]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/ceph/mds_client.c
vfs: make the string hashes salt the hash
[mirror_ubuntu-artful-kernel.git] / fs / ceph / mds_client.c
1 #include <linux/ceph/ceph_debug.h>
2
3 #include <linux/fs.h>
4 #include <linux/wait.h>
5 #include <linux/slab.h>
6 #include <linux/gfp.h>
7 #include <linux/sched.h>
8 #include <linux/debugfs.h>
9 #include <linux/seq_file.h>
10 #include <linux/utsname.h>
11 #include <linux/ratelimit.h>
12
13 #include "super.h"
14 #include "mds_client.h"
15
16 #include <linux/ceph/ceph_features.h>
17 #include <linux/ceph/messenger.h>
18 #include <linux/ceph/decode.h>
19 #include <linux/ceph/pagelist.h>
20 #include <linux/ceph/auth.h>
21 #include <linux/ceph/debugfs.h>
22
23 /*
24 * A cluster of MDS (metadata server) daemons is responsible for
25 * managing the file system namespace (the directory hierarchy and
26 * inodes) and for coordinating shared access to storage. Metadata is
27 * partitioning hierarchically across a number of servers, and that
28 * partition varies over time as the cluster adjusts the distribution
29 * in order to balance load.
30 *
31 * The MDS client is primarily responsible to managing synchronous
32 * metadata requests for operations like open, unlink, and so forth.
33 * If there is a MDS failure, we find out about it when we (possibly
34 * request and) receive a new MDS map, and can resubmit affected
35 * requests.
36 *
37 * For the most part, though, we take advantage of a lossless
38 * communications channel to the MDS, and do not need to worry about
39 * timing out or resubmitting requests.
40 *
41 * We maintain a stateful "session" with each MDS we interact with.
42 * Within each session, we sent periodic heartbeat messages to ensure
43 * any capabilities or leases we have been issues remain valid. If
44 * the session times out and goes stale, our leases and capabilities
45 * are no longer valid.
46 */
47
48 struct ceph_reconnect_state {
49 int nr_caps;
50 struct ceph_pagelist *pagelist;
51 bool flock;
52 };
53
54 static void __wake_requests(struct ceph_mds_client *mdsc,
55 struct list_head *head);
56
57 static const struct ceph_connection_operations mds_con_ops;
58
59
60 /*
61 * mds reply parsing
62 */
63
64 /*
65 * parse individual inode info
66 */
67 static int parse_reply_info_in(void **p, void *end,
68 struct ceph_mds_reply_info_in *info,
69 u64 features)
70 {
71 int err = -EIO;
72
73 info->in = *p;
74 *p += sizeof(struct ceph_mds_reply_inode) +
75 sizeof(*info->in->fragtree.splits) *
76 le32_to_cpu(info->in->fragtree.nsplits);
77
78 ceph_decode_32_safe(p, end, info->symlink_len, bad);
79 ceph_decode_need(p, end, info->symlink_len, bad);
80 info->symlink = *p;
81 *p += info->symlink_len;
82
83 if (features & CEPH_FEATURE_DIRLAYOUTHASH)
84 ceph_decode_copy_safe(p, end, &info->dir_layout,
85 sizeof(info->dir_layout), bad);
86 else
87 memset(&info->dir_layout, 0, sizeof(info->dir_layout));
88
89 ceph_decode_32_safe(p, end, info->xattr_len, bad);
90 ceph_decode_need(p, end, info->xattr_len, bad);
91 info->xattr_data = *p;
92 *p += info->xattr_len;
93
94 if (features & CEPH_FEATURE_MDS_INLINE_DATA) {
95 ceph_decode_64_safe(p, end, info->inline_version, bad);
96 ceph_decode_32_safe(p, end, info->inline_len, bad);
97 ceph_decode_need(p, end, info->inline_len, bad);
98 info->inline_data = *p;
99 *p += info->inline_len;
100 } else
101 info->inline_version = CEPH_INLINE_NONE;
102
103 if (features & CEPH_FEATURE_FS_FILE_LAYOUT_V2) {
104 ceph_decode_32_safe(p, end, info->pool_ns_len, bad);
105 ceph_decode_need(p, end, info->pool_ns_len, bad);
106 *p += info->pool_ns_len;
107 } else {
108 info->pool_ns_len = 0;
109 }
110
111 return 0;
112 bad:
113 return err;
114 }
115
116 /*
117 * parse a normal reply, which may contain a (dir+)dentry and/or a
118 * target inode.
119 */
120 static int parse_reply_info_trace(void **p, void *end,
121 struct ceph_mds_reply_info_parsed *info,
122 u64 features)
123 {
124 int err;
125
126 if (info->head->is_dentry) {
127 err = parse_reply_info_in(p, end, &info->diri, features);
128 if (err < 0)
129 goto out_bad;
130
131 if (unlikely(*p + sizeof(*info->dirfrag) > end))
132 goto bad;
133 info->dirfrag = *p;
134 *p += sizeof(*info->dirfrag) +
135 sizeof(u32)*le32_to_cpu(info->dirfrag->ndist);
136 if (unlikely(*p > end))
137 goto bad;
138
139 ceph_decode_32_safe(p, end, info->dname_len, bad);
140 ceph_decode_need(p, end, info->dname_len, bad);
141 info->dname = *p;
142 *p += info->dname_len;
143 info->dlease = *p;
144 *p += sizeof(*info->dlease);
145 }
146
147 if (info->head->is_target) {
148 err = parse_reply_info_in(p, end, &info->targeti, features);
149 if (err < 0)
150 goto out_bad;
151 }
152
153 if (unlikely(*p != end))
154 goto bad;
155 return 0;
156
157 bad:
158 err = -EIO;
159 out_bad:
160 pr_err("problem parsing mds trace %d\n", err);
161 return err;
162 }
163
164 /*
165 * parse readdir results
166 */
167 static int parse_reply_info_dir(void **p, void *end,
168 struct ceph_mds_reply_info_parsed *info,
169 u64 features)
170 {
171 u32 num, i = 0;
172 int err;
173
174 info->dir_dir = *p;
175 if (*p + sizeof(*info->dir_dir) > end)
176 goto bad;
177 *p += sizeof(*info->dir_dir) +
178 sizeof(u32)*le32_to_cpu(info->dir_dir->ndist);
179 if (*p > end)
180 goto bad;
181
182 ceph_decode_need(p, end, sizeof(num) + 2, bad);
183 num = ceph_decode_32(p);
184 {
185 u16 flags = ceph_decode_16(p);
186 info->dir_end = !!(flags & CEPH_READDIR_FRAG_END);
187 info->dir_complete = !!(flags & CEPH_READDIR_FRAG_COMPLETE);
188 info->hash_order = !!(flags & CEPH_READDIR_HASH_ORDER);
189 }
190 if (num == 0)
191 goto done;
192
193 BUG_ON(!info->dir_entries);
194 if ((unsigned long)(info->dir_entries + num) >
195 (unsigned long)info->dir_entries + info->dir_buf_size) {
196 pr_err("dir contents are larger than expected\n");
197 WARN_ON(1);
198 goto bad;
199 }
200
201 info->dir_nr = num;
202 while (num) {
203 struct ceph_mds_reply_dir_entry *rde = info->dir_entries + i;
204 /* dentry */
205 ceph_decode_need(p, end, sizeof(u32)*2, bad);
206 rde->name_len = ceph_decode_32(p);
207 ceph_decode_need(p, end, rde->name_len, bad);
208 rde->name = *p;
209 *p += rde->name_len;
210 dout("parsed dir dname '%.*s'\n", rde->name_len, rde->name);
211 rde->lease = *p;
212 *p += sizeof(struct ceph_mds_reply_lease);
213
214 /* inode */
215 err = parse_reply_info_in(p, end, &rde->inode, features);
216 if (err < 0)
217 goto out_bad;
218 /* ceph_readdir_prepopulate() will update it */
219 rde->offset = 0;
220 i++;
221 num--;
222 }
223
224 done:
225 if (*p != end)
226 goto bad;
227 return 0;
228
229 bad:
230 err = -EIO;
231 out_bad:
232 pr_err("problem parsing dir contents %d\n", err);
233 return err;
234 }
235
236 /*
237 * parse fcntl F_GETLK results
238 */
239 static int parse_reply_info_filelock(void **p, void *end,
240 struct ceph_mds_reply_info_parsed *info,
241 u64 features)
242 {
243 if (*p + sizeof(*info->filelock_reply) > end)
244 goto bad;
245
246 info->filelock_reply = *p;
247 *p += sizeof(*info->filelock_reply);
248
249 if (unlikely(*p != end))
250 goto bad;
251 return 0;
252
253 bad:
254 return -EIO;
255 }
256
257 /*
258 * parse create results
259 */
260 static int parse_reply_info_create(void **p, void *end,
261 struct ceph_mds_reply_info_parsed *info,
262 u64 features)
263 {
264 if (features & CEPH_FEATURE_REPLY_CREATE_INODE) {
265 if (*p == end) {
266 info->has_create_ino = false;
267 } else {
268 info->has_create_ino = true;
269 info->ino = ceph_decode_64(p);
270 }
271 }
272
273 if (unlikely(*p != end))
274 goto bad;
275 return 0;
276
277 bad:
278 return -EIO;
279 }
280
281 /*
282 * parse extra results
283 */
284 static int parse_reply_info_extra(void **p, void *end,
285 struct ceph_mds_reply_info_parsed *info,
286 u64 features)
287 {
288 if (info->head->op == CEPH_MDS_OP_GETFILELOCK)
289 return parse_reply_info_filelock(p, end, info, features);
290 else if (info->head->op == CEPH_MDS_OP_READDIR ||
291 info->head->op == CEPH_MDS_OP_LSSNAP)
292 return parse_reply_info_dir(p, end, info, features);
293 else if (info->head->op == CEPH_MDS_OP_CREATE)
294 return parse_reply_info_create(p, end, info, features);
295 else
296 return -EIO;
297 }
298
299 /*
300 * parse entire mds reply
301 */
302 static int parse_reply_info(struct ceph_msg *msg,
303 struct ceph_mds_reply_info_parsed *info,
304 u64 features)
305 {
306 void *p, *end;
307 u32 len;
308 int err;
309
310 info->head = msg->front.iov_base;
311 p = msg->front.iov_base + sizeof(struct ceph_mds_reply_head);
312 end = p + msg->front.iov_len - sizeof(struct ceph_mds_reply_head);
313
314 /* trace */
315 ceph_decode_32_safe(&p, end, len, bad);
316 if (len > 0) {
317 ceph_decode_need(&p, end, len, bad);
318 err = parse_reply_info_trace(&p, p+len, info, features);
319 if (err < 0)
320 goto out_bad;
321 }
322
323 /* extra */
324 ceph_decode_32_safe(&p, end, len, bad);
325 if (len > 0) {
326 ceph_decode_need(&p, end, len, bad);
327 err = parse_reply_info_extra(&p, p+len, info, features);
328 if (err < 0)
329 goto out_bad;
330 }
331
332 /* snap blob */
333 ceph_decode_32_safe(&p, end, len, bad);
334 info->snapblob_len = len;
335 info->snapblob = p;
336 p += len;
337
338 if (p != end)
339 goto bad;
340 return 0;
341
342 bad:
343 err = -EIO;
344 out_bad:
345 pr_err("mds parse_reply err %d\n", err);
346 return err;
347 }
348
349 static void destroy_reply_info(struct ceph_mds_reply_info_parsed *info)
350 {
351 if (!info->dir_entries)
352 return;
353 free_pages((unsigned long)info->dir_entries, get_order(info->dir_buf_size));
354 }
355
356
357 /*
358 * sessions
359 */
360 const char *ceph_session_state_name(int s)
361 {
362 switch (s) {
363 case CEPH_MDS_SESSION_NEW: return "new";
364 case CEPH_MDS_SESSION_OPENING: return "opening";
365 case CEPH_MDS_SESSION_OPEN: return "open";
366 case CEPH_MDS_SESSION_HUNG: return "hung";
367 case CEPH_MDS_SESSION_CLOSING: return "closing";
368 case CEPH_MDS_SESSION_RESTARTING: return "restarting";
369 case CEPH_MDS_SESSION_RECONNECTING: return "reconnecting";
370 default: return "???";
371 }
372 }
373
374 static struct ceph_mds_session *get_session(struct ceph_mds_session *s)
375 {
376 if (atomic_inc_not_zero(&s->s_ref)) {
377 dout("mdsc get_session %p %d -> %d\n", s,
378 atomic_read(&s->s_ref)-1, atomic_read(&s->s_ref));
379 return s;
380 } else {
381 dout("mdsc get_session %p 0 -- FAIL", s);
382 return NULL;
383 }
384 }
385
386 void ceph_put_mds_session(struct ceph_mds_session *s)
387 {
388 dout("mdsc put_session %p %d -> %d\n", s,
389 atomic_read(&s->s_ref), atomic_read(&s->s_ref)-1);
390 if (atomic_dec_and_test(&s->s_ref)) {
391 if (s->s_auth.authorizer)
392 ceph_auth_destroy_authorizer(s->s_auth.authorizer);
393 kfree(s);
394 }
395 }
396
397 /*
398 * called under mdsc->mutex
399 */
400 struct ceph_mds_session *__ceph_lookup_mds_session(struct ceph_mds_client *mdsc,
401 int mds)
402 {
403 struct ceph_mds_session *session;
404
405 if (mds >= mdsc->max_sessions || mdsc->sessions[mds] == NULL)
406 return NULL;
407 session = mdsc->sessions[mds];
408 dout("lookup_mds_session %p %d\n", session,
409 atomic_read(&session->s_ref));
410 get_session(session);
411 return session;
412 }
413
414 static bool __have_session(struct ceph_mds_client *mdsc, int mds)
415 {
416 if (mds >= mdsc->max_sessions)
417 return false;
418 return mdsc->sessions[mds];
419 }
420
421 static int __verify_registered_session(struct ceph_mds_client *mdsc,
422 struct ceph_mds_session *s)
423 {
424 if (s->s_mds >= mdsc->max_sessions ||
425 mdsc->sessions[s->s_mds] != s)
426 return -ENOENT;
427 return 0;
428 }
429
430 /*
431 * create+register a new session for given mds.
432 * called under mdsc->mutex.
433 */
434 static struct ceph_mds_session *register_session(struct ceph_mds_client *mdsc,
435 int mds)
436 {
437 struct ceph_mds_session *s;
438
439 if (mds >= mdsc->mdsmap->m_max_mds)
440 return ERR_PTR(-EINVAL);
441
442 s = kzalloc(sizeof(*s), GFP_NOFS);
443 if (!s)
444 return ERR_PTR(-ENOMEM);
445 s->s_mdsc = mdsc;
446 s->s_mds = mds;
447 s->s_state = CEPH_MDS_SESSION_NEW;
448 s->s_ttl = 0;
449 s->s_seq = 0;
450 mutex_init(&s->s_mutex);
451
452 ceph_con_init(&s->s_con, s, &mds_con_ops, &mdsc->fsc->client->msgr);
453
454 spin_lock_init(&s->s_gen_ttl_lock);
455 s->s_cap_gen = 0;
456 s->s_cap_ttl = jiffies - 1;
457
458 spin_lock_init(&s->s_cap_lock);
459 s->s_renew_requested = 0;
460 s->s_renew_seq = 0;
461 INIT_LIST_HEAD(&s->s_caps);
462 s->s_nr_caps = 0;
463 s->s_trim_caps = 0;
464 atomic_set(&s->s_ref, 1);
465 INIT_LIST_HEAD(&s->s_waiting);
466 INIT_LIST_HEAD(&s->s_unsafe);
467 s->s_num_cap_releases = 0;
468 s->s_cap_reconnect = 0;
469 s->s_cap_iterator = NULL;
470 INIT_LIST_HEAD(&s->s_cap_releases);
471 INIT_LIST_HEAD(&s->s_cap_flushing);
472 INIT_LIST_HEAD(&s->s_cap_snaps_flushing);
473
474 dout("register_session mds%d\n", mds);
475 if (mds >= mdsc->max_sessions) {
476 int newmax = 1 << get_count_order(mds+1);
477 struct ceph_mds_session **sa;
478
479 dout("register_session realloc to %d\n", newmax);
480 sa = kcalloc(newmax, sizeof(void *), GFP_NOFS);
481 if (sa == NULL)
482 goto fail_realloc;
483 if (mdsc->sessions) {
484 memcpy(sa, mdsc->sessions,
485 mdsc->max_sessions * sizeof(void *));
486 kfree(mdsc->sessions);
487 }
488 mdsc->sessions = sa;
489 mdsc->max_sessions = newmax;
490 }
491 mdsc->sessions[mds] = s;
492 atomic_inc(&mdsc->num_sessions);
493 atomic_inc(&s->s_ref); /* one ref to sessions[], one to caller */
494
495 ceph_con_open(&s->s_con, CEPH_ENTITY_TYPE_MDS, mds,
496 ceph_mdsmap_get_addr(mdsc->mdsmap, mds));
497
498 return s;
499
500 fail_realloc:
501 kfree(s);
502 return ERR_PTR(-ENOMEM);
503 }
504
505 /*
506 * called under mdsc->mutex
507 */
508 static void __unregister_session(struct ceph_mds_client *mdsc,
509 struct ceph_mds_session *s)
510 {
511 dout("__unregister_session mds%d %p\n", s->s_mds, s);
512 BUG_ON(mdsc->sessions[s->s_mds] != s);
513 mdsc->sessions[s->s_mds] = NULL;
514 ceph_con_close(&s->s_con);
515 ceph_put_mds_session(s);
516 atomic_dec(&mdsc->num_sessions);
517 }
518
519 /*
520 * drop session refs in request.
521 *
522 * should be last request ref, or hold mdsc->mutex
523 */
524 static void put_request_session(struct ceph_mds_request *req)
525 {
526 if (req->r_session) {
527 ceph_put_mds_session(req->r_session);
528 req->r_session = NULL;
529 }
530 }
531
532 void ceph_mdsc_release_request(struct kref *kref)
533 {
534 struct ceph_mds_request *req = container_of(kref,
535 struct ceph_mds_request,
536 r_kref);
537 destroy_reply_info(&req->r_reply_info);
538 if (req->r_request)
539 ceph_msg_put(req->r_request);
540 if (req->r_reply)
541 ceph_msg_put(req->r_reply);
542 if (req->r_inode) {
543 ceph_put_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN);
544 iput(req->r_inode);
545 }
546 if (req->r_locked_dir)
547 ceph_put_cap_refs(ceph_inode(req->r_locked_dir), CEPH_CAP_PIN);
548 iput(req->r_target_inode);
549 if (req->r_dentry)
550 dput(req->r_dentry);
551 if (req->r_old_dentry)
552 dput(req->r_old_dentry);
553 if (req->r_old_dentry_dir) {
554 /*
555 * track (and drop pins for) r_old_dentry_dir
556 * separately, since r_old_dentry's d_parent may have
557 * changed between the dir mutex being dropped and
558 * this request being freed.
559 */
560 ceph_put_cap_refs(ceph_inode(req->r_old_dentry_dir),
561 CEPH_CAP_PIN);
562 iput(req->r_old_dentry_dir);
563 }
564 kfree(req->r_path1);
565 kfree(req->r_path2);
566 if (req->r_pagelist)
567 ceph_pagelist_release(req->r_pagelist);
568 put_request_session(req);
569 ceph_unreserve_caps(req->r_mdsc, &req->r_caps_reservation);
570 kfree(req);
571 }
572
573 DEFINE_RB_FUNCS(request, struct ceph_mds_request, r_tid, r_node)
574
575 /*
576 * lookup session, bump ref if found.
577 *
578 * called under mdsc->mutex.
579 */
580 static struct ceph_mds_request *
581 lookup_get_request(struct ceph_mds_client *mdsc, u64 tid)
582 {
583 struct ceph_mds_request *req;
584
585 req = lookup_request(&mdsc->request_tree, tid);
586 if (req)
587 ceph_mdsc_get_request(req);
588
589 return req;
590 }
591
592 /*
593 * Register an in-flight request, and assign a tid. Link to directory
594 * are modifying (if any).
595 *
596 * Called under mdsc->mutex.
597 */
598 static void __register_request(struct ceph_mds_client *mdsc,
599 struct ceph_mds_request *req,
600 struct inode *dir)
601 {
602 req->r_tid = ++mdsc->last_tid;
603 if (req->r_num_caps)
604 ceph_reserve_caps(mdsc, &req->r_caps_reservation,
605 req->r_num_caps);
606 dout("__register_request %p tid %lld\n", req, req->r_tid);
607 ceph_mdsc_get_request(req);
608 insert_request(&mdsc->request_tree, req);
609
610 req->r_uid = current_fsuid();
611 req->r_gid = current_fsgid();
612
613 if (mdsc->oldest_tid == 0 && req->r_op != CEPH_MDS_OP_SETFILELOCK)
614 mdsc->oldest_tid = req->r_tid;
615
616 if (dir) {
617 ihold(dir);
618 req->r_unsafe_dir = dir;
619 }
620 }
621
622 static void __unregister_request(struct ceph_mds_client *mdsc,
623 struct ceph_mds_request *req)
624 {
625 dout("__unregister_request %p tid %lld\n", req, req->r_tid);
626
627 if (req->r_tid == mdsc->oldest_tid) {
628 struct rb_node *p = rb_next(&req->r_node);
629 mdsc->oldest_tid = 0;
630 while (p) {
631 struct ceph_mds_request *next_req =
632 rb_entry(p, struct ceph_mds_request, r_node);
633 if (next_req->r_op != CEPH_MDS_OP_SETFILELOCK) {
634 mdsc->oldest_tid = next_req->r_tid;
635 break;
636 }
637 p = rb_next(p);
638 }
639 }
640
641 erase_request(&mdsc->request_tree, req);
642
643 if (req->r_unsafe_dir && req->r_got_unsafe) {
644 struct ceph_inode_info *ci = ceph_inode(req->r_unsafe_dir);
645 spin_lock(&ci->i_unsafe_lock);
646 list_del_init(&req->r_unsafe_dir_item);
647 spin_unlock(&ci->i_unsafe_lock);
648 }
649 if (req->r_target_inode && req->r_got_unsafe) {
650 struct ceph_inode_info *ci = ceph_inode(req->r_target_inode);
651 spin_lock(&ci->i_unsafe_lock);
652 list_del_init(&req->r_unsafe_target_item);
653 spin_unlock(&ci->i_unsafe_lock);
654 }
655
656 if (req->r_unsafe_dir) {
657 iput(req->r_unsafe_dir);
658 req->r_unsafe_dir = NULL;
659 }
660
661 complete_all(&req->r_safe_completion);
662
663 ceph_mdsc_put_request(req);
664 }
665
666 /*
667 * Choose mds to send request to next. If there is a hint set in the
668 * request (e.g., due to a prior forward hint from the mds), use that.
669 * Otherwise, consult frag tree and/or caps to identify the
670 * appropriate mds. If all else fails, choose randomly.
671 *
672 * Called under mdsc->mutex.
673 */
674 static struct dentry *get_nonsnap_parent(struct dentry *dentry)
675 {
676 /*
677 * we don't need to worry about protecting the d_parent access
678 * here because we never renaming inside the snapped namespace
679 * except to resplice to another snapdir, and either the old or new
680 * result is a valid result.
681 */
682 while (!IS_ROOT(dentry) && ceph_snap(d_inode(dentry)) != CEPH_NOSNAP)
683 dentry = dentry->d_parent;
684 return dentry;
685 }
686
687 static int __choose_mds(struct ceph_mds_client *mdsc,
688 struct ceph_mds_request *req)
689 {
690 struct inode *inode;
691 struct ceph_inode_info *ci;
692 struct ceph_cap *cap;
693 int mode = req->r_direct_mode;
694 int mds = -1;
695 u32 hash = req->r_direct_hash;
696 bool is_hash = req->r_direct_is_hash;
697
698 /*
699 * is there a specific mds we should try? ignore hint if we have
700 * no session and the mds is not up (active or recovering).
701 */
702 if (req->r_resend_mds >= 0 &&
703 (__have_session(mdsc, req->r_resend_mds) ||
704 ceph_mdsmap_get_state(mdsc->mdsmap, req->r_resend_mds) > 0)) {
705 dout("choose_mds using resend_mds mds%d\n",
706 req->r_resend_mds);
707 return req->r_resend_mds;
708 }
709
710 if (mode == USE_RANDOM_MDS)
711 goto random;
712
713 inode = NULL;
714 if (req->r_inode) {
715 inode = req->r_inode;
716 } else if (req->r_dentry) {
717 /* ignore race with rename; old or new d_parent is okay */
718 struct dentry *parent = req->r_dentry->d_parent;
719 struct inode *dir = d_inode(parent);
720
721 if (dir->i_sb != mdsc->fsc->sb) {
722 /* not this fs! */
723 inode = d_inode(req->r_dentry);
724 } else if (ceph_snap(dir) != CEPH_NOSNAP) {
725 /* direct snapped/virtual snapdir requests
726 * based on parent dir inode */
727 struct dentry *dn = get_nonsnap_parent(parent);
728 inode = d_inode(dn);
729 dout("__choose_mds using nonsnap parent %p\n", inode);
730 } else {
731 /* dentry target */
732 inode = d_inode(req->r_dentry);
733 if (!inode || mode == USE_AUTH_MDS) {
734 /* dir + name */
735 inode = dir;
736 hash = ceph_dentry_hash(dir, req->r_dentry);
737 is_hash = true;
738 }
739 }
740 }
741
742 dout("__choose_mds %p is_hash=%d (%d) mode %d\n", inode, (int)is_hash,
743 (int)hash, mode);
744 if (!inode)
745 goto random;
746 ci = ceph_inode(inode);
747
748 if (is_hash && S_ISDIR(inode->i_mode)) {
749 struct ceph_inode_frag frag;
750 int found;
751
752 ceph_choose_frag(ci, hash, &frag, &found);
753 if (found) {
754 if (mode == USE_ANY_MDS && frag.ndist > 0) {
755 u8 r;
756
757 /* choose a random replica */
758 get_random_bytes(&r, 1);
759 r %= frag.ndist;
760 mds = frag.dist[r];
761 dout("choose_mds %p %llx.%llx "
762 "frag %u mds%d (%d/%d)\n",
763 inode, ceph_vinop(inode),
764 frag.frag, mds,
765 (int)r, frag.ndist);
766 if (ceph_mdsmap_get_state(mdsc->mdsmap, mds) >=
767 CEPH_MDS_STATE_ACTIVE)
768 return mds;
769 }
770
771 /* since this file/dir wasn't known to be
772 * replicated, then we want to look for the
773 * authoritative mds. */
774 mode = USE_AUTH_MDS;
775 if (frag.mds >= 0) {
776 /* choose auth mds */
777 mds = frag.mds;
778 dout("choose_mds %p %llx.%llx "
779 "frag %u mds%d (auth)\n",
780 inode, ceph_vinop(inode), frag.frag, mds);
781 if (ceph_mdsmap_get_state(mdsc->mdsmap, mds) >=
782 CEPH_MDS_STATE_ACTIVE)
783 return mds;
784 }
785 }
786 }
787
788 spin_lock(&ci->i_ceph_lock);
789 cap = NULL;
790 if (mode == USE_AUTH_MDS)
791 cap = ci->i_auth_cap;
792 if (!cap && !RB_EMPTY_ROOT(&ci->i_caps))
793 cap = rb_entry(rb_first(&ci->i_caps), struct ceph_cap, ci_node);
794 if (!cap) {
795 spin_unlock(&ci->i_ceph_lock);
796 goto random;
797 }
798 mds = cap->session->s_mds;
799 dout("choose_mds %p %llx.%llx mds%d (%scap %p)\n",
800 inode, ceph_vinop(inode), mds,
801 cap == ci->i_auth_cap ? "auth " : "", cap);
802 spin_unlock(&ci->i_ceph_lock);
803 return mds;
804
805 random:
806 mds = ceph_mdsmap_get_random_mds(mdsc->mdsmap);
807 dout("choose_mds chose random mds%d\n", mds);
808 return mds;
809 }
810
811
812 /*
813 * session messages
814 */
815 static struct ceph_msg *create_session_msg(u32 op, u64 seq)
816 {
817 struct ceph_msg *msg;
818 struct ceph_mds_session_head *h;
819
820 msg = ceph_msg_new(CEPH_MSG_CLIENT_SESSION, sizeof(*h), GFP_NOFS,
821 false);
822 if (!msg) {
823 pr_err("create_session_msg ENOMEM creating msg\n");
824 return NULL;
825 }
826 h = msg->front.iov_base;
827 h->op = cpu_to_le32(op);
828 h->seq = cpu_to_le64(seq);
829
830 return msg;
831 }
832
833 /*
834 * session message, specialization for CEPH_SESSION_REQUEST_OPEN
835 * to include additional client metadata fields.
836 */
837 static struct ceph_msg *create_session_open_msg(struct ceph_mds_client *mdsc, u64 seq)
838 {
839 struct ceph_msg *msg;
840 struct ceph_mds_session_head *h;
841 int i = -1;
842 int metadata_bytes = 0;
843 int metadata_key_count = 0;
844 struct ceph_options *opt = mdsc->fsc->client->options;
845 struct ceph_mount_options *fsopt = mdsc->fsc->mount_options;
846 void *p;
847
848 const char* metadata[][2] = {
849 {"hostname", utsname()->nodename},
850 {"kernel_version", utsname()->release},
851 {"entity_id", opt->name ? : ""},
852 {"root", fsopt->server_path ? : "/"},
853 {NULL, NULL}
854 };
855
856 /* Calculate serialized length of metadata */
857 metadata_bytes = 4; /* map length */
858 for (i = 0; metadata[i][0] != NULL; ++i) {
859 metadata_bytes += 8 + strlen(metadata[i][0]) +
860 strlen(metadata[i][1]);
861 metadata_key_count++;
862 }
863
864 /* Allocate the message */
865 msg = ceph_msg_new(CEPH_MSG_CLIENT_SESSION, sizeof(*h) + metadata_bytes,
866 GFP_NOFS, false);
867 if (!msg) {
868 pr_err("create_session_msg ENOMEM creating msg\n");
869 return NULL;
870 }
871 h = msg->front.iov_base;
872 h->op = cpu_to_le32(CEPH_SESSION_REQUEST_OPEN);
873 h->seq = cpu_to_le64(seq);
874
875 /*
876 * Serialize client metadata into waiting buffer space, using
877 * the format that userspace expects for map<string, string>
878 *
879 * ClientSession messages with metadata are v2
880 */
881 msg->hdr.version = cpu_to_le16(2);
882 msg->hdr.compat_version = cpu_to_le16(1);
883
884 /* The write pointer, following the session_head structure */
885 p = msg->front.iov_base + sizeof(*h);
886
887 /* Number of entries in the map */
888 ceph_encode_32(&p, metadata_key_count);
889
890 /* Two length-prefixed strings for each entry in the map */
891 for (i = 0; metadata[i][0] != NULL; ++i) {
892 size_t const key_len = strlen(metadata[i][0]);
893 size_t const val_len = strlen(metadata[i][1]);
894
895 ceph_encode_32(&p, key_len);
896 memcpy(p, metadata[i][0], key_len);
897 p += key_len;
898 ceph_encode_32(&p, val_len);
899 memcpy(p, metadata[i][1], val_len);
900 p += val_len;
901 }
902
903 return msg;
904 }
905
906 /*
907 * send session open request.
908 *
909 * called under mdsc->mutex
910 */
911 static int __open_session(struct ceph_mds_client *mdsc,
912 struct ceph_mds_session *session)
913 {
914 struct ceph_msg *msg;
915 int mstate;
916 int mds = session->s_mds;
917
918 /* wait for mds to go active? */
919 mstate = ceph_mdsmap_get_state(mdsc->mdsmap, mds);
920 dout("open_session to mds%d (%s)\n", mds,
921 ceph_mds_state_name(mstate));
922 session->s_state = CEPH_MDS_SESSION_OPENING;
923 session->s_renew_requested = jiffies;
924
925 /* send connect message */
926 msg = create_session_open_msg(mdsc, session->s_seq);
927 if (!msg)
928 return -ENOMEM;
929 ceph_con_send(&session->s_con, msg);
930 return 0;
931 }
932
933 /*
934 * open sessions for any export targets for the given mds
935 *
936 * called under mdsc->mutex
937 */
938 static struct ceph_mds_session *
939 __open_export_target_session(struct ceph_mds_client *mdsc, int target)
940 {
941 struct ceph_mds_session *session;
942
943 session = __ceph_lookup_mds_session(mdsc, target);
944 if (!session) {
945 session = register_session(mdsc, target);
946 if (IS_ERR(session))
947 return session;
948 }
949 if (session->s_state == CEPH_MDS_SESSION_NEW ||
950 session->s_state == CEPH_MDS_SESSION_CLOSING)
951 __open_session(mdsc, session);
952
953 return session;
954 }
955
956 struct ceph_mds_session *
957 ceph_mdsc_open_export_target_session(struct ceph_mds_client *mdsc, int target)
958 {
959 struct ceph_mds_session *session;
960
961 dout("open_export_target_session to mds%d\n", target);
962
963 mutex_lock(&mdsc->mutex);
964 session = __open_export_target_session(mdsc, target);
965 mutex_unlock(&mdsc->mutex);
966
967 return session;
968 }
969
970 static void __open_export_target_sessions(struct ceph_mds_client *mdsc,
971 struct ceph_mds_session *session)
972 {
973 struct ceph_mds_info *mi;
974 struct ceph_mds_session *ts;
975 int i, mds = session->s_mds;
976
977 if (mds >= mdsc->mdsmap->m_max_mds)
978 return;
979
980 mi = &mdsc->mdsmap->m_info[mds];
981 dout("open_export_target_sessions for mds%d (%d targets)\n",
982 session->s_mds, mi->num_export_targets);
983
984 for (i = 0; i < mi->num_export_targets; i++) {
985 ts = __open_export_target_session(mdsc, mi->export_targets[i]);
986 if (!IS_ERR(ts))
987 ceph_put_mds_session(ts);
988 }
989 }
990
991 void ceph_mdsc_open_export_target_sessions(struct ceph_mds_client *mdsc,
992 struct ceph_mds_session *session)
993 {
994 mutex_lock(&mdsc->mutex);
995 __open_export_target_sessions(mdsc, session);
996 mutex_unlock(&mdsc->mutex);
997 }
998
999 /*
1000 * session caps
1001 */
1002
1003 /* caller holds s_cap_lock, we drop it */
1004 static void cleanup_cap_releases(struct ceph_mds_client *mdsc,
1005 struct ceph_mds_session *session)
1006 __releases(session->s_cap_lock)
1007 {
1008 LIST_HEAD(tmp_list);
1009 list_splice_init(&session->s_cap_releases, &tmp_list);
1010 session->s_num_cap_releases = 0;
1011 spin_unlock(&session->s_cap_lock);
1012
1013 dout("cleanup_cap_releases mds%d\n", session->s_mds);
1014 while (!list_empty(&tmp_list)) {
1015 struct ceph_cap *cap;
1016 /* zero out the in-progress message */
1017 cap = list_first_entry(&tmp_list,
1018 struct ceph_cap, session_caps);
1019 list_del(&cap->session_caps);
1020 ceph_put_cap(mdsc, cap);
1021 }
1022 }
1023
1024 static void cleanup_session_requests(struct ceph_mds_client *mdsc,
1025 struct ceph_mds_session *session)
1026 {
1027 struct ceph_mds_request *req;
1028 struct rb_node *p;
1029
1030 dout("cleanup_session_requests mds%d\n", session->s_mds);
1031 mutex_lock(&mdsc->mutex);
1032 while (!list_empty(&session->s_unsafe)) {
1033 req = list_first_entry(&session->s_unsafe,
1034 struct ceph_mds_request, r_unsafe_item);
1035 list_del_init(&req->r_unsafe_item);
1036 pr_warn_ratelimited(" dropping unsafe request %llu\n",
1037 req->r_tid);
1038 __unregister_request(mdsc, req);
1039 }
1040 /* zero r_attempts, so kick_requests() will re-send requests */
1041 p = rb_first(&mdsc->request_tree);
1042 while (p) {
1043 req = rb_entry(p, struct ceph_mds_request, r_node);
1044 p = rb_next(p);
1045 if (req->r_session &&
1046 req->r_session->s_mds == session->s_mds)
1047 req->r_attempts = 0;
1048 }
1049 mutex_unlock(&mdsc->mutex);
1050 }
1051
1052 /*
1053 * Helper to safely iterate over all caps associated with a session, with
1054 * special care taken to handle a racing __ceph_remove_cap().
1055 *
1056 * Caller must hold session s_mutex.
1057 */
1058 static int iterate_session_caps(struct ceph_mds_session *session,
1059 int (*cb)(struct inode *, struct ceph_cap *,
1060 void *), void *arg)
1061 {
1062 struct list_head *p;
1063 struct ceph_cap *cap;
1064 struct inode *inode, *last_inode = NULL;
1065 struct ceph_cap *old_cap = NULL;
1066 int ret;
1067
1068 dout("iterate_session_caps %p mds%d\n", session, session->s_mds);
1069 spin_lock(&session->s_cap_lock);
1070 p = session->s_caps.next;
1071 while (p != &session->s_caps) {
1072 cap = list_entry(p, struct ceph_cap, session_caps);
1073 inode = igrab(&cap->ci->vfs_inode);
1074 if (!inode) {
1075 p = p->next;
1076 continue;
1077 }
1078 session->s_cap_iterator = cap;
1079 spin_unlock(&session->s_cap_lock);
1080
1081 if (last_inode) {
1082 iput(last_inode);
1083 last_inode = NULL;
1084 }
1085 if (old_cap) {
1086 ceph_put_cap(session->s_mdsc, old_cap);
1087 old_cap = NULL;
1088 }
1089
1090 ret = cb(inode, cap, arg);
1091 last_inode = inode;
1092
1093 spin_lock(&session->s_cap_lock);
1094 p = p->next;
1095 if (cap->ci == NULL) {
1096 dout("iterate_session_caps finishing cap %p removal\n",
1097 cap);
1098 BUG_ON(cap->session != session);
1099 cap->session = NULL;
1100 list_del_init(&cap->session_caps);
1101 session->s_nr_caps--;
1102 if (cap->queue_release) {
1103 list_add_tail(&cap->session_caps,
1104 &session->s_cap_releases);
1105 session->s_num_cap_releases++;
1106 } else {
1107 old_cap = cap; /* put_cap it w/o locks held */
1108 }
1109 }
1110 if (ret < 0)
1111 goto out;
1112 }
1113 ret = 0;
1114 out:
1115 session->s_cap_iterator = NULL;
1116 spin_unlock(&session->s_cap_lock);
1117
1118 iput(last_inode);
1119 if (old_cap)
1120 ceph_put_cap(session->s_mdsc, old_cap);
1121
1122 return ret;
1123 }
1124
1125 static int remove_session_caps_cb(struct inode *inode, struct ceph_cap *cap,
1126 void *arg)
1127 {
1128 struct ceph_fs_client *fsc = (struct ceph_fs_client *)arg;
1129 struct ceph_inode_info *ci = ceph_inode(inode);
1130 LIST_HEAD(to_remove);
1131 bool drop = false;
1132 bool invalidate = false;
1133
1134 dout("removing cap %p, ci is %p, inode is %p\n",
1135 cap, ci, &ci->vfs_inode);
1136 spin_lock(&ci->i_ceph_lock);
1137 __ceph_remove_cap(cap, false);
1138 if (!ci->i_auth_cap) {
1139 struct ceph_cap_flush *cf;
1140 struct ceph_mds_client *mdsc = fsc->mdsc;
1141
1142 ci->i_ceph_flags |= CEPH_I_CAP_DROPPED;
1143
1144 if (ci->i_wrbuffer_ref > 0 &&
1145 ACCESS_ONCE(fsc->mount_state) == CEPH_MOUNT_SHUTDOWN)
1146 invalidate = true;
1147
1148 while (true) {
1149 struct rb_node *n = rb_first(&ci->i_cap_flush_tree);
1150 if (!n)
1151 break;
1152 cf = rb_entry(n, struct ceph_cap_flush, i_node);
1153 rb_erase(&cf->i_node, &ci->i_cap_flush_tree);
1154 list_add(&cf->list, &to_remove);
1155 }
1156
1157 spin_lock(&mdsc->cap_dirty_lock);
1158
1159 list_for_each_entry(cf, &to_remove, list)
1160 rb_erase(&cf->g_node, &mdsc->cap_flush_tree);
1161
1162 if (!list_empty(&ci->i_dirty_item)) {
1163 pr_warn_ratelimited(
1164 " dropping dirty %s state for %p %lld\n",
1165 ceph_cap_string(ci->i_dirty_caps),
1166 inode, ceph_ino(inode));
1167 ci->i_dirty_caps = 0;
1168 list_del_init(&ci->i_dirty_item);
1169 drop = true;
1170 }
1171 if (!list_empty(&ci->i_flushing_item)) {
1172 pr_warn_ratelimited(
1173 " dropping dirty+flushing %s state for %p %lld\n",
1174 ceph_cap_string(ci->i_flushing_caps),
1175 inode, ceph_ino(inode));
1176 ci->i_flushing_caps = 0;
1177 list_del_init(&ci->i_flushing_item);
1178 mdsc->num_cap_flushing--;
1179 drop = true;
1180 }
1181 spin_unlock(&mdsc->cap_dirty_lock);
1182
1183 if (!ci->i_dirty_caps && ci->i_prealloc_cap_flush) {
1184 list_add(&ci->i_prealloc_cap_flush->list, &to_remove);
1185 ci->i_prealloc_cap_flush = NULL;
1186 }
1187 }
1188 spin_unlock(&ci->i_ceph_lock);
1189 while (!list_empty(&to_remove)) {
1190 struct ceph_cap_flush *cf;
1191 cf = list_first_entry(&to_remove,
1192 struct ceph_cap_flush, list);
1193 list_del(&cf->list);
1194 ceph_free_cap_flush(cf);
1195 }
1196
1197 wake_up_all(&ci->i_cap_wq);
1198 if (invalidate)
1199 ceph_queue_invalidate(inode);
1200 if (drop)
1201 iput(inode);
1202 return 0;
1203 }
1204
1205 /*
1206 * caller must hold session s_mutex
1207 */
1208 static void remove_session_caps(struct ceph_mds_session *session)
1209 {
1210 struct ceph_fs_client *fsc = session->s_mdsc->fsc;
1211 struct super_block *sb = fsc->sb;
1212 dout("remove_session_caps on %p\n", session);
1213 iterate_session_caps(session, remove_session_caps_cb, fsc);
1214
1215 spin_lock(&session->s_cap_lock);
1216 if (session->s_nr_caps > 0) {
1217 struct inode *inode;
1218 struct ceph_cap *cap, *prev = NULL;
1219 struct ceph_vino vino;
1220 /*
1221 * iterate_session_caps() skips inodes that are being
1222 * deleted, we need to wait until deletions are complete.
1223 * __wait_on_freeing_inode() is designed for the job,
1224 * but it is not exported, so use lookup inode function
1225 * to access it.
1226 */
1227 while (!list_empty(&session->s_caps)) {
1228 cap = list_entry(session->s_caps.next,
1229 struct ceph_cap, session_caps);
1230 if (cap == prev)
1231 break;
1232 prev = cap;
1233 vino = cap->ci->i_vino;
1234 spin_unlock(&session->s_cap_lock);
1235
1236 inode = ceph_find_inode(sb, vino);
1237 iput(inode);
1238
1239 spin_lock(&session->s_cap_lock);
1240 }
1241 }
1242
1243 // drop cap expires and unlock s_cap_lock
1244 cleanup_cap_releases(session->s_mdsc, session);
1245
1246 BUG_ON(session->s_nr_caps > 0);
1247 BUG_ON(!list_empty(&session->s_cap_flushing));
1248 }
1249
1250 /*
1251 * wake up any threads waiting on this session's caps. if the cap is
1252 * old (didn't get renewed on the client reconnect), remove it now.
1253 *
1254 * caller must hold s_mutex.
1255 */
1256 static int wake_up_session_cb(struct inode *inode, struct ceph_cap *cap,
1257 void *arg)
1258 {
1259 struct ceph_inode_info *ci = ceph_inode(inode);
1260
1261 if (arg) {
1262 spin_lock(&ci->i_ceph_lock);
1263 ci->i_wanted_max_size = 0;
1264 ci->i_requested_max_size = 0;
1265 spin_unlock(&ci->i_ceph_lock);
1266 }
1267 wake_up_all(&ci->i_cap_wq);
1268 return 0;
1269 }
1270
1271 static void wake_up_session_caps(struct ceph_mds_session *session,
1272 int reconnect)
1273 {
1274 dout("wake_up_session_caps %p mds%d\n", session, session->s_mds);
1275 iterate_session_caps(session, wake_up_session_cb,
1276 (void *)(unsigned long)reconnect);
1277 }
1278
1279 /*
1280 * Send periodic message to MDS renewing all currently held caps. The
1281 * ack will reset the expiration for all caps from this session.
1282 *
1283 * caller holds s_mutex
1284 */
1285 static int send_renew_caps(struct ceph_mds_client *mdsc,
1286 struct ceph_mds_session *session)
1287 {
1288 struct ceph_msg *msg;
1289 int state;
1290
1291 if (time_after_eq(jiffies, session->s_cap_ttl) &&
1292 time_after_eq(session->s_cap_ttl, session->s_renew_requested))
1293 pr_info("mds%d caps stale\n", session->s_mds);
1294 session->s_renew_requested = jiffies;
1295
1296 /* do not try to renew caps until a recovering mds has reconnected
1297 * with its clients. */
1298 state = ceph_mdsmap_get_state(mdsc->mdsmap, session->s_mds);
1299 if (state < CEPH_MDS_STATE_RECONNECT) {
1300 dout("send_renew_caps ignoring mds%d (%s)\n",
1301 session->s_mds, ceph_mds_state_name(state));
1302 return 0;
1303 }
1304
1305 dout("send_renew_caps to mds%d (%s)\n", session->s_mds,
1306 ceph_mds_state_name(state));
1307 msg = create_session_msg(CEPH_SESSION_REQUEST_RENEWCAPS,
1308 ++session->s_renew_seq);
1309 if (!msg)
1310 return -ENOMEM;
1311 ceph_con_send(&session->s_con, msg);
1312 return 0;
1313 }
1314
1315 static int send_flushmsg_ack(struct ceph_mds_client *mdsc,
1316 struct ceph_mds_session *session, u64 seq)
1317 {
1318 struct ceph_msg *msg;
1319
1320 dout("send_flushmsg_ack to mds%d (%s)s seq %lld\n",
1321 session->s_mds, ceph_session_state_name(session->s_state), seq);
1322 msg = create_session_msg(CEPH_SESSION_FLUSHMSG_ACK, seq);
1323 if (!msg)
1324 return -ENOMEM;
1325 ceph_con_send(&session->s_con, msg);
1326 return 0;
1327 }
1328
1329
1330 /*
1331 * Note new cap ttl, and any transition from stale -> not stale (fresh?).
1332 *
1333 * Called under session->s_mutex
1334 */
1335 static void renewed_caps(struct ceph_mds_client *mdsc,
1336 struct ceph_mds_session *session, int is_renew)
1337 {
1338 int was_stale;
1339 int wake = 0;
1340
1341 spin_lock(&session->s_cap_lock);
1342 was_stale = is_renew && time_after_eq(jiffies, session->s_cap_ttl);
1343
1344 session->s_cap_ttl = session->s_renew_requested +
1345 mdsc->mdsmap->m_session_timeout*HZ;
1346
1347 if (was_stale) {
1348 if (time_before(jiffies, session->s_cap_ttl)) {
1349 pr_info("mds%d caps renewed\n", session->s_mds);
1350 wake = 1;
1351 } else {
1352 pr_info("mds%d caps still stale\n", session->s_mds);
1353 }
1354 }
1355 dout("renewed_caps mds%d ttl now %lu, was %s, now %s\n",
1356 session->s_mds, session->s_cap_ttl, was_stale ? "stale" : "fresh",
1357 time_before(jiffies, session->s_cap_ttl) ? "stale" : "fresh");
1358 spin_unlock(&session->s_cap_lock);
1359
1360 if (wake)
1361 wake_up_session_caps(session, 0);
1362 }
1363
1364 /*
1365 * send a session close request
1366 */
1367 static int request_close_session(struct ceph_mds_client *mdsc,
1368 struct ceph_mds_session *session)
1369 {
1370 struct ceph_msg *msg;
1371
1372 dout("request_close_session mds%d state %s seq %lld\n",
1373 session->s_mds, ceph_session_state_name(session->s_state),
1374 session->s_seq);
1375 msg = create_session_msg(CEPH_SESSION_REQUEST_CLOSE, session->s_seq);
1376 if (!msg)
1377 return -ENOMEM;
1378 ceph_con_send(&session->s_con, msg);
1379 return 0;
1380 }
1381
1382 /*
1383 * Called with s_mutex held.
1384 */
1385 static int __close_session(struct ceph_mds_client *mdsc,
1386 struct ceph_mds_session *session)
1387 {
1388 if (session->s_state >= CEPH_MDS_SESSION_CLOSING)
1389 return 0;
1390 session->s_state = CEPH_MDS_SESSION_CLOSING;
1391 return request_close_session(mdsc, session);
1392 }
1393
1394 /*
1395 * Trim old(er) caps.
1396 *
1397 * Because we can't cache an inode without one or more caps, we do
1398 * this indirectly: if a cap is unused, we prune its aliases, at which
1399 * point the inode will hopefully get dropped to.
1400 *
1401 * Yes, this is a bit sloppy. Our only real goal here is to respond to
1402 * memory pressure from the MDS, though, so it needn't be perfect.
1403 */
1404 static int trim_caps_cb(struct inode *inode, struct ceph_cap *cap, void *arg)
1405 {
1406 struct ceph_mds_session *session = arg;
1407 struct ceph_inode_info *ci = ceph_inode(inode);
1408 int used, wanted, oissued, mine;
1409
1410 if (session->s_trim_caps <= 0)
1411 return -1;
1412
1413 spin_lock(&ci->i_ceph_lock);
1414 mine = cap->issued | cap->implemented;
1415 used = __ceph_caps_used(ci);
1416 wanted = __ceph_caps_file_wanted(ci);
1417 oissued = __ceph_caps_issued_other(ci, cap);
1418
1419 dout("trim_caps_cb %p cap %p mine %s oissued %s used %s wanted %s\n",
1420 inode, cap, ceph_cap_string(mine), ceph_cap_string(oissued),
1421 ceph_cap_string(used), ceph_cap_string(wanted));
1422 if (cap == ci->i_auth_cap) {
1423 if (ci->i_dirty_caps || ci->i_flushing_caps ||
1424 !list_empty(&ci->i_cap_snaps))
1425 goto out;
1426 if ((used | wanted) & CEPH_CAP_ANY_WR)
1427 goto out;
1428 }
1429 /* The inode has cached pages, but it's no longer used.
1430 * we can safely drop it */
1431 if (wanted == 0 && used == CEPH_CAP_FILE_CACHE &&
1432 !(oissued & CEPH_CAP_FILE_CACHE)) {
1433 used = 0;
1434 oissued = 0;
1435 }
1436 if ((used | wanted) & ~oissued & mine)
1437 goto out; /* we need these caps */
1438
1439 session->s_trim_caps--;
1440 if (oissued) {
1441 /* we aren't the only cap.. just remove us */
1442 __ceph_remove_cap(cap, true);
1443 } else {
1444 /* try dropping referring dentries */
1445 spin_unlock(&ci->i_ceph_lock);
1446 d_prune_aliases(inode);
1447 dout("trim_caps_cb %p cap %p pruned, count now %d\n",
1448 inode, cap, atomic_read(&inode->i_count));
1449 return 0;
1450 }
1451
1452 out:
1453 spin_unlock(&ci->i_ceph_lock);
1454 return 0;
1455 }
1456
1457 /*
1458 * Trim session cap count down to some max number.
1459 */
1460 static int trim_caps(struct ceph_mds_client *mdsc,
1461 struct ceph_mds_session *session,
1462 int max_caps)
1463 {
1464 int trim_caps = session->s_nr_caps - max_caps;
1465
1466 dout("trim_caps mds%d start: %d / %d, trim %d\n",
1467 session->s_mds, session->s_nr_caps, max_caps, trim_caps);
1468 if (trim_caps > 0) {
1469 session->s_trim_caps = trim_caps;
1470 iterate_session_caps(session, trim_caps_cb, session);
1471 dout("trim_caps mds%d done: %d / %d, trimmed %d\n",
1472 session->s_mds, session->s_nr_caps, max_caps,
1473 trim_caps - session->s_trim_caps);
1474 session->s_trim_caps = 0;
1475 }
1476
1477 ceph_send_cap_releases(mdsc, session);
1478 return 0;
1479 }
1480
1481 static int check_capsnap_flush(struct ceph_inode_info *ci,
1482 u64 want_snap_seq)
1483 {
1484 int ret = 1;
1485 spin_lock(&ci->i_ceph_lock);
1486 if (want_snap_seq > 0 && !list_empty(&ci->i_cap_snaps)) {
1487 struct ceph_cap_snap *capsnap =
1488 list_first_entry(&ci->i_cap_snaps,
1489 struct ceph_cap_snap, ci_item);
1490 ret = capsnap->follows >= want_snap_seq;
1491 }
1492 spin_unlock(&ci->i_ceph_lock);
1493 return ret;
1494 }
1495
1496 static int check_caps_flush(struct ceph_mds_client *mdsc,
1497 u64 want_flush_tid)
1498 {
1499 struct rb_node *n;
1500 struct ceph_cap_flush *cf;
1501 int ret = 1;
1502
1503 spin_lock(&mdsc->cap_dirty_lock);
1504 n = rb_first(&mdsc->cap_flush_tree);
1505 cf = n ? rb_entry(n, struct ceph_cap_flush, g_node) : NULL;
1506 if (cf && cf->tid <= want_flush_tid) {
1507 dout("check_caps_flush still flushing tid %llu <= %llu\n",
1508 cf->tid, want_flush_tid);
1509 ret = 0;
1510 }
1511 spin_unlock(&mdsc->cap_dirty_lock);
1512 return ret;
1513 }
1514
1515 /*
1516 * flush all dirty inode data to disk.
1517 *
1518 * returns true if we've flushed through want_flush_tid
1519 */
1520 static void wait_caps_flush(struct ceph_mds_client *mdsc,
1521 u64 want_flush_tid, u64 want_snap_seq)
1522 {
1523 int mds;
1524
1525 dout("check_caps_flush want %llu snap want %llu\n",
1526 want_flush_tid, want_snap_seq);
1527 mutex_lock(&mdsc->mutex);
1528 for (mds = 0; mds < mdsc->max_sessions; ) {
1529 struct ceph_mds_session *session = mdsc->sessions[mds];
1530 struct inode *inode = NULL;
1531
1532 if (!session) {
1533 mds++;
1534 continue;
1535 }
1536 get_session(session);
1537 mutex_unlock(&mdsc->mutex);
1538
1539 mutex_lock(&session->s_mutex);
1540 if (!list_empty(&session->s_cap_snaps_flushing)) {
1541 struct ceph_cap_snap *capsnap =
1542 list_first_entry(&session->s_cap_snaps_flushing,
1543 struct ceph_cap_snap,
1544 flushing_item);
1545 struct ceph_inode_info *ci = capsnap->ci;
1546 if (!check_capsnap_flush(ci, want_snap_seq)) {
1547 dout("check_cap_flush still flushing snap %p "
1548 "follows %lld <= %lld to mds%d\n",
1549 &ci->vfs_inode, capsnap->follows,
1550 want_snap_seq, mds);
1551 inode = igrab(&ci->vfs_inode);
1552 }
1553 }
1554 mutex_unlock(&session->s_mutex);
1555 ceph_put_mds_session(session);
1556
1557 if (inode) {
1558 wait_event(mdsc->cap_flushing_wq,
1559 check_capsnap_flush(ceph_inode(inode),
1560 want_snap_seq));
1561 iput(inode);
1562 } else {
1563 mds++;
1564 }
1565
1566 mutex_lock(&mdsc->mutex);
1567 }
1568 mutex_unlock(&mdsc->mutex);
1569
1570 wait_event(mdsc->cap_flushing_wq,
1571 check_caps_flush(mdsc, want_flush_tid));
1572
1573 dout("check_caps_flush ok, flushed thru %llu\n", want_flush_tid);
1574 }
1575
1576 /*
1577 * called under s_mutex
1578 */
1579 void ceph_send_cap_releases(struct ceph_mds_client *mdsc,
1580 struct ceph_mds_session *session)
1581 {
1582 struct ceph_msg *msg = NULL;
1583 struct ceph_mds_cap_release *head;
1584 struct ceph_mds_cap_item *item;
1585 struct ceph_cap *cap;
1586 LIST_HEAD(tmp_list);
1587 int num_cap_releases;
1588
1589 spin_lock(&session->s_cap_lock);
1590 again:
1591 list_splice_init(&session->s_cap_releases, &tmp_list);
1592 num_cap_releases = session->s_num_cap_releases;
1593 session->s_num_cap_releases = 0;
1594 spin_unlock(&session->s_cap_lock);
1595
1596 while (!list_empty(&tmp_list)) {
1597 if (!msg) {
1598 msg = ceph_msg_new(CEPH_MSG_CLIENT_CAPRELEASE,
1599 PAGE_SIZE, GFP_NOFS, false);
1600 if (!msg)
1601 goto out_err;
1602 head = msg->front.iov_base;
1603 head->num = cpu_to_le32(0);
1604 msg->front.iov_len = sizeof(*head);
1605 }
1606 cap = list_first_entry(&tmp_list, struct ceph_cap,
1607 session_caps);
1608 list_del(&cap->session_caps);
1609 num_cap_releases--;
1610
1611 head = msg->front.iov_base;
1612 le32_add_cpu(&head->num, 1);
1613 item = msg->front.iov_base + msg->front.iov_len;
1614 item->ino = cpu_to_le64(cap->cap_ino);
1615 item->cap_id = cpu_to_le64(cap->cap_id);
1616 item->migrate_seq = cpu_to_le32(cap->mseq);
1617 item->seq = cpu_to_le32(cap->issue_seq);
1618 msg->front.iov_len += sizeof(*item);
1619
1620 ceph_put_cap(mdsc, cap);
1621
1622 if (le32_to_cpu(head->num) == CEPH_CAPS_PER_RELEASE) {
1623 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
1624 dout("send_cap_releases mds%d %p\n", session->s_mds, msg);
1625 ceph_con_send(&session->s_con, msg);
1626 msg = NULL;
1627 }
1628 }
1629
1630 BUG_ON(num_cap_releases != 0);
1631
1632 spin_lock(&session->s_cap_lock);
1633 if (!list_empty(&session->s_cap_releases))
1634 goto again;
1635 spin_unlock(&session->s_cap_lock);
1636
1637 if (msg) {
1638 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
1639 dout("send_cap_releases mds%d %p\n", session->s_mds, msg);
1640 ceph_con_send(&session->s_con, msg);
1641 }
1642 return;
1643 out_err:
1644 pr_err("send_cap_releases mds%d, failed to allocate message\n",
1645 session->s_mds);
1646 spin_lock(&session->s_cap_lock);
1647 list_splice(&tmp_list, &session->s_cap_releases);
1648 session->s_num_cap_releases += num_cap_releases;
1649 spin_unlock(&session->s_cap_lock);
1650 }
1651
1652 /*
1653 * requests
1654 */
1655
1656 int ceph_alloc_readdir_reply_buffer(struct ceph_mds_request *req,
1657 struct inode *dir)
1658 {
1659 struct ceph_inode_info *ci = ceph_inode(dir);
1660 struct ceph_mds_reply_info_parsed *rinfo = &req->r_reply_info;
1661 struct ceph_mount_options *opt = req->r_mdsc->fsc->mount_options;
1662 size_t size = sizeof(struct ceph_mds_reply_dir_entry);
1663 int order, num_entries;
1664
1665 spin_lock(&ci->i_ceph_lock);
1666 num_entries = ci->i_files + ci->i_subdirs;
1667 spin_unlock(&ci->i_ceph_lock);
1668 num_entries = max(num_entries, 1);
1669 num_entries = min(num_entries, opt->max_readdir);
1670
1671 order = get_order(size * num_entries);
1672 while (order >= 0) {
1673 rinfo->dir_entries = (void*)__get_free_pages(GFP_KERNEL |
1674 __GFP_NOWARN,
1675 order);
1676 if (rinfo->dir_entries)
1677 break;
1678 order--;
1679 }
1680 if (!rinfo->dir_entries)
1681 return -ENOMEM;
1682
1683 num_entries = (PAGE_SIZE << order) / size;
1684 num_entries = min(num_entries, opt->max_readdir);
1685
1686 rinfo->dir_buf_size = PAGE_SIZE << order;
1687 req->r_num_caps = num_entries + 1;
1688 req->r_args.readdir.max_entries = cpu_to_le32(num_entries);
1689 req->r_args.readdir.max_bytes = cpu_to_le32(opt->max_readdir_bytes);
1690 return 0;
1691 }
1692
1693 /*
1694 * Create an mds request.
1695 */
1696 struct ceph_mds_request *
1697 ceph_mdsc_create_request(struct ceph_mds_client *mdsc, int op, int mode)
1698 {
1699 struct ceph_mds_request *req = kzalloc(sizeof(*req), GFP_NOFS);
1700
1701 if (!req)
1702 return ERR_PTR(-ENOMEM);
1703
1704 mutex_init(&req->r_fill_mutex);
1705 req->r_mdsc = mdsc;
1706 req->r_started = jiffies;
1707 req->r_resend_mds = -1;
1708 INIT_LIST_HEAD(&req->r_unsafe_dir_item);
1709 INIT_LIST_HEAD(&req->r_unsafe_target_item);
1710 req->r_fmode = -1;
1711 kref_init(&req->r_kref);
1712 RB_CLEAR_NODE(&req->r_node);
1713 INIT_LIST_HEAD(&req->r_wait);
1714 init_completion(&req->r_completion);
1715 init_completion(&req->r_safe_completion);
1716 INIT_LIST_HEAD(&req->r_unsafe_item);
1717
1718 req->r_stamp = current_fs_time(mdsc->fsc->sb);
1719
1720 req->r_op = op;
1721 req->r_direct_mode = mode;
1722 return req;
1723 }
1724
1725 /*
1726 * return oldest (lowest) request, tid in request tree, 0 if none.
1727 *
1728 * called under mdsc->mutex.
1729 */
1730 static struct ceph_mds_request *__get_oldest_req(struct ceph_mds_client *mdsc)
1731 {
1732 if (RB_EMPTY_ROOT(&mdsc->request_tree))
1733 return NULL;
1734 return rb_entry(rb_first(&mdsc->request_tree),
1735 struct ceph_mds_request, r_node);
1736 }
1737
1738 static inline u64 __get_oldest_tid(struct ceph_mds_client *mdsc)
1739 {
1740 return mdsc->oldest_tid;
1741 }
1742
1743 /*
1744 * Build a dentry's path. Allocate on heap; caller must kfree. Based
1745 * on build_path_from_dentry in fs/cifs/dir.c.
1746 *
1747 * If @stop_on_nosnap, generate path relative to the first non-snapped
1748 * inode.
1749 *
1750 * Encode hidden .snap dirs as a double /, i.e.
1751 * foo/.snap/bar -> foo//bar
1752 */
1753 char *ceph_mdsc_build_path(struct dentry *dentry, int *plen, u64 *base,
1754 int stop_on_nosnap)
1755 {
1756 struct dentry *temp;
1757 char *path;
1758 int len, pos;
1759 unsigned seq;
1760
1761 if (dentry == NULL)
1762 return ERR_PTR(-EINVAL);
1763
1764 retry:
1765 len = 0;
1766 seq = read_seqbegin(&rename_lock);
1767 rcu_read_lock();
1768 for (temp = dentry; !IS_ROOT(temp);) {
1769 struct inode *inode = d_inode(temp);
1770 if (inode && ceph_snap(inode) == CEPH_SNAPDIR)
1771 len++; /* slash only */
1772 else if (stop_on_nosnap && inode &&
1773 ceph_snap(inode) == CEPH_NOSNAP)
1774 break;
1775 else
1776 len += 1 + temp->d_name.len;
1777 temp = temp->d_parent;
1778 }
1779 rcu_read_unlock();
1780 if (len)
1781 len--; /* no leading '/' */
1782
1783 path = kmalloc(len+1, GFP_NOFS);
1784 if (path == NULL)
1785 return ERR_PTR(-ENOMEM);
1786 pos = len;
1787 path[pos] = 0; /* trailing null */
1788 rcu_read_lock();
1789 for (temp = dentry; !IS_ROOT(temp) && pos != 0; ) {
1790 struct inode *inode;
1791
1792 spin_lock(&temp->d_lock);
1793 inode = d_inode(temp);
1794 if (inode && ceph_snap(inode) == CEPH_SNAPDIR) {
1795 dout("build_path path+%d: %p SNAPDIR\n",
1796 pos, temp);
1797 } else if (stop_on_nosnap && inode &&
1798 ceph_snap(inode) == CEPH_NOSNAP) {
1799 spin_unlock(&temp->d_lock);
1800 break;
1801 } else {
1802 pos -= temp->d_name.len;
1803 if (pos < 0) {
1804 spin_unlock(&temp->d_lock);
1805 break;
1806 }
1807 strncpy(path + pos, temp->d_name.name,
1808 temp->d_name.len);
1809 }
1810 spin_unlock(&temp->d_lock);
1811 if (pos)
1812 path[--pos] = '/';
1813 temp = temp->d_parent;
1814 }
1815 rcu_read_unlock();
1816 if (pos != 0 || read_seqretry(&rename_lock, seq)) {
1817 pr_err("build_path did not end path lookup where "
1818 "expected, namelen is %d, pos is %d\n", len, pos);
1819 /* presumably this is only possible if racing with a
1820 rename of one of the parent directories (we can not
1821 lock the dentries above us to prevent this, but
1822 retrying should be harmless) */
1823 kfree(path);
1824 goto retry;
1825 }
1826
1827 *base = ceph_ino(d_inode(temp));
1828 *plen = len;
1829 dout("build_path on %p %d built %llx '%.*s'\n",
1830 dentry, d_count(dentry), *base, len, path);
1831 return path;
1832 }
1833
1834 static int build_dentry_path(struct dentry *dentry,
1835 const char **ppath, int *ppathlen, u64 *pino,
1836 int *pfreepath)
1837 {
1838 char *path;
1839
1840 if (ceph_snap(d_inode(dentry->d_parent)) == CEPH_NOSNAP) {
1841 *pino = ceph_ino(d_inode(dentry->d_parent));
1842 *ppath = dentry->d_name.name;
1843 *ppathlen = dentry->d_name.len;
1844 return 0;
1845 }
1846 path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1);
1847 if (IS_ERR(path))
1848 return PTR_ERR(path);
1849 *ppath = path;
1850 *pfreepath = 1;
1851 return 0;
1852 }
1853
1854 static int build_inode_path(struct inode *inode,
1855 const char **ppath, int *ppathlen, u64 *pino,
1856 int *pfreepath)
1857 {
1858 struct dentry *dentry;
1859 char *path;
1860
1861 if (ceph_snap(inode) == CEPH_NOSNAP) {
1862 *pino = ceph_ino(inode);
1863 *ppathlen = 0;
1864 return 0;
1865 }
1866 dentry = d_find_alias(inode);
1867 path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1);
1868 dput(dentry);
1869 if (IS_ERR(path))
1870 return PTR_ERR(path);
1871 *ppath = path;
1872 *pfreepath = 1;
1873 return 0;
1874 }
1875
1876 /*
1877 * request arguments may be specified via an inode *, a dentry *, or
1878 * an explicit ino+path.
1879 */
1880 static int set_request_path_attr(struct inode *rinode, struct dentry *rdentry,
1881 const char *rpath, u64 rino,
1882 const char **ppath, int *pathlen,
1883 u64 *ino, int *freepath)
1884 {
1885 int r = 0;
1886
1887 if (rinode) {
1888 r = build_inode_path(rinode, ppath, pathlen, ino, freepath);
1889 dout(" inode %p %llx.%llx\n", rinode, ceph_ino(rinode),
1890 ceph_snap(rinode));
1891 } else if (rdentry) {
1892 r = build_dentry_path(rdentry, ppath, pathlen, ino, freepath);
1893 dout(" dentry %p %llx/%.*s\n", rdentry, *ino, *pathlen,
1894 *ppath);
1895 } else if (rpath || rino) {
1896 *ino = rino;
1897 *ppath = rpath;
1898 *pathlen = rpath ? strlen(rpath) : 0;
1899 dout(" path %.*s\n", *pathlen, rpath);
1900 }
1901
1902 return r;
1903 }
1904
1905 /*
1906 * called under mdsc->mutex
1907 */
1908 static struct ceph_msg *create_request_message(struct ceph_mds_client *mdsc,
1909 struct ceph_mds_request *req,
1910 int mds, bool drop_cap_releases)
1911 {
1912 struct ceph_msg *msg;
1913 struct ceph_mds_request_head *head;
1914 const char *path1 = NULL;
1915 const char *path2 = NULL;
1916 u64 ino1 = 0, ino2 = 0;
1917 int pathlen1 = 0, pathlen2 = 0;
1918 int freepath1 = 0, freepath2 = 0;
1919 int len;
1920 u16 releases;
1921 void *p, *end;
1922 int ret;
1923
1924 ret = set_request_path_attr(req->r_inode, req->r_dentry,
1925 req->r_path1, req->r_ino1.ino,
1926 &path1, &pathlen1, &ino1, &freepath1);
1927 if (ret < 0) {
1928 msg = ERR_PTR(ret);
1929 goto out;
1930 }
1931
1932 ret = set_request_path_attr(NULL, req->r_old_dentry,
1933 req->r_path2, req->r_ino2.ino,
1934 &path2, &pathlen2, &ino2, &freepath2);
1935 if (ret < 0) {
1936 msg = ERR_PTR(ret);
1937 goto out_free1;
1938 }
1939
1940 len = sizeof(*head) +
1941 pathlen1 + pathlen2 + 2*(1 + sizeof(u32) + sizeof(u64)) +
1942 sizeof(struct ceph_timespec);
1943
1944 /* calculate (max) length for cap releases */
1945 len += sizeof(struct ceph_mds_request_release) *
1946 (!!req->r_inode_drop + !!req->r_dentry_drop +
1947 !!req->r_old_inode_drop + !!req->r_old_dentry_drop);
1948 if (req->r_dentry_drop)
1949 len += req->r_dentry->d_name.len;
1950 if (req->r_old_dentry_drop)
1951 len += req->r_old_dentry->d_name.len;
1952
1953 msg = ceph_msg_new(CEPH_MSG_CLIENT_REQUEST, len, GFP_NOFS, false);
1954 if (!msg) {
1955 msg = ERR_PTR(-ENOMEM);
1956 goto out_free2;
1957 }
1958
1959 msg->hdr.version = cpu_to_le16(2);
1960 msg->hdr.tid = cpu_to_le64(req->r_tid);
1961
1962 head = msg->front.iov_base;
1963 p = msg->front.iov_base + sizeof(*head);
1964 end = msg->front.iov_base + msg->front.iov_len;
1965
1966 head->mdsmap_epoch = cpu_to_le32(mdsc->mdsmap->m_epoch);
1967 head->op = cpu_to_le32(req->r_op);
1968 head->caller_uid = cpu_to_le32(from_kuid(&init_user_ns, req->r_uid));
1969 head->caller_gid = cpu_to_le32(from_kgid(&init_user_ns, req->r_gid));
1970 head->args = req->r_args;
1971
1972 ceph_encode_filepath(&p, end, ino1, path1);
1973 ceph_encode_filepath(&p, end, ino2, path2);
1974
1975 /* make note of release offset, in case we need to replay */
1976 req->r_request_release_offset = p - msg->front.iov_base;
1977
1978 /* cap releases */
1979 releases = 0;
1980 if (req->r_inode_drop)
1981 releases += ceph_encode_inode_release(&p,
1982 req->r_inode ? req->r_inode : d_inode(req->r_dentry),
1983 mds, req->r_inode_drop, req->r_inode_unless, 0);
1984 if (req->r_dentry_drop)
1985 releases += ceph_encode_dentry_release(&p, req->r_dentry,
1986 mds, req->r_dentry_drop, req->r_dentry_unless);
1987 if (req->r_old_dentry_drop)
1988 releases += ceph_encode_dentry_release(&p, req->r_old_dentry,
1989 mds, req->r_old_dentry_drop, req->r_old_dentry_unless);
1990 if (req->r_old_inode_drop)
1991 releases += ceph_encode_inode_release(&p,
1992 d_inode(req->r_old_dentry),
1993 mds, req->r_old_inode_drop, req->r_old_inode_unless, 0);
1994
1995 if (drop_cap_releases) {
1996 releases = 0;
1997 p = msg->front.iov_base + req->r_request_release_offset;
1998 }
1999
2000 head->num_releases = cpu_to_le16(releases);
2001
2002 /* time stamp */
2003 {
2004 struct ceph_timespec ts;
2005 ceph_encode_timespec(&ts, &req->r_stamp);
2006 ceph_encode_copy(&p, &ts, sizeof(ts));
2007 }
2008
2009 BUG_ON(p > end);
2010 msg->front.iov_len = p - msg->front.iov_base;
2011 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
2012
2013 if (req->r_pagelist) {
2014 struct ceph_pagelist *pagelist = req->r_pagelist;
2015 atomic_inc(&pagelist->refcnt);
2016 ceph_msg_data_add_pagelist(msg, pagelist);
2017 msg->hdr.data_len = cpu_to_le32(pagelist->length);
2018 } else {
2019 msg->hdr.data_len = 0;
2020 }
2021
2022 msg->hdr.data_off = cpu_to_le16(0);
2023
2024 out_free2:
2025 if (freepath2)
2026 kfree((char *)path2);
2027 out_free1:
2028 if (freepath1)
2029 kfree((char *)path1);
2030 out:
2031 return msg;
2032 }
2033
2034 /*
2035 * called under mdsc->mutex if error, under no mutex if
2036 * success.
2037 */
2038 static void complete_request(struct ceph_mds_client *mdsc,
2039 struct ceph_mds_request *req)
2040 {
2041 if (req->r_callback)
2042 req->r_callback(mdsc, req);
2043 else
2044 complete_all(&req->r_completion);
2045 }
2046
2047 /*
2048 * called under mdsc->mutex
2049 */
2050 static int __prepare_send_request(struct ceph_mds_client *mdsc,
2051 struct ceph_mds_request *req,
2052 int mds, bool drop_cap_releases)
2053 {
2054 struct ceph_mds_request_head *rhead;
2055 struct ceph_msg *msg;
2056 int flags = 0;
2057
2058 req->r_attempts++;
2059 if (req->r_inode) {
2060 struct ceph_cap *cap =
2061 ceph_get_cap_for_mds(ceph_inode(req->r_inode), mds);
2062
2063 if (cap)
2064 req->r_sent_on_mseq = cap->mseq;
2065 else
2066 req->r_sent_on_mseq = -1;
2067 }
2068 dout("prepare_send_request %p tid %lld %s (attempt %d)\n", req,
2069 req->r_tid, ceph_mds_op_name(req->r_op), req->r_attempts);
2070
2071 if (req->r_got_unsafe) {
2072 void *p;
2073 /*
2074 * Replay. Do not regenerate message (and rebuild
2075 * paths, etc.); just use the original message.
2076 * Rebuilding paths will break for renames because
2077 * d_move mangles the src name.
2078 */
2079 msg = req->r_request;
2080 rhead = msg->front.iov_base;
2081
2082 flags = le32_to_cpu(rhead->flags);
2083 flags |= CEPH_MDS_FLAG_REPLAY;
2084 rhead->flags = cpu_to_le32(flags);
2085
2086 if (req->r_target_inode)
2087 rhead->ino = cpu_to_le64(ceph_ino(req->r_target_inode));
2088
2089 rhead->num_retry = req->r_attempts - 1;
2090
2091 /* remove cap/dentry releases from message */
2092 rhead->num_releases = 0;
2093
2094 /* time stamp */
2095 p = msg->front.iov_base + req->r_request_release_offset;
2096 {
2097 struct ceph_timespec ts;
2098 ceph_encode_timespec(&ts, &req->r_stamp);
2099 ceph_encode_copy(&p, &ts, sizeof(ts));
2100 }
2101
2102 msg->front.iov_len = p - msg->front.iov_base;
2103 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
2104 return 0;
2105 }
2106
2107 if (req->r_request) {
2108 ceph_msg_put(req->r_request);
2109 req->r_request = NULL;
2110 }
2111 msg = create_request_message(mdsc, req, mds, drop_cap_releases);
2112 if (IS_ERR(msg)) {
2113 req->r_err = PTR_ERR(msg);
2114 return PTR_ERR(msg);
2115 }
2116 req->r_request = msg;
2117
2118 rhead = msg->front.iov_base;
2119 rhead->oldest_client_tid = cpu_to_le64(__get_oldest_tid(mdsc));
2120 if (req->r_got_unsafe)
2121 flags |= CEPH_MDS_FLAG_REPLAY;
2122 if (req->r_locked_dir)
2123 flags |= CEPH_MDS_FLAG_WANT_DENTRY;
2124 rhead->flags = cpu_to_le32(flags);
2125 rhead->num_fwd = req->r_num_fwd;
2126 rhead->num_retry = req->r_attempts - 1;
2127 rhead->ino = 0;
2128
2129 dout(" r_locked_dir = %p\n", req->r_locked_dir);
2130 return 0;
2131 }
2132
2133 /*
2134 * send request, or put it on the appropriate wait list.
2135 */
2136 static int __do_request(struct ceph_mds_client *mdsc,
2137 struct ceph_mds_request *req)
2138 {
2139 struct ceph_mds_session *session = NULL;
2140 int mds = -1;
2141 int err = 0;
2142
2143 if (req->r_err || req->r_got_result) {
2144 if (req->r_aborted)
2145 __unregister_request(mdsc, req);
2146 goto out;
2147 }
2148
2149 if (req->r_timeout &&
2150 time_after_eq(jiffies, req->r_started + req->r_timeout)) {
2151 dout("do_request timed out\n");
2152 err = -EIO;
2153 goto finish;
2154 }
2155 if (ACCESS_ONCE(mdsc->fsc->mount_state) == CEPH_MOUNT_SHUTDOWN) {
2156 dout("do_request forced umount\n");
2157 err = -EIO;
2158 goto finish;
2159 }
2160
2161 put_request_session(req);
2162
2163 mds = __choose_mds(mdsc, req);
2164 if (mds < 0 ||
2165 ceph_mdsmap_get_state(mdsc->mdsmap, mds) < CEPH_MDS_STATE_ACTIVE) {
2166 dout("do_request no mds or not active, waiting for map\n");
2167 list_add(&req->r_wait, &mdsc->waiting_for_map);
2168 goto out;
2169 }
2170
2171 /* get, open session */
2172 session = __ceph_lookup_mds_session(mdsc, mds);
2173 if (!session) {
2174 session = register_session(mdsc, mds);
2175 if (IS_ERR(session)) {
2176 err = PTR_ERR(session);
2177 goto finish;
2178 }
2179 }
2180 req->r_session = get_session(session);
2181
2182 dout("do_request mds%d session %p state %s\n", mds, session,
2183 ceph_session_state_name(session->s_state));
2184 if (session->s_state != CEPH_MDS_SESSION_OPEN &&
2185 session->s_state != CEPH_MDS_SESSION_HUNG) {
2186 if (session->s_state == CEPH_MDS_SESSION_NEW ||
2187 session->s_state == CEPH_MDS_SESSION_CLOSING)
2188 __open_session(mdsc, session);
2189 list_add(&req->r_wait, &session->s_waiting);
2190 goto out_session;
2191 }
2192
2193 /* send request */
2194 req->r_resend_mds = -1; /* forget any previous mds hint */
2195
2196 if (req->r_request_started == 0) /* note request start time */
2197 req->r_request_started = jiffies;
2198
2199 err = __prepare_send_request(mdsc, req, mds, false);
2200 if (!err) {
2201 ceph_msg_get(req->r_request);
2202 ceph_con_send(&session->s_con, req->r_request);
2203 }
2204
2205 out_session:
2206 ceph_put_mds_session(session);
2207 finish:
2208 if (err) {
2209 dout("__do_request early error %d\n", err);
2210 req->r_err = err;
2211 complete_request(mdsc, req);
2212 __unregister_request(mdsc, req);
2213 }
2214 out:
2215 return err;
2216 }
2217
2218 /*
2219 * called under mdsc->mutex
2220 */
2221 static void __wake_requests(struct ceph_mds_client *mdsc,
2222 struct list_head *head)
2223 {
2224 struct ceph_mds_request *req;
2225 LIST_HEAD(tmp_list);
2226
2227 list_splice_init(head, &tmp_list);
2228
2229 while (!list_empty(&tmp_list)) {
2230 req = list_entry(tmp_list.next,
2231 struct ceph_mds_request, r_wait);
2232 list_del_init(&req->r_wait);
2233 dout(" wake request %p tid %llu\n", req, req->r_tid);
2234 __do_request(mdsc, req);
2235 }
2236 }
2237
2238 /*
2239 * Wake up threads with requests pending for @mds, so that they can
2240 * resubmit their requests to a possibly different mds.
2241 */
2242 static void kick_requests(struct ceph_mds_client *mdsc, int mds)
2243 {
2244 struct ceph_mds_request *req;
2245 struct rb_node *p = rb_first(&mdsc->request_tree);
2246
2247 dout("kick_requests mds%d\n", mds);
2248 while (p) {
2249 req = rb_entry(p, struct ceph_mds_request, r_node);
2250 p = rb_next(p);
2251 if (req->r_got_unsafe)
2252 continue;
2253 if (req->r_attempts > 0)
2254 continue; /* only new requests */
2255 if (req->r_session &&
2256 req->r_session->s_mds == mds) {
2257 dout(" kicking tid %llu\n", req->r_tid);
2258 list_del_init(&req->r_wait);
2259 __do_request(mdsc, req);
2260 }
2261 }
2262 }
2263
2264 void ceph_mdsc_submit_request(struct ceph_mds_client *mdsc,
2265 struct ceph_mds_request *req)
2266 {
2267 dout("submit_request on %p\n", req);
2268 mutex_lock(&mdsc->mutex);
2269 __register_request(mdsc, req, NULL);
2270 __do_request(mdsc, req);
2271 mutex_unlock(&mdsc->mutex);
2272 }
2273
2274 /*
2275 * Synchrously perform an mds request. Take care of all of the
2276 * session setup, forwarding, retry details.
2277 */
2278 int ceph_mdsc_do_request(struct ceph_mds_client *mdsc,
2279 struct inode *dir,
2280 struct ceph_mds_request *req)
2281 {
2282 int err;
2283
2284 dout("do_request on %p\n", req);
2285
2286 /* take CAP_PIN refs for r_inode, r_locked_dir, r_old_dentry */
2287 if (req->r_inode)
2288 ceph_get_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN);
2289 if (req->r_locked_dir)
2290 ceph_get_cap_refs(ceph_inode(req->r_locked_dir), CEPH_CAP_PIN);
2291 if (req->r_old_dentry_dir)
2292 ceph_get_cap_refs(ceph_inode(req->r_old_dentry_dir),
2293 CEPH_CAP_PIN);
2294
2295 /* deny access to directories with pool_ns layouts */
2296 if (req->r_inode && S_ISDIR(req->r_inode->i_mode) &&
2297 ceph_inode(req->r_inode)->i_pool_ns_len)
2298 return -EIO;
2299 if (req->r_locked_dir &&
2300 ceph_inode(req->r_locked_dir)->i_pool_ns_len)
2301 return -EIO;
2302
2303 /* issue */
2304 mutex_lock(&mdsc->mutex);
2305 __register_request(mdsc, req, dir);
2306 __do_request(mdsc, req);
2307
2308 if (req->r_err) {
2309 err = req->r_err;
2310 goto out;
2311 }
2312
2313 /* wait */
2314 mutex_unlock(&mdsc->mutex);
2315 dout("do_request waiting\n");
2316 if (!req->r_timeout && req->r_wait_for_completion) {
2317 err = req->r_wait_for_completion(mdsc, req);
2318 } else {
2319 long timeleft = wait_for_completion_killable_timeout(
2320 &req->r_completion,
2321 ceph_timeout_jiffies(req->r_timeout));
2322 if (timeleft > 0)
2323 err = 0;
2324 else if (!timeleft)
2325 err = -EIO; /* timed out */
2326 else
2327 err = timeleft; /* killed */
2328 }
2329 dout("do_request waited, got %d\n", err);
2330 mutex_lock(&mdsc->mutex);
2331
2332 /* only abort if we didn't race with a real reply */
2333 if (req->r_got_result) {
2334 err = le32_to_cpu(req->r_reply_info.head->result);
2335 } else if (err < 0) {
2336 dout("aborted request %lld with %d\n", req->r_tid, err);
2337
2338 /*
2339 * ensure we aren't running concurrently with
2340 * ceph_fill_trace or ceph_readdir_prepopulate, which
2341 * rely on locks (dir mutex) held by our caller.
2342 */
2343 mutex_lock(&req->r_fill_mutex);
2344 req->r_err = err;
2345 req->r_aborted = true;
2346 mutex_unlock(&req->r_fill_mutex);
2347
2348 if (req->r_locked_dir &&
2349 (req->r_op & CEPH_MDS_OP_WRITE))
2350 ceph_invalidate_dir_request(req);
2351 } else {
2352 err = req->r_err;
2353 }
2354
2355 out:
2356 mutex_unlock(&mdsc->mutex);
2357 dout("do_request %p done, result %d\n", req, err);
2358 return err;
2359 }
2360
2361 /*
2362 * Invalidate dir's completeness, dentry lease state on an aborted MDS
2363 * namespace request.
2364 */
2365 void ceph_invalidate_dir_request(struct ceph_mds_request *req)
2366 {
2367 struct inode *inode = req->r_locked_dir;
2368
2369 dout("invalidate_dir_request %p (complete, lease(s))\n", inode);
2370
2371 ceph_dir_clear_complete(inode);
2372 if (req->r_dentry)
2373 ceph_invalidate_dentry_lease(req->r_dentry);
2374 if (req->r_old_dentry)
2375 ceph_invalidate_dentry_lease(req->r_old_dentry);
2376 }
2377
2378 /*
2379 * Handle mds reply.
2380 *
2381 * We take the session mutex and parse and process the reply immediately.
2382 * This preserves the logical ordering of replies, capabilities, etc., sent
2383 * by the MDS as they are applied to our local cache.
2384 */
2385 static void handle_reply(struct ceph_mds_session *session, struct ceph_msg *msg)
2386 {
2387 struct ceph_mds_client *mdsc = session->s_mdsc;
2388 struct ceph_mds_request *req;
2389 struct ceph_mds_reply_head *head = msg->front.iov_base;
2390 struct ceph_mds_reply_info_parsed *rinfo; /* parsed reply info */
2391 struct ceph_snap_realm *realm;
2392 u64 tid;
2393 int err, result;
2394 int mds = session->s_mds;
2395
2396 if (msg->front.iov_len < sizeof(*head)) {
2397 pr_err("mdsc_handle_reply got corrupt (short) reply\n");
2398 ceph_msg_dump(msg);
2399 return;
2400 }
2401
2402 /* get request, session */
2403 tid = le64_to_cpu(msg->hdr.tid);
2404 mutex_lock(&mdsc->mutex);
2405 req = lookup_get_request(mdsc, tid);
2406 if (!req) {
2407 dout("handle_reply on unknown tid %llu\n", tid);
2408 mutex_unlock(&mdsc->mutex);
2409 return;
2410 }
2411 dout("handle_reply %p\n", req);
2412
2413 /* correct session? */
2414 if (req->r_session != session) {
2415 pr_err("mdsc_handle_reply got %llu on session mds%d"
2416 " not mds%d\n", tid, session->s_mds,
2417 req->r_session ? req->r_session->s_mds : -1);
2418 mutex_unlock(&mdsc->mutex);
2419 goto out;
2420 }
2421
2422 /* dup? */
2423 if ((req->r_got_unsafe && !head->safe) ||
2424 (req->r_got_safe && head->safe)) {
2425 pr_warn("got a dup %s reply on %llu from mds%d\n",
2426 head->safe ? "safe" : "unsafe", tid, mds);
2427 mutex_unlock(&mdsc->mutex);
2428 goto out;
2429 }
2430 if (req->r_got_safe) {
2431 pr_warn("got unsafe after safe on %llu from mds%d\n",
2432 tid, mds);
2433 mutex_unlock(&mdsc->mutex);
2434 goto out;
2435 }
2436
2437 result = le32_to_cpu(head->result);
2438
2439 /*
2440 * Handle an ESTALE
2441 * if we're not talking to the authority, send to them
2442 * if the authority has changed while we weren't looking,
2443 * send to new authority
2444 * Otherwise we just have to return an ESTALE
2445 */
2446 if (result == -ESTALE) {
2447 dout("got ESTALE on request %llu", req->r_tid);
2448 req->r_resend_mds = -1;
2449 if (req->r_direct_mode != USE_AUTH_MDS) {
2450 dout("not using auth, setting for that now");
2451 req->r_direct_mode = USE_AUTH_MDS;
2452 __do_request(mdsc, req);
2453 mutex_unlock(&mdsc->mutex);
2454 goto out;
2455 } else {
2456 int mds = __choose_mds(mdsc, req);
2457 if (mds >= 0 && mds != req->r_session->s_mds) {
2458 dout("but auth changed, so resending");
2459 __do_request(mdsc, req);
2460 mutex_unlock(&mdsc->mutex);
2461 goto out;
2462 }
2463 }
2464 dout("have to return ESTALE on request %llu", req->r_tid);
2465 }
2466
2467
2468 if (head->safe) {
2469 req->r_got_safe = true;
2470 __unregister_request(mdsc, req);
2471
2472 if (req->r_got_unsafe) {
2473 /*
2474 * We already handled the unsafe response, now do the
2475 * cleanup. No need to examine the response; the MDS
2476 * doesn't include any result info in the safe
2477 * response. And even if it did, there is nothing
2478 * useful we could do with a revised return value.
2479 */
2480 dout("got safe reply %llu, mds%d\n", tid, mds);
2481 list_del_init(&req->r_unsafe_item);
2482
2483 /* last unsafe request during umount? */
2484 if (mdsc->stopping && !__get_oldest_req(mdsc))
2485 complete_all(&mdsc->safe_umount_waiters);
2486 mutex_unlock(&mdsc->mutex);
2487 goto out;
2488 }
2489 } else {
2490 req->r_got_unsafe = true;
2491 list_add_tail(&req->r_unsafe_item, &req->r_session->s_unsafe);
2492 if (req->r_unsafe_dir) {
2493 struct ceph_inode_info *ci =
2494 ceph_inode(req->r_unsafe_dir);
2495 spin_lock(&ci->i_unsafe_lock);
2496 list_add_tail(&req->r_unsafe_dir_item,
2497 &ci->i_unsafe_dirops);
2498 spin_unlock(&ci->i_unsafe_lock);
2499 }
2500 }
2501
2502 dout("handle_reply tid %lld result %d\n", tid, result);
2503 rinfo = &req->r_reply_info;
2504 err = parse_reply_info(msg, rinfo, session->s_con.peer_features);
2505 mutex_unlock(&mdsc->mutex);
2506
2507 mutex_lock(&session->s_mutex);
2508 if (err < 0) {
2509 pr_err("mdsc_handle_reply got corrupt reply mds%d(tid:%lld)\n", mds, tid);
2510 ceph_msg_dump(msg);
2511 goto out_err;
2512 }
2513
2514 /* snap trace */
2515 realm = NULL;
2516 if (rinfo->snapblob_len) {
2517 down_write(&mdsc->snap_rwsem);
2518 ceph_update_snap_trace(mdsc, rinfo->snapblob,
2519 rinfo->snapblob + rinfo->snapblob_len,
2520 le32_to_cpu(head->op) == CEPH_MDS_OP_RMSNAP,
2521 &realm);
2522 downgrade_write(&mdsc->snap_rwsem);
2523 } else {
2524 down_read(&mdsc->snap_rwsem);
2525 }
2526
2527 /* insert trace into our cache */
2528 mutex_lock(&req->r_fill_mutex);
2529 current->journal_info = req;
2530 err = ceph_fill_trace(mdsc->fsc->sb, req, req->r_session);
2531 if (err == 0) {
2532 if (result == 0 && (req->r_op == CEPH_MDS_OP_READDIR ||
2533 req->r_op == CEPH_MDS_OP_LSSNAP))
2534 ceph_readdir_prepopulate(req, req->r_session);
2535 ceph_unreserve_caps(mdsc, &req->r_caps_reservation);
2536 }
2537 current->journal_info = NULL;
2538 mutex_unlock(&req->r_fill_mutex);
2539
2540 up_read(&mdsc->snap_rwsem);
2541 if (realm)
2542 ceph_put_snap_realm(mdsc, realm);
2543
2544 if (err == 0 && req->r_got_unsafe && req->r_target_inode) {
2545 struct ceph_inode_info *ci = ceph_inode(req->r_target_inode);
2546 spin_lock(&ci->i_unsafe_lock);
2547 list_add_tail(&req->r_unsafe_target_item, &ci->i_unsafe_iops);
2548 spin_unlock(&ci->i_unsafe_lock);
2549 }
2550 out_err:
2551 mutex_lock(&mdsc->mutex);
2552 if (!req->r_aborted) {
2553 if (err) {
2554 req->r_err = err;
2555 } else {
2556 req->r_reply = ceph_msg_get(msg);
2557 req->r_got_result = true;
2558 }
2559 } else {
2560 dout("reply arrived after request %lld was aborted\n", tid);
2561 }
2562 mutex_unlock(&mdsc->mutex);
2563
2564 mutex_unlock(&session->s_mutex);
2565
2566 /* kick calling process */
2567 complete_request(mdsc, req);
2568 out:
2569 ceph_mdsc_put_request(req);
2570 return;
2571 }
2572
2573
2574
2575 /*
2576 * handle mds notification that our request has been forwarded.
2577 */
2578 static void handle_forward(struct ceph_mds_client *mdsc,
2579 struct ceph_mds_session *session,
2580 struct ceph_msg *msg)
2581 {
2582 struct ceph_mds_request *req;
2583 u64 tid = le64_to_cpu(msg->hdr.tid);
2584 u32 next_mds;
2585 u32 fwd_seq;
2586 int err = -EINVAL;
2587 void *p = msg->front.iov_base;
2588 void *end = p + msg->front.iov_len;
2589
2590 ceph_decode_need(&p, end, 2*sizeof(u32), bad);
2591 next_mds = ceph_decode_32(&p);
2592 fwd_seq = ceph_decode_32(&p);
2593
2594 mutex_lock(&mdsc->mutex);
2595 req = lookup_get_request(mdsc, tid);
2596 if (!req) {
2597 dout("forward tid %llu to mds%d - req dne\n", tid, next_mds);
2598 goto out; /* dup reply? */
2599 }
2600
2601 if (req->r_aborted) {
2602 dout("forward tid %llu aborted, unregistering\n", tid);
2603 __unregister_request(mdsc, req);
2604 } else if (fwd_seq <= req->r_num_fwd) {
2605 dout("forward tid %llu to mds%d - old seq %d <= %d\n",
2606 tid, next_mds, req->r_num_fwd, fwd_seq);
2607 } else {
2608 /* resend. forward race not possible; mds would drop */
2609 dout("forward tid %llu to mds%d (we resend)\n", tid, next_mds);
2610 BUG_ON(req->r_err);
2611 BUG_ON(req->r_got_result);
2612 req->r_attempts = 0;
2613 req->r_num_fwd = fwd_seq;
2614 req->r_resend_mds = next_mds;
2615 put_request_session(req);
2616 __do_request(mdsc, req);
2617 }
2618 ceph_mdsc_put_request(req);
2619 out:
2620 mutex_unlock(&mdsc->mutex);
2621 return;
2622
2623 bad:
2624 pr_err("mdsc_handle_forward decode error err=%d\n", err);
2625 }
2626
2627 /*
2628 * handle a mds session control message
2629 */
2630 static void handle_session(struct ceph_mds_session *session,
2631 struct ceph_msg *msg)
2632 {
2633 struct ceph_mds_client *mdsc = session->s_mdsc;
2634 u32 op;
2635 u64 seq;
2636 int mds = session->s_mds;
2637 struct ceph_mds_session_head *h = msg->front.iov_base;
2638 int wake = 0;
2639
2640 /* decode */
2641 if (msg->front.iov_len != sizeof(*h))
2642 goto bad;
2643 op = le32_to_cpu(h->op);
2644 seq = le64_to_cpu(h->seq);
2645
2646 mutex_lock(&mdsc->mutex);
2647 if (op == CEPH_SESSION_CLOSE)
2648 __unregister_session(mdsc, session);
2649 /* FIXME: this ttl calculation is generous */
2650 session->s_ttl = jiffies + HZ*mdsc->mdsmap->m_session_autoclose;
2651 mutex_unlock(&mdsc->mutex);
2652
2653 mutex_lock(&session->s_mutex);
2654
2655 dout("handle_session mds%d %s %p state %s seq %llu\n",
2656 mds, ceph_session_op_name(op), session,
2657 ceph_session_state_name(session->s_state), seq);
2658
2659 if (session->s_state == CEPH_MDS_SESSION_HUNG) {
2660 session->s_state = CEPH_MDS_SESSION_OPEN;
2661 pr_info("mds%d came back\n", session->s_mds);
2662 }
2663
2664 switch (op) {
2665 case CEPH_SESSION_OPEN:
2666 if (session->s_state == CEPH_MDS_SESSION_RECONNECTING)
2667 pr_info("mds%d reconnect success\n", session->s_mds);
2668 session->s_state = CEPH_MDS_SESSION_OPEN;
2669 renewed_caps(mdsc, session, 0);
2670 wake = 1;
2671 if (mdsc->stopping)
2672 __close_session(mdsc, session);
2673 break;
2674
2675 case CEPH_SESSION_RENEWCAPS:
2676 if (session->s_renew_seq == seq)
2677 renewed_caps(mdsc, session, 1);
2678 break;
2679
2680 case CEPH_SESSION_CLOSE:
2681 if (session->s_state == CEPH_MDS_SESSION_RECONNECTING)
2682 pr_info("mds%d reconnect denied\n", session->s_mds);
2683 cleanup_session_requests(mdsc, session);
2684 remove_session_caps(session);
2685 wake = 2; /* for good measure */
2686 wake_up_all(&mdsc->session_close_wq);
2687 break;
2688
2689 case CEPH_SESSION_STALE:
2690 pr_info("mds%d caps went stale, renewing\n",
2691 session->s_mds);
2692 spin_lock(&session->s_gen_ttl_lock);
2693 session->s_cap_gen++;
2694 session->s_cap_ttl = jiffies - 1;
2695 spin_unlock(&session->s_gen_ttl_lock);
2696 send_renew_caps(mdsc, session);
2697 break;
2698
2699 case CEPH_SESSION_RECALL_STATE:
2700 trim_caps(mdsc, session, le32_to_cpu(h->max_caps));
2701 break;
2702
2703 case CEPH_SESSION_FLUSHMSG:
2704 send_flushmsg_ack(mdsc, session, seq);
2705 break;
2706
2707 case CEPH_SESSION_FORCE_RO:
2708 dout("force_session_readonly %p\n", session);
2709 spin_lock(&session->s_cap_lock);
2710 session->s_readonly = true;
2711 spin_unlock(&session->s_cap_lock);
2712 wake_up_session_caps(session, 0);
2713 break;
2714
2715 default:
2716 pr_err("mdsc_handle_session bad op %d mds%d\n", op, mds);
2717 WARN_ON(1);
2718 }
2719
2720 mutex_unlock(&session->s_mutex);
2721 if (wake) {
2722 mutex_lock(&mdsc->mutex);
2723 __wake_requests(mdsc, &session->s_waiting);
2724 if (wake == 2)
2725 kick_requests(mdsc, mds);
2726 mutex_unlock(&mdsc->mutex);
2727 }
2728 return;
2729
2730 bad:
2731 pr_err("mdsc_handle_session corrupt message mds%d len %d\n", mds,
2732 (int)msg->front.iov_len);
2733 ceph_msg_dump(msg);
2734 return;
2735 }
2736
2737
2738 /*
2739 * called under session->mutex.
2740 */
2741 static void replay_unsafe_requests(struct ceph_mds_client *mdsc,
2742 struct ceph_mds_session *session)
2743 {
2744 struct ceph_mds_request *req, *nreq;
2745 struct rb_node *p;
2746 int err;
2747
2748 dout("replay_unsafe_requests mds%d\n", session->s_mds);
2749
2750 mutex_lock(&mdsc->mutex);
2751 list_for_each_entry_safe(req, nreq, &session->s_unsafe, r_unsafe_item) {
2752 err = __prepare_send_request(mdsc, req, session->s_mds, true);
2753 if (!err) {
2754 ceph_msg_get(req->r_request);
2755 ceph_con_send(&session->s_con, req->r_request);
2756 }
2757 }
2758
2759 /*
2760 * also re-send old requests when MDS enters reconnect stage. So that MDS
2761 * can process completed request in clientreplay stage.
2762 */
2763 p = rb_first(&mdsc->request_tree);
2764 while (p) {
2765 req = rb_entry(p, struct ceph_mds_request, r_node);
2766 p = rb_next(p);
2767 if (req->r_got_unsafe)
2768 continue;
2769 if (req->r_attempts == 0)
2770 continue; /* only old requests */
2771 if (req->r_session &&
2772 req->r_session->s_mds == session->s_mds) {
2773 err = __prepare_send_request(mdsc, req,
2774 session->s_mds, true);
2775 if (!err) {
2776 ceph_msg_get(req->r_request);
2777 ceph_con_send(&session->s_con, req->r_request);
2778 }
2779 }
2780 }
2781 mutex_unlock(&mdsc->mutex);
2782 }
2783
2784 /*
2785 * Encode information about a cap for a reconnect with the MDS.
2786 */
2787 static int encode_caps_cb(struct inode *inode, struct ceph_cap *cap,
2788 void *arg)
2789 {
2790 union {
2791 struct ceph_mds_cap_reconnect v2;
2792 struct ceph_mds_cap_reconnect_v1 v1;
2793 } rec;
2794 size_t reclen;
2795 struct ceph_inode_info *ci;
2796 struct ceph_reconnect_state *recon_state = arg;
2797 struct ceph_pagelist *pagelist = recon_state->pagelist;
2798 char *path;
2799 int pathlen, err;
2800 u64 pathbase;
2801 struct dentry *dentry;
2802
2803 ci = cap->ci;
2804
2805 dout(" adding %p ino %llx.%llx cap %p %lld %s\n",
2806 inode, ceph_vinop(inode), cap, cap->cap_id,
2807 ceph_cap_string(cap->issued));
2808 err = ceph_pagelist_encode_64(pagelist, ceph_ino(inode));
2809 if (err)
2810 return err;
2811
2812 dentry = d_find_alias(inode);
2813 if (dentry) {
2814 path = ceph_mdsc_build_path(dentry, &pathlen, &pathbase, 0);
2815 if (IS_ERR(path)) {
2816 err = PTR_ERR(path);
2817 goto out_dput;
2818 }
2819 } else {
2820 path = NULL;
2821 pathlen = 0;
2822 }
2823 err = ceph_pagelist_encode_string(pagelist, path, pathlen);
2824 if (err)
2825 goto out_free;
2826
2827 spin_lock(&ci->i_ceph_lock);
2828 cap->seq = 0; /* reset cap seq */
2829 cap->issue_seq = 0; /* and issue_seq */
2830 cap->mseq = 0; /* and migrate_seq */
2831 cap->cap_gen = cap->session->s_cap_gen;
2832
2833 if (recon_state->flock) {
2834 rec.v2.cap_id = cpu_to_le64(cap->cap_id);
2835 rec.v2.wanted = cpu_to_le32(__ceph_caps_wanted(ci));
2836 rec.v2.issued = cpu_to_le32(cap->issued);
2837 rec.v2.snaprealm = cpu_to_le64(ci->i_snap_realm->ino);
2838 rec.v2.pathbase = cpu_to_le64(pathbase);
2839 rec.v2.flock_len = 0;
2840 reclen = sizeof(rec.v2);
2841 } else {
2842 rec.v1.cap_id = cpu_to_le64(cap->cap_id);
2843 rec.v1.wanted = cpu_to_le32(__ceph_caps_wanted(ci));
2844 rec.v1.issued = cpu_to_le32(cap->issued);
2845 rec.v1.size = cpu_to_le64(inode->i_size);
2846 ceph_encode_timespec(&rec.v1.mtime, &inode->i_mtime);
2847 ceph_encode_timespec(&rec.v1.atime, &inode->i_atime);
2848 rec.v1.snaprealm = cpu_to_le64(ci->i_snap_realm->ino);
2849 rec.v1.pathbase = cpu_to_le64(pathbase);
2850 reclen = sizeof(rec.v1);
2851 }
2852 spin_unlock(&ci->i_ceph_lock);
2853
2854 if (recon_state->flock) {
2855 int num_fcntl_locks, num_flock_locks;
2856 struct ceph_filelock *flocks;
2857
2858 encode_again:
2859 ceph_count_locks(inode, &num_fcntl_locks, &num_flock_locks);
2860 flocks = kmalloc((num_fcntl_locks+num_flock_locks) *
2861 sizeof(struct ceph_filelock), GFP_NOFS);
2862 if (!flocks) {
2863 err = -ENOMEM;
2864 goto out_free;
2865 }
2866 err = ceph_encode_locks_to_buffer(inode, flocks,
2867 num_fcntl_locks,
2868 num_flock_locks);
2869 if (err) {
2870 kfree(flocks);
2871 if (err == -ENOSPC)
2872 goto encode_again;
2873 goto out_free;
2874 }
2875 /*
2876 * number of encoded locks is stable, so copy to pagelist
2877 */
2878 rec.v2.flock_len = cpu_to_le32(2*sizeof(u32) +
2879 (num_fcntl_locks+num_flock_locks) *
2880 sizeof(struct ceph_filelock));
2881 err = ceph_pagelist_append(pagelist, &rec, reclen);
2882 if (!err)
2883 err = ceph_locks_to_pagelist(flocks, pagelist,
2884 num_fcntl_locks,
2885 num_flock_locks);
2886 kfree(flocks);
2887 } else {
2888 err = ceph_pagelist_append(pagelist, &rec, reclen);
2889 }
2890
2891 recon_state->nr_caps++;
2892 out_free:
2893 kfree(path);
2894 out_dput:
2895 dput(dentry);
2896 return err;
2897 }
2898
2899
2900 /*
2901 * If an MDS fails and recovers, clients need to reconnect in order to
2902 * reestablish shared state. This includes all caps issued through
2903 * this session _and_ the snap_realm hierarchy. Because it's not
2904 * clear which snap realms the mds cares about, we send everything we
2905 * know about.. that ensures we'll then get any new info the
2906 * recovering MDS might have.
2907 *
2908 * This is a relatively heavyweight operation, but it's rare.
2909 *
2910 * called with mdsc->mutex held.
2911 */
2912 static void send_mds_reconnect(struct ceph_mds_client *mdsc,
2913 struct ceph_mds_session *session)
2914 {
2915 struct ceph_msg *reply;
2916 struct rb_node *p;
2917 int mds = session->s_mds;
2918 int err = -ENOMEM;
2919 int s_nr_caps;
2920 struct ceph_pagelist *pagelist;
2921 struct ceph_reconnect_state recon_state;
2922
2923 pr_info("mds%d reconnect start\n", mds);
2924
2925 pagelist = kmalloc(sizeof(*pagelist), GFP_NOFS);
2926 if (!pagelist)
2927 goto fail_nopagelist;
2928 ceph_pagelist_init(pagelist);
2929
2930 reply = ceph_msg_new(CEPH_MSG_CLIENT_RECONNECT, 0, GFP_NOFS, false);
2931 if (!reply)
2932 goto fail_nomsg;
2933
2934 mutex_lock(&session->s_mutex);
2935 session->s_state = CEPH_MDS_SESSION_RECONNECTING;
2936 session->s_seq = 0;
2937
2938 dout("session %p state %s\n", session,
2939 ceph_session_state_name(session->s_state));
2940
2941 spin_lock(&session->s_gen_ttl_lock);
2942 session->s_cap_gen++;
2943 spin_unlock(&session->s_gen_ttl_lock);
2944
2945 spin_lock(&session->s_cap_lock);
2946 /* don't know if session is readonly */
2947 session->s_readonly = 0;
2948 /*
2949 * notify __ceph_remove_cap() that we are composing cap reconnect.
2950 * If a cap get released before being added to the cap reconnect,
2951 * __ceph_remove_cap() should skip queuing cap release.
2952 */
2953 session->s_cap_reconnect = 1;
2954 /* drop old cap expires; we're about to reestablish that state */
2955 cleanup_cap_releases(mdsc, session);
2956
2957 /* trim unused caps to reduce MDS's cache rejoin time */
2958 if (mdsc->fsc->sb->s_root)
2959 shrink_dcache_parent(mdsc->fsc->sb->s_root);
2960
2961 ceph_con_close(&session->s_con);
2962 ceph_con_open(&session->s_con,
2963 CEPH_ENTITY_TYPE_MDS, mds,
2964 ceph_mdsmap_get_addr(mdsc->mdsmap, mds));
2965
2966 /* replay unsafe requests */
2967 replay_unsafe_requests(mdsc, session);
2968
2969 down_read(&mdsc->snap_rwsem);
2970
2971 /* traverse this session's caps */
2972 s_nr_caps = session->s_nr_caps;
2973 err = ceph_pagelist_encode_32(pagelist, s_nr_caps);
2974 if (err)
2975 goto fail;
2976
2977 recon_state.nr_caps = 0;
2978 recon_state.pagelist = pagelist;
2979 recon_state.flock = session->s_con.peer_features & CEPH_FEATURE_FLOCK;
2980 err = iterate_session_caps(session, encode_caps_cb, &recon_state);
2981 if (err < 0)
2982 goto fail;
2983
2984 spin_lock(&session->s_cap_lock);
2985 session->s_cap_reconnect = 0;
2986 spin_unlock(&session->s_cap_lock);
2987
2988 /*
2989 * snaprealms. we provide mds with the ino, seq (version), and
2990 * parent for all of our realms. If the mds has any newer info,
2991 * it will tell us.
2992 */
2993 for (p = rb_first(&mdsc->snap_realms); p; p = rb_next(p)) {
2994 struct ceph_snap_realm *realm =
2995 rb_entry(p, struct ceph_snap_realm, node);
2996 struct ceph_mds_snaprealm_reconnect sr_rec;
2997
2998 dout(" adding snap realm %llx seq %lld parent %llx\n",
2999 realm->ino, realm->seq, realm->parent_ino);
3000 sr_rec.ino = cpu_to_le64(realm->ino);
3001 sr_rec.seq = cpu_to_le64(realm->seq);
3002 sr_rec.parent = cpu_to_le64(realm->parent_ino);
3003 err = ceph_pagelist_append(pagelist, &sr_rec, sizeof(sr_rec));
3004 if (err)
3005 goto fail;
3006 }
3007
3008 if (recon_state.flock)
3009 reply->hdr.version = cpu_to_le16(2);
3010
3011 /* raced with cap release? */
3012 if (s_nr_caps != recon_state.nr_caps) {
3013 struct page *page = list_first_entry(&pagelist->head,
3014 struct page, lru);
3015 __le32 *addr = kmap_atomic(page);
3016 *addr = cpu_to_le32(recon_state.nr_caps);
3017 kunmap_atomic(addr);
3018 }
3019
3020 reply->hdr.data_len = cpu_to_le32(pagelist->length);
3021 ceph_msg_data_add_pagelist(reply, pagelist);
3022
3023 ceph_early_kick_flushing_caps(mdsc, session);
3024
3025 ceph_con_send(&session->s_con, reply);
3026
3027 mutex_unlock(&session->s_mutex);
3028
3029 mutex_lock(&mdsc->mutex);
3030 __wake_requests(mdsc, &session->s_waiting);
3031 mutex_unlock(&mdsc->mutex);
3032
3033 up_read(&mdsc->snap_rwsem);
3034 return;
3035
3036 fail:
3037 ceph_msg_put(reply);
3038 up_read(&mdsc->snap_rwsem);
3039 mutex_unlock(&session->s_mutex);
3040 fail_nomsg:
3041 ceph_pagelist_release(pagelist);
3042 fail_nopagelist:
3043 pr_err("error %d preparing reconnect for mds%d\n", err, mds);
3044 return;
3045 }
3046
3047
3048 /*
3049 * compare old and new mdsmaps, kicking requests
3050 * and closing out old connections as necessary
3051 *
3052 * called under mdsc->mutex.
3053 */
3054 static void check_new_map(struct ceph_mds_client *mdsc,
3055 struct ceph_mdsmap *newmap,
3056 struct ceph_mdsmap *oldmap)
3057 {
3058 int i;
3059 int oldstate, newstate;
3060 struct ceph_mds_session *s;
3061
3062 dout("check_new_map new %u old %u\n",
3063 newmap->m_epoch, oldmap->m_epoch);
3064
3065 for (i = 0; i < oldmap->m_max_mds && i < mdsc->max_sessions; i++) {
3066 if (mdsc->sessions[i] == NULL)
3067 continue;
3068 s = mdsc->sessions[i];
3069 oldstate = ceph_mdsmap_get_state(oldmap, i);
3070 newstate = ceph_mdsmap_get_state(newmap, i);
3071
3072 dout("check_new_map mds%d state %s%s -> %s%s (session %s)\n",
3073 i, ceph_mds_state_name(oldstate),
3074 ceph_mdsmap_is_laggy(oldmap, i) ? " (laggy)" : "",
3075 ceph_mds_state_name(newstate),
3076 ceph_mdsmap_is_laggy(newmap, i) ? " (laggy)" : "",
3077 ceph_session_state_name(s->s_state));
3078
3079 if (i >= newmap->m_max_mds ||
3080 memcmp(ceph_mdsmap_get_addr(oldmap, i),
3081 ceph_mdsmap_get_addr(newmap, i),
3082 sizeof(struct ceph_entity_addr))) {
3083 if (s->s_state == CEPH_MDS_SESSION_OPENING) {
3084 /* the session never opened, just close it
3085 * out now */
3086 __wake_requests(mdsc, &s->s_waiting);
3087 __unregister_session(mdsc, s);
3088 } else {
3089 /* just close it */
3090 mutex_unlock(&mdsc->mutex);
3091 mutex_lock(&s->s_mutex);
3092 mutex_lock(&mdsc->mutex);
3093 ceph_con_close(&s->s_con);
3094 mutex_unlock(&s->s_mutex);
3095 s->s_state = CEPH_MDS_SESSION_RESTARTING;
3096 }
3097 } else if (oldstate == newstate) {
3098 continue; /* nothing new with this mds */
3099 }
3100
3101 /*
3102 * send reconnect?
3103 */
3104 if (s->s_state == CEPH_MDS_SESSION_RESTARTING &&
3105 newstate >= CEPH_MDS_STATE_RECONNECT) {
3106 mutex_unlock(&mdsc->mutex);
3107 send_mds_reconnect(mdsc, s);
3108 mutex_lock(&mdsc->mutex);
3109 }
3110
3111 /*
3112 * kick request on any mds that has gone active.
3113 */
3114 if (oldstate < CEPH_MDS_STATE_ACTIVE &&
3115 newstate >= CEPH_MDS_STATE_ACTIVE) {
3116 if (oldstate != CEPH_MDS_STATE_CREATING &&
3117 oldstate != CEPH_MDS_STATE_STARTING)
3118 pr_info("mds%d recovery completed\n", s->s_mds);
3119 kick_requests(mdsc, i);
3120 ceph_kick_flushing_caps(mdsc, s);
3121 wake_up_session_caps(s, 1);
3122 }
3123 }
3124
3125 for (i = 0; i < newmap->m_max_mds && i < mdsc->max_sessions; i++) {
3126 s = mdsc->sessions[i];
3127 if (!s)
3128 continue;
3129 if (!ceph_mdsmap_is_laggy(newmap, i))
3130 continue;
3131 if (s->s_state == CEPH_MDS_SESSION_OPEN ||
3132 s->s_state == CEPH_MDS_SESSION_HUNG ||
3133 s->s_state == CEPH_MDS_SESSION_CLOSING) {
3134 dout(" connecting to export targets of laggy mds%d\n",
3135 i);
3136 __open_export_target_sessions(mdsc, s);
3137 }
3138 }
3139 }
3140
3141
3142
3143 /*
3144 * leases
3145 */
3146
3147 /*
3148 * caller must hold session s_mutex, dentry->d_lock
3149 */
3150 void __ceph_mdsc_drop_dentry_lease(struct dentry *dentry)
3151 {
3152 struct ceph_dentry_info *di = ceph_dentry(dentry);
3153
3154 ceph_put_mds_session(di->lease_session);
3155 di->lease_session = NULL;
3156 }
3157
3158 static void handle_lease(struct ceph_mds_client *mdsc,
3159 struct ceph_mds_session *session,
3160 struct ceph_msg *msg)
3161 {
3162 struct super_block *sb = mdsc->fsc->sb;
3163 struct inode *inode;
3164 struct dentry *parent, *dentry;
3165 struct ceph_dentry_info *di;
3166 int mds = session->s_mds;
3167 struct ceph_mds_lease *h = msg->front.iov_base;
3168 u32 seq;
3169 struct ceph_vino vino;
3170 struct qstr dname;
3171 int release = 0;
3172
3173 dout("handle_lease from mds%d\n", mds);
3174
3175 /* decode */
3176 if (msg->front.iov_len < sizeof(*h) + sizeof(u32))
3177 goto bad;
3178 vino.ino = le64_to_cpu(h->ino);
3179 vino.snap = CEPH_NOSNAP;
3180 seq = le32_to_cpu(h->seq);
3181 dname.name = (void *)h + sizeof(*h) + sizeof(u32);
3182 dname.len = msg->front.iov_len - sizeof(*h) - sizeof(u32);
3183 if (dname.len != get_unaligned_le32(h+1))
3184 goto bad;
3185
3186 /* lookup inode */
3187 inode = ceph_find_inode(sb, vino);
3188 dout("handle_lease %s, ino %llx %p %.*s\n",
3189 ceph_lease_op_name(h->action), vino.ino, inode,
3190 dname.len, dname.name);
3191
3192 mutex_lock(&session->s_mutex);
3193 session->s_seq++;
3194
3195 if (inode == NULL) {
3196 dout("handle_lease no inode %llx\n", vino.ino);
3197 goto release;
3198 }
3199
3200 /* dentry */
3201 parent = d_find_alias(inode);
3202 if (!parent) {
3203 dout("no parent dentry on inode %p\n", inode);
3204 WARN_ON(1);
3205 goto release; /* hrm... */
3206 }
3207 dname.hash = full_name_hash(parent, dname.name, dname.len);
3208 dentry = d_lookup(parent, &dname);
3209 dput(parent);
3210 if (!dentry)
3211 goto release;
3212
3213 spin_lock(&dentry->d_lock);
3214 di = ceph_dentry(dentry);
3215 switch (h->action) {
3216 case CEPH_MDS_LEASE_REVOKE:
3217 if (di->lease_session == session) {
3218 if (ceph_seq_cmp(di->lease_seq, seq) > 0)
3219 h->seq = cpu_to_le32(di->lease_seq);
3220 __ceph_mdsc_drop_dentry_lease(dentry);
3221 }
3222 release = 1;
3223 break;
3224
3225 case CEPH_MDS_LEASE_RENEW:
3226 if (di->lease_session == session &&
3227 di->lease_gen == session->s_cap_gen &&
3228 di->lease_renew_from &&
3229 di->lease_renew_after == 0) {
3230 unsigned long duration =
3231 msecs_to_jiffies(le32_to_cpu(h->duration_ms));
3232
3233 di->lease_seq = seq;
3234 dentry->d_time = di->lease_renew_from + duration;
3235 di->lease_renew_after = di->lease_renew_from +
3236 (duration >> 1);
3237 di->lease_renew_from = 0;
3238 }
3239 break;
3240 }
3241 spin_unlock(&dentry->d_lock);
3242 dput(dentry);
3243
3244 if (!release)
3245 goto out;
3246
3247 release:
3248 /* let's just reuse the same message */
3249 h->action = CEPH_MDS_LEASE_REVOKE_ACK;
3250 ceph_msg_get(msg);
3251 ceph_con_send(&session->s_con, msg);
3252
3253 out:
3254 iput(inode);
3255 mutex_unlock(&session->s_mutex);
3256 return;
3257
3258 bad:
3259 pr_err("corrupt lease message\n");
3260 ceph_msg_dump(msg);
3261 }
3262
3263 void ceph_mdsc_lease_send_msg(struct ceph_mds_session *session,
3264 struct inode *inode,
3265 struct dentry *dentry, char action,
3266 u32 seq)
3267 {
3268 struct ceph_msg *msg;
3269 struct ceph_mds_lease *lease;
3270 int len = sizeof(*lease) + sizeof(u32);
3271 int dnamelen = 0;
3272
3273 dout("lease_send_msg inode %p dentry %p %s to mds%d\n",
3274 inode, dentry, ceph_lease_op_name(action), session->s_mds);
3275 dnamelen = dentry->d_name.len;
3276 len += dnamelen;
3277
3278 msg = ceph_msg_new(CEPH_MSG_CLIENT_LEASE, len, GFP_NOFS, false);
3279 if (!msg)
3280 return;
3281 lease = msg->front.iov_base;
3282 lease->action = action;
3283 lease->ino = cpu_to_le64(ceph_vino(inode).ino);
3284 lease->first = lease->last = cpu_to_le64(ceph_vino(inode).snap);
3285 lease->seq = cpu_to_le32(seq);
3286 put_unaligned_le32(dnamelen, lease + 1);
3287 memcpy((void *)(lease + 1) + 4, dentry->d_name.name, dnamelen);
3288
3289 /*
3290 * if this is a preemptive lease RELEASE, no need to
3291 * flush request stream, since the actual request will
3292 * soon follow.
3293 */
3294 msg->more_to_follow = (action == CEPH_MDS_LEASE_RELEASE);
3295
3296 ceph_con_send(&session->s_con, msg);
3297 }
3298
3299 /*
3300 * Preemptively release a lease we expect to invalidate anyway.
3301 * Pass @inode always, @dentry is optional.
3302 */
3303 void ceph_mdsc_lease_release(struct ceph_mds_client *mdsc, struct inode *inode,
3304 struct dentry *dentry)
3305 {
3306 struct ceph_dentry_info *di;
3307 struct ceph_mds_session *session;
3308 u32 seq;
3309
3310 BUG_ON(inode == NULL);
3311 BUG_ON(dentry == NULL);
3312
3313 /* is dentry lease valid? */
3314 spin_lock(&dentry->d_lock);
3315 di = ceph_dentry(dentry);
3316 if (!di || !di->lease_session ||
3317 di->lease_session->s_mds < 0 ||
3318 di->lease_gen != di->lease_session->s_cap_gen ||
3319 !time_before(jiffies, dentry->d_time)) {
3320 dout("lease_release inode %p dentry %p -- "
3321 "no lease\n",
3322 inode, dentry);
3323 spin_unlock(&dentry->d_lock);
3324 return;
3325 }
3326
3327 /* we do have a lease on this dentry; note mds and seq */
3328 session = ceph_get_mds_session(di->lease_session);
3329 seq = di->lease_seq;
3330 __ceph_mdsc_drop_dentry_lease(dentry);
3331 spin_unlock(&dentry->d_lock);
3332
3333 dout("lease_release inode %p dentry %p to mds%d\n",
3334 inode, dentry, session->s_mds);
3335 ceph_mdsc_lease_send_msg(session, inode, dentry,
3336 CEPH_MDS_LEASE_RELEASE, seq);
3337 ceph_put_mds_session(session);
3338 }
3339
3340 /*
3341 * drop all leases (and dentry refs) in preparation for umount
3342 */
3343 static void drop_leases(struct ceph_mds_client *mdsc)
3344 {
3345 int i;
3346
3347 dout("drop_leases\n");
3348 mutex_lock(&mdsc->mutex);
3349 for (i = 0; i < mdsc->max_sessions; i++) {
3350 struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i);
3351 if (!s)
3352 continue;
3353 mutex_unlock(&mdsc->mutex);
3354 mutex_lock(&s->s_mutex);
3355 mutex_unlock(&s->s_mutex);
3356 ceph_put_mds_session(s);
3357 mutex_lock(&mdsc->mutex);
3358 }
3359 mutex_unlock(&mdsc->mutex);
3360 }
3361
3362
3363
3364 /*
3365 * delayed work -- periodically trim expired leases, renew caps with mds
3366 */
3367 static void schedule_delayed(struct ceph_mds_client *mdsc)
3368 {
3369 int delay = 5;
3370 unsigned hz = round_jiffies_relative(HZ * delay);
3371 schedule_delayed_work(&mdsc->delayed_work, hz);
3372 }
3373
3374 static void delayed_work(struct work_struct *work)
3375 {
3376 int i;
3377 struct ceph_mds_client *mdsc =
3378 container_of(work, struct ceph_mds_client, delayed_work.work);
3379 int renew_interval;
3380 int renew_caps;
3381
3382 dout("mdsc delayed_work\n");
3383 ceph_check_delayed_caps(mdsc);
3384
3385 mutex_lock(&mdsc->mutex);
3386 renew_interval = mdsc->mdsmap->m_session_timeout >> 2;
3387 renew_caps = time_after_eq(jiffies, HZ*renew_interval +
3388 mdsc->last_renew_caps);
3389 if (renew_caps)
3390 mdsc->last_renew_caps = jiffies;
3391
3392 for (i = 0; i < mdsc->max_sessions; i++) {
3393 struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i);
3394 if (s == NULL)
3395 continue;
3396 if (s->s_state == CEPH_MDS_SESSION_CLOSING) {
3397 dout("resending session close request for mds%d\n",
3398 s->s_mds);
3399 request_close_session(mdsc, s);
3400 ceph_put_mds_session(s);
3401 continue;
3402 }
3403 if (s->s_ttl && time_after(jiffies, s->s_ttl)) {
3404 if (s->s_state == CEPH_MDS_SESSION_OPEN) {
3405 s->s_state = CEPH_MDS_SESSION_HUNG;
3406 pr_info("mds%d hung\n", s->s_mds);
3407 }
3408 }
3409 if (s->s_state < CEPH_MDS_SESSION_OPEN) {
3410 /* this mds is failed or recovering, just wait */
3411 ceph_put_mds_session(s);
3412 continue;
3413 }
3414 mutex_unlock(&mdsc->mutex);
3415
3416 mutex_lock(&s->s_mutex);
3417 if (renew_caps)
3418 send_renew_caps(mdsc, s);
3419 else
3420 ceph_con_keepalive(&s->s_con);
3421 if (s->s_state == CEPH_MDS_SESSION_OPEN ||
3422 s->s_state == CEPH_MDS_SESSION_HUNG)
3423 ceph_send_cap_releases(mdsc, s);
3424 mutex_unlock(&s->s_mutex);
3425 ceph_put_mds_session(s);
3426
3427 mutex_lock(&mdsc->mutex);
3428 }
3429 mutex_unlock(&mdsc->mutex);
3430
3431 schedule_delayed(mdsc);
3432 }
3433
3434 int ceph_mdsc_init(struct ceph_fs_client *fsc)
3435
3436 {
3437 struct ceph_mds_client *mdsc;
3438
3439 mdsc = kzalloc(sizeof(struct ceph_mds_client), GFP_NOFS);
3440 if (!mdsc)
3441 return -ENOMEM;
3442 mdsc->fsc = fsc;
3443 fsc->mdsc = mdsc;
3444 mutex_init(&mdsc->mutex);
3445 mdsc->mdsmap = kzalloc(sizeof(*mdsc->mdsmap), GFP_NOFS);
3446 if (mdsc->mdsmap == NULL) {
3447 kfree(mdsc);
3448 return -ENOMEM;
3449 }
3450
3451 init_completion(&mdsc->safe_umount_waiters);
3452 init_waitqueue_head(&mdsc->session_close_wq);
3453 INIT_LIST_HEAD(&mdsc->waiting_for_map);
3454 mdsc->sessions = NULL;
3455 atomic_set(&mdsc->num_sessions, 0);
3456 mdsc->max_sessions = 0;
3457 mdsc->stopping = 0;
3458 mdsc->last_snap_seq = 0;
3459 init_rwsem(&mdsc->snap_rwsem);
3460 mdsc->snap_realms = RB_ROOT;
3461 INIT_LIST_HEAD(&mdsc->snap_empty);
3462 spin_lock_init(&mdsc->snap_empty_lock);
3463 mdsc->last_tid = 0;
3464 mdsc->oldest_tid = 0;
3465 mdsc->request_tree = RB_ROOT;
3466 INIT_DELAYED_WORK(&mdsc->delayed_work, delayed_work);
3467 mdsc->last_renew_caps = jiffies;
3468 INIT_LIST_HEAD(&mdsc->cap_delay_list);
3469 spin_lock_init(&mdsc->cap_delay_lock);
3470 INIT_LIST_HEAD(&mdsc->snap_flush_list);
3471 spin_lock_init(&mdsc->snap_flush_lock);
3472 mdsc->last_cap_flush_tid = 1;
3473 mdsc->cap_flush_tree = RB_ROOT;
3474 INIT_LIST_HEAD(&mdsc->cap_dirty);
3475 INIT_LIST_HEAD(&mdsc->cap_dirty_migrating);
3476 mdsc->num_cap_flushing = 0;
3477 spin_lock_init(&mdsc->cap_dirty_lock);
3478 init_waitqueue_head(&mdsc->cap_flushing_wq);
3479 spin_lock_init(&mdsc->dentry_lru_lock);
3480 INIT_LIST_HEAD(&mdsc->dentry_lru);
3481
3482 ceph_caps_init(mdsc);
3483 ceph_adjust_min_caps(mdsc, fsc->min_caps);
3484
3485 init_rwsem(&mdsc->pool_perm_rwsem);
3486 mdsc->pool_perm_tree = RB_ROOT;
3487
3488 return 0;
3489 }
3490
3491 /*
3492 * Wait for safe replies on open mds requests. If we time out, drop
3493 * all requests from the tree to avoid dangling dentry refs.
3494 */
3495 static void wait_requests(struct ceph_mds_client *mdsc)
3496 {
3497 struct ceph_options *opts = mdsc->fsc->client->options;
3498 struct ceph_mds_request *req;
3499
3500 mutex_lock(&mdsc->mutex);
3501 if (__get_oldest_req(mdsc)) {
3502 mutex_unlock(&mdsc->mutex);
3503
3504 dout("wait_requests waiting for requests\n");
3505 wait_for_completion_timeout(&mdsc->safe_umount_waiters,
3506 ceph_timeout_jiffies(opts->mount_timeout));
3507
3508 /* tear down remaining requests */
3509 mutex_lock(&mdsc->mutex);
3510 while ((req = __get_oldest_req(mdsc))) {
3511 dout("wait_requests timed out on tid %llu\n",
3512 req->r_tid);
3513 __unregister_request(mdsc, req);
3514 }
3515 }
3516 mutex_unlock(&mdsc->mutex);
3517 dout("wait_requests done\n");
3518 }
3519
3520 /*
3521 * called before mount is ro, and before dentries are torn down.
3522 * (hmm, does this still race with new lookups?)
3523 */
3524 void ceph_mdsc_pre_umount(struct ceph_mds_client *mdsc)
3525 {
3526 dout("pre_umount\n");
3527 mdsc->stopping = 1;
3528
3529 drop_leases(mdsc);
3530 ceph_flush_dirty_caps(mdsc);
3531 wait_requests(mdsc);
3532
3533 /*
3534 * wait for reply handlers to drop their request refs and
3535 * their inode/dcache refs
3536 */
3537 ceph_msgr_flush();
3538 }
3539
3540 /*
3541 * wait for all write mds requests to flush.
3542 */
3543 static void wait_unsafe_requests(struct ceph_mds_client *mdsc, u64 want_tid)
3544 {
3545 struct ceph_mds_request *req = NULL, *nextreq;
3546 struct rb_node *n;
3547
3548 mutex_lock(&mdsc->mutex);
3549 dout("wait_unsafe_requests want %lld\n", want_tid);
3550 restart:
3551 req = __get_oldest_req(mdsc);
3552 while (req && req->r_tid <= want_tid) {
3553 /* find next request */
3554 n = rb_next(&req->r_node);
3555 if (n)
3556 nextreq = rb_entry(n, struct ceph_mds_request, r_node);
3557 else
3558 nextreq = NULL;
3559 if (req->r_op != CEPH_MDS_OP_SETFILELOCK &&
3560 (req->r_op & CEPH_MDS_OP_WRITE)) {
3561 /* write op */
3562 ceph_mdsc_get_request(req);
3563 if (nextreq)
3564 ceph_mdsc_get_request(nextreq);
3565 mutex_unlock(&mdsc->mutex);
3566 dout("wait_unsafe_requests wait on %llu (want %llu)\n",
3567 req->r_tid, want_tid);
3568 wait_for_completion(&req->r_safe_completion);
3569 mutex_lock(&mdsc->mutex);
3570 ceph_mdsc_put_request(req);
3571 if (!nextreq)
3572 break; /* next dne before, so we're done! */
3573 if (RB_EMPTY_NODE(&nextreq->r_node)) {
3574 /* next request was removed from tree */
3575 ceph_mdsc_put_request(nextreq);
3576 goto restart;
3577 }
3578 ceph_mdsc_put_request(nextreq); /* won't go away */
3579 }
3580 req = nextreq;
3581 }
3582 mutex_unlock(&mdsc->mutex);
3583 dout("wait_unsafe_requests done\n");
3584 }
3585
3586 void ceph_mdsc_sync(struct ceph_mds_client *mdsc)
3587 {
3588 u64 want_tid, want_flush, want_snap;
3589
3590 if (ACCESS_ONCE(mdsc->fsc->mount_state) == CEPH_MOUNT_SHUTDOWN)
3591 return;
3592
3593 dout("sync\n");
3594 mutex_lock(&mdsc->mutex);
3595 want_tid = mdsc->last_tid;
3596 mutex_unlock(&mdsc->mutex);
3597
3598 ceph_flush_dirty_caps(mdsc);
3599 spin_lock(&mdsc->cap_dirty_lock);
3600 want_flush = mdsc->last_cap_flush_tid;
3601 spin_unlock(&mdsc->cap_dirty_lock);
3602
3603 down_read(&mdsc->snap_rwsem);
3604 want_snap = mdsc->last_snap_seq;
3605 up_read(&mdsc->snap_rwsem);
3606
3607 dout("sync want tid %lld flush_seq %lld snap_seq %lld\n",
3608 want_tid, want_flush, want_snap);
3609
3610 wait_unsafe_requests(mdsc, want_tid);
3611 wait_caps_flush(mdsc, want_flush, want_snap);
3612 }
3613
3614 /*
3615 * true if all sessions are closed, or we force unmount
3616 */
3617 static bool done_closing_sessions(struct ceph_mds_client *mdsc)
3618 {
3619 if (ACCESS_ONCE(mdsc->fsc->mount_state) == CEPH_MOUNT_SHUTDOWN)
3620 return true;
3621 return atomic_read(&mdsc->num_sessions) == 0;
3622 }
3623
3624 /*
3625 * called after sb is ro.
3626 */
3627 void ceph_mdsc_close_sessions(struct ceph_mds_client *mdsc)
3628 {
3629 struct ceph_options *opts = mdsc->fsc->client->options;
3630 struct ceph_mds_session *session;
3631 int i;
3632
3633 dout("close_sessions\n");
3634
3635 /* close sessions */
3636 mutex_lock(&mdsc->mutex);
3637 for (i = 0; i < mdsc->max_sessions; i++) {
3638 session = __ceph_lookup_mds_session(mdsc, i);
3639 if (!session)
3640 continue;
3641 mutex_unlock(&mdsc->mutex);
3642 mutex_lock(&session->s_mutex);
3643 __close_session(mdsc, session);
3644 mutex_unlock(&session->s_mutex);
3645 ceph_put_mds_session(session);
3646 mutex_lock(&mdsc->mutex);
3647 }
3648 mutex_unlock(&mdsc->mutex);
3649
3650 dout("waiting for sessions to close\n");
3651 wait_event_timeout(mdsc->session_close_wq, done_closing_sessions(mdsc),
3652 ceph_timeout_jiffies(opts->mount_timeout));
3653
3654 /* tear down remaining sessions */
3655 mutex_lock(&mdsc->mutex);
3656 for (i = 0; i < mdsc->max_sessions; i++) {
3657 if (mdsc->sessions[i]) {
3658 session = get_session(mdsc->sessions[i]);
3659 __unregister_session(mdsc, session);
3660 mutex_unlock(&mdsc->mutex);
3661 mutex_lock(&session->s_mutex);
3662 remove_session_caps(session);
3663 mutex_unlock(&session->s_mutex);
3664 ceph_put_mds_session(session);
3665 mutex_lock(&mdsc->mutex);
3666 }
3667 }
3668 WARN_ON(!list_empty(&mdsc->cap_delay_list));
3669 mutex_unlock(&mdsc->mutex);
3670
3671 ceph_cleanup_empty_realms(mdsc);
3672
3673 cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */
3674
3675 dout("stopped\n");
3676 }
3677
3678 void ceph_mdsc_force_umount(struct ceph_mds_client *mdsc)
3679 {
3680 struct ceph_mds_session *session;
3681 int mds;
3682
3683 dout("force umount\n");
3684
3685 mutex_lock(&mdsc->mutex);
3686 for (mds = 0; mds < mdsc->max_sessions; mds++) {
3687 session = __ceph_lookup_mds_session(mdsc, mds);
3688 if (!session)
3689 continue;
3690 mutex_unlock(&mdsc->mutex);
3691 mutex_lock(&session->s_mutex);
3692 __close_session(mdsc, session);
3693 if (session->s_state == CEPH_MDS_SESSION_CLOSING) {
3694 cleanup_session_requests(mdsc, session);
3695 remove_session_caps(session);
3696 }
3697 mutex_unlock(&session->s_mutex);
3698 ceph_put_mds_session(session);
3699 mutex_lock(&mdsc->mutex);
3700 kick_requests(mdsc, mds);
3701 }
3702 __wake_requests(mdsc, &mdsc->waiting_for_map);
3703 mutex_unlock(&mdsc->mutex);
3704 }
3705
3706 static void ceph_mdsc_stop(struct ceph_mds_client *mdsc)
3707 {
3708 dout("stop\n");
3709 cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */
3710 if (mdsc->mdsmap)
3711 ceph_mdsmap_destroy(mdsc->mdsmap);
3712 kfree(mdsc->sessions);
3713 ceph_caps_finalize(mdsc);
3714 ceph_pool_perm_destroy(mdsc);
3715 }
3716
3717 void ceph_mdsc_destroy(struct ceph_fs_client *fsc)
3718 {
3719 struct ceph_mds_client *mdsc = fsc->mdsc;
3720
3721 dout("mdsc_destroy %p\n", mdsc);
3722 ceph_mdsc_stop(mdsc);
3723
3724 /* flush out any connection work with references to us */
3725 ceph_msgr_flush();
3726
3727 fsc->mdsc = NULL;
3728 kfree(mdsc);
3729 dout("mdsc_destroy %p done\n", mdsc);
3730 }
3731
3732
3733 /*
3734 * handle mds map update.
3735 */
3736 void ceph_mdsc_handle_map(struct ceph_mds_client *mdsc, struct ceph_msg *msg)
3737 {
3738 u32 epoch;
3739 u32 maplen;
3740 void *p = msg->front.iov_base;
3741 void *end = p + msg->front.iov_len;
3742 struct ceph_mdsmap *newmap, *oldmap;
3743 struct ceph_fsid fsid;
3744 int err = -EINVAL;
3745
3746 ceph_decode_need(&p, end, sizeof(fsid)+2*sizeof(u32), bad);
3747 ceph_decode_copy(&p, &fsid, sizeof(fsid));
3748 if (ceph_check_fsid(mdsc->fsc->client, &fsid) < 0)
3749 return;
3750 epoch = ceph_decode_32(&p);
3751 maplen = ceph_decode_32(&p);
3752 dout("handle_map epoch %u len %d\n", epoch, (int)maplen);
3753
3754 /* do we need it? */
3755 mutex_lock(&mdsc->mutex);
3756 if (mdsc->mdsmap && epoch <= mdsc->mdsmap->m_epoch) {
3757 dout("handle_map epoch %u <= our %u\n",
3758 epoch, mdsc->mdsmap->m_epoch);
3759 mutex_unlock(&mdsc->mutex);
3760 return;
3761 }
3762
3763 newmap = ceph_mdsmap_decode(&p, end);
3764 if (IS_ERR(newmap)) {
3765 err = PTR_ERR(newmap);
3766 goto bad_unlock;
3767 }
3768
3769 /* swap into place */
3770 if (mdsc->mdsmap) {
3771 oldmap = mdsc->mdsmap;
3772 mdsc->mdsmap = newmap;
3773 check_new_map(mdsc, newmap, oldmap);
3774 ceph_mdsmap_destroy(oldmap);
3775 } else {
3776 mdsc->mdsmap = newmap; /* first mds map */
3777 }
3778 mdsc->fsc->sb->s_maxbytes = mdsc->mdsmap->m_max_file_size;
3779
3780 __wake_requests(mdsc, &mdsc->waiting_for_map);
3781 ceph_monc_got_map(&mdsc->fsc->client->monc, CEPH_SUB_MDSMAP,
3782 mdsc->mdsmap->m_epoch);
3783
3784 mutex_unlock(&mdsc->mutex);
3785 schedule_delayed(mdsc);
3786 return;
3787
3788 bad_unlock:
3789 mutex_unlock(&mdsc->mutex);
3790 bad:
3791 pr_err("error decoding mdsmap %d\n", err);
3792 return;
3793 }
3794
3795 static struct ceph_connection *con_get(struct ceph_connection *con)
3796 {
3797 struct ceph_mds_session *s = con->private;
3798
3799 if (get_session(s)) {
3800 dout("mdsc con_get %p ok (%d)\n", s, atomic_read(&s->s_ref));
3801 return con;
3802 }
3803 dout("mdsc con_get %p FAIL\n", s);
3804 return NULL;
3805 }
3806
3807 static void con_put(struct ceph_connection *con)
3808 {
3809 struct ceph_mds_session *s = con->private;
3810
3811 dout("mdsc con_put %p (%d)\n", s, atomic_read(&s->s_ref) - 1);
3812 ceph_put_mds_session(s);
3813 }
3814
3815 /*
3816 * if the client is unresponsive for long enough, the mds will kill
3817 * the session entirely.
3818 */
3819 static void peer_reset(struct ceph_connection *con)
3820 {
3821 struct ceph_mds_session *s = con->private;
3822 struct ceph_mds_client *mdsc = s->s_mdsc;
3823
3824 pr_warn("mds%d closed our session\n", s->s_mds);
3825 send_mds_reconnect(mdsc, s);
3826 }
3827
3828 static void dispatch(struct ceph_connection *con, struct ceph_msg *msg)
3829 {
3830 struct ceph_mds_session *s = con->private;
3831 struct ceph_mds_client *mdsc = s->s_mdsc;
3832 int type = le16_to_cpu(msg->hdr.type);
3833
3834 mutex_lock(&mdsc->mutex);
3835 if (__verify_registered_session(mdsc, s) < 0) {
3836 mutex_unlock(&mdsc->mutex);
3837 goto out;
3838 }
3839 mutex_unlock(&mdsc->mutex);
3840
3841 switch (type) {
3842 case CEPH_MSG_MDS_MAP:
3843 ceph_mdsc_handle_map(mdsc, msg);
3844 break;
3845 case CEPH_MSG_CLIENT_SESSION:
3846 handle_session(s, msg);
3847 break;
3848 case CEPH_MSG_CLIENT_REPLY:
3849 handle_reply(s, msg);
3850 break;
3851 case CEPH_MSG_CLIENT_REQUEST_FORWARD:
3852 handle_forward(mdsc, s, msg);
3853 break;
3854 case CEPH_MSG_CLIENT_CAPS:
3855 ceph_handle_caps(s, msg);
3856 break;
3857 case CEPH_MSG_CLIENT_SNAP:
3858 ceph_handle_snap(mdsc, s, msg);
3859 break;
3860 case CEPH_MSG_CLIENT_LEASE:
3861 handle_lease(mdsc, s, msg);
3862 break;
3863
3864 default:
3865 pr_err("received unknown message type %d %s\n", type,
3866 ceph_msg_type_name(type));
3867 }
3868 out:
3869 ceph_msg_put(msg);
3870 }
3871
3872 /*
3873 * authentication
3874 */
3875
3876 /*
3877 * Note: returned pointer is the address of a structure that's
3878 * managed separately. Caller must *not* attempt to free it.
3879 */
3880 static struct ceph_auth_handshake *get_authorizer(struct ceph_connection *con,
3881 int *proto, int force_new)
3882 {
3883 struct ceph_mds_session *s = con->private;
3884 struct ceph_mds_client *mdsc = s->s_mdsc;
3885 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
3886 struct ceph_auth_handshake *auth = &s->s_auth;
3887
3888 if (force_new && auth->authorizer) {
3889 ceph_auth_destroy_authorizer(auth->authorizer);
3890 auth->authorizer = NULL;
3891 }
3892 if (!auth->authorizer) {
3893 int ret = ceph_auth_create_authorizer(ac, CEPH_ENTITY_TYPE_MDS,
3894 auth);
3895 if (ret)
3896 return ERR_PTR(ret);
3897 } else {
3898 int ret = ceph_auth_update_authorizer(ac, CEPH_ENTITY_TYPE_MDS,
3899 auth);
3900 if (ret)
3901 return ERR_PTR(ret);
3902 }
3903 *proto = ac->protocol;
3904
3905 return auth;
3906 }
3907
3908
3909 static int verify_authorizer_reply(struct ceph_connection *con, int len)
3910 {
3911 struct ceph_mds_session *s = con->private;
3912 struct ceph_mds_client *mdsc = s->s_mdsc;
3913 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
3914
3915 return ceph_auth_verify_authorizer_reply(ac, s->s_auth.authorizer, len);
3916 }
3917
3918 static int invalidate_authorizer(struct ceph_connection *con)
3919 {
3920 struct ceph_mds_session *s = con->private;
3921 struct ceph_mds_client *mdsc = s->s_mdsc;
3922 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
3923
3924 ceph_auth_invalidate_authorizer(ac, CEPH_ENTITY_TYPE_MDS);
3925
3926 return ceph_monc_validate_auth(&mdsc->fsc->client->monc);
3927 }
3928
3929 static struct ceph_msg *mds_alloc_msg(struct ceph_connection *con,
3930 struct ceph_msg_header *hdr, int *skip)
3931 {
3932 struct ceph_msg *msg;
3933 int type = (int) le16_to_cpu(hdr->type);
3934 int front_len = (int) le32_to_cpu(hdr->front_len);
3935
3936 if (con->in_msg)
3937 return con->in_msg;
3938
3939 *skip = 0;
3940 msg = ceph_msg_new(type, front_len, GFP_NOFS, false);
3941 if (!msg) {
3942 pr_err("unable to allocate msg type %d len %d\n",
3943 type, front_len);
3944 return NULL;
3945 }
3946
3947 return msg;
3948 }
3949
3950 static int mds_sign_message(struct ceph_msg *msg)
3951 {
3952 struct ceph_mds_session *s = msg->con->private;
3953 struct ceph_auth_handshake *auth = &s->s_auth;
3954
3955 return ceph_auth_sign_message(auth, msg);
3956 }
3957
3958 static int mds_check_message_signature(struct ceph_msg *msg)
3959 {
3960 struct ceph_mds_session *s = msg->con->private;
3961 struct ceph_auth_handshake *auth = &s->s_auth;
3962
3963 return ceph_auth_check_message_signature(auth, msg);
3964 }
3965
3966 static const struct ceph_connection_operations mds_con_ops = {
3967 .get = con_get,
3968 .put = con_put,
3969 .dispatch = dispatch,
3970 .get_authorizer = get_authorizer,
3971 .verify_authorizer_reply = verify_authorizer_reply,
3972 .invalidate_authorizer = invalidate_authorizer,
3973 .peer_reset = peer_reset,
3974 .alloc_msg = mds_alloc_msg,
3975 .sign_message = mds_sign_message,
3976 .check_message_signature = mds_check_message_signature,
3977 };
3978
3979 /* eof */