587 bh = bh->b_this_page;
1588 } while (bh);
1589 tail->b_this_page = head;
1590
1591 spin_lock(&page->mapping->private_lock);
1592 if (PageUptodate(page) || PageDirty(page)) {
1593 bh = head;
1594 do {
1595 if (PageDirty(page))
1596 set_buffer_dirty(bh);
1597 if (PageUptodate(page))
1598 set_buffer_uptodate(bh);
1599 bh = bh->b_this_page;
1600 } while (bh != head);
1601 }
1602 attach_page_buffers(page, head);
1603 spin_unlock(&page->mapping->private_lock);
1604 }
1605 EXPORT_SYMBOL(create_empty_buffers);
1606
1607 /*
1608 * We are taking a block for data and we don't want any output from any
1609 * buffer-cache aliases starting from return from that function and
1610 * until the moment when something will explicitly mark the buffer
1611 * dirty (hopefully that will not happen until we will free that block ;-)
1612 * We don't even need to mark it not-uptodate - nobody can expect
1613 * anything from a newly allocated buffer anyway. We used to used
1614 * unmap_buffer() for such invalidation, but that was wrong. We definitely
1615 * don't want to mark the alias unmapped, for example - it would confuse
1616 * anyone who might pick it with bread() afterwards...
1617 *
1618 * Also.. Note that bforget() doesn't lock the buffer. So there can
1619 * be writeout I/O going on against recently-freed buffers. We don't
1620 * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1621 * only if we really need to. That happens here.
1622 */
1623 void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1624 {
1625 struct buffer_head *old_bh;
1626
1627 might_sleep();
1628
1629 old_bh = __find_get_block_slow(bdev, block);
1630 if (old_bh) {
1631 clear_buffer_dirty(old_bh);
1632 wait_on_buffer(old_bh);
1633 clear_buffer_req(old_bh);
1634 __brelse(old_bh);
1635 }
1636 }
1637 EXPORT_SYMBOL(unmap_underlying_metadata);
1638
1639 /*
1640 * Size is a power-of-two in the range 512..PAGE_SIZE,
1641 * and the case we care about most is PAGE_SIZE.
1642 *
1643 * So this *could* possibly be written with those
1644 * constraints in mind (relevant mostly if some
1645 * architecture has a slow bit-scan instruction)
1646 */
1647 static inline int block_size_bits(unsigned int blocksize)
1648 {
1649 return ilog2(blocksize);
1650 }
1651
1652 static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1653 {
1654 BUG_ON(!PageLocked(page));
1655
1656 if (!page_has_buffers(page))
1657 create_empty_buffers(page, 1 << ACCESS_ONCE(inode->i_blkbits), b_state);
1658 return page_buffers(page);
1659 }
1660
1661 /*
1662 * NOTE! All mapped/uptodate combinations are valid:
1663 *
1664 * Mapped Uptodate Meaning
1665 *
1666 * No No "unknown" - must do get_block()
1667 * No Yes "hole" - zero-filled
1668 * Yes No "allocated" - allocated on disk, not read in
1669 * Yes Yes "valid" - allocated and up-to-date in memory.
1670 *
1671 * "Dirty" is valid only with the last case (mapped+uptodate).
1672 */
1673
1674 /*
1675 * While block_write_full_page is writing back the dirty buffers under
1676 * the page lock, whoever dirtied the buffers may decide to clean them
1677 * again at any time. We handle that by only looking at the buffer
1678 * state inside lock_buffer().
1679 *
1680 * If block_write_full_page() is called for regular writeback
1681 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1682 * locked buffer. This only can happen if someone has written the buffer
1683 * directly, with submit_bh(). At the address_space level PageWriteback
1684 * prevents this contention from occurring.
1685 *
1686 * If block_write_full_page() is called with wbc->sync_mode ==
1687 * WB_SYNC_ALL, the writes are posted using WRITE_SYNC; this
1688 * causes the writes to be flagged as synchronous writes.
1689 */
1690 static int __block_write_full_page(struct inode *inode, struct page *page,
1691 get_block_t *get_block, struct writeback_control *wbc,
1692 bh_end_io_t *handler)
1693 {
1694 int err;
1695 sector_t block;
1696 sector_t last_block;
1697 struct buffer_head *bh, *head;
1698 unsigned int blocksize, bbits;
1699 int nr_underway = 0;
1700 int write_op = (wbc->sync_mode == WB_SYNC_ALL ?
1701 WRITE_SYNC : WRITE);
1702
1703 head = create_page_buffers(page, inode,
1704 (1 << BH_Dirty)|(1 << BH_Uptodate));
1705
1706 /*
1707 * Be very careful. We have no exclusion from __set_page_dirty_buffers
1708 * here, and the (potentially unmapped) buffers may become dirty at
1709 * any time. If a buffer becomes dirty here after we've inspected it
1710 * then we just miss that fact, and the page stays dirty.
1711 *
1712 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1713 * handle that here by just cleaning them.
1714 */
1715
1716 bh = head;
1717 blocksize = bh->b_size;
1718 bbits = block_size_bits(blocksize);
1719
1720 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1721 last_block = (i_size_read(inode) - 1) >> bbits;
1722
1723 /*
1724 * Get all the dirty buffers mapped to disk addresses and
1725 * handle any aliases from the underlying blockdev's mapping.
1726 */
1727 do {
1728 if (block > last_block) {
1729 /*
1730 * mapped buffers outside i_size will occur, because
1731 * this page can be outside i_size when there is a
1732 * truncate in progress.
1733 */
1734 /*
1735 * The buffer was zeroed by block_write_full_page()
1736 */
1737 clear_buffer_dirty(bh);
1738 set_buffer_uptodate(bh);
1739 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1740 buffer_dirty(bh)) {
1741 WARN_ON(bh->b_size != blocksize);
1742 err = get_block(inode, block, bh, 1);
1743 if (err)
1744 goto recover;
1745 clear_buffer_delay(bh);
1746 if (buffer_new(bh)) {
1747 /* blockdev mappings never come here */
1748 clear_buffer_new(bh);
1749 unmap_underlying_metadata(bh->b_bdev,
1750 bh->b_blocknr);
1751 }
1752 }
1753 bh = bh->b_this_page;
1754 block++;
1755 } while (bh != head);
1756
1757 do {
1758 if (!buffer_mapped(bh))
1759 continue;
1760 /*
1761 * If it's a fully non-blocking write attempt and we cannot
1762 * lock the buffer then redirty the page. Note that this can
1763 * potentially cause a busy-wait loop from writeback threads
1764 * and kswapd activity, but those code paths have their own
1765 * higher-level throttling.
1766 */
1767 if (wbc->sync_mode != WB_SYNC_NONE) {
1768 lock_buffer(bh);
1769 } else if (!trylock_buffer(bh)) {
1770 redirty_page_for_writepage(wbc, page);
1771 continue;
1772 }
1773 if (test_clear_buffer_dirty(bh)) {
1774 mark_buffer_async_write_endio(bh, handler);
1775 } else {
1776 unlock_buffer(bh);
1777 }
1778 } while ((bh = bh->b_this_page) != head);
1779
1780 /*
1781 * The page and its buffers are protected by PageWriteback(), so we can
1782 * drop the bh refcounts early.
1783 */
1784 BUG_ON(PageWriteback(page));
1785 set_page_writeback(page);
1786
1787 do {
1788 struct buffer_head *next = bh->b_this_page;
1789 if (buffer_async_write(bh)) {
1790 submit_bh(write_op, bh);
1791 nr_underway++;
1792 }
1793 bh = next;
1794 } while (bh != head);
1795 unlock_page(page);
1796
1797 err = 0;
1798 done:
1799 if (nr_underway == 0) {
1800 /*
1801 * The page was marked dirty, but the buffers were
1802 * clean. Someone wrote them back by hand with
1803 * ll_rw_block/submit_bh. A rare case.
1804 */
1805 end_page_writeback(page);
1806
1807 /*
1808 * The page and buffer_heads can be released at any time from
1809 * here on.
1810 */
1811 }
1812 return err;
1813
1814 recover:
1815 /*
1816 * ENOSPC, or some other error. We may already have added some
1817 * blocks to the file, so we need to write these out to avoid
1818 * exposing stale data.
1819 * The page is currently locked and not marked for writeback
1820 */
1821 bh = head;
1822 /* Recovery: lock and submit the mapped buffers */
1823 do {
1824 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1825 !buffer_delay(bh)) {
1826 lock_buffer(bh);
1827 mark_buffer_async_write_endio(bh, handler);
1828 } else {
1829 /*
1830 * The buffer may have been set dirty during
1831 * attachment to a dirty page.
1832 */
1833 clear_buffer_dirty(bh);
1834 }
1835 } while ((bh = bh->b_this_page) != head);
1836 SetPageError(page);
1837 BUG_ON(PageWriteback(page));
1838 mapping_set_error(page->mapping, err);
1839 set_page_writeback(page);
1840 do {
1841 struct buffer_head *next = bh->b_this_page;
1842 if (buffer_async_write(bh)) {
1843 clear_buffer_dirty(bh);
1844 submit_bh(write_op, bh);
1845 nr_underway++;
1846 }
1847 bh = next;
1848 } while (bh != head);
1849 unlock_page(page);
1850 goto done;
1851 }
1852
1853 /*
1854 * If a page has any new buffers, zero them out here, and mark them uptodate
1855 * and dirty so they'll be written out (in order to prevent uninitialised
1856 * block data from leaking). And clear the new bit.
1857 */
1858 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1859 {
1860 unsigned int block_start, block_end;
1861 struct buffer_head *head, *bh;
1862
1863 BUG_ON(!PageLocked(page));
1864 if (!page_has_buffers(page))
1865 return;
1866
1867 bh = head = page_buffers(page);
1868 block_start = 0;
1869 do {
1870 block_end = block_start + bh->b_size;
1871
1872 if (buffer_new(bh)) {
1873 if (block_end > from && block_start < to) {
1874 if (!PageUptodate(page)) {
1875 unsigned start, size;
1876
1877 start = max(from, block_start);
1878 size = min(to, block_end) - start;
1879
1880 zero_user(page, start, size);
1881 set_buffer_uptodate(bh);
1882 }
1883
1884 clear_buffer_new(bh);
1885 mark_buffer_dirty(bh);
1886 }
1887 }
1888
1889 block_start = block_end;
1890 bh = bh->b_this_page;
1891 } while (bh != head);
1892 }
1893 EXPORT_SYMBOL(page_zero_new_buffers);
1894
1895 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
1896 get_block_t *get_block)
1897 {
1898 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1899 unsigned to = from + len;
1900 struct inode *inode = page->mapping->host;
1901 unsigned block_start, block_end;
1902 sector_t block;
1903 int err = 0;
1904 unsigned blocksize, bbits;
1905 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1906
1907 BUG_ON(!PageLocked(page));
1908 BUG_ON(from > PAGE_CACHE_SIZE);
1909 BUG_ON(to > PAGE_CACHE_SIZE);
1910 BUG_ON(from > to);
1911
1912 head = create_page_buffers(page, inode, 0);
1913 blocksize = head->b_size;
1914 bbits = block_size_bits(blocksize);
1915
1916 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1917
1918 for(bh = head, block_start = 0; bh != head || !block_start;
1919 block++, block_start=block_end, bh = bh->b_this_page) {
1920 block_end = block_start + blocksize;
1921 if (block_end <= from || block_start >= to) {
1922 if (PageUptodate(page)) {
1923 if (!buffer_uptodate(bh))
1924 set_buffer_uptodate(bh);
1925 }
1926 continue;
1927 }
1928 if (buffer_new(bh))
1929 clear_buffer_new(bh);
1930 if (!buffer_mapped(bh)) {
1931 WARN_ON(bh->b_size != blocksize);
1932 err = get_block(inode, block, bh, 1);
1933 if (err)
1934 break;
1935 if (buffer_new(bh)) {
1936 unmap_underlying_metadata(bh->b_bdev,
1937 bh->b_blocknr);
1938 if (PageUptodate(page)) {
1939 clear_buffer_new(bh);
1940 set_buffer_uptodate(bh);
1941 mark_buffer_dirty(bh);
1942 continue;
1943 }
1944 if (block_end > to || block_start < from)
1945 zero_user_segments(page,
1946 to, block_end,
1947 block_start, from);
1948 continue;
1949 }
1950 }
1951 if (PageUptodate(page)) {
1952 if (!buffer_uptodate(bh))
1953 set_buffer_uptodate(bh);
1954 continue;
1955 }
1956 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1957 !buffer_unwritten(bh) &&
1958 (block_start < from || block_end > to)) {
1959 ll_rw_block(READ, 1, &bh);
1960 *wait_bh++=bh;
1961 }
1962 }
1963 /*
1964 * If we issued read requests - let them complete.
1965 */
1966 while(wait_bh > wait) {
1967 wait_on_buffer(*--wait_bh);
1968 if (!buffer_uptodate(*wait_bh))
1969 err = -EIO;
1970 }
1971 if (unlikely(err))
1972 page_zero_new_buffers(page, from, to);
1973 return err;
1974 }
1975 EXPORT_SYMBOL(__block_write_begin);
1976
1977 static int __block_commit_write(struct inode *inode, struct page *page,
1978 unsigned from, unsigned to)
1979 {
1980 unsigned block_start, block_end;
1981 int partial = 0;
1982 unsigned blocksize;
1983 struct buffer_head *bh, *head;
1984
1985 bh = head = page_buffers(page);
1986 blocksize = bh->b_size;
1987
1988 block_start = 0;
1989 do {
1990 block_end = block_start + blocksize;
1991 if (block_end <= from || block_start >= to) {
1992 if (!buffer_uptodate(bh))
1993 partial = 1;
1994 } else {
1995 set_buffer_uptodate(bh);
1996 mark_buffer_dirty(bh);
1997 }
1998 clear_buffer_new(bh);
1999
2000 block_start = block_end;
2001 bh = bh->b_this_page;
2002 } while (bh != head);
2003
2004 /*
2005 * If this is a partial write which happened to make all buffers
2006 * uptodate then we can optimize away a bogus readpage() for
2007 * the next read(). Here we 'discover' whether the page went
2008 * uptodate as a result of this (potentially partial) write.
2009 */
2010 if (!partial)
2011 SetPageUptodate(page);
2012 return 0;
2013 }
2014
2015 /*
2016 * block_write_begin takes care of the basic task of block allocation and
2017 * bringing partial write blocks uptodate first.
2018 *
2019 * The filesystem needs to handle block truncation upon failure.
2020 */
2021 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2022 unsigned flags, struct page **pagep, get_block_t *get_block)
2023 {
2024 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
2025 struct page *page;
2026 int status;
2027
2028 page = grab_cache_page_write_begin(mapping, index, flags);
2029 if (!page)
2030 return -ENOMEM;
2031
2032 status = __block_write_begin(page, pos, len, get_block);
2033 if (unlikely(status)) {
2034 unlock_page(page);
2035 page_cache_release(page);
2036 page = NULL;
2037 }
2038
2039 *pagep = page;
2040 return status;
2041 }
2042 EXPORT_SYMBOL(block_write_begin);
2043
2044 int block_write_end(struct file *file, struct address_space *mapping,
2045 loff_t pos, unsigned len, unsigned copied,
2046 struct page *page, void *fsdata)
2047 {
2048 struct inode *inode = mapping->host;
2049 unsigned start;
2050
2051 start = pos & (PAGE_CACHE_SIZE - 1);
2052
2053 if (unlikely(copied < len)) {
2054 /*
2055 * The buffers that were written will now be uptodate, so we
2056 * don't have to worry about a readpage reading them and
2057 * overwriting a partial write. However if we have encountered
2058 * a short write and only partially written into a buffer, it
2059 * will not be marked uptodate, so a readpage might come in and
2060 * destroy our partial write.
2061 *
2062 * Do the simplest thing, and just treat any short write to a
2063 * non uptodate page as a zero-length write, and force the
2064 * caller to redo the whole thing.
2065 */
2066 if (!PageUptodate(page))
2067 copied = 0;
2068
2069 page_zero_new_buffers(page, start+copied, start+len);
2070 }
2071 flush_dcache_page(page);
2072
2073 /* This could be a short (even 0-length) commit */
2074 __block_commit_write(inode, page, start, start+copied);
2075
2076 return copied;
2077 }
2078 EXPORT_SYMBOL(block_write_end);
2079
2080 int generic_write_end(struct file *file, struct address_space *mapping,
2081 loff_t pos, unsigned len, unsigned copied,
2082 struct page *page, void *fsdata)
2083 {
2084 struct inode *inode = mapping->host;
2085 int i_size_changed = 0;
2086
2087 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2088
2089 /*
2090 * No need to use i_size_read() here, the i_size
2091 * cannot change under us because we hold i_mutex.
2092 *
2093 * But it's important to update i_size while still holding page lock:
2094 * page writeout could otherwise come in and zero beyond i_size.
2095 */
2096 if (pos+copied > inode->i_size) {
2097 i_size_write(inode, pos+copied);
2098 i_size_changed = 1;
2099 }
2100
2101 unlock_page(page);
2102 page_cache_release(page);
2103
2104 /*
2105 * Don't mark the inode dirty under page lock. First, it unnecessarily
2106 * makes the holding time of page lock longer. Second, it forces lock
2107 * ordering of page lock and transaction start for journaling
2108 * filesystems.
2109 */
2110 if (i_size_changed)
2111 mark_inode_dirty(inode);
2112
2113 return copied;
2114 }
2115 EXPORT_SYMBOL(generic_write_end);
2116
2117 /*
2118 * block_is_partially_uptodate checks whether buffers within a page are
2119 * uptodate or not.
2120 *
2121 * Returns true if all buffers which correspond to a file portion
2122 * we want to read are uptodate.
2123 */
2124 int block_is_partially_uptodate(struct page *page, unsigned long from,
2125 unsigned long count)
2126 {
2127 unsigned block_start, block_end, blocksize;
2128 unsigned to;
2129 struct buffer_head *bh, *head;
2130 int ret = 1;
2131
2132 if (!page_has_buffers(page))
2133 return 0;
2134
2135 head = page_buffers(page);
2136 blocksize = head->b_size;
2137 to = min_t(unsigned, PAGE_CACHE_SIZE - from, count);
2138 to = from + to;
2139 if (from < blocksize && to > PAGE_CACHE_SIZE - blocksize)
2140 return 0;
2141
2142 bh = head;
2143 block_start = 0;
2144 do {
2145 block_end = block_start + blocksize;
2146 if (block_end > from && block_start < to) {
2147 if (!buffer_uptodate(bh)) {
2148 ret = 0;
2149 break;
2150 }
2151 if (block_end >= to)
2152 break;
2153 }
2154 block_start = block_end;
2155 bh = bh->b_this_page;
2156 } while (bh != head);
2157
2158 return ret;
2159 }
2160 EXPORT_SYMBOL(block_is_partially_uptodate);
2161
2162 /*
2163 * Generic "read page" function for block devices that have the normal
2164 * get_block functionality. This is most of the block device filesystems.
2165 * Reads the page asynchronously --- the unlock_buffer() and
2166 * set/clear_buffer_uptodate() functions propagate buffer state into the
2167 * page struct once IO has completed.
2168 */
2169 int block_read_full_page(struct page *page, get_block_t *get_block)
2170 {
2171 struct inode *inode = page->mapping->host;
2172 sector_t iblock, lblock;
2173 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2174 unsigned int blocksize, bbits;
2175 int nr, i;
2176 int fully_mapped = 1;
2177
2178 head = create_page_buffers(page, inode, 0);
2179 blocksize = head->b_size;
2180 bbits = block_size_bits(blocksize);
2181
2182 iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
2183 lblock = (i_size_read(inode)+blocksize-1) >> bbits;
2184 bh = head;
2185 nr = 0;
2186 i = 0;
2187
2188 do {
2189 if (buffer_uptodate(bh))
2190 continue;
2191
2192 if (!buffer_mapped(bh)) {
2193 int err = 0;
2194
2195 fully_mapped = 0;
2196 if (iblock < lblock) {
2197 WARN_ON(bh->b_size != blocksize);
2198 err = get_block(inode, iblock, bh, 0);
2199 if (err)
2200 SetPageError(page);
2201 }
2202 if (!buffer_mapped(bh)) {
2203 zero_user(page, i * blocksize, blocksize);
2204 if (!err)
2205 set_buffer_uptodate(bh);
2206 continue;
2207 }
2208 /*
2209 * get_block() might have updated the buffer
2210 * synchronously
2211 */
2212 if (buffer_uptodate(bh))
2213 continue;
2214 }
2215 arr[nr++] = bh;
2216 } while (i++, iblock++, (bh = bh->b_this_page) != head);
2217
2218 if (fully_mapped)
2219 SetPageMappedToDisk(page);
2220
2221 if (!nr) {
2222 /*
2223 * All buffers are uptodate - we can set the page uptodate
2224 * as well. But not if get_block() returned an error.
2225 */
2226 if (!PageError(page))
2227 SetPageUptodate(page);
2228 unlock_page(page);
2229 return 0;
2230 }
2231
2232 /* Stage two: lock the buffers */
2233 for (i = 0; i < nr; i++) {
2234 bh = arr[i];
2235 lock_buffer(bh);
2236 mark_buffer_async_read(bh);
2237 }
2238
2239 /*
2240 * Stage 3: start the IO. Check for uptodateness
2241 * inside the buffer lock in case another process reading
2242 * the underlying blockdev brought it uptodate (the sct fix).
2243 */
2244 for (i = 0; i < nr; i++) {
2245 bh = arr[i];
2246 if (buffer_uptodate(bh))
2247 end_buffer_async_read(bh, 1);
2248 else
2249 submit_bh(READ, bh);
2250 }
2251 return 0;
2252 }
2253 EXPORT_SYMBOL(block_read_full_page);
2254
2255 /* utility function for filesystems that need to do work on expanding
2256 * truncates. Uses filesystem pagecache writes to allow the filesystem to
2257 * deal with the hole.
2258 */
2259 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2260 {
2261 struct address_space *mapping = inode->i_mapping;
2262 struct page *page;
2263 void *fsdata;
2264 int err;
2265
2266 err = inode_newsize_ok(inode, size);
2267 if (err)
2268 goto out;
2269
2270 err = pagecache_write_begin(NULL, mapping, size, 0,
2271 AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND,
2272 &page, &fsdata);
2273 if (err)
2274 goto out;
2275
2276 err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2277 BUG_ON(err > 0);
2278
2279 out:
2280 return err;
2281 }
2282 EXPORT_SYMBOL(generic_cont_expand_simple);
2283
2284 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2285 loff_t pos, loff_t *bytes)
2286 {
2287 struct inode *inode = mapping->host;
2288 unsigned blocksize = 1 << inode->i_blkbits;
2289 struct page *page;
2290 void *fsdata;
2291 pgoff_t index, curidx;
2292 loff_t curpos;
2293 unsigned zerofrom, offset, len;
2294 int err = 0;
2295
2296 index = pos >> PAGE_CACHE_SHIFT;
2297 offset = pos & ~PAGE_CACHE_MASK;
2298
2299 while (index > (curidx = (curpos = *bytes)>>PAGE_CACHE_SHIFT)) {
2300 zerofrom = curpos & ~PAGE_CACHE_MASK;
2301 if (zerofrom & (blocksize-1)) {
2302 *bytes |= (blocksize-1);
2303 (*bytes)++;
2304 }
2305 len = PAGE_CACHE_SIZE - zerofrom;
2306
2307 err = pagecache_write_begin(file, mapping, curpos, len,
2308 AOP_FLAG_UNINTERRUPTIBLE,
2309 &page, &fsdata);
2310 if (err)
2311 goto out;
2312 zero_user(page, zerofrom, len);
2313 err = pagecache_write_end(file, mapping, curpos, len, len,
2314 page, fsdata);
2315 if (err < 0)
2316 goto out;
2317 BUG_ON(err != len);
2318 err = 0;
2319
2320 balance_dirty_pages_ratelimited(mapping);
2321
2322 if (unlikely(fatal_signal_pending(current))) {
2323 err = -EINTR;
2324 goto out;
2325 }
2326 }
2327
2328 /* page covers the boundary, find the boundary offset */
2329 if (index == curidx) {
2330 zerofrom = curpos & ~PAGE_CACHE_MASK;
2331 /* if we will expand the thing last block will be filled */
2332 if (offset <= zerofrom) {
2333 goto out;
2334 }
2335 if (zerofrom & (blocksize-1)) {
2336 *bytes |= (blocksize-1);
2337 (*bytes)++;
2338 }
2339 len = offset - zerofrom;
2340
2341 err = pagecache_write_begin(file, mapping, curpos, len,
2342 AOP_FLAG_UNINTERRUPTIBLE,
2343 &page, &fsdata);
2344 if (err)
2345 goto out;
2346 zero_user(page, zerofrom, len);
2347 err = pagecache_write_end(file, mapping, curpos, len, len,
2348 page, fsdata);
2349 if (err < 0)
2350 goto out;
2351 BUG_ON(err != len);
2352 err = 0;
2353 }
2354 out:
2355 return err;
2356 }
2357
2358 /*
2359 * For moronic filesystems that do not allow holes in file.
2360 * We may have to extend the file.
2361 */
2362 int cont_write_begin(struct file *file, struct address_space *mapping,
2363 loff_t pos, unsigned len, unsigned flags,
2364 struct page **pagep, void **fsdata,
2365 get_block_t *get_block, loff_t *bytes)
2366 {
2367 struct inode *inode = mapping->host;
2368 unsigned blocksize = 1 << inode->i_blkbits;
2369 unsigned zerofrom;
2370 int err;
2371
2372 err = cont_expand_zero(file, mapping, pos, bytes);
2373 if (err)
2374 return err;
2375
2376 zerofrom = *bytes & ~PAGE_CACHE_MASK;
2377 if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2378 *bytes |= (blocksize-1);
2379 (*bytes)++;
2380 }
2381
2382 return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2383 }
2384 EXPORT_SYMBOL(cont_write_begin);
2385
2386 int block_commit_write(struct page *page, unsigned from, unsigned to)
2387 {
2388 struct inode *inode = page->mapping->host;
2389 __block_commit_write(inode,page,from,to);
2390 return 0;
2391 }
2392 EXPORT_SYMBOL(block_commit_write);
2393
2394 /*
2395 * block_page_mkwrite() is not allowed to change the file size as it gets
2396 * called from a page fault handler when a page is first dirtied. Hence we must
2397 * be careful to check for EOF conditions here. We set the page up correctly
2398 * for a written page which means we get ENOSPC checking when writing into
2399 * holes and correct delalloc and unwritten extent mapping on filesystems that
2400 * support these features.
2401 *
2402 * We are not allowed to take the i_mutex here so we have to play games to
2403 * protect against truncate races as the page could now be beyond EOF. Because
2404 * truncate writes the inode size before removing pages, once we have the
2405 * page lock we can determine safely if the page is beyond EOF. If it is not
2406 * beyond EOF, then the page is guaranteed safe against truncation until we
2407 * unlock the page.
2408 *
2409 * Direct callers of this function should protect against filesystem freezing
2410 * using sb_start_write() - sb_end_write() functions.
2411 */
2412 int __block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2413 get_block_t get_block)
2414 {
2415 struct page *page = vmf->page;
2416 struct inode *inode = file_inode(vma->vm_file);
2417 unsigned long end;
2418 loff_t size;
2419 int ret;
2420
2421 lock_page(page);
2422 size = i_size_read(inode);
2423 if ((page->mapping != inode->i_mapping) ||
2424 (page_offset(page) > size)) {
2425 /* We overload EFAULT to mean page got truncated */
2426 ret = -EFAULT;
2427 goto out_unlock;
2428 }
2429
2430 /* page is wholly or partially inside EOF */
2431 if (((page->index + 1) << PAGE_CACHE_SHIFT) > size)
2432 end = size & ~PAGE_CACHE_MASK;
2433 else
2434 end = PAGE_CACHE_SIZE;
2435
2436 ret = __block_write_begin(page, 0, end, get_block);
2437 if (!ret)
2438 ret = block_commit_write(page, 0, end);
2439
2440 if (unlikely(ret < 0))
2441 goto out_unlock;
2442 set_page_dirty(page);
2443 wait_for_stable_page(page);
2444 return 0;
2445 out_unlock:
2446 unlock_page(page);
2447 return ret;
2448 }
2449 EXPORT_SYMBOL(__block_page_mkwrite);
2450
2451 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2452 get_block_t get_block)
2453 {
2454 int ret;
2455 struct super_block *sb = file_inode(vma->vm_file)->i_sb;
2456
2457 sb_start_pagefault(sb);
2458
2459 /*
2460 * Update file times before taking page lock. We may end up failing the
2461 * fault so this update may be superfluous but who really cares...
2462 */
2463 file_update_time(vma->vm_file);
2464
2465 ret = __block_page_mkwrite(vma, vmf, get_block);
2466 sb_end_pagefault(sb);
2467 return block_page_mkwrite_return(ret);
2468 }
2469 EXPORT_SYMBOL(block_page_mkwrite);
2470
2471 /*
2472 * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2473 * immediately, while under the page lock. So it needs a special end_io
2474 * handler which does not touch the bh after unlocking it.
2475 */
2476 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2477 {
2478 __end_buffer_read_notouch(bh, uptodate);
2479 }
2480
2481 /*
2482 * Attach the singly-linked list of buffers created by nobh_write_begin, to
2483 * the page (converting it to circular linked list and taking care of page
2484 * dirty races).
2485 */
2486 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2487 {
2488 struct buffer_head *bh;
2489
2490 BUG_ON(!PageLocked(page));
2491
2492 spin_lock(&page->mapping->private_lock);
2493 bh = head;
2494 do {
2495 if (PageDirty(page))
2496 set_buffer_dirty(bh);
2497 if (!bh->b_this_page)
2498 bh->b_this_page = head;
2499 bh = bh->b_this_page;
2500 } while (bh != head);
2501 attach_page_buffers(page, head);
2502 spin_unlock(&page->mapping->private_lock);
2503 }
2504
2505 /*
2506 * On entry, the page is fully not uptodate.
2507 * On exit the page is fully uptodate in the areas outside (from,to)
2508 * The filesystem needs to handle block truncation upon failure.
2509 */
2510 int nobh_write_begin(struct address_space *mapping,
2511 loff_t pos, unsigned len, unsigned flags,
2512 struct page **pagep, void **fsdata,
2513 get_block_t *get_block)
2514 {
2515 struct inode *inode = mapping->host;
2516 const unsigned blkbits = inode->i_blkbits;
2517 const unsigned blocksize = 1 << blkbits;
2518 struct buffer_head *head, *bh;
2519 struct page *page;
2520 pgoff_t index;
2521 unsigned from, to;
2522 unsigned block_in_page;
2523 unsigned block_start, block_end;
2524 sector_t block_in_file;
2525 int nr_reads = 0;
2526 int ret = 0;
2527 int is_mapped_to_disk = 1;
2528
2529 index = pos >> PAGE_CACHE_SHIFT;
2530 from = pos & (PAGE_CACHE_SIZE - 1);
2531 to = from + len;
2532
2533 page = grab_cache_page_write_begin(mapping, index, flags);
2534 if (!page)
2535 return -ENOMEM;
2536 *pagep = page;
2537 *fsdata = NULL;
2538
2539 if (page_has_buffers(page)) {
2540 ret = __block_write_begin(page, pos, len, get_block);
2541 if (unlikely(ret))
2542 goto out_release;
2543 return ret;
2544 }
2545
2546 if (PageMappedToDisk(page))
2547 return 0;
2548
2549 /*
2550 * Allocate buffers so that we can keep track of state, and potentially
2551 * attach them to the page if an error occurs. In the common case of
2552 * no error, they will just be freed again without ever being attached
2553 * to the page (which is all OK, because we're under the page lock).
2554 *
2555 * Be careful: the buffer linked list is a NULL terminated one, rather
2556 * than the circular one we're used to.
2557 */
2558 head = alloc_page_buffers(page, blocksize, 0);
2559 if (!head) {
2560 ret = -ENOMEM;
2561 goto out_release;
2562 }
2563
2564 block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
2565
2566 /*
2567 * We loop across all blocks in the page, whether or not they are
2568 * part of the affected region. This is so we can discover if the
2569 * page is fully mapped-to-disk.
2570 */
2571 for (block_start = 0, block_in_page = 0, bh = head;
2572 block_start < PAGE_CACHE_SIZE;
2573 block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2574 int create;
2575
2576 block_end = block_start + blocksize;
2577 bh->b_state = 0;
2578 create = 1;
2579 if (block_start >= to)
2580 create = 0;
2581 ret = get_block(inode, block_in_file + block_in_page,
2582 bh, create);
2583 if (ret)
2584 goto failed;
2585 if (!buffer_mapped(bh))
2586 is_mapped_to_disk = 0;
2587 if (buffer_new(bh))
2588 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
2589 if (PageUptodate(page)) {
2590 set_buffer_uptodate(bh);
2591 continue;
2592 }
2593 if (buffer_new(bh) || !buffer_mapped(bh)) {
2594 zero_user_segments(page, block_start, from,
2595 to, block_end);
2596 continue;
2597 }
2598 if (buffer_uptodate(bh))
2599 continue; /* reiserfs does this */
2600 if (block_start < from || block_end > to) {
2601 lock_buffer(bh);
2602 bh->b_end_io = end_buffer_read_nobh;
2603 submit_bh(READ, bh);
2604 nr_reads++;
2605 }
2606 }
2607
2608 if (nr_reads) {
2609 /*
2610 * The page is locked, so these buffers are protected from
2611 * any VM or truncate activity. Hence we don't need to care
2612 * for the buffer_head refcounts.
2613 */
2614 for (bh = head; bh; bh = bh->b_this_page) {
2615 wait_on_buffer(bh);
2616 if (!buffer_uptodate(bh))
2617 ret = -EIO;
2618 }
2619 if (ret)
2620 goto failed;
2621 }
2622
2623 if (is_mapped_to_disk)
2624 SetPageMappedToDisk(page);
2625
2626 *fsdata = head; /* to be released by nobh_write_end */
2627
2628 return 0;
2629
2630 failed:
2631 BUG_ON(!ret);
2632 /*
2633 * Error recovery is a bit difficult. We need to zero out blocks that
2634 * were newly allocated, and dirty them to ensure they get written out.
2635 * Buffers need to be attached to the page at this point, otherwise
2636 * the handling of potential IO errors during writeout would be hard
2637 * (could try doing synchronous writeout, but what if that fails too?)
2638 */
2639 attach_nobh_buffers(page, head);
2640 page_zero_new_buffers(page, from, to);
2641
2642 out_release:
2643 unlock_page(page);
2644 page_cache_release(page);
2645 *pagep = NULL;
2646
2647 return ret;
2648 }
2649 EXPORT_SYMBOL(nobh_write_begin);
2650
2651 int nobh_write_end(struct file *file, struct address_space *mapping,
2652 loff_t pos, unsigned len, unsigned copied,
2653 struct page *page, void *fsdata)
2654 {
2655 struct inode *inode = page->mapping->host;
2656 struct buffer_head *head = fsdata;
2657 struct buffer_head *bh;
2658 BUG_ON(fsdata != NULL && page_has_buffers(page));
2659
2660 if (unlikely(copied < len) && head)
2661 attach_nobh_buffers(page, head);
2662 if (page_has_buffers(page))
2663 return generic_write_end(file, mapping, pos, len,
2664 copied, page, fsdata);
2665
2666 SetPageUptodate(page);
2667 set_page_dirty(page);
2668 if (pos+copied > inode->i_size) {
2669 i_size_write(inode, pos+copied);
2670 mark_inode_dirty(inode);
2671 }
2672
2673 unlock_page(page);
2674 page_cache_release(page);
2675
2676 while (head) {
2677 bh = head;
2678 head = head->b_this_page;
2679 free_buffer_head(bh);
2680 }
2681
2682 return copied;
2683 }
2684 EXPORT_SYMBOL(nobh_write_end);
2685
2686 /*
2687 * nobh_writepage() - based on block_full_write_page() except
2688 * that it tries to operate without attaching bufferheads to
2689 * the page.
2690 */
2691 int nobh_writepage(struct page *page, get_block_t *get_block,
2692 struct writeback_control *wbc)
2693 {
2694 struct inode * const inode = page->mapping->host;
2695 loff_t i_size = i_size_read(inode);
2696 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2697 unsigned offset;
2698 int ret;
2699
2700 /* Is the page fully inside i_size? */
2701 if (page->index < end_index)
2702 goto out;
2703
2704 /* Is the page fully outside i_size? (truncate in progress) */
2705 offset = i_size & (PAGE_CACHE_SIZE-1);
2706 if (page->index >= end_index+1 || !offset) {
2707 /*
2708 * The page may have dirty, unmapped buffers. For example,
2709 * they may have been added in ext3_writepage(). Make them
2710 * freeable here, so the page does not leak.
2711 */
2712 #if 0
2713 /* Not really sure about this - do we need this ? */
2714 if (page->mapping->a_ops->invalidatepage)
2715 page->mapping->a_ops->invalidatepage(page, offset);
2716 #endif
2717 unlock_page(page);
2718 return 0; /* don't care */
2719 }
2720
2721 /*
2722 * The page straddles i_size. It must be zeroed out on each and every
2723 * writepage invocation because it may be mmapped. "A file is mapped
2724 * in multiples of the page size. For a file that is not a multiple of
2725 * the page size, the remaining memory is zeroed when mapped, and
2726 * writes to that region are not written out to the file."
2727 */
2728 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2729 out:
2730 ret = mpage_writepage(page, get_block, wbc);
2731 if (ret == -EAGAIN)
2732 ret = __block_write_full_page(inode, page, get_block, wbc,
2733 end_buffer_async_write);
2734 return ret;
2735 }
2736 EXPORT_SYMBOL(nobh_writepage);
2737
2738 int nobh_truncate_page(struct address_space *mapping,
2739 loff_t from, get_block_t *get_block)
2740 {
2741 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2742 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2743 unsigned blocksize;
2744 sector_t iblock;
2745 unsigned length, pos;
2746 struct inode *inode = mapping->host;
2747 struct page *page;
2748 struct buffer_head map_bh;
2749 int err;
2750
2751 blocksize = 1 << inode->i_blkbits;
2752 length = offset & (blocksize - 1);
2753
2754 /* Block boundary? Nothing to do */
2755 if (!length)
2756 return 0;
2757
2758 length = blocksize - length;
2759 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2760
2761 page = grab_cache_page(mapping, index);
2762 err = -ENOMEM;
2763 if (!page)
2764 goto out;
2765
2766 if (page_has_buffers(page)) {
2767 has_buffers:
2768 unlock_page(page);
2769 page_cache_release(page);
2770 return block_truncate_page(mapping, from, get_block);
2771 }
2772
2773 /* Find the buffer that contains "offset" */
2774 pos = blocksize;
2775 while (offset >= pos) {
2776 iblock++;
2777 pos += blocksize;
2778 }
2779
2780 map_bh.b_size = blocksize;
2781 map_bh.b_state = 0;
2782 err = get_block(inode, iblock, &map_bh, 0);
2783 if (err)
2784 goto unlock;
2785 /* unmapped? It's a hole - nothing to do */
2786 if (!buffer_mapped(&map_bh))
2787 goto unlock;
2788
2789 /* Ok, it's mapped. Make sure it's up-to-date */
2790 if (!PageUptodate(page)) {
2791 err = mapping->a_ops->readpage(NULL, page);
2792 if (err) {
2793 page_cache_release(page);
2794 goto out;
2795 }
2796 lock_page(page);
2797 if (!PageUptodate(page)) {
2798 err = -EIO;
2799 goto unlock;
2800 }
2801 if (page_has_buffers(page))
2802 goto has_buffers;
2803 }
2804 zero_user(page, offset, length);
2805 set_page_dirty(page);
2806 err = 0;
2807
2808 unlock:
2809 unlock_page(page);
2810 page_cache_release(page);
2811 out:
2812 return err;
2813 }
2814 EXPORT_SYMBOL(nobh_truncate_page);
2815
2816 int block_truncate_page(struct address_space *mapping,
2817 loff_t from, get_block_t *get_block)
2818 {
2819 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2820 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2821 unsigned blocksize;
2822 sector_t iblock;
2823 unsigned length, pos;
2824 struct inode *inode = mapping->host;
2825 struct page *page;
2826 struct buffer_head *bh;
2827 int err;
2828
2829 blocksize = 1 << inode->i_blkbits;
2830 length = offset & (blocksize - 1);
2831
2832 /* Block boundary? Nothing to do */
2833 if (!length)
2834 return 0;
2835
2836 length = blocksize - length;
2837 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2838
2839 page = grab_cache_page(mapping, index);
2840 err = -ENOMEM;
2841 if (!page)
2842 goto out;
2843
2844 if (!page_has_buffers(page))
2845 create_empty_buffers(page, blocksize, 0);
2846
2847 /* Find the buffer that contains "offset" */
2848 bh = page_buffers(page);
2849 pos = blocksize;
2850 while (offset >= pos) {
2851 bh = bh->b_this_page;
2852 iblock++;
2853 pos += blocksize;
2854 }
2855
2856 err = 0;
2857 if (!buffer_mapped(bh)) {
2858 WARN_ON(bh->b_size != blocksize);
2859 err = get_block(inode, iblock, bh, 0);
2860 if (err)
2861 goto unlock;
2862 /* unmapped? It's a hole - nothing to do */
2863 if (!buffer_mapped(bh))
2864 goto unlock;
2865 }
2866
2867 /* Ok, it's mapped. Make sure it's up-to-date */
2868 if (PageUptodate(page))
2869 set_buffer_uptodate(bh);
2870
2871 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2872 err = -EIO;
2873 ll_rw_block(READ, 1, &bh);
2874 wait_on_buffer(bh);
2875 /* Uhhuh. Read error. Complain and punt. */
2876 if (!buffer_uptodate(bh))
2877 goto unlock;
2878 }
2879
2880 zero_user(page, offset, length);
2881 mark_buffer_dirty(bh);
2882 err = 0;
2883
2884 unlock:
2885 unlock_page(page);
2886 page_cache_release(page);
2887 out:
2888 return err;
2889 }
2890 EXPORT_SYMBOL(block_truncate_page);
2891
2892 /*
2893 * The generic ->writepage function for buffer-backed address_spaces
2894 */
2895 int block_write_full_page(struct page *page, get_block_t *get_block,
2896 struct writeback_control *wbc)
2897 {
2898 struct inode * const inode = page->mapping->host;
2899 loff_t i_size = i_size_read(inode);
2900 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2901 unsigned offset;
2902
2903 /* Is the page fully inside i_size? */
2904 if (page->index < end_index)
2905 return __block_write_full_page(inode, page, get_block, wbc,
2906 end_buffer_async_write);
2907
2908 /* Is the page fully outside i_size? (truncate in progress) */
2909 offset = i_size & (PAGE_CACHE_SIZE-1);
2910 if (page->index >= end_index+1 || !offset) {
2911 /*
2912 * The page may have dirty, unmapped buffers. For example,
2913 * they may have been added in ext3_writepage(). Make them
2914 * freeable here, so the page does not leak.
2915 */
2916 do_invalidatepage(page, 0, PAGE_CACHE_SIZE);
2917 unlock_page(page);
2918 return 0; /* don't care */
2919 }
2920
2921 /*
2922 * The page straddles i_size. It must be zeroed out on each and every
2923 * writepage invocation because it may be mmapped. "A file is mapped
2924 * in multiples of the page size. For a file that is not a multiple of
2925 * the page size, the remaining memory is zeroed when mapped, and
2926 * writes to that region are not written out to the file."
2927 */
2928 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2929 return __block_write_full_page(inode, page, get_block, wbc,
2930 end_buffer_async_write);
2931 }
2932 EXPORT_SYMBOL(block_write_full_page);
2933
2934 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2935 get_block_t *get_block)
2936 {
2937 struct buffer_head tmp;
2938 struct inode *inode = mapping->host;
2939 tmp.b_state = 0;
2940 tmp.b_blocknr = 0;
2941 tmp.b_size = 1 << inode->i_blkbits;
2942 get_block(inode, block, &tmp, 0);
2943 return tmp.b_blocknr;
2944 }
2945 EXPORT_SYMBOL(generic_block_bmap);
2946
2947 static void end_bio_bh_io_sync(struct bio *bio, int err)
2948 {
2949 struct buffer_head *bh = bio->bi_private;
2950
2951 if (err == -EOPNOTSUPP) {
2952 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2953 }
2954
2955 if (unlikely (test_bit(BIO_QUIET,&bio->bi_flags)))
2956 set_bit(BH_Quiet, &bh->b_state);
2957
2958 bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2959 bio_put(bio);
2960 }
2961
2962 /*
2963 * This allows us to do IO even on the odd last sectors
2964 * of a device, even if the block size is some multiple
2965 * of the physical sector size.
2966 *
2967 * We'll just truncate the bio to the size of the device,
2968 * and clear the end of the buffer head manually.
2969 *
2970 * Truly out-of-range accesses will turn into actual IO
2971 * errors, this only handles the "we need to be able to
2972 * do IO at the final sector" case.
2973 */
2974 void guard_bio_eod(int rw, struct bio *bio)
2975 {
2976 sector_t maxsector;
2977 struct bio_vec *bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
2978 unsigned truncated_bytes;
2979
2980 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
2981 if (!maxsector)
2982 return;
2983
2984 /*
2985 * If the *whole* IO is past the end of the device,
2986 * let it through, and the IO layer will turn it into
2987 * an EIO.
2988 */
2989 if (unlikely(bio->bi_iter.bi_sector >= maxsector))
2990 return;
2991
2992 maxsector -= bio->bi_iter.bi_sector;
2993 if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
2994 return;
2995
2996 /* Uhhuh. We've got a bio that straddles the device size! */
2997 truncated_bytes = bio->bi_iter.bi_size - (maxsector << 9);
2998
2999 /* Truncate the bio.. */
3000 bio->bi_iter.bi_size -= truncated_bytes;
3001 bvec->bv_len -= truncated_bytes;
3002
3003 /* ..and clear the end of the buffer for reads */
3004 if ((rw & RW_MASK) == READ) {
3005 zero_user(bvec->bv_page, bvec->bv_offset + bvec->bv_len,
3006 truncated_bytes);
3007 }
3008 }
3009
3010 int _submit_bh(int rw, struct buffer_head *bh, unsigned long bio_flags)
3011 {
3012 struct bio *bio;
3013 int ret = 0;
3014
3015 BUG_ON(!buffer_locked(bh));
3016 BUG_ON(!buffer_mapped(bh));
3017 BUG_ON(!bh->b_end_io);
3018 BUG_ON(buffer_delay(bh));
3019 BUG_ON(buffer_unwritten(bh));
3020
3021 /*
3022 * Only clear out a write error when rewriting
3023 */
3024 if (test_set_buffer_req(bh) && (rw & WRITE))
3025 clear_buffer_write_io_error(bh);
3026
3027 /*
3028 * from here on down, it's all bio -- do the initial mapping,
3029 * submit_bio -> generic_make_request may further map this bio around
3030 */
3031 bio = bio_alloc(GFP_NOIO, 1);
3032
3033 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
3034 bio->bi_bdev = bh->b_bdev;
3035 bio->bi_io_vec[0].bv_page = bh->b_page;
3036 bio->bi_io_vec[0].bv_len = bh->b_size;
3037 bio->bi_io_vec[0].bv_offset = bh_offset(bh);
3038
3039 bio->bi_vcnt = 1;
3040 bio->bi_iter.bi_size = bh->b_size;
3041
3042 bio->bi_end_io = end_bio_bh_io_sync;
3043 bio->bi_private = bh;
3044 bio->bi_flags |= bio_flags;
3045
3046 /* Take care of bh's that straddle the end of the device */
3047 guard_bio_eod(rw, bio);
3048
3049 if (buffer_meta(bh))
3050 rw |= REQ_META;
3051 if (buffer_prio(bh))
3052 rw |= REQ_PRIO;
3053
3054 bio_get(bio);
3055 submit_bio(rw, bio);
3056
3057 if (bio_flagged(bio, BIO_EOPNOTSUPP))
3058 ret = -EOPNOTSUPP;
3059
3060 bio_put(bio);
3061 return ret;
3062 }
3063 EXPORT_SYMBOL_GPL(_submit_bh);
3064
3065 int submit_bh(int rw, struct buffer_head *bh)
3066 {
3067 return _submit_bh(rw, bh, 0);
3068 }
3069 EXPORT_SYMBOL(submit_bh);
3070
3071 /**
3072 * ll_rw_block: low-level access to block devices (DEPRECATED)
3073 * @rw: whether to %READ or %WRITE or maybe %READA (readahead)
3074 * @nr: number of &struct buffer_heads in the array
3075 * @bhs: array of pointers to &struct buffer_head
3076 *
3077 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3078 * requests an I/O operation on them, either a %READ or a %WRITE. The third
3079 * %READA option is described in the documentation for generic_make_request()
3080 * which ll_rw_block() calls.
3081 *
3082 * This function drops any buffer that it cannot get a lock on (with the
3083 * BH_Lock state bit), any buffer that appears to be clean when doing a write
3084 * request, and any buffer that appears to be up-to-date when doing read
3085 * request. Further it marks as clean buffers that are processed for
3086 * writing (the buffer cache won't assume that they are actually clean
3087 * until the buffer gets unlocked).
3088 *
3089 * ll_rw_block sets b_end_io to simple completion handler that marks
3090 * the buffer up-to-date (if appropriate), unlocks the buffer and wakes
3091 * any waiters.
3092 *
3093 * All of the buffers must be for the same device, and must also be a
3094 * multiple of the current approved size for the device.
3095 */
3096 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
3097 {
3098 int i;
3099
3100 for (i = 0; i < nr; i++) {
3101 struct buffer_head *bh = bhs[i];
3102
3103 if (!trylock_buffer(bh))
3104 continue;
3105 if (rw == WRITE) {
3106 if (test_clear_buffer_dirty(bh)) {
3107 bh->b_end_io = end_buffer_write_sync;
3108 get_bh(bh);
3109 submit_bh(WRITE, bh);
3110 continue;
3111 }
3112 } else {
3113 if (!buffer_uptodate(bh)) {
3114 bh->b_end_io = end_buffer_read_sync;
3115 get_bh(bh);
3116 submit_bh(rw, bh);
3117 continue;
3118 }
3119 }
3120 unlock_buffer(bh);
3121 }
3122 }
3123 EXPORT_SYMBOL(ll_rw_block);
3124
3125 void write_dirty_buffer(struct buffer_head *bh, int rw)
3126 {
3127 lock_buffer(bh);
3128 if (!test_clear_buffer_dirty(bh)) {
3129 unlock_buffer(bh);
3130 return;
3131 }
3132 bh->b_end_io = end_buffer_write_sync;
3133 get_bh(bh);
3134 submit_bh(rw, bh);
3135 }
3136 EXPORT_SYMBOL(write_dirty_buffer);
3137
3138 /*
3139 * For a data-integrity writeout, we need to wait upon any in-progress I/O
3140 * and then start new I/O and then wait upon it. The caller must have a ref on
3141 * the buffer_head.
3142 */
3143 int __sync_dirty_buffer(struct buffer_head *bh, int rw)
3144 {
3145 int ret = 0;
3146
3147 WARN_ON(atomic_read(&bh->b_count) < 1);
3148 lock_buffer(bh);
3149 if (test_clear_buffer_dirty(bh)) {
3150 get_bh(bh);
3151 bh->b_end_io = end_buffer_write_sync;
3152 ret = submit_bh(rw, bh);
3153 wait_on_buffer(bh);
3154 if (!ret && !buffer_uptodate(bh))
3155 ret = -EIO;
3156 } else {
3157 unlock_buffer(bh);
3158 }
3159 return ret;
3160 }
3161 EXPORT_SYMBOL(__sync_dirty_buffer);
3162
3163 int sync_dirty_buffer(struct buffer_head *bh)
3164 {
3165 return __sync_dirty_buffer(bh, WRITE_SYNC);
3166 }
3167 EXPORT_SYMBOL(sync_dirty_buffer);
3168
3169 /*
3170 * try_to_free_buffers() checks if all the buffers on this particular page
3171 * are unused, and releases them if so.
3172 *
3173 * Exclusion against try_to_free_buffers may be obtained by either
3174 * locking the page or by holding its mapping's private_lock.
3175 *
3176 * If the page is dirty but all the buffers are clean then we need to
3177 * be sure to mark the page clean as well. This is because the page
3178 * may be against a block device, and a later reattachment of buffers
3179 * to a dirty page will set *all* buffers dirty. Which would corrupt
3180 * filesystem data on the same device.
3181 *
3182 * The same applies to regular filesystem pages: if all the buffers are
3183 * clean then we set the page clean and proceed. To do that, we require
3184 * total exclusion from __set_page_dirty_buffers(). That is obtained with
3185 * private_lock.
3186 *
3187 * try_to_free_buffers() is non-blocking.
3188 */
3189 static inline int buffer_busy(struct buffer_head *bh)
3190 {
3191 return atomic_read(&bh->b_count) |
3192 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3193 }
3194
3195 static int
3196 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3197 {
3198 struct buffer_head *head = page_buffers(page);
3199 struct buffer_head *bh;
3200
3201 bh = head;
3202 do {
3203 if (buffer_write_io_error(bh) && page->mapping)
3204 set_bit(AS_EIO, &page->mapping->flags);
3205 if (buffer_busy(bh))
3206 goto failed;
3207 bh = bh->b_this_page;
3208 } while (bh != head);
3209
3210 do {
3211 struct buffer_head *next = bh->b_this_page;
3212
3213 if (bh->b_assoc_map)
3214 __remove_assoc_queue(bh);
3215 bh = next;
3216 } while (bh != head);
3217 *buffers_to_free = head;
3218 __clear_page_buffers(page);
3219 return 1;
3220 failed:
3221 return 0;
3222 }
3223
3224 int try_to_free_buffers(struct page *page)
3225 {
3226 struct address_space * const mapping = page->mapping;
3227 struct buffer_head *buffers_to_free = NULL;
3228 int ret = 0;
3229
3230 BUG_ON(!PageLocked(page));
3231 if (PageWriteback(page))
3232 return 0;
3233
3234 if (mapping == NULL) { /* can this still happen? */
3235 ret = drop_buffers(page, &buffers_to_free);
3236 goto out;
3237 }
3238
3239 spin_lock(&mapping->private_lock);
3240 ret = drop_buffers(page, &buffers_to_free);
3241
3242 /*
3243 * If the filesystem writes its buffers by hand (eg ext3)
3244 * then we can have clean buffers against a dirty page. We
3245 * clean the page here; otherwise the VM will never notice
3246 * that the filesystem did any IO at all.
3247 *
3248 * Also, during truncate, discard_buffer will have marked all
3249 * the page's buffers clean. We discover that here and clean
3250 * the page also.
3251 *
3252 * private_lock must be held over this entire operation in order
3253 * to synchronise against __set_page_dirty_buffers and prevent the
3254 * dirty bit from being lost.
3255 */
3256 if (ret)
3257 cancel_dirty_page(page, PAGE_CACHE_SIZE);
3258 spin_unlock(&mapping->private_lock);
3259 out:
3260 if (buffers_to_free) {
3261 struct buffer_head *bh = buffers_to_free;
3262
3263 do {
3264 struct buffer_head *next = bh->b_this_page;
3265 free_buffer_head(bh);
3266 bh = next;
3267 } while (bh != buffers_to_free);
3268 }
3269 return ret;
3270 }
3271 EXPORT_SYMBOL(try_to_free_buffers);
3272
3273 /*
3274 * There are no bdflush tunables left. But distributions are
3275 * still running obsolete flush daemons, so we terminate them here.
3276 *
3277 * Use of bdflush() is deprecated and will be removed in a future kernel.
3278 * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3279 */
3280 SYSCALL_DEFINE2(bdflush, int, func, long, data)
3281 {
3282 static int msg_count;
3283
3284 if (!capable(CAP_SYS_ADMIN))
3285 return -EPERM;
3286
3287 if (msg_count < 5) {
3288 msg_count++;
3289 printk(KERN_INFO
3290 "warning: process `%s' used the obsolete bdflush"
3291 " system call\n", current->comm);
3292 printk(KERN_INFO "Fix your initscripts?\n");
3293 }
3294
3295 if (func == 1)
3296 do_exit(0);
3297 return 0;
3298 }
3299
3300 /*
3301 * Buffer-head allocation
3302 */
3303 static struct kmem_cache *bh_cachep __read_mostly;
3304
3305 /*
3306 * Once the number of bh's in the machine exceeds this level, we start
3307 * stripping them in writeback.
3308 */
3309 static unsigned long max_buffer_heads;
3310
3311 int buffer_heads_over_limit;
3312
3313 struct bh_accounting {
3314 int nr; /* Number of live bh's */
3315 int ratelimit; /* Limit cacheline bouncing */
3316 };
3317
3318 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3319
3320 static void recalc_bh_state(void)
3321 {
3322 int i;
3323 int tot = 0;
3324
3325 if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3326 return;
3327 __this_cpu_write(bh_accounting.ratelimit, 0);
3328 for_each_online_cpu(i)
3329 tot += per_cpu(bh_accounting, i).nr;
3330 buffer_heads_over_limit = (tot > max_buffer_heads);
3331 }
3332
3333 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3334 {
3335 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3336 if (ret) {
3337 INIT_LIST_HEAD(&ret->b_assoc_buffers);
3338 preempt_disable();
3339 __this_cpu_inc(bh_accounting.nr);
3340 recalc_bh_state();
3341 preempt_enable();
3342 }
3343 return ret;
3344 }
3345 EXPORT_SYMBOL(alloc_buffer_head);
3346
3347 void free_buffer_head(struct buffer_head *bh)
3348 {
3349 BUG_ON(!list_empty(&bh->b_assoc_buffers));
3350 kmem_cache_free(bh_cachep, bh);
3351 preempt_disable();
3352 __this_cpu_dec(bh_accounting.nr);
3353 recalc_bh_state();
3354 preempt_enable();
3355 }
3356 EXPORT_SYMBOL(free_buffer_head);
3357
3358 static void buffer_exit_cpu(int cpu)
3359 {
3360 int i;
3361 struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3362
3363 for (i = 0; i < BH_LRU_SIZE; i++) {
3364 brelse(b->bhs[i]);
3365 b->bhs[i] = NULL;
3366 }
3367 this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3368 per_cpu(bh_accounting, cpu).nr = 0;
3369 }
3370
3371 static int buffer_cpu_notify(struct notifier_block *self,
3372 unsigned long action, void *hcpu)
3373 {
3374 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
3375 buffer_exit_cpu((unsigned long)hcpu);
3376 return NOTIFY_OK;
3377 }
3378
3379 /**
3380 * bh_uptodate_or_lock - Test whether the buffer is uptodate
3381 * @bh: struct buffer_head
3382 *
3383 * Return true if the buffer is up-to-date and false,
3384 * with the buffer locked, if not.
3385 */
3386 int bh_uptodate_or_lock(struct buffer_head *bh)
3387 {
3388 if (!buffer_uptodate(bh)) {
3389 lock_buffer(bh);
3390 if (!buffer_uptodate(bh))
3391 return 0;
3392 unlock_buffer(bh);
3393 }
3394 return 1;
3395 }
3396 EXPORT_SYMBOL(bh_uptodate_or_lock);
3397
3398 /**
3399 * bh_submit_read - Submit a locked buffer for reading
3400 * @bh: struct buffer_head
3401 *
3402 * Returns zero on success and -EIO on error.
3403 */
3404 int bh_submit_read(struct buffer_head *bh)
3405 {
3406 BUG_ON(!buffer_locked(bh));
3407
3408 if (buffer_uptodate(bh)) {
3409 unlock_buffer(bh);
3410 return 0;
3411 }
3412
3413 get_bh(bh);
3414 bh->b_end_io = end_buffer_read_sync;
3415 submit_bh(READ, bh);
3416 wait_on_buffer(bh);
3417 if (buffer_uptodate(bh))
3418 return 0;
3419 return -EIO;
3420 }
3421 EXPORT_SYMBOL(bh_submit_read);
3422
3423 void __init buffer_init(void)
3424 {
3425 unsigned long nrpages;
3426
3427 bh_cachep = kmem_cache_create("buffer_head",
3428 sizeof(struct buffer_head), 0,
3429 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3430 SLAB_MEM_SPREAD),
3431 NULL);
3432
3433 /*
3434 * Limit the bh occupancy to 10% of ZONE_NORMAL
3435 */
3436 nrpages = (nr_free_buffer_pages() * 10) / 100;
3437 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3438 hotcpu_notifier(buffer_cpu_notify, 0);
3439 }