]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - fs/ceph/mds_client.c
ceph: renew caps for read/write if mds session got killed.
[mirror_ubuntu-focal-kernel.git] / fs / ceph / mds_client.c
1 #include <linux/ceph/ceph_debug.h>
2
3 #include <linux/fs.h>
4 #include <linux/wait.h>
5 #include <linux/slab.h>
6 #include <linux/gfp.h>
7 #include <linux/sched.h>
8 #include <linux/debugfs.h>
9 #include <linux/seq_file.h>
10 #include <linux/utsname.h>
11 #include <linux/ratelimit.h>
12
13 #include "super.h"
14 #include "mds_client.h"
15
16 #include <linux/ceph/ceph_features.h>
17 #include <linux/ceph/messenger.h>
18 #include <linux/ceph/decode.h>
19 #include <linux/ceph/pagelist.h>
20 #include <linux/ceph/auth.h>
21 #include <linux/ceph/debugfs.h>
22
23 /*
24 * A cluster of MDS (metadata server) daemons is responsible for
25 * managing the file system namespace (the directory hierarchy and
26 * inodes) and for coordinating shared access to storage. Metadata is
27 * partitioning hierarchically across a number of servers, and that
28 * partition varies over time as the cluster adjusts the distribution
29 * in order to balance load.
30 *
31 * The MDS client is primarily responsible to managing synchronous
32 * metadata requests for operations like open, unlink, and so forth.
33 * If there is a MDS failure, we find out about it when we (possibly
34 * request and) receive a new MDS map, and can resubmit affected
35 * requests.
36 *
37 * For the most part, though, we take advantage of a lossless
38 * communications channel to the MDS, and do not need to worry about
39 * timing out or resubmitting requests.
40 *
41 * We maintain a stateful "session" with each MDS we interact with.
42 * Within each session, we sent periodic heartbeat messages to ensure
43 * any capabilities or leases we have been issues remain valid. If
44 * the session times out and goes stale, our leases and capabilities
45 * are no longer valid.
46 */
47
48 struct ceph_reconnect_state {
49 int nr_caps;
50 struct ceph_pagelist *pagelist;
51 bool flock;
52 };
53
54 static void __wake_requests(struct ceph_mds_client *mdsc,
55 struct list_head *head);
56
57 static const struct ceph_connection_operations mds_con_ops;
58
59
60 /*
61 * mds reply parsing
62 */
63
64 /*
65 * parse individual inode info
66 */
67 static int parse_reply_info_in(void **p, void *end,
68 struct ceph_mds_reply_info_in *info,
69 u64 features)
70 {
71 int err = -EIO;
72
73 info->in = *p;
74 *p += sizeof(struct ceph_mds_reply_inode) +
75 sizeof(*info->in->fragtree.splits) *
76 le32_to_cpu(info->in->fragtree.nsplits);
77
78 ceph_decode_32_safe(p, end, info->symlink_len, bad);
79 ceph_decode_need(p, end, info->symlink_len, bad);
80 info->symlink = *p;
81 *p += info->symlink_len;
82
83 if (features & CEPH_FEATURE_DIRLAYOUTHASH)
84 ceph_decode_copy_safe(p, end, &info->dir_layout,
85 sizeof(info->dir_layout), bad);
86 else
87 memset(&info->dir_layout, 0, sizeof(info->dir_layout));
88
89 ceph_decode_32_safe(p, end, info->xattr_len, bad);
90 ceph_decode_need(p, end, info->xattr_len, bad);
91 info->xattr_data = *p;
92 *p += info->xattr_len;
93
94 if (features & CEPH_FEATURE_MDS_INLINE_DATA) {
95 ceph_decode_64_safe(p, end, info->inline_version, bad);
96 ceph_decode_32_safe(p, end, info->inline_len, bad);
97 ceph_decode_need(p, end, info->inline_len, bad);
98 info->inline_data = *p;
99 *p += info->inline_len;
100 } else
101 info->inline_version = CEPH_INLINE_NONE;
102
103 if (features & CEPH_FEATURE_FS_FILE_LAYOUT_V2) {
104 ceph_decode_32_safe(p, end, info->pool_ns_len, bad);
105 ceph_decode_need(p, end, info->pool_ns_len, bad);
106 *p += info->pool_ns_len;
107 } else {
108 info->pool_ns_len = 0;
109 }
110
111 return 0;
112 bad:
113 return err;
114 }
115
116 /*
117 * parse a normal reply, which may contain a (dir+)dentry and/or a
118 * target inode.
119 */
120 static int parse_reply_info_trace(void **p, void *end,
121 struct ceph_mds_reply_info_parsed *info,
122 u64 features)
123 {
124 int err;
125
126 if (info->head->is_dentry) {
127 err = parse_reply_info_in(p, end, &info->diri, features);
128 if (err < 0)
129 goto out_bad;
130
131 if (unlikely(*p + sizeof(*info->dirfrag) > end))
132 goto bad;
133 info->dirfrag = *p;
134 *p += sizeof(*info->dirfrag) +
135 sizeof(u32)*le32_to_cpu(info->dirfrag->ndist);
136 if (unlikely(*p > end))
137 goto bad;
138
139 ceph_decode_32_safe(p, end, info->dname_len, bad);
140 ceph_decode_need(p, end, info->dname_len, bad);
141 info->dname = *p;
142 *p += info->dname_len;
143 info->dlease = *p;
144 *p += sizeof(*info->dlease);
145 }
146
147 if (info->head->is_target) {
148 err = parse_reply_info_in(p, end, &info->targeti, features);
149 if (err < 0)
150 goto out_bad;
151 }
152
153 if (unlikely(*p != end))
154 goto bad;
155 return 0;
156
157 bad:
158 err = -EIO;
159 out_bad:
160 pr_err("problem parsing mds trace %d\n", err);
161 return err;
162 }
163
164 /*
165 * parse readdir results
166 */
167 static int parse_reply_info_dir(void **p, void *end,
168 struct ceph_mds_reply_info_parsed *info,
169 u64 features)
170 {
171 u32 num, i = 0;
172 int err;
173
174 info->dir_dir = *p;
175 if (*p + sizeof(*info->dir_dir) > end)
176 goto bad;
177 *p += sizeof(*info->dir_dir) +
178 sizeof(u32)*le32_to_cpu(info->dir_dir->ndist);
179 if (*p > end)
180 goto bad;
181
182 ceph_decode_need(p, end, sizeof(num) + 2, bad);
183 num = ceph_decode_32(p);
184 info->dir_end = ceph_decode_8(p);
185 info->dir_complete = ceph_decode_8(p);
186 if (num == 0)
187 goto done;
188
189 BUG_ON(!info->dir_in);
190 info->dir_dname = (void *)(info->dir_in + num);
191 info->dir_dname_len = (void *)(info->dir_dname + num);
192 info->dir_dlease = (void *)(info->dir_dname_len + num);
193 if ((unsigned long)(info->dir_dlease + num) >
194 (unsigned long)info->dir_in + info->dir_buf_size) {
195 pr_err("dir contents are larger than expected\n");
196 WARN_ON(1);
197 goto bad;
198 }
199
200 info->dir_nr = num;
201 while (num) {
202 /* dentry */
203 ceph_decode_need(p, end, sizeof(u32)*2, bad);
204 info->dir_dname_len[i] = ceph_decode_32(p);
205 ceph_decode_need(p, end, info->dir_dname_len[i], bad);
206 info->dir_dname[i] = *p;
207 *p += info->dir_dname_len[i];
208 dout("parsed dir dname '%.*s'\n", info->dir_dname_len[i],
209 info->dir_dname[i]);
210 info->dir_dlease[i] = *p;
211 *p += sizeof(struct ceph_mds_reply_lease);
212
213 /* inode */
214 err = parse_reply_info_in(p, end, &info->dir_in[i], features);
215 if (err < 0)
216 goto out_bad;
217 i++;
218 num--;
219 }
220
221 done:
222 if (*p != end)
223 goto bad;
224 return 0;
225
226 bad:
227 err = -EIO;
228 out_bad:
229 pr_err("problem parsing dir contents %d\n", err);
230 return err;
231 }
232
233 /*
234 * parse fcntl F_GETLK results
235 */
236 static int parse_reply_info_filelock(void **p, void *end,
237 struct ceph_mds_reply_info_parsed *info,
238 u64 features)
239 {
240 if (*p + sizeof(*info->filelock_reply) > end)
241 goto bad;
242
243 info->filelock_reply = *p;
244 *p += sizeof(*info->filelock_reply);
245
246 if (unlikely(*p != end))
247 goto bad;
248 return 0;
249
250 bad:
251 return -EIO;
252 }
253
254 /*
255 * parse create results
256 */
257 static int parse_reply_info_create(void **p, void *end,
258 struct ceph_mds_reply_info_parsed *info,
259 u64 features)
260 {
261 if (features & CEPH_FEATURE_REPLY_CREATE_INODE) {
262 if (*p == end) {
263 info->has_create_ino = false;
264 } else {
265 info->has_create_ino = true;
266 info->ino = ceph_decode_64(p);
267 }
268 }
269
270 if (unlikely(*p != end))
271 goto bad;
272 return 0;
273
274 bad:
275 return -EIO;
276 }
277
278 /*
279 * parse extra results
280 */
281 static int parse_reply_info_extra(void **p, void *end,
282 struct ceph_mds_reply_info_parsed *info,
283 u64 features)
284 {
285 if (info->head->op == CEPH_MDS_OP_GETFILELOCK)
286 return parse_reply_info_filelock(p, end, info, features);
287 else if (info->head->op == CEPH_MDS_OP_READDIR ||
288 info->head->op == CEPH_MDS_OP_LSSNAP)
289 return parse_reply_info_dir(p, end, info, features);
290 else if (info->head->op == CEPH_MDS_OP_CREATE)
291 return parse_reply_info_create(p, end, info, features);
292 else
293 return -EIO;
294 }
295
296 /*
297 * parse entire mds reply
298 */
299 static int parse_reply_info(struct ceph_msg *msg,
300 struct ceph_mds_reply_info_parsed *info,
301 u64 features)
302 {
303 void *p, *end;
304 u32 len;
305 int err;
306
307 info->head = msg->front.iov_base;
308 p = msg->front.iov_base + sizeof(struct ceph_mds_reply_head);
309 end = p + msg->front.iov_len - sizeof(struct ceph_mds_reply_head);
310
311 /* trace */
312 ceph_decode_32_safe(&p, end, len, bad);
313 if (len > 0) {
314 ceph_decode_need(&p, end, len, bad);
315 err = parse_reply_info_trace(&p, p+len, info, features);
316 if (err < 0)
317 goto out_bad;
318 }
319
320 /* extra */
321 ceph_decode_32_safe(&p, end, len, bad);
322 if (len > 0) {
323 ceph_decode_need(&p, end, len, bad);
324 err = parse_reply_info_extra(&p, p+len, info, features);
325 if (err < 0)
326 goto out_bad;
327 }
328
329 /* snap blob */
330 ceph_decode_32_safe(&p, end, len, bad);
331 info->snapblob_len = len;
332 info->snapblob = p;
333 p += len;
334
335 if (p != end)
336 goto bad;
337 return 0;
338
339 bad:
340 err = -EIO;
341 out_bad:
342 pr_err("mds parse_reply err %d\n", err);
343 return err;
344 }
345
346 static void destroy_reply_info(struct ceph_mds_reply_info_parsed *info)
347 {
348 if (!info->dir_in)
349 return;
350 free_pages((unsigned long)info->dir_in, get_order(info->dir_buf_size));
351 }
352
353
354 /*
355 * sessions
356 */
357 const char *ceph_session_state_name(int s)
358 {
359 switch (s) {
360 case CEPH_MDS_SESSION_NEW: return "new";
361 case CEPH_MDS_SESSION_OPENING: return "opening";
362 case CEPH_MDS_SESSION_OPEN: return "open";
363 case CEPH_MDS_SESSION_HUNG: return "hung";
364 case CEPH_MDS_SESSION_CLOSING: return "closing";
365 case CEPH_MDS_SESSION_RESTARTING: return "restarting";
366 case CEPH_MDS_SESSION_RECONNECTING: return "reconnecting";
367 default: return "???";
368 }
369 }
370
371 static struct ceph_mds_session *get_session(struct ceph_mds_session *s)
372 {
373 if (atomic_inc_not_zero(&s->s_ref)) {
374 dout("mdsc get_session %p %d -> %d\n", s,
375 atomic_read(&s->s_ref)-1, atomic_read(&s->s_ref));
376 return s;
377 } else {
378 dout("mdsc get_session %p 0 -- FAIL", s);
379 return NULL;
380 }
381 }
382
383 void ceph_put_mds_session(struct ceph_mds_session *s)
384 {
385 dout("mdsc put_session %p %d -> %d\n", s,
386 atomic_read(&s->s_ref), atomic_read(&s->s_ref)-1);
387 if (atomic_dec_and_test(&s->s_ref)) {
388 if (s->s_auth.authorizer)
389 ceph_auth_destroy_authorizer(s->s_auth.authorizer);
390 kfree(s);
391 }
392 }
393
394 /*
395 * called under mdsc->mutex
396 */
397 struct ceph_mds_session *__ceph_lookup_mds_session(struct ceph_mds_client *mdsc,
398 int mds)
399 {
400 struct ceph_mds_session *session;
401
402 if (mds >= mdsc->max_sessions || mdsc->sessions[mds] == NULL)
403 return NULL;
404 session = mdsc->sessions[mds];
405 dout("lookup_mds_session %p %d\n", session,
406 atomic_read(&session->s_ref));
407 get_session(session);
408 return session;
409 }
410
411 static bool __have_session(struct ceph_mds_client *mdsc, int mds)
412 {
413 if (mds >= mdsc->max_sessions)
414 return false;
415 return mdsc->sessions[mds];
416 }
417
418 static int __verify_registered_session(struct ceph_mds_client *mdsc,
419 struct ceph_mds_session *s)
420 {
421 if (s->s_mds >= mdsc->max_sessions ||
422 mdsc->sessions[s->s_mds] != s)
423 return -ENOENT;
424 return 0;
425 }
426
427 /*
428 * create+register a new session for given mds.
429 * called under mdsc->mutex.
430 */
431 static struct ceph_mds_session *register_session(struct ceph_mds_client *mdsc,
432 int mds)
433 {
434 struct ceph_mds_session *s;
435
436 if (mds >= mdsc->mdsmap->m_max_mds)
437 return ERR_PTR(-EINVAL);
438
439 s = kzalloc(sizeof(*s), GFP_NOFS);
440 if (!s)
441 return ERR_PTR(-ENOMEM);
442 s->s_mdsc = mdsc;
443 s->s_mds = mds;
444 s->s_state = CEPH_MDS_SESSION_NEW;
445 s->s_ttl = 0;
446 s->s_seq = 0;
447 mutex_init(&s->s_mutex);
448
449 ceph_con_init(&s->s_con, s, &mds_con_ops, &mdsc->fsc->client->msgr);
450
451 spin_lock_init(&s->s_gen_ttl_lock);
452 s->s_cap_gen = 0;
453 s->s_cap_ttl = jiffies - 1;
454
455 spin_lock_init(&s->s_cap_lock);
456 s->s_renew_requested = 0;
457 s->s_renew_seq = 0;
458 INIT_LIST_HEAD(&s->s_caps);
459 s->s_nr_caps = 0;
460 s->s_trim_caps = 0;
461 atomic_set(&s->s_ref, 1);
462 INIT_LIST_HEAD(&s->s_waiting);
463 INIT_LIST_HEAD(&s->s_unsafe);
464 s->s_num_cap_releases = 0;
465 s->s_cap_reconnect = 0;
466 s->s_cap_iterator = NULL;
467 INIT_LIST_HEAD(&s->s_cap_releases);
468 INIT_LIST_HEAD(&s->s_cap_flushing);
469 INIT_LIST_HEAD(&s->s_cap_snaps_flushing);
470
471 dout("register_session mds%d\n", mds);
472 if (mds >= mdsc->max_sessions) {
473 int newmax = 1 << get_count_order(mds+1);
474 struct ceph_mds_session **sa;
475
476 dout("register_session realloc to %d\n", newmax);
477 sa = kcalloc(newmax, sizeof(void *), GFP_NOFS);
478 if (sa == NULL)
479 goto fail_realloc;
480 if (mdsc->sessions) {
481 memcpy(sa, mdsc->sessions,
482 mdsc->max_sessions * sizeof(void *));
483 kfree(mdsc->sessions);
484 }
485 mdsc->sessions = sa;
486 mdsc->max_sessions = newmax;
487 }
488 mdsc->sessions[mds] = s;
489 atomic_inc(&mdsc->num_sessions);
490 atomic_inc(&s->s_ref); /* one ref to sessions[], one to caller */
491
492 ceph_con_open(&s->s_con, CEPH_ENTITY_TYPE_MDS, mds,
493 ceph_mdsmap_get_addr(mdsc->mdsmap, mds));
494
495 return s;
496
497 fail_realloc:
498 kfree(s);
499 return ERR_PTR(-ENOMEM);
500 }
501
502 /*
503 * called under mdsc->mutex
504 */
505 static void __unregister_session(struct ceph_mds_client *mdsc,
506 struct ceph_mds_session *s)
507 {
508 dout("__unregister_session mds%d %p\n", s->s_mds, s);
509 BUG_ON(mdsc->sessions[s->s_mds] != s);
510 mdsc->sessions[s->s_mds] = NULL;
511 ceph_con_close(&s->s_con);
512 ceph_put_mds_session(s);
513 atomic_dec(&mdsc->num_sessions);
514 }
515
516 /*
517 * drop session refs in request.
518 *
519 * should be last request ref, or hold mdsc->mutex
520 */
521 static void put_request_session(struct ceph_mds_request *req)
522 {
523 if (req->r_session) {
524 ceph_put_mds_session(req->r_session);
525 req->r_session = NULL;
526 }
527 }
528
529 void ceph_mdsc_release_request(struct kref *kref)
530 {
531 struct ceph_mds_request *req = container_of(kref,
532 struct ceph_mds_request,
533 r_kref);
534 destroy_reply_info(&req->r_reply_info);
535 if (req->r_request)
536 ceph_msg_put(req->r_request);
537 if (req->r_reply)
538 ceph_msg_put(req->r_reply);
539 if (req->r_inode) {
540 ceph_put_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN);
541 iput(req->r_inode);
542 }
543 if (req->r_locked_dir)
544 ceph_put_cap_refs(ceph_inode(req->r_locked_dir), CEPH_CAP_PIN);
545 iput(req->r_target_inode);
546 if (req->r_dentry)
547 dput(req->r_dentry);
548 if (req->r_old_dentry)
549 dput(req->r_old_dentry);
550 if (req->r_old_dentry_dir) {
551 /*
552 * track (and drop pins for) r_old_dentry_dir
553 * separately, since r_old_dentry's d_parent may have
554 * changed between the dir mutex being dropped and
555 * this request being freed.
556 */
557 ceph_put_cap_refs(ceph_inode(req->r_old_dentry_dir),
558 CEPH_CAP_PIN);
559 iput(req->r_old_dentry_dir);
560 }
561 kfree(req->r_path1);
562 kfree(req->r_path2);
563 if (req->r_pagelist)
564 ceph_pagelist_release(req->r_pagelist);
565 put_request_session(req);
566 ceph_unreserve_caps(req->r_mdsc, &req->r_caps_reservation);
567 kfree(req);
568 }
569
570 DEFINE_RB_FUNCS(request, struct ceph_mds_request, r_tid, r_node)
571
572 /*
573 * lookup session, bump ref if found.
574 *
575 * called under mdsc->mutex.
576 */
577 static struct ceph_mds_request *
578 lookup_get_request(struct ceph_mds_client *mdsc, u64 tid)
579 {
580 struct ceph_mds_request *req;
581
582 req = lookup_request(&mdsc->request_tree, tid);
583 if (req)
584 ceph_mdsc_get_request(req);
585
586 return req;
587 }
588
589 /*
590 * Register an in-flight request, and assign a tid. Link to directory
591 * are modifying (if any).
592 *
593 * Called under mdsc->mutex.
594 */
595 static void __register_request(struct ceph_mds_client *mdsc,
596 struct ceph_mds_request *req,
597 struct inode *dir)
598 {
599 req->r_tid = ++mdsc->last_tid;
600 if (req->r_num_caps)
601 ceph_reserve_caps(mdsc, &req->r_caps_reservation,
602 req->r_num_caps);
603 dout("__register_request %p tid %lld\n", req, req->r_tid);
604 ceph_mdsc_get_request(req);
605 insert_request(&mdsc->request_tree, req);
606
607 req->r_uid = current_fsuid();
608 req->r_gid = current_fsgid();
609
610 if (mdsc->oldest_tid == 0 && req->r_op != CEPH_MDS_OP_SETFILELOCK)
611 mdsc->oldest_tid = req->r_tid;
612
613 if (dir) {
614 ihold(dir);
615 req->r_unsafe_dir = dir;
616 }
617 }
618
619 static void __unregister_request(struct ceph_mds_client *mdsc,
620 struct ceph_mds_request *req)
621 {
622 dout("__unregister_request %p tid %lld\n", req, req->r_tid);
623
624 if (req->r_tid == mdsc->oldest_tid) {
625 struct rb_node *p = rb_next(&req->r_node);
626 mdsc->oldest_tid = 0;
627 while (p) {
628 struct ceph_mds_request *next_req =
629 rb_entry(p, struct ceph_mds_request, r_node);
630 if (next_req->r_op != CEPH_MDS_OP_SETFILELOCK) {
631 mdsc->oldest_tid = next_req->r_tid;
632 break;
633 }
634 p = rb_next(p);
635 }
636 }
637
638 erase_request(&mdsc->request_tree, req);
639
640 if (req->r_unsafe_dir && req->r_got_unsafe) {
641 struct ceph_inode_info *ci = ceph_inode(req->r_unsafe_dir);
642 spin_lock(&ci->i_unsafe_lock);
643 list_del_init(&req->r_unsafe_dir_item);
644 spin_unlock(&ci->i_unsafe_lock);
645 }
646 if (req->r_target_inode && req->r_got_unsafe) {
647 struct ceph_inode_info *ci = ceph_inode(req->r_target_inode);
648 spin_lock(&ci->i_unsafe_lock);
649 list_del_init(&req->r_unsafe_target_item);
650 spin_unlock(&ci->i_unsafe_lock);
651 }
652
653 if (req->r_unsafe_dir) {
654 iput(req->r_unsafe_dir);
655 req->r_unsafe_dir = NULL;
656 }
657
658 complete_all(&req->r_safe_completion);
659
660 ceph_mdsc_put_request(req);
661 }
662
663 /*
664 * Choose mds to send request to next. If there is a hint set in the
665 * request (e.g., due to a prior forward hint from the mds), use that.
666 * Otherwise, consult frag tree and/or caps to identify the
667 * appropriate mds. If all else fails, choose randomly.
668 *
669 * Called under mdsc->mutex.
670 */
671 static struct dentry *get_nonsnap_parent(struct dentry *dentry)
672 {
673 /*
674 * we don't need to worry about protecting the d_parent access
675 * here because we never renaming inside the snapped namespace
676 * except to resplice to another snapdir, and either the old or new
677 * result is a valid result.
678 */
679 while (!IS_ROOT(dentry) && ceph_snap(d_inode(dentry)) != CEPH_NOSNAP)
680 dentry = dentry->d_parent;
681 return dentry;
682 }
683
684 static int __choose_mds(struct ceph_mds_client *mdsc,
685 struct ceph_mds_request *req)
686 {
687 struct inode *inode;
688 struct ceph_inode_info *ci;
689 struct ceph_cap *cap;
690 int mode = req->r_direct_mode;
691 int mds = -1;
692 u32 hash = req->r_direct_hash;
693 bool is_hash = req->r_direct_is_hash;
694
695 /*
696 * is there a specific mds we should try? ignore hint if we have
697 * no session and the mds is not up (active or recovering).
698 */
699 if (req->r_resend_mds >= 0 &&
700 (__have_session(mdsc, req->r_resend_mds) ||
701 ceph_mdsmap_get_state(mdsc->mdsmap, req->r_resend_mds) > 0)) {
702 dout("choose_mds using resend_mds mds%d\n",
703 req->r_resend_mds);
704 return req->r_resend_mds;
705 }
706
707 if (mode == USE_RANDOM_MDS)
708 goto random;
709
710 inode = NULL;
711 if (req->r_inode) {
712 inode = req->r_inode;
713 } else if (req->r_dentry) {
714 /* ignore race with rename; old or new d_parent is okay */
715 struct dentry *parent = req->r_dentry->d_parent;
716 struct inode *dir = d_inode(parent);
717
718 if (dir->i_sb != mdsc->fsc->sb) {
719 /* not this fs! */
720 inode = d_inode(req->r_dentry);
721 } else if (ceph_snap(dir) != CEPH_NOSNAP) {
722 /* direct snapped/virtual snapdir requests
723 * based on parent dir inode */
724 struct dentry *dn = get_nonsnap_parent(parent);
725 inode = d_inode(dn);
726 dout("__choose_mds using nonsnap parent %p\n", inode);
727 } else {
728 /* dentry target */
729 inode = d_inode(req->r_dentry);
730 if (!inode || mode == USE_AUTH_MDS) {
731 /* dir + name */
732 inode = dir;
733 hash = ceph_dentry_hash(dir, req->r_dentry);
734 is_hash = true;
735 }
736 }
737 }
738
739 dout("__choose_mds %p is_hash=%d (%d) mode %d\n", inode, (int)is_hash,
740 (int)hash, mode);
741 if (!inode)
742 goto random;
743 ci = ceph_inode(inode);
744
745 if (is_hash && S_ISDIR(inode->i_mode)) {
746 struct ceph_inode_frag frag;
747 int found;
748
749 ceph_choose_frag(ci, hash, &frag, &found);
750 if (found) {
751 if (mode == USE_ANY_MDS && frag.ndist > 0) {
752 u8 r;
753
754 /* choose a random replica */
755 get_random_bytes(&r, 1);
756 r %= frag.ndist;
757 mds = frag.dist[r];
758 dout("choose_mds %p %llx.%llx "
759 "frag %u mds%d (%d/%d)\n",
760 inode, ceph_vinop(inode),
761 frag.frag, mds,
762 (int)r, frag.ndist);
763 if (ceph_mdsmap_get_state(mdsc->mdsmap, mds) >=
764 CEPH_MDS_STATE_ACTIVE)
765 return mds;
766 }
767
768 /* since this file/dir wasn't known to be
769 * replicated, then we want to look for the
770 * authoritative mds. */
771 mode = USE_AUTH_MDS;
772 if (frag.mds >= 0) {
773 /* choose auth mds */
774 mds = frag.mds;
775 dout("choose_mds %p %llx.%llx "
776 "frag %u mds%d (auth)\n",
777 inode, ceph_vinop(inode), frag.frag, mds);
778 if (ceph_mdsmap_get_state(mdsc->mdsmap, mds) >=
779 CEPH_MDS_STATE_ACTIVE)
780 return mds;
781 }
782 }
783 }
784
785 spin_lock(&ci->i_ceph_lock);
786 cap = NULL;
787 if (mode == USE_AUTH_MDS)
788 cap = ci->i_auth_cap;
789 if (!cap && !RB_EMPTY_ROOT(&ci->i_caps))
790 cap = rb_entry(rb_first(&ci->i_caps), struct ceph_cap, ci_node);
791 if (!cap) {
792 spin_unlock(&ci->i_ceph_lock);
793 goto random;
794 }
795 mds = cap->session->s_mds;
796 dout("choose_mds %p %llx.%llx mds%d (%scap %p)\n",
797 inode, ceph_vinop(inode), mds,
798 cap == ci->i_auth_cap ? "auth " : "", cap);
799 spin_unlock(&ci->i_ceph_lock);
800 return mds;
801
802 random:
803 mds = ceph_mdsmap_get_random_mds(mdsc->mdsmap);
804 dout("choose_mds chose random mds%d\n", mds);
805 return mds;
806 }
807
808
809 /*
810 * session messages
811 */
812 static struct ceph_msg *create_session_msg(u32 op, u64 seq)
813 {
814 struct ceph_msg *msg;
815 struct ceph_mds_session_head *h;
816
817 msg = ceph_msg_new(CEPH_MSG_CLIENT_SESSION, sizeof(*h), GFP_NOFS,
818 false);
819 if (!msg) {
820 pr_err("create_session_msg ENOMEM creating msg\n");
821 return NULL;
822 }
823 h = msg->front.iov_base;
824 h->op = cpu_to_le32(op);
825 h->seq = cpu_to_le64(seq);
826
827 return msg;
828 }
829
830 /*
831 * session message, specialization for CEPH_SESSION_REQUEST_OPEN
832 * to include additional client metadata fields.
833 */
834 static struct ceph_msg *create_session_open_msg(struct ceph_mds_client *mdsc, u64 seq)
835 {
836 struct ceph_msg *msg;
837 struct ceph_mds_session_head *h;
838 int i = -1;
839 int metadata_bytes = 0;
840 int metadata_key_count = 0;
841 struct ceph_options *opt = mdsc->fsc->client->options;
842 void *p;
843
844 const char* metadata[][2] = {
845 {"hostname", utsname()->nodename},
846 {"kernel_version", utsname()->release},
847 {"entity_id", opt->name ? opt->name : ""},
848 {NULL, NULL}
849 };
850
851 /* Calculate serialized length of metadata */
852 metadata_bytes = 4; /* map length */
853 for (i = 0; metadata[i][0] != NULL; ++i) {
854 metadata_bytes += 8 + strlen(metadata[i][0]) +
855 strlen(metadata[i][1]);
856 metadata_key_count++;
857 }
858
859 /* Allocate the message */
860 msg = ceph_msg_new(CEPH_MSG_CLIENT_SESSION, sizeof(*h) + metadata_bytes,
861 GFP_NOFS, false);
862 if (!msg) {
863 pr_err("create_session_msg ENOMEM creating msg\n");
864 return NULL;
865 }
866 h = msg->front.iov_base;
867 h->op = cpu_to_le32(CEPH_SESSION_REQUEST_OPEN);
868 h->seq = cpu_to_le64(seq);
869
870 /*
871 * Serialize client metadata into waiting buffer space, using
872 * the format that userspace expects for map<string, string>
873 *
874 * ClientSession messages with metadata are v2
875 */
876 msg->hdr.version = cpu_to_le16(2);
877 msg->hdr.compat_version = cpu_to_le16(1);
878
879 /* The write pointer, following the session_head structure */
880 p = msg->front.iov_base + sizeof(*h);
881
882 /* Number of entries in the map */
883 ceph_encode_32(&p, metadata_key_count);
884
885 /* Two length-prefixed strings for each entry in the map */
886 for (i = 0; metadata[i][0] != NULL; ++i) {
887 size_t const key_len = strlen(metadata[i][0]);
888 size_t const val_len = strlen(metadata[i][1]);
889
890 ceph_encode_32(&p, key_len);
891 memcpy(p, metadata[i][0], key_len);
892 p += key_len;
893 ceph_encode_32(&p, val_len);
894 memcpy(p, metadata[i][1], val_len);
895 p += val_len;
896 }
897
898 return msg;
899 }
900
901 /*
902 * send session open request.
903 *
904 * called under mdsc->mutex
905 */
906 static int __open_session(struct ceph_mds_client *mdsc,
907 struct ceph_mds_session *session)
908 {
909 struct ceph_msg *msg;
910 int mstate;
911 int mds = session->s_mds;
912
913 /* wait for mds to go active? */
914 mstate = ceph_mdsmap_get_state(mdsc->mdsmap, mds);
915 dout("open_session to mds%d (%s)\n", mds,
916 ceph_mds_state_name(mstate));
917 session->s_state = CEPH_MDS_SESSION_OPENING;
918 session->s_renew_requested = jiffies;
919
920 /* send connect message */
921 msg = create_session_open_msg(mdsc, session->s_seq);
922 if (!msg)
923 return -ENOMEM;
924 ceph_con_send(&session->s_con, msg);
925 return 0;
926 }
927
928 /*
929 * open sessions for any export targets for the given mds
930 *
931 * called under mdsc->mutex
932 */
933 static struct ceph_mds_session *
934 __open_export_target_session(struct ceph_mds_client *mdsc, int target)
935 {
936 struct ceph_mds_session *session;
937
938 session = __ceph_lookup_mds_session(mdsc, target);
939 if (!session) {
940 session = register_session(mdsc, target);
941 if (IS_ERR(session))
942 return session;
943 }
944 if (session->s_state == CEPH_MDS_SESSION_NEW ||
945 session->s_state == CEPH_MDS_SESSION_CLOSING)
946 __open_session(mdsc, session);
947
948 return session;
949 }
950
951 struct ceph_mds_session *
952 ceph_mdsc_open_export_target_session(struct ceph_mds_client *mdsc, int target)
953 {
954 struct ceph_mds_session *session;
955
956 dout("open_export_target_session to mds%d\n", target);
957
958 mutex_lock(&mdsc->mutex);
959 session = __open_export_target_session(mdsc, target);
960 mutex_unlock(&mdsc->mutex);
961
962 return session;
963 }
964
965 static void __open_export_target_sessions(struct ceph_mds_client *mdsc,
966 struct ceph_mds_session *session)
967 {
968 struct ceph_mds_info *mi;
969 struct ceph_mds_session *ts;
970 int i, mds = session->s_mds;
971
972 if (mds >= mdsc->mdsmap->m_max_mds)
973 return;
974
975 mi = &mdsc->mdsmap->m_info[mds];
976 dout("open_export_target_sessions for mds%d (%d targets)\n",
977 session->s_mds, mi->num_export_targets);
978
979 for (i = 0; i < mi->num_export_targets; i++) {
980 ts = __open_export_target_session(mdsc, mi->export_targets[i]);
981 if (!IS_ERR(ts))
982 ceph_put_mds_session(ts);
983 }
984 }
985
986 void ceph_mdsc_open_export_target_sessions(struct ceph_mds_client *mdsc,
987 struct ceph_mds_session *session)
988 {
989 mutex_lock(&mdsc->mutex);
990 __open_export_target_sessions(mdsc, session);
991 mutex_unlock(&mdsc->mutex);
992 }
993
994 /*
995 * session caps
996 */
997
998 /* caller holds s_cap_lock, we drop it */
999 static void cleanup_cap_releases(struct ceph_mds_client *mdsc,
1000 struct ceph_mds_session *session)
1001 __releases(session->s_cap_lock)
1002 {
1003 LIST_HEAD(tmp_list);
1004 list_splice_init(&session->s_cap_releases, &tmp_list);
1005 session->s_num_cap_releases = 0;
1006 spin_unlock(&session->s_cap_lock);
1007
1008 dout("cleanup_cap_releases mds%d\n", session->s_mds);
1009 while (!list_empty(&tmp_list)) {
1010 struct ceph_cap *cap;
1011 /* zero out the in-progress message */
1012 cap = list_first_entry(&tmp_list,
1013 struct ceph_cap, session_caps);
1014 list_del(&cap->session_caps);
1015 ceph_put_cap(mdsc, cap);
1016 }
1017 }
1018
1019 static void cleanup_session_requests(struct ceph_mds_client *mdsc,
1020 struct ceph_mds_session *session)
1021 {
1022 struct ceph_mds_request *req;
1023 struct rb_node *p;
1024
1025 dout("cleanup_session_requests mds%d\n", session->s_mds);
1026 mutex_lock(&mdsc->mutex);
1027 while (!list_empty(&session->s_unsafe)) {
1028 req = list_first_entry(&session->s_unsafe,
1029 struct ceph_mds_request, r_unsafe_item);
1030 list_del_init(&req->r_unsafe_item);
1031 pr_warn_ratelimited(" dropping unsafe request %llu\n",
1032 req->r_tid);
1033 __unregister_request(mdsc, req);
1034 }
1035 /* zero r_attempts, so kick_requests() will re-send requests */
1036 p = rb_first(&mdsc->request_tree);
1037 while (p) {
1038 req = rb_entry(p, struct ceph_mds_request, r_node);
1039 p = rb_next(p);
1040 if (req->r_session &&
1041 req->r_session->s_mds == session->s_mds)
1042 req->r_attempts = 0;
1043 }
1044 mutex_unlock(&mdsc->mutex);
1045 }
1046
1047 /*
1048 * Helper to safely iterate over all caps associated with a session, with
1049 * special care taken to handle a racing __ceph_remove_cap().
1050 *
1051 * Caller must hold session s_mutex.
1052 */
1053 static int iterate_session_caps(struct ceph_mds_session *session,
1054 int (*cb)(struct inode *, struct ceph_cap *,
1055 void *), void *arg)
1056 {
1057 struct list_head *p;
1058 struct ceph_cap *cap;
1059 struct inode *inode, *last_inode = NULL;
1060 struct ceph_cap *old_cap = NULL;
1061 int ret;
1062
1063 dout("iterate_session_caps %p mds%d\n", session, session->s_mds);
1064 spin_lock(&session->s_cap_lock);
1065 p = session->s_caps.next;
1066 while (p != &session->s_caps) {
1067 cap = list_entry(p, struct ceph_cap, session_caps);
1068 inode = igrab(&cap->ci->vfs_inode);
1069 if (!inode) {
1070 p = p->next;
1071 continue;
1072 }
1073 session->s_cap_iterator = cap;
1074 spin_unlock(&session->s_cap_lock);
1075
1076 if (last_inode) {
1077 iput(last_inode);
1078 last_inode = NULL;
1079 }
1080 if (old_cap) {
1081 ceph_put_cap(session->s_mdsc, old_cap);
1082 old_cap = NULL;
1083 }
1084
1085 ret = cb(inode, cap, arg);
1086 last_inode = inode;
1087
1088 spin_lock(&session->s_cap_lock);
1089 p = p->next;
1090 if (cap->ci == NULL) {
1091 dout("iterate_session_caps finishing cap %p removal\n",
1092 cap);
1093 BUG_ON(cap->session != session);
1094 cap->session = NULL;
1095 list_del_init(&cap->session_caps);
1096 session->s_nr_caps--;
1097 if (cap->queue_release) {
1098 list_add_tail(&cap->session_caps,
1099 &session->s_cap_releases);
1100 session->s_num_cap_releases++;
1101 } else {
1102 old_cap = cap; /* put_cap it w/o locks held */
1103 }
1104 }
1105 if (ret < 0)
1106 goto out;
1107 }
1108 ret = 0;
1109 out:
1110 session->s_cap_iterator = NULL;
1111 spin_unlock(&session->s_cap_lock);
1112
1113 iput(last_inode);
1114 if (old_cap)
1115 ceph_put_cap(session->s_mdsc, old_cap);
1116
1117 return ret;
1118 }
1119
1120 static int remove_session_caps_cb(struct inode *inode, struct ceph_cap *cap,
1121 void *arg)
1122 {
1123 struct ceph_inode_info *ci = ceph_inode(inode);
1124 LIST_HEAD(to_remove);
1125 int drop = 0;
1126
1127 dout("removing cap %p, ci is %p, inode is %p\n",
1128 cap, ci, &ci->vfs_inode);
1129 spin_lock(&ci->i_ceph_lock);
1130 __ceph_remove_cap(cap, false);
1131 if (!ci->i_auth_cap) {
1132 struct ceph_cap_flush *cf;
1133 struct ceph_mds_client *mdsc =
1134 ceph_sb_to_client(inode->i_sb)->mdsc;
1135
1136 ci->i_ceph_flags |= CEPH_I_CAP_DROPPED;
1137
1138 while (true) {
1139 struct rb_node *n = rb_first(&ci->i_cap_flush_tree);
1140 if (!n)
1141 break;
1142 cf = rb_entry(n, struct ceph_cap_flush, i_node);
1143 rb_erase(&cf->i_node, &ci->i_cap_flush_tree);
1144 list_add(&cf->list, &to_remove);
1145 }
1146
1147 spin_lock(&mdsc->cap_dirty_lock);
1148
1149 list_for_each_entry(cf, &to_remove, list)
1150 rb_erase(&cf->g_node, &mdsc->cap_flush_tree);
1151
1152 if (!list_empty(&ci->i_dirty_item)) {
1153 pr_warn_ratelimited(
1154 " dropping dirty %s state for %p %lld\n",
1155 ceph_cap_string(ci->i_dirty_caps),
1156 inode, ceph_ino(inode));
1157 ci->i_dirty_caps = 0;
1158 list_del_init(&ci->i_dirty_item);
1159 drop = 1;
1160 }
1161 if (!list_empty(&ci->i_flushing_item)) {
1162 pr_warn_ratelimited(
1163 " dropping dirty+flushing %s state for %p %lld\n",
1164 ceph_cap_string(ci->i_flushing_caps),
1165 inode, ceph_ino(inode));
1166 ci->i_flushing_caps = 0;
1167 list_del_init(&ci->i_flushing_item);
1168 mdsc->num_cap_flushing--;
1169 drop = 1;
1170 }
1171 spin_unlock(&mdsc->cap_dirty_lock);
1172
1173 if (!ci->i_dirty_caps && ci->i_prealloc_cap_flush) {
1174 list_add(&ci->i_prealloc_cap_flush->list, &to_remove);
1175 ci->i_prealloc_cap_flush = NULL;
1176 }
1177 }
1178 spin_unlock(&ci->i_ceph_lock);
1179 while (!list_empty(&to_remove)) {
1180 struct ceph_cap_flush *cf;
1181 cf = list_first_entry(&to_remove,
1182 struct ceph_cap_flush, list);
1183 list_del(&cf->list);
1184 ceph_free_cap_flush(cf);
1185 }
1186
1187 wake_up_all(&ci->i_cap_wq);
1188 if (drop)
1189 iput(inode);
1190 return 0;
1191 }
1192
1193 /*
1194 * caller must hold session s_mutex
1195 */
1196 static void remove_session_caps(struct ceph_mds_session *session)
1197 {
1198 dout("remove_session_caps on %p\n", session);
1199 iterate_session_caps(session, remove_session_caps_cb, NULL);
1200
1201 spin_lock(&session->s_cap_lock);
1202 if (session->s_nr_caps > 0) {
1203 struct super_block *sb = session->s_mdsc->fsc->sb;
1204 struct inode *inode;
1205 struct ceph_cap *cap, *prev = NULL;
1206 struct ceph_vino vino;
1207 /*
1208 * iterate_session_caps() skips inodes that are being
1209 * deleted, we need to wait until deletions are complete.
1210 * __wait_on_freeing_inode() is designed for the job,
1211 * but it is not exported, so use lookup inode function
1212 * to access it.
1213 */
1214 while (!list_empty(&session->s_caps)) {
1215 cap = list_entry(session->s_caps.next,
1216 struct ceph_cap, session_caps);
1217 if (cap == prev)
1218 break;
1219 prev = cap;
1220 vino = cap->ci->i_vino;
1221 spin_unlock(&session->s_cap_lock);
1222
1223 inode = ceph_find_inode(sb, vino);
1224 iput(inode);
1225
1226 spin_lock(&session->s_cap_lock);
1227 }
1228 }
1229
1230 // drop cap expires and unlock s_cap_lock
1231 cleanup_cap_releases(session->s_mdsc, session);
1232
1233 BUG_ON(session->s_nr_caps > 0);
1234 BUG_ON(!list_empty(&session->s_cap_flushing));
1235 }
1236
1237 /*
1238 * wake up any threads waiting on this session's caps. if the cap is
1239 * old (didn't get renewed on the client reconnect), remove it now.
1240 *
1241 * caller must hold s_mutex.
1242 */
1243 static int wake_up_session_cb(struct inode *inode, struct ceph_cap *cap,
1244 void *arg)
1245 {
1246 struct ceph_inode_info *ci = ceph_inode(inode);
1247
1248 wake_up_all(&ci->i_cap_wq);
1249 if (arg) {
1250 spin_lock(&ci->i_ceph_lock);
1251 ci->i_wanted_max_size = 0;
1252 ci->i_requested_max_size = 0;
1253 spin_unlock(&ci->i_ceph_lock);
1254 }
1255 return 0;
1256 }
1257
1258 static void wake_up_session_caps(struct ceph_mds_session *session,
1259 int reconnect)
1260 {
1261 dout("wake_up_session_caps %p mds%d\n", session, session->s_mds);
1262 iterate_session_caps(session, wake_up_session_cb,
1263 (void *)(unsigned long)reconnect);
1264 }
1265
1266 /*
1267 * Send periodic message to MDS renewing all currently held caps. The
1268 * ack will reset the expiration for all caps from this session.
1269 *
1270 * caller holds s_mutex
1271 */
1272 static int send_renew_caps(struct ceph_mds_client *mdsc,
1273 struct ceph_mds_session *session)
1274 {
1275 struct ceph_msg *msg;
1276 int state;
1277
1278 if (time_after_eq(jiffies, session->s_cap_ttl) &&
1279 time_after_eq(session->s_cap_ttl, session->s_renew_requested))
1280 pr_info("mds%d caps stale\n", session->s_mds);
1281 session->s_renew_requested = jiffies;
1282
1283 /* do not try to renew caps until a recovering mds has reconnected
1284 * with its clients. */
1285 state = ceph_mdsmap_get_state(mdsc->mdsmap, session->s_mds);
1286 if (state < CEPH_MDS_STATE_RECONNECT) {
1287 dout("send_renew_caps ignoring mds%d (%s)\n",
1288 session->s_mds, ceph_mds_state_name(state));
1289 return 0;
1290 }
1291
1292 dout("send_renew_caps to mds%d (%s)\n", session->s_mds,
1293 ceph_mds_state_name(state));
1294 msg = create_session_msg(CEPH_SESSION_REQUEST_RENEWCAPS,
1295 ++session->s_renew_seq);
1296 if (!msg)
1297 return -ENOMEM;
1298 ceph_con_send(&session->s_con, msg);
1299 return 0;
1300 }
1301
1302 static int send_flushmsg_ack(struct ceph_mds_client *mdsc,
1303 struct ceph_mds_session *session, u64 seq)
1304 {
1305 struct ceph_msg *msg;
1306
1307 dout("send_flushmsg_ack to mds%d (%s)s seq %lld\n",
1308 session->s_mds, ceph_session_state_name(session->s_state), seq);
1309 msg = create_session_msg(CEPH_SESSION_FLUSHMSG_ACK, seq);
1310 if (!msg)
1311 return -ENOMEM;
1312 ceph_con_send(&session->s_con, msg);
1313 return 0;
1314 }
1315
1316
1317 /*
1318 * Note new cap ttl, and any transition from stale -> not stale (fresh?).
1319 *
1320 * Called under session->s_mutex
1321 */
1322 static void renewed_caps(struct ceph_mds_client *mdsc,
1323 struct ceph_mds_session *session, int is_renew)
1324 {
1325 int was_stale;
1326 int wake = 0;
1327
1328 spin_lock(&session->s_cap_lock);
1329 was_stale = is_renew && time_after_eq(jiffies, session->s_cap_ttl);
1330
1331 session->s_cap_ttl = session->s_renew_requested +
1332 mdsc->mdsmap->m_session_timeout*HZ;
1333
1334 if (was_stale) {
1335 if (time_before(jiffies, session->s_cap_ttl)) {
1336 pr_info("mds%d caps renewed\n", session->s_mds);
1337 wake = 1;
1338 } else {
1339 pr_info("mds%d caps still stale\n", session->s_mds);
1340 }
1341 }
1342 dout("renewed_caps mds%d ttl now %lu, was %s, now %s\n",
1343 session->s_mds, session->s_cap_ttl, was_stale ? "stale" : "fresh",
1344 time_before(jiffies, session->s_cap_ttl) ? "stale" : "fresh");
1345 spin_unlock(&session->s_cap_lock);
1346
1347 if (wake)
1348 wake_up_session_caps(session, 0);
1349 }
1350
1351 /*
1352 * send a session close request
1353 */
1354 static int request_close_session(struct ceph_mds_client *mdsc,
1355 struct ceph_mds_session *session)
1356 {
1357 struct ceph_msg *msg;
1358
1359 dout("request_close_session mds%d state %s seq %lld\n",
1360 session->s_mds, ceph_session_state_name(session->s_state),
1361 session->s_seq);
1362 msg = create_session_msg(CEPH_SESSION_REQUEST_CLOSE, session->s_seq);
1363 if (!msg)
1364 return -ENOMEM;
1365 ceph_con_send(&session->s_con, msg);
1366 return 0;
1367 }
1368
1369 /*
1370 * Called with s_mutex held.
1371 */
1372 static int __close_session(struct ceph_mds_client *mdsc,
1373 struct ceph_mds_session *session)
1374 {
1375 if (session->s_state >= CEPH_MDS_SESSION_CLOSING)
1376 return 0;
1377 session->s_state = CEPH_MDS_SESSION_CLOSING;
1378 return request_close_session(mdsc, session);
1379 }
1380
1381 /*
1382 * Trim old(er) caps.
1383 *
1384 * Because we can't cache an inode without one or more caps, we do
1385 * this indirectly: if a cap is unused, we prune its aliases, at which
1386 * point the inode will hopefully get dropped to.
1387 *
1388 * Yes, this is a bit sloppy. Our only real goal here is to respond to
1389 * memory pressure from the MDS, though, so it needn't be perfect.
1390 */
1391 static int trim_caps_cb(struct inode *inode, struct ceph_cap *cap, void *arg)
1392 {
1393 struct ceph_mds_session *session = arg;
1394 struct ceph_inode_info *ci = ceph_inode(inode);
1395 int used, wanted, oissued, mine;
1396
1397 if (session->s_trim_caps <= 0)
1398 return -1;
1399
1400 spin_lock(&ci->i_ceph_lock);
1401 mine = cap->issued | cap->implemented;
1402 used = __ceph_caps_used(ci);
1403 wanted = __ceph_caps_file_wanted(ci);
1404 oissued = __ceph_caps_issued_other(ci, cap);
1405
1406 dout("trim_caps_cb %p cap %p mine %s oissued %s used %s wanted %s\n",
1407 inode, cap, ceph_cap_string(mine), ceph_cap_string(oissued),
1408 ceph_cap_string(used), ceph_cap_string(wanted));
1409 if (cap == ci->i_auth_cap) {
1410 if (ci->i_dirty_caps || ci->i_flushing_caps ||
1411 !list_empty(&ci->i_cap_snaps))
1412 goto out;
1413 if ((used | wanted) & CEPH_CAP_ANY_WR)
1414 goto out;
1415 }
1416 /* The inode has cached pages, but it's no longer used.
1417 * we can safely drop it */
1418 if (wanted == 0 && used == CEPH_CAP_FILE_CACHE &&
1419 !(oissued & CEPH_CAP_FILE_CACHE)) {
1420 used = 0;
1421 oissued = 0;
1422 }
1423 if ((used | wanted) & ~oissued & mine)
1424 goto out; /* we need these caps */
1425
1426 session->s_trim_caps--;
1427 if (oissued) {
1428 /* we aren't the only cap.. just remove us */
1429 __ceph_remove_cap(cap, true);
1430 } else {
1431 /* try dropping referring dentries */
1432 spin_unlock(&ci->i_ceph_lock);
1433 d_prune_aliases(inode);
1434 dout("trim_caps_cb %p cap %p pruned, count now %d\n",
1435 inode, cap, atomic_read(&inode->i_count));
1436 return 0;
1437 }
1438
1439 out:
1440 spin_unlock(&ci->i_ceph_lock);
1441 return 0;
1442 }
1443
1444 /*
1445 * Trim session cap count down to some max number.
1446 */
1447 static int trim_caps(struct ceph_mds_client *mdsc,
1448 struct ceph_mds_session *session,
1449 int max_caps)
1450 {
1451 int trim_caps = session->s_nr_caps - max_caps;
1452
1453 dout("trim_caps mds%d start: %d / %d, trim %d\n",
1454 session->s_mds, session->s_nr_caps, max_caps, trim_caps);
1455 if (trim_caps > 0) {
1456 session->s_trim_caps = trim_caps;
1457 iterate_session_caps(session, trim_caps_cb, session);
1458 dout("trim_caps mds%d done: %d / %d, trimmed %d\n",
1459 session->s_mds, session->s_nr_caps, max_caps,
1460 trim_caps - session->s_trim_caps);
1461 session->s_trim_caps = 0;
1462 }
1463
1464 ceph_send_cap_releases(mdsc, session);
1465 return 0;
1466 }
1467
1468 static int check_capsnap_flush(struct ceph_inode_info *ci,
1469 u64 want_snap_seq)
1470 {
1471 int ret = 1;
1472 spin_lock(&ci->i_ceph_lock);
1473 if (want_snap_seq > 0 && !list_empty(&ci->i_cap_snaps)) {
1474 struct ceph_cap_snap *capsnap =
1475 list_first_entry(&ci->i_cap_snaps,
1476 struct ceph_cap_snap, ci_item);
1477 ret = capsnap->follows >= want_snap_seq;
1478 }
1479 spin_unlock(&ci->i_ceph_lock);
1480 return ret;
1481 }
1482
1483 static int check_caps_flush(struct ceph_mds_client *mdsc,
1484 u64 want_flush_tid)
1485 {
1486 struct rb_node *n;
1487 struct ceph_cap_flush *cf;
1488 int ret = 1;
1489
1490 spin_lock(&mdsc->cap_dirty_lock);
1491 n = rb_first(&mdsc->cap_flush_tree);
1492 cf = n ? rb_entry(n, struct ceph_cap_flush, g_node) : NULL;
1493 if (cf && cf->tid <= want_flush_tid) {
1494 dout("check_caps_flush still flushing tid %llu <= %llu\n",
1495 cf->tid, want_flush_tid);
1496 ret = 0;
1497 }
1498 spin_unlock(&mdsc->cap_dirty_lock);
1499 return ret;
1500 }
1501
1502 /*
1503 * flush all dirty inode data to disk.
1504 *
1505 * returns true if we've flushed through want_flush_tid
1506 */
1507 static void wait_caps_flush(struct ceph_mds_client *mdsc,
1508 u64 want_flush_tid, u64 want_snap_seq)
1509 {
1510 int mds;
1511
1512 dout("check_caps_flush want %llu snap want %llu\n",
1513 want_flush_tid, want_snap_seq);
1514 mutex_lock(&mdsc->mutex);
1515 for (mds = 0; mds < mdsc->max_sessions; ) {
1516 struct ceph_mds_session *session = mdsc->sessions[mds];
1517 struct inode *inode = NULL;
1518
1519 if (!session) {
1520 mds++;
1521 continue;
1522 }
1523 get_session(session);
1524 mutex_unlock(&mdsc->mutex);
1525
1526 mutex_lock(&session->s_mutex);
1527 if (!list_empty(&session->s_cap_snaps_flushing)) {
1528 struct ceph_cap_snap *capsnap =
1529 list_first_entry(&session->s_cap_snaps_flushing,
1530 struct ceph_cap_snap,
1531 flushing_item);
1532 struct ceph_inode_info *ci = capsnap->ci;
1533 if (!check_capsnap_flush(ci, want_snap_seq)) {
1534 dout("check_cap_flush still flushing snap %p "
1535 "follows %lld <= %lld to mds%d\n",
1536 &ci->vfs_inode, capsnap->follows,
1537 want_snap_seq, mds);
1538 inode = igrab(&ci->vfs_inode);
1539 }
1540 }
1541 mutex_unlock(&session->s_mutex);
1542 ceph_put_mds_session(session);
1543
1544 if (inode) {
1545 wait_event(mdsc->cap_flushing_wq,
1546 check_capsnap_flush(ceph_inode(inode),
1547 want_snap_seq));
1548 iput(inode);
1549 } else {
1550 mds++;
1551 }
1552
1553 mutex_lock(&mdsc->mutex);
1554 }
1555 mutex_unlock(&mdsc->mutex);
1556
1557 wait_event(mdsc->cap_flushing_wq,
1558 check_caps_flush(mdsc, want_flush_tid));
1559
1560 dout("check_caps_flush ok, flushed thru %llu\n", want_flush_tid);
1561 }
1562
1563 /*
1564 * called under s_mutex
1565 */
1566 void ceph_send_cap_releases(struct ceph_mds_client *mdsc,
1567 struct ceph_mds_session *session)
1568 {
1569 struct ceph_msg *msg = NULL;
1570 struct ceph_mds_cap_release *head;
1571 struct ceph_mds_cap_item *item;
1572 struct ceph_cap *cap;
1573 LIST_HEAD(tmp_list);
1574 int num_cap_releases;
1575
1576 spin_lock(&session->s_cap_lock);
1577 again:
1578 list_splice_init(&session->s_cap_releases, &tmp_list);
1579 num_cap_releases = session->s_num_cap_releases;
1580 session->s_num_cap_releases = 0;
1581 spin_unlock(&session->s_cap_lock);
1582
1583 while (!list_empty(&tmp_list)) {
1584 if (!msg) {
1585 msg = ceph_msg_new(CEPH_MSG_CLIENT_CAPRELEASE,
1586 PAGE_SIZE, GFP_NOFS, false);
1587 if (!msg)
1588 goto out_err;
1589 head = msg->front.iov_base;
1590 head->num = cpu_to_le32(0);
1591 msg->front.iov_len = sizeof(*head);
1592 }
1593 cap = list_first_entry(&tmp_list, struct ceph_cap,
1594 session_caps);
1595 list_del(&cap->session_caps);
1596 num_cap_releases--;
1597
1598 head = msg->front.iov_base;
1599 le32_add_cpu(&head->num, 1);
1600 item = msg->front.iov_base + msg->front.iov_len;
1601 item->ino = cpu_to_le64(cap->cap_ino);
1602 item->cap_id = cpu_to_le64(cap->cap_id);
1603 item->migrate_seq = cpu_to_le32(cap->mseq);
1604 item->seq = cpu_to_le32(cap->issue_seq);
1605 msg->front.iov_len += sizeof(*item);
1606
1607 ceph_put_cap(mdsc, cap);
1608
1609 if (le32_to_cpu(head->num) == CEPH_CAPS_PER_RELEASE) {
1610 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
1611 dout("send_cap_releases mds%d %p\n", session->s_mds, msg);
1612 ceph_con_send(&session->s_con, msg);
1613 msg = NULL;
1614 }
1615 }
1616
1617 BUG_ON(num_cap_releases != 0);
1618
1619 spin_lock(&session->s_cap_lock);
1620 if (!list_empty(&session->s_cap_releases))
1621 goto again;
1622 spin_unlock(&session->s_cap_lock);
1623
1624 if (msg) {
1625 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
1626 dout("send_cap_releases mds%d %p\n", session->s_mds, msg);
1627 ceph_con_send(&session->s_con, msg);
1628 }
1629 return;
1630 out_err:
1631 pr_err("send_cap_releases mds%d, failed to allocate message\n",
1632 session->s_mds);
1633 spin_lock(&session->s_cap_lock);
1634 list_splice(&tmp_list, &session->s_cap_releases);
1635 session->s_num_cap_releases += num_cap_releases;
1636 spin_unlock(&session->s_cap_lock);
1637 }
1638
1639 /*
1640 * requests
1641 */
1642
1643 int ceph_alloc_readdir_reply_buffer(struct ceph_mds_request *req,
1644 struct inode *dir)
1645 {
1646 struct ceph_inode_info *ci = ceph_inode(dir);
1647 struct ceph_mds_reply_info_parsed *rinfo = &req->r_reply_info;
1648 struct ceph_mount_options *opt = req->r_mdsc->fsc->mount_options;
1649 size_t size = sizeof(*rinfo->dir_in) + sizeof(*rinfo->dir_dname_len) +
1650 sizeof(*rinfo->dir_dname) + sizeof(*rinfo->dir_dlease);
1651 int order, num_entries;
1652
1653 spin_lock(&ci->i_ceph_lock);
1654 num_entries = ci->i_files + ci->i_subdirs;
1655 spin_unlock(&ci->i_ceph_lock);
1656 num_entries = max(num_entries, 1);
1657 num_entries = min(num_entries, opt->max_readdir);
1658
1659 order = get_order(size * num_entries);
1660 while (order >= 0) {
1661 rinfo->dir_in = (void*)__get_free_pages(GFP_KERNEL |
1662 __GFP_NOWARN,
1663 order);
1664 if (rinfo->dir_in)
1665 break;
1666 order--;
1667 }
1668 if (!rinfo->dir_in)
1669 return -ENOMEM;
1670
1671 num_entries = (PAGE_SIZE << order) / size;
1672 num_entries = min(num_entries, opt->max_readdir);
1673
1674 rinfo->dir_buf_size = PAGE_SIZE << order;
1675 req->r_num_caps = num_entries + 1;
1676 req->r_args.readdir.max_entries = cpu_to_le32(num_entries);
1677 req->r_args.readdir.max_bytes = cpu_to_le32(opt->max_readdir_bytes);
1678 return 0;
1679 }
1680
1681 /*
1682 * Create an mds request.
1683 */
1684 struct ceph_mds_request *
1685 ceph_mdsc_create_request(struct ceph_mds_client *mdsc, int op, int mode)
1686 {
1687 struct ceph_mds_request *req = kzalloc(sizeof(*req), GFP_NOFS);
1688
1689 if (!req)
1690 return ERR_PTR(-ENOMEM);
1691
1692 mutex_init(&req->r_fill_mutex);
1693 req->r_mdsc = mdsc;
1694 req->r_started = jiffies;
1695 req->r_resend_mds = -1;
1696 INIT_LIST_HEAD(&req->r_unsafe_dir_item);
1697 INIT_LIST_HEAD(&req->r_unsafe_target_item);
1698 req->r_fmode = -1;
1699 kref_init(&req->r_kref);
1700 RB_CLEAR_NODE(&req->r_node);
1701 INIT_LIST_HEAD(&req->r_wait);
1702 init_completion(&req->r_completion);
1703 init_completion(&req->r_safe_completion);
1704 INIT_LIST_HEAD(&req->r_unsafe_item);
1705
1706 req->r_stamp = current_fs_time(mdsc->fsc->sb);
1707
1708 req->r_op = op;
1709 req->r_direct_mode = mode;
1710 return req;
1711 }
1712
1713 /*
1714 * return oldest (lowest) request, tid in request tree, 0 if none.
1715 *
1716 * called under mdsc->mutex.
1717 */
1718 static struct ceph_mds_request *__get_oldest_req(struct ceph_mds_client *mdsc)
1719 {
1720 if (RB_EMPTY_ROOT(&mdsc->request_tree))
1721 return NULL;
1722 return rb_entry(rb_first(&mdsc->request_tree),
1723 struct ceph_mds_request, r_node);
1724 }
1725
1726 static inline u64 __get_oldest_tid(struct ceph_mds_client *mdsc)
1727 {
1728 return mdsc->oldest_tid;
1729 }
1730
1731 /*
1732 * Build a dentry's path. Allocate on heap; caller must kfree. Based
1733 * on build_path_from_dentry in fs/cifs/dir.c.
1734 *
1735 * If @stop_on_nosnap, generate path relative to the first non-snapped
1736 * inode.
1737 *
1738 * Encode hidden .snap dirs as a double /, i.e.
1739 * foo/.snap/bar -> foo//bar
1740 */
1741 char *ceph_mdsc_build_path(struct dentry *dentry, int *plen, u64 *base,
1742 int stop_on_nosnap)
1743 {
1744 struct dentry *temp;
1745 char *path;
1746 int len, pos;
1747 unsigned seq;
1748
1749 if (dentry == NULL)
1750 return ERR_PTR(-EINVAL);
1751
1752 retry:
1753 len = 0;
1754 seq = read_seqbegin(&rename_lock);
1755 rcu_read_lock();
1756 for (temp = dentry; !IS_ROOT(temp);) {
1757 struct inode *inode = d_inode(temp);
1758 if (inode && ceph_snap(inode) == CEPH_SNAPDIR)
1759 len++; /* slash only */
1760 else if (stop_on_nosnap && inode &&
1761 ceph_snap(inode) == CEPH_NOSNAP)
1762 break;
1763 else
1764 len += 1 + temp->d_name.len;
1765 temp = temp->d_parent;
1766 }
1767 rcu_read_unlock();
1768 if (len)
1769 len--; /* no leading '/' */
1770
1771 path = kmalloc(len+1, GFP_NOFS);
1772 if (path == NULL)
1773 return ERR_PTR(-ENOMEM);
1774 pos = len;
1775 path[pos] = 0; /* trailing null */
1776 rcu_read_lock();
1777 for (temp = dentry; !IS_ROOT(temp) && pos != 0; ) {
1778 struct inode *inode;
1779
1780 spin_lock(&temp->d_lock);
1781 inode = d_inode(temp);
1782 if (inode && ceph_snap(inode) == CEPH_SNAPDIR) {
1783 dout("build_path path+%d: %p SNAPDIR\n",
1784 pos, temp);
1785 } else if (stop_on_nosnap && inode &&
1786 ceph_snap(inode) == CEPH_NOSNAP) {
1787 spin_unlock(&temp->d_lock);
1788 break;
1789 } else {
1790 pos -= temp->d_name.len;
1791 if (pos < 0) {
1792 spin_unlock(&temp->d_lock);
1793 break;
1794 }
1795 strncpy(path + pos, temp->d_name.name,
1796 temp->d_name.len);
1797 }
1798 spin_unlock(&temp->d_lock);
1799 if (pos)
1800 path[--pos] = '/';
1801 temp = temp->d_parent;
1802 }
1803 rcu_read_unlock();
1804 if (pos != 0 || read_seqretry(&rename_lock, seq)) {
1805 pr_err("build_path did not end path lookup where "
1806 "expected, namelen is %d, pos is %d\n", len, pos);
1807 /* presumably this is only possible if racing with a
1808 rename of one of the parent directories (we can not
1809 lock the dentries above us to prevent this, but
1810 retrying should be harmless) */
1811 kfree(path);
1812 goto retry;
1813 }
1814
1815 *base = ceph_ino(d_inode(temp));
1816 *plen = len;
1817 dout("build_path on %p %d built %llx '%.*s'\n",
1818 dentry, d_count(dentry), *base, len, path);
1819 return path;
1820 }
1821
1822 static int build_dentry_path(struct dentry *dentry,
1823 const char **ppath, int *ppathlen, u64 *pino,
1824 int *pfreepath)
1825 {
1826 char *path;
1827
1828 if (ceph_snap(d_inode(dentry->d_parent)) == CEPH_NOSNAP) {
1829 *pino = ceph_ino(d_inode(dentry->d_parent));
1830 *ppath = dentry->d_name.name;
1831 *ppathlen = dentry->d_name.len;
1832 return 0;
1833 }
1834 path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1);
1835 if (IS_ERR(path))
1836 return PTR_ERR(path);
1837 *ppath = path;
1838 *pfreepath = 1;
1839 return 0;
1840 }
1841
1842 static int build_inode_path(struct inode *inode,
1843 const char **ppath, int *ppathlen, u64 *pino,
1844 int *pfreepath)
1845 {
1846 struct dentry *dentry;
1847 char *path;
1848
1849 if (ceph_snap(inode) == CEPH_NOSNAP) {
1850 *pino = ceph_ino(inode);
1851 *ppathlen = 0;
1852 return 0;
1853 }
1854 dentry = d_find_alias(inode);
1855 path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1);
1856 dput(dentry);
1857 if (IS_ERR(path))
1858 return PTR_ERR(path);
1859 *ppath = path;
1860 *pfreepath = 1;
1861 return 0;
1862 }
1863
1864 /*
1865 * request arguments may be specified via an inode *, a dentry *, or
1866 * an explicit ino+path.
1867 */
1868 static int set_request_path_attr(struct inode *rinode, struct dentry *rdentry,
1869 const char *rpath, u64 rino,
1870 const char **ppath, int *pathlen,
1871 u64 *ino, int *freepath)
1872 {
1873 int r = 0;
1874
1875 if (rinode) {
1876 r = build_inode_path(rinode, ppath, pathlen, ino, freepath);
1877 dout(" inode %p %llx.%llx\n", rinode, ceph_ino(rinode),
1878 ceph_snap(rinode));
1879 } else if (rdentry) {
1880 r = build_dentry_path(rdentry, ppath, pathlen, ino, freepath);
1881 dout(" dentry %p %llx/%.*s\n", rdentry, *ino, *pathlen,
1882 *ppath);
1883 } else if (rpath || rino) {
1884 *ino = rino;
1885 *ppath = rpath;
1886 *pathlen = rpath ? strlen(rpath) : 0;
1887 dout(" path %.*s\n", *pathlen, rpath);
1888 }
1889
1890 return r;
1891 }
1892
1893 /*
1894 * called under mdsc->mutex
1895 */
1896 static struct ceph_msg *create_request_message(struct ceph_mds_client *mdsc,
1897 struct ceph_mds_request *req,
1898 int mds, bool drop_cap_releases)
1899 {
1900 struct ceph_msg *msg;
1901 struct ceph_mds_request_head *head;
1902 const char *path1 = NULL;
1903 const char *path2 = NULL;
1904 u64 ino1 = 0, ino2 = 0;
1905 int pathlen1 = 0, pathlen2 = 0;
1906 int freepath1 = 0, freepath2 = 0;
1907 int len;
1908 u16 releases;
1909 void *p, *end;
1910 int ret;
1911
1912 ret = set_request_path_attr(req->r_inode, req->r_dentry,
1913 req->r_path1, req->r_ino1.ino,
1914 &path1, &pathlen1, &ino1, &freepath1);
1915 if (ret < 0) {
1916 msg = ERR_PTR(ret);
1917 goto out;
1918 }
1919
1920 ret = set_request_path_attr(NULL, req->r_old_dentry,
1921 req->r_path2, req->r_ino2.ino,
1922 &path2, &pathlen2, &ino2, &freepath2);
1923 if (ret < 0) {
1924 msg = ERR_PTR(ret);
1925 goto out_free1;
1926 }
1927
1928 len = sizeof(*head) +
1929 pathlen1 + pathlen2 + 2*(1 + sizeof(u32) + sizeof(u64)) +
1930 sizeof(struct ceph_timespec);
1931
1932 /* calculate (max) length for cap releases */
1933 len += sizeof(struct ceph_mds_request_release) *
1934 (!!req->r_inode_drop + !!req->r_dentry_drop +
1935 !!req->r_old_inode_drop + !!req->r_old_dentry_drop);
1936 if (req->r_dentry_drop)
1937 len += req->r_dentry->d_name.len;
1938 if (req->r_old_dentry_drop)
1939 len += req->r_old_dentry->d_name.len;
1940
1941 msg = ceph_msg_new(CEPH_MSG_CLIENT_REQUEST, len, GFP_NOFS, false);
1942 if (!msg) {
1943 msg = ERR_PTR(-ENOMEM);
1944 goto out_free2;
1945 }
1946
1947 msg->hdr.version = cpu_to_le16(2);
1948 msg->hdr.tid = cpu_to_le64(req->r_tid);
1949
1950 head = msg->front.iov_base;
1951 p = msg->front.iov_base + sizeof(*head);
1952 end = msg->front.iov_base + msg->front.iov_len;
1953
1954 head->mdsmap_epoch = cpu_to_le32(mdsc->mdsmap->m_epoch);
1955 head->op = cpu_to_le32(req->r_op);
1956 head->caller_uid = cpu_to_le32(from_kuid(&init_user_ns, req->r_uid));
1957 head->caller_gid = cpu_to_le32(from_kgid(&init_user_ns, req->r_gid));
1958 head->args = req->r_args;
1959
1960 ceph_encode_filepath(&p, end, ino1, path1);
1961 ceph_encode_filepath(&p, end, ino2, path2);
1962
1963 /* make note of release offset, in case we need to replay */
1964 req->r_request_release_offset = p - msg->front.iov_base;
1965
1966 /* cap releases */
1967 releases = 0;
1968 if (req->r_inode_drop)
1969 releases += ceph_encode_inode_release(&p,
1970 req->r_inode ? req->r_inode : d_inode(req->r_dentry),
1971 mds, req->r_inode_drop, req->r_inode_unless, 0);
1972 if (req->r_dentry_drop)
1973 releases += ceph_encode_dentry_release(&p, req->r_dentry,
1974 mds, req->r_dentry_drop, req->r_dentry_unless);
1975 if (req->r_old_dentry_drop)
1976 releases += ceph_encode_dentry_release(&p, req->r_old_dentry,
1977 mds, req->r_old_dentry_drop, req->r_old_dentry_unless);
1978 if (req->r_old_inode_drop)
1979 releases += ceph_encode_inode_release(&p,
1980 d_inode(req->r_old_dentry),
1981 mds, req->r_old_inode_drop, req->r_old_inode_unless, 0);
1982
1983 if (drop_cap_releases) {
1984 releases = 0;
1985 p = msg->front.iov_base + req->r_request_release_offset;
1986 }
1987
1988 head->num_releases = cpu_to_le16(releases);
1989
1990 /* time stamp */
1991 {
1992 struct ceph_timespec ts;
1993 ceph_encode_timespec(&ts, &req->r_stamp);
1994 ceph_encode_copy(&p, &ts, sizeof(ts));
1995 }
1996
1997 BUG_ON(p > end);
1998 msg->front.iov_len = p - msg->front.iov_base;
1999 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
2000
2001 if (req->r_pagelist) {
2002 struct ceph_pagelist *pagelist = req->r_pagelist;
2003 atomic_inc(&pagelist->refcnt);
2004 ceph_msg_data_add_pagelist(msg, pagelist);
2005 msg->hdr.data_len = cpu_to_le32(pagelist->length);
2006 } else {
2007 msg->hdr.data_len = 0;
2008 }
2009
2010 msg->hdr.data_off = cpu_to_le16(0);
2011
2012 out_free2:
2013 if (freepath2)
2014 kfree((char *)path2);
2015 out_free1:
2016 if (freepath1)
2017 kfree((char *)path1);
2018 out:
2019 return msg;
2020 }
2021
2022 /*
2023 * called under mdsc->mutex if error, under no mutex if
2024 * success.
2025 */
2026 static void complete_request(struct ceph_mds_client *mdsc,
2027 struct ceph_mds_request *req)
2028 {
2029 if (req->r_callback)
2030 req->r_callback(mdsc, req);
2031 else
2032 complete_all(&req->r_completion);
2033 }
2034
2035 /*
2036 * called under mdsc->mutex
2037 */
2038 static int __prepare_send_request(struct ceph_mds_client *mdsc,
2039 struct ceph_mds_request *req,
2040 int mds, bool drop_cap_releases)
2041 {
2042 struct ceph_mds_request_head *rhead;
2043 struct ceph_msg *msg;
2044 int flags = 0;
2045
2046 req->r_attempts++;
2047 if (req->r_inode) {
2048 struct ceph_cap *cap =
2049 ceph_get_cap_for_mds(ceph_inode(req->r_inode), mds);
2050
2051 if (cap)
2052 req->r_sent_on_mseq = cap->mseq;
2053 else
2054 req->r_sent_on_mseq = -1;
2055 }
2056 dout("prepare_send_request %p tid %lld %s (attempt %d)\n", req,
2057 req->r_tid, ceph_mds_op_name(req->r_op), req->r_attempts);
2058
2059 if (req->r_got_unsafe) {
2060 void *p;
2061 /*
2062 * Replay. Do not regenerate message (and rebuild
2063 * paths, etc.); just use the original message.
2064 * Rebuilding paths will break for renames because
2065 * d_move mangles the src name.
2066 */
2067 msg = req->r_request;
2068 rhead = msg->front.iov_base;
2069
2070 flags = le32_to_cpu(rhead->flags);
2071 flags |= CEPH_MDS_FLAG_REPLAY;
2072 rhead->flags = cpu_to_le32(flags);
2073
2074 if (req->r_target_inode)
2075 rhead->ino = cpu_to_le64(ceph_ino(req->r_target_inode));
2076
2077 rhead->num_retry = req->r_attempts - 1;
2078
2079 /* remove cap/dentry releases from message */
2080 rhead->num_releases = 0;
2081
2082 /* time stamp */
2083 p = msg->front.iov_base + req->r_request_release_offset;
2084 {
2085 struct ceph_timespec ts;
2086 ceph_encode_timespec(&ts, &req->r_stamp);
2087 ceph_encode_copy(&p, &ts, sizeof(ts));
2088 }
2089
2090 msg->front.iov_len = p - msg->front.iov_base;
2091 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
2092 return 0;
2093 }
2094
2095 if (req->r_request) {
2096 ceph_msg_put(req->r_request);
2097 req->r_request = NULL;
2098 }
2099 msg = create_request_message(mdsc, req, mds, drop_cap_releases);
2100 if (IS_ERR(msg)) {
2101 req->r_err = PTR_ERR(msg);
2102 return PTR_ERR(msg);
2103 }
2104 req->r_request = msg;
2105
2106 rhead = msg->front.iov_base;
2107 rhead->oldest_client_tid = cpu_to_le64(__get_oldest_tid(mdsc));
2108 if (req->r_got_unsafe)
2109 flags |= CEPH_MDS_FLAG_REPLAY;
2110 if (req->r_locked_dir)
2111 flags |= CEPH_MDS_FLAG_WANT_DENTRY;
2112 rhead->flags = cpu_to_le32(flags);
2113 rhead->num_fwd = req->r_num_fwd;
2114 rhead->num_retry = req->r_attempts - 1;
2115 rhead->ino = 0;
2116
2117 dout(" r_locked_dir = %p\n", req->r_locked_dir);
2118 return 0;
2119 }
2120
2121 /*
2122 * send request, or put it on the appropriate wait list.
2123 */
2124 static int __do_request(struct ceph_mds_client *mdsc,
2125 struct ceph_mds_request *req)
2126 {
2127 struct ceph_mds_session *session = NULL;
2128 int mds = -1;
2129 int err = 0;
2130
2131 if (req->r_err || req->r_got_result) {
2132 if (req->r_aborted)
2133 __unregister_request(mdsc, req);
2134 goto out;
2135 }
2136
2137 if (req->r_timeout &&
2138 time_after_eq(jiffies, req->r_started + req->r_timeout)) {
2139 dout("do_request timed out\n");
2140 err = -EIO;
2141 goto finish;
2142 }
2143 if (ACCESS_ONCE(mdsc->fsc->mount_state) == CEPH_MOUNT_SHUTDOWN) {
2144 dout("do_request forced umount\n");
2145 err = -EIO;
2146 goto finish;
2147 }
2148
2149 put_request_session(req);
2150
2151 mds = __choose_mds(mdsc, req);
2152 if (mds < 0 ||
2153 ceph_mdsmap_get_state(mdsc->mdsmap, mds) < CEPH_MDS_STATE_ACTIVE) {
2154 dout("do_request no mds or not active, waiting for map\n");
2155 list_add(&req->r_wait, &mdsc->waiting_for_map);
2156 goto out;
2157 }
2158
2159 /* get, open session */
2160 session = __ceph_lookup_mds_session(mdsc, mds);
2161 if (!session) {
2162 session = register_session(mdsc, mds);
2163 if (IS_ERR(session)) {
2164 err = PTR_ERR(session);
2165 goto finish;
2166 }
2167 }
2168 req->r_session = get_session(session);
2169
2170 dout("do_request mds%d session %p state %s\n", mds, session,
2171 ceph_session_state_name(session->s_state));
2172 if (session->s_state != CEPH_MDS_SESSION_OPEN &&
2173 session->s_state != CEPH_MDS_SESSION_HUNG) {
2174 if (session->s_state == CEPH_MDS_SESSION_NEW ||
2175 session->s_state == CEPH_MDS_SESSION_CLOSING)
2176 __open_session(mdsc, session);
2177 list_add(&req->r_wait, &session->s_waiting);
2178 goto out_session;
2179 }
2180
2181 /* send request */
2182 req->r_resend_mds = -1; /* forget any previous mds hint */
2183
2184 if (req->r_request_started == 0) /* note request start time */
2185 req->r_request_started = jiffies;
2186
2187 err = __prepare_send_request(mdsc, req, mds, false);
2188 if (!err) {
2189 ceph_msg_get(req->r_request);
2190 ceph_con_send(&session->s_con, req->r_request);
2191 }
2192
2193 out_session:
2194 ceph_put_mds_session(session);
2195 finish:
2196 if (err) {
2197 dout("__do_request early error %d\n", err);
2198 req->r_err = err;
2199 complete_request(mdsc, req);
2200 __unregister_request(mdsc, req);
2201 }
2202 out:
2203 return err;
2204 }
2205
2206 /*
2207 * called under mdsc->mutex
2208 */
2209 static void __wake_requests(struct ceph_mds_client *mdsc,
2210 struct list_head *head)
2211 {
2212 struct ceph_mds_request *req;
2213 LIST_HEAD(tmp_list);
2214
2215 list_splice_init(head, &tmp_list);
2216
2217 while (!list_empty(&tmp_list)) {
2218 req = list_entry(tmp_list.next,
2219 struct ceph_mds_request, r_wait);
2220 list_del_init(&req->r_wait);
2221 dout(" wake request %p tid %llu\n", req, req->r_tid);
2222 __do_request(mdsc, req);
2223 }
2224 }
2225
2226 /*
2227 * Wake up threads with requests pending for @mds, so that they can
2228 * resubmit their requests to a possibly different mds.
2229 */
2230 static void kick_requests(struct ceph_mds_client *mdsc, int mds)
2231 {
2232 struct ceph_mds_request *req;
2233 struct rb_node *p = rb_first(&mdsc->request_tree);
2234
2235 dout("kick_requests mds%d\n", mds);
2236 while (p) {
2237 req = rb_entry(p, struct ceph_mds_request, r_node);
2238 p = rb_next(p);
2239 if (req->r_got_unsafe)
2240 continue;
2241 if (req->r_attempts > 0)
2242 continue; /* only new requests */
2243 if (req->r_session &&
2244 req->r_session->s_mds == mds) {
2245 dout(" kicking tid %llu\n", req->r_tid);
2246 list_del_init(&req->r_wait);
2247 __do_request(mdsc, req);
2248 }
2249 }
2250 }
2251
2252 void ceph_mdsc_submit_request(struct ceph_mds_client *mdsc,
2253 struct ceph_mds_request *req)
2254 {
2255 dout("submit_request on %p\n", req);
2256 mutex_lock(&mdsc->mutex);
2257 __register_request(mdsc, req, NULL);
2258 __do_request(mdsc, req);
2259 mutex_unlock(&mdsc->mutex);
2260 }
2261
2262 /*
2263 * Synchrously perform an mds request. Take care of all of the
2264 * session setup, forwarding, retry details.
2265 */
2266 int ceph_mdsc_do_request(struct ceph_mds_client *mdsc,
2267 struct inode *dir,
2268 struct ceph_mds_request *req)
2269 {
2270 int err;
2271
2272 dout("do_request on %p\n", req);
2273
2274 /* take CAP_PIN refs for r_inode, r_locked_dir, r_old_dentry */
2275 if (req->r_inode)
2276 ceph_get_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN);
2277 if (req->r_locked_dir)
2278 ceph_get_cap_refs(ceph_inode(req->r_locked_dir), CEPH_CAP_PIN);
2279 if (req->r_old_dentry_dir)
2280 ceph_get_cap_refs(ceph_inode(req->r_old_dentry_dir),
2281 CEPH_CAP_PIN);
2282
2283 /* deny access to directories with pool_ns layouts */
2284 if (req->r_inode && S_ISDIR(req->r_inode->i_mode) &&
2285 ceph_inode(req->r_inode)->i_pool_ns_len)
2286 return -EIO;
2287 if (req->r_locked_dir &&
2288 ceph_inode(req->r_locked_dir)->i_pool_ns_len)
2289 return -EIO;
2290
2291 /* issue */
2292 mutex_lock(&mdsc->mutex);
2293 __register_request(mdsc, req, dir);
2294 __do_request(mdsc, req);
2295
2296 if (req->r_err) {
2297 err = req->r_err;
2298 goto out;
2299 }
2300
2301 /* wait */
2302 mutex_unlock(&mdsc->mutex);
2303 dout("do_request waiting\n");
2304 if (!req->r_timeout && req->r_wait_for_completion) {
2305 err = req->r_wait_for_completion(mdsc, req);
2306 } else {
2307 long timeleft = wait_for_completion_killable_timeout(
2308 &req->r_completion,
2309 ceph_timeout_jiffies(req->r_timeout));
2310 if (timeleft > 0)
2311 err = 0;
2312 else if (!timeleft)
2313 err = -EIO; /* timed out */
2314 else
2315 err = timeleft; /* killed */
2316 }
2317 dout("do_request waited, got %d\n", err);
2318 mutex_lock(&mdsc->mutex);
2319
2320 /* only abort if we didn't race with a real reply */
2321 if (req->r_got_result) {
2322 err = le32_to_cpu(req->r_reply_info.head->result);
2323 } else if (err < 0) {
2324 dout("aborted request %lld with %d\n", req->r_tid, err);
2325
2326 /*
2327 * ensure we aren't running concurrently with
2328 * ceph_fill_trace or ceph_readdir_prepopulate, which
2329 * rely on locks (dir mutex) held by our caller.
2330 */
2331 mutex_lock(&req->r_fill_mutex);
2332 req->r_err = err;
2333 req->r_aborted = true;
2334 mutex_unlock(&req->r_fill_mutex);
2335
2336 if (req->r_locked_dir &&
2337 (req->r_op & CEPH_MDS_OP_WRITE))
2338 ceph_invalidate_dir_request(req);
2339 } else {
2340 err = req->r_err;
2341 }
2342
2343 out:
2344 mutex_unlock(&mdsc->mutex);
2345 dout("do_request %p done, result %d\n", req, err);
2346 return err;
2347 }
2348
2349 /*
2350 * Invalidate dir's completeness, dentry lease state on an aborted MDS
2351 * namespace request.
2352 */
2353 void ceph_invalidate_dir_request(struct ceph_mds_request *req)
2354 {
2355 struct inode *inode = req->r_locked_dir;
2356
2357 dout("invalidate_dir_request %p (complete, lease(s))\n", inode);
2358
2359 ceph_dir_clear_complete(inode);
2360 if (req->r_dentry)
2361 ceph_invalidate_dentry_lease(req->r_dentry);
2362 if (req->r_old_dentry)
2363 ceph_invalidate_dentry_lease(req->r_old_dentry);
2364 }
2365
2366 /*
2367 * Handle mds reply.
2368 *
2369 * We take the session mutex and parse and process the reply immediately.
2370 * This preserves the logical ordering of replies, capabilities, etc., sent
2371 * by the MDS as they are applied to our local cache.
2372 */
2373 static void handle_reply(struct ceph_mds_session *session, struct ceph_msg *msg)
2374 {
2375 struct ceph_mds_client *mdsc = session->s_mdsc;
2376 struct ceph_mds_request *req;
2377 struct ceph_mds_reply_head *head = msg->front.iov_base;
2378 struct ceph_mds_reply_info_parsed *rinfo; /* parsed reply info */
2379 struct ceph_snap_realm *realm;
2380 u64 tid;
2381 int err, result;
2382 int mds = session->s_mds;
2383
2384 if (msg->front.iov_len < sizeof(*head)) {
2385 pr_err("mdsc_handle_reply got corrupt (short) reply\n");
2386 ceph_msg_dump(msg);
2387 return;
2388 }
2389
2390 /* get request, session */
2391 tid = le64_to_cpu(msg->hdr.tid);
2392 mutex_lock(&mdsc->mutex);
2393 req = lookup_get_request(mdsc, tid);
2394 if (!req) {
2395 dout("handle_reply on unknown tid %llu\n", tid);
2396 mutex_unlock(&mdsc->mutex);
2397 return;
2398 }
2399 dout("handle_reply %p\n", req);
2400
2401 /* correct session? */
2402 if (req->r_session != session) {
2403 pr_err("mdsc_handle_reply got %llu on session mds%d"
2404 " not mds%d\n", tid, session->s_mds,
2405 req->r_session ? req->r_session->s_mds : -1);
2406 mutex_unlock(&mdsc->mutex);
2407 goto out;
2408 }
2409
2410 /* dup? */
2411 if ((req->r_got_unsafe && !head->safe) ||
2412 (req->r_got_safe && head->safe)) {
2413 pr_warn("got a dup %s reply on %llu from mds%d\n",
2414 head->safe ? "safe" : "unsafe", tid, mds);
2415 mutex_unlock(&mdsc->mutex);
2416 goto out;
2417 }
2418 if (req->r_got_safe) {
2419 pr_warn("got unsafe after safe on %llu from mds%d\n",
2420 tid, mds);
2421 mutex_unlock(&mdsc->mutex);
2422 goto out;
2423 }
2424
2425 result = le32_to_cpu(head->result);
2426
2427 /*
2428 * Handle an ESTALE
2429 * if we're not talking to the authority, send to them
2430 * if the authority has changed while we weren't looking,
2431 * send to new authority
2432 * Otherwise we just have to return an ESTALE
2433 */
2434 if (result == -ESTALE) {
2435 dout("got ESTALE on request %llu", req->r_tid);
2436 req->r_resend_mds = -1;
2437 if (req->r_direct_mode != USE_AUTH_MDS) {
2438 dout("not using auth, setting for that now");
2439 req->r_direct_mode = USE_AUTH_MDS;
2440 __do_request(mdsc, req);
2441 mutex_unlock(&mdsc->mutex);
2442 goto out;
2443 } else {
2444 int mds = __choose_mds(mdsc, req);
2445 if (mds >= 0 && mds != req->r_session->s_mds) {
2446 dout("but auth changed, so resending");
2447 __do_request(mdsc, req);
2448 mutex_unlock(&mdsc->mutex);
2449 goto out;
2450 }
2451 }
2452 dout("have to return ESTALE on request %llu", req->r_tid);
2453 }
2454
2455
2456 if (head->safe) {
2457 req->r_got_safe = true;
2458 __unregister_request(mdsc, req);
2459
2460 if (req->r_got_unsafe) {
2461 /*
2462 * We already handled the unsafe response, now do the
2463 * cleanup. No need to examine the response; the MDS
2464 * doesn't include any result info in the safe
2465 * response. And even if it did, there is nothing
2466 * useful we could do with a revised return value.
2467 */
2468 dout("got safe reply %llu, mds%d\n", tid, mds);
2469 list_del_init(&req->r_unsafe_item);
2470
2471 /* last unsafe request during umount? */
2472 if (mdsc->stopping && !__get_oldest_req(mdsc))
2473 complete_all(&mdsc->safe_umount_waiters);
2474 mutex_unlock(&mdsc->mutex);
2475 goto out;
2476 }
2477 } else {
2478 req->r_got_unsafe = true;
2479 list_add_tail(&req->r_unsafe_item, &req->r_session->s_unsafe);
2480 if (req->r_unsafe_dir) {
2481 struct ceph_inode_info *ci =
2482 ceph_inode(req->r_unsafe_dir);
2483 spin_lock(&ci->i_unsafe_lock);
2484 list_add_tail(&req->r_unsafe_dir_item,
2485 &ci->i_unsafe_dirops);
2486 spin_unlock(&ci->i_unsafe_lock);
2487 }
2488 }
2489
2490 dout("handle_reply tid %lld result %d\n", tid, result);
2491 rinfo = &req->r_reply_info;
2492 err = parse_reply_info(msg, rinfo, session->s_con.peer_features);
2493 mutex_unlock(&mdsc->mutex);
2494
2495 mutex_lock(&session->s_mutex);
2496 if (err < 0) {
2497 pr_err("mdsc_handle_reply got corrupt reply mds%d(tid:%lld)\n", mds, tid);
2498 ceph_msg_dump(msg);
2499 goto out_err;
2500 }
2501
2502 /* snap trace */
2503 realm = NULL;
2504 if (rinfo->snapblob_len) {
2505 down_write(&mdsc->snap_rwsem);
2506 ceph_update_snap_trace(mdsc, rinfo->snapblob,
2507 rinfo->snapblob + rinfo->snapblob_len,
2508 le32_to_cpu(head->op) == CEPH_MDS_OP_RMSNAP,
2509 &realm);
2510 downgrade_write(&mdsc->snap_rwsem);
2511 } else {
2512 down_read(&mdsc->snap_rwsem);
2513 }
2514
2515 /* insert trace into our cache */
2516 mutex_lock(&req->r_fill_mutex);
2517 current->journal_info = req;
2518 err = ceph_fill_trace(mdsc->fsc->sb, req, req->r_session);
2519 if (err == 0) {
2520 if (result == 0 && (req->r_op == CEPH_MDS_OP_READDIR ||
2521 req->r_op == CEPH_MDS_OP_LSSNAP))
2522 ceph_readdir_prepopulate(req, req->r_session);
2523 ceph_unreserve_caps(mdsc, &req->r_caps_reservation);
2524 }
2525 current->journal_info = NULL;
2526 mutex_unlock(&req->r_fill_mutex);
2527
2528 up_read(&mdsc->snap_rwsem);
2529 if (realm)
2530 ceph_put_snap_realm(mdsc, realm);
2531
2532 if (err == 0 && req->r_got_unsafe && req->r_target_inode) {
2533 struct ceph_inode_info *ci = ceph_inode(req->r_target_inode);
2534 spin_lock(&ci->i_unsafe_lock);
2535 list_add_tail(&req->r_unsafe_target_item, &ci->i_unsafe_iops);
2536 spin_unlock(&ci->i_unsafe_lock);
2537 }
2538 out_err:
2539 mutex_lock(&mdsc->mutex);
2540 if (!req->r_aborted) {
2541 if (err) {
2542 req->r_err = err;
2543 } else {
2544 req->r_reply = ceph_msg_get(msg);
2545 req->r_got_result = true;
2546 }
2547 } else {
2548 dout("reply arrived after request %lld was aborted\n", tid);
2549 }
2550 mutex_unlock(&mdsc->mutex);
2551
2552 mutex_unlock(&session->s_mutex);
2553
2554 /* kick calling process */
2555 complete_request(mdsc, req);
2556 out:
2557 ceph_mdsc_put_request(req);
2558 return;
2559 }
2560
2561
2562
2563 /*
2564 * handle mds notification that our request has been forwarded.
2565 */
2566 static void handle_forward(struct ceph_mds_client *mdsc,
2567 struct ceph_mds_session *session,
2568 struct ceph_msg *msg)
2569 {
2570 struct ceph_mds_request *req;
2571 u64 tid = le64_to_cpu(msg->hdr.tid);
2572 u32 next_mds;
2573 u32 fwd_seq;
2574 int err = -EINVAL;
2575 void *p = msg->front.iov_base;
2576 void *end = p + msg->front.iov_len;
2577
2578 ceph_decode_need(&p, end, 2*sizeof(u32), bad);
2579 next_mds = ceph_decode_32(&p);
2580 fwd_seq = ceph_decode_32(&p);
2581
2582 mutex_lock(&mdsc->mutex);
2583 req = lookup_get_request(mdsc, tid);
2584 if (!req) {
2585 dout("forward tid %llu to mds%d - req dne\n", tid, next_mds);
2586 goto out; /* dup reply? */
2587 }
2588
2589 if (req->r_aborted) {
2590 dout("forward tid %llu aborted, unregistering\n", tid);
2591 __unregister_request(mdsc, req);
2592 } else if (fwd_seq <= req->r_num_fwd) {
2593 dout("forward tid %llu to mds%d - old seq %d <= %d\n",
2594 tid, next_mds, req->r_num_fwd, fwd_seq);
2595 } else {
2596 /* resend. forward race not possible; mds would drop */
2597 dout("forward tid %llu to mds%d (we resend)\n", tid, next_mds);
2598 BUG_ON(req->r_err);
2599 BUG_ON(req->r_got_result);
2600 req->r_attempts = 0;
2601 req->r_num_fwd = fwd_seq;
2602 req->r_resend_mds = next_mds;
2603 put_request_session(req);
2604 __do_request(mdsc, req);
2605 }
2606 ceph_mdsc_put_request(req);
2607 out:
2608 mutex_unlock(&mdsc->mutex);
2609 return;
2610
2611 bad:
2612 pr_err("mdsc_handle_forward decode error err=%d\n", err);
2613 }
2614
2615 /*
2616 * handle a mds session control message
2617 */
2618 static void handle_session(struct ceph_mds_session *session,
2619 struct ceph_msg *msg)
2620 {
2621 struct ceph_mds_client *mdsc = session->s_mdsc;
2622 u32 op;
2623 u64 seq;
2624 int mds = session->s_mds;
2625 struct ceph_mds_session_head *h = msg->front.iov_base;
2626 int wake = 0;
2627
2628 /* decode */
2629 if (msg->front.iov_len != sizeof(*h))
2630 goto bad;
2631 op = le32_to_cpu(h->op);
2632 seq = le64_to_cpu(h->seq);
2633
2634 mutex_lock(&mdsc->mutex);
2635 if (op == CEPH_SESSION_CLOSE)
2636 __unregister_session(mdsc, session);
2637 /* FIXME: this ttl calculation is generous */
2638 session->s_ttl = jiffies + HZ*mdsc->mdsmap->m_session_autoclose;
2639 mutex_unlock(&mdsc->mutex);
2640
2641 mutex_lock(&session->s_mutex);
2642
2643 dout("handle_session mds%d %s %p state %s seq %llu\n",
2644 mds, ceph_session_op_name(op), session,
2645 ceph_session_state_name(session->s_state), seq);
2646
2647 if (session->s_state == CEPH_MDS_SESSION_HUNG) {
2648 session->s_state = CEPH_MDS_SESSION_OPEN;
2649 pr_info("mds%d came back\n", session->s_mds);
2650 }
2651
2652 switch (op) {
2653 case CEPH_SESSION_OPEN:
2654 if (session->s_state == CEPH_MDS_SESSION_RECONNECTING)
2655 pr_info("mds%d reconnect success\n", session->s_mds);
2656 session->s_state = CEPH_MDS_SESSION_OPEN;
2657 renewed_caps(mdsc, session, 0);
2658 wake = 1;
2659 if (mdsc->stopping)
2660 __close_session(mdsc, session);
2661 break;
2662
2663 case CEPH_SESSION_RENEWCAPS:
2664 if (session->s_renew_seq == seq)
2665 renewed_caps(mdsc, session, 1);
2666 break;
2667
2668 case CEPH_SESSION_CLOSE:
2669 if (session->s_state == CEPH_MDS_SESSION_RECONNECTING)
2670 pr_info("mds%d reconnect denied\n", session->s_mds);
2671 cleanup_session_requests(mdsc, session);
2672 remove_session_caps(session);
2673 wake = 2; /* for good measure */
2674 wake_up_all(&mdsc->session_close_wq);
2675 break;
2676
2677 case CEPH_SESSION_STALE:
2678 pr_info("mds%d caps went stale, renewing\n",
2679 session->s_mds);
2680 spin_lock(&session->s_gen_ttl_lock);
2681 session->s_cap_gen++;
2682 session->s_cap_ttl = jiffies - 1;
2683 spin_unlock(&session->s_gen_ttl_lock);
2684 send_renew_caps(mdsc, session);
2685 break;
2686
2687 case CEPH_SESSION_RECALL_STATE:
2688 trim_caps(mdsc, session, le32_to_cpu(h->max_caps));
2689 break;
2690
2691 case CEPH_SESSION_FLUSHMSG:
2692 send_flushmsg_ack(mdsc, session, seq);
2693 break;
2694
2695 case CEPH_SESSION_FORCE_RO:
2696 dout("force_session_readonly %p\n", session);
2697 spin_lock(&session->s_cap_lock);
2698 session->s_readonly = true;
2699 spin_unlock(&session->s_cap_lock);
2700 wake_up_session_caps(session, 0);
2701 break;
2702
2703 default:
2704 pr_err("mdsc_handle_session bad op %d mds%d\n", op, mds);
2705 WARN_ON(1);
2706 }
2707
2708 mutex_unlock(&session->s_mutex);
2709 if (wake) {
2710 mutex_lock(&mdsc->mutex);
2711 __wake_requests(mdsc, &session->s_waiting);
2712 if (wake == 2)
2713 kick_requests(mdsc, mds);
2714 mutex_unlock(&mdsc->mutex);
2715 }
2716 return;
2717
2718 bad:
2719 pr_err("mdsc_handle_session corrupt message mds%d len %d\n", mds,
2720 (int)msg->front.iov_len);
2721 ceph_msg_dump(msg);
2722 return;
2723 }
2724
2725
2726 /*
2727 * called under session->mutex.
2728 */
2729 static void replay_unsafe_requests(struct ceph_mds_client *mdsc,
2730 struct ceph_mds_session *session)
2731 {
2732 struct ceph_mds_request *req, *nreq;
2733 struct rb_node *p;
2734 int err;
2735
2736 dout("replay_unsafe_requests mds%d\n", session->s_mds);
2737
2738 mutex_lock(&mdsc->mutex);
2739 list_for_each_entry_safe(req, nreq, &session->s_unsafe, r_unsafe_item) {
2740 err = __prepare_send_request(mdsc, req, session->s_mds, true);
2741 if (!err) {
2742 ceph_msg_get(req->r_request);
2743 ceph_con_send(&session->s_con, req->r_request);
2744 }
2745 }
2746
2747 /*
2748 * also re-send old requests when MDS enters reconnect stage. So that MDS
2749 * can process completed request in clientreplay stage.
2750 */
2751 p = rb_first(&mdsc->request_tree);
2752 while (p) {
2753 req = rb_entry(p, struct ceph_mds_request, r_node);
2754 p = rb_next(p);
2755 if (req->r_got_unsafe)
2756 continue;
2757 if (req->r_attempts == 0)
2758 continue; /* only old requests */
2759 if (req->r_session &&
2760 req->r_session->s_mds == session->s_mds) {
2761 err = __prepare_send_request(mdsc, req,
2762 session->s_mds, true);
2763 if (!err) {
2764 ceph_msg_get(req->r_request);
2765 ceph_con_send(&session->s_con, req->r_request);
2766 }
2767 }
2768 }
2769 mutex_unlock(&mdsc->mutex);
2770 }
2771
2772 /*
2773 * Encode information about a cap for a reconnect with the MDS.
2774 */
2775 static int encode_caps_cb(struct inode *inode, struct ceph_cap *cap,
2776 void *arg)
2777 {
2778 union {
2779 struct ceph_mds_cap_reconnect v2;
2780 struct ceph_mds_cap_reconnect_v1 v1;
2781 } rec;
2782 size_t reclen;
2783 struct ceph_inode_info *ci;
2784 struct ceph_reconnect_state *recon_state = arg;
2785 struct ceph_pagelist *pagelist = recon_state->pagelist;
2786 char *path;
2787 int pathlen, err;
2788 u64 pathbase;
2789 struct dentry *dentry;
2790
2791 ci = cap->ci;
2792
2793 dout(" adding %p ino %llx.%llx cap %p %lld %s\n",
2794 inode, ceph_vinop(inode), cap, cap->cap_id,
2795 ceph_cap_string(cap->issued));
2796 err = ceph_pagelist_encode_64(pagelist, ceph_ino(inode));
2797 if (err)
2798 return err;
2799
2800 dentry = d_find_alias(inode);
2801 if (dentry) {
2802 path = ceph_mdsc_build_path(dentry, &pathlen, &pathbase, 0);
2803 if (IS_ERR(path)) {
2804 err = PTR_ERR(path);
2805 goto out_dput;
2806 }
2807 } else {
2808 path = NULL;
2809 pathlen = 0;
2810 }
2811 err = ceph_pagelist_encode_string(pagelist, path, pathlen);
2812 if (err)
2813 goto out_free;
2814
2815 spin_lock(&ci->i_ceph_lock);
2816 cap->seq = 0; /* reset cap seq */
2817 cap->issue_seq = 0; /* and issue_seq */
2818 cap->mseq = 0; /* and migrate_seq */
2819 cap->cap_gen = cap->session->s_cap_gen;
2820
2821 if (recon_state->flock) {
2822 rec.v2.cap_id = cpu_to_le64(cap->cap_id);
2823 rec.v2.wanted = cpu_to_le32(__ceph_caps_wanted(ci));
2824 rec.v2.issued = cpu_to_le32(cap->issued);
2825 rec.v2.snaprealm = cpu_to_le64(ci->i_snap_realm->ino);
2826 rec.v2.pathbase = cpu_to_le64(pathbase);
2827 rec.v2.flock_len = 0;
2828 reclen = sizeof(rec.v2);
2829 } else {
2830 rec.v1.cap_id = cpu_to_le64(cap->cap_id);
2831 rec.v1.wanted = cpu_to_le32(__ceph_caps_wanted(ci));
2832 rec.v1.issued = cpu_to_le32(cap->issued);
2833 rec.v1.size = cpu_to_le64(inode->i_size);
2834 ceph_encode_timespec(&rec.v1.mtime, &inode->i_mtime);
2835 ceph_encode_timespec(&rec.v1.atime, &inode->i_atime);
2836 rec.v1.snaprealm = cpu_to_le64(ci->i_snap_realm->ino);
2837 rec.v1.pathbase = cpu_to_le64(pathbase);
2838 reclen = sizeof(rec.v1);
2839 }
2840 spin_unlock(&ci->i_ceph_lock);
2841
2842 if (recon_state->flock) {
2843 int num_fcntl_locks, num_flock_locks;
2844 struct ceph_filelock *flocks;
2845
2846 encode_again:
2847 ceph_count_locks(inode, &num_fcntl_locks, &num_flock_locks);
2848 flocks = kmalloc((num_fcntl_locks+num_flock_locks) *
2849 sizeof(struct ceph_filelock), GFP_NOFS);
2850 if (!flocks) {
2851 err = -ENOMEM;
2852 goto out_free;
2853 }
2854 err = ceph_encode_locks_to_buffer(inode, flocks,
2855 num_fcntl_locks,
2856 num_flock_locks);
2857 if (err) {
2858 kfree(flocks);
2859 if (err == -ENOSPC)
2860 goto encode_again;
2861 goto out_free;
2862 }
2863 /*
2864 * number of encoded locks is stable, so copy to pagelist
2865 */
2866 rec.v2.flock_len = cpu_to_le32(2*sizeof(u32) +
2867 (num_fcntl_locks+num_flock_locks) *
2868 sizeof(struct ceph_filelock));
2869 err = ceph_pagelist_append(pagelist, &rec, reclen);
2870 if (!err)
2871 err = ceph_locks_to_pagelist(flocks, pagelist,
2872 num_fcntl_locks,
2873 num_flock_locks);
2874 kfree(flocks);
2875 } else {
2876 err = ceph_pagelist_append(pagelist, &rec, reclen);
2877 }
2878
2879 recon_state->nr_caps++;
2880 out_free:
2881 kfree(path);
2882 out_dput:
2883 dput(dentry);
2884 return err;
2885 }
2886
2887
2888 /*
2889 * If an MDS fails and recovers, clients need to reconnect in order to
2890 * reestablish shared state. This includes all caps issued through
2891 * this session _and_ the snap_realm hierarchy. Because it's not
2892 * clear which snap realms the mds cares about, we send everything we
2893 * know about.. that ensures we'll then get any new info the
2894 * recovering MDS might have.
2895 *
2896 * This is a relatively heavyweight operation, but it's rare.
2897 *
2898 * called with mdsc->mutex held.
2899 */
2900 static void send_mds_reconnect(struct ceph_mds_client *mdsc,
2901 struct ceph_mds_session *session)
2902 {
2903 struct ceph_msg *reply;
2904 struct rb_node *p;
2905 int mds = session->s_mds;
2906 int err = -ENOMEM;
2907 int s_nr_caps;
2908 struct ceph_pagelist *pagelist;
2909 struct ceph_reconnect_state recon_state;
2910
2911 pr_info("mds%d reconnect start\n", mds);
2912
2913 pagelist = kmalloc(sizeof(*pagelist), GFP_NOFS);
2914 if (!pagelist)
2915 goto fail_nopagelist;
2916 ceph_pagelist_init(pagelist);
2917
2918 reply = ceph_msg_new(CEPH_MSG_CLIENT_RECONNECT, 0, GFP_NOFS, false);
2919 if (!reply)
2920 goto fail_nomsg;
2921
2922 mutex_lock(&session->s_mutex);
2923 session->s_state = CEPH_MDS_SESSION_RECONNECTING;
2924 session->s_seq = 0;
2925
2926 dout("session %p state %s\n", session,
2927 ceph_session_state_name(session->s_state));
2928
2929 spin_lock(&session->s_gen_ttl_lock);
2930 session->s_cap_gen++;
2931 spin_unlock(&session->s_gen_ttl_lock);
2932
2933 spin_lock(&session->s_cap_lock);
2934 /* don't know if session is readonly */
2935 session->s_readonly = 0;
2936 /*
2937 * notify __ceph_remove_cap() that we are composing cap reconnect.
2938 * If a cap get released before being added to the cap reconnect,
2939 * __ceph_remove_cap() should skip queuing cap release.
2940 */
2941 session->s_cap_reconnect = 1;
2942 /* drop old cap expires; we're about to reestablish that state */
2943 cleanup_cap_releases(mdsc, session);
2944
2945 /* trim unused caps to reduce MDS's cache rejoin time */
2946 if (mdsc->fsc->sb->s_root)
2947 shrink_dcache_parent(mdsc->fsc->sb->s_root);
2948
2949 ceph_con_close(&session->s_con);
2950 ceph_con_open(&session->s_con,
2951 CEPH_ENTITY_TYPE_MDS, mds,
2952 ceph_mdsmap_get_addr(mdsc->mdsmap, mds));
2953
2954 /* replay unsafe requests */
2955 replay_unsafe_requests(mdsc, session);
2956
2957 down_read(&mdsc->snap_rwsem);
2958
2959 /* traverse this session's caps */
2960 s_nr_caps = session->s_nr_caps;
2961 err = ceph_pagelist_encode_32(pagelist, s_nr_caps);
2962 if (err)
2963 goto fail;
2964
2965 recon_state.nr_caps = 0;
2966 recon_state.pagelist = pagelist;
2967 recon_state.flock = session->s_con.peer_features & CEPH_FEATURE_FLOCK;
2968 err = iterate_session_caps(session, encode_caps_cb, &recon_state);
2969 if (err < 0)
2970 goto fail;
2971
2972 spin_lock(&session->s_cap_lock);
2973 session->s_cap_reconnect = 0;
2974 spin_unlock(&session->s_cap_lock);
2975
2976 /*
2977 * snaprealms. we provide mds with the ino, seq (version), and
2978 * parent for all of our realms. If the mds has any newer info,
2979 * it will tell us.
2980 */
2981 for (p = rb_first(&mdsc->snap_realms); p; p = rb_next(p)) {
2982 struct ceph_snap_realm *realm =
2983 rb_entry(p, struct ceph_snap_realm, node);
2984 struct ceph_mds_snaprealm_reconnect sr_rec;
2985
2986 dout(" adding snap realm %llx seq %lld parent %llx\n",
2987 realm->ino, realm->seq, realm->parent_ino);
2988 sr_rec.ino = cpu_to_le64(realm->ino);
2989 sr_rec.seq = cpu_to_le64(realm->seq);
2990 sr_rec.parent = cpu_to_le64(realm->parent_ino);
2991 err = ceph_pagelist_append(pagelist, &sr_rec, sizeof(sr_rec));
2992 if (err)
2993 goto fail;
2994 }
2995
2996 if (recon_state.flock)
2997 reply->hdr.version = cpu_to_le16(2);
2998
2999 /* raced with cap release? */
3000 if (s_nr_caps != recon_state.nr_caps) {
3001 struct page *page = list_first_entry(&pagelist->head,
3002 struct page, lru);
3003 __le32 *addr = kmap_atomic(page);
3004 *addr = cpu_to_le32(recon_state.nr_caps);
3005 kunmap_atomic(addr);
3006 }
3007
3008 reply->hdr.data_len = cpu_to_le32(pagelist->length);
3009 ceph_msg_data_add_pagelist(reply, pagelist);
3010
3011 ceph_early_kick_flushing_caps(mdsc, session);
3012
3013 ceph_con_send(&session->s_con, reply);
3014
3015 mutex_unlock(&session->s_mutex);
3016
3017 mutex_lock(&mdsc->mutex);
3018 __wake_requests(mdsc, &session->s_waiting);
3019 mutex_unlock(&mdsc->mutex);
3020
3021 up_read(&mdsc->snap_rwsem);
3022 return;
3023
3024 fail:
3025 ceph_msg_put(reply);
3026 up_read(&mdsc->snap_rwsem);
3027 mutex_unlock(&session->s_mutex);
3028 fail_nomsg:
3029 ceph_pagelist_release(pagelist);
3030 fail_nopagelist:
3031 pr_err("error %d preparing reconnect for mds%d\n", err, mds);
3032 return;
3033 }
3034
3035
3036 /*
3037 * compare old and new mdsmaps, kicking requests
3038 * and closing out old connections as necessary
3039 *
3040 * called under mdsc->mutex.
3041 */
3042 static void check_new_map(struct ceph_mds_client *mdsc,
3043 struct ceph_mdsmap *newmap,
3044 struct ceph_mdsmap *oldmap)
3045 {
3046 int i;
3047 int oldstate, newstate;
3048 struct ceph_mds_session *s;
3049
3050 dout("check_new_map new %u old %u\n",
3051 newmap->m_epoch, oldmap->m_epoch);
3052
3053 for (i = 0; i < oldmap->m_max_mds && i < mdsc->max_sessions; i++) {
3054 if (mdsc->sessions[i] == NULL)
3055 continue;
3056 s = mdsc->sessions[i];
3057 oldstate = ceph_mdsmap_get_state(oldmap, i);
3058 newstate = ceph_mdsmap_get_state(newmap, i);
3059
3060 dout("check_new_map mds%d state %s%s -> %s%s (session %s)\n",
3061 i, ceph_mds_state_name(oldstate),
3062 ceph_mdsmap_is_laggy(oldmap, i) ? " (laggy)" : "",
3063 ceph_mds_state_name(newstate),
3064 ceph_mdsmap_is_laggy(newmap, i) ? " (laggy)" : "",
3065 ceph_session_state_name(s->s_state));
3066
3067 if (i >= newmap->m_max_mds ||
3068 memcmp(ceph_mdsmap_get_addr(oldmap, i),
3069 ceph_mdsmap_get_addr(newmap, i),
3070 sizeof(struct ceph_entity_addr))) {
3071 if (s->s_state == CEPH_MDS_SESSION_OPENING) {
3072 /* the session never opened, just close it
3073 * out now */
3074 __wake_requests(mdsc, &s->s_waiting);
3075 __unregister_session(mdsc, s);
3076 } else {
3077 /* just close it */
3078 mutex_unlock(&mdsc->mutex);
3079 mutex_lock(&s->s_mutex);
3080 mutex_lock(&mdsc->mutex);
3081 ceph_con_close(&s->s_con);
3082 mutex_unlock(&s->s_mutex);
3083 s->s_state = CEPH_MDS_SESSION_RESTARTING;
3084 }
3085 } else if (oldstate == newstate) {
3086 continue; /* nothing new with this mds */
3087 }
3088
3089 /*
3090 * send reconnect?
3091 */
3092 if (s->s_state == CEPH_MDS_SESSION_RESTARTING &&
3093 newstate >= CEPH_MDS_STATE_RECONNECT) {
3094 mutex_unlock(&mdsc->mutex);
3095 send_mds_reconnect(mdsc, s);
3096 mutex_lock(&mdsc->mutex);
3097 }
3098
3099 /*
3100 * kick request on any mds that has gone active.
3101 */
3102 if (oldstate < CEPH_MDS_STATE_ACTIVE &&
3103 newstate >= CEPH_MDS_STATE_ACTIVE) {
3104 if (oldstate != CEPH_MDS_STATE_CREATING &&
3105 oldstate != CEPH_MDS_STATE_STARTING)
3106 pr_info("mds%d recovery completed\n", s->s_mds);
3107 kick_requests(mdsc, i);
3108 ceph_kick_flushing_caps(mdsc, s);
3109 wake_up_session_caps(s, 1);
3110 }
3111 }
3112
3113 for (i = 0; i < newmap->m_max_mds && i < mdsc->max_sessions; i++) {
3114 s = mdsc->sessions[i];
3115 if (!s)
3116 continue;
3117 if (!ceph_mdsmap_is_laggy(newmap, i))
3118 continue;
3119 if (s->s_state == CEPH_MDS_SESSION_OPEN ||
3120 s->s_state == CEPH_MDS_SESSION_HUNG ||
3121 s->s_state == CEPH_MDS_SESSION_CLOSING) {
3122 dout(" connecting to export targets of laggy mds%d\n",
3123 i);
3124 __open_export_target_sessions(mdsc, s);
3125 }
3126 }
3127 }
3128
3129
3130
3131 /*
3132 * leases
3133 */
3134
3135 /*
3136 * caller must hold session s_mutex, dentry->d_lock
3137 */
3138 void __ceph_mdsc_drop_dentry_lease(struct dentry *dentry)
3139 {
3140 struct ceph_dentry_info *di = ceph_dentry(dentry);
3141
3142 ceph_put_mds_session(di->lease_session);
3143 di->lease_session = NULL;
3144 }
3145
3146 static void handle_lease(struct ceph_mds_client *mdsc,
3147 struct ceph_mds_session *session,
3148 struct ceph_msg *msg)
3149 {
3150 struct super_block *sb = mdsc->fsc->sb;
3151 struct inode *inode;
3152 struct dentry *parent, *dentry;
3153 struct ceph_dentry_info *di;
3154 int mds = session->s_mds;
3155 struct ceph_mds_lease *h = msg->front.iov_base;
3156 u32 seq;
3157 struct ceph_vino vino;
3158 struct qstr dname;
3159 int release = 0;
3160
3161 dout("handle_lease from mds%d\n", mds);
3162
3163 /* decode */
3164 if (msg->front.iov_len < sizeof(*h) + sizeof(u32))
3165 goto bad;
3166 vino.ino = le64_to_cpu(h->ino);
3167 vino.snap = CEPH_NOSNAP;
3168 seq = le32_to_cpu(h->seq);
3169 dname.name = (void *)h + sizeof(*h) + sizeof(u32);
3170 dname.len = msg->front.iov_len - sizeof(*h) - sizeof(u32);
3171 if (dname.len != get_unaligned_le32(h+1))
3172 goto bad;
3173
3174 /* lookup inode */
3175 inode = ceph_find_inode(sb, vino);
3176 dout("handle_lease %s, ino %llx %p %.*s\n",
3177 ceph_lease_op_name(h->action), vino.ino, inode,
3178 dname.len, dname.name);
3179
3180 mutex_lock(&session->s_mutex);
3181 session->s_seq++;
3182
3183 if (inode == NULL) {
3184 dout("handle_lease no inode %llx\n", vino.ino);
3185 goto release;
3186 }
3187
3188 /* dentry */
3189 parent = d_find_alias(inode);
3190 if (!parent) {
3191 dout("no parent dentry on inode %p\n", inode);
3192 WARN_ON(1);
3193 goto release; /* hrm... */
3194 }
3195 dname.hash = full_name_hash(dname.name, dname.len);
3196 dentry = d_lookup(parent, &dname);
3197 dput(parent);
3198 if (!dentry)
3199 goto release;
3200
3201 spin_lock(&dentry->d_lock);
3202 di = ceph_dentry(dentry);
3203 switch (h->action) {
3204 case CEPH_MDS_LEASE_REVOKE:
3205 if (di->lease_session == session) {
3206 if (ceph_seq_cmp(di->lease_seq, seq) > 0)
3207 h->seq = cpu_to_le32(di->lease_seq);
3208 __ceph_mdsc_drop_dentry_lease(dentry);
3209 }
3210 release = 1;
3211 break;
3212
3213 case CEPH_MDS_LEASE_RENEW:
3214 if (di->lease_session == session &&
3215 di->lease_gen == session->s_cap_gen &&
3216 di->lease_renew_from &&
3217 di->lease_renew_after == 0) {
3218 unsigned long duration =
3219 msecs_to_jiffies(le32_to_cpu(h->duration_ms));
3220
3221 di->lease_seq = seq;
3222 dentry->d_time = di->lease_renew_from + duration;
3223 di->lease_renew_after = di->lease_renew_from +
3224 (duration >> 1);
3225 di->lease_renew_from = 0;
3226 }
3227 break;
3228 }
3229 spin_unlock(&dentry->d_lock);
3230 dput(dentry);
3231
3232 if (!release)
3233 goto out;
3234
3235 release:
3236 /* let's just reuse the same message */
3237 h->action = CEPH_MDS_LEASE_REVOKE_ACK;
3238 ceph_msg_get(msg);
3239 ceph_con_send(&session->s_con, msg);
3240
3241 out:
3242 iput(inode);
3243 mutex_unlock(&session->s_mutex);
3244 return;
3245
3246 bad:
3247 pr_err("corrupt lease message\n");
3248 ceph_msg_dump(msg);
3249 }
3250
3251 void ceph_mdsc_lease_send_msg(struct ceph_mds_session *session,
3252 struct inode *inode,
3253 struct dentry *dentry, char action,
3254 u32 seq)
3255 {
3256 struct ceph_msg *msg;
3257 struct ceph_mds_lease *lease;
3258 int len = sizeof(*lease) + sizeof(u32);
3259 int dnamelen = 0;
3260
3261 dout("lease_send_msg inode %p dentry %p %s to mds%d\n",
3262 inode, dentry, ceph_lease_op_name(action), session->s_mds);
3263 dnamelen = dentry->d_name.len;
3264 len += dnamelen;
3265
3266 msg = ceph_msg_new(CEPH_MSG_CLIENT_LEASE, len, GFP_NOFS, false);
3267 if (!msg)
3268 return;
3269 lease = msg->front.iov_base;
3270 lease->action = action;
3271 lease->ino = cpu_to_le64(ceph_vino(inode).ino);
3272 lease->first = lease->last = cpu_to_le64(ceph_vino(inode).snap);
3273 lease->seq = cpu_to_le32(seq);
3274 put_unaligned_le32(dnamelen, lease + 1);
3275 memcpy((void *)(lease + 1) + 4, dentry->d_name.name, dnamelen);
3276
3277 /*
3278 * if this is a preemptive lease RELEASE, no need to
3279 * flush request stream, since the actual request will
3280 * soon follow.
3281 */
3282 msg->more_to_follow = (action == CEPH_MDS_LEASE_RELEASE);
3283
3284 ceph_con_send(&session->s_con, msg);
3285 }
3286
3287 /*
3288 * Preemptively release a lease we expect to invalidate anyway.
3289 * Pass @inode always, @dentry is optional.
3290 */
3291 void ceph_mdsc_lease_release(struct ceph_mds_client *mdsc, struct inode *inode,
3292 struct dentry *dentry)
3293 {
3294 struct ceph_dentry_info *di;
3295 struct ceph_mds_session *session;
3296 u32 seq;
3297
3298 BUG_ON(inode == NULL);
3299 BUG_ON(dentry == NULL);
3300
3301 /* is dentry lease valid? */
3302 spin_lock(&dentry->d_lock);
3303 di = ceph_dentry(dentry);
3304 if (!di || !di->lease_session ||
3305 di->lease_session->s_mds < 0 ||
3306 di->lease_gen != di->lease_session->s_cap_gen ||
3307 !time_before(jiffies, dentry->d_time)) {
3308 dout("lease_release inode %p dentry %p -- "
3309 "no lease\n",
3310 inode, dentry);
3311 spin_unlock(&dentry->d_lock);
3312 return;
3313 }
3314
3315 /* we do have a lease on this dentry; note mds and seq */
3316 session = ceph_get_mds_session(di->lease_session);
3317 seq = di->lease_seq;
3318 __ceph_mdsc_drop_dentry_lease(dentry);
3319 spin_unlock(&dentry->d_lock);
3320
3321 dout("lease_release inode %p dentry %p to mds%d\n",
3322 inode, dentry, session->s_mds);
3323 ceph_mdsc_lease_send_msg(session, inode, dentry,
3324 CEPH_MDS_LEASE_RELEASE, seq);
3325 ceph_put_mds_session(session);
3326 }
3327
3328 /*
3329 * drop all leases (and dentry refs) in preparation for umount
3330 */
3331 static void drop_leases(struct ceph_mds_client *mdsc)
3332 {
3333 int i;
3334
3335 dout("drop_leases\n");
3336 mutex_lock(&mdsc->mutex);
3337 for (i = 0; i < mdsc->max_sessions; i++) {
3338 struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i);
3339 if (!s)
3340 continue;
3341 mutex_unlock(&mdsc->mutex);
3342 mutex_lock(&s->s_mutex);
3343 mutex_unlock(&s->s_mutex);
3344 ceph_put_mds_session(s);
3345 mutex_lock(&mdsc->mutex);
3346 }
3347 mutex_unlock(&mdsc->mutex);
3348 }
3349
3350
3351
3352 /*
3353 * delayed work -- periodically trim expired leases, renew caps with mds
3354 */
3355 static void schedule_delayed(struct ceph_mds_client *mdsc)
3356 {
3357 int delay = 5;
3358 unsigned hz = round_jiffies_relative(HZ * delay);
3359 schedule_delayed_work(&mdsc->delayed_work, hz);
3360 }
3361
3362 static void delayed_work(struct work_struct *work)
3363 {
3364 int i;
3365 struct ceph_mds_client *mdsc =
3366 container_of(work, struct ceph_mds_client, delayed_work.work);
3367 int renew_interval;
3368 int renew_caps;
3369
3370 dout("mdsc delayed_work\n");
3371 ceph_check_delayed_caps(mdsc);
3372
3373 mutex_lock(&mdsc->mutex);
3374 renew_interval = mdsc->mdsmap->m_session_timeout >> 2;
3375 renew_caps = time_after_eq(jiffies, HZ*renew_interval +
3376 mdsc->last_renew_caps);
3377 if (renew_caps)
3378 mdsc->last_renew_caps = jiffies;
3379
3380 for (i = 0; i < mdsc->max_sessions; i++) {
3381 struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i);
3382 if (s == NULL)
3383 continue;
3384 if (s->s_state == CEPH_MDS_SESSION_CLOSING) {
3385 dout("resending session close request for mds%d\n",
3386 s->s_mds);
3387 request_close_session(mdsc, s);
3388 ceph_put_mds_session(s);
3389 continue;
3390 }
3391 if (s->s_ttl && time_after(jiffies, s->s_ttl)) {
3392 if (s->s_state == CEPH_MDS_SESSION_OPEN) {
3393 s->s_state = CEPH_MDS_SESSION_HUNG;
3394 pr_info("mds%d hung\n", s->s_mds);
3395 }
3396 }
3397 if (s->s_state < CEPH_MDS_SESSION_OPEN) {
3398 /* this mds is failed or recovering, just wait */
3399 ceph_put_mds_session(s);
3400 continue;
3401 }
3402 mutex_unlock(&mdsc->mutex);
3403
3404 mutex_lock(&s->s_mutex);
3405 if (renew_caps)
3406 send_renew_caps(mdsc, s);
3407 else
3408 ceph_con_keepalive(&s->s_con);
3409 if (s->s_state == CEPH_MDS_SESSION_OPEN ||
3410 s->s_state == CEPH_MDS_SESSION_HUNG)
3411 ceph_send_cap_releases(mdsc, s);
3412 mutex_unlock(&s->s_mutex);
3413 ceph_put_mds_session(s);
3414
3415 mutex_lock(&mdsc->mutex);
3416 }
3417 mutex_unlock(&mdsc->mutex);
3418
3419 schedule_delayed(mdsc);
3420 }
3421
3422 int ceph_mdsc_init(struct ceph_fs_client *fsc)
3423
3424 {
3425 struct ceph_mds_client *mdsc;
3426
3427 mdsc = kzalloc(sizeof(struct ceph_mds_client), GFP_NOFS);
3428 if (!mdsc)
3429 return -ENOMEM;
3430 mdsc->fsc = fsc;
3431 fsc->mdsc = mdsc;
3432 mutex_init(&mdsc->mutex);
3433 mdsc->mdsmap = kzalloc(sizeof(*mdsc->mdsmap), GFP_NOFS);
3434 if (mdsc->mdsmap == NULL) {
3435 kfree(mdsc);
3436 return -ENOMEM;
3437 }
3438
3439 init_completion(&mdsc->safe_umount_waiters);
3440 init_waitqueue_head(&mdsc->session_close_wq);
3441 INIT_LIST_HEAD(&mdsc->waiting_for_map);
3442 mdsc->sessions = NULL;
3443 atomic_set(&mdsc->num_sessions, 0);
3444 mdsc->max_sessions = 0;
3445 mdsc->stopping = 0;
3446 mdsc->last_snap_seq = 0;
3447 init_rwsem(&mdsc->snap_rwsem);
3448 mdsc->snap_realms = RB_ROOT;
3449 INIT_LIST_HEAD(&mdsc->snap_empty);
3450 spin_lock_init(&mdsc->snap_empty_lock);
3451 mdsc->last_tid = 0;
3452 mdsc->oldest_tid = 0;
3453 mdsc->request_tree = RB_ROOT;
3454 INIT_DELAYED_WORK(&mdsc->delayed_work, delayed_work);
3455 mdsc->last_renew_caps = jiffies;
3456 INIT_LIST_HEAD(&mdsc->cap_delay_list);
3457 spin_lock_init(&mdsc->cap_delay_lock);
3458 INIT_LIST_HEAD(&mdsc->snap_flush_list);
3459 spin_lock_init(&mdsc->snap_flush_lock);
3460 mdsc->last_cap_flush_tid = 1;
3461 mdsc->cap_flush_tree = RB_ROOT;
3462 INIT_LIST_HEAD(&mdsc->cap_dirty);
3463 INIT_LIST_HEAD(&mdsc->cap_dirty_migrating);
3464 mdsc->num_cap_flushing = 0;
3465 spin_lock_init(&mdsc->cap_dirty_lock);
3466 init_waitqueue_head(&mdsc->cap_flushing_wq);
3467 spin_lock_init(&mdsc->dentry_lru_lock);
3468 INIT_LIST_HEAD(&mdsc->dentry_lru);
3469
3470 ceph_caps_init(mdsc);
3471 ceph_adjust_min_caps(mdsc, fsc->min_caps);
3472
3473 init_rwsem(&mdsc->pool_perm_rwsem);
3474 mdsc->pool_perm_tree = RB_ROOT;
3475
3476 return 0;
3477 }
3478
3479 /*
3480 * Wait for safe replies on open mds requests. If we time out, drop
3481 * all requests from the tree to avoid dangling dentry refs.
3482 */
3483 static void wait_requests(struct ceph_mds_client *mdsc)
3484 {
3485 struct ceph_options *opts = mdsc->fsc->client->options;
3486 struct ceph_mds_request *req;
3487
3488 mutex_lock(&mdsc->mutex);
3489 if (__get_oldest_req(mdsc)) {
3490 mutex_unlock(&mdsc->mutex);
3491
3492 dout("wait_requests waiting for requests\n");
3493 wait_for_completion_timeout(&mdsc->safe_umount_waiters,
3494 ceph_timeout_jiffies(opts->mount_timeout));
3495
3496 /* tear down remaining requests */
3497 mutex_lock(&mdsc->mutex);
3498 while ((req = __get_oldest_req(mdsc))) {
3499 dout("wait_requests timed out on tid %llu\n",
3500 req->r_tid);
3501 __unregister_request(mdsc, req);
3502 }
3503 }
3504 mutex_unlock(&mdsc->mutex);
3505 dout("wait_requests done\n");
3506 }
3507
3508 /*
3509 * called before mount is ro, and before dentries are torn down.
3510 * (hmm, does this still race with new lookups?)
3511 */
3512 void ceph_mdsc_pre_umount(struct ceph_mds_client *mdsc)
3513 {
3514 dout("pre_umount\n");
3515 mdsc->stopping = 1;
3516
3517 drop_leases(mdsc);
3518 ceph_flush_dirty_caps(mdsc);
3519 wait_requests(mdsc);
3520
3521 /*
3522 * wait for reply handlers to drop their request refs and
3523 * their inode/dcache refs
3524 */
3525 ceph_msgr_flush();
3526 }
3527
3528 /*
3529 * wait for all write mds requests to flush.
3530 */
3531 static void wait_unsafe_requests(struct ceph_mds_client *mdsc, u64 want_tid)
3532 {
3533 struct ceph_mds_request *req = NULL, *nextreq;
3534 struct rb_node *n;
3535
3536 mutex_lock(&mdsc->mutex);
3537 dout("wait_unsafe_requests want %lld\n", want_tid);
3538 restart:
3539 req = __get_oldest_req(mdsc);
3540 while (req && req->r_tid <= want_tid) {
3541 /* find next request */
3542 n = rb_next(&req->r_node);
3543 if (n)
3544 nextreq = rb_entry(n, struct ceph_mds_request, r_node);
3545 else
3546 nextreq = NULL;
3547 if (req->r_op != CEPH_MDS_OP_SETFILELOCK &&
3548 (req->r_op & CEPH_MDS_OP_WRITE)) {
3549 /* write op */
3550 ceph_mdsc_get_request(req);
3551 if (nextreq)
3552 ceph_mdsc_get_request(nextreq);
3553 mutex_unlock(&mdsc->mutex);
3554 dout("wait_unsafe_requests wait on %llu (want %llu)\n",
3555 req->r_tid, want_tid);
3556 wait_for_completion(&req->r_safe_completion);
3557 mutex_lock(&mdsc->mutex);
3558 ceph_mdsc_put_request(req);
3559 if (!nextreq)
3560 break; /* next dne before, so we're done! */
3561 if (RB_EMPTY_NODE(&nextreq->r_node)) {
3562 /* next request was removed from tree */
3563 ceph_mdsc_put_request(nextreq);
3564 goto restart;
3565 }
3566 ceph_mdsc_put_request(nextreq); /* won't go away */
3567 }
3568 req = nextreq;
3569 }
3570 mutex_unlock(&mdsc->mutex);
3571 dout("wait_unsafe_requests done\n");
3572 }
3573
3574 void ceph_mdsc_sync(struct ceph_mds_client *mdsc)
3575 {
3576 u64 want_tid, want_flush, want_snap;
3577
3578 if (ACCESS_ONCE(mdsc->fsc->mount_state) == CEPH_MOUNT_SHUTDOWN)
3579 return;
3580
3581 dout("sync\n");
3582 mutex_lock(&mdsc->mutex);
3583 want_tid = mdsc->last_tid;
3584 mutex_unlock(&mdsc->mutex);
3585
3586 ceph_flush_dirty_caps(mdsc);
3587 spin_lock(&mdsc->cap_dirty_lock);
3588 want_flush = mdsc->last_cap_flush_tid;
3589 spin_unlock(&mdsc->cap_dirty_lock);
3590
3591 down_read(&mdsc->snap_rwsem);
3592 want_snap = mdsc->last_snap_seq;
3593 up_read(&mdsc->snap_rwsem);
3594
3595 dout("sync want tid %lld flush_seq %lld snap_seq %lld\n",
3596 want_tid, want_flush, want_snap);
3597
3598 wait_unsafe_requests(mdsc, want_tid);
3599 wait_caps_flush(mdsc, want_flush, want_snap);
3600 }
3601
3602 /*
3603 * true if all sessions are closed, or we force unmount
3604 */
3605 static bool done_closing_sessions(struct ceph_mds_client *mdsc)
3606 {
3607 if (ACCESS_ONCE(mdsc->fsc->mount_state) == CEPH_MOUNT_SHUTDOWN)
3608 return true;
3609 return atomic_read(&mdsc->num_sessions) == 0;
3610 }
3611
3612 /*
3613 * called after sb is ro.
3614 */
3615 void ceph_mdsc_close_sessions(struct ceph_mds_client *mdsc)
3616 {
3617 struct ceph_options *opts = mdsc->fsc->client->options;
3618 struct ceph_mds_session *session;
3619 int i;
3620
3621 dout("close_sessions\n");
3622
3623 /* close sessions */
3624 mutex_lock(&mdsc->mutex);
3625 for (i = 0; i < mdsc->max_sessions; i++) {
3626 session = __ceph_lookup_mds_session(mdsc, i);
3627 if (!session)
3628 continue;
3629 mutex_unlock(&mdsc->mutex);
3630 mutex_lock(&session->s_mutex);
3631 __close_session(mdsc, session);
3632 mutex_unlock(&session->s_mutex);
3633 ceph_put_mds_session(session);
3634 mutex_lock(&mdsc->mutex);
3635 }
3636 mutex_unlock(&mdsc->mutex);
3637
3638 dout("waiting for sessions to close\n");
3639 wait_event_timeout(mdsc->session_close_wq, done_closing_sessions(mdsc),
3640 ceph_timeout_jiffies(opts->mount_timeout));
3641
3642 /* tear down remaining sessions */
3643 mutex_lock(&mdsc->mutex);
3644 for (i = 0; i < mdsc->max_sessions; i++) {
3645 if (mdsc->sessions[i]) {
3646 session = get_session(mdsc->sessions[i]);
3647 __unregister_session(mdsc, session);
3648 mutex_unlock(&mdsc->mutex);
3649 mutex_lock(&session->s_mutex);
3650 remove_session_caps(session);
3651 mutex_unlock(&session->s_mutex);
3652 ceph_put_mds_session(session);
3653 mutex_lock(&mdsc->mutex);
3654 }
3655 }
3656 WARN_ON(!list_empty(&mdsc->cap_delay_list));
3657 mutex_unlock(&mdsc->mutex);
3658
3659 ceph_cleanup_empty_realms(mdsc);
3660
3661 cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */
3662
3663 dout("stopped\n");
3664 }
3665
3666 void ceph_mdsc_force_umount(struct ceph_mds_client *mdsc)
3667 {
3668 struct ceph_mds_session *session;
3669 int mds;
3670
3671 dout("force umount\n");
3672
3673 mutex_lock(&mdsc->mutex);
3674 for (mds = 0; mds < mdsc->max_sessions; mds++) {
3675 session = __ceph_lookup_mds_session(mdsc, mds);
3676 if (!session)
3677 continue;
3678 mutex_unlock(&mdsc->mutex);
3679 mutex_lock(&session->s_mutex);
3680 __close_session(mdsc, session);
3681 if (session->s_state == CEPH_MDS_SESSION_CLOSING) {
3682 cleanup_session_requests(mdsc, session);
3683 remove_session_caps(session);
3684 }
3685 mutex_unlock(&session->s_mutex);
3686 ceph_put_mds_session(session);
3687 mutex_lock(&mdsc->mutex);
3688 kick_requests(mdsc, mds);
3689 }
3690 __wake_requests(mdsc, &mdsc->waiting_for_map);
3691 mutex_unlock(&mdsc->mutex);
3692 }
3693
3694 static void ceph_mdsc_stop(struct ceph_mds_client *mdsc)
3695 {
3696 dout("stop\n");
3697 cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */
3698 if (mdsc->mdsmap)
3699 ceph_mdsmap_destroy(mdsc->mdsmap);
3700 kfree(mdsc->sessions);
3701 ceph_caps_finalize(mdsc);
3702 ceph_pool_perm_destroy(mdsc);
3703 }
3704
3705 void ceph_mdsc_destroy(struct ceph_fs_client *fsc)
3706 {
3707 struct ceph_mds_client *mdsc = fsc->mdsc;
3708
3709 dout("mdsc_destroy %p\n", mdsc);
3710 ceph_mdsc_stop(mdsc);
3711
3712 /* flush out any connection work with references to us */
3713 ceph_msgr_flush();
3714
3715 fsc->mdsc = NULL;
3716 kfree(mdsc);
3717 dout("mdsc_destroy %p done\n", mdsc);
3718 }
3719
3720
3721 /*
3722 * handle mds map update.
3723 */
3724 void ceph_mdsc_handle_map(struct ceph_mds_client *mdsc, struct ceph_msg *msg)
3725 {
3726 u32 epoch;
3727 u32 maplen;
3728 void *p = msg->front.iov_base;
3729 void *end = p + msg->front.iov_len;
3730 struct ceph_mdsmap *newmap, *oldmap;
3731 struct ceph_fsid fsid;
3732 int err = -EINVAL;
3733
3734 ceph_decode_need(&p, end, sizeof(fsid)+2*sizeof(u32), bad);
3735 ceph_decode_copy(&p, &fsid, sizeof(fsid));
3736 if (ceph_check_fsid(mdsc->fsc->client, &fsid) < 0)
3737 return;
3738 epoch = ceph_decode_32(&p);
3739 maplen = ceph_decode_32(&p);
3740 dout("handle_map epoch %u len %d\n", epoch, (int)maplen);
3741
3742 /* do we need it? */
3743 mutex_lock(&mdsc->mutex);
3744 if (mdsc->mdsmap && epoch <= mdsc->mdsmap->m_epoch) {
3745 dout("handle_map epoch %u <= our %u\n",
3746 epoch, mdsc->mdsmap->m_epoch);
3747 mutex_unlock(&mdsc->mutex);
3748 return;
3749 }
3750
3751 newmap = ceph_mdsmap_decode(&p, end);
3752 if (IS_ERR(newmap)) {
3753 err = PTR_ERR(newmap);
3754 goto bad_unlock;
3755 }
3756
3757 /* swap into place */
3758 if (mdsc->mdsmap) {
3759 oldmap = mdsc->mdsmap;
3760 mdsc->mdsmap = newmap;
3761 check_new_map(mdsc, newmap, oldmap);
3762 ceph_mdsmap_destroy(oldmap);
3763 } else {
3764 mdsc->mdsmap = newmap; /* first mds map */
3765 }
3766 mdsc->fsc->sb->s_maxbytes = mdsc->mdsmap->m_max_file_size;
3767
3768 __wake_requests(mdsc, &mdsc->waiting_for_map);
3769 ceph_monc_got_map(&mdsc->fsc->client->monc, CEPH_SUB_MDSMAP,
3770 mdsc->mdsmap->m_epoch);
3771
3772 mutex_unlock(&mdsc->mutex);
3773 schedule_delayed(mdsc);
3774 return;
3775
3776 bad_unlock:
3777 mutex_unlock(&mdsc->mutex);
3778 bad:
3779 pr_err("error decoding mdsmap %d\n", err);
3780 return;
3781 }
3782
3783 static struct ceph_connection *con_get(struct ceph_connection *con)
3784 {
3785 struct ceph_mds_session *s = con->private;
3786
3787 if (get_session(s)) {
3788 dout("mdsc con_get %p ok (%d)\n", s, atomic_read(&s->s_ref));
3789 return con;
3790 }
3791 dout("mdsc con_get %p FAIL\n", s);
3792 return NULL;
3793 }
3794
3795 static void con_put(struct ceph_connection *con)
3796 {
3797 struct ceph_mds_session *s = con->private;
3798
3799 dout("mdsc con_put %p (%d)\n", s, atomic_read(&s->s_ref) - 1);
3800 ceph_put_mds_session(s);
3801 }
3802
3803 /*
3804 * if the client is unresponsive for long enough, the mds will kill
3805 * the session entirely.
3806 */
3807 static void peer_reset(struct ceph_connection *con)
3808 {
3809 struct ceph_mds_session *s = con->private;
3810 struct ceph_mds_client *mdsc = s->s_mdsc;
3811
3812 pr_warn("mds%d closed our session\n", s->s_mds);
3813 send_mds_reconnect(mdsc, s);
3814 }
3815
3816 static void dispatch(struct ceph_connection *con, struct ceph_msg *msg)
3817 {
3818 struct ceph_mds_session *s = con->private;
3819 struct ceph_mds_client *mdsc = s->s_mdsc;
3820 int type = le16_to_cpu(msg->hdr.type);
3821
3822 mutex_lock(&mdsc->mutex);
3823 if (__verify_registered_session(mdsc, s) < 0) {
3824 mutex_unlock(&mdsc->mutex);
3825 goto out;
3826 }
3827 mutex_unlock(&mdsc->mutex);
3828
3829 switch (type) {
3830 case CEPH_MSG_MDS_MAP:
3831 ceph_mdsc_handle_map(mdsc, msg);
3832 break;
3833 case CEPH_MSG_CLIENT_SESSION:
3834 handle_session(s, msg);
3835 break;
3836 case CEPH_MSG_CLIENT_REPLY:
3837 handle_reply(s, msg);
3838 break;
3839 case CEPH_MSG_CLIENT_REQUEST_FORWARD:
3840 handle_forward(mdsc, s, msg);
3841 break;
3842 case CEPH_MSG_CLIENT_CAPS:
3843 ceph_handle_caps(s, msg);
3844 break;
3845 case CEPH_MSG_CLIENT_SNAP:
3846 ceph_handle_snap(mdsc, s, msg);
3847 break;
3848 case CEPH_MSG_CLIENT_LEASE:
3849 handle_lease(mdsc, s, msg);
3850 break;
3851
3852 default:
3853 pr_err("received unknown message type %d %s\n", type,
3854 ceph_msg_type_name(type));
3855 }
3856 out:
3857 ceph_msg_put(msg);
3858 }
3859
3860 /*
3861 * authentication
3862 */
3863
3864 /*
3865 * Note: returned pointer is the address of a structure that's
3866 * managed separately. Caller must *not* attempt to free it.
3867 */
3868 static struct ceph_auth_handshake *get_authorizer(struct ceph_connection *con,
3869 int *proto, int force_new)
3870 {
3871 struct ceph_mds_session *s = con->private;
3872 struct ceph_mds_client *mdsc = s->s_mdsc;
3873 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
3874 struct ceph_auth_handshake *auth = &s->s_auth;
3875
3876 if (force_new && auth->authorizer) {
3877 ceph_auth_destroy_authorizer(auth->authorizer);
3878 auth->authorizer = NULL;
3879 }
3880 if (!auth->authorizer) {
3881 int ret = ceph_auth_create_authorizer(ac, CEPH_ENTITY_TYPE_MDS,
3882 auth);
3883 if (ret)
3884 return ERR_PTR(ret);
3885 } else {
3886 int ret = ceph_auth_update_authorizer(ac, CEPH_ENTITY_TYPE_MDS,
3887 auth);
3888 if (ret)
3889 return ERR_PTR(ret);
3890 }
3891 *proto = ac->protocol;
3892
3893 return auth;
3894 }
3895
3896
3897 static int verify_authorizer_reply(struct ceph_connection *con, int len)
3898 {
3899 struct ceph_mds_session *s = con->private;
3900 struct ceph_mds_client *mdsc = s->s_mdsc;
3901 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
3902
3903 return ceph_auth_verify_authorizer_reply(ac, s->s_auth.authorizer, len);
3904 }
3905
3906 static int invalidate_authorizer(struct ceph_connection *con)
3907 {
3908 struct ceph_mds_session *s = con->private;
3909 struct ceph_mds_client *mdsc = s->s_mdsc;
3910 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
3911
3912 ceph_auth_invalidate_authorizer(ac, CEPH_ENTITY_TYPE_MDS);
3913
3914 return ceph_monc_validate_auth(&mdsc->fsc->client->monc);
3915 }
3916
3917 static struct ceph_msg *mds_alloc_msg(struct ceph_connection *con,
3918 struct ceph_msg_header *hdr, int *skip)
3919 {
3920 struct ceph_msg *msg;
3921 int type = (int) le16_to_cpu(hdr->type);
3922 int front_len = (int) le32_to_cpu(hdr->front_len);
3923
3924 if (con->in_msg)
3925 return con->in_msg;
3926
3927 *skip = 0;
3928 msg = ceph_msg_new(type, front_len, GFP_NOFS, false);
3929 if (!msg) {
3930 pr_err("unable to allocate msg type %d len %d\n",
3931 type, front_len);
3932 return NULL;
3933 }
3934
3935 return msg;
3936 }
3937
3938 static int mds_sign_message(struct ceph_msg *msg)
3939 {
3940 struct ceph_mds_session *s = msg->con->private;
3941 struct ceph_auth_handshake *auth = &s->s_auth;
3942
3943 return ceph_auth_sign_message(auth, msg);
3944 }
3945
3946 static int mds_check_message_signature(struct ceph_msg *msg)
3947 {
3948 struct ceph_mds_session *s = msg->con->private;
3949 struct ceph_auth_handshake *auth = &s->s_auth;
3950
3951 return ceph_auth_check_message_signature(auth, msg);
3952 }
3953
3954 static const struct ceph_connection_operations mds_con_ops = {
3955 .get = con_get,
3956 .put = con_put,
3957 .dispatch = dispatch,
3958 .get_authorizer = get_authorizer,
3959 .verify_authorizer_reply = verify_authorizer_reply,
3960 .invalidate_authorizer = invalidate_authorizer,
3961 .peer_reset = peer_reset,
3962 .alloc_msg = mds_alloc_msg,
3963 .sign_message = mds_sign_message,
3964 .check_message_signature = mds_check_message_signature,
3965 };
3966
3967 /* eof */