]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/ceph/mds_client.c
Merge remote-tracking branch 'linus/master' into testing
[mirror_ubuntu-artful-kernel.git] / fs / ceph / mds_client.c
1 #include <linux/ceph/ceph_debug.h>
2
3 #include <linux/fs.h>
4 #include <linux/wait.h>
5 #include <linux/slab.h>
6 #include <linux/sched.h>
7 #include <linux/debugfs.h>
8 #include <linux/seq_file.h>
9
10 #include "super.h"
11 #include "mds_client.h"
12
13 #include <linux/ceph/ceph_features.h>
14 #include <linux/ceph/messenger.h>
15 #include <linux/ceph/decode.h>
16 #include <linux/ceph/pagelist.h>
17 #include <linux/ceph/auth.h>
18 #include <linux/ceph/debugfs.h>
19
20 /*
21 * A cluster of MDS (metadata server) daemons is responsible for
22 * managing the file system namespace (the directory hierarchy and
23 * inodes) and for coordinating shared access to storage. Metadata is
24 * partitioning hierarchically across a number of servers, and that
25 * partition varies over time as the cluster adjusts the distribution
26 * in order to balance load.
27 *
28 * The MDS client is primarily responsible to managing synchronous
29 * metadata requests for operations like open, unlink, and so forth.
30 * If there is a MDS failure, we find out about it when we (possibly
31 * request and) receive a new MDS map, and can resubmit affected
32 * requests.
33 *
34 * For the most part, though, we take advantage of a lossless
35 * communications channel to the MDS, and do not need to worry about
36 * timing out or resubmitting requests.
37 *
38 * We maintain a stateful "session" with each MDS we interact with.
39 * Within each session, we sent periodic heartbeat messages to ensure
40 * any capabilities or leases we have been issues remain valid. If
41 * the session times out and goes stale, our leases and capabilities
42 * are no longer valid.
43 */
44
45 struct ceph_reconnect_state {
46 struct ceph_pagelist *pagelist;
47 bool flock;
48 };
49
50 static void __wake_requests(struct ceph_mds_client *mdsc,
51 struct list_head *head);
52
53 static const struct ceph_connection_operations mds_con_ops;
54
55
56 /*
57 * mds reply parsing
58 */
59
60 /*
61 * parse individual inode info
62 */
63 static int parse_reply_info_in(void **p, void *end,
64 struct ceph_mds_reply_info_in *info,
65 int features)
66 {
67 int err = -EIO;
68
69 info->in = *p;
70 *p += sizeof(struct ceph_mds_reply_inode) +
71 sizeof(*info->in->fragtree.splits) *
72 le32_to_cpu(info->in->fragtree.nsplits);
73
74 ceph_decode_32_safe(p, end, info->symlink_len, bad);
75 ceph_decode_need(p, end, info->symlink_len, bad);
76 info->symlink = *p;
77 *p += info->symlink_len;
78
79 if (features & CEPH_FEATURE_DIRLAYOUTHASH)
80 ceph_decode_copy_safe(p, end, &info->dir_layout,
81 sizeof(info->dir_layout), bad);
82 else
83 memset(&info->dir_layout, 0, sizeof(info->dir_layout));
84
85 ceph_decode_32_safe(p, end, info->xattr_len, bad);
86 ceph_decode_need(p, end, info->xattr_len, bad);
87 info->xattr_data = *p;
88 *p += info->xattr_len;
89 return 0;
90 bad:
91 return err;
92 }
93
94 /*
95 * parse a normal reply, which may contain a (dir+)dentry and/or a
96 * target inode.
97 */
98 static int parse_reply_info_trace(void **p, void *end,
99 struct ceph_mds_reply_info_parsed *info,
100 int features)
101 {
102 int err;
103
104 if (info->head->is_dentry) {
105 err = parse_reply_info_in(p, end, &info->diri, features);
106 if (err < 0)
107 goto out_bad;
108
109 if (unlikely(*p + sizeof(*info->dirfrag) > end))
110 goto bad;
111 info->dirfrag = *p;
112 *p += sizeof(*info->dirfrag) +
113 sizeof(u32)*le32_to_cpu(info->dirfrag->ndist);
114 if (unlikely(*p > end))
115 goto bad;
116
117 ceph_decode_32_safe(p, end, info->dname_len, bad);
118 ceph_decode_need(p, end, info->dname_len, bad);
119 info->dname = *p;
120 *p += info->dname_len;
121 info->dlease = *p;
122 *p += sizeof(*info->dlease);
123 }
124
125 if (info->head->is_target) {
126 err = parse_reply_info_in(p, end, &info->targeti, features);
127 if (err < 0)
128 goto out_bad;
129 }
130
131 if (unlikely(*p != end))
132 goto bad;
133 return 0;
134
135 bad:
136 err = -EIO;
137 out_bad:
138 pr_err("problem parsing mds trace %d\n", err);
139 return err;
140 }
141
142 /*
143 * parse readdir results
144 */
145 static int parse_reply_info_dir(void **p, void *end,
146 struct ceph_mds_reply_info_parsed *info,
147 int features)
148 {
149 u32 num, i = 0;
150 int err;
151
152 info->dir_dir = *p;
153 if (*p + sizeof(*info->dir_dir) > end)
154 goto bad;
155 *p += sizeof(*info->dir_dir) +
156 sizeof(u32)*le32_to_cpu(info->dir_dir->ndist);
157 if (*p > end)
158 goto bad;
159
160 ceph_decode_need(p, end, sizeof(num) + 2, bad);
161 num = ceph_decode_32(p);
162 info->dir_end = ceph_decode_8(p);
163 info->dir_complete = ceph_decode_8(p);
164 if (num == 0)
165 goto done;
166
167 /* alloc large array */
168 info->dir_nr = num;
169 info->dir_in = kcalloc(num, sizeof(*info->dir_in) +
170 sizeof(*info->dir_dname) +
171 sizeof(*info->dir_dname_len) +
172 sizeof(*info->dir_dlease),
173 GFP_NOFS);
174 if (info->dir_in == NULL) {
175 err = -ENOMEM;
176 goto out_bad;
177 }
178 info->dir_dname = (void *)(info->dir_in + num);
179 info->dir_dname_len = (void *)(info->dir_dname + num);
180 info->dir_dlease = (void *)(info->dir_dname_len + num);
181
182 while (num) {
183 /* dentry */
184 ceph_decode_need(p, end, sizeof(u32)*2, bad);
185 info->dir_dname_len[i] = ceph_decode_32(p);
186 ceph_decode_need(p, end, info->dir_dname_len[i], bad);
187 info->dir_dname[i] = *p;
188 *p += info->dir_dname_len[i];
189 dout("parsed dir dname '%.*s'\n", info->dir_dname_len[i],
190 info->dir_dname[i]);
191 info->dir_dlease[i] = *p;
192 *p += sizeof(struct ceph_mds_reply_lease);
193
194 /* inode */
195 err = parse_reply_info_in(p, end, &info->dir_in[i], features);
196 if (err < 0)
197 goto out_bad;
198 i++;
199 num--;
200 }
201
202 done:
203 if (*p != end)
204 goto bad;
205 return 0;
206
207 bad:
208 err = -EIO;
209 out_bad:
210 pr_err("problem parsing dir contents %d\n", err);
211 return err;
212 }
213
214 /*
215 * parse fcntl F_GETLK results
216 */
217 static int parse_reply_info_filelock(void **p, void *end,
218 struct ceph_mds_reply_info_parsed *info,
219 int features)
220 {
221 if (*p + sizeof(*info->filelock_reply) > end)
222 goto bad;
223
224 info->filelock_reply = *p;
225 *p += sizeof(*info->filelock_reply);
226
227 if (unlikely(*p != end))
228 goto bad;
229 return 0;
230
231 bad:
232 return -EIO;
233 }
234
235 /*
236 * parse create results
237 */
238 static int parse_reply_info_create(void **p, void *end,
239 struct ceph_mds_reply_info_parsed *info,
240 int features)
241 {
242 if (features & CEPH_FEATURE_REPLY_CREATE_INODE) {
243 if (*p == end) {
244 info->has_create_ino = false;
245 } else {
246 info->has_create_ino = true;
247 info->ino = ceph_decode_64(p);
248 }
249 }
250
251 if (unlikely(*p != end))
252 goto bad;
253 return 0;
254
255 bad:
256 return -EIO;
257 }
258
259 /*
260 * parse extra results
261 */
262 static int parse_reply_info_extra(void **p, void *end,
263 struct ceph_mds_reply_info_parsed *info,
264 int features)
265 {
266 if (info->head->op == CEPH_MDS_OP_GETFILELOCK)
267 return parse_reply_info_filelock(p, end, info, features);
268 else if (info->head->op == CEPH_MDS_OP_READDIR ||
269 info->head->op == CEPH_MDS_OP_LSSNAP)
270 return parse_reply_info_dir(p, end, info, features);
271 else if (info->head->op == CEPH_MDS_OP_CREATE)
272 return parse_reply_info_create(p, end, info, features);
273 else
274 return -EIO;
275 }
276
277 /*
278 * parse entire mds reply
279 */
280 static int parse_reply_info(struct ceph_msg *msg,
281 struct ceph_mds_reply_info_parsed *info,
282 int features)
283 {
284 void *p, *end;
285 u32 len;
286 int err;
287
288 info->head = msg->front.iov_base;
289 p = msg->front.iov_base + sizeof(struct ceph_mds_reply_head);
290 end = p + msg->front.iov_len - sizeof(struct ceph_mds_reply_head);
291
292 /* trace */
293 ceph_decode_32_safe(&p, end, len, bad);
294 if (len > 0) {
295 ceph_decode_need(&p, end, len, bad);
296 err = parse_reply_info_trace(&p, p+len, info, features);
297 if (err < 0)
298 goto out_bad;
299 }
300
301 /* extra */
302 ceph_decode_32_safe(&p, end, len, bad);
303 if (len > 0) {
304 ceph_decode_need(&p, end, len, bad);
305 err = parse_reply_info_extra(&p, p+len, info, features);
306 if (err < 0)
307 goto out_bad;
308 }
309
310 /* snap blob */
311 ceph_decode_32_safe(&p, end, len, bad);
312 info->snapblob_len = len;
313 info->snapblob = p;
314 p += len;
315
316 if (p != end)
317 goto bad;
318 return 0;
319
320 bad:
321 err = -EIO;
322 out_bad:
323 pr_err("mds parse_reply err %d\n", err);
324 return err;
325 }
326
327 static void destroy_reply_info(struct ceph_mds_reply_info_parsed *info)
328 {
329 kfree(info->dir_in);
330 }
331
332
333 /*
334 * sessions
335 */
336 static const char *session_state_name(int s)
337 {
338 switch (s) {
339 case CEPH_MDS_SESSION_NEW: return "new";
340 case CEPH_MDS_SESSION_OPENING: return "opening";
341 case CEPH_MDS_SESSION_OPEN: return "open";
342 case CEPH_MDS_SESSION_HUNG: return "hung";
343 case CEPH_MDS_SESSION_CLOSING: return "closing";
344 case CEPH_MDS_SESSION_RESTARTING: return "restarting";
345 case CEPH_MDS_SESSION_RECONNECTING: return "reconnecting";
346 default: return "???";
347 }
348 }
349
350 static struct ceph_mds_session *get_session(struct ceph_mds_session *s)
351 {
352 if (atomic_inc_not_zero(&s->s_ref)) {
353 dout("mdsc get_session %p %d -> %d\n", s,
354 atomic_read(&s->s_ref)-1, atomic_read(&s->s_ref));
355 return s;
356 } else {
357 dout("mdsc get_session %p 0 -- FAIL", s);
358 return NULL;
359 }
360 }
361
362 void ceph_put_mds_session(struct ceph_mds_session *s)
363 {
364 dout("mdsc put_session %p %d -> %d\n", s,
365 atomic_read(&s->s_ref), atomic_read(&s->s_ref)-1);
366 if (atomic_dec_and_test(&s->s_ref)) {
367 if (s->s_auth.authorizer)
368 ceph_auth_destroy_authorizer(
369 s->s_mdsc->fsc->client->monc.auth,
370 s->s_auth.authorizer);
371 kfree(s);
372 }
373 }
374
375 /*
376 * called under mdsc->mutex
377 */
378 struct ceph_mds_session *__ceph_lookup_mds_session(struct ceph_mds_client *mdsc,
379 int mds)
380 {
381 struct ceph_mds_session *session;
382
383 if (mds >= mdsc->max_sessions || mdsc->sessions[mds] == NULL)
384 return NULL;
385 session = mdsc->sessions[mds];
386 dout("lookup_mds_session %p %d\n", session,
387 atomic_read(&session->s_ref));
388 get_session(session);
389 return session;
390 }
391
392 static bool __have_session(struct ceph_mds_client *mdsc, int mds)
393 {
394 if (mds >= mdsc->max_sessions)
395 return false;
396 return mdsc->sessions[mds];
397 }
398
399 static int __verify_registered_session(struct ceph_mds_client *mdsc,
400 struct ceph_mds_session *s)
401 {
402 if (s->s_mds >= mdsc->max_sessions ||
403 mdsc->sessions[s->s_mds] != s)
404 return -ENOENT;
405 return 0;
406 }
407
408 /*
409 * create+register a new session for given mds.
410 * called under mdsc->mutex.
411 */
412 static struct ceph_mds_session *register_session(struct ceph_mds_client *mdsc,
413 int mds)
414 {
415 struct ceph_mds_session *s;
416
417 if (mds >= mdsc->mdsmap->m_max_mds)
418 return ERR_PTR(-EINVAL);
419
420 s = kzalloc(sizeof(*s), GFP_NOFS);
421 if (!s)
422 return ERR_PTR(-ENOMEM);
423 s->s_mdsc = mdsc;
424 s->s_mds = mds;
425 s->s_state = CEPH_MDS_SESSION_NEW;
426 s->s_ttl = 0;
427 s->s_seq = 0;
428 mutex_init(&s->s_mutex);
429
430 ceph_con_init(&s->s_con, s, &mds_con_ops, &mdsc->fsc->client->msgr);
431
432 spin_lock_init(&s->s_gen_ttl_lock);
433 s->s_cap_gen = 0;
434 s->s_cap_ttl = jiffies - 1;
435
436 spin_lock_init(&s->s_cap_lock);
437 s->s_renew_requested = 0;
438 s->s_renew_seq = 0;
439 INIT_LIST_HEAD(&s->s_caps);
440 s->s_nr_caps = 0;
441 s->s_trim_caps = 0;
442 atomic_set(&s->s_ref, 1);
443 INIT_LIST_HEAD(&s->s_waiting);
444 INIT_LIST_HEAD(&s->s_unsafe);
445 s->s_num_cap_releases = 0;
446 s->s_cap_iterator = NULL;
447 INIT_LIST_HEAD(&s->s_cap_releases);
448 INIT_LIST_HEAD(&s->s_cap_releases_done);
449 INIT_LIST_HEAD(&s->s_cap_flushing);
450 INIT_LIST_HEAD(&s->s_cap_snaps_flushing);
451
452 dout("register_session mds%d\n", mds);
453 if (mds >= mdsc->max_sessions) {
454 int newmax = 1 << get_count_order(mds+1);
455 struct ceph_mds_session **sa;
456
457 dout("register_session realloc to %d\n", newmax);
458 sa = kcalloc(newmax, sizeof(void *), GFP_NOFS);
459 if (sa == NULL)
460 goto fail_realloc;
461 if (mdsc->sessions) {
462 memcpy(sa, mdsc->sessions,
463 mdsc->max_sessions * sizeof(void *));
464 kfree(mdsc->sessions);
465 }
466 mdsc->sessions = sa;
467 mdsc->max_sessions = newmax;
468 }
469 mdsc->sessions[mds] = s;
470 atomic_inc(&s->s_ref); /* one ref to sessions[], one to caller */
471
472 ceph_con_open(&s->s_con, CEPH_ENTITY_TYPE_MDS, mds,
473 ceph_mdsmap_get_addr(mdsc->mdsmap, mds));
474
475 return s;
476
477 fail_realloc:
478 kfree(s);
479 return ERR_PTR(-ENOMEM);
480 }
481
482 /*
483 * called under mdsc->mutex
484 */
485 static void __unregister_session(struct ceph_mds_client *mdsc,
486 struct ceph_mds_session *s)
487 {
488 dout("__unregister_session mds%d %p\n", s->s_mds, s);
489 BUG_ON(mdsc->sessions[s->s_mds] != s);
490 mdsc->sessions[s->s_mds] = NULL;
491 ceph_con_close(&s->s_con);
492 ceph_put_mds_session(s);
493 }
494
495 /*
496 * drop session refs in request.
497 *
498 * should be last request ref, or hold mdsc->mutex
499 */
500 static void put_request_session(struct ceph_mds_request *req)
501 {
502 if (req->r_session) {
503 ceph_put_mds_session(req->r_session);
504 req->r_session = NULL;
505 }
506 }
507
508 void ceph_mdsc_release_request(struct kref *kref)
509 {
510 struct ceph_mds_request *req = container_of(kref,
511 struct ceph_mds_request,
512 r_kref);
513 if (req->r_request)
514 ceph_msg_put(req->r_request);
515 if (req->r_reply) {
516 ceph_msg_put(req->r_reply);
517 destroy_reply_info(&req->r_reply_info);
518 }
519 if (req->r_inode) {
520 ceph_put_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN);
521 iput(req->r_inode);
522 }
523 if (req->r_locked_dir)
524 ceph_put_cap_refs(ceph_inode(req->r_locked_dir), CEPH_CAP_PIN);
525 if (req->r_target_inode)
526 iput(req->r_target_inode);
527 if (req->r_dentry)
528 dput(req->r_dentry);
529 if (req->r_old_dentry) {
530 /*
531 * track (and drop pins for) r_old_dentry_dir
532 * separately, since r_old_dentry's d_parent may have
533 * changed between the dir mutex being dropped and
534 * this request being freed.
535 */
536 ceph_put_cap_refs(ceph_inode(req->r_old_dentry_dir),
537 CEPH_CAP_PIN);
538 dput(req->r_old_dentry);
539 iput(req->r_old_dentry_dir);
540 }
541 kfree(req->r_path1);
542 kfree(req->r_path2);
543 put_request_session(req);
544 ceph_unreserve_caps(req->r_mdsc, &req->r_caps_reservation);
545 kfree(req);
546 }
547
548 /*
549 * lookup session, bump ref if found.
550 *
551 * called under mdsc->mutex.
552 */
553 static struct ceph_mds_request *__lookup_request(struct ceph_mds_client *mdsc,
554 u64 tid)
555 {
556 struct ceph_mds_request *req;
557 struct rb_node *n = mdsc->request_tree.rb_node;
558
559 while (n) {
560 req = rb_entry(n, struct ceph_mds_request, r_node);
561 if (tid < req->r_tid)
562 n = n->rb_left;
563 else if (tid > req->r_tid)
564 n = n->rb_right;
565 else {
566 ceph_mdsc_get_request(req);
567 return req;
568 }
569 }
570 return NULL;
571 }
572
573 static void __insert_request(struct ceph_mds_client *mdsc,
574 struct ceph_mds_request *new)
575 {
576 struct rb_node **p = &mdsc->request_tree.rb_node;
577 struct rb_node *parent = NULL;
578 struct ceph_mds_request *req = NULL;
579
580 while (*p) {
581 parent = *p;
582 req = rb_entry(parent, struct ceph_mds_request, r_node);
583 if (new->r_tid < req->r_tid)
584 p = &(*p)->rb_left;
585 else if (new->r_tid > req->r_tid)
586 p = &(*p)->rb_right;
587 else
588 BUG();
589 }
590
591 rb_link_node(&new->r_node, parent, p);
592 rb_insert_color(&new->r_node, &mdsc->request_tree);
593 }
594
595 /*
596 * Register an in-flight request, and assign a tid. Link to directory
597 * are modifying (if any).
598 *
599 * Called under mdsc->mutex.
600 */
601 static void __register_request(struct ceph_mds_client *mdsc,
602 struct ceph_mds_request *req,
603 struct inode *dir)
604 {
605 req->r_tid = ++mdsc->last_tid;
606 if (req->r_num_caps)
607 ceph_reserve_caps(mdsc, &req->r_caps_reservation,
608 req->r_num_caps);
609 dout("__register_request %p tid %lld\n", req, req->r_tid);
610 ceph_mdsc_get_request(req);
611 __insert_request(mdsc, req);
612
613 req->r_uid = current_fsuid();
614 req->r_gid = current_fsgid();
615
616 if (dir) {
617 struct ceph_inode_info *ci = ceph_inode(dir);
618
619 ihold(dir);
620 spin_lock(&ci->i_unsafe_lock);
621 req->r_unsafe_dir = dir;
622 list_add_tail(&req->r_unsafe_dir_item, &ci->i_unsafe_dirops);
623 spin_unlock(&ci->i_unsafe_lock);
624 }
625 }
626
627 static void __unregister_request(struct ceph_mds_client *mdsc,
628 struct ceph_mds_request *req)
629 {
630 dout("__unregister_request %p tid %lld\n", req, req->r_tid);
631 rb_erase(&req->r_node, &mdsc->request_tree);
632 RB_CLEAR_NODE(&req->r_node);
633
634 if (req->r_unsafe_dir) {
635 struct ceph_inode_info *ci = ceph_inode(req->r_unsafe_dir);
636
637 spin_lock(&ci->i_unsafe_lock);
638 list_del_init(&req->r_unsafe_dir_item);
639 spin_unlock(&ci->i_unsafe_lock);
640
641 iput(req->r_unsafe_dir);
642 req->r_unsafe_dir = NULL;
643 }
644
645 ceph_mdsc_put_request(req);
646 }
647
648 /*
649 * Choose mds to send request to next. If there is a hint set in the
650 * request (e.g., due to a prior forward hint from the mds), use that.
651 * Otherwise, consult frag tree and/or caps to identify the
652 * appropriate mds. If all else fails, choose randomly.
653 *
654 * Called under mdsc->mutex.
655 */
656 static struct dentry *get_nonsnap_parent(struct dentry *dentry)
657 {
658 /*
659 * we don't need to worry about protecting the d_parent access
660 * here because we never renaming inside the snapped namespace
661 * except to resplice to another snapdir, and either the old or new
662 * result is a valid result.
663 */
664 while (!IS_ROOT(dentry) && ceph_snap(dentry->d_inode) != CEPH_NOSNAP)
665 dentry = dentry->d_parent;
666 return dentry;
667 }
668
669 static int __choose_mds(struct ceph_mds_client *mdsc,
670 struct ceph_mds_request *req)
671 {
672 struct inode *inode;
673 struct ceph_inode_info *ci;
674 struct ceph_cap *cap;
675 int mode = req->r_direct_mode;
676 int mds = -1;
677 u32 hash = req->r_direct_hash;
678 bool is_hash = req->r_direct_is_hash;
679
680 /*
681 * is there a specific mds we should try? ignore hint if we have
682 * no session and the mds is not up (active or recovering).
683 */
684 if (req->r_resend_mds >= 0 &&
685 (__have_session(mdsc, req->r_resend_mds) ||
686 ceph_mdsmap_get_state(mdsc->mdsmap, req->r_resend_mds) > 0)) {
687 dout("choose_mds using resend_mds mds%d\n",
688 req->r_resend_mds);
689 return req->r_resend_mds;
690 }
691
692 if (mode == USE_RANDOM_MDS)
693 goto random;
694
695 inode = NULL;
696 if (req->r_inode) {
697 inode = req->r_inode;
698 } else if (req->r_dentry) {
699 /* ignore race with rename; old or new d_parent is okay */
700 struct dentry *parent = req->r_dentry->d_parent;
701 struct inode *dir = parent->d_inode;
702
703 if (dir->i_sb != mdsc->fsc->sb) {
704 /* not this fs! */
705 inode = req->r_dentry->d_inode;
706 } else if (ceph_snap(dir) != CEPH_NOSNAP) {
707 /* direct snapped/virtual snapdir requests
708 * based on parent dir inode */
709 struct dentry *dn = get_nonsnap_parent(parent);
710 inode = dn->d_inode;
711 dout("__choose_mds using nonsnap parent %p\n", inode);
712 } else if (req->r_dentry->d_inode) {
713 /* dentry target */
714 inode = req->r_dentry->d_inode;
715 } else {
716 /* dir + name */
717 inode = dir;
718 hash = ceph_dentry_hash(dir, req->r_dentry);
719 is_hash = true;
720 }
721 }
722
723 dout("__choose_mds %p is_hash=%d (%d) mode %d\n", inode, (int)is_hash,
724 (int)hash, mode);
725 if (!inode)
726 goto random;
727 ci = ceph_inode(inode);
728
729 if (is_hash && S_ISDIR(inode->i_mode)) {
730 struct ceph_inode_frag frag;
731 int found;
732
733 ceph_choose_frag(ci, hash, &frag, &found);
734 if (found) {
735 if (mode == USE_ANY_MDS && frag.ndist > 0) {
736 u8 r;
737
738 /* choose a random replica */
739 get_random_bytes(&r, 1);
740 r %= frag.ndist;
741 mds = frag.dist[r];
742 dout("choose_mds %p %llx.%llx "
743 "frag %u mds%d (%d/%d)\n",
744 inode, ceph_vinop(inode),
745 frag.frag, mds,
746 (int)r, frag.ndist);
747 if (ceph_mdsmap_get_state(mdsc->mdsmap, mds) >=
748 CEPH_MDS_STATE_ACTIVE)
749 return mds;
750 }
751
752 /* since this file/dir wasn't known to be
753 * replicated, then we want to look for the
754 * authoritative mds. */
755 mode = USE_AUTH_MDS;
756 if (frag.mds >= 0) {
757 /* choose auth mds */
758 mds = frag.mds;
759 dout("choose_mds %p %llx.%llx "
760 "frag %u mds%d (auth)\n",
761 inode, ceph_vinop(inode), frag.frag, mds);
762 if (ceph_mdsmap_get_state(mdsc->mdsmap, mds) >=
763 CEPH_MDS_STATE_ACTIVE)
764 return mds;
765 }
766 }
767 }
768
769 spin_lock(&ci->i_ceph_lock);
770 cap = NULL;
771 if (mode == USE_AUTH_MDS)
772 cap = ci->i_auth_cap;
773 if (!cap && !RB_EMPTY_ROOT(&ci->i_caps))
774 cap = rb_entry(rb_first(&ci->i_caps), struct ceph_cap, ci_node);
775 if (!cap) {
776 spin_unlock(&ci->i_ceph_lock);
777 goto random;
778 }
779 mds = cap->session->s_mds;
780 dout("choose_mds %p %llx.%llx mds%d (%scap %p)\n",
781 inode, ceph_vinop(inode), mds,
782 cap == ci->i_auth_cap ? "auth " : "", cap);
783 spin_unlock(&ci->i_ceph_lock);
784 return mds;
785
786 random:
787 mds = ceph_mdsmap_get_random_mds(mdsc->mdsmap);
788 dout("choose_mds chose random mds%d\n", mds);
789 return mds;
790 }
791
792
793 /*
794 * session messages
795 */
796 static struct ceph_msg *create_session_msg(u32 op, u64 seq)
797 {
798 struct ceph_msg *msg;
799 struct ceph_mds_session_head *h;
800
801 msg = ceph_msg_new(CEPH_MSG_CLIENT_SESSION, sizeof(*h), GFP_NOFS,
802 false);
803 if (!msg) {
804 pr_err("create_session_msg ENOMEM creating msg\n");
805 return NULL;
806 }
807 h = msg->front.iov_base;
808 h->op = cpu_to_le32(op);
809 h->seq = cpu_to_le64(seq);
810 return msg;
811 }
812
813 /*
814 * send session open request.
815 *
816 * called under mdsc->mutex
817 */
818 static int __open_session(struct ceph_mds_client *mdsc,
819 struct ceph_mds_session *session)
820 {
821 struct ceph_msg *msg;
822 int mstate;
823 int mds = session->s_mds;
824
825 /* wait for mds to go active? */
826 mstate = ceph_mdsmap_get_state(mdsc->mdsmap, mds);
827 dout("open_session to mds%d (%s)\n", mds,
828 ceph_mds_state_name(mstate));
829 session->s_state = CEPH_MDS_SESSION_OPENING;
830 session->s_renew_requested = jiffies;
831
832 /* send connect message */
833 msg = create_session_msg(CEPH_SESSION_REQUEST_OPEN, session->s_seq);
834 if (!msg)
835 return -ENOMEM;
836 ceph_con_send(&session->s_con, msg);
837 return 0;
838 }
839
840 /*
841 * open sessions for any export targets for the given mds
842 *
843 * called under mdsc->mutex
844 */
845 static void __open_export_target_sessions(struct ceph_mds_client *mdsc,
846 struct ceph_mds_session *session)
847 {
848 struct ceph_mds_info *mi;
849 struct ceph_mds_session *ts;
850 int i, mds = session->s_mds;
851 int target;
852
853 if (mds >= mdsc->mdsmap->m_max_mds)
854 return;
855 mi = &mdsc->mdsmap->m_info[mds];
856 dout("open_export_target_sessions for mds%d (%d targets)\n",
857 session->s_mds, mi->num_export_targets);
858
859 for (i = 0; i < mi->num_export_targets; i++) {
860 target = mi->export_targets[i];
861 ts = __ceph_lookup_mds_session(mdsc, target);
862 if (!ts) {
863 ts = register_session(mdsc, target);
864 if (IS_ERR(ts))
865 return;
866 }
867 if (session->s_state == CEPH_MDS_SESSION_NEW ||
868 session->s_state == CEPH_MDS_SESSION_CLOSING)
869 __open_session(mdsc, session);
870 else
871 dout(" mds%d target mds%d %p is %s\n", session->s_mds,
872 i, ts, session_state_name(ts->s_state));
873 ceph_put_mds_session(ts);
874 }
875 }
876
877 void ceph_mdsc_open_export_target_sessions(struct ceph_mds_client *mdsc,
878 struct ceph_mds_session *session)
879 {
880 mutex_lock(&mdsc->mutex);
881 __open_export_target_sessions(mdsc, session);
882 mutex_unlock(&mdsc->mutex);
883 }
884
885 /*
886 * session caps
887 */
888
889 /*
890 * Free preallocated cap messages assigned to this session
891 */
892 static void cleanup_cap_releases(struct ceph_mds_session *session)
893 {
894 struct ceph_msg *msg;
895
896 spin_lock(&session->s_cap_lock);
897 while (!list_empty(&session->s_cap_releases)) {
898 msg = list_first_entry(&session->s_cap_releases,
899 struct ceph_msg, list_head);
900 list_del_init(&msg->list_head);
901 ceph_msg_put(msg);
902 }
903 while (!list_empty(&session->s_cap_releases_done)) {
904 msg = list_first_entry(&session->s_cap_releases_done,
905 struct ceph_msg, list_head);
906 list_del_init(&msg->list_head);
907 ceph_msg_put(msg);
908 }
909 spin_unlock(&session->s_cap_lock);
910 }
911
912 /*
913 * Helper to safely iterate over all caps associated with a session, with
914 * special care taken to handle a racing __ceph_remove_cap().
915 *
916 * Caller must hold session s_mutex.
917 */
918 static int iterate_session_caps(struct ceph_mds_session *session,
919 int (*cb)(struct inode *, struct ceph_cap *,
920 void *), void *arg)
921 {
922 struct list_head *p;
923 struct ceph_cap *cap;
924 struct inode *inode, *last_inode = NULL;
925 struct ceph_cap *old_cap = NULL;
926 int ret;
927
928 dout("iterate_session_caps %p mds%d\n", session, session->s_mds);
929 spin_lock(&session->s_cap_lock);
930 p = session->s_caps.next;
931 while (p != &session->s_caps) {
932 cap = list_entry(p, struct ceph_cap, session_caps);
933 inode = igrab(&cap->ci->vfs_inode);
934 if (!inode) {
935 p = p->next;
936 continue;
937 }
938 session->s_cap_iterator = cap;
939 spin_unlock(&session->s_cap_lock);
940
941 if (last_inode) {
942 iput(last_inode);
943 last_inode = NULL;
944 }
945 if (old_cap) {
946 ceph_put_cap(session->s_mdsc, old_cap);
947 old_cap = NULL;
948 }
949
950 ret = cb(inode, cap, arg);
951 last_inode = inode;
952
953 spin_lock(&session->s_cap_lock);
954 p = p->next;
955 if (cap->ci == NULL) {
956 dout("iterate_session_caps finishing cap %p removal\n",
957 cap);
958 BUG_ON(cap->session != session);
959 list_del_init(&cap->session_caps);
960 session->s_nr_caps--;
961 cap->session = NULL;
962 old_cap = cap; /* put_cap it w/o locks held */
963 }
964 if (ret < 0)
965 goto out;
966 }
967 ret = 0;
968 out:
969 session->s_cap_iterator = NULL;
970 spin_unlock(&session->s_cap_lock);
971
972 if (last_inode)
973 iput(last_inode);
974 if (old_cap)
975 ceph_put_cap(session->s_mdsc, old_cap);
976
977 return ret;
978 }
979
980 static int remove_session_caps_cb(struct inode *inode, struct ceph_cap *cap,
981 void *arg)
982 {
983 struct ceph_inode_info *ci = ceph_inode(inode);
984 int drop = 0;
985
986 dout("removing cap %p, ci is %p, inode is %p\n",
987 cap, ci, &ci->vfs_inode);
988 spin_lock(&ci->i_ceph_lock);
989 __ceph_remove_cap(cap);
990 if (!__ceph_is_any_real_caps(ci)) {
991 struct ceph_mds_client *mdsc =
992 ceph_sb_to_client(inode->i_sb)->mdsc;
993
994 spin_lock(&mdsc->cap_dirty_lock);
995 if (!list_empty(&ci->i_dirty_item)) {
996 pr_info(" dropping dirty %s state for %p %lld\n",
997 ceph_cap_string(ci->i_dirty_caps),
998 inode, ceph_ino(inode));
999 ci->i_dirty_caps = 0;
1000 list_del_init(&ci->i_dirty_item);
1001 drop = 1;
1002 }
1003 if (!list_empty(&ci->i_flushing_item)) {
1004 pr_info(" dropping dirty+flushing %s state for %p %lld\n",
1005 ceph_cap_string(ci->i_flushing_caps),
1006 inode, ceph_ino(inode));
1007 ci->i_flushing_caps = 0;
1008 list_del_init(&ci->i_flushing_item);
1009 mdsc->num_cap_flushing--;
1010 drop = 1;
1011 }
1012 if (drop && ci->i_wrbuffer_ref) {
1013 pr_info(" dropping dirty data for %p %lld\n",
1014 inode, ceph_ino(inode));
1015 ci->i_wrbuffer_ref = 0;
1016 ci->i_wrbuffer_ref_head = 0;
1017 drop++;
1018 }
1019 spin_unlock(&mdsc->cap_dirty_lock);
1020 }
1021 spin_unlock(&ci->i_ceph_lock);
1022 while (drop--)
1023 iput(inode);
1024 return 0;
1025 }
1026
1027 /*
1028 * caller must hold session s_mutex
1029 */
1030 static void remove_session_caps(struct ceph_mds_session *session)
1031 {
1032 dout("remove_session_caps on %p\n", session);
1033 iterate_session_caps(session, remove_session_caps_cb, NULL);
1034
1035 spin_lock(&session->s_cap_lock);
1036 if (session->s_nr_caps > 0) {
1037 struct super_block *sb = session->s_mdsc->fsc->sb;
1038 struct inode *inode;
1039 struct ceph_cap *cap, *prev = NULL;
1040 struct ceph_vino vino;
1041 /*
1042 * iterate_session_caps() skips inodes that are being
1043 * deleted, we need to wait until deletions are complete.
1044 * __wait_on_freeing_inode() is designed for the job,
1045 * but it is not exported, so use lookup inode function
1046 * to access it.
1047 */
1048 while (!list_empty(&session->s_caps)) {
1049 cap = list_entry(session->s_caps.next,
1050 struct ceph_cap, session_caps);
1051 if (cap == prev)
1052 break;
1053 prev = cap;
1054 vino = cap->ci->i_vino;
1055 spin_unlock(&session->s_cap_lock);
1056
1057 inode = ceph_lookup_inode(sb, vino);
1058 iput(inode);
1059
1060 spin_lock(&session->s_cap_lock);
1061 }
1062 }
1063 spin_unlock(&session->s_cap_lock);
1064
1065 BUG_ON(session->s_nr_caps > 0);
1066 BUG_ON(!list_empty(&session->s_cap_flushing));
1067 cleanup_cap_releases(session);
1068 }
1069
1070 /*
1071 * wake up any threads waiting on this session's caps. if the cap is
1072 * old (didn't get renewed on the client reconnect), remove it now.
1073 *
1074 * caller must hold s_mutex.
1075 */
1076 static int wake_up_session_cb(struct inode *inode, struct ceph_cap *cap,
1077 void *arg)
1078 {
1079 struct ceph_inode_info *ci = ceph_inode(inode);
1080
1081 wake_up_all(&ci->i_cap_wq);
1082 if (arg) {
1083 spin_lock(&ci->i_ceph_lock);
1084 ci->i_wanted_max_size = 0;
1085 ci->i_requested_max_size = 0;
1086 spin_unlock(&ci->i_ceph_lock);
1087 }
1088 return 0;
1089 }
1090
1091 static void wake_up_session_caps(struct ceph_mds_session *session,
1092 int reconnect)
1093 {
1094 dout("wake_up_session_caps %p mds%d\n", session, session->s_mds);
1095 iterate_session_caps(session, wake_up_session_cb,
1096 (void *)(unsigned long)reconnect);
1097 }
1098
1099 /*
1100 * Send periodic message to MDS renewing all currently held caps. The
1101 * ack will reset the expiration for all caps from this session.
1102 *
1103 * caller holds s_mutex
1104 */
1105 static int send_renew_caps(struct ceph_mds_client *mdsc,
1106 struct ceph_mds_session *session)
1107 {
1108 struct ceph_msg *msg;
1109 int state;
1110
1111 if (time_after_eq(jiffies, session->s_cap_ttl) &&
1112 time_after_eq(session->s_cap_ttl, session->s_renew_requested))
1113 pr_info("mds%d caps stale\n", session->s_mds);
1114 session->s_renew_requested = jiffies;
1115
1116 /* do not try to renew caps until a recovering mds has reconnected
1117 * with its clients. */
1118 state = ceph_mdsmap_get_state(mdsc->mdsmap, session->s_mds);
1119 if (state < CEPH_MDS_STATE_RECONNECT) {
1120 dout("send_renew_caps ignoring mds%d (%s)\n",
1121 session->s_mds, ceph_mds_state_name(state));
1122 return 0;
1123 }
1124
1125 dout("send_renew_caps to mds%d (%s)\n", session->s_mds,
1126 ceph_mds_state_name(state));
1127 msg = create_session_msg(CEPH_SESSION_REQUEST_RENEWCAPS,
1128 ++session->s_renew_seq);
1129 if (!msg)
1130 return -ENOMEM;
1131 ceph_con_send(&session->s_con, msg);
1132 return 0;
1133 }
1134
1135 /*
1136 * Note new cap ttl, and any transition from stale -> not stale (fresh?).
1137 *
1138 * Called under session->s_mutex
1139 */
1140 static void renewed_caps(struct ceph_mds_client *mdsc,
1141 struct ceph_mds_session *session, int is_renew)
1142 {
1143 int was_stale;
1144 int wake = 0;
1145
1146 spin_lock(&session->s_cap_lock);
1147 was_stale = is_renew && time_after_eq(jiffies, session->s_cap_ttl);
1148
1149 session->s_cap_ttl = session->s_renew_requested +
1150 mdsc->mdsmap->m_session_timeout*HZ;
1151
1152 if (was_stale) {
1153 if (time_before(jiffies, session->s_cap_ttl)) {
1154 pr_info("mds%d caps renewed\n", session->s_mds);
1155 wake = 1;
1156 } else {
1157 pr_info("mds%d caps still stale\n", session->s_mds);
1158 }
1159 }
1160 dout("renewed_caps mds%d ttl now %lu, was %s, now %s\n",
1161 session->s_mds, session->s_cap_ttl, was_stale ? "stale" : "fresh",
1162 time_before(jiffies, session->s_cap_ttl) ? "stale" : "fresh");
1163 spin_unlock(&session->s_cap_lock);
1164
1165 if (wake)
1166 wake_up_session_caps(session, 0);
1167 }
1168
1169 /*
1170 * send a session close request
1171 */
1172 static int request_close_session(struct ceph_mds_client *mdsc,
1173 struct ceph_mds_session *session)
1174 {
1175 struct ceph_msg *msg;
1176
1177 dout("request_close_session mds%d state %s seq %lld\n",
1178 session->s_mds, session_state_name(session->s_state),
1179 session->s_seq);
1180 msg = create_session_msg(CEPH_SESSION_REQUEST_CLOSE, session->s_seq);
1181 if (!msg)
1182 return -ENOMEM;
1183 ceph_con_send(&session->s_con, msg);
1184 return 0;
1185 }
1186
1187 /*
1188 * Called with s_mutex held.
1189 */
1190 static int __close_session(struct ceph_mds_client *mdsc,
1191 struct ceph_mds_session *session)
1192 {
1193 if (session->s_state >= CEPH_MDS_SESSION_CLOSING)
1194 return 0;
1195 session->s_state = CEPH_MDS_SESSION_CLOSING;
1196 return request_close_session(mdsc, session);
1197 }
1198
1199 /*
1200 * Trim old(er) caps.
1201 *
1202 * Because we can't cache an inode without one or more caps, we do
1203 * this indirectly: if a cap is unused, we prune its aliases, at which
1204 * point the inode will hopefully get dropped to.
1205 *
1206 * Yes, this is a bit sloppy. Our only real goal here is to respond to
1207 * memory pressure from the MDS, though, so it needn't be perfect.
1208 */
1209 static int trim_caps_cb(struct inode *inode, struct ceph_cap *cap, void *arg)
1210 {
1211 struct ceph_mds_session *session = arg;
1212 struct ceph_inode_info *ci = ceph_inode(inode);
1213 int used, oissued, mine;
1214
1215 if (session->s_trim_caps <= 0)
1216 return -1;
1217
1218 spin_lock(&ci->i_ceph_lock);
1219 mine = cap->issued | cap->implemented;
1220 used = __ceph_caps_used(ci);
1221 oissued = __ceph_caps_issued_other(ci, cap);
1222
1223 dout("trim_caps_cb %p cap %p mine %s oissued %s used %s\n",
1224 inode, cap, ceph_cap_string(mine), ceph_cap_string(oissued),
1225 ceph_cap_string(used));
1226 if (ci->i_dirty_caps)
1227 goto out; /* dirty caps */
1228 if ((used & ~oissued) & mine)
1229 goto out; /* we need these caps */
1230
1231 session->s_trim_caps--;
1232 if (oissued) {
1233 /* we aren't the only cap.. just remove us */
1234 __queue_cap_release(session, ceph_ino(inode), cap->cap_id,
1235 cap->mseq, cap->issue_seq);
1236 __ceph_remove_cap(cap);
1237 } else {
1238 /* try to drop referring dentries */
1239 spin_unlock(&ci->i_ceph_lock);
1240 d_prune_aliases(inode);
1241 dout("trim_caps_cb %p cap %p pruned, count now %d\n",
1242 inode, cap, atomic_read(&inode->i_count));
1243 return 0;
1244 }
1245
1246 out:
1247 spin_unlock(&ci->i_ceph_lock);
1248 return 0;
1249 }
1250
1251 /*
1252 * Trim session cap count down to some max number.
1253 */
1254 static int trim_caps(struct ceph_mds_client *mdsc,
1255 struct ceph_mds_session *session,
1256 int max_caps)
1257 {
1258 int trim_caps = session->s_nr_caps - max_caps;
1259
1260 dout("trim_caps mds%d start: %d / %d, trim %d\n",
1261 session->s_mds, session->s_nr_caps, max_caps, trim_caps);
1262 if (trim_caps > 0) {
1263 session->s_trim_caps = trim_caps;
1264 iterate_session_caps(session, trim_caps_cb, session);
1265 dout("trim_caps mds%d done: %d / %d, trimmed %d\n",
1266 session->s_mds, session->s_nr_caps, max_caps,
1267 trim_caps - session->s_trim_caps);
1268 session->s_trim_caps = 0;
1269 }
1270 return 0;
1271 }
1272
1273 /*
1274 * Allocate cap_release messages. If there is a partially full message
1275 * in the queue, try to allocate enough to cover it's remainder, so that
1276 * we can send it immediately.
1277 *
1278 * Called under s_mutex.
1279 */
1280 int ceph_add_cap_releases(struct ceph_mds_client *mdsc,
1281 struct ceph_mds_session *session)
1282 {
1283 struct ceph_msg *msg, *partial = NULL;
1284 struct ceph_mds_cap_release *head;
1285 int err = -ENOMEM;
1286 int extra = mdsc->fsc->mount_options->cap_release_safety;
1287 int num;
1288
1289 dout("add_cap_releases %p mds%d extra %d\n", session, session->s_mds,
1290 extra);
1291
1292 spin_lock(&session->s_cap_lock);
1293
1294 if (!list_empty(&session->s_cap_releases)) {
1295 msg = list_first_entry(&session->s_cap_releases,
1296 struct ceph_msg,
1297 list_head);
1298 head = msg->front.iov_base;
1299 num = le32_to_cpu(head->num);
1300 if (num) {
1301 dout(" partial %p with (%d/%d)\n", msg, num,
1302 (int)CEPH_CAPS_PER_RELEASE);
1303 extra += CEPH_CAPS_PER_RELEASE - num;
1304 partial = msg;
1305 }
1306 }
1307 while (session->s_num_cap_releases < session->s_nr_caps + extra) {
1308 spin_unlock(&session->s_cap_lock);
1309 msg = ceph_msg_new(CEPH_MSG_CLIENT_CAPRELEASE, PAGE_CACHE_SIZE,
1310 GFP_NOFS, false);
1311 if (!msg)
1312 goto out_unlocked;
1313 dout("add_cap_releases %p msg %p now %d\n", session, msg,
1314 (int)msg->front.iov_len);
1315 head = msg->front.iov_base;
1316 head->num = cpu_to_le32(0);
1317 msg->front.iov_len = sizeof(*head);
1318 spin_lock(&session->s_cap_lock);
1319 list_add(&msg->list_head, &session->s_cap_releases);
1320 session->s_num_cap_releases += CEPH_CAPS_PER_RELEASE;
1321 }
1322
1323 if (partial) {
1324 head = partial->front.iov_base;
1325 num = le32_to_cpu(head->num);
1326 dout(" queueing partial %p with %d/%d\n", partial, num,
1327 (int)CEPH_CAPS_PER_RELEASE);
1328 list_move_tail(&partial->list_head,
1329 &session->s_cap_releases_done);
1330 session->s_num_cap_releases -= CEPH_CAPS_PER_RELEASE - num;
1331 }
1332 err = 0;
1333 spin_unlock(&session->s_cap_lock);
1334 out_unlocked:
1335 return err;
1336 }
1337
1338 /*
1339 * flush all dirty inode data to disk.
1340 *
1341 * returns true if we've flushed through want_flush_seq
1342 */
1343 static int check_cap_flush(struct ceph_mds_client *mdsc, u64 want_flush_seq)
1344 {
1345 int mds, ret = 1;
1346
1347 dout("check_cap_flush want %lld\n", want_flush_seq);
1348 mutex_lock(&mdsc->mutex);
1349 for (mds = 0; ret && mds < mdsc->max_sessions; mds++) {
1350 struct ceph_mds_session *session = mdsc->sessions[mds];
1351
1352 if (!session)
1353 continue;
1354 get_session(session);
1355 mutex_unlock(&mdsc->mutex);
1356
1357 mutex_lock(&session->s_mutex);
1358 if (!list_empty(&session->s_cap_flushing)) {
1359 struct ceph_inode_info *ci =
1360 list_entry(session->s_cap_flushing.next,
1361 struct ceph_inode_info,
1362 i_flushing_item);
1363 struct inode *inode = &ci->vfs_inode;
1364
1365 spin_lock(&ci->i_ceph_lock);
1366 if (ci->i_cap_flush_seq <= want_flush_seq) {
1367 dout("check_cap_flush still flushing %p "
1368 "seq %lld <= %lld to mds%d\n", inode,
1369 ci->i_cap_flush_seq, want_flush_seq,
1370 session->s_mds);
1371 ret = 0;
1372 }
1373 spin_unlock(&ci->i_ceph_lock);
1374 }
1375 mutex_unlock(&session->s_mutex);
1376 ceph_put_mds_session(session);
1377
1378 if (!ret)
1379 return ret;
1380 mutex_lock(&mdsc->mutex);
1381 }
1382
1383 mutex_unlock(&mdsc->mutex);
1384 dout("check_cap_flush ok, flushed thru %lld\n", want_flush_seq);
1385 return ret;
1386 }
1387
1388 /*
1389 * called under s_mutex
1390 */
1391 void ceph_send_cap_releases(struct ceph_mds_client *mdsc,
1392 struct ceph_mds_session *session)
1393 {
1394 struct ceph_msg *msg;
1395
1396 dout("send_cap_releases mds%d\n", session->s_mds);
1397 spin_lock(&session->s_cap_lock);
1398 while (!list_empty(&session->s_cap_releases_done)) {
1399 msg = list_first_entry(&session->s_cap_releases_done,
1400 struct ceph_msg, list_head);
1401 list_del_init(&msg->list_head);
1402 spin_unlock(&session->s_cap_lock);
1403 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
1404 dout("send_cap_releases mds%d %p\n", session->s_mds, msg);
1405 ceph_con_send(&session->s_con, msg);
1406 spin_lock(&session->s_cap_lock);
1407 }
1408 spin_unlock(&session->s_cap_lock);
1409 }
1410
1411 static void discard_cap_releases(struct ceph_mds_client *mdsc,
1412 struct ceph_mds_session *session)
1413 {
1414 struct ceph_msg *msg;
1415 struct ceph_mds_cap_release *head;
1416 unsigned num;
1417
1418 dout("discard_cap_releases mds%d\n", session->s_mds);
1419 spin_lock(&session->s_cap_lock);
1420
1421 /* zero out the in-progress message */
1422 msg = list_first_entry(&session->s_cap_releases,
1423 struct ceph_msg, list_head);
1424 head = msg->front.iov_base;
1425 num = le32_to_cpu(head->num);
1426 dout("discard_cap_releases mds%d %p %u\n", session->s_mds, msg, num);
1427 head->num = cpu_to_le32(0);
1428 msg->front.iov_len = sizeof(*head);
1429 session->s_num_cap_releases += num;
1430
1431 /* requeue completed messages */
1432 while (!list_empty(&session->s_cap_releases_done)) {
1433 msg = list_first_entry(&session->s_cap_releases_done,
1434 struct ceph_msg, list_head);
1435 list_del_init(&msg->list_head);
1436
1437 head = msg->front.iov_base;
1438 num = le32_to_cpu(head->num);
1439 dout("discard_cap_releases mds%d %p %u\n", session->s_mds, msg,
1440 num);
1441 session->s_num_cap_releases += num;
1442 head->num = cpu_to_le32(0);
1443 msg->front.iov_len = sizeof(*head);
1444 list_add(&msg->list_head, &session->s_cap_releases);
1445 }
1446
1447 spin_unlock(&session->s_cap_lock);
1448 }
1449
1450 /*
1451 * requests
1452 */
1453
1454 /*
1455 * Create an mds request.
1456 */
1457 struct ceph_mds_request *
1458 ceph_mdsc_create_request(struct ceph_mds_client *mdsc, int op, int mode)
1459 {
1460 struct ceph_mds_request *req = kzalloc(sizeof(*req), GFP_NOFS);
1461
1462 if (!req)
1463 return ERR_PTR(-ENOMEM);
1464
1465 mutex_init(&req->r_fill_mutex);
1466 req->r_mdsc = mdsc;
1467 req->r_started = jiffies;
1468 req->r_resend_mds = -1;
1469 INIT_LIST_HEAD(&req->r_unsafe_dir_item);
1470 req->r_fmode = -1;
1471 kref_init(&req->r_kref);
1472 INIT_LIST_HEAD(&req->r_wait);
1473 init_completion(&req->r_completion);
1474 init_completion(&req->r_safe_completion);
1475 INIT_LIST_HEAD(&req->r_unsafe_item);
1476
1477 req->r_op = op;
1478 req->r_direct_mode = mode;
1479 return req;
1480 }
1481
1482 /*
1483 * return oldest (lowest) request, tid in request tree, 0 if none.
1484 *
1485 * called under mdsc->mutex.
1486 */
1487 static struct ceph_mds_request *__get_oldest_req(struct ceph_mds_client *mdsc)
1488 {
1489 if (RB_EMPTY_ROOT(&mdsc->request_tree))
1490 return NULL;
1491 return rb_entry(rb_first(&mdsc->request_tree),
1492 struct ceph_mds_request, r_node);
1493 }
1494
1495 static u64 __get_oldest_tid(struct ceph_mds_client *mdsc)
1496 {
1497 struct ceph_mds_request *req = __get_oldest_req(mdsc);
1498
1499 if (req)
1500 return req->r_tid;
1501 return 0;
1502 }
1503
1504 /*
1505 * Build a dentry's path. Allocate on heap; caller must kfree. Based
1506 * on build_path_from_dentry in fs/cifs/dir.c.
1507 *
1508 * If @stop_on_nosnap, generate path relative to the first non-snapped
1509 * inode.
1510 *
1511 * Encode hidden .snap dirs as a double /, i.e.
1512 * foo/.snap/bar -> foo//bar
1513 */
1514 char *ceph_mdsc_build_path(struct dentry *dentry, int *plen, u64 *base,
1515 int stop_on_nosnap)
1516 {
1517 struct dentry *temp;
1518 char *path;
1519 int len, pos;
1520 unsigned seq;
1521
1522 if (dentry == NULL)
1523 return ERR_PTR(-EINVAL);
1524
1525 retry:
1526 len = 0;
1527 seq = read_seqbegin(&rename_lock);
1528 rcu_read_lock();
1529 for (temp = dentry; !IS_ROOT(temp);) {
1530 struct inode *inode = temp->d_inode;
1531 if (inode && ceph_snap(inode) == CEPH_SNAPDIR)
1532 len++; /* slash only */
1533 else if (stop_on_nosnap && inode &&
1534 ceph_snap(inode) == CEPH_NOSNAP)
1535 break;
1536 else
1537 len += 1 + temp->d_name.len;
1538 temp = temp->d_parent;
1539 }
1540 rcu_read_unlock();
1541 if (len)
1542 len--; /* no leading '/' */
1543
1544 path = kmalloc(len+1, GFP_NOFS);
1545 if (path == NULL)
1546 return ERR_PTR(-ENOMEM);
1547 pos = len;
1548 path[pos] = 0; /* trailing null */
1549 rcu_read_lock();
1550 for (temp = dentry; !IS_ROOT(temp) && pos != 0; ) {
1551 struct inode *inode;
1552
1553 spin_lock(&temp->d_lock);
1554 inode = temp->d_inode;
1555 if (inode && ceph_snap(inode) == CEPH_SNAPDIR) {
1556 dout("build_path path+%d: %p SNAPDIR\n",
1557 pos, temp);
1558 } else if (stop_on_nosnap && inode &&
1559 ceph_snap(inode) == CEPH_NOSNAP) {
1560 spin_unlock(&temp->d_lock);
1561 break;
1562 } else {
1563 pos -= temp->d_name.len;
1564 if (pos < 0) {
1565 spin_unlock(&temp->d_lock);
1566 break;
1567 }
1568 strncpy(path + pos, temp->d_name.name,
1569 temp->d_name.len);
1570 }
1571 spin_unlock(&temp->d_lock);
1572 if (pos)
1573 path[--pos] = '/';
1574 temp = temp->d_parent;
1575 }
1576 rcu_read_unlock();
1577 if (pos != 0 || read_seqretry(&rename_lock, seq)) {
1578 pr_err("build_path did not end path lookup where "
1579 "expected, namelen is %d, pos is %d\n", len, pos);
1580 /* presumably this is only possible if racing with a
1581 rename of one of the parent directories (we can not
1582 lock the dentries above us to prevent this, but
1583 retrying should be harmless) */
1584 kfree(path);
1585 goto retry;
1586 }
1587
1588 *base = ceph_ino(temp->d_inode);
1589 *plen = len;
1590 dout("build_path on %p %d built %llx '%.*s'\n",
1591 dentry, d_count(dentry), *base, len, path);
1592 return path;
1593 }
1594
1595 static int build_dentry_path(struct dentry *dentry,
1596 const char **ppath, int *ppathlen, u64 *pino,
1597 int *pfreepath)
1598 {
1599 char *path;
1600
1601 if (ceph_snap(dentry->d_parent->d_inode) == CEPH_NOSNAP) {
1602 *pino = ceph_ino(dentry->d_parent->d_inode);
1603 *ppath = dentry->d_name.name;
1604 *ppathlen = dentry->d_name.len;
1605 return 0;
1606 }
1607 path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1);
1608 if (IS_ERR(path))
1609 return PTR_ERR(path);
1610 *ppath = path;
1611 *pfreepath = 1;
1612 return 0;
1613 }
1614
1615 static int build_inode_path(struct inode *inode,
1616 const char **ppath, int *ppathlen, u64 *pino,
1617 int *pfreepath)
1618 {
1619 struct dentry *dentry;
1620 char *path;
1621
1622 if (ceph_snap(inode) == CEPH_NOSNAP) {
1623 *pino = ceph_ino(inode);
1624 *ppathlen = 0;
1625 return 0;
1626 }
1627 dentry = d_find_alias(inode);
1628 path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1);
1629 dput(dentry);
1630 if (IS_ERR(path))
1631 return PTR_ERR(path);
1632 *ppath = path;
1633 *pfreepath = 1;
1634 return 0;
1635 }
1636
1637 /*
1638 * request arguments may be specified via an inode *, a dentry *, or
1639 * an explicit ino+path.
1640 */
1641 static int set_request_path_attr(struct inode *rinode, struct dentry *rdentry,
1642 const char *rpath, u64 rino,
1643 const char **ppath, int *pathlen,
1644 u64 *ino, int *freepath)
1645 {
1646 int r = 0;
1647
1648 if (rinode) {
1649 r = build_inode_path(rinode, ppath, pathlen, ino, freepath);
1650 dout(" inode %p %llx.%llx\n", rinode, ceph_ino(rinode),
1651 ceph_snap(rinode));
1652 } else if (rdentry) {
1653 r = build_dentry_path(rdentry, ppath, pathlen, ino, freepath);
1654 dout(" dentry %p %llx/%.*s\n", rdentry, *ino, *pathlen,
1655 *ppath);
1656 } else if (rpath || rino) {
1657 *ino = rino;
1658 *ppath = rpath;
1659 *pathlen = rpath ? strlen(rpath) : 0;
1660 dout(" path %.*s\n", *pathlen, rpath);
1661 }
1662
1663 return r;
1664 }
1665
1666 /*
1667 * called under mdsc->mutex
1668 */
1669 static struct ceph_msg *create_request_message(struct ceph_mds_client *mdsc,
1670 struct ceph_mds_request *req,
1671 int mds)
1672 {
1673 struct ceph_msg *msg;
1674 struct ceph_mds_request_head *head;
1675 const char *path1 = NULL;
1676 const char *path2 = NULL;
1677 u64 ino1 = 0, ino2 = 0;
1678 int pathlen1 = 0, pathlen2 = 0;
1679 int freepath1 = 0, freepath2 = 0;
1680 int len;
1681 u16 releases;
1682 void *p, *end;
1683 int ret;
1684
1685 ret = set_request_path_attr(req->r_inode, req->r_dentry,
1686 req->r_path1, req->r_ino1.ino,
1687 &path1, &pathlen1, &ino1, &freepath1);
1688 if (ret < 0) {
1689 msg = ERR_PTR(ret);
1690 goto out;
1691 }
1692
1693 ret = set_request_path_attr(NULL, req->r_old_dentry,
1694 req->r_path2, req->r_ino2.ino,
1695 &path2, &pathlen2, &ino2, &freepath2);
1696 if (ret < 0) {
1697 msg = ERR_PTR(ret);
1698 goto out_free1;
1699 }
1700
1701 len = sizeof(*head) +
1702 pathlen1 + pathlen2 + 2*(1 + sizeof(u32) + sizeof(u64));
1703
1704 /* calculate (max) length for cap releases */
1705 len += sizeof(struct ceph_mds_request_release) *
1706 (!!req->r_inode_drop + !!req->r_dentry_drop +
1707 !!req->r_old_inode_drop + !!req->r_old_dentry_drop);
1708 if (req->r_dentry_drop)
1709 len += req->r_dentry->d_name.len;
1710 if (req->r_old_dentry_drop)
1711 len += req->r_old_dentry->d_name.len;
1712
1713 msg = ceph_msg_new(CEPH_MSG_CLIENT_REQUEST, len, GFP_NOFS, false);
1714 if (!msg) {
1715 msg = ERR_PTR(-ENOMEM);
1716 goto out_free2;
1717 }
1718
1719 msg->hdr.tid = cpu_to_le64(req->r_tid);
1720
1721 head = msg->front.iov_base;
1722 p = msg->front.iov_base + sizeof(*head);
1723 end = msg->front.iov_base + msg->front.iov_len;
1724
1725 head->mdsmap_epoch = cpu_to_le32(mdsc->mdsmap->m_epoch);
1726 head->op = cpu_to_le32(req->r_op);
1727 head->caller_uid = cpu_to_le32(from_kuid(&init_user_ns, req->r_uid));
1728 head->caller_gid = cpu_to_le32(from_kgid(&init_user_ns, req->r_gid));
1729 head->args = req->r_args;
1730
1731 ceph_encode_filepath(&p, end, ino1, path1);
1732 ceph_encode_filepath(&p, end, ino2, path2);
1733
1734 /* make note of release offset, in case we need to replay */
1735 req->r_request_release_offset = p - msg->front.iov_base;
1736
1737 /* cap releases */
1738 releases = 0;
1739 if (req->r_inode_drop)
1740 releases += ceph_encode_inode_release(&p,
1741 req->r_inode ? req->r_inode : req->r_dentry->d_inode,
1742 mds, req->r_inode_drop, req->r_inode_unless, 0);
1743 if (req->r_dentry_drop)
1744 releases += ceph_encode_dentry_release(&p, req->r_dentry,
1745 mds, req->r_dentry_drop, req->r_dentry_unless);
1746 if (req->r_old_dentry_drop)
1747 releases += ceph_encode_dentry_release(&p, req->r_old_dentry,
1748 mds, req->r_old_dentry_drop, req->r_old_dentry_unless);
1749 if (req->r_old_inode_drop)
1750 releases += ceph_encode_inode_release(&p,
1751 req->r_old_dentry->d_inode,
1752 mds, req->r_old_inode_drop, req->r_old_inode_unless, 0);
1753 head->num_releases = cpu_to_le16(releases);
1754
1755 BUG_ON(p > end);
1756 msg->front.iov_len = p - msg->front.iov_base;
1757 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
1758
1759 if (req->r_data_len) {
1760 /* outbound data set only by ceph_sync_setxattr() */
1761 BUG_ON(!req->r_pages);
1762 ceph_msg_data_add_pages(msg, req->r_pages, req->r_data_len, 0);
1763 }
1764
1765 msg->hdr.data_len = cpu_to_le32(req->r_data_len);
1766 msg->hdr.data_off = cpu_to_le16(0);
1767
1768 out_free2:
1769 if (freepath2)
1770 kfree((char *)path2);
1771 out_free1:
1772 if (freepath1)
1773 kfree((char *)path1);
1774 out:
1775 return msg;
1776 }
1777
1778 /*
1779 * called under mdsc->mutex if error, under no mutex if
1780 * success.
1781 */
1782 static void complete_request(struct ceph_mds_client *mdsc,
1783 struct ceph_mds_request *req)
1784 {
1785 if (req->r_callback)
1786 req->r_callback(mdsc, req);
1787 else
1788 complete_all(&req->r_completion);
1789 }
1790
1791 /*
1792 * called under mdsc->mutex
1793 */
1794 static int __prepare_send_request(struct ceph_mds_client *mdsc,
1795 struct ceph_mds_request *req,
1796 int mds)
1797 {
1798 struct ceph_mds_request_head *rhead;
1799 struct ceph_msg *msg;
1800 int flags = 0;
1801
1802 req->r_attempts++;
1803 if (req->r_inode) {
1804 struct ceph_cap *cap =
1805 ceph_get_cap_for_mds(ceph_inode(req->r_inode), mds);
1806
1807 if (cap)
1808 req->r_sent_on_mseq = cap->mseq;
1809 else
1810 req->r_sent_on_mseq = -1;
1811 }
1812 dout("prepare_send_request %p tid %lld %s (attempt %d)\n", req,
1813 req->r_tid, ceph_mds_op_name(req->r_op), req->r_attempts);
1814
1815 if (req->r_got_unsafe) {
1816 /*
1817 * Replay. Do not regenerate message (and rebuild
1818 * paths, etc.); just use the original message.
1819 * Rebuilding paths will break for renames because
1820 * d_move mangles the src name.
1821 */
1822 msg = req->r_request;
1823 rhead = msg->front.iov_base;
1824
1825 flags = le32_to_cpu(rhead->flags);
1826 flags |= CEPH_MDS_FLAG_REPLAY;
1827 rhead->flags = cpu_to_le32(flags);
1828
1829 if (req->r_target_inode)
1830 rhead->ino = cpu_to_le64(ceph_ino(req->r_target_inode));
1831
1832 rhead->num_retry = req->r_attempts - 1;
1833
1834 /* remove cap/dentry releases from message */
1835 rhead->num_releases = 0;
1836 msg->hdr.front_len = cpu_to_le32(req->r_request_release_offset);
1837 msg->front.iov_len = req->r_request_release_offset;
1838 return 0;
1839 }
1840
1841 if (req->r_request) {
1842 ceph_msg_put(req->r_request);
1843 req->r_request = NULL;
1844 }
1845 msg = create_request_message(mdsc, req, mds);
1846 if (IS_ERR(msg)) {
1847 req->r_err = PTR_ERR(msg);
1848 complete_request(mdsc, req);
1849 return PTR_ERR(msg);
1850 }
1851 req->r_request = msg;
1852
1853 rhead = msg->front.iov_base;
1854 rhead->oldest_client_tid = cpu_to_le64(__get_oldest_tid(mdsc));
1855 if (req->r_got_unsafe)
1856 flags |= CEPH_MDS_FLAG_REPLAY;
1857 if (req->r_locked_dir)
1858 flags |= CEPH_MDS_FLAG_WANT_DENTRY;
1859 rhead->flags = cpu_to_le32(flags);
1860 rhead->num_fwd = req->r_num_fwd;
1861 rhead->num_retry = req->r_attempts - 1;
1862 rhead->ino = 0;
1863
1864 dout(" r_locked_dir = %p\n", req->r_locked_dir);
1865 return 0;
1866 }
1867
1868 /*
1869 * send request, or put it on the appropriate wait list.
1870 */
1871 static int __do_request(struct ceph_mds_client *mdsc,
1872 struct ceph_mds_request *req)
1873 {
1874 struct ceph_mds_session *session = NULL;
1875 int mds = -1;
1876 int err = -EAGAIN;
1877
1878 if (req->r_err || req->r_got_result)
1879 goto out;
1880
1881 if (req->r_timeout &&
1882 time_after_eq(jiffies, req->r_started + req->r_timeout)) {
1883 dout("do_request timed out\n");
1884 err = -EIO;
1885 goto finish;
1886 }
1887
1888 put_request_session(req);
1889
1890 mds = __choose_mds(mdsc, req);
1891 if (mds < 0 ||
1892 ceph_mdsmap_get_state(mdsc->mdsmap, mds) < CEPH_MDS_STATE_ACTIVE) {
1893 dout("do_request no mds or not active, waiting for map\n");
1894 list_add(&req->r_wait, &mdsc->waiting_for_map);
1895 goto out;
1896 }
1897
1898 /* get, open session */
1899 session = __ceph_lookup_mds_session(mdsc, mds);
1900 if (!session) {
1901 session = register_session(mdsc, mds);
1902 if (IS_ERR(session)) {
1903 err = PTR_ERR(session);
1904 goto finish;
1905 }
1906 }
1907 req->r_session = get_session(session);
1908
1909 dout("do_request mds%d session %p state %s\n", mds, session,
1910 session_state_name(session->s_state));
1911 if (session->s_state != CEPH_MDS_SESSION_OPEN &&
1912 session->s_state != CEPH_MDS_SESSION_HUNG) {
1913 if (session->s_state == CEPH_MDS_SESSION_NEW ||
1914 session->s_state == CEPH_MDS_SESSION_CLOSING)
1915 __open_session(mdsc, session);
1916 list_add(&req->r_wait, &session->s_waiting);
1917 goto out_session;
1918 }
1919
1920 /* send request */
1921 req->r_resend_mds = -1; /* forget any previous mds hint */
1922
1923 if (req->r_request_started == 0) /* note request start time */
1924 req->r_request_started = jiffies;
1925
1926 err = __prepare_send_request(mdsc, req, mds);
1927 if (!err) {
1928 ceph_msg_get(req->r_request);
1929 ceph_con_send(&session->s_con, req->r_request);
1930 }
1931
1932 out_session:
1933 ceph_put_mds_session(session);
1934 out:
1935 return err;
1936
1937 finish:
1938 req->r_err = err;
1939 complete_request(mdsc, req);
1940 goto out;
1941 }
1942
1943 /*
1944 * called under mdsc->mutex
1945 */
1946 static void __wake_requests(struct ceph_mds_client *mdsc,
1947 struct list_head *head)
1948 {
1949 struct ceph_mds_request *req;
1950 LIST_HEAD(tmp_list);
1951
1952 list_splice_init(head, &tmp_list);
1953
1954 while (!list_empty(&tmp_list)) {
1955 req = list_entry(tmp_list.next,
1956 struct ceph_mds_request, r_wait);
1957 list_del_init(&req->r_wait);
1958 dout(" wake request %p tid %llu\n", req, req->r_tid);
1959 __do_request(mdsc, req);
1960 }
1961 }
1962
1963 /*
1964 * Wake up threads with requests pending for @mds, so that they can
1965 * resubmit their requests to a possibly different mds.
1966 */
1967 static void kick_requests(struct ceph_mds_client *mdsc, int mds)
1968 {
1969 struct ceph_mds_request *req;
1970 struct rb_node *p;
1971
1972 dout("kick_requests mds%d\n", mds);
1973 for (p = rb_first(&mdsc->request_tree); p; p = rb_next(p)) {
1974 req = rb_entry(p, struct ceph_mds_request, r_node);
1975 if (req->r_got_unsafe)
1976 continue;
1977 if (req->r_session &&
1978 req->r_session->s_mds == mds) {
1979 dout(" kicking tid %llu\n", req->r_tid);
1980 __do_request(mdsc, req);
1981 }
1982 }
1983 }
1984
1985 void ceph_mdsc_submit_request(struct ceph_mds_client *mdsc,
1986 struct ceph_mds_request *req)
1987 {
1988 dout("submit_request on %p\n", req);
1989 mutex_lock(&mdsc->mutex);
1990 __register_request(mdsc, req, NULL);
1991 __do_request(mdsc, req);
1992 mutex_unlock(&mdsc->mutex);
1993 }
1994
1995 /*
1996 * Synchrously perform an mds request. Take care of all of the
1997 * session setup, forwarding, retry details.
1998 */
1999 int ceph_mdsc_do_request(struct ceph_mds_client *mdsc,
2000 struct inode *dir,
2001 struct ceph_mds_request *req)
2002 {
2003 int err;
2004
2005 dout("do_request on %p\n", req);
2006
2007 /* take CAP_PIN refs for r_inode, r_locked_dir, r_old_dentry */
2008 if (req->r_inode)
2009 ceph_get_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN);
2010 if (req->r_locked_dir)
2011 ceph_get_cap_refs(ceph_inode(req->r_locked_dir), CEPH_CAP_PIN);
2012 if (req->r_old_dentry)
2013 ceph_get_cap_refs(ceph_inode(req->r_old_dentry_dir),
2014 CEPH_CAP_PIN);
2015
2016 /* issue */
2017 mutex_lock(&mdsc->mutex);
2018 __register_request(mdsc, req, dir);
2019 __do_request(mdsc, req);
2020
2021 if (req->r_err) {
2022 err = req->r_err;
2023 __unregister_request(mdsc, req);
2024 dout("do_request early error %d\n", err);
2025 goto out;
2026 }
2027
2028 /* wait */
2029 mutex_unlock(&mdsc->mutex);
2030 dout("do_request waiting\n");
2031 if (req->r_timeout) {
2032 err = (long)wait_for_completion_killable_timeout(
2033 &req->r_completion, req->r_timeout);
2034 if (err == 0)
2035 err = -EIO;
2036 } else {
2037 err = wait_for_completion_killable(&req->r_completion);
2038 }
2039 dout("do_request waited, got %d\n", err);
2040 mutex_lock(&mdsc->mutex);
2041
2042 /* only abort if we didn't race with a real reply */
2043 if (req->r_got_result) {
2044 err = le32_to_cpu(req->r_reply_info.head->result);
2045 } else if (err < 0) {
2046 dout("aborted request %lld with %d\n", req->r_tid, err);
2047
2048 /*
2049 * ensure we aren't running concurrently with
2050 * ceph_fill_trace or ceph_readdir_prepopulate, which
2051 * rely on locks (dir mutex) held by our caller.
2052 */
2053 mutex_lock(&req->r_fill_mutex);
2054 req->r_err = err;
2055 req->r_aborted = true;
2056 mutex_unlock(&req->r_fill_mutex);
2057
2058 if (req->r_locked_dir &&
2059 (req->r_op & CEPH_MDS_OP_WRITE))
2060 ceph_invalidate_dir_request(req);
2061 } else {
2062 err = req->r_err;
2063 }
2064
2065 out:
2066 mutex_unlock(&mdsc->mutex);
2067 dout("do_request %p done, result %d\n", req, err);
2068 return err;
2069 }
2070
2071 /*
2072 * Invalidate dir's completeness, dentry lease state on an aborted MDS
2073 * namespace request.
2074 */
2075 void ceph_invalidate_dir_request(struct ceph_mds_request *req)
2076 {
2077 struct inode *inode = req->r_locked_dir;
2078
2079 dout("invalidate_dir_request %p (complete, lease(s))\n", inode);
2080
2081 ceph_dir_clear_complete(inode);
2082 if (req->r_dentry)
2083 ceph_invalidate_dentry_lease(req->r_dentry);
2084 if (req->r_old_dentry)
2085 ceph_invalidate_dentry_lease(req->r_old_dentry);
2086 }
2087
2088 /*
2089 * Handle mds reply.
2090 *
2091 * We take the session mutex and parse and process the reply immediately.
2092 * This preserves the logical ordering of replies, capabilities, etc., sent
2093 * by the MDS as they are applied to our local cache.
2094 */
2095 static void handle_reply(struct ceph_mds_session *session, struct ceph_msg *msg)
2096 {
2097 struct ceph_mds_client *mdsc = session->s_mdsc;
2098 struct ceph_mds_request *req;
2099 struct ceph_mds_reply_head *head = msg->front.iov_base;
2100 struct ceph_mds_reply_info_parsed *rinfo; /* parsed reply info */
2101 u64 tid;
2102 int err, result;
2103 int mds = session->s_mds;
2104
2105 if (msg->front.iov_len < sizeof(*head)) {
2106 pr_err("mdsc_handle_reply got corrupt (short) reply\n");
2107 ceph_msg_dump(msg);
2108 return;
2109 }
2110
2111 /* get request, session */
2112 tid = le64_to_cpu(msg->hdr.tid);
2113 mutex_lock(&mdsc->mutex);
2114 req = __lookup_request(mdsc, tid);
2115 if (!req) {
2116 dout("handle_reply on unknown tid %llu\n", tid);
2117 mutex_unlock(&mdsc->mutex);
2118 return;
2119 }
2120 dout("handle_reply %p\n", req);
2121
2122 /* correct session? */
2123 if (req->r_session != session) {
2124 pr_err("mdsc_handle_reply got %llu on session mds%d"
2125 " not mds%d\n", tid, session->s_mds,
2126 req->r_session ? req->r_session->s_mds : -1);
2127 mutex_unlock(&mdsc->mutex);
2128 goto out;
2129 }
2130
2131 /* dup? */
2132 if ((req->r_got_unsafe && !head->safe) ||
2133 (req->r_got_safe && head->safe)) {
2134 pr_warning("got a dup %s reply on %llu from mds%d\n",
2135 head->safe ? "safe" : "unsafe", tid, mds);
2136 mutex_unlock(&mdsc->mutex);
2137 goto out;
2138 }
2139 if (req->r_got_safe && !head->safe) {
2140 pr_warning("got unsafe after safe on %llu from mds%d\n",
2141 tid, mds);
2142 mutex_unlock(&mdsc->mutex);
2143 goto out;
2144 }
2145
2146 result = le32_to_cpu(head->result);
2147
2148 /*
2149 * Handle an ESTALE
2150 * if we're not talking to the authority, send to them
2151 * if the authority has changed while we weren't looking,
2152 * send to new authority
2153 * Otherwise we just have to return an ESTALE
2154 */
2155 if (result == -ESTALE) {
2156 dout("got ESTALE on request %llu", req->r_tid);
2157 if (!req->r_inode) {
2158 /* do nothing; not an authority problem */
2159 } else if (req->r_direct_mode != USE_AUTH_MDS) {
2160 dout("not using auth, setting for that now");
2161 req->r_direct_mode = USE_AUTH_MDS;
2162 __do_request(mdsc, req);
2163 mutex_unlock(&mdsc->mutex);
2164 goto out;
2165 } else {
2166 struct ceph_inode_info *ci = ceph_inode(req->r_inode);
2167 struct ceph_cap *cap = NULL;
2168
2169 if (req->r_session)
2170 cap = ceph_get_cap_for_mds(ci,
2171 req->r_session->s_mds);
2172
2173 dout("already using auth");
2174 if ((!cap || cap != ci->i_auth_cap) ||
2175 (cap->mseq != req->r_sent_on_mseq)) {
2176 dout("but cap changed, so resending");
2177 __do_request(mdsc, req);
2178 mutex_unlock(&mdsc->mutex);
2179 goto out;
2180 }
2181 }
2182 dout("have to return ESTALE on request %llu", req->r_tid);
2183 }
2184
2185
2186 if (head->safe) {
2187 req->r_got_safe = true;
2188 __unregister_request(mdsc, req);
2189 complete_all(&req->r_safe_completion);
2190
2191 if (req->r_got_unsafe) {
2192 /*
2193 * We already handled the unsafe response, now do the
2194 * cleanup. No need to examine the response; the MDS
2195 * doesn't include any result info in the safe
2196 * response. And even if it did, there is nothing
2197 * useful we could do with a revised return value.
2198 */
2199 dout("got safe reply %llu, mds%d\n", tid, mds);
2200 list_del_init(&req->r_unsafe_item);
2201
2202 /* last unsafe request during umount? */
2203 if (mdsc->stopping && !__get_oldest_req(mdsc))
2204 complete_all(&mdsc->safe_umount_waiters);
2205 mutex_unlock(&mdsc->mutex);
2206 goto out;
2207 }
2208 } else {
2209 req->r_got_unsafe = true;
2210 list_add_tail(&req->r_unsafe_item, &req->r_session->s_unsafe);
2211 }
2212
2213 dout("handle_reply tid %lld result %d\n", tid, result);
2214 rinfo = &req->r_reply_info;
2215 err = parse_reply_info(msg, rinfo, session->s_con.peer_features);
2216 mutex_unlock(&mdsc->mutex);
2217
2218 mutex_lock(&session->s_mutex);
2219 if (err < 0) {
2220 pr_err("mdsc_handle_reply got corrupt reply mds%d(tid:%lld)\n", mds, tid);
2221 ceph_msg_dump(msg);
2222 goto out_err;
2223 }
2224
2225 /* snap trace */
2226 if (rinfo->snapblob_len) {
2227 down_write(&mdsc->snap_rwsem);
2228 ceph_update_snap_trace(mdsc, rinfo->snapblob,
2229 rinfo->snapblob + rinfo->snapblob_len,
2230 le32_to_cpu(head->op) == CEPH_MDS_OP_RMSNAP);
2231 downgrade_write(&mdsc->snap_rwsem);
2232 } else {
2233 down_read(&mdsc->snap_rwsem);
2234 }
2235
2236 /* insert trace into our cache */
2237 mutex_lock(&req->r_fill_mutex);
2238 err = ceph_fill_trace(mdsc->fsc->sb, req, req->r_session);
2239 if (err == 0) {
2240 if (result == 0 && (req->r_op == CEPH_MDS_OP_READDIR ||
2241 req->r_op == CEPH_MDS_OP_LSSNAP) &&
2242 rinfo->dir_nr)
2243 ceph_readdir_prepopulate(req, req->r_session);
2244 ceph_unreserve_caps(mdsc, &req->r_caps_reservation);
2245 }
2246 mutex_unlock(&req->r_fill_mutex);
2247
2248 up_read(&mdsc->snap_rwsem);
2249 out_err:
2250 mutex_lock(&mdsc->mutex);
2251 if (!req->r_aborted) {
2252 if (err) {
2253 req->r_err = err;
2254 } else {
2255 req->r_reply = msg;
2256 ceph_msg_get(msg);
2257 req->r_got_result = true;
2258 }
2259 } else {
2260 dout("reply arrived after request %lld was aborted\n", tid);
2261 }
2262 mutex_unlock(&mdsc->mutex);
2263
2264 ceph_add_cap_releases(mdsc, req->r_session);
2265 mutex_unlock(&session->s_mutex);
2266
2267 /* kick calling process */
2268 complete_request(mdsc, req);
2269 out:
2270 ceph_mdsc_put_request(req);
2271 return;
2272 }
2273
2274
2275
2276 /*
2277 * handle mds notification that our request has been forwarded.
2278 */
2279 static void handle_forward(struct ceph_mds_client *mdsc,
2280 struct ceph_mds_session *session,
2281 struct ceph_msg *msg)
2282 {
2283 struct ceph_mds_request *req;
2284 u64 tid = le64_to_cpu(msg->hdr.tid);
2285 u32 next_mds;
2286 u32 fwd_seq;
2287 int err = -EINVAL;
2288 void *p = msg->front.iov_base;
2289 void *end = p + msg->front.iov_len;
2290
2291 ceph_decode_need(&p, end, 2*sizeof(u32), bad);
2292 next_mds = ceph_decode_32(&p);
2293 fwd_seq = ceph_decode_32(&p);
2294
2295 mutex_lock(&mdsc->mutex);
2296 req = __lookup_request(mdsc, tid);
2297 if (!req) {
2298 dout("forward tid %llu to mds%d - req dne\n", tid, next_mds);
2299 goto out; /* dup reply? */
2300 }
2301
2302 if (req->r_aborted) {
2303 dout("forward tid %llu aborted, unregistering\n", tid);
2304 __unregister_request(mdsc, req);
2305 } else if (fwd_seq <= req->r_num_fwd) {
2306 dout("forward tid %llu to mds%d - old seq %d <= %d\n",
2307 tid, next_mds, req->r_num_fwd, fwd_seq);
2308 } else {
2309 /* resend. forward race not possible; mds would drop */
2310 dout("forward tid %llu to mds%d (we resend)\n", tid, next_mds);
2311 BUG_ON(req->r_err);
2312 BUG_ON(req->r_got_result);
2313 req->r_num_fwd = fwd_seq;
2314 req->r_resend_mds = next_mds;
2315 put_request_session(req);
2316 __do_request(mdsc, req);
2317 }
2318 ceph_mdsc_put_request(req);
2319 out:
2320 mutex_unlock(&mdsc->mutex);
2321 return;
2322
2323 bad:
2324 pr_err("mdsc_handle_forward decode error err=%d\n", err);
2325 }
2326
2327 /*
2328 * handle a mds session control message
2329 */
2330 static void handle_session(struct ceph_mds_session *session,
2331 struct ceph_msg *msg)
2332 {
2333 struct ceph_mds_client *mdsc = session->s_mdsc;
2334 u32 op;
2335 u64 seq;
2336 int mds = session->s_mds;
2337 struct ceph_mds_session_head *h = msg->front.iov_base;
2338 int wake = 0;
2339
2340 /* decode */
2341 if (msg->front.iov_len != sizeof(*h))
2342 goto bad;
2343 op = le32_to_cpu(h->op);
2344 seq = le64_to_cpu(h->seq);
2345
2346 mutex_lock(&mdsc->mutex);
2347 if (op == CEPH_SESSION_CLOSE)
2348 __unregister_session(mdsc, session);
2349 /* FIXME: this ttl calculation is generous */
2350 session->s_ttl = jiffies + HZ*mdsc->mdsmap->m_session_autoclose;
2351 mutex_unlock(&mdsc->mutex);
2352
2353 mutex_lock(&session->s_mutex);
2354
2355 dout("handle_session mds%d %s %p state %s seq %llu\n",
2356 mds, ceph_session_op_name(op), session,
2357 session_state_name(session->s_state), seq);
2358
2359 if (session->s_state == CEPH_MDS_SESSION_HUNG) {
2360 session->s_state = CEPH_MDS_SESSION_OPEN;
2361 pr_info("mds%d came back\n", session->s_mds);
2362 }
2363
2364 switch (op) {
2365 case CEPH_SESSION_OPEN:
2366 if (session->s_state == CEPH_MDS_SESSION_RECONNECTING)
2367 pr_info("mds%d reconnect success\n", session->s_mds);
2368 session->s_state = CEPH_MDS_SESSION_OPEN;
2369 renewed_caps(mdsc, session, 0);
2370 wake = 1;
2371 if (mdsc->stopping)
2372 __close_session(mdsc, session);
2373 break;
2374
2375 case CEPH_SESSION_RENEWCAPS:
2376 if (session->s_renew_seq == seq)
2377 renewed_caps(mdsc, session, 1);
2378 break;
2379
2380 case CEPH_SESSION_CLOSE:
2381 if (session->s_state == CEPH_MDS_SESSION_RECONNECTING)
2382 pr_info("mds%d reconnect denied\n", session->s_mds);
2383 remove_session_caps(session);
2384 wake = 1; /* for good measure */
2385 wake_up_all(&mdsc->session_close_wq);
2386 kick_requests(mdsc, mds);
2387 break;
2388
2389 case CEPH_SESSION_STALE:
2390 pr_info("mds%d caps went stale, renewing\n",
2391 session->s_mds);
2392 spin_lock(&session->s_gen_ttl_lock);
2393 session->s_cap_gen++;
2394 session->s_cap_ttl = jiffies - 1;
2395 spin_unlock(&session->s_gen_ttl_lock);
2396 send_renew_caps(mdsc, session);
2397 break;
2398
2399 case CEPH_SESSION_RECALL_STATE:
2400 trim_caps(mdsc, session, le32_to_cpu(h->max_caps));
2401 break;
2402
2403 default:
2404 pr_err("mdsc_handle_session bad op %d mds%d\n", op, mds);
2405 WARN_ON(1);
2406 }
2407
2408 mutex_unlock(&session->s_mutex);
2409 if (wake) {
2410 mutex_lock(&mdsc->mutex);
2411 __wake_requests(mdsc, &session->s_waiting);
2412 mutex_unlock(&mdsc->mutex);
2413 }
2414 return;
2415
2416 bad:
2417 pr_err("mdsc_handle_session corrupt message mds%d len %d\n", mds,
2418 (int)msg->front.iov_len);
2419 ceph_msg_dump(msg);
2420 return;
2421 }
2422
2423
2424 /*
2425 * called under session->mutex.
2426 */
2427 static void replay_unsafe_requests(struct ceph_mds_client *mdsc,
2428 struct ceph_mds_session *session)
2429 {
2430 struct ceph_mds_request *req, *nreq;
2431 int err;
2432
2433 dout("replay_unsafe_requests mds%d\n", session->s_mds);
2434
2435 mutex_lock(&mdsc->mutex);
2436 list_for_each_entry_safe(req, nreq, &session->s_unsafe, r_unsafe_item) {
2437 err = __prepare_send_request(mdsc, req, session->s_mds);
2438 if (!err) {
2439 ceph_msg_get(req->r_request);
2440 ceph_con_send(&session->s_con, req->r_request);
2441 }
2442 }
2443 mutex_unlock(&mdsc->mutex);
2444 }
2445
2446 /*
2447 * Encode information about a cap for a reconnect with the MDS.
2448 */
2449 static int encode_caps_cb(struct inode *inode, struct ceph_cap *cap,
2450 void *arg)
2451 {
2452 union {
2453 struct ceph_mds_cap_reconnect v2;
2454 struct ceph_mds_cap_reconnect_v1 v1;
2455 } rec;
2456 size_t reclen;
2457 struct ceph_inode_info *ci;
2458 struct ceph_reconnect_state *recon_state = arg;
2459 struct ceph_pagelist *pagelist = recon_state->pagelist;
2460 char *path;
2461 int pathlen, err;
2462 u64 pathbase;
2463 struct dentry *dentry;
2464
2465 ci = cap->ci;
2466
2467 dout(" adding %p ino %llx.%llx cap %p %lld %s\n",
2468 inode, ceph_vinop(inode), cap, cap->cap_id,
2469 ceph_cap_string(cap->issued));
2470 err = ceph_pagelist_encode_64(pagelist, ceph_ino(inode));
2471 if (err)
2472 return err;
2473
2474 dentry = d_find_alias(inode);
2475 if (dentry) {
2476 path = ceph_mdsc_build_path(dentry, &pathlen, &pathbase, 0);
2477 if (IS_ERR(path)) {
2478 err = PTR_ERR(path);
2479 goto out_dput;
2480 }
2481 } else {
2482 path = NULL;
2483 pathlen = 0;
2484 }
2485 err = ceph_pagelist_encode_string(pagelist, path, pathlen);
2486 if (err)
2487 goto out_free;
2488
2489 spin_lock(&ci->i_ceph_lock);
2490 cap->seq = 0; /* reset cap seq */
2491 cap->issue_seq = 0; /* and issue_seq */
2492 cap->mseq = 0; /* and migrate_seq */
2493
2494 if (recon_state->flock) {
2495 rec.v2.cap_id = cpu_to_le64(cap->cap_id);
2496 rec.v2.wanted = cpu_to_le32(__ceph_caps_wanted(ci));
2497 rec.v2.issued = cpu_to_le32(cap->issued);
2498 rec.v2.snaprealm = cpu_to_le64(ci->i_snap_realm->ino);
2499 rec.v2.pathbase = cpu_to_le64(pathbase);
2500 rec.v2.flock_len = 0;
2501 reclen = sizeof(rec.v2);
2502 } else {
2503 rec.v1.cap_id = cpu_to_le64(cap->cap_id);
2504 rec.v1.wanted = cpu_to_le32(__ceph_caps_wanted(ci));
2505 rec.v1.issued = cpu_to_le32(cap->issued);
2506 rec.v1.size = cpu_to_le64(inode->i_size);
2507 ceph_encode_timespec(&rec.v1.mtime, &inode->i_mtime);
2508 ceph_encode_timespec(&rec.v1.atime, &inode->i_atime);
2509 rec.v1.snaprealm = cpu_to_le64(ci->i_snap_realm->ino);
2510 rec.v1.pathbase = cpu_to_le64(pathbase);
2511 reclen = sizeof(rec.v1);
2512 }
2513 spin_unlock(&ci->i_ceph_lock);
2514
2515 if (recon_state->flock) {
2516 int num_fcntl_locks, num_flock_locks;
2517 struct ceph_filelock *flocks;
2518
2519 encode_again:
2520 spin_lock(&inode->i_lock);
2521 ceph_count_locks(inode, &num_fcntl_locks, &num_flock_locks);
2522 spin_unlock(&inode->i_lock);
2523 flocks = kmalloc((num_fcntl_locks+num_flock_locks) *
2524 sizeof(struct ceph_filelock), GFP_NOFS);
2525 if (!flocks) {
2526 err = -ENOMEM;
2527 goto out_free;
2528 }
2529 spin_lock(&inode->i_lock);
2530 err = ceph_encode_locks_to_buffer(inode, flocks,
2531 num_fcntl_locks,
2532 num_flock_locks);
2533 spin_unlock(&inode->i_lock);
2534 if (err) {
2535 kfree(flocks);
2536 if (err == -ENOSPC)
2537 goto encode_again;
2538 goto out_free;
2539 }
2540 /*
2541 * number of encoded locks is stable, so copy to pagelist
2542 */
2543 rec.v2.flock_len = cpu_to_le32(2*sizeof(u32) +
2544 (num_fcntl_locks+num_flock_locks) *
2545 sizeof(struct ceph_filelock));
2546 err = ceph_pagelist_append(pagelist, &rec, reclen);
2547 if (!err)
2548 err = ceph_locks_to_pagelist(flocks, pagelist,
2549 num_fcntl_locks,
2550 num_flock_locks);
2551 kfree(flocks);
2552 } else {
2553 err = ceph_pagelist_append(pagelist, &rec, reclen);
2554 }
2555 out_free:
2556 kfree(path);
2557 out_dput:
2558 dput(dentry);
2559 return err;
2560 }
2561
2562
2563 /*
2564 * If an MDS fails and recovers, clients need to reconnect in order to
2565 * reestablish shared state. This includes all caps issued through
2566 * this session _and_ the snap_realm hierarchy. Because it's not
2567 * clear which snap realms the mds cares about, we send everything we
2568 * know about.. that ensures we'll then get any new info the
2569 * recovering MDS might have.
2570 *
2571 * This is a relatively heavyweight operation, but it's rare.
2572 *
2573 * called with mdsc->mutex held.
2574 */
2575 static void send_mds_reconnect(struct ceph_mds_client *mdsc,
2576 struct ceph_mds_session *session)
2577 {
2578 struct ceph_msg *reply;
2579 struct rb_node *p;
2580 int mds = session->s_mds;
2581 int err = -ENOMEM;
2582 struct ceph_pagelist *pagelist;
2583 struct ceph_reconnect_state recon_state;
2584
2585 pr_info("mds%d reconnect start\n", mds);
2586
2587 pagelist = kmalloc(sizeof(*pagelist), GFP_NOFS);
2588 if (!pagelist)
2589 goto fail_nopagelist;
2590 ceph_pagelist_init(pagelist);
2591
2592 reply = ceph_msg_new(CEPH_MSG_CLIENT_RECONNECT, 0, GFP_NOFS, false);
2593 if (!reply)
2594 goto fail_nomsg;
2595
2596 mutex_lock(&session->s_mutex);
2597 session->s_state = CEPH_MDS_SESSION_RECONNECTING;
2598 session->s_seq = 0;
2599
2600 ceph_con_close(&session->s_con);
2601 ceph_con_open(&session->s_con,
2602 CEPH_ENTITY_TYPE_MDS, mds,
2603 ceph_mdsmap_get_addr(mdsc->mdsmap, mds));
2604
2605 /* replay unsafe requests */
2606 replay_unsafe_requests(mdsc, session);
2607
2608 down_read(&mdsc->snap_rwsem);
2609
2610 dout("session %p state %s\n", session,
2611 session_state_name(session->s_state));
2612
2613 /* drop old cap expires; we're about to reestablish that state */
2614 discard_cap_releases(mdsc, session);
2615
2616 /* traverse this session's caps */
2617 err = ceph_pagelist_encode_32(pagelist, session->s_nr_caps);
2618 if (err)
2619 goto fail;
2620
2621 recon_state.pagelist = pagelist;
2622 recon_state.flock = session->s_con.peer_features & CEPH_FEATURE_FLOCK;
2623 err = iterate_session_caps(session, encode_caps_cb, &recon_state);
2624 if (err < 0)
2625 goto fail;
2626
2627 /*
2628 * snaprealms. we provide mds with the ino, seq (version), and
2629 * parent for all of our realms. If the mds has any newer info,
2630 * it will tell us.
2631 */
2632 for (p = rb_first(&mdsc->snap_realms); p; p = rb_next(p)) {
2633 struct ceph_snap_realm *realm =
2634 rb_entry(p, struct ceph_snap_realm, node);
2635 struct ceph_mds_snaprealm_reconnect sr_rec;
2636
2637 dout(" adding snap realm %llx seq %lld parent %llx\n",
2638 realm->ino, realm->seq, realm->parent_ino);
2639 sr_rec.ino = cpu_to_le64(realm->ino);
2640 sr_rec.seq = cpu_to_le64(realm->seq);
2641 sr_rec.parent = cpu_to_le64(realm->parent_ino);
2642 err = ceph_pagelist_append(pagelist, &sr_rec, sizeof(sr_rec));
2643 if (err)
2644 goto fail;
2645 }
2646
2647 if (recon_state.flock)
2648 reply->hdr.version = cpu_to_le16(2);
2649 if (pagelist->length) {
2650 /* set up outbound data if we have any */
2651 reply->hdr.data_len = cpu_to_le32(pagelist->length);
2652 ceph_msg_data_add_pagelist(reply, pagelist);
2653 }
2654 ceph_con_send(&session->s_con, reply);
2655
2656 mutex_unlock(&session->s_mutex);
2657
2658 mutex_lock(&mdsc->mutex);
2659 __wake_requests(mdsc, &session->s_waiting);
2660 mutex_unlock(&mdsc->mutex);
2661
2662 up_read(&mdsc->snap_rwsem);
2663 return;
2664
2665 fail:
2666 ceph_msg_put(reply);
2667 up_read(&mdsc->snap_rwsem);
2668 mutex_unlock(&session->s_mutex);
2669 fail_nomsg:
2670 ceph_pagelist_release(pagelist);
2671 kfree(pagelist);
2672 fail_nopagelist:
2673 pr_err("error %d preparing reconnect for mds%d\n", err, mds);
2674 return;
2675 }
2676
2677
2678 /*
2679 * compare old and new mdsmaps, kicking requests
2680 * and closing out old connections as necessary
2681 *
2682 * called under mdsc->mutex.
2683 */
2684 static void check_new_map(struct ceph_mds_client *mdsc,
2685 struct ceph_mdsmap *newmap,
2686 struct ceph_mdsmap *oldmap)
2687 {
2688 int i;
2689 int oldstate, newstate;
2690 struct ceph_mds_session *s;
2691
2692 dout("check_new_map new %u old %u\n",
2693 newmap->m_epoch, oldmap->m_epoch);
2694
2695 for (i = 0; i < oldmap->m_max_mds && i < mdsc->max_sessions; i++) {
2696 if (mdsc->sessions[i] == NULL)
2697 continue;
2698 s = mdsc->sessions[i];
2699 oldstate = ceph_mdsmap_get_state(oldmap, i);
2700 newstate = ceph_mdsmap_get_state(newmap, i);
2701
2702 dout("check_new_map mds%d state %s%s -> %s%s (session %s)\n",
2703 i, ceph_mds_state_name(oldstate),
2704 ceph_mdsmap_is_laggy(oldmap, i) ? " (laggy)" : "",
2705 ceph_mds_state_name(newstate),
2706 ceph_mdsmap_is_laggy(newmap, i) ? " (laggy)" : "",
2707 session_state_name(s->s_state));
2708
2709 if (i >= newmap->m_max_mds ||
2710 memcmp(ceph_mdsmap_get_addr(oldmap, i),
2711 ceph_mdsmap_get_addr(newmap, i),
2712 sizeof(struct ceph_entity_addr))) {
2713 if (s->s_state == CEPH_MDS_SESSION_OPENING) {
2714 /* the session never opened, just close it
2715 * out now */
2716 __wake_requests(mdsc, &s->s_waiting);
2717 __unregister_session(mdsc, s);
2718 } else {
2719 /* just close it */
2720 mutex_unlock(&mdsc->mutex);
2721 mutex_lock(&s->s_mutex);
2722 mutex_lock(&mdsc->mutex);
2723 ceph_con_close(&s->s_con);
2724 mutex_unlock(&s->s_mutex);
2725 s->s_state = CEPH_MDS_SESSION_RESTARTING;
2726 }
2727
2728 /* kick any requests waiting on the recovering mds */
2729 kick_requests(mdsc, i);
2730 } else if (oldstate == newstate) {
2731 continue; /* nothing new with this mds */
2732 }
2733
2734 /*
2735 * send reconnect?
2736 */
2737 if (s->s_state == CEPH_MDS_SESSION_RESTARTING &&
2738 newstate >= CEPH_MDS_STATE_RECONNECT) {
2739 mutex_unlock(&mdsc->mutex);
2740 send_mds_reconnect(mdsc, s);
2741 mutex_lock(&mdsc->mutex);
2742 }
2743
2744 /*
2745 * kick request on any mds that has gone active.
2746 */
2747 if (oldstate < CEPH_MDS_STATE_ACTIVE &&
2748 newstate >= CEPH_MDS_STATE_ACTIVE) {
2749 if (oldstate != CEPH_MDS_STATE_CREATING &&
2750 oldstate != CEPH_MDS_STATE_STARTING)
2751 pr_info("mds%d recovery completed\n", s->s_mds);
2752 kick_requests(mdsc, i);
2753 ceph_kick_flushing_caps(mdsc, s);
2754 wake_up_session_caps(s, 1);
2755 }
2756 }
2757
2758 for (i = 0; i < newmap->m_max_mds && i < mdsc->max_sessions; i++) {
2759 s = mdsc->sessions[i];
2760 if (!s)
2761 continue;
2762 if (!ceph_mdsmap_is_laggy(newmap, i))
2763 continue;
2764 if (s->s_state == CEPH_MDS_SESSION_OPEN ||
2765 s->s_state == CEPH_MDS_SESSION_HUNG ||
2766 s->s_state == CEPH_MDS_SESSION_CLOSING) {
2767 dout(" connecting to export targets of laggy mds%d\n",
2768 i);
2769 __open_export_target_sessions(mdsc, s);
2770 }
2771 }
2772 }
2773
2774
2775
2776 /*
2777 * leases
2778 */
2779
2780 /*
2781 * caller must hold session s_mutex, dentry->d_lock
2782 */
2783 void __ceph_mdsc_drop_dentry_lease(struct dentry *dentry)
2784 {
2785 struct ceph_dentry_info *di = ceph_dentry(dentry);
2786
2787 ceph_put_mds_session(di->lease_session);
2788 di->lease_session = NULL;
2789 }
2790
2791 static void handle_lease(struct ceph_mds_client *mdsc,
2792 struct ceph_mds_session *session,
2793 struct ceph_msg *msg)
2794 {
2795 struct super_block *sb = mdsc->fsc->sb;
2796 struct inode *inode;
2797 struct dentry *parent, *dentry;
2798 struct ceph_dentry_info *di;
2799 int mds = session->s_mds;
2800 struct ceph_mds_lease *h = msg->front.iov_base;
2801 u32 seq;
2802 struct ceph_vino vino;
2803 struct qstr dname;
2804 int release = 0;
2805
2806 dout("handle_lease from mds%d\n", mds);
2807
2808 /* decode */
2809 if (msg->front.iov_len < sizeof(*h) + sizeof(u32))
2810 goto bad;
2811 vino.ino = le64_to_cpu(h->ino);
2812 vino.snap = CEPH_NOSNAP;
2813 seq = le32_to_cpu(h->seq);
2814 dname.name = (void *)h + sizeof(*h) + sizeof(u32);
2815 dname.len = msg->front.iov_len - sizeof(*h) - sizeof(u32);
2816 if (dname.len != get_unaligned_le32(h+1))
2817 goto bad;
2818
2819 mutex_lock(&session->s_mutex);
2820 session->s_seq++;
2821
2822 /* lookup inode */
2823 inode = ceph_find_inode(sb, vino);
2824 dout("handle_lease %s, ino %llx %p %.*s\n",
2825 ceph_lease_op_name(h->action), vino.ino, inode,
2826 dname.len, dname.name);
2827 if (inode == NULL) {
2828 dout("handle_lease no inode %llx\n", vino.ino);
2829 goto release;
2830 }
2831
2832 /* dentry */
2833 parent = d_find_alias(inode);
2834 if (!parent) {
2835 dout("no parent dentry on inode %p\n", inode);
2836 WARN_ON(1);
2837 goto release; /* hrm... */
2838 }
2839 dname.hash = full_name_hash(dname.name, dname.len);
2840 dentry = d_lookup(parent, &dname);
2841 dput(parent);
2842 if (!dentry)
2843 goto release;
2844
2845 spin_lock(&dentry->d_lock);
2846 di = ceph_dentry(dentry);
2847 switch (h->action) {
2848 case CEPH_MDS_LEASE_REVOKE:
2849 if (di->lease_session == session) {
2850 if (ceph_seq_cmp(di->lease_seq, seq) > 0)
2851 h->seq = cpu_to_le32(di->lease_seq);
2852 __ceph_mdsc_drop_dentry_lease(dentry);
2853 }
2854 release = 1;
2855 break;
2856
2857 case CEPH_MDS_LEASE_RENEW:
2858 if (di->lease_session == session &&
2859 di->lease_gen == session->s_cap_gen &&
2860 di->lease_renew_from &&
2861 di->lease_renew_after == 0) {
2862 unsigned long duration =
2863 le32_to_cpu(h->duration_ms) * HZ / 1000;
2864
2865 di->lease_seq = seq;
2866 dentry->d_time = di->lease_renew_from + duration;
2867 di->lease_renew_after = di->lease_renew_from +
2868 (duration >> 1);
2869 di->lease_renew_from = 0;
2870 }
2871 break;
2872 }
2873 spin_unlock(&dentry->d_lock);
2874 dput(dentry);
2875
2876 if (!release)
2877 goto out;
2878
2879 release:
2880 /* let's just reuse the same message */
2881 h->action = CEPH_MDS_LEASE_REVOKE_ACK;
2882 ceph_msg_get(msg);
2883 ceph_con_send(&session->s_con, msg);
2884
2885 out:
2886 iput(inode);
2887 mutex_unlock(&session->s_mutex);
2888 return;
2889
2890 bad:
2891 pr_err("corrupt lease message\n");
2892 ceph_msg_dump(msg);
2893 }
2894
2895 void ceph_mdsc_lease_send_msg(struct ceph_mds_session *session,
2896 struct inode *inode,
2897 struct dentry *dentry, char action,
2898 u32 seq)
2899 {
2900 struct ceph_msg *msg;
2901 struct ceph_mds_lease *lease;
2902 int len = sizeof(*lease) + sizeof(u32);
2903 int dnamelen = 0;
2904
2905 dout("lease_send_msg inode %p dentry %p %s to mds%d\n",
2906 inode, dentry, ceph_lease_op_name(action), session->s_mds);
2907 dnamelen = dentry->d_name.len;
2908 len += dnamelen;
2909
2910 msg = ceph_msg_new(CEPH_MSG_CLIENT_LEASE, len, GFP_NOFS, false);
2911 if (!msg)
2912 return;
2913 lease = msg->front.iov_base;
2914 lease->action = action;
2915 lease->ino = cpu_to_le64(ceph_vino(inode).ino);
2916 lease->first = lease->last = cpu_to_le64(ceph_vino(inode).snap);
2917 lease->seq = cpu_to_le32(seq);
2918 put_unaligned_le32(dnamelen, lease + 1);
2919 memcpy((void *)(lease + 1) + 4, dentry->d_name.name, dnamelen);
2920
2921 /*
2922 * if this is a preemptive lease RELEASE, no need to
2923 * flush request stream, since the actual request will
2924 * soon follow.
2925 */
2926 msg->more_to_follow = (action == CEPH_MDS_LEASE_RELEASE);
2927
2928 ceph_con_send(&session->s_con, msg);
2929 }
2930
2931 /*
2932 * Preemptively release a lease we expect to invalidate anyway.
2933 * Pass @inode always, @dentry is optional.
2934 */
2935 void ceph_mdsc_lease_release(struct ceph_mds_client *mdsc, struct inode *inode,
2936 struct dentry *dentry)
2937 {
2938 struct ceph_dentry_info *di;
2939 struct ceph_mds_session *session;
2940 u32 seq;
2941
2942 BUG_ON(inode == NULL);
2943 BUG_ON(dentry == NULL);
2944
2945 /* is dentry lease valid? */
2946 spin_lock(&dentry->d_lock);
2947 di = ceph_dentry(dentry);
2948 if (!di || !di->lease_session ||
2949 di->lease_session->s_mds < 0 ||
2950 di->lease_gen != di->lease_session->s_cap_gen ||
2951 !time_before(jiffies, dentry->d_time)) {
2952 dout("lease_release inode %p dentry %p -- "
2953 "no lease\n",
2954 inode, dentry);
2955 spin_unlock(&dentry->d_lock);
2956 return;
2957 }
2958
2959 /* we do have a lease on this dentry; note mds and seq */
2960 session = ceph_get_mds_session(di->lease_session);
2961 seq = di->lease_seq;
2962 __ceph_mdsc_drop_dentry_lease(dentry);
2963 spin_unlock(&dentry->d_lock);
2964
2965 dout("lease_release inode %p dentry %p to mds%d\n",
2966 inode, dentry, session->s_mds);
2967 ceph_mdsc_lease_send_msg(session, inode, dentry,
2968 CEPH_MDS_LEASE_RELEASE, seq);
2969 ceph_put_mds_session(session);
2970 }
2971
2972 /*
2973 * drop all leases (and dentry refs) in preparation for umount
2974 */
2975 static void drop_leases(struct ceph_mds_client *mdsc)
2976 {
2977 int i;
2978
2979 dout("drop_leases\n");
2980 mutex_lock(&mdsc->mutex);
2981 for (i = 0; i < mdsc->max_sessions; i++) {
2982 struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i);
2983 if (!s)
2984 continue;
2985 mutex_unlock(&mdsc->mutex);
2986 mutex_lock(&s->s_mutex);
2987 mutex_unlock(&s->s_mutex);
2988 ceph_put_mds_session(s);
2989 mutex_lock(&mdsc->mutex);
2990 }
2991 mutex_unlock(&mdsc->mutex);
2992 }
2993
2994
2995
2996 /*
2997 * delayed work -- periodically trim expired leases, renew caps with mds
2998 */
2999 static void schedule_delayed(struct ceph_mds_client *mdsc)
3000 {
3001 int delay = 5;
3002 unsigned hz = round_jiffies_relative(HZ * delay);
3003 schedule_delayed_work(&mdsc->delayed_work, hz);
3004 }
3005
3006 static void delayed_work(struct work_struct *work)
3007 {
3008 int i;
3009 struct ceph_mds_client *mdsc =
3010 container_of(work, struct ceph_mds_client, delayed_work.work);
3011 int renew_interval;
3012 int renew_caps;
3013
3014 dout("mdsc delayed_work\n");
3015 ceph_check_delayed_caps(mdsc);
3016
3017 mutex_lock(&mdsc->mutex);
3018 renew_interval = mdsc->mdsmap->m_session_timeout >> 2;
3019 renew_caps = time_after_eq(jiffies, HZ*renew_interval +
3020 mdsc->last_renew_caps);
3021 if (renew_caps)
3022 mdsc->last_renew_caps = jiffies;
3023
3024 for (i = 0; i < mdsc->max_sessions; i++) {
3025 struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i);
3026 if (s == NULL)
3027 continue;
3028 if (s->s_state == CEPH_MDS_SESSION_CLOSING) {
3029 dout("resending session close request for mds%d\n",
3030 s->s_mds);
3031 request_close_session(mdsc, s);
3032 ceph_put_mds_session(s);
3033 continue;
3034 }
3035 if (s->s_ttl && time_after(jiffies, s->s_ttl)) {
3036 if (s->s_state == CEPH_MDS_SESSION_OPEN) {
3037 s->s_state = CEPH_MDS_SESSION_HUNG;
3038 pr_info("mds%d hung\n", s->s_mds);
3039 }
3040 }
3041 if (s->s_state < CEPH_MDS_SESSION_OPEN) {
3042 /* this mds is failed or recovering, just wait */
3043 ceph_put_mds_session(s);
3044 continue;
3045 }
3046 mutex_unlock(&mdsc->mutex);
3047
3048 mutex_lock(&s->s_mutex);
3049 if (renew_caps)
3050 send_renew_caps(mdsc, s);
3051 else
3052 ceph_con_keepalive(&s->s_con);
3053 ceph_add_cap_releases(mdsc, s);
3054 if (s->s_state == CEPH_MDS_SESSION_OPEN ||
3055 s->s_state == CEPH_MDS_SESSION_HUNG)
3056 ceph_send_cap_releases(mdsc, s);
3057 mutex_unlock(&s->s_mutex);
3058 ceph_put_mds_session(s);
3059
3060 mutex_lock(&mdsc->mutex);
3061 }
3062 mutex_unlock(&mdsc->mutex);
3063
3064 schedule_delayed(mdsc);
3065 }
3066
3067 int ceph_mdsc_init(struct ceph_fs_client *fsc)
3068
3069 {
3070 struct ceph_mds_client *mdsc;
3071
3072 mdsc = kzalloc(sizeof(struct ceph_mds_client), GFP_NOFS);
3073 if (!mdsc)
3074 return -ENOMEM;
3075 mdsc->fsc = fsc;
3076 fsc->mdsc = mdsc;
3077 mutex_init(&mdsc->mutex);
3078 mdsc->mdsmap = kzalloc(sizeof(*mdsc->mdsmap), GFP_NOFS);
3079 if (mdsc->mdsmap == NULL) {
3080 kfree(mdsc);
3081 return -ENOMEM;
3082 }
3083
3084 init_completion(&mdsc->safe_umount_waiters);
3085 init_waitqueue_head(&mdsc->session_close_wq);
3086 INIT_LIST_HEAD(&mdsc->waiting_for_map);
3087 mdsc->sessions = NULL;
3088 mdsc->max_sessions = 0;
3089 mdsc->stopping = 0;
3090 init_rwsem(&mdsc->snap_rwsem);
3091 mdsc->snap_realms = RB_ROOT;
3092 INIT_LIST_HEAD(&mdsc->snap_empty);
3093 spin_lock_init(&mdsc->snap_empty_lock);
3094 mdsc->last_tid = 0;
3095 mdsc->request_tree = RB_ROOT;
3096 INIT_DELAYED_WORK(&mdsc->delayed_work, delayed_work);
3097 mdsc->last_renew_caps = jiffies;
3098 INIT_LIST_HEAD(&mdsc->cap_delay_list);
3099 spin_lock_init(&mdsc->cap_delay_lock);
3100 INIT_LIST_HEAD(&mdsc->snap_flush_list);
3101 spin_lock_init(&mdsc->snap_flush_lock);
3102 mdsc->cap_flush_seq = 0;
3103 INIT_LIST_HEAD(&mdsc->cap_dirty);
3104 INIT_LIST_HEAD(&mdsc->cap_dirty_migrating);
3105 mdsc->num_cap_flushing = 0;
3106 spin_lock_init(&mdsc->cap_dirty_lock);
3107 init_waitqueue_head(&mdsc->cap_flushing_wq);
3108 spin_lock_init(&mdsc->dentry_lru_lock);
3109 INIT_LIST_HEAD(&mdsc->dentry_lru);
3110
3111 ceph_caps_init(mdsc);
3112 ceph_adjust_min_caps(mdsc, fsc->min_caps);
3113
3114 return 0;
3115 }
3116
3117 /*
3118 * Wait for safe replies on open mds requests. If we time out, drop
3119 * all requests from the tree to avoid dangling dentry refs.
3120 */
3121 static void wait_requests(struct ceph_mds_client *mdsc)
3122 {
3123 struct ceph_mds_request *req;
3124 struct ceph_fs_client *fsc = mdsc->fsc;
3125
3126 mutex_lock(&mdsc->mutex);
3127 if (__get_oldest_req(mdsc)) {
3128 mutex_unlock(&mdsc->mutex);
3129
3130 dout("wait_requests waiting for requests\n");
3131 wait_for_completion_timeout(&mdsc->safe_umount_waiters,
3132 fsc->client->options->mount_timeout * HZ);
3133
3134 /* tear down remaining requests */
3135 mutex_lock(&mdsc->mutex);
3136 while ((req = __get_oldest_req(mdsc))) {
3137 dout("wait_requests timed out on tid %llu\n",
3138 req->r_tid);
3139 __unregister_request(mdsc, req);
3140 }
3141 }
3142 mutex_unlock(&mdsc->mutex);
3143 dout("wait_requests done\n");
3144 }
3145
3146 /*
3147 * called before mount is ro, and before dentries are torn down.
3148 * (hmm, does this still race with new lookups?)
3149 */
3150 void ceph_mdsc_pre_umount(struct ceph_mds_client *mdsc)
3151 {
3152 dout("pre_umount\n");
3153 mdsc->stopping = 1;
3154
3155 drop_leases(mdsc);
3156 ceph_flush_dirty_caps(mdsc);
3157 wait_requests(mdsc);
3158
3159 /*
3160 * wait for reply handlers to drop their request refs and
3161 * their inode/dcache refs
3162 */
3163 ceph_msgr_flush();
3164 }
3165
3166 /*
3167 * wait for all write mds requests to flush.
3168 */
3169 static void wait_unsafe_requests(struct ceph_mds_client *mdsc, u64 want_tid)
3170 {
3171 struct ceph_mds_request *req = NULL, *nextreq;
3172 struct rb_node *n;
3173
3174 mutex_lock(&mdsc->mutex);
3175 dout("wait_unsafe_requests want %lld\n", want_tid);
3176 restart:
3177 req = __get_oldest_req(mdsc);
3178 while (req && req->r_tid <= want_tid) {
3179 /* find next request */
3180 n = rb_next(&req->r_node);
3181 if (n)
3182 nextreq = rb_entry(n, struct ceph_mds_request, r_node);
3183 else
3184 nextreq = NULL;
3185 if ((req->r_op & CEPH_MDS_OP_WRITE)) {
3186 /* write op */
3187 ceph_mdsc_get_request(req);
3188 if (nextreq)
3189 ceph_mdsc_get_request(nextreq);
3190 mutex_unlock(&mdsc->mutex);
3191 dout("wait_unsafe_requests wait on %llu (want %llu)\n",
3192 req->r_tid, want_tid);
3193 wait_for_completion(&req->r_safe_completion);
3194 mutex_lock(&mdsc->mutex);
3195 ceph_mdsc_put_request(req);
3196 if (!nextreq)
3197 break; /* next dne before, so we're done! */
3198 if (RB_EMPTY_NODE(&nextreq->r_node)) {
3199 /* next request was removed from tree */
3200 ceph_mdsc_put_request(nextreq);
3201 goto restart;
3202 }
3203 ceph_mdsc_put_request(nextreq); /* won't go away */
3204 }
3205 req = nextreq;
3206 }
3207 mutex_unlock(&mdsc->mutex);
3208 dout("wait_unsafe_requests done\n");
3209 }
3210
3211 void ceph_mdsc_sync(struct ceph_mds_client *mdsc)
3212 {
3213 u64 want_tid, want_flush;
3214
3215 if (mdsc->fsc->mount_state == CEPH_MOUNT_SHUTDOWN)
3216 return;
3217
3218 dout("sync\n");
3219 mutex_lock(&mdsc->mutex);
3220 want_tid = mdsc->last_tid;
3221 want_flush = mdsc->cap_flush_seq;
3222 mutex_unlock(&mdsc->mutex);
3223 dout("sync want tid %lld flush_seq %lld\n", want_tid, want_flush);
3224
3225 ceph_flush_dirty_caps(mdsc);
3226
3227 wait_unsafe_requests(mdsc, want_tid);
3228 wait_event(mdsc->cap_flushing_wq, check_cap_flush(mdsc, want_flush));
3229 }
3230
3231 /*
3232 * true if all sessions are closed, or we force unmount
3233 */
3234 static bool done_closing_sessions(struct ceph_mds_client *mdsc)
3235 {
3236 int i, n = 0;
3237
3238 if (mdsc->fsc->mount_state == CEPH_MOUNT_SHUTDOWN)
3239 return true;
3240
3241 mutex_lock(&mdsc->mutex);
3242 for (i = 0; i < mdsc->max_sessions; i++)
3243 if (mdsc->sessions[i])
3244 n++;
3245 mutex_unlock(&mdsc->mutex);
3246 return n == 0;
3247 }
3248
3249 /*
3250 * called after sb is ro.
3251 */
3252 void ceph_mdsc_close_sessions(struct ceph_mds_client *mdsc)
3253 {
3254 struct ceph_mds_session *session;
3255 int i;
3256 struct ceph_fs_client *fsc = mdsc->fsc;
3257 unsigned long timeout = fsc->client->options->mount_timeout * HZ;
3258
3259 dout("close_sessions\n");
3260
3261 /* close sessions */
3262 mutex_lock(&mdsc->mutex);
3263 for (i = 0; i < mdsc->max_sessions; i++) {
3264 session = __ceph_lookup_mds_session(mdsc, i);
3265 if (!session)
3266 continue;
3267 mutex_unlock(&mdsc->mutex);
3268 mutex_lock(&session->s_mutex);
3269 __close_session(mdsc, session);
3270 mutex_unlock(&session->s_mutex);
3271 ceph_put_mds_session(session);
3272 mutex_lock(&mdsc->mutex);
3273 }
3274 mutex_unlock(&mdsc->mutex);
3275
3276 dout("waiting for sessions to close\n");
3277 wait_event_timeout(mdsc->session_close_wq, done_closing_sessions(mdsc),
3278 timeout);
3279
3280 /* tear down remaining sessions */
3281 mutex_lock(&mdsc->mutex);
3282 for (i = 0; i < mdsc->max_sessions; i++) {
3283 if (mdsc->sessions[i]) {
3284 session = get_session(mdsc->sessions[i]);
3285 __unregister_session(mdsc, session);
3286 mutex_unlock(&mdsc->mutex);
3287 mutex_lock(&session->s_mutex);
3288 remove_session_caps(session);
3289 mutex_unlock(&session->s_mutex);
3290 ceph_put_mds_session(session);
3291 mutex_lock(&mdsc->mutex);
3292 }
3293 }
3294 WARN_ON(!list_empty(&mdsc->cap_delay_list));
3295 mutex_unlock(&mdsc->mutex);
3296
3297 ceph_cleanup_empty_realms(mdsc);
3298
3299 cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */
3300
3301 dout("stopped\n");
3302 }
3303
3304 static void ceph_mdsc_stop(struct ceph_mds_client *mdsc)
3305 {
3306 dout("stop\n");
3307 cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */
3308 if (mdsc->mdsmap)
3309 ceph_mdsmap_destroy(mdsc->mdsmap);
3310 kfree(mdsc->sessions);
3311 ceph_caps_finalize(mdsc);
3312 }
3313
3314 void ceph_mdsc_destroy(struct ceph_fs_client *fsc)
3315 {
3316 struct ceph_mds_client *mdsc = fsc->mdsc;
3317
3318 dout("mdsc_destroy %p\n", mdsc);
3319 ceph_mdsc_stop(mdsc);
3320
3321 /* flush out any connection work with references to us */
3322 ceph_msgr_flush();
3323
3324 fsc->mdsc = NULL;
3325 kfree(mdsc);
3326 dout("mdsc_destroy %p done\n", mdsc);
3327 }
3328
3329
3330 /*
3331 * handle mds map update.
3332 */
3333 void ceph_mdsc_handle_map(struct ceph_mds_client *mdsc, struct ceph_msg *msg)
3334 {
3335 u32 epoch;
3336 u32 maplen;
3337 void *p = msg->front.iov_base;
3338 void *end = p + msg->front.iov_len;
3339 struct ceph_mdsmap *newmap, *oldmap;
3340 struct ceph_fsid fsid;
3341 int err = -EINVAL;
3342
3343 ceph_decode_need(&p, end, sizeof(fsid)+2*sizeof(u32), bad);
3344 ceph_decode_copy(&p, &fsid, sizeof(fsid));
3345 if (ceph_check_fsid(mdsc->fsc->client, &fsid) < 0)
3346 return;
3347 epoch = ceph_decode_32(&p);
3348 maplen = ceph_decode_32(&p);
3349 dout("handle_map epoch %u len %d\n", epoch, (int)maplen);
3350
3351 /* do we need it? */
3352 ceph_monc_got_mdsmap(&mdsc->fsc->client->monc, epoch);
3353 mutex_lock(&mdsc->mutex);
3354 if (mdsc->mdsmap && epoch <= mdsc->mdsmap->m_epoch) {
3355 dout("handle_map epoch %u <= our %u\n",
3356 epoch, mdsc->mdsmap->m_epoch);
3357 mutex_unlock(&mdsc->mutex);
3358 return;
3359 }
3360
3361 newmap = ceph_mdsmap_decode(&p, end);
3362 if (IS_ERR(newmap)) {
3363 err = PTR_ERR(newmap);
3364 goto bad_unlock;
3365 }
3366
3367 /* swap into place */
3368 if (mdsc->mdsmap) {
3369 oldmap = mdsc->mdsmap;
3370 mdsc->mdsmap = newmap;
3371 check_new_map(mdsc, newmap, oldmap);
3372 ceph_mdsmap_destroy(oldmap);
3373 } else {
3374 mdsc->mdsmap = newmap; /* first mds map */
3375 }
3376 mdsc->fsc->sb->s_maxbytes = mdsc->mdsmap->m_max_file_size;
3377
3378 __wake_requests(mdsc, &mdsc->waiting_for_map);
3379
3380 mutex_unlock(&mdsc->mutex);
3381 schedule_delayed(mdsc);
3382 return;
3383
3384 bad_unlock:
3385 mutex_unlock(&mdsc->mutex);
3386 bad:
3387 pr_err("error decoding mdsmap %d\n", err);
3388 return;
3389 }
3390
3391 static struct ceph_connection *con_get(struct ceph_connection *con)
3392 {
3393 struct ceph_mds_session *s = con->private;
3394
3395 if (get_session(s)) {
3396 dout("mdsc con_get %p ok (%d)\n", s, atomic_read(&s->s_ref));
3397 return con;
3398 }
3399 dout("mdsc con_get %p FAIL\n", s);
3400 return NULL;
3401 }
3402
3403 static void con_put(struct ceph_connection *con)
3404 {
3405 struct ceph_mds_session *s = con->private;
3406
3407 dout("mdsc con_put %p (%d)\n", s, atomic_read(&s->s_ref) - 1);
3408 ceph_put_mds_session(s);
3409 }
3410
3411 /*
3412 * if the client is unresponsive for long enough, the mds will kill
3413 * the session entirely.
3414 */
3415 static void peer_reset(struct ceph_connection *con)
3416 {
3417 struct ceph_mds_session *s = con->private;
3418 struct ceph_mds_client *mdsc = s->s_mdsc;
3419
3420 pr_warning("mds%d closed our session\n", s->s_mds);
3421 send_mds_reconnect(mdsc, s);
3422 }
3423
3424 static void dispatch(struct ceph_connection *con, struct ceph_msg *msg)
3425 {
3426 struct ceph_mds_session *s = con->private;
3427 struct ceph_mds_client *mdsc = s->s_mdsc;
3428 int type = le16_to_cpu(msg->hdr.type);
3429
3430 mutex_lock(&mdsc->mutex);
3431 if (__verify_registered_session(mdsc, s) < 0) {
3432 mutex_unlock(&mdsc->mutex);
3433 goto out;
3434 }
3435 mutex_unlock(&mdsc->mutex);
3436
3437 switch (type) {
3438 case CEPH_MSG_MDS_MAP:
3439 ceph_mdsc_handle_map(mdsc, msg);
3440 break;
3441 case CEPH_MSG_CLIENT_SESSION:
3442 handle_session(s, msg);
3443 break;
3444 case CEPH_MSG_CLIENT_REPLY:
3445 handle_reply(s, msg);
3446 break;
3447 case CEPH_MSG_CLIENT_REQUEST_FORWARD:
3448 handle_forward(mdsc, s, msg);
3449 break;
3450 case CEPH_MSG_CLIENT_CAPS:
3451 ceph_handle_caps(s, msg);
3452 break;
3453 case CEPH_MSG_CLIENT_SNAP:
3454 ceph_handle_snap(mdsc, s, msg);
3455 break;
3456 case CEPH_MSG_CLIENT_LEASE:
3457 handle_lease(mdsc, s, msg);
3458 break;
3459
3460 default:
3461 pr_err("received unknown message type %d %s\n", type,
3462 ceph_msg_type_name(type));
3463 }
3464 out:
3465 ceph_msg_put(msg);
3466 }
3467
3468 /*
3469 * authentication
3470 */
3471
3472 /*
3473 * Note: returned pointer is the address of a structure that's
3474 * managed separately. Caller must *not* attempt to free it.
3475 */
3476 static struct ceph_auth_handshake *get_authorizer(struct ceph_connection *con,
3477 int *proto, int force_new)
3478 {
3479 struct ceph_mds_session *s = con->private;
3480 struct ceph_mds_client *mdsc = s->s_mdsc;
3481 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
3482 struct ceph_auth_handshake *auth = &s->s_auth;
3483
3484 if (force_new && auth->authorizer) {
3485 ceph_auth_destroy_authorizer(ac, auth->authorizer);
3486 auth->authorizer = NULL;
3487 }
3488 if (!auth->authorizer) {
3489 int ret = ceph_auth_create_authorizer(ac, CEPH_ENTITY_TYPE_MDS,
3490 auth);
3491 if (ret)
3492 return ERR_PTR(ret);
3493 } else {
3494 int ret = ceph_auth_update_authorizer(ac, CEPH_ENTITY_TYPE_MDS,
3495 auth);
3496 if (ret)
3497 return ERR_PTR(ret);
3498 }
3499 *proto = ac->protocol;
3500
3501 return auth;
3502 }
3503
3504
3505 static int verify_authorizer_reply(struct ceph_connection *con, int len)
3506 {
3507 struct ceph_mds_session *s = con->private;
3508 struct ceph_mds_client *mdsc = s->s_mdsc;
3509 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
3510
3511 return ceph_auth_verify_authorizer_reply(ac, s->s_auth.authorizer, len);
3512 }
3513
3514 static int invalidate_authorizer(struct ceph_connection *con)
3515 {
3516 struct ceph_mds_session *s = con->private;
3517 struct ceph_mds_client *mdsc = s->s_mdsc;
3518 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
3519
3520 ceph_auth_invalidate_authorizer(ac, CEPH_ENTITY_TYPE_MDS);
3521
3522 return ceph_monc_validate_auth(&mdsc->fsc->client->monc);
3523 }
3524
3525 static struct ceph_msg *mds_alloc_msg(struct ceph_connection *con,
3526 struct ceph_msg_header *hdr, int *skip)
3527 {
3528 struct ceph_msg *msg;
3529 int type = (int) le16_to_cpu(hdr->type);
3530 int front_len = (int) le32_to_cpu(hdr->front_len);
3531
3532 if (con->in_msg)
3533 return con->in_msg;
3534
3535 *skip = 0;
3536 msg = ceph_msg_new(type, front_len, GFP_NOFS, false);
3537 if (!msg) {
3538 pr_err("unable to allocate msg type %d len %d\n",
3539 type, front_len);
3540 return NULL;
3541 }
3542
3543 return msg;
3544 }
3545
3546 static const struct ceph_connection_operations mds_con_ops = {
3547 .get = con_get,
3548 .put = con_put,
3549 .dispatch = dispatch,
3550 .get_authorizer = get_authorizer,
3551 .verify_authorizer_reply = verify_authorizer_reply,
3552 .invalidate_authorizer = invalidate_authorizer,
3553 .peer_reset = peer_reset,
3554 .alloc_msg = mds_alloc_msg,
3555 };
3556
3557 /* eof */