]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/ceph/mds_client.c
ceph: define 'end/complete' in readdir reply as bit flags
[mirror_ubuntu-bionic-kernel.git] / fs / ceph / mds_client.c
1 #include <linux/ceph/ceph_debug.h>
2
3 #include <linux/fs.h>
4 #include <linux/wait.h>
5 #include <linux/slab.h>
6 #include <linux/gfp.h>
7 #include <linux/sched.h>
8 #include <linux/debugfs.h>
9 #include <linux/seq_file.h>
10 #include <linux/utsname.h>
11 #include <linux/ratelimit.h>
12
13 #include "super.h"
14 #include "mds_client.h"
15
16 #include <linux/ceph/ceph_features.h>
17 #include <linux/ceph/messenger.h>
18 #include <linux/ceph/decode.h>
19 #include <linux/ceph/pagelist.h>
20 #include <linux/ceph/auth.h>
21 #include <linux/ceph/debugfs.h>
22
23 /*
24 * A cluster of MDS (metadata server) daemons is responsible for
25 * managing the file system namespace (the directory hierarchy and
26 * inodes) and for coordinating shared access to storage. Metadata is
27 * partitioning hierarchically across a number of servers, and that
28 * partition varies over time as the cluster adjusts the distribution
29 * in order to balance load.
30 *
31 * The MDS client is primarily responsible to managing synchronous
32 * metadata requests for operations like open, unlink, and so forth.
33 * If there is a MDS failure, we find out about it when we (possibly
34 * request and) receive a new MDS map, and can resubmit affected
35 * requests.
36 *
37 * For the most part, though, we take advantage of a lossless
38 * communications channel to the MDS, and do not need to worry about
39 * timing out or resubmitting requests.
40 *
41 * We maintain a stateful "session" with each MDS we interact with.
42 * Within each session, we sent periodic heartbeat messages to ensure
43 * any capabilities or leases we have been issues remain valid. If
44 * the session times out and goes stale, our leases and capabilities
45 * are no longer valid.
46 */
47
48 struct ceph_reconnect_state {
49 int nr_caps;
50 struct ceph_pagelist *pagelist;
51 bool flock;
52 };
53
54 static void __wake_requests(struct ceph_mds_client *mdsc,
55 struct list_head *head);
56
57 static const struct ceph_connection_operations mds_con_ops;
58
59
60 /*
61 * mds reply parsing
62 */
63
64 /*
65 * parse individual inode info
66 */
67 static int parse_reply_info_in(void **p, void *end,
68 struct ceph_mds_reply_info_in *info,
69 u64 features)
70 {
71 int err = -EIO;
72
73 info->in = *p;
74 *p += sizeof(struct ceph_mds_reply_inode) +
75 sizeof(*info->in->fragtree.splits) *
76 le32_to_cpu(info->in->fragtree.nsplits);
77
78 ceph_decode_32_safe(p, end, info->symlink_len, bad);
79 ceph_decode_need(p, end, info->symlink_len, bad);
80 info->symlink = *p;
81 *p += info->symlink_len;
82
83 if (features & CEPH_FEATURE_DIRLAYOUTHASH)
84 ceph_decode_copy_safe(p, end, &info->dir_layout,
85 sizeof(info->dir_layout), bad);
86 else
87 memset(&info->dir_layout, 0, sizeof(info->dir_layout));
88
89 ceph_decode_32_safe(p, end, info->xattr_len, bad);
90 ceph_decode_need(p, end, info->xattr_len, bad);
91 info->xattr_data = *p;
92 *p += info->xattr_len;
93
94 if (features & CEPH_FEATURE_MDS_INLINE_DATA) {
95 ceph_decode_64_safe(p, end, info->inline_version, bad);
96 ceph_decode_32_safe(p, end, info->inline_len, bad);
97 ceph_decode_need(p, end, info->inline_len, bad);
98 info->inline_data = *p;
99 *p += info->inline_len;
100 } else
101 info->inline_version = CEPH_INLINE_NONE;
102
103 if (features & CEPH_FEATURE_FS_FILE_LAYOUT_V2) {
104 ceph_decode_32_safe(p, end, info->pool_ns_len, bad);
105 ceph_decode_need(p, end, info->pool_ns_len, bad);
106 *p += info->pool_ns_len;
107 } else {
108 info->pool_ns_len = 0;
109 }
110
111 return 0;
112 bad:
113 return err;
114 }
115
116 /*
117 * parse a normal reply, which may contain a (dir+)dentry and/or a
118 * target inode.
119 */
120 static int parse_reply_info_trace(void **p, void *end,
121 struct ceph_mds_reply_info_parsed *info,
122 u64 features)
123 {
124 int err;
125
126 if (info->head->is_dentry) {
127 err = parse_reply_info_in(p, end, &info->diri, features);
128 if (err < 0)
129 goto out_bad;
130
131 if (unlikely(*p + sizeof(*info->dirfrag) > end))
132 goto bad;
133 info->dirfrag = *p;
134 *p += sizeof(*info->dirfrag) +
135 sizeof(u32)*le32_to_cpu(info->dirfrag->ndist);
136 if (unlikely(*p > end))
137 goto bad;
138
139 ceph_decode_32_safe(p, end, info->dname_len, bad);
140 ceph_decode_need(p, end, info->dname_len, bad);
141 info->dname = *p;
142 *p += info->dname_len;
143 info->dlease = *p;
144 *p += sizeof(*info->dlease);
145 }
146
147 if (info->head->is_target) {
148 err = parse_reply_info_in(p, end, &info->targeti, features);
149 if (err < 0)
150 goto out_bad;
151 }
152
153 if (unlikely(*p != end))
154 goto bad;
155 return 0;
156
157 bad:
158 err = -EIO;
159 out_bad:
160 pr_err("problem parsing mds trace %d\n", err);
161 return err;
162 }
163
164 /*
165 * parse readdir results
166 */
167 static int parse_reply_info_dir(void **p, void *end,
168 struct ceph_mds_reply_info_parsed *info,
169 u64 features)
170 {
171 u32 num, i = 0;
172 int err;
173
174 info->dir_dir = *p;
175 if (*p + sizeof(*info->dir_dir) > end)
176 goto bad;
177 *p += sizeof(*info->dir_dir) +
178 sizeof(u32)*le32_to_cpu(info->dir_dir->ndist);
179 if (*p > end)
180 goto bad;
181
182 ceph_decode_need(p, end, sizeof(num) + 2, bad);
183 num = ceph_decode_32(p);
184 {
185 u16 flags = ceph_decode_16(p);
186 info->dir_end = !!(flags & CEPH_READDIR_FRAG_END);
187 info->dir_complete = !!(flags & CEPH_READDIR_FRAG_COMPLETE);
188 }
189 if (num == 0)
190 goto done;
191
192 BUG_ON(!info->dir_entries);
193 if ((unsigned long)(info->dir_entries + num) >
194 (unsigned long)info->dir_entries + info->dir_buf_size) {
195 pr_err("dir contents are larger than expected\n");
196 WARN_ON(1);
197 goto bad;
198 }
199
200 info->dir_nr = num;
201 while (num) {
202 struct ceph_mds_reply_dir_entry *rde = info->dir_entries + i;
203 /* dentry */
204 ceph_decode_need(p, end, sizeof(u32)*2, bad);
205 rde->name_len = ceph_decode_32(p);
206 ceph_decode_need(p, end, rde->name_len, bad);
207 rde->name = *p;
208 *p += rde->name_len;
209 dout("parsed dir dname '%.*s'\n", rde->name_len, rde->name);
210 rde->lease = *p;
211 *p += sizeof(struct ceph_mds_reply_lease);
212
213 /* inode */
214 err = parse_reply_info_in(p, end, &rde->inode, features);
215 if (err < 0)
216 goto out_bad;
217 i++;
218 num--;
219 }
220
221 done:
222 if (*p != end)
223 goto bad;
224 return 0;
225
226 bad:
227 err = -EIO;
228 out_bad:
229 pr_err("problem parsing dir contents %d\n", err);
230 return err;
231 }
232
233 /*
234 * parse fcntl F_GETLK results
235 */
236 static int parse_reply_info_filelock(void **p, void *end,
237 struct ceph_mds_reply_info_parsed *info,
238 u64 features)
239 {
240 if (*p + sizeof(*info->filelock_reply) > end)
241 goto bad;
242
243 info->filelock_reply = *p;
244 *p += sizeof(*info->filelock_reply);
245
246 if (unlikely(*p != end))
247 goto bad;
248 return 0;
249
250 bad:
251 return -EIO;
252 }
253
254 /*
255 * parse create results
256 */
257 static int parse_reply_info_create(void **p, void *end,
258 struct ceph_mds_reply_info_parsed *info,
259 u64 features)
260 {
261 if (features & CEPH_FEATURE_REPLY_CREATE_INODE) {
262 if (*p == end) {
263 info->has_create_ino = false;
264 } else {
265 info->has_create_ino = true;
266 info->ino = ceph_decode_64(p);
267 }
268 }
269
270 if (unlikely(*p != end))
271 goto bad;
272 return 0;
273
274 bad:
275 return -EIO;
276 }
277
278 /*
279 * parse extra results
280 */
281 static int parse_reply_info_extra(void **p, void *end,
282 struct ceph_mds_reply_info_parsed *info,
283 u64 features)
284 {
285 if (info->head->op == CEPH_MDS_OP_GETFILELOCK)
286 return parse_reply_info_filelock(p, end, info, features);
287 else if (info->head->op == CEPH_MDS_OP_READDIR ||
288 info->head->op == CEPH_MDS_OP_LSSNAP)
289 return parse_reply_info_dir(p, end, info, features);
290 else if (info->head->op == CEPH_MDS_OP_CREATE)
291 return parse_reply_info_create(p, end, info, features);
292 else
293 return -EIO;
294 }
295
296 /*
297 * parse entire mds reply
298 */
299 static int parse_reply_info(struct ceph_msg *msg,
300 struct ceph_mds_reply_info_parsed *info,
301 u64 features)
302 {
303 void *p, *end;
304 u32 len;
305 int err;
306
307 info->head = msg->front.iov_base;
308 p = msg->front.iov_base + sizeof(struct ceph_mds_reply_head);
309 end = p + msg->front.iov_len - sizeof(struct ceph_mds_reply_head);
310
311 /* trace */
312 ceph_decode_32_safe(&p, end, len, bad);
313 if (len > 0) {
314 ceph_decode_need(&p, end, len, bad);
315 err = parse_reply_info_trace(&p, p+len, info, features);
316 if (err < 0)
317 goto out_bad;
318 }
319
320 /* extra */
321 ceph_decode_32_safe(&p, end, len, bad);
322 if (len > 0) {
323 ceph_decode_need(&p, end, len, bad);
324 err = parse_reply_info_extra(&p, p+len, info, features);
325 if (err < 0)
326 goto out_bad;
327 }
328
329 /* snap blob */
330 ceph_decode_32_safe(&p, end, len, bad);
331 info->snapblob_len = len;
332 info->snapblob = p;
333 p += len;
334
335 if (p != end)
336 goto bad;
337 return 0;
338
339 bad:
340 err = -EIO;
341 out_bad:
342 pr_err("mds parse_reply err %d\n", err);
343 return err;
344 }
345
346 static void destroy_reply_info(struct ceph_mds_reply_info_parsed *info)
347 {
348 if (!info->dir_entries)
349 return;
350 free_pages((unsigned long)info->dir_entries, get_order(info->dir_buf_size));
351 }
352
353
354 /*
355 * sessions
356 */
357 const char *ceph_session_state_name(int s)
358 {
359 switch (s) {
360 case CEPH_MDS_SESSION_NEW: return "new";
361 case CEPH_MDS_SESSION_OPENING: return "opening";
362 case CEPH_MDS_SESSION_OPEN: return "open";
363 case CEPH_MDS_SESSION_HUNG: return "hung";
364 case CEPH_MDS_SESSION_CLOSING: return "closing";
365 case CEPH_MDS_SESSION_RESTARTING: return "restarting";
366 case CEPH_MDS_SESSION_RECONNECTING: return "reconnecting";
367 default: return "???";
368 }
369 }
370
371 static struct ceph_mds_session *get_session(struct ceph_mds_session *s)
372 {
373 if (atomic_inc_not_zero(&s->s_ref)) {
374 dout("mdsc get_session %p %d -> %d\n", s,
375 atomic_read(&s->s_ref)-1, atomic_read(&s->s_ref));
376 return s;
377 } else {
378 dout("mdsc get_session %p 0 -- FAIL", s);
379 return NULL;
380 }
381 }
382
383 void ceph_put_mds_session(struct ceph_mds_session *s)
384 {
385 dout("mdsc put_session %p %d -> %d\n", s,
386 atomic_read(&s->s_ref), atomic_read(&s->s_ref)-1);
387 if (atomic_dec_and_test(&s->s_ref)) {
388 if (s->s_auth.authorizer)
389 ceph_auth_destroy_authorizer(s->s_auth.authorizer);
390 kfree(s);
391 }
392 }
393
394 /*
395 * called under mdsc->mutex
396 */
397 struct ceph_mds_session *__ceph_lookup_mds_session(struct ceph_mds_client *mdsc,
398 int mds)
399 {
400 struct ceph_mds_session *session;
401
402 if (mds >= mdsc->max_sessions || mdsc->sessions[mds] == NULL)
403 return NULL;
404 session = mdsc->sessions[mds];
405 dout("lookup_mds_session %p %d\n", session,
406 atomic_read(&session->s_ref));
407 get_session(session);
408 return session;
409 }
410
411 static bool __have_session(struct ceph_mds_client *mdsc, int mds)
412 {
413 if (mds >= mdsc->max_sessions)
414 return false;
415 return mdsc->sessions[mds];
416 }
417
418 static int __verify_registered_session(struct ceph_mds_client *mdsc,
419 struct ceph_mds_session *s)
420 {
421 if (s->s_mds >= mdsc->max_sessions ||
422 mdsc->sessions[s->s_mds] != s)
423 return -ENOENT;
424 return 0;
425 }
426
427 /*
428 * create+register a new session for given mds.
429 * called under mdsc->mutex.
430 */
431 static struct ceph_mds_session *register_session(struct ceph_mds_client *mdsc,
432 int mds)
433 {
434 struct ceph_mds_session *s;
435
436 if (mds >= mdsc->mdsmap->m_max_mds)
437 return ERR_PTR(-EINVAL);
438
439 s = kzalloc(sizeof(*s), GFP_NOFS);
440 if (!s)
441 return ERR_PTR(-ENOMEM);
442 s->s_mdsc = mdsc;
443 s->s_mds = mds;
444 s->s_state = CEPH_MDS_SESSION_NEW;
445 s->s_ttl = 0;
446 s->s_seq = 0;
447 mutex_init(&s->s_mutex);
448
449 ceph_con_init(&s->s_con, s, &mds_con_ops, &mdsc->fsc->client->msgr);
450
451 spin_lock_init(&s->s_gen_ttl_lock);
452 s->s_cap_gen = 0;
453 s->s_cap_ttl = jiffies - 1;
454
455 spin_lock_init(&s->s_cap_lock);
456 s->s_renew_requested = 0;
457 s->s_renew_seq = 0;
458 INIT_LIST_HEAD(&s->s_caps);
459 s->s_nr_caps = 0;
460 s->s_trim_caps = 0;
461 atomic_set(&s->s_ref, 1);
462 INIT_LIST_HEAD(&s->s_waiting);
463 INIT_LIST_HEAD(&s->s_unsafe);
464 s->s_num_cap_releases = 0;
465 s->s_cap_reconnect = 0;
466 s->s_cap_iterator = NULL;
467 INIT_LIST_HEAD(&s->s_cap_releases);
468 INIT_LIST_HEAD(&s->s_cap_flushing);
469 INIT_LIST_HEAD(&s->s_cap_snaps_flushing);
470
471 dout("register_session mds%d\n", mds);
472 if (mds >= mdsc->max_sessions) {
473 int newmax = 1 << get_count_order(mds+1);
474 struct ceph_mds_session **sa;
475
476 dout("register_session realloc to %d\n", newmax);
477 sa = kcalloc(newmax, sizeof(void *), GFP_NOFS);
478 if (sa == NULL)
479 goto fail_realloc;
480 if (mdsc->sessions) {
481 memcpy(sa, mdsc->sessions,
482 mdsc->max_sessions * sizeof(void *));
483 kfree(mdsc->sessions);
484 }
485 mdsc->sessions = sa;
486 mdsc->max_sessions = newmax;
487 }
488 mdsc->sessions[mds] = s;
489 atomic_inc(&mdsc->num_sessions);
490 atomic_inc(&s->s_ref); /* one ref to sessions[], one to caller */
491
492 ceph_con_open(&s->s_con, CEPH_ENTITY_TYPE_MDS, mds,
493 ceph_mdsmap_get_addr(mdsc->mdsmap, mds));
494
495 return s;
496
497 fail_realloc:
498 kfree(s);
499 return ERR_PTR(-ENOMEM);
500 }
501
502 /*
503 * called under mdsc->mutex
504 */
505 static void __unregister_session(struct ceph_mds_client *mdsc,
506 struct ceph_mds_session *s)
507 {
508 dout("__unregister_session mds%d %p\n", s->s_mds, s);
509 BUG_ON(mdsc->sessions[s->s_mds] != s);
510 mdsc->sessions[s->s_mds] = NULL;
511 ceph_con_close(&s->s_con);
512 ceph_put_mds_session(s);
513 atomic_dec(&mdsc->num_sessions);
514 }
515
516 /*
517 * drop session refs in request.
518 *
519 * should be last request ref, or hold mdsc->mutex
520 */
521 static void put_request_session(struct ceph_mds_request *req)
522 {
523 if (req->r_session) {
524 ceph_put_mds_session(req->r_session);
525 req->r_session = NULL;
526 }
527 }
528
529 void ceph_mdsc_release_request(struct kref *kref)
530 {
531 struct ceph_mds_request *req = container_of(kref,
532 struct ceph_mds_request,
533 r_kref);
534 destroy_reply_info(&req->r_reply_info);
535 if (req->r_request)
536 ceph_msg_put(req->r_request);
537 if (req->r_reply)
538 ceph_msg_put(req->r_reply);
539 if (req->r_inode) {
540 ceph_put_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN);
541 iput(req->r_inode);
542 }
543 if (req->r_locked_dir)
544 ceph_put_cap_refs(ceph_inode(req->r_locked_dir), CEPH_CAP_PIN);
545 iput(req->r_target_inode);
546 if (req->r_dentry)
547 dput(req->r_dentry);
548 if (req->r_old_dentry)
549 dput(req->r_old_dentry);
550 if (req->r_old_dentry_dir) {
551 /*
552 * track (and drop pins for) r_old_dentry_dir
553 * separately, since r_old_dentry's d_parent may have
554 * changed between the dir mutex being dropped and
555 * this request being freed.
556 */
557 ceph_put_cap_refs(ceph_inode(req->r_old_dentry_dir),
558 CEPH_CAP_PIN);
559 iput(req->r_old_dentry_dir);
560 }
561 kfree(req->r_path1);
562 kfree(req->r_path2);
563 if (req->r_pagelist)
564 ceph_pagelist_release(req->r_pagelist);
565 put_request_session(req);
566 ceph_unreserve_caps(req->r_mdsc, &req->r_caps_reservation);
567 kfree(req);
568 }
569
570 DEFINE_RB_FUNCS(request, struct ceph_mds_request, r_tid, r_node)
571
572 /*
573 * lookup session, bump ref if found.
574 *
575 * called under mdsc->mutex.
576 */
577 static struct ceph_mds_request *
578 lookup_get_request(struct ceph_mds_client *mdsc, u64 tid)
579 {
580 struct ceph_mds_request *req;
581
582 req = lookup_request(&mdsc->request_tree, tid);
583 if (req)
584 ceph_mdsc_get_request(req);
585
586 return req;
587 }
588
589 /*
590 * Register an in-flight request, and assign a tid. Link to directory
591 * are modifying (if any).
592 *
593 * Called under mdsc->mutex.
594 */
595 static void __register_request(struct ceph_mds_client *mdsc,
596 struct ceph_mds_request *req,
597 struct inode *dir)
598 {
599 req->r_tid = ++mdsc->last_tid;
600 if (req->r_num_caps)
601 ceph_reserve_caps(mdsc, &req->r_caps_reservation,
602 req->r_num_caps);
603 dout("__register_request %p tid %lld\n", req, req->r_tid);
604 ceph_mdsc_get_request(req);
605 insert_request(&mdsc->request_tree, req);
606
607 req->r_uid = current_fsuid();
608 req->r_gid = current_fsgid();
609
610 if (mdsc->oldest_tid == 0 && req->r_op != CEPH_MDS_OP_SETFILELOCK)
611 mdsc->oldest_tid = req->r_tid;
612
613 if (dir) {
614 ihold(dir);
615 req->r_unsafe_dir = dir;
616 }
617 }
618
619 static void __unregister_request(struct ceph_mds_client *mdsc,
620 struct ceph_mds_request *req)
621 {
622 dout("__unregister_request %p tid %lld\n", req, req->r_tid);
623
624 if (req->r_tid == mdsc->oldest_tid) {
625 struct rb_node *p = rb_next(&req->r_node);
626 mdsc->oldest_tid = 0;
627 while (p) {
628 struct ceph_mds_request *next_req =
629 rb_entry(p, struct ceph_mds_request, r_node);
630 if (next_req->r_op != CEPH_MDS_OP_SETFILELOCK) {
631 mdsc->oldest_tid = next_req->r_tid;
632 break;
633 }
634 p = rb_next(p);
635 }
636 }
637
638 erase_request(&mdsc->request_tree, req);
639
640 if (req->r_unsafe_dir && req->r_got_unsafe) {
641 struct ceph_inode_info *ci = ceph_inode(req->r_unsafe_dir);
642 spin_lock(&ci->i_unsafe_lock);
643 list_del_init(&req->r_unsafe_dir_item);
644 spin_unlock(&ci->i_unsafe_lock);
645 }
646 if (req->r_target_inode && req->r_got_unsafe) {
647 struct ceph_inode_info *ci = ceph_inode(req->r_target_inode);
648 spin_lock(&ci->i_unsafe_lock);
649 list_del_init(&req->r_unsafe_target_item);
650 spin_unlock(&ci->i_unsafe_lock);
651 }
652
653 if (req->r_unsafe_dir) {
654 iput(req->r_unsafe_dir);
655 req->r_unsafe_dir = NULL;
656 }
657
658 complete_all(&req->r_safe_completion);
659
660 ceph_mdsc_put_request(req);
661 }
662
663 /*
664 * Choose mds to send request to next. If there is a hint set in the
665 * request (e.g., due to a prior forward hint from the mds), use that.
666 * Otherwise, consult frag tree and/or caps to identify the
667 * appropriate mds. If all else fails, choose randomly.
668 *
669 * Called under mdsc->mutex.
670 */
671 static struct dentry *get_nonsnap_parent(struct dentry *dentry)
672 {
673 /*
674 * we don't need to worry about protecting the d_parent access
675 * here because we never renaming inside the snapped namespace
676 * except to resplice to another snapdir, and either the old or new
677 * result is a valid result.
678 */
679 while (!IS_ROOT(dentry) && ceph_snap(d_inode(dentry)) != CEPH_NOSNAP)
680 dentry = dentry->d_parent;
681 return dentry;
682 }
683
684 static int __choose_mds(struct ceph_mds_client *mdsc,
685 struct ceph_mds_request *req)
686 {
687 struct inode *inode;
688 struct ceph_inode_info *ci;
689 struct ceph_cap *cap;
690 int mode = req->r_direct_mode;
691 int mds = -1;
692 u32 hash = req->r_direct_hash;
693 bool is_hash = req->r_direct_is_hash;
694
695 /*
696 * is there a specific mds we should try? ignore hint if we have
697 * no session and the mds is not up (active or recovering).
698 */
699 if (req->r_resend_mds >= 0 &&
700 (__have_session(mdsc, req->r_resend_mds) ||
701 ceph_mdsmap_get_state(mdsc->mdsmap, req->r_resend_mds) > 0)) {
702 dout("choose_mds using resend_mds mds%d\n",
703 req->r_resend_mds);
704 return req->r_resend_mds;
705 }
706
707 if (mode == USE_RANDOM_MDS)
708 goto random;
709
710 inode = NULL;
711 if (req->r_inode) {
712 inode = req->r_inode;
713 } else if (req->r_dentry) {
714 /* ignore race with rename; old or new d_parent is okay */
715 struct dentry *parent = req->r_dentry->d_parent;
716 struct inode *dir = d_inode(parent);
717
718 if (dir->i_sb != mdsc->fsc->sb) {
719 /* not this fs! */
720 inode = d_inode(req->r_dentry);
721 } else if (ceph_snap(dir) != CEPH_NOSNAP) {
722 /* direct snapped/virtual snapdir requests
723 * based on parent dir inode */
724 struct dentry *dn = get_nonsnap_parent(parent);
725 inode = d_inode(dn);
726 dout("__choose_mds using nonsnap parent %p\n", inode);
727 } else {
728 /* dentry target */
729 inode = d_inode(req->r_dentry);
730 if (!inode || mode == USE_AUTH_MDS) {
731 /* dir + name */
732 inode = dir;
733 hash = ceph_dentry_hash(dir, req->r_dentry);
734 is_hash = true;
735 }
736 }
737 }
738
739 dout("__choose_mds %p is_hash=%d (%d) mode %d\n", inode, (int)is_hash,
740 (int)hash, mode);
741 if (!inode)
742 goto random;
743 ci = ceph_inode(inode);
744
745 if (is_hash && S_ISDIR(inode->i_mode)) {
746 struct ceph_inode_frag frag;
747 int found;
748
749 ceph_choose_frag(ci, hash, &frag, &found);
750 if (found) {
751 if (mode == USE_ANY_MDS && frag.ndist > 0) {
752 u8 r;
753
754 /* choose a random replica */
755 get_random_bytes(&r, 1);
756 r %= frag.ndist;
757 mds = frag.dist[r];
758 dout("choose_mds %p %llx.%llx "
759 "frag %u mds%d (%d/%d)\n",
760 inode, ceph_vinop(inode),
761 frag.frag, mds,
762 (int)r, frag.ndist);
763 if (ceph_mdsmap_get_state(mdsc->mdsmap, mds) >=
764 CEPH_MDS_STATE_ACTIVE)
765 return mds;
766 }
767
768 /* since this file/dir wasn't known to be
769 * replicated, then we want to look for the
770 * authoritative mds. */
771 mode = USE_AUTH_MDS;
772 if (frag.mds >= 0) {
773 /* choose auth mds */
774 mds = frag.mds;
775 dout("choose_mds %p %llx.%llx "
776 "frag %u mds%d (auth)\n",
777 inode, ceph_vinop(inode), frag.frag, mds);
778 if (ceph_mdsmap_get_state(mdsc->mdsmap, mds) >=
779 CEPH_MDS_STATE_ACTIVE)
780 return mds;
781 }
782 }
783 }
784
785 spin_lock(&ci->i_ceph_lock);
786 cap = NULL;
787 if (mode == USE_AUTH_MDS)
788 cap = ci->i_auth_cap;
789 if (!cap && !RB_EMPTY_ROOT(&ci->i_caps))
790 cap = rb_entry(rb_first(&ci->i_caps), struct ceph_cap, ci_node);
791 if (!cap) {
792 spin_unlock(&ci->i_ceph_lock);
793 goto random;
794 }
795 mds = cap->session->s_mds;
796 dout("choose_mds %p %llx.%llx mds%d (%scap %p)\n",
797 inode, ceph_vinop(inode), mds,
798 cap == ci->i_auth_cap ? "auth " : "", cap);
799 spin_unlock(&ci->i_ceph_lock);
800 return mds;
801
802 random:
803 mds = ceph_mdsmap_get_random_mds(mdsc->mdsmap);
804 dout("choose_mds chose random mds%d\n", mds);
805 return mds;
806 }
807
808
809 /*
810 * session messages
811 */
812 static struct ceph_msg *create_session_msg(u32 op, u64 seq)
813 {
814 struct ceph_msg *msg;
815 struct ceph_mds_session_head *h;
816
817 msg = ceph_msg_new(CEPH_MSG_CLIENT_SESSION, sizeof(*h), GFP_NOFS,
818 false);
819 if (!msg) {
820 pr_err("create_session_msg ENOMEM creating msg\n");
821 return NULL;
822 }
823 h = msg->front.iov_base;
824 h->op = cpu_to_le32(op);
825 h->seq = cpu_to_le64(seq);
826
827 return msg;
828 }
829
830 /*
831 * session message, specialization for CEPH_SESSION_REQUEST_OPEN
832 * to include additional client metadata fields.
833 */
834 static struct ceph_msg *create_session_open_msg(struct ceph_mds_client *mdsc, u64 seq)
835 {
836 struct ceph_msg *msg;
837 struct ceph_mds_session_head *h;
838 int i = -1;
839 int metadata_bytes = 0;
840 int metadata_key_count = 0;
841 struct ceph_options *opt = mdsc->fsc->client->options;
842 struct ceph_mount_options *fsopt = mdsc->fsc->mount_options;
843 void *p;
844
845 const char* metadata[][2] = {
846 {"hostname", utsname()->nodename},
847 {"kernel_version", utsname()->release},
848 {"entity_id", opt->name ? : ""},
849 {"root", fsopt->server_path ? : "/"},
850 {NULL, NULL}
851 };
852
853 /* Calculate serialized length of metadata */
854 metadata_bytes = 4; /* map length */
855 for (i = 0; metadata[i][0] != NULL; ++i) {
856 metadata_bytes += 8 + strlen(metadata[i][0]) +
857 strlen(metadata[i][1]);
858 metadata_key_count++;
859 }
860
861 /* Allocate the message */
862 msg = ceph_msg_new(CEPH_MSG_CLIENT_SESSION, sizeof(*h) + metadata_bytes,
863 GFP_NOFS, false);
864 if (!msg) {
865 pr_err("create_session_msg ENOMEM creating msg\n");
866 return NULL;
867 }
868 h = msg->front.iov_base;
869 h->op = cpu_to_le32(CEPH_SESSION_REQUEST_OPEN);
870 h->seq = cpu_to_le64(seq);
871
872 /*
873 * Serialize client metadata into waiting buffer space, using
874 * the format that userspace expects for map<string, string>
875 *
876 * ClientSession messages with metadata are v2
877 */
878 msg->hdr.version = cpu_to_le16(2);
879 msg->hdr.compat_version = cpu_to_le16(1);
880
881 /* The write pointer, following the session_head structure */
882 p = msg->front.iov_base + sizeof(*h);
883
884 /* Number of entries in the map */
885 ceph_encode_32(&p, metadata_key_count);
886
887 /* Two length-prefixed strings for each entry in the map */
888 for (i = 0; metadata[i][0] != NULL; ++i) {
889 size_t const key_len = strlen(metadata[i][0]);
890 size_t const val_len = strlen(metadata[i][1]);
891
892 ceph_encode_32(&p, key_len);
893 memcpy(p, metadata[i][0], key_len);
894 p += key_len;
895 ceph_encode_32(&p, val_len);
896 memcpy(p, metadata[i][1], val_len);
897 p += val_len;
898 }
899
900 return msg;
901 }
902
903 /*
904 * send session open request.
905 *
906 * called under mdsc->mutex
907 */
908 static int __open_session(struct ceph_mds_client *mdsc,
909 struct ceph_mds_session *session)
910 {
911 struct ceph_msg *msg;
912 int mstate;
913 int mds = session->s_mds;
914
915 /* wait for mds to go active? */
916 mstate = ceph_mdsmap_get_state(mdsc->mdsmap, mds);
917 dout("open_session to mds%d (%s)\n", mds,
918 ceph_mds_state_name(mstate));
919 session->s_state = CEPH_MDS_SESSION_OPENING;
920 session->s_renew_requested = jiffies;
921
922 /* send connect message */
923 msg = create_session_open_msg(mdsc, session->s_seq);
924 if (!msg)
925 return -ENOMEM;
926 ceph_con_send(&session->s_con, msg);
927 return 0;
928 }
929
930 /*
931 * open sessions for any export targets for the given mds
932 *
933 * called under mdsc->mutex
934 */
935 static struct ceph_mds_session *
936 __open_export_target_session(struct ceph_mds_client *mdsc, int target)
937 {
938 struct ceph_mds_session *session;
939
940 session = __ceph_lookup_mds_session(mdsc, target);
941 if (!session) {
942 session = register_session(mdsc, target);
943 if (IS_ERR(session))
944 return session;
945 }
946 if (session->s_state == CEPH_MDS_SESSION_NEW ||
947 session->s_state == CEPH_MDS_SESSION_CLOSING)
948 __open_session(mdsc, session);
949
950 return session;
951 }
952
953 struct ceph_mds_session *
954 ceph_mdsc_open_export_target_session(struct ceph_mds_client *mdsc, int target)
955 {
956 struct ceph_mds_session *session;
957
958 dout("open_export_target_session to mds%d\n", target);
959
960 mutex_lock(&mdsc->mutex);
961 session = __open_export_target_session(mdsc, target);
962 mutex_unlock(&mdsc->mutex);
963
964 return session;
965 }
966
967 static void __open_export_target_sessions(struct ceph_mds_client *mdsc,
968 struct ceph_mds_session *session)
969 {
970 struct ceph_mds_info *mi;
971 struct ceph_mds_session *ts;
972 int i, mds = session->s_mds;
973
974 if (mds >= mdsc->mdsmap->m_max_mds)
975 return;
976
977 mi = &mdsc->mdsmap->m_info[mds];
978 dout("open_export_target_sessions for mds%d (%d targets)\n",
979 session->s_mds, mi->num_export_targets);
980
981 for (i = 0; i < mi->num_export_targets; i++) {
982 ts = __open_export_target_session(mdsc, mi->export_targets[i]);
983 if (!IS_ERR(ts))
984 ceph_put_mds_session(ts);
985 }
986 }
987
988 void ceph_mdsc_open_export_target_sessions(struct ceph_mds_client *mdsc,
989 struct ceph_mds_session *session)
990 {
991 mutex_lock(&mdsc->mutex);
992 __open_export_target_sessions(mdsc, session);
993 mutex_unlock(&mdsc->mutex);
994 }
995
996 /*
997 * session caps
998 */
999
1000 /* caller holds s_cap_lock, we drop it */
1001 static void cleanup_cap_releases(struct ceph_mds_client *mdsc,
1002 struct ceph_mds_session *session)
1003 __releases(session->s_cap_lock)
1004 {
1005 LIST_HEAD(tmp_list);
1006 list_splice_init(&session->s_cap_releases, &tmp_list);
1007 session->s_num_cap_releases = 0;
1008 spin_unlock(&session->s_cap_lock);
1009
1010 dout("cleanup_cap_releases mds%d\n", session->s_mds);
1011 while (!list_empty(&tmp_list)) {
1012 struct ceph_cap *cap;
1013 /* zero out the in-progress message */
1014 cap = list_first_entry(&tmp_list,
1015 struct ceph_cap, session_caps);
1016 list_del(&cap->session_caps);
1017 ceph_put_cap(mdsc, cap);
1018 }
1019 }
1020
1021 static void cleanup_session_requests(struct ceph_mds_client *mdsc,
1022 struct ceph_mds_session *session)
1023 {
1024 struct ceph_mds_request *req;
1025 struct rb_node *p;
1026
1027 dout("cleanup_session_requests mds%d\n", session->s_mds);
1028 mutex_lock(&mdsc->mutex);
1029 while (!list_empty(&session->s_unsafe)) {
1030 req = list_first_entry(&session->s_unsafe,
1031 struct ceph_mds_request, r_unsafe_item);
1032 list_del_init(&req->r_unsafe_item);
1033 pr_warn_ratelimited(" dropping unsafe request %llu\n",
1034 req->r_tid);
1035 __unregister_request(mdsc, req);
1036 }
1037 /* zero r_attempts, so kick_requests() will re-send requests */
1038 p = rb_first(&mdsc->request_tree);
1039 while (p) {
1040 req = rb_entry(p, struct ceph_mds_request, r_node);
1041 p = rb_next(p);
1042 if (req->r_session &&
1043 req->r_session->s_mds == session->s_mds)
1044 req->r_attempts = 0;
1045 }
1046 mutex_unlock(&mdsc->mutex);
1047 }
1048
1049 /*
1050 * Helper to safely iterate over all caps associated with a session, with
1051 * special care taken to handle a racing __ceph_remove_cap().
1052 *
1053 * Caller must hold session s_mutex.
1054 */
1055 static int iterate_session_caps(struct ceph_mds_session *session,
1056 int (*cb)(struct inode *, struct ceph_cap *,
1057 void *), void *arg)
1058 {
1059 struct list_head *p;
1060 struct ceph_cap *cap;
1061 struct inode *inode, *last_inode = NULL;
1062 struct ceph_cap *old_cap = NULL;
1063 int ret;
1064
1065 dout("iterate_session_caps %p mds%d\n", session, session->s_mds);
1066 spin_lock(&session->s_cap_lock);
1067 p = session->s_caps.next;
1068 while (p != &session->s_caps) {
1069 cap = list_entry(p, struct ceph_cap, session_caps);
1070 inode = igrab(&cap->ci->vfs_inode);
1071 if (!inode) {
1072 p = p->next;
1073 continue;
1074 }
1075 session->s_cap_iterator = cap;
1076 spin_unlock(&session->s_cap_lock);
1077
1078 if (last_inode) {
1079 iput(last_inode);
1080 last_inode = NULL;
1081 }
1082 if (old_cap) {
1083 ceph_put_cap(session->s_mdsc, old_cap);
1084 old_cap = NULL;
1085 }
1086
1087 ret = cb(inode, cap, arg);
1088 last_inode = inode;
1089
1090 spin_lock(&session->s_cap_lock);
1091 p = p->next;
1092 if (cap->ci == NULL) {
1093 dout("iterate_session_caps finishing cap %p removal\n",
1094 cap);
1095 BUG_ON(cap->session != session);
1096 cap->session = NULL;
1097 list_del_init(&cap->session_caps);
1098 session->s_nr_caps--;
1099 if (cap->queue_release) {
1100 list_add_tail(&cap->session_caps,
1101 &session->s_cap_releases);
1102 session->s_num_cap_releases++;
1103 } else {
1104 old_cap = cap; /* put_cap it w/o locks held */
1105 }
1106 }
1107 if (ret < 0)
1108 goto out;
1109 }
1110 ret = 0;
1111 out:
1112 session->s_cap_iterator = NULL;
1113 spin_unlock(&session->s_cap_lock);
1114
1115 iput(last_inode);
1116 if (old_cap)
1117 ceph_put_cap(session->s_mdsc, old_cap);
1118
1119 return ret;
1120 }
1121
1122 static int remove_session_caps_cb(struct inode *inode, struct ceph_cap *cap,
1123 void *arg)
1124 {
1125 struct ceph_fs_client *fsc = (struct ceph_fs_client *)arg;
1126 struct ceph_inode_info *ci = ceph_inode(inode);
1127 LIST_HEAD(to_remove);
1128 bool drop = false;
1129 bool invalidate = false;
1130
1131 dout("removing cap %p, ci is %p, inode is %p\n",
1132 cap, ci, &ci->vfs_inode);
1133 spin_lock(&ci->i_ceph_lock);
1134 __ceph_remove_cap(cap, false);
1135 if (!ci->i_auth_cap) {
1136 struct ceph_cap_flush *cf;
1137 struct ceph_mds_client *mdsc = fsc->mdsc;
1138
1139 ci->i_ceph_flags |= CEPH_I_CAP_DROPPED;
1140
1141 if (ci->i_wrbuffer_ref > 0 &&
1142 ACCESS_ONCE(fsc->mount_state) == CEPH_MOUNT_SHUTDOWN)
1143 invalidate = true;
1144
1145 while (true) {
1146 struct rb_node *n = rb_first(&ci->i_cap_flush_tree);
1147 if (!n)
1148 break;
1149 cf = rb_entry(n, struct ceph_cap_flush, i_node);
1150 rb_erase(&cf->i_node, &ci->i_cap_flush_tree);
1151 list_add(&cf->list, &to_remove);
1152 }
1153
1154 spin_lock(&mdsc->cap_dirty_lock);
1155
1156 list_for_each_entry(cf, &to_remove, list)
1157 rb_erase(&cf->g_node, &mdsc->cap_flush_tree);
1158
1159 if (!list_empty(&ci->i_dirty_item)) {
1160 pr_warn_ratelimited(
1161 " dropping dirty %s state for %p %lld\n",
1162 ceph_cap_string(ci->i_dirty_caps),
1163 inode, ceph_ino(inode));
1164 ci->i_dirty_caps = 0;
1165 list_del_init(&ci->i_dirty_item);
1166 drop = true;
1167 }
1168 if (!list_empty(&ci->i_flushing_item)) {
1169 pr_warn_ratelimited(
1170 " dropping dirty+flushing %s state for %p %lld\n",
1171 ceph_cap_string(ci->i_flushing_caps),
1172 inode, ceph_ino(inode));
1173 ci->i_flushing_caps = 0;
1174 list_del_init(&ci->i_flushing_item);
1175 mdsc->num_cap_flushing--;
1176 drop = true;
1177 }
1178 spin_unlock(&mdsc->cap_dirty_lock);
1179
1180 if (!ci->i_dirty_caps && ci->i_prealloc_cap_flush) {
1181 list_add(&ci->i_prealloc_cap_flush->list, &to_remove);
1182 ci->i_prealloc_cap_flush = NULL;
1183 }
1184 }
1185 spin_unlock(&ci->i_ceph_lock);
1186 while (!list_empty(&to_remove)) {
1187 struct ceph_cap_flush *cf;
1188 cf = list_first_entry(&to_remove,
1189 struct ceph_cap_flush, list);
1190 list_del(&cf->list);
1191 ceph_free_cap_flush(cf);
1192 }
1193
1194 wake_up_all(&ci->i_cap_wq);
1195 if (invalidate)
1196 ceph_queue_invalidate(inode);
1197 if (drop)
1198 iput(inode);
1199 return 0;
1200 }
1201
1202 /*
1203 * caller must hold session s_mutex
1204 */
1205 static void remove_session_caps(struct ceph_mds_session *session)
1206 {
1207 struct ceph_fs_client *fsc = session->s_mdsc->fsc;
1208 struct super_block *sb = fsc->sb;
1209 dout("remove_session_caps on %p\n", session);
1210 iterate_session_caps(session, remove_session_caps_cb, fsc);
1211
1212 spin_lock(&session->s_cap_lock);
1213 if (session->s_nr_caps > 0) {
1214 struct inode *inode;
1215 struct ceph_cap *cap, *prev = NULL;
1216 struct ceph_vino vino;
1217 /*
1218 * iterate_session_caps() skips inodes that are being
1219 * deleted, we need to wait until deletions are complete.
1220 * __wait_on_freeing_inode() is designed for the job,
1221 * but it is not exported, so use lookup inode function
1222 * to access it.
1223 */
1224 while (!list_empty(&session->s_caps)) {
1225 cap = list_entry(session->s_caps.next,
1226 struct ceph_cap, session_caps);
1227 if (cap == prev)
1228 break;
1229 prev = cap;
1230 vino = cap->ci->i_vino;
1231 spin_unlock(&session->s_cap_lock);
1232
1233 inode = ceph_find_inode(sb, vino);
1234 iput(inode);
1235
1236 spin_lock(&session->s_cap_lock);
1237 }
1238 }
1239
1240 // drop cap expires and unlock s_cap_lock
1241 cleanup_cap_releases(session->s_mdsc, session);
1242
1243 BUG_ON(session->s_nr_caps > 0);
1244 BUG_ON(!list_empty(&session->s_cap_flushing));
1245 }
1246
1247 /*
1248 * wake up any threads waiting on this session's caps. if the cap is
1249 * old (didn't get renewed on the client reconnect), remove it now.
1250 *
1251 * caller must hold s_mutex.
1252 */
1253 static int wake_up_session_cb(struct inode *inode, struct ceph_cap *cap,
1254 void *arg)
1255 {
1256 struct ceph_inode_info *ci = ceph_inode(inode);
1257
1258 wake_up_all(&ci->i_cap_wq);
1259 if (arg) {
1260 spin_lock(&ci->i_ceph_lock);
1261 ci->i_wanted_max_size = 0;
1262 ci->i_requested_max_size = 0;
1263 spin_unlock(&ci->i_ceph_lock);
1264 }
1265 return 0;
1266 }
1267
1268 static void wake_up_session_caps(struct ceph_mds_session *session,
1269 int reconnect)
1270 {
1271 dout("wake_up_session_caps %p mds%d\n", session, session->s_mds);
1272 iterate_session_caps(session, wake_up_session_cb,
1273 (void *)(unsigned long)reconnect);
1274 }
1275
1276 /*
1277 * Send periodic message to MDS renewing all currently held caps. The
1278 * ack will reset the expiration for all caps from this session.
1279 *
1280 * caller holds s_mutex
1281 */
1282 static int send_renew_caps(struct ceph_mds_client *mdsc,
1283 struct ceph_mds_session *session)
1284 {
1285 struct ceph_msg *msg;
1286 int state;
1287
1288 if (time_after_eq(jiffies, session->s_cap_ttl) &&
1289 time_after_eq(session->s_cap_ttl, session->s_renew_requested))
1290 pr_info("mds%d caps stale\n", session->s_mds);
1291 session->s_renew_requested = jiffies;
1292
1293 /* do not try to renew caps until a recovering mds has reconnected
1294 * with its clients. */
1295 state = ceph_mdsmap_get_state(mdsc->mdsmap, session->s_mds);
1296 if (state < CEPH_MDS_STATE_RECONNECT) {
1297 dout("send_renew_caps ignoring mds%d (%s)\n",
1298 session->s_mds, ceph_mds_state_name(state));
1299 return 0;
1300 }
1301
1302 dout("send_renew_caps to mds%d (%s)\n", session->s_mds,
1303 ceph_mds_state_name(state));
1304 msg = create_session_msg(CEPH_SESSION_REQUEST_RENEWCAPS,
1305 ++session->s_renew_seq);
1306 if (!msg)
1307 return -ENOMEM;
1308 ceph_con_send(&session->s_con, msg);
1309 return 0;
1310 }
1311
1312 static int send_flushmsg_ack(struct ceph_mds_client *mdsc,
1313 struct ceph_mds_session *session, u64 seq)
1314 {
1315 struct ceph_msg *msg;
1316
1317 dout("send_flushmsg_ack to mds%d (%s)s seq %lld\n",
1318 session->s_mds, ceph_session_state_name(session->s_state), seq);
1319 msg = create_session_msg(CEPH_SESSION_FLUSHMSG_ACK, seq);
1320 if (!msg)
1321 return -ENOMEM;
1322 ceph_con_send(&session->s_con, msg);
1323 return 0;
1324 }
1325
1326
1327 /*
1328 * Note new cap ttl, and any transition from stale -> not stale (fresh?).
1329 *
1330 * Called under session->s_mutex
1331 */
1332 static void renewed_caps(struct ceph_mds_client *mdsc,
1333 struct ceph_mds_session *session, int is_renew)
1334 {
1335 int was_stale;
1336 int wake = 0;
1337
1338 spin_lock(&session->s_cap_lock);
1339 was_stale = is_renew && time_after_eq(jiffies, session->s_cap_ttl);
1340
1341 session->s_cap_ttl = session->s_renew_requested +
1342 mdsc->mdsmap->m_session_timeout*HZ;
1343
1344 if (was_stale) {
1345 if (time_before(jiffies, session->s_cap_ttl)) {
1346 pr_info("mds%d caps renewed\n", session->s_mds);
1347 wake = 1;
1348 } else {
1349 pr_info("mds%d caps still stale\n", session->s_mds);
1350 }
1351 }
1352 dout("renewed_caps mds%d ttl now %lu, was %s, now %s\n",
1353 session->s_mds, session->s_cap_ttl, was_stale ? "stale" : "fresh",
1354 time_before(jiffies, session->s_cap_ttl) ? "stale" : "fresh");
1355 spin_unlock(&session->s_cap_lock);
1356
1357 if (wake)
1358 wake_up_session_caps(session, 0);
1359 }
1360
1361 /*
1362 * send a session close request
1363 */
1364 static int request_close_session(struct ceph_mds_client *mdsc,
1365 struct ceph_mds_session *session)
1366 {
1367 struct ceph_msg *msg;
1368
1369 dout("request_close_session mds%d state %s seq %lld\n",
1370 session->s_mds, ceph_session_state_name(session->s_state),
1371 session->s_seq);
1372 msg = create_session_msg(CEPH_SESSION_REQUEST_CLOSE, session->s_seq);
1373 if (!msg)
1374 return -ENOMEM;
1375 ceph_con_send(&session->s_con, msg);
1376 return 0;
1377 }
1378
1379 /*
1380 * Called with s_mutex held.
1381 */
1382 static int __close_session(struct ceph_mds_client *mdsc,
1383 struct ceph_mds_session *session)
1384 {
1385 if (session->s_state >= CEPH_MDS_SESSION_CLOSING)
1386 return 0;
1387 session->s_state = CEPH_MDS_SESSION_CLOSING;
1388 return request_close_session(mdsc, session);
1389 }
1390
1391 /*
1392 * Trim old(er) caps.
1393 *
1394 * Because we can't cache an inode without one or more caps, we do
1395 * this indirectly: if a cap is unused, we prune its aliases, at which
1396 * point the inode will hopefully get dropped to.
1397 *
1398 * Yes, this is a bit sloppy. Our only real goal here is to respond to
1399 * memory pressure from the MDS, though, so it needn't be perfect.
1400 */
1401 static int trim_caps_cb(struct inode *inode, struct ceph_cap *cap, void *arg)
1402 {
1403 struct ceph_mds_session *session = arg;
1404 struct ceph_inode_info *ci = ceph_inode(inode);
1405 int used, wanted, oissued, mine;
1406
1407 if (session->s_trim_caps <= 0)
1408 return -1;
1409
1410 spin_lock(&ci->i_ceph_lock);
1411 mine = cap->issued | cap->implemented;
1412 used = __ceph_caps_used(ci);
1413 wanted = __ceph_caps_file_wanted(ci);
1414 oissued = __ceph_caps_issued_other(ci, cap);
1415
1416 dout("trim_caps_cb %p cap %p mine %s oissued %s used %s wanted %s\n",
1417 inode, cap, ceph_cap_string(mine), ceph_cap_string(oissued),
1418 ceph_cap_string(used), ceph_cap_string(wanted));
1419 if (cap == ci->i_auth_cap) {
1420 if (ci->i_dirty_caps || ci->i_flushing_caps ||
1421 !list_empty(&ci->i_cap_snaps))
1422 goto out;
1423 if ((used | wanted) & CEPH_CAP_ANY_WR)
1424 goto out;
1425 }
1426 /* The inode has cached pages, but it's no longer used.
1427 * we can safely drop it */
1428 if (wanted == 0 && used == CEPH_CAP_FILE_CACHE &&
1429 !(oissued & CEPH_CAP_FILE_CACHE)) {
1430 used = 0;
1431 oissued = 0;
1432 }
1433 if ((used | wanted) & ~oissued & mine)
1434 goto out; /* we need these caps */
1435
1436 session->s_trim_caps--;
1437 if (oissued) {
1438 /* we aren't the only cap.. just remove us */
1439 __ceph_remove_cap(cap, true);
1440 } else {
1441 /* try dropping referring dentries */
1442 spin_unlock(&ci->i_ceph_lock);
1443 d_prune_aliases(inode);
1444 dout("trim_caps_cb %p cap %p pruned, count now %d\n",
1445 inode, cap, atomic_read(&inode->i_count));
1446 return 0;
1447 }
1448
1449 out:
1450 spin_unlock(&ci->i_ceph_lock);
1451 return 0;
1452 }
1453
1454 /*
1455 * Trim session cap count down to some max number.
1456 */
1457 static int trim_caps(struct ceph_mds_client *mdsc,
1458 struct ceph_mds_session *session,
1459 int max_caps)
1460 {
1461 int trim_caps = session->s_nr_caps - max_caps;
1462
1463 dout("trim_caps mds%d start: %d / %d, trim %d\n",
1464 session->s_mds, session->s_nr_caps, max_caps, trim_caps);
1465 if (trim_caps > 0) {
1466 session->s_trim_caps = trim_caps;
1467 iterate_session_caps(session, trim_caps_cb, session);
1468 dout("trim_caps mds%d done: %d / %d, trimmed %d\n",
1469 session->s_mds, session->s_nr_caps, max_caps,
1470 trim_caps - session->s_trim_caps);
1471 session->s_trim_caps = 0;
1472 }
1473
1474 ceph_send_cap_releases(mdsc, session);
1475 return 0;
1476 }
1477
1478 static int check_capsnap_flush(struct ceph_inode_info *ci,
1479 u64 want_snap_seq)
1480 {
1481 int ret = 1;
1482 spin_lock(&ci->i_ceph_lock);
1483 if (want_snap_seq > 0 && !list_empty(&ci->i_cap_snaps)) {
1484 struct ceph_cap_snap *capsnap =
1485 list_first_entry(&ci->i_cap_snaps,
1486 struct ceph_cap_snap, ci_item);
1487 ret = capsnap->follows >= want_snap_seq;
1488 }
1489 spin_unlock(&ci->i_ceph_lock);
1490 return ret;
1491 }
1492
1493 static int check_caps_flush(struct ceph_mds_client *mdsc,
1494 u64 want_flush_tid)
1495 {
1496 struct rb_node *n;
1497 struct ceph_cap_flush *cf;
1498 int ret = 1;
1499
1500 spin_lock(&mdsc->cap_dirty_lock);
1501 n = rb_first(&mdsc->cap_flush_tree);
1502 cf = n ? rb_entry(n, struct ceph_cap_flush, g_node) : NULL;
1503 if (cf && cf->tid <= want_flush_tid) {
1504 dout("check_caps_flush still flushing tid %llu <= %llu\n",
1505 cf->tid, want_flush_tid);
1506 ret = 0;
1507 }
1508 spin_unlock(&mdsc->cap_dirty_lock);
1509 return ret;
1510 }
1511
1512 /*
1513 * flush all dirty inode data to disk.
1514 *
1515 * returns true if we've flushed through want_flush_tid
1516 */
1517 static void wait_caps_flush(struct ceph_mds_client *mdsc,
1518 u64 want_flush_tid, u64 want_snap_seq)
1519 {
1520 int mds;
1521
1522 dout("check_caps_flush want %llu snap want %llu\n",
1523 want_flush_tid, want_snap_seq);
1524 mutex_lock(&mdsc->mutex);
1525 for (mds = 0; mds < mdsc->max_sessions; ) {
1526 struct ceph_mds_session *session = mdsc->sessions[mds];
1527 struct inode *inode = NULL;
1528
1529 if (!session) {
1530 mds++;
1531 continue;
1532 }
1533 get_session(session);
1534 mutex_unlock(&mdsc->mutex);
1535
1536 mutex_lock(&session->s_mutex);
1537 if (!list_empty(&session->s_cap_snaps_flushing)) {
1538 struct ceph_cap_snap *capsnap =
1539 list_first_entry(&session->s_cap_snaps_flushing,
1540 struct ceph_cap_snap,
1541 flushing_item);
1542 struct ceph_inode_info *ci = capsnap->ci;
1543 if (!check_capsnap_flush(ci, want_snap_seq)) {
1544 dout("check_cap_flush still flushing snap %p "
1545 "follows %lld <= %lld to mds%d\n",
1546 &ci->vfs_inode, capsnap->follows,
1547 want_snap_seq, mds);
1548 inode = igrab(&ci->vfs_inode);
1549 }
1550 }
1551 mutex_unlock(&session->s_mutex);
1552 ceph_put_mds_session(session);
1553
1554 if (inode) {
1555 wait_event(mdsc->cap_flushing_wq,
1556 check_capsnap_flush(ceph_inode(inode),
1557 want_snap_seq));
1558 iput(inode);
1559 } else {
1560 mds++;
1561 }
1562
1563 mutex_lock(&mdsc->mutex);
1564 }
1565 mutex_unlock(&mdsc->mutex);
1566
1567 wait_event(mdsc->cap_flushing_wq,
1568 check_caps_flush(mdsc, want_flush_tid));
1569
1570 dout("check_caps_flush ok, flushed thru %llu\n", want_flush_tid);
1571 }
1572
1573 /*
1574 * called under s_mutex
1575 */
1576 void ceph_send_cap_releases(struct ceph_mds_client *mdsc,
1577 struct ceph_mds_session *session)
1578 {
1579 struct ceph_msg *msg = NULL;
1580 struct ceph_mds_cap_release *head;
1581 struct ceph_mds_cap_item *item;
1582 struct ceph_cap *cap;
1583 LIST_HEAD(tmp_list);
1584 int num_cap_releases;
1585
1586 spin_lock(&session->s_cap_lock);
1587 again:
1588 list_splice_init(&session->s_cap_releases, &tmp_list);
1589 num_cap_releases = session->s_num_cap_releases;
1590 session->s_num_cap_releases = 0;
1591 spin_unlock(&session->s_cap_lock);
1592
1593 while (!list_empty(&tmp_list)) {
1594 if (!msg) {
1595 msg = ceph_msg_new(CEPH_MSG_CLIENT_CAPRELEASE,
1596 PAGE_SIZE, GFP_NOFS, false);
1597 if (!msg)
1598 goto out_err;
1599 head = msg->front.iov_base;
1600 head->num = cpu_to_le32(0);
1601 msg->front.iov_len = sizeof(*head);
1602 }
1603 cap = list_first_entry(&tmp_list, struct ceph_cap,
1604 session_caps);
1605 list_del(&cap->session_caps);
1606 num_cap_releases--;
1607
1608 head = msg->front.iov_base;
1609 le32_add_cpu(&head->num, 1);
1610 item = msg->front.iov_base + msg->front.iov_len;
1611 item->ino = cpu_to_le64(cap->cap_ino);
1612 item->cap_id = cpu_to_le64(cap->cap_id);
1613 item->migrate_seq = cpu_to_le32(cap->mseq);
1614 item->seq = cpu_to_le32(cap->issue_seq);
1615 msg->front.iov_len += sizeof(*item);
1616
1617 ceph_put_cap(mdsc, cap);
1618
1619 if (le32_to_cpu(head->num) == CEPH_CAPS_PER_RELEASE) {
1620 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
1621 dout("send_cap_releases mds%d %p\n", session->s_mds, msg);
1622 ceph_con_send(&session->s_con, msg);
1623 msg = NULL;
1624 }
1625 }
1626
1627 BUG_ON(num_cap_releases != 0);
1628
1629 spin_lock(&session->s_cap_lock);
1630 if (!list_empty(&session->s_cap_releases))
1631 goto again;
1632 spin_unlock(&session->s_cap_lock);
1633
1634 if (msg) {
1635 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
1636 dout("send_cap_releases mds%d %p\n", session->s_mds, msg);
1637 ceph_con_send(&session->s_con, msg);
1638 }
1639 return;
1640 out_err:
1641 pr_err("send_cap_releases mds%d, failed to allocate message\n",
1642 session->s_mds);
1643 spin_lock(&session->s_cap_lock);
1644 list_splice(&tmp_list, &session->s_cap_releases);
1645 session->s_num_cap_releases += num_cap_releases;
1646 spin_unlock(&session->s_cap_lock);
1647 }
1648
1649 /*
1650 * requests
1651 */
1652
1653 int ceph_alloc_readdir_reply_buffer(struct ceph_mds_request *req,
1654 struct inode *dir)
1655 {
1656 struct ceph_inode_info *ci = ceph_inode(dir);
1657 struct ceph_mds_reply_info_parsed *rinfo = &req->r_reply_info;
1658 struct ceph_mount_options *opt = req->r_mdsc->fsc->mount_options;
1659 size_t size = sizeof(struct ceph_mds_reply_dir_entry);
1660 int order, num_entries;
1661
1662 spin_lock(&ci->i_ceph_lock);
1663 num_entries = ci->i_files + ci->i_subdirs;
1664 spin_unlock(&ci->i_ceph_lock);
1665 num_entries = max(num_entries, 1);
1666 num_entries = min(num_entries, opt->max_readdir);
1667
1668 order = get_order(size * num_entries);
1669 while (order >= 0) {
1670 rinfo->dir_entries = (void*)__get_free_pages(GFP_KERNEL |
1671 __GFP_NOWARN,
1672 order);
1673 if (rinfo->dir_entries)
1674 break;
1675 order--;
1676 }
1677 if (!rinfo->dir_entries)
1678 return -ENOMEM;
1679
1680 num_entries = (PAGE_SIZE << order) / size;
1681 num_entries = min(num_entries, opt->max_readdir);
1682
1683 rinfo->dir_buf_size = PAGE_SIZE << order;
1684 req->r_num_caps = num_entries + 1;
1685 req->r_args.readdir.max_entries = cpu_to_le32(num_entries);
1686 req->r_args.readdir.max_bytes = cpu_to_le32(opt->max_readdir_bytes);
1687 return 0;
1688 }
1689
1690 /*
1691 * Create an mds request.
1692 */
1693 struct ceph_mds_request *
1694 ceph_mdsc_create_request(struct ceph_mds_client *mdsc, int op, int mode)
1695 {
1696 struct ceph_mds_request *req = kzalloc(sizeof(*req), GFP_NOFS);
1697
1698 if (!req)
1699 return ERR_PTR(-ENOMEM);
1700
1701 mutex_init(&req->r_fill_mutex);
1702 req->r_mdsc = mdsc;
1703 req->r_started = jiffies;
1704 req->r_resend_mds = -1;
1705 INIT_LIST_HEAD(&req->r_unsafe_dir_item);
1706 INIT_LIST_HEAD(&req->r_unsafe_target_item);
1707 req->r_fmode = -1;
1708 kref_init(&req->r_kref);
1709 RB_CLEAR_NODE(&req->r_node);
1710 INIT_LIST_HEAD(&req->r_wait);
1711 init_completion(&req->r_completion);
1712 init_completion(&req->r_safe_completion);
1713 INIT_LIST_HEAD(&req->r_unsafe_item);
1714
1715 req->r_stamp = current_fs_time(mdsc->fsc->sb);
1716
1717 req->r_op = op;
1718 req->r_direct_mode = mode;
1719 return req;
1720 }
1721
1722 /*
1723 * return oldest (lowest) request, tid in request tree, 0 if none.
1724 *
1725 * called under mdsc->mutex.
1726 */
1727 static struct ceph_mds_request *__get_oldest_req(struct ceph_mds_client *mdsc)
1728 {
1729 if (RB_EMPTY_ROOT(&mdsc->request_tree))
1730 return NULL;
1731 return rb_entry(rb_first(&mdsc->request_tree),
1732 struct ceph_mds_request, r_node);
1733 }
1734
1735 static inline u64 __get_oldest_tid(struct ceph_mds_client *mdsc)
1736 {
1737 return mdsc->oldest_tid;
1738 }
1739
1740 /*
1741 * Build a dentry's path. Allocate on heap; caller must kfree. Based
1742 * on build_path_from_dentry in fs/cifs/dir.c.
1743 *
1744 * If @stop_on_nosnap, generate path relative to the first non-snapped
1745 * inode.
1746 *
1747 * Encode hidden .snap dirs as a double /, i.e.
1748 * foo/.snap/bar -> foo//bar
1749 */
1750 char *ceph_mdsc_build_path(struct dentry *dentry, int *plen, u64 *base,
1751 int stop_on_nosnap)
1752 {
1753 struct dentry *temp;
1754 char *path;
1755 int len, pos;
1756 unsigned seq;
1757
1758 if (dentry == NULL)
1759 return ERR_PTR(-EINVAL);
1760
1761 retry:
1762 len = 0;
1763 seq = read_seqbegin(&rename_lock);
1764 rcu_read_lock();
1765 for (temp = dentry; !IS_ROOT(temp);) {
1766 struct inode *inode = d_inode(temp);
1767 if (inode && ceph_snap(inode) == CEPH_SNAPDIR)
1768 len++; /* slash only */
1769 else if (stop_on_nosnap && inode &&
1770 ceph_snap(inode) == CEPH_NOSNAP)
1771 break;
1772 else
1773 len += 1 + temp->d_name.len;
1774 temp = temp->d_parent;
1775 }
1776 rcu_read_unlock();
1777 if (len)
1778 len--; /* no leading '/' */
1779
1780 path = kmalloc(len+1, GFP_NOFS);
1781 if (path == NULL)
1782 return ERR_PTR(-ENOMEM);
1783 pos = len;
1784 path[pos] = 0; /* trailing null */
1785 rcu_read_lock();
1786 for (temp = dentry; !IS_ROOT(temp) && pos != 0; ) {
1787 struct inode *inode;
1788
1789 spin_lock(&temp->d_lock);
1790 inode = d_inode(temp);
1791 if (inode && ceph_snap(inode) == CEPH_SNAPDIR) {
1792 dout("build_path path+%d: %p SNAPDIR\n",
1793 pos, temp);
1794 } else if (stop_on_nosnap && inode &&
1795 ceph_snap(inode) == CEPH_NOSNAP) {
1796 spin_unlock(&temp->d_lock);
1797 break;
1798 } else {
1799 pos -= temp->d_name.len;
1800 if (pos < 0) {
1801 spin_unlock(&temp->d_lock);
1802 break;
1803 }
1804 strncpy(path + pos, temp->d_name.name,
1805 temp->d_name.len);
1806 }
1807 spin_unlock(&temp->d_lock);
1808 if (pos)
1809 path[--pos] = '/';
1810 temp = temp->d_parent;
1811 }
1812 rcu_read_unlock();
1813 if (pos != 0 || read_seqretry(&rename_lock, seq)) {
1814 pr_err("build_path did not end path lookup where "
1815 "expected, namelen is %d, pos is %d\n", len, pos);
1816 /* presumably this is only possible if racing with a
1817 rename of one of the parent directories (we can not
1818 lock the dentries above us to prevent this, but
1819 retrying should be harmless) */
1820 kfree(path);
1821 goto retry;
1822 }
1823
1824 *base = ceph_ino(d_inode(temp));
1825 *plen = len;
1826 dout("build_path on %p %d built %llx '%.*s'\n",
1827 dentry, d_count(dentry), *base, len, path);
1828 return path;
1829 }
1830
1831 static int build_dentry_path(struct dentry *dentry,
1832 const char **ppath, int *ppathlen, u64 *pino,
1833 int *pfreepath)
1834 {
1835 char *path;
1836
1837 if (ceph_snap(d_inode(dentry->d_parent)) == CEPH_NOSNAP) {
1838 *pino = ceph_ino(d_inode(dentry->d_parent));
1839 *ppath = dentry->d_name.name;
1840 *ppathlen = dentry->d_name.len;
1841 return 0;
1842 }
1843 path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1);
1844 if (IS_ERR(path))
1845 return PTR_ERR(path);
1846 *ppath = path;
1847 *pfreepath = 1;
1848 return 0;
1849 }
1850
1851 static int build_inode_path(struct inode *inode,
1852 const char **ppath, int *ppathlen, u64 *pino,
1853 int *pfreepath)
1854 {
1855 struct dentry *dentry;
1856 char *path;
1857
1858 if (ceph_snap(inode) == CEPH_NOSNAP) {
1859 *pino = ceph_ino(inode);
1860 *ppathlen = 0;
1861 return 0;
1862 }
1863 dentry = d_find_alias(inode);
1864 path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1);
1865 dput(dentry);
1866 if (IS_ERR(path))
1867 return PTR_ERR(path);
1868 *ppath = path;
1869 *pfreepath = 1;
1870 return 0;
1871 }
1872
1873 /*
1874 * request arguments may be specified via an inode *, a dentry *, or
1875 * an explicit ino+path.
1876 */
1877 static int set_request_path_attr(struct inode *rinode, struct dentry *rdentry,
1878 const char *rpath, u64 rino,
1879 const char **ppath, int *pathlen,
1880 u64 *ino, int *freepath)
1881 {
1882 int r = 0;
1883
1884 if (rinode) {
1885 r = build_inode_path(rinode, ppath, pathlen, ino, freepath);
1886 dout(" inode %p %llx.%llx\n", rinode, ceph_ino(rinode),
1887 ceph_snap(rinode));
1888 } else if (rdentry) {
1889 r = build_dentry_path(rdentry, ppath, pathlen, ino, freepath);
1890 dout(" dentry %p %llx/%.*s\n", rdentry, *ino, *pathlen,
1891 *ppath);
1892 } else if (rpath || rino) {
1893 *ino = rino;
1894 *ppath = rpath;
1895 *pathlen = rpath ? strlen(rpath) : 0;
1896 dout(" path %.*s\n", *pathlen, rpath);
1897 }
1898
1899 return r;
1900 }
1901
1902 /*
1903 * called under mdsc->mutex
1904 */
1905 static struct ceph_msg *create_request_message(struct ceph_mds_client *mdsc,
1906 struct ceph_mds_request *req,
1907 int mds, bool drop_cap_releases)
1908 {
1909 struct ceph_msg *msg;
1910 struct ceph_mds_request_head *head;
1911 const char *path1 = NULL;
1912 const char *path2 = NULL;
1913 u64 ino1 = 0, ino2 = 0;
1914 int pathlen1 = 0, pathlen2 = 0;
1915 int freepath1 = 0, freepath2 = 0;
1916 int len;
1917 u16 releases;
1918 void *p, *end;
1919 int ret;
1920
1921 ret = set_request_path_attr(req->r_inode, req->r_dentry,
1922 req->r_path1, req->r_ino1.ino,
1923 &path1, &pathlen1, &ino1, &freepath1);
1924 if (ret < 0) {
1925 msg = ERR_PTR(ret);
1926 goto out;
1927 }
1928
1929 ret = set_request_path_attr(NULL, req->r_old_dentry,
1930 req->r_path2, req->r_ino2.ino,
1931 &path2, &pathlen2, &ino2, &freepath2);
1932 if (ret < 0) {
1933 msg = ERR_PTR(ret);
1934 goto out_free1;
1935 }
1936
1937 len = sizeof(*head) +
1938 pathlen1 + pathlen2 + 2*(1 + sizeof(u32) + sizeof(u64)) +
1939 sizeof(struct ceph_timespec);
1940
1941 /* calculate (max) length for cap releases */
1942 len += sizeof(struct ceph_mds_request_release) *
1943 (!!req->r_inode_drop + !!req->r_dentry_drop +
1944 !!req->r_old_inode_drop + !!req->r_old_dentry_drop);
1945 if (req->r_dentry_drop)
1946 len += req->r_dentry->d_name.len;
1947 if (req->r_old_dentry_drop)
1948 len += req->r_old_dentry->d_name.len;
1949
1950 msg = ceph_msg_new(CEPH_MSG_CLIENT_REQUEST, len, GFP_NOFS, false);
1951 if (!msg) {
1952 msg = ERR_PTR(-ENOMEM);
1953 goto out_free2;
1954 }
1955
1956 msg->hdr.version = cpu_to_le16(2);
1957 msg->hdr.tid = cpu_to_le64(req->r_tid);
1958
1959 head = msg->front.iov_base;
1960 p = msg->front.iov_base + sizeof(*head);
1961 end = msg->front.iov_base + msg->front.iov_len;
1962
1963 head->mdsmap_epoch = cpu_to_le32(mdsc->mdsmap->m_epoch);
1964 head->op = cpu_to_le32(req->r_op);
1965 head->caller_uid = cpu_to_le32(from_kuid(&init_user_ns, req->r_uid));
1966 head->caller_gid = cpu_to_le32(from_kgid(&init_user_ns, req->r_gid));
1967 head->args = req->r_args;
1968
1969 ceph_encode_filepath(&p, end, ino1, path1);
1970 ceph_encode_filepath(&p, end, ino2, path2);
1971
1972 /* make note of release offset, in case we need to replay */
1973 req->r_request_release_offset = p - msg->front.iov_base;
1974
1975 /* cap releases */
1976 releases = 0;
1977 if (req->r_inode_drop)
1978 releases += ceph_encode_inode_release(&p,
1979 req->r_inode ? req->r_inode : d_inode(req->r_dentry),
1980 mds, req->r_inode_drop, req->r_inode_unless, 0);
1981 if (req->r_dentry_drop)
1982 releases += ceph_encode_dentry_release(&p, req->r_dentry,
1983 mds, req->r_dentry_drop, req->r_dentry_unless);
1984 if (req->r_old_dentry_drop)
1985 releases += ceph_encode_dentry_release(&p, req->r_old_dentry,
1986 mds, req->r_old_dentry_drop, req->r_old_dentry_unless);
1987 if (req->r_old_inode_drop)
1988 releases += ceph_encode_inode_release(&p,
1989 d_inode(req->r_old_dentry),
1990 mds, req->r_old_inode_drop, req->r_old_inode_unless, 0);
1991
1992 if (drop_cap_releases) {
1993 releases = 0;
1994 p = msg->front.iov_base + req->r_request_release_offset;
1995 }
1996
1997 head->num_releases = cpu_to_le16(releases);
1998
1999 /* time stamp */
2000 {
2001 struct ceph_timespec ts;
2002 ceph_encode_timespec(&ts, &req->r_stamp);
2003 ceph_encode_copy(&p, &ts, sizeof(ts));
2004 }
2005
2006 BUG_ON(p > end);
2007 msg->front.iov_len = p - msg->front.iov_base;
2008 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
2009
2010 if (req->r_pagelist) {
2011 struct ceph_pagelist *pagelist = req->r_pagelist;
2012 atomic_inc(&pagelist->refcnt);
2013 ceph_msg_data_add_pagelist(msg, pagelist);
2014 msg->hdr.data_len = cpu_to_le32(pagelist->length);
2015 } else {
2016 msg->hdr.data_len = 0;
2017 }
2018
2019 msg->hdr.data_off = cpu_to_le16(0);
2020
2021 out_free2:
2022 if (freepath2)
2023 kfree((char *)path2);
2024 out_free1:
2025 if (freepath1)
2026 kfree((char *)path1);
2027 out:
2028 return msg;
2029 }
2030
2031 /*
2032 * called under mdsc->mutex if error, under no mutex if
2033 * success.
2034 */
2035 static void complete_request(struct ceph_mds_client *mdsc,
2036 struct ceph_mds_request *req)
2037 {
2038 if (req->r_callback)
2039 req->r_callback(mdsc, req);
2040 else
2041 complete_all(&req->r_completion);
2042 }
2043
2044 /*
2045 * called under mdsc->mutex
2046 */
2047 static int __prepare_send_request(struct ceph_mds_client *mdsc,
2048 struct ceph_mds_request *req,
2049 int mds, bool drop_cap_releases)
2050 {
2051 struct ceph_mds_request_head *rhead;
2052 struct ceph_msg *msg;
2053 int flags = 0;
2054
2055 req->r_attempts++;
2056 if (req->r_inode) {
2057 struct ceph_cap *cap =
2058 ceph_get_cap_for_mds(ceph_inode(req->r_inode), mds);
2059
2060 if (cap)
2061 req->r_sent_on_mseq = cap->mseq;
2062 else
2063 req->r_sent_on_mseq = -1;
2064 }
2065 dout("prepare_send_request %p tid %lld %s (attempt %d)\n", req,
2066 req->r_tid, ceph_mds_op_name(req->r_op), req->r_attempts);
2067
2068 if (req->r_got_unsafe) {
2069 void *p;
2070 /*
2071 * Replay. Do not regenerate message (and rebuild
2072 * paths, etc.); just use the original message.
2073 * Rebuilding paths will break for renames because
2074 * d_move mangles the src name.
2075 */
2076 msg = req->r_request;
2077 rhead = msg->front.iov_base;
2078
2079 flags = le32_to_cpu(rhead->flags);
2080 flags |= CEPH_MDS_FLAG_REPLAY;
2081 rhead->flags = cpu_to_le32(flags);
2082
2083 if (req->r_target_inode)
2084 rhead->ino = cpu_to_le64(ceph_ino(req->r_target_inode));
2085
2086 rhead->num_retry = req->r_attempts - 1;
2087
2088 /* remove cap/dentry releases from message */
2089 rhead->num_releases = 0;
2090
2091 /* time stamp */
2092 p = msg->front.iov_base + req->r_request_release_offset;
2093 {
2094 struct ceph_timespec ts;
2095 ceph_encode_timespec(&ts, &req->r_stamp);
2096 ceph_encode_copy(&p, &ts, sizeof(ts));
2097 }
2098
2099 msg->front.iov_len = p - msg->front.iov_base;
2100 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
2101 return 0;
2102 }
2103
2104 if (req->r_request) {
2105 ceph_msg_put(req->r_request);
2106 req->r_request = NULL;
2107 }
2108 msg = create_request_message(mdsc, req, mds, drop_cap_releases);
2109 if (IS_ERR(msg)) {
2110 req->r_err = PTR_ERR(msg);
2111 return PTR_ERR(msg);
2112 }
2113 req->r_request = msg;
2114
2115 rhead = msg->front.iov_base;
2116 rhead->oldest_client_tid = cpu_to_le64(__get_oldest_tid(mdsc));
2117 if (req->r_got_unsafe)
2118 flags |= CEPH_MDS_FLAG_REPLAY;
2119 if (req->r_locked_dir)
2120 flags |= CEPH_MDS_FLAG_WANT_DENTRY;
2121 rhead->flags = cpu_to_le32(flags);
2122 rhead->num_fwd = req->r_num_fwd;
2123 rhead->num_retry = req->r_attempts - 1;
2124 rhead->ino = 0;
2125
2126 dout(" r_locked_dir = %p\n", req->r_locked_dir);
2127 return 0;
2128 }
2129
2130 /*
2131 * send request, or put it on the appropriate wait list.
2132 */
2133 static int __do_request(struct ceph_mds_client *mdsc,
2134 struct ceph_mds_request *req)
2135 {
2136 struct ceph_mds_session *session = NULL;
2137 int mds = -1;
2138 int err = 0;
2139
2140 if (req->r_err || req->r_got_result) {
2141 if (req->r_aborted)
2142 __unregister_request(mdsc, req);
2143 goto out;
2144 }
2145
2146 if (req->r_timeout &&
2147 time_after_eq(jiffies, req->r_started + req->r_timeout)) {
2148 dout("do_request timed out\n");
2149 err = -EIO;
2150 goto finish;
2151 }
2152 if (ACCESS_ONCE(mdsc->fsc->mount_state) == CEPH_MOUNT_SHUTDOWN) {
2153 dout("do_request forced umount\n");
2154 err = -EIO;
2155 goto finish;
2156 }
2157
2158 put_request_session(req);
2159
2160 mds = __choose_mds(mdsc, req);
2161 if (mds < 0 ||
2162 ceph_mdsmap_get_state(mdsc->mdsmap, mds) < CEPH_MDS_STATE_ACTIVE) {
2163 dout("do_request no mds or not active, waiting for map\n");
2164 list_add(&req->r_wait, &mdsc->waiting_for_map);
2165 goto out;
2166 }
2167
2168 /* get, open session */
2169 session = __ceph_lookup_mds_session(mdsc, mds);
2170 if (!session) {
2171 session = register_session(mdsc, mds);
2172 if (IS_ERR(session)) {
2173 err = PTR_ERR(session);
2174 goto finish;
2175 }
2176 }
2177 req->r_session = get_session(session);
2178
2179 dout("do_request mds%d session %p state %s\n", mds, session,
2180 ceph_session_state_name(session->s_state));
2181 if (session->s_state != CEPH_MDS_SESSION_OPEN &&
2182 session->s_state != CEPH_MDS_SESSION_HUNG) {
2183 if (session->s_state == CEPH_MDS_SESSION_NEW ||
2184 session->s_state == CEPH_MDS_SESSION_CLOSING)
2185 __open_session(mdsc, session);
2186 list_add(&req->r_wait, &session->s_waiting);
2187 goto out_session;
2188 }
2189
2190 /* send request */
2191 req->r_resend_mds = -1; /* forget any previous mds hint */
2192
2193 if (req->r_request_started == 0) /* note request start time */
2194 req->r_request_started = jiffies;
2195
2196 err = __prepare_send_request(mdsc, req, mds, false);
2197 if (!err) {
2198 ceph_msg_get(req->r_request);
2199 ceph_con_send(&session->s_con, req->r_request);
2200 }
2201
2202 out_session:
2203 ceph_put_mds_session(session);
2204 finish:
2205 if (err) {
2206 dout("__do_request early error %d\n", err);
2207 req->r_err = err;
2208 complete_request(mdsc, req);
2209 __unregister_request(mdsc, req);
2210 }
2211 out:
2212 return err;
2213 }
2214
2215 /*
2216 * called under mdsc->mutex
2217 */
2218 static void __wake_requests(struct ceph_mds_client *mdsc,
2219 struct list_head *head)
2220 {
2221 struct ceph_mds_request *req;
2222 LIST_HEAD(tmp_list);
2223
2224 list_splice_init(head, &tmp_list);
2225
2226 while (!list_empty(&tmp_list)) {
2227 req = list_entry(tmp_list.next,
2228 struct ceph_mds_request, r_wait);
2229 list_del_init(&req->r_wait);
2230 dout(" wake request %p tid %llu\n", req, req->r_tid);
2231 __do_request(mdsc, req);
2232 }
2233 }
2234
2235 /*
2236 * Wake up threads with requests pending for @mds, so that they can
2237 * resubmit their requests to a possibly different mds.
2238 */
2239 static void kick_requests(struct ceph_mds_client *mdsc, int mds)
2240 {
2241 struct ceph_mds_request *req;
2242 struct rb_node *p = rb_first(&mdsc->request_tree);
2243
2244 dout("kick_requests mds%d\n", mds);
2245 while (p) {
2246 req = rb_entry(p, struct ceph_mds_request, r_node);
2247 p = rb_next(p);
2248 if (req->r_got_unsafe)
2249 continue;
2250 if (req->r_attempts > 0)
2251 continue; /* only new requests */
2252 if (req->r_session &&
2253 req->r_session->s_mds == mds) {
2254 dout(" kicking tid %llu\n", req->r_tid);
2255 list_del_init(&req->r_wait);
2256 __do_request(mdsc, req);
2257 }
2258 }
2259 }
2260
2261 void ceph_mdsc_submit_request(struct ceph_mds_client *mdsc,
2262 struct ceph_mds_request *req)
2263 {
2264 dout("submit_request on %p\n", req);
2265 mutex_lock(&mdsc->mutex);
2266 __register_request(mdsc, req, NULL);
2267 __do_request(mdsc, req);
2268 mutex_unlock(&mdsc->mutex);
2269 }
2270
2271 /*
2272 * Synchrously perform an mds request. Take care of all of the
2273 * session setup, forwarding, retry details.
2274 */
2275 int ceph_mdsc_do_request(struct ceph_mds_client *mdsc,
2276 struct inode *dir,
2277 struct ceph_mds_request *req)
2278 {
2279 int err;
2280
2281 dout("do_request on %p\n", req);
2282
2283 /* take CAP_PIN refs for r_inode, r_locked_dir, r_old_dentry */
2284 if (req->r_inode)
2285 ceph_get_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN);
2286 if (req->r_locked_dir)
2287 ceph_get_cap_refs(ceph_inode(req->r_locked_dir), CEPH_CAP_PIN);
2288 if (req->r_old_dentry_dir)
2289 ceph_get_cap_refs(ceph_inode(req->r_old_dentry_dir),
2290 CEPH_CAP_PIN);
2291
2292 /* deny access to directories with pool_ns layouts */
2293 if (req->r_inode && S_ISDIR(req->r_inode->i_mode) &&
2294 ceph_inode(req->r_inode)->i_pool_ns_len)
2295 return -EIO;
2296 if (req->r_locked_dir &&
2297 ceph_inode(req->r_locked_dir)->i_pool_ns_len)
2298 return -EIO;
2299
2300 /* issue */
2301 mutex_lock(&mdsc->mutex);
2302 __register_request(mdsc, req, dir);
2303 __do_request(mdsc, req);
2304
2305 if (req->r_err) {
2306 err = req->r_err;
2307 goto out;
2308 }
2309
2310 /* wait */
2311 mutex_unlock(&mdsc->mutex);
2312 dout("do_request waiting\n");
2313 if (!req->r_timeout && req->r_wait_for_completion) {
2314 err = req->r_wait_for_completion(mdsc, req);
2315 } else {
2316 long timeleft = wait_for_completion_killable_timeout(
2317 &req->r_completion,
2318 ceph_timeout_jiffies(req->r_timeout));
2319 if (timeleft > 0)
2320 err = 0;
2321 else if (!timeleft)
2322 err = -EIO; /* timed out */
2323 else
2324 err = timeleft; /* killed */
2325 }
2326 dout("do_request waited, got %d\n", err);
2327 mutex_lock(&mdsc->mutex);
2328
2329 /* only abort if we didn't race with a real reply */
2330 if (req->r_got_result) {
2331 err = le32_to_cpu(req->r_reply_info.head->result);
2332 } else if (err < 0) {
2333 dout("aborted request %lld with %d\n", req->r_tid, err);
2334
2335 /*
2336 * ensure we aren't running concurrently with
2337 * ceph_fill_trace or ceph_readdir_prepopulate, which
2338 * rely on locks (dir mutex) held by our caller.
2339 */
2340 mutex_lock(&req->r_fill_mutex);
2341 req->r_err = err;
2342 req->r_aborted = true;
2343 mutex_unlock(&req->r_fill_mutex);
2344
2345 if (req->r_locked_dir &&
2346 (req->r_op & CEPH_MDS_OP_WRITE))
2347 ceph_invalidate_dir_request(req);
2348 } else {
2349 err = req->r_err;
2350 }
2351
2352 out:
2353 mutex_unlock(&mdsc->mutex);
2354 dout("do_request %p done, result %d\n", req, err);
2355 return err;
2356 }
2357
2358 /*
2359 * Invalidate dir's completeness, dentry lease state on an aborted MDS
2360 * namespace request.
2361 */
2362 void ceph_invalidate_dir_request(struct ceph_mds_request *req)
2363 {
2364 struct inode *inode = req->r_locked_dir;
2365
2366 dout("invalidate_dir_request %p (complete, lease(s))\n", inode);
2367
2368 ceph_dir_clear_complete(inode);
2369 if (req->r_dentry)
2370 ceph_invalidate_dentry_lease(req->r_dentry);
2371 if (req->r_old_dentry)
2372 ceph_invalidate_dentry_lease(req->r_old_dentry);
2373 }
2374
2375 /*
2376 * Handle mds reply.
2377 *
2378 * We take the session mutex and parse and process the reply immediately.
2379 * This preserves the logical ordering of replies, capabilities, etc., sent
2380 * by the MDS as they are applied to our local cache.
2381 */
2382 static void handle_reply(struct ceph_mds_session *session, struct ceph_msg *msg)
2383 {
2384 struct ceph_mds_client *mdsc = session->s_mdsc;
2385 struct ceph_mds_request *req;
2386 struct ceph_mds_reply_head *head = msg->front.iov_base;
2387 struct ceph_mds_reply_info_parsed *rinfo; /* parsed reply info */
2388 struct ceph_snap_realm *realm;
2389 u64 tid;
2390 int err, result;
2391 int mds = session->s_mds;
2392
2393 if (msg->front.iov_len < sizeof(*head)) {
2394 pr_err("mdsc_handle_reply got corrupt (short) reply\n");
2395 ceph_msg_dump(msg);
2396 return;
2397 }
2398
2399 /* get request, session */
2400 tid = le64_to_cpu(msg->hdr.tid);
2401 mutex_lock(&mdsc->mutex);
2402 req = lookup_get_request(mdsc, tid);
2403 if (!req) {
2404 dout("handle_reply on unknown tid %llu\n", tid);
2405 mutex_unlock(&mdsc->mutex);
2406 return;
2407 }
2408 dout("handle_reply %p\n", req);
2409
2410 /* correct session? */
2411 if (req->r_session != session) {
2412 pr_err("mdsc_handle_reply got %llu on session mds%d"
2413 " not mds%d\n", tid, session->s_mds,
2414 req->r_session ? req->r_session->s_mds : -1);
2415 mutex_unlock(&mdsc->mutex);
2416 goto out;
2417 }
2418
2419 /* dup? */
2420 if ((req->r_got_unsafe && !head->safe) ||
2421 (req->r_got_safe && head->safe)) {
2422 pr_warn("got a dup %s reply on %llu from mds%d\n",
2423 head->safe ? "safe" : "unsafe", tid, mds);
2424 mutex_unlock(&mdsc->mutex);
2425 goto out;
2426 }
2427 if (req->r_got_safe) {
2428 pr_warn("got unsafe after safe on %llu from mds%d\n",
2429 tid, mds);
2430 mutex_unlock(&mdsc->mutex);
2431 goto out;
2432 }
2433
2434 result = le32_to_cpu(head->result);
2435
2436 /*
2437 * Handle an ESTALE
2438 * if we're not talking to the authority, send to them
2439 * if the authority has changed while we weren't looking,
2440 * send to new authority
2441 * Otherwise we just have to return an ESTALE
2442 */
2443 if (result == -ESTALE) {
2444 dout("got ESTALE on request %llu", req->r_tid);
2445 req->r_resend_mds = -1;
2446 if (req->r_direct_mode != USE_AUTH_MDS) {
2447 dout("not using auth, setting for that now");
2448 req->r_direct_mode = USE_AUTH_MDS;
2449 __do_request(mdsc, req);
2450 mutex_unlock(&mdsc->mutex);
2451 goto out;
2452 } else {
2453 int mds = __choose_mds(mdsc, req);
2454 if (mds >= 0 && mds != req->r_session->s_mds) {
2455 dout("but auth changed, so resending");
2456 __do_request(mdsc, req);
2457 mutex_unlock(&mdsc->mutex);
2458 goto out;
2459 }
2460 }
2461 dout("have to return ESTALE on request %llu", req->r_tid);
2462 }
2463
2464
2465 if (head->safe) {
2466 req->r_got_safe = true;
2467 __unregister_request(mdsc, req);
2468
2469 if (req->r_got_unsafe) {
2470 /*
2471 * We already handled the unsafe response, now do the
2472 * cleanup. No need to examine the response; the MDS
2473 * doesn't include any result info in the safe
2474 * response. And even if it did, there is nothing
2475 * useful we could do with a revised return value.
2476 */
2477 dout("got safe reply %llu, mds%d\n", tid, mds);
2478 list_del_init(&req->r_unsafe_item);
2479
2480 /* last unsafe request during umount? */
2481 if (mdsc->stopping && !__get_oldest_req(mdsc))
2482 complete_all(&mdsc->safe_umount_waiters);
2483 mutex_unlock(&mdsc->mutex);
2484 goto out;
2485 }
2486 } else {
2487 req->r_got_unsafe = true;
2488 list_add_tail(&req->r_unsafe_item, &req->r_session->s_unsafe);
2489 if (req->r_unsafe_dir) {
2490 struct ceph_inode_info *ci =
2491 ceph_inode(req->r_unsafe_dir);
2492 spin_lock(&ci->i_unsafe_lock);
2493 list_add_tail(&req->r_unsafe_dir_item,
2494 &ci->i_unsafe_dirops);
2495 spin_unlock(&ci->i_unsafe_lock);
2496 }
2497 }
2498
2499 dout("handle_reply tid %lld result %d\n", tid, result);
2500 rinfo = &req->r_reply_info;
2501 err = parse_reply_info(msg, rinfo, session->s_con.peer_features);
2502 mutex_unlock(&mdsc->mutex);
2503
2504 mutex_lock(&session->s_mutex);
2505 if (err < 0) {
2506 pr_err("mdsc_handle_reply got corrupt reply mds%d(tid:%lld)\n", mds, tid);
2507 ceph_msg_dump(msg);
2508 goto out_err;
2509 }
2510
2511 /* snap trace */
2512 realm = NULL;
2513 if (rinfo->snapblob_len) {
2514 down_write(&mdsc->snap_rwsem);
2515 ceph_update_snap_trace(mdsc, rinfo->snapblob,
2516 rinfo->snapblob + rinfo->snapblob_len,
2517 le32_to_cpu(head->op) == CEPH_MDS_OP_RMSNAP,
2518 &realm);
2519 downgrade_write(&mdsc->snap_rwsem);
2520 } else {
2521 down_read(&mdsc->snap_rwsem);
2522 }
2523
2524 /* insert trace into our cache */
2525 mutex_lock(&req->r_fill_mutex);
2526 current->journal_info = req;
2527 err = ceph_fill_trace(mdsc->fsc->sb, req, req->r_session);
2528 if (err == 0) {
2529 if (result == 0 && (req->r_op == CEPH_MDS_OP_READDIR ||
2530 req->r_op == CEPH_MDS_OP_LSSNAP))
2531 ceph_readdir_prepopulate(req, req->r_session);
2532 ceph_unreserve_caps(mdsc, &req->r_caps_reservation);
2533 }
2534 current->journal_info = NULL;
2535 mutex_unlock(&req->r_fill_mutex);
2536
2537 up_read(&mdsc->snap_rwsem);
2538 if (realm)
2539 ceph_put_snap_realm(mdsc, realm);
2540
2541 if (err == 0 && req->r_got_unsafe && req->r_target_inode) {
2542 struct ceph_inode_info *ci = ceph_inode(req->r_target_inode);
2543 spin_lock(&ci->i_unsafe_lock);
2544 list_add_tail(&req->r_unsafe_target_item, &ci->i_unsafe_iops);
2545 spin_unlock(&ci->i_unsafe_lock);
2546 }
2547 out_err:
2548 mutex_lock(&mdsc->mutex);
2549 if (!req->r_aborted) {
2550 if (err) {
2551 req->r_err = err;
2552 } else {
2553 req->r_reply = ceph_msg_get(msg);
2554 req->r_got_result = true;
2555 }
2556 } else {
2557 dout("reply arrived after request %lld was aborted\n", tid);
2558 }
2559 mutex_unlock(&mdsc->mutex);
2560
2561 mutex_unlock(&session->s_mutex);
2562
2563 /* kick calling process */
2564 complete_request(mdsc, req);
2565 out:
2566 ceph_mdsc_put_request(req);
2567 return;
2568 }
2569
2570
2571
2572 /*
2573 * handle mds notification that our request has been forwarded.
2574 */
2575 static void handle_forward(struct ceph_mds_client *mdsc,
2576 struct ceph_mds_session *session,
2577 struct ceph_msg *msg)
2578 {
2579 struct ceph_mds_request *req;
2580 u64 tid = le64_to_cpu(msg->hdr.tid);
2581 u32 next_mds;
2582 u32 fwd_seq;
2583 int err = -EINVAL;
2584 void *p = msg->front.iov_base;
2585 void *end = p + msg->front.iov_len;
2586
2587 ceph_decode_need(&p, end, 2*sizeof(u32), bad);
2588 next_mds = ceph_decode_32(&p);
2589 fwd_seq = ceph_decode_32(&p);
2590
2591 mutex_lock(&mdsc->mutex);
2592 req = lookup_get_request(mdsc, tid);
2593 if (!req) {
2594 dout("forward tid %llu to mds%d - req dne\n", tid, next_mds);
2595 goto out; /* dup reply? */
2596 }
2597
2598 if (req->r_aborted) {
2599 dout("forward tid %llu aborted, unregistering\n", tid);
2600 __unregister_request(mdsc, req);
2601 } else if (fwd_seq <= req->r_num_fwd) {
2602 dout("forward tid %llu to mds%d - old seq %d <= %d\n",
2603 tid, next_mds, req->r_num_fwd, fwd_seq);
2604 } else {
2605 /* resend. forward race not possible; mds would drop */
2606 dout("forward tid %llu to mds%d (we resend)\n", tid, next_mds);
2607 BUG_ON(req->r_err);
2608 BUG_ON(req->r_got_result);
2609 req->r_attempts = 0;
2610 req->r_num_fwd = fwd_seq;
2611 req->r_resend_mds = next_mds;
2612 put_request_session(req);
2613 __do_request(mdsc, req);
2614 }
2615 ceph_mdsc_put_request(req);
2616 out:
2617 mutex_unlock(&mdsc->mutex);
2618 return;
2619
2620 bad:
2621 pr_err("mdsc_handle_forward decode error err=%d\n", err);
2622 }
2623
2624 /*
2625 * handle a mds session control message
2626 */
2627 static void handle_session(struct ceph_mds_session *session,
2628 struct ceph_msg *msg)
2629 {
2630 struct ceph_mds_client *mdsc = session->s_mdsc;
2631 u32 op;
2632 u64 seq;
2633 int mds = session->s_mds;
2634 struct ceph_mds_session_head *h = msg->front.iov_base;
2635 int wake = 0;
2636
2637 /* decode */
2638 if (msg->front.iov_len != sizeof(*h))
2639 goto bad;
2640 op = le32_to_cpu(h->op);
2641 seq = le64_to_cpu(h->seq);
2642
2643 mutex_lock(&mdsc->mutex);
2644 if (op == CEPH_SESSION_CLOSE)
2645 __unregister_session(mdsc, session);
2646 /* FIXME: this ttl calculation is generous */
2647 session->s_ttl = jiffies + HZ*mdsc->mdsmap->m_session_autoclose;
2648 mutex_unlock(&mdsc->mutex);
2649
2650 mutex_lock(&session->s_mutex);
2651
2652 dout("handle_session mds%d %s %p state %s seq %llu\n",
2653 mds, ceph_session_op_name(op), session,
2654 ceph_session_state_name(session->s_state), seq);
2655
2656 if (session->s_state == CEPH_MDS_SESSION_HUNG) {
2657 session->s_state = CEPH_MDS_SESSION_OPEN;
2658 pr_info("mds%d came back\n", session->s_mds);
2659 }
2660
2661 switch (op) {
2662 case CEPH_SESSION_OPEN:
2663 if (session->s_state == CEPH_MDS_SESSION_RECONNECTING)
2664 pr_info("mds%d reconnect success\n", session->s_mds);
2665 session->s_state = CEPH_MDS_SESSION_OPEN;
2666 renewed_caps(mdsc, session, 0);
2667 wake = 1;
2668 if (mdsc->stopping)
2669 __close_session(mdsc, session);
2670 break;
2671
2672 case CEPH_SESSION_RENEWCAPS:
2673 if (session->s_renew_seq == seq)
2674 renewed_caps(mdsc, session, 1);
2675 break;
2676
2677 case CEPH_SESSION_CLOSE:
2678 if (session->s_state == CEPH_MDS_SESSION_RECONNECTING)
2679 pr_info("mds%d reconnect denied\n", session->s_mds);
2680 cleanup_session_requests(mdsc, session);
2681 remove_session_caps(session);
2682 wake = 2; /* for good measure */
2683 wake_up_all(&mdsc->session_close_wq);
2684 break;
2685
2686 case CEPH_SESSION_STALE:
2687 pr_info("mds%d caps went stale, renewing\n",
2688 session->s_mds);
2689 spin_lock(&session->s_gen_ttl_lock);
2690 session->s_cap_gen++;
2691 session->s_cap_ttl = jiffies - 1;
2692 spin_unlock(&session->s_gen_ttl_lock);
2693 send_renew_caps(mdsc, session);
2694 break;
2695
2696 case CEPH_SESSION_RECALL_STATE:
2697 trim_caps(mdsc, session, le32_to_cpu(h->max_caps));
2698 break;
2699
2700 case CEPH_SESSION_FLUSHMSG:
2701 send_flushmsg_ack(mdsc, session, seq);
2702 break;
2703
2704 case CEPH_SESSION_FORCE_RO:
2705 dout("force_session_readonly %p\n", session);
2706 spin_lock(&session->s_cap_lock);
2707 session->s_readonly = true;
2708 spin_unlock(&session->s_cap_lock);
2709 wake_up_session_caps(session, 0);
2710 break;
2711
2712 default:
2713 pr_err("mdsc_handle_session bad op %d mds%d\n", op, mds);
2714 WARN_ON(1);
2715 }
2716
2717 mutex_unlock(&session->s_mutex);
2718 if (wake) {
2719 mutex_lock(&mdsc->mutex);
2720 __wake_requests(mdsc, &session->s_waiting);
2721 if (wake == 2)
2722 kick_requests(mdsc, mds);
2723 mutex_unlock(&mdsc->mutex);
2724 }
2725 return;
2726
2727 bad:
2728 pr_err("mdsc_handle_session corrupt message mds%d len %d\n", mds,
2729 (int)msg->front.iov_len);
2730 ceph_msg_dump(msg);
2731 return;
2732 }
2733
2734
2735 /*
2736 * called under session->mutex.
2737 */
2738 static void replay_unsafe_requests(struct ceph_mds_client *mdsc,
2739 struct ceph_mds_session *session)
2740 {
2741 struct ceph_mds_request *req, *nreq;
2742 struct rb_node *p;
2743 int err;
2744
2745 dout("replay_unsafe_requests mds%d\n", session->s_mds);
2746
2747 mutex_lock(&mdsc->mutex);
2748 list_for_each_entry_safe(req, nreq, &session->s_unsafe, r_unsafe_item) {
2749 err = __prepare_send_request(mdsc, req, session->s_mds, true);
2750 if (!err) {
2751 ceph_msg_get(req->r_request);
2752 ceph_con_send(&session->s_con, req->r_request);
2753 }
2754 }
2755
2756 /*
2757 * also re-send old requests when MDS enters reconnect stage. So that MDS
2758 * can process completed request in clientreplay stage.
2759 */
2760 p = rb_first(&mdsc->request_tree);
2761 while (p) {
2762 req = rb_entry(p, struct ceph_mds_request, r_node);
2763 p = rb_next(p);
2764 if (req->r_got_unsafe)
2765 continue;
2766 if (req->r_attempts == 0)
2767 continue; /* only old requests */
2768 if (req->r_session &&
2769 req->r_session->s_mds == session->s_mds) {
2770 err = __prepare_send_request(mdsc, req,
2771 session->s_mds, true);
2772 if (!err) {
2773 ceph_msg_get(req->r_request);
2774 ceph_con_send(&session->s_con, req->r_request);
2775 }
2776 }
2777 }
2778 mutex_unlock(&mdsc->mutex);
2779 }
2780
2781 /*
2782 * Encode information about a cap for a reconnect with the MDS.
2783 */
2784 static int encode_caps_cb(struct inode *inode, struct ceph_cap *cap,
2785 void *arg)
2786 {
2787 union {
2788 struct ceph_mds_cap_reconnect v2;
2789 struct ceph_mds_cap_reconnect_v1 v1;
2790 } rec;
2791 size_t reclen;
2792 struct ceph_inode_info *ci;
2793 struct ceph_reconnect_state *recon_state = arg;
2794 struct ceph_pagelist *pagelist = recon_state->pagelist;
2795 char *path;
2796 int pathlen, err;
2797 u64 pathbase;
2798 struct dentry *dentry;
2799
2800 ci = cap->ci;
2801
2802 dout(" adding %p ino %llx.%llx cap %p %lld %s\n",
2803 inode, ceph_vinop(inode), cap, cap->cap_id,
2804 ceph_cap_string(cap->issued));
2805 err = ceph_pagelist_encode_64(pagelist, ceph_ino(inode));
2806 if (err)
2807 return err;
2808
2809 dentry = d_find_alias(inode);
2810 if (dentry) {
2811 path = ceph_mdsc_build_path(dentry, &pathlen, &pathbase, 0);
2812 if (IS_ERR(path)) {
2813 err = PTR_ERR(path);
2814 goto out_dput;
2815 }
2816 } else {
2817 path = NULL;
2818 pathlen = 0;
2819 }
2820 err = ceph_pagelist_encode_string(pagelist, path, pathlen);
2821 if (err)
2822 goto out_free;
2823
2824 spin_lock(&ci->i_ceph_lock);
2825 cap->seq = 0; /* reset cap seq */
2826 cap->issue_seq = 0; /* and issue_seq */
2827 cap->mseq = 0; /* and migrate_seq */
2828 cap->cap_gen = cap->session->s_cap_gen;
2829
2830 if (recon_state->flock) {
2831 rec.v2.cap_id = cpu_to_le64(cap->cap_id);
2832 rec.v2.wanted = cpu_to_le32(__ceph_caps_wanted(ci));
2833 rec.v2.issued = cpu_to_le32(cap->issued);
2834 rec.v2.snaprealm = cpu_to_le64(ci->i_snap_realm->ino);
2835 rec.v2.pathbase = cpu_to_le64(pathbase);
2836 rec.v2.flock_len = 0;
2837 reclen = sizeof(rec.v2);
2838 } else {
2839 rec.v1.cap_id = cpu_to_le64(cap->cap_id);
2840 rec.v1.wanted = cpu_to_le32(__ceph_caps_wanted(ci));
2841 rec.v1.issued = cpu_to_le32(cap->issued);
2842 rec.v1.size = cpu_to_le64(inode->i_size);
2843 ceph_encode_timespec(&rec.v1.mtime, &inode->i_mtime);
2844 ceph_encode_timespec(&rec.v1.atime, &inode->i_atime);
2845 rec.v1.snaprealm = cpu_to_le64(ci->i_snap_realm->ino);
2846 rec.v1.pathbase = cpu_to_le64(pathbase);
2847 reclen = sizeof(rec.v1);
2848 }
2849 spin_unlock(&ci->i_ceph_lock);
2850
2851 if (recon_state->flock) {
2852 int num_fcntl_locks, num_flock_locks;
2853 struct ceph_filelock *flocks;
2854
2855 encode_again:
2856 ceph_count_locks(inode, &num_fcntl_locks, &num_flock_locks);
2857 flocks = kmalloc((num_fcntl_locks+num_flock_locks) *
2858 sizeof(struct ceph_filelock), GFP_NOFS);
2859 if (!flocks) {
2860 err = -ENOMEM;
2861 goto out_free;
2862 }
2863 err = ceph_encode_locks_to_buffer(inode, flocks,
2864 num_fcntl_locks,
2865 num_flock_locks);
2866 if (err) {
2867 kfree(flocks);
2868 if (err == -ENOSPC)
2869 goto encode_again;
2870 goto out_free;
2871 }
2872 /*
2873 * number of encoded locks is stable, so copy to pagelist
2874 */
2875 rec.v2.flock_len = cpu_to_le32(2*sizeof(u32) +
2876 (num_fcntl_locks+num_flock_locks) *
2877 sizeof(struct ceph_filelock));
2878 err = ceph_pagelist_append(pagelist, &rec, reclen);
2879 if (!err)
2880 err = ceph_locks_to_pagelist(flocks, pagelist,
2881 num_fcntl_locks,
2882 num_flock_locks);
2883 kfree(flocks);
2884 } else {
2885 err = ceph_pagelist_append(pagelist, &rec, reclen);
2886 }
2887
2888 recon_state->nr_caps++;
2889 out_free:
2890 kfree(path);
2891 out_dput:
2892 dput(dentry);
2893 return err;
2894 }
2895
2896
2897 /*
2898 * If an MDS fails and recovers, clients need to reconnect in order to
2899 * reestablish shared state. This includes all caps issued through
2900 * this session _and_ the snap_realm hierarchy. Because it's not
2901 * clear which snap realms the mds cares about, we send everything we
2902 * know about.. that ensures we'll then get any new info the
2903 * recovering MDS might have.
2904 *
2905 * This is a relatively heavyweight operation, but it's rare.
2906 *
2907 * called with mdsc->mutex held.
2908 */
2909 static void send_mds_reconnect(struct ceph_mds_client *mdsc,
2910 struct ceph_mds_session *session)
2911 {
2912 struct ceph_msg *reply;
2913 struct rb_node *p;
2914 int mds = session->s_mds;
2915 int err = -ENOMEM;
2916 int s_nr_caps;
2917 struct ceph_pagelist *pagelist;
2918 struct ceph_reconnect_state recon_state;
2919
2920 pr_info("mds%d reconnect start\n", mds);
2921
2922 pagelist = kmalloc(sizeof(*pagelist), GFP_NOFS);
2923 if (!pagelist)
2924 goto fail_nopagelist;
2925 ceph_pagelist_init(pagelist);
2926
2927 reply = ceph_msg_new(CEPH_MSG_CLIENT_RECONNECT, 0, GFP_NOFS, false);
2928 if (!reply)
2929 goto fail_nomsg;
2930
2931 mutex_lock(&session->s_mutex);
2932 session->s_state = CEPH_MDS_SESSION_RECONNECTING;
2933 session->s_seq = 0;
2934
2935 dout("session %p state %s\n", session,
2936 ceph_session_state_name(session->s_state));
2937
2938 spin_lock(&session->s_gen_ttl_lock);
2939 session->s_cap_gen++;
2940 spin_unlock(&session->s_gen_ttl_lock);
2941
2942 spin_lock(&session->s_cap_lock);
2943 /* don't know if session is readonly */
2944 session->s_readonly = 0;
2945 /*
2946 * notify __ceph_remove_cap() that we are composing cap reconnect.
2947 * If a cap get released before being added to the cap reconnect,
2948 * __ceph_remove_cap() should skip queuing cap release.
2949 */
2950 session->s_cap_reconnect = 1;
2951 /* drop old cap expires; we're about to reestablish that state */
2952 cleanup_cap_releases(mdsc, session);
2953
2954 /* trim unused caps to reduce MDS's cache rejoin time */
2955 if (mdsc->fsc->sb->s_root)
2956 shrink_dcache_parent(mdsc->fsc->sb->s_root);
2957
2958 ceph_con_close(&session->s_con);
2959 ceph_con_open(&session->s_con,
2960 CEPH_ENTITY_TYPE_MDS, mds,
2961 ceph_mdsmap_get_addr(mdsc->mdsmap, mds));
2962
2963 /* replay unsafe requests */
2964 replay_unsafe_requests(mdsc, session);
2965
2966 down_read(&mdsc->snap_rwsem);
2967
2968 /* traverse this session's caps */
2969 s_nr_caps = session->s_nr_caps;
2970 err = ceph_pagelist_encode_32(pagelist, s_nr_caps);
2971 if (err)
2972 goto fail;
2973
2974 recon_state.nr_caps = 0;
2975 recon_state.pagelist = pagelist;
2976 recon_state.flock = session->s_con.peer_features & CEPH_FEATURE_FLOCK;
2977 err = iterate_session_caps(session, encode_caps_cb, &recon_state);
2978 if (err < 0)
2979 goto fail;
2980
2981 spin_lock(&session->s_cap_lock);
2982 session->s_cap_reconnect = 0;
2983 spin_unlock(&session->s_cap_lock);
2984
2985 /*
2986 * snaprealms. we provide mds with the ino, seq (version), and
2987 * parent for all of our realms. If the mds has any newer info,
2988 * it will tell us.
2989 */
2990 for (p = rb_first(&mdsc->snap_realms); p; p = rb_next(p)) {
2991 struct ceph_snap_realm *realm =
2992 rb_entry(p, struct ceph_snap_realm, node);
2993 struct ceph_mds_snaprealm_reconnect sr_rec;
2994
2995 dout(" adding snap realm %llx seq %lld parent %llx\n",
2996 realm->ino, realm->seq, realm->parent_ino);
2997 sr_rec.ino = cpu_to_le64(realm->ino);
2998 sr_rec.seq = cpu_to_le64(realm->seq);
2999 sr_rec.parent = cpu_to_le64(realm->parent_ino);
3000 err = ceph_pagelist_append(pagelist, &sr_rec, sizeof(sr_rec));
3001 if (err)
3002 goto fail;
3003 }
3004
3005 if (recon_state.flock)
3006 reply->hdr.version = cpu_to_le16(2);
3007
3008 /* raced with cap release? */
3009 if (s_nr_caps != recon_state.nr_caps) {
3010 struct page *page = list_first_entry(&pagelist->head,
3011 struct page, lru);
3012 __le32 *addr = kmap_atomic(page);
3013 *addr = cpu_to_le32(recon_state.nr_caps);
3014 kunmap_atomic(addr);
3015 }
3016
3017 reply->hdr.data_len = cpu_to_le32(pagelist->length);
3018 ceph_msg_data_add_pagelist(reply, pagelist);
3019
3020 ceph_early_kick_flushing_caps(mdsc, session);
3021
3022 ceph_con_send(&session->s_con, reply);
3023
3024 mutex_unlock(&session->s_mutex);
3025
3026 mutex_lock(&mdsc->mutex);
3027 __wake_requests(mdsc, &session->s_waiting);
3028 mutex_unlock(&mdsc->mutex);
3029
3030 up_read(&mdsc->snap_rwsem);
3031 return;
3032
3033 fail:
3034 ceph_msg_put(reply);
3035 up_read(&mdsc->snap_rwsem);
3036 mutex_unlock(&session->s_mutex);
3037 fail_nomsg:
3038 ceph_pagelist_release(pagelist);
3039 fail_nopagelist:
3040 pr_err("error %d preparing reconnect for mds%d\n", err, mds);
3041 return;
3042 }
3043
3044
3045 /*
3046 * compare old and new mdsmaps, kicking requests
3047 * and closing out old connections as necessary
3048 *
3049 * called under mdsc->mutex.
3050 */
3051 static void check_new_map(struct ceph_mds_client *mdsc,
3052 struct ceph_mdsmap *newmap,
3053 struct ceph_mdsmap *oldmap)
3054 {
3055 int i;
3056 int oldstate, newstate;
3057 struct ceph_mds_session *s;
3058
3059 dout("check_new_map new %u old %u\n",
3060 newmap->m_epoch, oldmap->m_epoch);
3061
3062 for (i = 0; i < oldmap->m_max_mds && i < mdsc->max_sessions; i++) {
3063 if (mdsc->sessions[i] == NULL)
3064 continue;
3065 s = mdsc->sessions[i];
3066 oldstate = ceph_mdsmap_get_state(oldmap, i);
3067 newstate = ceph_mdsmap_get_state(newmap, i);
3068
3069 dout("check_new_map mds%d state %s%s -> %s%s (session %s)\n",
3070 i, ceph_mds_state_name(oldstate),
3071 ceph_mdsmap_is_laggy(oldmap, i) ? " (laggy)" : "",
3072 ceph_mds_state_name(newstate),
3073 ceph_mdsmap_is_laggy(newmap, i) ? " (laggy)" : "",
3074 ceph_session_state_name(s->s_state));
3075
3076 if (i >= newmap->m_max_mds ||
3077 memcmp(ceph_mdsmap_get_addr(oldmap, i),
3078 ceph_mdsmap_get_addr(newmap, i),
3079 sizeof(struct ceph_entity_addr))) {
3080 if (s->s_state == CEPH_MDS_SESSION_OPENING) {
3081 /* the session never opened, just close it
3082 * out now */
3083 __wake_requests(mdsc, &s->s_waiting);
3084 __unregister_session(mdsc, s);
3085 } else {
3086 /* just close it */
3087 mutex_unlock(&mdsc->mutex);
3088 mutex_lock(&s->s_mutex);
3089 mutex_lock(&mdsc->mutex);
3090 ceph_con_close(&s->s_con);
3091 mutex_unlock(&s->s_mutex);
3092 s->s_state = CEPH_MDS_SESSION_RESTARTING;
3093 }
3094 } else if (oldstate == newstate) {
3095 continue; /* nothing new with this mds */
3096 }
3097
3098 /*
3099 * send reconnect?
3100 */
3101 if (s->s_state == CEPH_MDS_SESSION_RESTARTING &&
3102 newstate >= CEPH_MDS_STATE_RECONNECT) {
3103 mutex_unlock(&mdsc->mutex);
3104 send_mds_reconnect(mdsc, s);
3105 mutex_lock(&mdsc->mutex);
3106 }
3107
3108 /*
3109 * kick request on any mds that has gone active.
3110 */
3111 if (oldstate < CEPH_MDS_STATE_ACTIVE &&
3112 newstate >= CEPH_MDS_STATE_ACTIVE) {
3113 if (oldstate != CEPH_MDS_STATE_CREATING &&
3114 oldstate != CEPH_MDS_STATE_STARTING)
3115 pr_info("mds%d recovery completed\n", s->s_mds);
3116 kick_requests(mdsc, i);
3117 ceph_kick_flushing_caps(mdsc, s);
3118 wake_up_session_caps(s, 1);
3119 }
3120 }
3121
3122 for (i = 0; i < newmap->m_max_mds && i < mdsc->max_sessions; i++) {
3123 s = mdsc->sessions[i];
3124 if (!s)
3125 continue;
3126 if (!ceph_mdsmap_is_laggy(newmap, i))
3127 continue;
3128 if (s->s_state == CEPH_MDS_SESSION_OPEN ||
3129 s->s_state == CEPH_MDS_SESSION_HUNG ||
3130 s->s_state == CEPH_MDS_SESSION_CLOSING) {
3131 dout(" connecting to export targets of laggy mds%d\n",
3132 i);
3133 __open_export_target_sessions(mdsc, s);
3134 }
3135 }
3136 }
3137
3138
3139
3140 /*
3141 * leases
3142 */
3143
3144 /*
3145 * caller must hold session s_mutex, dentry->d_lock
3146 */
3147 void __ceph_mdsc_drop_dentry_lease(struct dentry *dentry)
3148 {
3149 struct ceph_dentry_info *di = ceph_dentry(dentry);
3150
3151 ceph_put_mds_session(di->lease_session);
3152 di->lease_session = NULL;
3153 }
3154
3155 static void handle_lease(struct ceph_mds_client *mdsc,
3156 struct ceph_mds_session *session,
3157 struct ceph_msg *msg)
3158 {
3159 struct super_block *sb = mdsc->fsc->sb;
3160 struct inode *inode;
3161 struct dentry *parent, *dentry;
3162 struct ceph_dentry_info *di;
3163 int mds = session->s_mds;
3164 struct ceph_mds_lease *h = msg->front.iov_base;
3165 u32 seq;
3166 struct ceph_vino vino;
3167 struct qstr dname;
3168 int release = 0;
3169
3170 dout("handle_lease from mds%d\n", mds);
3171
3172 /* decode */
3173 if (msg->front.iov_len < sizeof(*h) + sizeof(u32))
3174 goto bad;
3175 vino.ino = le64_to_cpu(h->ino);
3176 vino.snap = CEPH_NOSNAP;
3177 seq = le32_to_cpu(h->seq);
3178 dname.name = (void *)h + sizeof(*h) + sizeof(u32);
3179 dname.len = msg->front.iov_len - sizeof(*h) - sizeof(u32);
3180 if (dname.len != get_unaligned_le32(h+1))
3181 goto bad;
3182
3183 /* lookup inode */
3184 inode = ceph_find_inode(sb, vino);
3185 dout("handle_lease %s, ino %llx %p %.*s\n",
3186 ceph_lease_op_name(h->action), vino.ino, inode,
3187 dname.len, dname.name);
3188
3189 mutex_lock(&session->s_mutex);
3190 session->s_seq++;
3191
3192 if (inode == NULL) {
3193 dout("handle_lease no inode %llx\n", vino.ino);
3194 goto release;
3195 }
3196
3197 /* dentry */
3198 parent = d_find_alias(inode);
3199 if (!parent) {
3200 dout("no parent dentry on inode %p\n", inode);
3201 WARN_ON(1);
3202 goto release; /* hrm... */
3203 }
3204 dname.hash = full_name_hash(dname.name, dname.len);
3205 dentry = d_lookup(parent, &dname);
3206 dput(parent);
3207 if (!dentry)
3208 goto release;
3209
3210 spin_lock(&dentry->d_lock);
3211 di = ceph_dentry(dentry);
3212 switch (h->action) {
3213 case CEPH_MDS_LEASE_REVOKE:
3214 if (di->lease_session == session) {
3215 if (ceph_seq_cmp(di->lease_seq, seq) > 0)
3216 h->seq = cpu_to_le32(di->lease_seq);
3217 __ceph_mdsc_drop_dentry_lease(dentry);
3218 }
3219 release = 1;
3220 break;
3221
3222 case CEPH_MDS_LEASE_RENEW:
3223 if (di->lease_session == session &&
3224 di->lease_gen == session->s_cap_gen &&
3225 di->lease_renew_from &&
3226 di->lease_renew_after == 0) {
3227 unsigned long duration =
3228 msecs_to_jiffies(le32_to_cpu(h->duration_ms));
3229
3230 di->lease_seq = seq;
3231 dentry->d_time = di->lease_renew_from + duration;
3232 di->lease_renew_after = di->lease_renew_from +
3233 (duration >> 1);
3234 di->lease_renew_from = 0;
3235 }
3236 break;
3237 }
3238 spin_unlock(&dentry->d_lock);
3239 dput(dentry);
3240
3241 if (!release)
3242 goto out;
3243
3244 release:
3245 /* let's just reuse the same message */
3246 h->action = CEPH_MDS_LEASE_REVOKE_ACK;
3247 ceph_msg_get(msg);
3248 ceph_con_send(&session->s_con, msg);
3249
3250 out:
3251 iput(inode);
3252 mutex_unlock(&session->s_mutex);
3253 return;
3254
3255 bad:
3256 pr_err("corrupt lease message\n");
3257 ceph_msg_dump(msg);
3258 }
3259
3260 void ceph_mdsc_lease_send_msg(struct ceph_mds_session *session,
3261 struct inode *inode,
3262 struct dentry *dentry, char action,
3263 u32 seq)
3264 {
3265 struct ceph_msg *msg;
3266 struct ceph_mds_lease *lease;
3267 int len = sizeof(*lease) + sizeof(u32);
3268 int dnamelen = 0;
3269
3270 dout("lease_send_msg inode %p dentry %p %s to mds%d\n",
3271 inode, dentry, ceph_lease_op_name(action), session->s_mds);
3272 dnamelen = dentry->d_name.len;
3273 len += dnamelen;
3274
3275 msg = ceph_msg_new(CEPH_MSG_CLIENT_LEASE, len, GFP_NOFS, false);
3276 if (!msg)
3277 return;
3278 lease = msg->front.iov_base;
3279 lease->action = action;
3280 lease->ino = cpu_to_le64(ceph_vino(inode).ino);
3281 lease->first = lease->last = cpu_to_le64(ceph_vino(inode).snap);
3282 lease->seq = cpu_to_le32(seq);
3283 put_unaligned_le32(dnamelen, lease + 1);
3284 memcpy((void *)(lease + 1) + 4, dentry->d_name.name, dnamelen);
3285
3286 /*
3287 * if this is a preemptive lease RELEASE, no need to
3288 * flush request stream, since the actual request will
3289 * soon follow.
3290 */
3291 msg->more_to_follow = (action == CEPH_MDS_LEASE_RELEASE);
3292
3293 ceph_con_send(&session->s_con, msg);
3294 }
3295
3296 /*
3297 * Preemptively release a lease we expect to invalidate anyway.
3298 * Pass @inode always, @dentry is optional.
3299 */
3300 void ceph_mdsc_lease_release(struct ceph_mds_client *mdsc, struct inode *inode,
3301 struct dentry *dentry)
3302 {
3303 struct ceph_dentry_info *di;
3304 struct ceph_mds_session *session;
3305 u32 seq;
3306
3307 BUG_ON(inode == NULL);
3308 BUG_ON(dentry == NULL);
3309
3310 /* is dentry lease valid? */
3311 spin_lock(&dentry->d_lock);
3312 di = ceph_dentry(dentry);
3313 if (!di || !di->lease_session ||
3314 di->lease_session->s_mds < 0 ||
3315 di->lease_gen != di->lease_session->s_cap_gen ||
3316 !time_before(jiffies, dentry->d_time)) {
3317 dout("lease_release inode %p dentry %p -- "
3318 "no lease\n",
3319 inode, dentry);
3320 spin_unlock(&dentry->d_lock);
3321 return;
3322 }
3323
3324 /* we do have a lease on this dentry; note mds and seq */
3325 session = ceph_get_mds_session(di->lease_session);
3326 seq = di->lease_seq;
3327 __ceph_mdsc_drop_dentry_lease(dentry);
3328 spin_unlock(&dentry->d_lock);
3329
3330 dout("lease_release inode %p dentry %p to mds%d\n",
3331 inode, dentry, session->s_mds);
3332 ceph_mdsc_lease_send_msg(session, inode, dentry,
3333 CEPH_MDS_LEASE_RELEASE, seq);
3334 ceph_put_mds_session(session);
3335 }
3336
3337 /*
3338 * drop all leases (and dentry refs) in preparation for umount
3339 */
3340 static void drop_leases(struct ceph_mds_client *mdsc)
3341 {
3342 int i;
3343
3344 dout("drop_leases\n");
3345 mutex_lock(&mdsc->mutex);
3346 for (i = 0; i < mdsc->max_sessions; i++) {
3347 struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i);
3348 if (!s)
3349 continue;
3350 mutex_unlock(&mdsc->mutex);
3351 mutex_lock(&s->s_mutex);
3352 mutex_unlock(&s->s_mutex);
3353 ceph_put_mds_session(s);
3354 mutex_lock(&mdsc->mutex);
3355 }
3356 mutex_unlock(&mdsc->mutex);
3357 }
3358
3359
3360
3361 /*
3362 * delayed work -- periodically trim expired leases, renew caps with mds
3363 */
3364 static void schedule_delayed(struct ceph_mds_client *mdsc)
3365 {
3366 int delay = 5;
3367 unsigned hz = round_jiffies_relative(HZ * delay);
3368 schedule_delayed_work(&mdsc->delayed_work, hz);
3369 }
3370
3371 static void delayed_work(struct work_struct *work)
3372 {
3373 int i;
3374 struct ceph_mds_client *mdsc =
3375 container_of(work, struct ceph_mds_client, delayed_work.work);
3376 int renew_interval;
3377 int renew_caps;
3378
3379 dout("mdsc delayed_work\n");
3380 ceph_check_delayed_caps(mdsc);
3381
3382 mutex_lock(&mdsc->mutex);
3383 renew_interval = mdsc->mdsmap->m_session_timeout >> 2;
3384 renew_caps = time_after_eq(jiffies, HZ*renew_interval +
3385 mdsc->last_renew_caps);
3386 if (renew_caps)
3387 mdsc->last_renew_caps = jiffies;
3388
3389 for (i = 0; i < mdsc->max_sessions; i++) {
3390 struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i);
3391 if (s == NULL)
3392 continue;
3393 if (s->s_state == CEPH_MDS_SESSION_CLOSING) {
3394 dout("resending session close request for mds%d\n",
3395 s->s_mds);
3396 request_close_session(mdsc, s);
3397 ceph_put_mds_session(s);
3398 continue;
3399 }
3400 if (s->s_ttl && time_after(jiffies, s->s_ttl)) {
3401 if (s->s_state == CEPH_MDS_SESSION_OPEN) {
3402 s->s_state = CEPH_MDS_SESSION_HUNG;
3403 pr_info("mds%d hung\n", s->s_mds);
3404 }
3405 }
3406 if (s->s_state < CEPH_MDS_SESSION_OPEN) {
3407 /* this mds is failed or recovering, just wait */
3408 ceph_put_mds_session(s);
3409 continue;
3410 }
3411 mutex_unlock(&mdsc->mutex);
3412
3413 mutex_lock(&s->s_mutex);
3414 if (renew_caps)
3415 send_renew_caps(mdsc, s);
3416 else
3417 ceph_con_keepalive(&s->s_con);
3418 if (s->s_state == CEPH_MDS_SESSION_OPEN ||
3419 s->s_state == CEPH_MDS_SESSION_HUNG)
3420 ceph_send_cap_releases(mdsc, s);
3421 mutex_unlock(&s->s_mutex);
3422 ceph_put_mds_session(s);
3423
3424 mutex_lock(&mdsc->mutex);
3425 }
3426 mutex_unlock(&mdsc->mutex);
3427
3428 schedule_delayed(mdsc);
3429 }
3430
3431 int ceph_mdsc_init(struct ceph_fs_client *fsc)
3432
3433 {
3434 struct ceph_mds_client *mdsc;
3435
3436 mdsc = kzalloc(sizeof(struct ceph_mds_client), GFP_NOFS);
3437 if (!mdsc)
3438 return -ENOMEM;
3439 mdsc->fsc = fsc;
3440 fsc->mdsc = mdsc;
3441 mutex_init(&mdsc->mutex);
3442 mdsc->mdsmap = kzalloc(sizeof(*mdsc->mdsmap), GFP_NOFS);
3443 if (mdsc->mdsmap == NULL) {
3444 kfree(mdsc);
3445 return -ENOMEM;
3446 }
3447
3448 init_completion(&mdsc->safe_umount_waiters);
3449 init_waitqueue_head(&mdsc->session_close_wq);
3450 INIT_LIST_HEAD(&mdsc->waiting_for_map);
3451 mdsc->sessions = NULL;
3452 atomic_set(&mdsc->num_sessions, 0);
3453 mdsc->max_sessions = 0;
3454 mdsc->stopping = 0;
3455 mdsc->last_snap_seq = 0;
3456 init_rwsem(&mdsc->snap_rwsem);
3457 mdsc->snap_realms = RB_ROOT;
3458 INIT_LIST_HEAD(&mdsc->snap_empty);
3459 spin_lock_init(&mdsc->snap_empty_lock);
3460 mdsc->last_tid = 0;
3461 mdsc->oldest_tid = 0;
3462 mdsc->request_tree = RB_ROOT;
3463 INIT_DELAYED_WORK(&mdsc->delayed_work, delayed_work);
3464 mdsc->last_renew_caps = jiffies;
3465 INIT_LIST_HEAD(&mdsc->cap_delay_list);
3466 spin_lock_init(&mdsc->cap_delay_lock);
3467 INIT_LIST_HEAD(&mdsc->snap_flush_list);
3468 spin_lock_init(&mdsc->snap_flush_lock);
3469 mdsc->last_cap_flush_tid = 1;
3470 mdsc->cap_flush_tree = RB_ROOT;
3471 INIT_LIST_HEAD(&mdsc->cap_dirty);
3472 INIT_LIST_HEAD(&mdsc->cap_dirty_migrating);
3473 mdsc->num_cap_flushing = 0;
3474 spin_lock_init(&mdsc->cap_dirty_lock);
3475 init_waitqueue_head(&mdsc->cap_flushing_wq);
3476 spin_lock_init(&mdsc->dentry_lru_lock);
3477 INIT_LIST_HEAD(&mdsc->dentry_lru);
3478
3479 ceph_caps_init(mdsc);
3480 ceph_adjust_min_caps(mdsc, fsc->min_caps);
3481
3482 init_rwsem(&mdsc->pool_perm_rwsem);
3483 mdsc->pool_perm_tree = RB_ROOT;
3484
3485 return 0;
3486 }
3487
3488 /*
3489 * Wait for safe replies on open mds requests. If we time out, drop
3490 * all requests from the tree to avoid dangling dentry refs.
3491 */
3492 static void wait_requests(struct ceph_mds_client *mdsc)
3493 {
3494 struct ceph_options *opts = mdsc->fsc->client->options;
3495 struct ceph_mds_request *req;
3496
3497 mutex_lock(&mdsc->mutex);
3498 if (__get_oldest_req(mdsc)) {
3499 mutex_unlock(&mdsc->mutex);
3500
3501 dout("wait_requests waiting for requests\n");
3502 wait_for_completion_timeout(&mdsc->safe_umount_waiters,
3503 ceph_timeout_jiffies(opts->mount_timeout));
3504
3505 /* tear down remaining requests */
3506 mutex_lock(&mdsc->mutex);
3507 while ((req = __get_oldest_req(mdsc))) {
3508 dout("wait_requests timed out on tid %llu\n",
3509 req->r_tid);
3510 __unregister_request(mdsc, req);
3511 }
3512 }
3513 mutex_unlock(&mdsc->mutex);
3514 dout("wait_requests done\n");
3515 }
3516
3517 /*
3518 * called before mount is ro, and before dentries are torn down.
3519 * (hmm, does this still race with new lookups?)
3520 */
3521 void ceph_mdsc_pre_umount(struct ceph_mds_client *mdsc)
3522 {
3523 dout("pre_umount\n");
3524 mdsc->stopping = 1;
3525
3526 drop_leases(mdsc);
3527 ceph_flush_dirty_caps(mdsc);
3528 wait_requests(mdsc);
3529
3530 /*
3531 * wait for reply handlers to drop their request refs and
3532 * their inode/dcache refs
3533 */
3534 ceph_msgr_flush();
3535 }
3536
3537 /*
3538 * wait for all write mds requests to flush.
3539 */
3540 static void wait_unsafe_requests(struct ceph_mds_client *mdsc, u64 want_tid)
3541 {
3542 struct ceph_mds_request *req = NULL, *nextreq;
3543 struct rb_node *n;
3544
3545 mutex_lock(&mdsc->mutex);
3546 dout("wait_unsafe_requests want %lld\n", want_tid);
3547 restart:
3548 req = __get_oldest_req(mdsc);
3549 while (req && req->r_tid <= want_tid) {
3550 /* find next request */
3551 n = rb_next(&req->r_node);
3552 if (n)
3553 nextreq = rb_entry(n, struct ceph_mds_request, r_node);
3554 else
3555 nextreq = NULL;
3556 if (req->r_op != CEPH_MDS_OP_SETFILELOCK &&
3557 (req->r_op & CEPH_MDS_OP_WRITE)) {
3558 /* write op */
3559 ceph_mdsc_get_request(req);
3560 if (nextreq)
3561 ceph_mdsc_get_request(nextreq);
3562 mutex_unlock(&mdsc->mutex);
3563 dout("wait_unsafe_requests wait on %llu (want %llu)\n",
3564 req->r_tid, want_tid);
3565 wait_for_completion(&req->r_safe_completion);
3566 mutex_lock(&mdsc->mutex);
3567 ceph_mdsc_put_request(req);
3568 if (!nextreq)
3569 break; /* next dne before, so we're done! */
3570 if (RB_EMPTY_NODE(&nextreq->r_node)) {
3571 /* next request was removed from tree */
3572 ceph_mdsc_put_request(nextreq);
3573 goto restart;
3574 }
3575 ceph_mdsc_put_request(nextreq); /* won't go away */
3576 }
3577 req = nextreq;
3578 }
3579 mutex_unlock(&mdsc->mutex);
3580 dout("wait_unsafe_requests done\n");
3581 }
3582
3583 void ceph_mdsc_sync(struct ceph_mds_client *mdsc)
3584 {
3585 u64 want_tid, want_flush, want_snap;
3586
3587 if (ACCESS_ONCE(mdsc->fsc->mount_state) == CEPH_MOUNT_SHUTDOWN)
3588 return;
3589
3590 dout("sync\n");
3591 mutex_lock(&mdsc->mutex);
3592 want_tid = mdsc->last_tid;
3593 mutex_unlock(&mdsc->mutex);
3594
3595 ceph_flush_dirty_caps(mdsc);
3596 spin_lock(&mdsc->cap_dirty_lock);
3597 want_flush = mdsc->last_cap_flush_tid;
3598 spin_unlock(&mdsc->cap_dirty_lock);
3599
3600 down_read(&mdsc->snap_rwsem);
3601 want_snap = mdsc->last_snap_seq;
3602 up_read(&mdsc->snap_rwsem);
3603
3604 dout("sync want tid %lld flush_seq %lld snap_seq %lld\n",
3605 want_tid, want_flush, want_snap);
3606
3607 wait_unsafe_requests(mdsc, want_tid);
3608 wait_caps_flush(mdsc, want_flush, want_snap);
3609 }
3610
3611 /*
3612 * true if all sessions are closed, or we force unmount
3613 */
3614 static bool done_closing_sessions(struct ceph_mds_client *mdsc)
3615 {
3616 if (ACCESS_ONCE(mdsc->fsc->mount_state) == CEPH_MOUNT_SHUTDOWN)
3617 return true;
3618 return atomic_read(&mdsc->num_sessions) == 0;
3619 }
3620
3621 /*
3622 * called after sb is ro.
3623 */
3624 void ceph_mdsc_close_sessions(struct ceph_mds_client *mdsc)
3625 {
3626 struct ceph_options *opts = mdsc->fsc->client->options;
3627 struct ceph_mds_session *session;
3628 int i;
3629
3630 dout("close_sessions\n");
3631
3632 /* close sessions */
3633 mutex_lock(&mdsc->mutex);
3634 for (i = 0; i < mdsc->max_sessions; i++) {
3635 session = __ceph_lookup_mds_session(mdsc, i);
3636 if (!session)
3637 continue;
3638 mutex_unlock(&mdsc->mutex);
3639 mutex_lock(&session->s_mutex);
3640 __close_session(mdsc, session);
3641 mutex_unlock(&session->s_mutex);
3642 ceph_put_mds_session(session);
3643 mutex_lock(&mdsc->mutex);
3644 }
3645 mutex_unlock(&mdsc->mutex);
3646
3647 dout("waiting for sessions to close\n");
3648 wait_event_timeout(mdsc->session_close_wq, done_closing_sessions(mdsc),
3649 ceph_timeout_jiffies(opts->mount_timeout));
3650
3651 /* tear down remaining sessions */
3652 mutex_lock(&mdsc->mutex);
3653 for (i = 0; i < mdsc->max_sessions; i++) {
3654 if (mdsc->sessions[i]) {
3655 session = get_session(mdsc->sessions[i]);
3656 __unregister_session(mdsc, session);
3657 mutex_unlock(&mdsc->mutex);
3658 mutex_lock(&session->s_mutex);
3659 remove_session_caps(session);
3660 mutex_unlock(&session->s_mutex);
3661 ceph_put_mds_session(session);
3662 mutex_lock(&mdsc->mutex);
3663 }
3664 }
3665 WARN_ON(!list_empty(&mdsc->cap_delay_list));
3666 mutex_unlock(&mdsc->mutex);
3667
3668 ceph_cleanup_empty_realms(mdsc);
3669
3670 cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */
3671
3672 dout("stopped\n");
3673 }
3674
3675 void ceph_mdsc_force_umount(struct ceph_mds_client *mdsc)
3676 {
3677 struct ceph_mds_session *session;
3678 int mds;
3679
3680 dout("force umount\n");
3681
3682 mutex_lock(&mdsc->mutex);
3683 for (mds = 0; mds < mdsc->max_sessions; mds++) {
3684 session = __ceph_lookup_mds_session(mdsc, mds);
3685 if (!session)
3686 continue;
3687 mutex_unlock(&mdsc->mutex);
3688 mutex_lock(&session->s_mutex);
3689 __close_session(mdsc, session);
3690 if (session->s_state == CEPH_MDS_SESSION_CLOSING) {
3691 cleanup_session_requests(mdsc, session);
3692 remove_session_caps(session);
3693 }
3694 mutex_unlock(&session->s_mutex);
3695 ceph_put_mds_session(session);
3696 mutex_lock(&mdsc->mutex);
3697 kick_requests(mdsc, mds);
3698 }
3699 __wake_requests(mdsc, &mdsc->waiting_for_map);
3700 mutex_unlock(&mdsc->mutex);
3701 }
3702
3703 static void ceph_mdsc_stop(struct ceph_mds_client *mdsc)
3704 {
3705 dout("stop\n");
3706 cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */
3707 if (mdsc->mdsmap)
3708 ceph_mdsmap_destroy(mdsc->mdsmap);
3709 kfree(mdsc->sessions);
3710 ceph_caps_finalize(mdsc);
3711 ceph_pool_perm_destroy(mdsc);
3712 }
3713
3714 void ceph_mdsc_destroy(struct ceph_fs_client *fsc)
3715 {
3716 struct ceph_mds_client *mdsc = fsc->mdsc;
3717
3718 dout("mdsc_destroy %p\n", mdsc);
3719 ceph_mdsc_stop(mdsc);
3720
3721 /* flush out any connection work with references to us */
3722 ceph_msgr_flush();
3723
3724 fsc->mdsc = NULL;
3725 kfree(mdsc);
3726 dout("mdsc_destroy %p done\n", mdsc);
3727 }
3728
3729
3730 /*
3731 * handle mds map update.
3732 */
3733 void ceph_mdsc_handle_map(struct ceph_mds_client *mdsc, struct ceph_msg *msg)
3734 {
3735 u32 epoch;
3736 u32 maplen;
3737 void *p = msg->front.iov_base;
3738 void *end = p + msg->front.iov_len;
3739 struct ceph_mdsmap *newmap, *oldmap;
3740 struct ceph_fsid fsid;
3741 int err = -EINVAL;
3742
3743 ceph_decode_need(&p, end, sizeof(fsid)+2*sizeof(u32), bad);
3744 ceph_decode_copy(&p, &fsid, sizeof(fsid));
3745 if (ceph_check_fsid(mdsc->fsc->client, &fsid) < 0)
3746 return;
3747 epoch = ceph_decode_32(&p);
3748 maplen = ceph_decode_32(&p);
3749 dout("handle_map epoch %u len %d\n", epoch, (int)maplen);
3750
3751 /* do we need it? */
3752 mutex_lock(&mdsc->mutex);
3753 if (mdsc->mdsmap && epoch <= mdsc->mdsmap->m_epoch) {
3754 dout("handle_map epoch %u <= our %u\n",
3755 epoch, mdsc->mdsmap->m_epoch);
3756 mutex_unlock(&mdsc->mutex);
3757 return;
3758 }
3759
3760 newmap = ceph_mdsmap_decode(&p, end);
3761 if (IS_ERR(newmap)) {
3762 err = PTR_ERR(newmap);
3763 goto bad_unlock;
3764 }
3765
3766 /* swap into place */
3767 if (mdsc->mdsmap) {
3768 oldmap = mdsc->mdsmap;
3769 mdsc->mdsmap = newmap;
3770 check_new_map(mdsc, newmap, oldmap);
3771 ceph_mdsmap_destroy(oldmap);
3772 } else {
3773 mdsc->mdsmap = newmap; /* first mds map */
3774 }
3775 mdsc->fsc->sb->s_maxbytes = mdsc->mdsmap->m_max_file_size;
3776
3777 __wake_requests(mdsc, &mdsc->waiting_for_map);
3778 ceph_monc_got_map(&mdsc->fsc->client->monc, CEPH_SUB_MDSMAP,
3779 mdsc->mdsmap->m_epoch);
3780
3781 mutex_unlock(&mdsc->mutex);
3782 schedule_delayed(mdsc);
3783 return;
3784
3785 bad_unlock:
3786 mutex_unlock(&mdsc->mutex);
3787 bad:
3788 pr_err("error decoding mdsmap %d\n", err);
3789 return;
3790 }
3791
3792 static struct ceph_connection *con_get(struct ceph_connection *con)
3793 {
3794 struct ceph_mds_session *s = con->private;
3795
3796 if (get_session(s)) {
3797 dout("mdsc con_get %p ok (%d)\n", s, atomic_read(&s->s_ref));
3798 return con;
3799 }
3800 dout("mdsc con_get %p FAIL\n", s);
3801 return NULL;
3802 }
3803
3804 static void con_put(struct ceph_connection *con)
3805 {
3806 struct ceph_mds_session *s = con->private;
3807
3808 dout("mdsc con_put %p (%d)\n", s, atomic_read(&s->s_ref) - 1);
3809 ceph_put_mds_session(s);
3810 }
3811
3812 /*
3813 * if the client is unresponsive for long enough, the mds will kill
3814 * the session entirely.
3815 */
3816 static void peer_reset(struct ceph_connection *con)
3817 {
3818 struct ceph_mds_session *s = con->private;
3819 struct ceph_mds_client *mdsc = s->s_mdsc;
3820
3821 pr_warn("mds%d closed our session\n", s->s_mds);
3822 send_mds_reconnect(mdsc, s);
3823 }
3824
3825 static void dispatch(struct ceph_connection *con, struct ceph_msg *msg)
3826 {
3827 struct ceph_mds_session *s = con->private;
3828 struct ceph_mds_client *mdsc = s->s_mdsc;
3829 int type = le16_to_cpu(msg->hdr.type);
3830
3831 mutex_lock(&mdsc->mutex);
3832 if (__verify_registered_session(mdsc, s) < 0) {
3833 mutex_unlock(&mdsc->mutex);
3834 goto out;
3835 }
3836 mutex_unlock(&mdsc->mutex);
3837
3838 switch (type) {
3839 case CEPH_MSG_MDS_MAP:
3840 ceph_mdsc_handle_map(mdsc, msg);
3841 break;
3842 case CEPH_MSG_CLIENT_SESSION:
3843 handle_session(s, msg);
3844 break;
3845 case CEPH_MSG_CLIENT_REPLY:
3846 handle_reply(s, msg);
3847 break;
3848 case CEPH_MSG_CLIENT_REQUEST_FORWARD:
3849 handle_forward(mdsc, s, msg);
3850 break;
3851 case CEPH_MSG_CLIENT_CAPS:
3852 ceph_handle_caps(s, msg);
3853 break;
3854 case CEPH_MSG_CLIENT_SNAP:
3855 ceph_handle_snap(mdsc, s, msg);
3856 break;
3857 case CEPH_MSG_CLIENT_LEASE:
3858 handle_lease(mdsc, s, msg);
3859 break;
3860
3861 default:
3862 pr_err("received unknown message type %d %s\n", type,
3863 ceph_msg_type_name(type));
3864 }
3865 out:
3866 ceph_msg_put(msg);
3867 }
3868
3869 /*
3870 * authentication
3871 */
3872
3873 /*
3874 * Note: returned pointer is the address of a structure that's
3875 * managed separately. Caller must *not* attempt to free it.
3876 */
3877 static struct ceph_auth_handshake *get_authorizer(struct ceph_connection *con,
3878 int *proto, int force_new)
3879 {
3880 struct ceph_mds_session *s = con->private;
3881 struct ceph_mds_client *mdsc = s->s_mdsc;
3882 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
3883 struct ceph_auth_handshake *auth = &s->s_auth;
3884
3885 if (force_new && auth->authorizer) {
3886 ceph_auth_destroy_authorizer(auth->authorizer);
3887 auth->authorizer = NULL;
3888 }
3889 if (!auth->authorizer) {
3890 int ret = ceph_auth_create_authorizer(ac, CEPH_ENTITY_TYPE_MDS,
3891 auth);
3892 if (ret)
3893 return ERR_PTR(ret);
3894 } else {
3895 int ret = ceph_auth_update_authorizer(ac, CEPH_ENTITY_TYPE_MDS,
3896 auth);
3897 if (ret)
3898 return ERR_PTR(ret);
3899 }
3900 *proto = ac->protocol;
3901
3902 return auth;
3903 }
3904
3905
3906 static int verify_authorizer_reply(struct ceph_connection *con, int len)
3907 {
3908 struct ceph_mds_session *s = con->private;
3909 struct ceph_mds_client *mdsc = s->s_mdsc;
3910 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
3911
3912 return ceph_auth_verify_authorizer_reply(ac, s->s_auth.authorizer, len);
3913 }
3914
3915 static int invalidate_authorizer(struct ceph_connection *con)
3916 {
3917 struct ceph_mds_session *s = con->private;
3918 struct ceph_mds_client *mdsc = s->s_mdsc;
3919 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
3920
3921 ceph_auth_invalidate_authorizer(ac, CEPH_ENTITY_TYPE_MDS);
3922
3923 return ceph_monc_validate_auth(&mdsc->fsc->client->monc);
3924 }
3925
3926 static struct ceph_msg *mds_alloc_msg(struct ceph_connection *con,
3927 struct ceph_msg_header *hdr, int *skip)
3928 {
3929 struct ceph_msg *msg;
3930 int type = (int) le16_to_cpu(hdr->type);
3931 int front_len = (int) le32_to_cpu(hdr->front_len);
3932
3933 if (con->in_msg)
3934 return con->in_msg;
3935
3936 *skip = 0;
3937 msg = ceph_msg_new(type, front_len, GFP_NOFS, false);
3938 if (!msg) {
3939 pr_err("unable to allocate msg type %d len %d\n",
3940 type, front_len);
3941 return NULL;
3942 }
3943
3944 return msg;
3945 }
3946
3947 static int mds_sign_message(struct ceph_msg *msg)
3948 {
3949 struct ceph_mds_session *s = msg->con->private;
3950 struct ceph_auth_handshake *auth = &s->s_auth;
3951
3952 return ceph_auth_sign_message(auth, msg);
3953 }
3954
3955 static int mds_check_message_signature(struct ceph_msg *msg)
3956 {
3957 struct ceph_mds_session *s = msg->con->private;
3958 struct ceph_auth_handshake *auth = &s->s_auth;
3959
3960 return ceph_auth_check_message_signature(auth, msg);
3961 }
3962
3963 static const struct ceph_connection_operations mds_con_ops = {
3964 .get = con_get,
3965 .put = con_put,
3966 .dispatch = dispatch,
3967 .get_authorizer = get_authorizer,
3968 .verify_authorizer_reply = verify_authorizer_reply,
3969 .invalidate_authorizer = invalidate_authorizer,
3970 .peer_reset = peer_reset,
3971 .alloc_msg = mds_alloc_msg,
3972 .sign_message = mds_sign_message,
3973 .check_message_signature = mds_check_message_signature,
3974 };
3975
3976 /* eof */