]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/cifs/file.c
Merge tag 'actions-drivers-for-4.13' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-artful-kernel.git] / fs / cifs / file.c
1 /*
2 * fs/cifs/file.c
3 *
4 * vfs operations that deal with files
5 *
6 * Copyright (C) International Business Machines Corp., 2002,2010
7 * Author(s): Steve French (sfrench@us.ibm.com)
8 * Jeremy Allison (jra@samba.org)
9 *
10 * This library is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU Lesser General Public License as published
12 * by the Free Software Foundation; either version 2.1 of the License, or
13 * (at your option) any later version.
14 *
15 * This library is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
18 * the GNU Lesser General Public License for more details.
19 *
20 * You should have received a copy of the GNU Lesser General Public License
21 * along with this library; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 */
24 #include <linux/fs.h>
25 #include <linux/backing-dev.h>
26 #include <linux/stat.h>
27 #include <linux/fcntl.h>
28 #include <linux/pagemap.h>
29 #include <linux/pagevec.h>
30 #include <linux/writeback.h>
31 #include <linux/task_io_accounting_ops.h>
32 #include <linux/delay.h>
33 #include <linux/mount.h>
34 #include <linux/slab.h>
35 #include <linux/swap.h>
36 #include <asm/div64.h>
37 #include "cifsfs.h"
38 #include "cifspdu.h"
39 #include "cifsglob.h"
40 #include "cifsproto.h"
41 #include "cifs_unicode.h"
42 #include "cifs_debug.h"
43 #include "cifs_fs_sb.h"
44 #include "fscache.h"
45
46
47 static inline int cifs_convert_flags(unsigned int flags)
48 {
49 if ((flags & O_ACCMODE) == O_RDONLY)
50 return GENERIC_READ;
51 else if ((flags & O_ACCMODE) == O_WRONLY)
52 return GENERIC_WRITE;
53 else if ((flags & O_ACCMODE) == O_RDWR) {
54 /* GENERIC_ALL is too much permission to request
55 can cause unnecessary access denied on create */
56 /* return GENERIC_ALL; */
57 return (GENERIC_READ | GENERIC_WRITE);
58 }
59
60 return (READ_CONTROL | FILE_WRITE_ATTRIBUTES | FILE_READ_ATTRIBUTES |
61 FILE_WRITE_EA | FILE_APPEND_DATA | FILE_WRITE_DATA |
62 FILE_READ_DATA);
63 }
64
65 static u32 cifs_posix_convert_flags(unsigned int flags)
66 {
67 u32 posix_flags = 0;
68
69 if ((flags & O_ACCMODE) == O_RDONLY)
70 posix_flags = SMB_O_RDONLY;
71 else if ((flags & O_ACCMODE) == O_WRONLY)
72 posix_flags = SMB_O_WRONLY;
73 else if ((flags & O_ACCMODE) == O_RDWR)
74 posix_flags = SMB_O_RDWR;
75
76 if (flags & O_CREAT) {
77 posix_flags |= SMB_O_CREAT;
78 if (flags & O_EXCL)
79 posix_flags |= SMB_O_EXCL;
80 } else if (flags & O_EXCL)
81 cifs_dbg(FYI, "Application %s pid %d has incorrectly set O_EXCL flag but not O_CREAT on file open. Ignoring O_EXCL\n",
82 current->comm, current->tgid);
83
84 if (flags & O_TRUNC)
85 posix_flags |= SMB_O_TRUNC;
86 /* be safe and imply O_SYNC for O_DSYNC */
87 if (flags & O_DSYNC)
88 posix_flags |= SMB_O_SYNC;
89 if (flags & O_DIRECTORY)
90 posix_flags |= SMB_O_DIRECTORY;
91 if (flags & O_NOFOLLOW)
92 posix_flags |= SMB_O_NOFOLLOW;
93 if (flags & O_DIRECT)
94 posix_flags |= SMB_O_DIRECT;
95
96 return posix_flags;
97 }
98
99 static inline int cifs_get_disposition(unsigned int flags)
100 {
101 if ((flags & (O_CREAT | O_EXCL)) == (O_CREAT | O_EXCL))
102 return FILE_CREATE;
103 else if ((flags & (O_CREAT | O_TRUNC)) == (O_CREAT | O_TRUNC))
104 return FILE_OVERWRITE_IF;
105 else if ((flags & O_CREAT) == O_CREAT)
106 return FILE_OPEN_IF;
107 else if ((flags & O_TRUNC) == O_TRUNC)
108 return FILE_OVERWRITE;
109 else
110 return FILE_OPEN;
111 }
112
113 int cifs_posix_open(char *full_path, struct inode **pinode,
114 struct super_block *sb, int mode, unsigned int f_flags,
115 __u32 *poplock, __u16 *pnetfid, unsigned int xid)
116 {
117 int rc;
118 FILE_UNIX_BASIC_INFO *presp_data;
119 __u32 posix_flags = 0;
120 struct cifs_sb_info *cifs_sb = CIFS_SB(sb);
121 struct cifs_fattr fattr;
122 struct tcon_link *tlink;
123 struct cifs_tcon *tcon;
124
125 cifs_dbg(FYI, "posix open %s\n", full_path);
126
127 presp_data = kzalloc(sizeof(FILE_UNIX_BASIC_INFO), GFP_KERNEL);
128 if (presp_data == NULL)
129 return -ENOMEM;
130
131 tlink = cifs_sb_tlink(cifs_sb);
132 if (IS_ERR(tlink)) {
133 rc = PTR_ERR(tlink);
134 goto posix_open_ret;
135 }
136
137 tcon = tlink_tcon(tlink);
138 mode &= ~current_umask();
139
140 posix_flags = cifs_posix_convert_flags(f_flags);
141 rc = CIFSPOSIXCreate(xid, tcon, posix_flags, mode, pnetfid, presp_data,
142 poplock, full_path, cifs_sb->local_nls,
143 cifs_remap(cifs_sb));
144 cifs_put_tlink(tlink);
145
146 if (rc)
147 goto posix_open_ret;
148
149 if (presp_data->Type == cpu_to_le32(-1))
150 goto posix_open_ret; /* open ok, caller does qpathinfo */
151
152 if (!pinode)
153 goto posix_open_ret; /* caller does not need info */
154
155 cifs_unix_basic_to_fattr(&fattr, presp_data, cifs_sb);
156
157 /* get new inode and set it up */
158 if (*pinode == NULL) {
159 cifs_fill_uniqueid(sb, &fattr);
160 *pinode = cifs_iget(sb, &fattr);
161 if (!*pinode) {
162 rc = -ENOMEM;
163 goto posix_open_ret;
164 }
165 } else {
166 cifs_fattr_to_inode(*pinode, &fattr);
167 }
168
169 posix_open_ret:
170 kfree(presp_data);
171 return rc;
172 }
173
174 static int
175 cifs_nt_open(char *full_path, struct inode *inode, struct cifs_sb_info *cifs_sb,
176 struct cifs_tcon *tcon, unsigned int f_flags, __u32 *oplock,
177 struct cifs_fid *fid, unsigned int xid)
178 {
179 int rc;
180 int desired_access;
181 int disposition;
182 int create_options = CREATE_NOT_DIR;
183 FILE_ALL_INFO *buf;
184 struct TCP_Server_Info *server = tcon->ses->server;
185 struct cifs_open_parms oparms;
186
187 if (!server->ops->open)
188 return -ENOSYS;
189
190 desired_access = cifs_convert_flags(f_flags);
191
192 /*********************************************************************
193 * open flag mapping table:
194 *
195 * POSIX Flag CIFS Disposition
196 * ---------- ----------------
197 * O_CREAT FILE_OPEN_IF
198 * O_CREAT | O_EXCL FILE_CREATE
199 * O_CREAT | O_TRUNC FILE_OVERWRITE_IF
200 * O_TRUNC FILE_OVERWRITE
201 * none of the above FILE_OPEN
202 *
203 * Note that there is not a direct match between disposition
204 * FILE_SUPERSEDE (ie create whether or not file exists although
205 * O_CREAT | O_TRUNC is similar but truncates the existing
206 * file rather than creating a new file as FILE_SUPERSEDE does
207 * (which uses the attributes / metadata passed in on open call)
208 *?
209 *? O_SYNC is a reasonable match to CIFS writethrough flag
210 *? and the read write flags match reasonably. O_LARGEFILE
211 *? is irrelevant because largefile support is always used
212 *? by this client. Flags O_APPEND, O_DIRECT, O_DIRECTORY,
213 * O_FASYNC, O_NOFOLLOW, O_NONBLOCK need further investigation
214 *********************************************************************/
215
216 disposition = cifs_get_disposition(f_flags);
217
218 /* BB pass O_SYNC flag through on file attributes .. BB */
219
220 buf = kmalloc(sizeof(FILE_ALL_INFO), GFP_KERNEL);
221 if (!buf)
222 return -ENOMEM;
223
224 if (backup_cred(cifs_sb))
225 create_options |= CREATE_OPEN_BACKUP_INTENT;
226
227 oparms.tcon = tcon;
228 oparms.cifs_sb = cifs_sb;
229 oparms.desired_access = desired_access;
230 oparms.create_options = create_options;
231 oparms.disposition = disposition;
232 oparms.path = full_path;
233 oparms.fid = fid;
234 oparms.reconnect = false;
235
236 rc = server->ops->open(xid, &oparms, oplock, buf);
237
238 if (rc)
239 goto out;
240
241 if (tcon->unix_ext)
242 rc = cifs_get_inode_info_unix(&inode, full_path, inode->i_sb,
243 xid);
244 else
245 rc = cifs_get_inode_info(&inode, full_path, buf, inode->i_sb,
246 xid, fid);
247
248 out:
249 kfree(buf);
250 return rc;
251 }
252
253 static bool
254 cifs_has_mand_locks(struct cifsInodeInfo *cinode)
255 {
256 struct cifs_fid_locks *cur;
257 bool has_locks = false;
258
259 down_read(&cinode->lock_sem);
260 list_for_each_entry(cur, &cinode->llist, llist) {
261 if (!list_empty(&cur->locks)) {
262 has_locks = true;
263 break;
264 }
265 }
266 up_read(&cinode->lock_sem);
267 return has_locks;
268 }
269
270 struct cifsFileInfo *
271 cifs_new_fileinfo(struct cifs_fid *fid, struct file *file,
272 struct tcon_link *tlink, __u32 oplock)
273 {
274 struct dentry *dentry = file_dentry(file);
275 struct inode *inode = d_inode(dentry);
276 struct cifsInodeInfo *cinode = CIFS_I(inode);
277 struct cifsFileInfo *cfile;
278 struct cifs_fid_locks *fdlocks;
279 struct cifs_tcon *tcon = tlink_tcon(tlink);
280 struct TCP_Server_Info *server = tcon->ses->server;
281
282 cfile = kzalloc(sizeof(struct cifsFileInfo), GFP_KERNEL);
283 if (cfile == NULL)
284 return cfile;
285
286 fdlocks = kzalloc(sizeof(struct cifs_fid_locks), GFP_KERNEL);
287 if (!fdlocks) {
288 kfree(cfile);
289 return NULL;
290 }
291
292 INIT_LIST_HEAD(&fdlocks->locks);
293 fdlocks->cfile = cfile;
294 cfile->llist = fdlocks;
295 down_write(&cinode->lock_sem);
296 list_add(&fdlocks->llist, &cinode->llist);
297 up_write(&cinode->lock_sem);
298
299 cfile->count = 1;
300 cfile->pid = current->tgid;
301 cfile->uid = current_fsuid();
302 cfile->dentry = dget(dentry);
303 cfile->f_flags = file->f_flags;
304 cfile->invalidHandle = false;
305 cfile->tlink = cifs_get_tlink(tlink);
306 INIT_WORK(&cfile->oplock_break, cifs_oplock_break);
307 mutex_init(&cfile->fh_mutex);
308 spin_lock_init(&cfile->file_info_lock);
309
310 cifs_sb_active(inode->i_sb);
311
312 /*
313 * If the server returned a read oplock and we have mandatory brlocks,
314 * set oplock level to None.
315 */
316 if (server->ops->is_read_op(oplock) && cifs_has_mand_locks(cinode)) {
317 cifs_dbg(FYI, "Reset oplock val from read to None due to mand locks\n");
318 oplock = 0;
319 }
320
321 spin_lock(&tcon->open_file_lock);
322 if (fid->pending_open->oplock != CIFS_OPLOCK_NO_CHANGE && oplock)
323 oplock = fid->pending_open->oplock;
324 list_del(&fid->pending_open->olist);
325
326 fid->purge_cache = false;
327 server->ops->set_fid(cfile, fid, oplock);
328
329 list_add(&cfile->tlist, &tcon->openFileList);
330
331 /* if readable file instance put first in list*/
332 if (file->f_mode & FMODE_READ)
333 list_add(&cfile->flist, &cinode->openFileList);
334 else
335 list_add_tail(&cfile->flist, &cinode->openFileList);
336 spin_unlock(&tcon->open_file_lock);
337
338 if (fid->purge_cache)
339 cifs_zap_mapping(inode);
340
341 file->private_data = cfile;
342 return cfile;
343 }
344
345 struct cifsFileInfo *
346 cifsFileInfo_get(struct cifsFileInfo *cifs_file)
347 {
348 spin_lock(&cifs_file->file_info_lock);
349 cifsFileInfo_get_locked(cifs_file);
350 spin_unlock(&cifs_file->file_info_lock);
351 return cifs_file;
352 }
353
354 /*
355 * Release a reference on the file private data. This may involve closing
356 * the filehandle out on the server. Must be called without holding
357 * tcon->open_file_lock and cifs_file->file_info_lock.
358 */
359 void cifsFileInfo_put(struct cifsFileInfo *cifs_file)
360 {
361 struct inode *inode = d_inode(cifs_file->dentry);
362 struct cifs_tcon *tcon = tlink_tcon(cifs_file->tlink);
363 struct TCP_Server_Info *server = tcon->ses->server;
364 struct cifsInodeInfo *cifsi = CIFS_I(inode);
365 struct super_block *sb = inode->i_sb;
366 struct cifs_sb_info *cifs_sb = CIFS_SB(sb);
367 struct cifsLockInfo *li, *tmp;
368 struct cifs_fid fid;
369 struct cifs_pending_open open;
370 bool oplock_break_cancelled;
371
372 spin_lock(&tcon->open_file_lock);
373
374 spin_lock(&cifs_file->file_info_lock);
375 if (--cifs_file->count > 0) {
376 spin_unlock(&cifs_file->file_info_lock);
377 spin_unlock(&tcon->open_file_lock);
378 return;
379 }
380 spin_unlock(&cifs_file->file_info_lock);
381
382 if (server->ops->get_lease_key)
383 server->ops->get_lease_key(inode, &fid);
384
385 /* store open in pending opens to make sure we don't miss lease break */
386 cifs_add_pending_open_locked(&fid, cifs_file->tlink, &open);
387
388 /* remove it from the lists */
389 list_del(&cifs_file->flist);
390 list_del(&cifs_file->tlist);
391
392 if (list_empty(&cifsi->openFileList)) {
393 cifs_dbg(FYI, "closing last open instance for inode %p\n",
394 d_inode(cifs_file->dentry));
395 /*
396 * In strict cache mode we need invalidate mapping on the last
397 * close because it may cause a error when we open this file
398 * again and get at least level II oplock.
399 */
400 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_STRICT_IO)
401 set_bit(CIFS_INO_INVALID_MAPPING, &cifsi->flags);
402 cifs_set_oplock_level(cifsi, 0);
403 }
404
405 spin_unlock(&tcon->open_file_lock);
406
407 oplock_break_cancelled = cancel_work_sync(&cifs_file->oplock_break);
408
409 if (!tcon->need_reconnect && !cifs_file->invalidHandle) {
410 struct TCP_Server_Info *server = tcon->ses->server;
411 unsigned int xid;
412
413 xid = get_xid();
414 if (server->ops->close)
415 server->ops->close(xid, tcon, &cifs_file->fid);
416 _free_xid(xid);
417 }
418
419 if (oplock_break_cancelled)
420 cifs_done_oplock_break(cifsi);
421
422 cifs_del_pending_open(&open);
423
424 /*
425 * Delete any outstanding lock records. We'll lose them when the file
426 * is closed anyway.
427 */
428 down_write(&cifsi->lock_sem);
429 list_for_each_entry_safe(li, tmp, &cifs_file->llist->locks, llist) {
430 list_del(&li->llist);
431 cifs_del_lock_waiters(li);
432 kfree(li);
433 }
434 list_del(&cifs_file->llist->llist);
435 kfree(cifs_file->llist);
436 up_write(&cifsi->lock_sem);
437
438 cifs_put_tlink(cifs_file->tlink);
439 dput(cifs_file->dentry);
440 cifs_sb_deactive(sb);
441 kfree(cifs_file);
442 }
443
444 int cifs_open(struct inode *inode, struct file *file)
445
446 {
447 int rc = -EACCES;
448 unsigned int xid;
449 __u32 oplock;
450 struct cifs_sb_info *cifs_sb;
451 struct TCP_Server_Info *server;
452 struct cifs_tcon *tcon;
453 struct tcon_link *tlink;
454 struct cifsFileInfo *cfile = NULL;
455 char *full_path = NULL;
456 bool posix_open_ok = false;
457 struct cifs_fid fid;
458 struct cifs_pending_open open;
459
460 xid = get_xid();
461
462 cifs_sb = CIFS_SB(inode->i_sb);
463 tlink = cifs_sb_tlink(cifs_sb);
464 if (IS_ERR(tlink)) {
465 free_xid(xid);
466 return PTR_ERR(tlink);
467 }
468 tcon = tlink_tcon(tlink);
469 server = tcon->ses->server;
470
471 full_path = build_path_from_dentry(file_dentry(file));
472 if (full_path == NULL) {
473 rc = -ENOMEM;
474 goto out;
475 }
476
477 cifs_dbg(FYI, "inode = 0x%p file flags are 0x%x for %s\n",
478 inode, file->f_flags, full_path);
479
480 if (file->f_flags & O_DIRECT &&
481 cifs_sb->mnt_cifs_flags & CIFS_MOUNT_STRICT_IO) {
482 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_NO_BRL)
483 file->f_op = &cifs_file_direct_nobrl_ops;
484 else
485 file->f_op = &cifs_file_direct_ops;
486 }
487
488 if (server->oplocks)
489 oplock = REQ_OPLOCK;
490 else
491 oplock = 0;
492
493 if (!tcon->broken_posix_open && tcon->unix_ext &&
494 cap_unix(tcon->ses) && (CIFS_UNIX_POSIX_PATH_OPS_CAP &
495 le64_to_cpu(tcon->fsUnixInfo.Capability))) {
496 /* can not refresh inode info since size could be stale */
497 rc = cifs_posix_open(full_path, &inode, inode->i_sb,
498 cifs_sb->mnt_file_mode /* ignored */,
499 file->f_flags, &oplock, &fid.netfid, xid);
500 if (rc == 0) {
501 cifs_dbg(FYI, "posix open succeeded\n");
502 posix_open_ok = true;
503 } else if ((rc == -EINVAL) || (rc == -EOPNOTSUPP)) {
504 if (tcon->ses->serverNOS)
505 cifs_dbg(VFS, "server %s of type %s returned unexpected error on SMB posix open, disabling posix open support. Check if server update available.\n",
506 tcon->ses->serverName,
507 tcon->ses->serverNOS);
508 tcon->broken_posix_open = true;
509 } else if ((rc != -EIO) && (rc != -EREMOTE) &&
510 (rc != -EOPNOTSUPP)) /* path not found or net err */
511 goto out;
512 /*
513 * Else fallthrough to retry open the old way on network i/o
514 * or DFS errors.
515 */
516 }
517
518 if (server->ops->get_lease_key)
519 server->ops->get_lease_key(inode, &fid);
520
521 cifs_add_pending_open(&fid, tlink, &open);
522
523 if (!posix_open_ok) {
524 if (server->ops->get_lease_key)
525 server->ops->get_lease_key(inode, &fid);
526
527 rc = cifs_nt_open(full_path, inode, cifs_sb, tcon,
528 file->f_flags, &oplock, &fid, xid);
529 if (rc) {
530 cifs_del_pending_open(&open);
531 goto out;
532 }
533 }
534
535 cfile = cifs_new_fileinfo(&fid, file, tlink, oplock);
536 if (cfile == NULL) {
537 if (server->ops->close)
538 server->ops->close(xid, tcon, &fid);
539 cifs_del_pending_open(&open);
540 rc = -ENOMEM;
541 goto out;
542 }
543
544 cifs_fscache_set_inode_cookie(inode, file);
545
546 if ((oplock & CIFS_CREATE_ACTION) && !posix_open_ok && tcon->unix_ext) {
547 /*
548 * Time to set mode which we can not set earlier due to
549 * problems creating new read-only files.
550 */
551 struct cifs_unix_set_info_args args = {
552 .mode = inode->i_mode,
553 .uid = INVALID_UID, /* no change */
554 .gid = INVALID_GID, /* no change */
555 .ctime = NO_CHANGE_64,
556 .atime = NO_CHANGE_64,
557 .mtime = NO_CHANGE_64,
558 .device = 0,
559 };
560 CIFSSMBUnixSetFileInfo(xid, tcon, &args, fid.netfid,
561 cfile->pid);
562 }
563
564 out:
565 kfree(full_path);
566 free_xid(xid);
567 cifs_put_tlink(tlink);
568 return rc;
569 }
570
571 static int cifs_push_posix_locks(struct cifsFileInfo *cfile);
572
573 /*
574 * Try to reacquire byte range locks that were released when session
575 * to server was lost.
576 */
577 static int
578 cifs_relock_file(struct cifsFileInfo *cfile)
579 {
580 struct cifs_sb_info *cifs_sb = CIFS_SB(cfile->dentry->d_sb);
581 struct cifsInodeInfo *cinode = CIFS_I(d_inode(cfile->dentry));
582 struct cifs_tcon *tcon = tlink_tcon(cfile->tlink);
583 int rc = 0;
584
585 down_read_nested(&cinode->lock_sem, SINGLE_DEPTH_NESTING);
586 if (cinode->can_cache_brlcks) {
587 /* can cache locks - no need to relock */
588 up_read(&cinode->lock_sem);
589 return rc;
590 }
591
592 if (cap_unix(tcon->ses) &&
593 (CIFS_UNIX_FCNTL_CAP & le64_to_cpu(tcon->fsUnixInfo.Capability)) &&
594 ((cifs_sb->mnt_cifs_flags & CIFS_MOUNT_NOPOSIXBRL) == 0))
595 rc = cifs_push_posix_locks(cfile);
596 else
597 rc = tcon->ses->server->ops->push_mand_locks(cfile);
598
599 up_read(&cinode->lock_sem);
600 return rc;
601 }
602
603 static int
604 cifs_reopen_file(struct cifsFileInfo *cfile, bool can_flush)
605 {
606 int rc = -EACCES;
607 unsigned int xid;
608 __u32 oplock;
609 struct cifs_sb_info *cifs_sb;
610 struct cifs_tcon *tcon;
611 struct TCP_Server_Info *server;
612 struct cifsInodeInfo *cinode;
613 struct inode *inode;
614 char *full_path = NULL;
615 int desired_access;
616 int disposition = FILE_OPEN;
617 int create_options = CREATE_NOT_DIR;
618 struct cifs_open_parms oparms;
619
620 xid = get_xid();
621 mutex_lock(&cfile->fh_mutex);
622 if (!cfile->invalidHandle) {
623 mutex_unlock(&cfile->fh_mutex);
624 rc = 0;
625 free_xid(xid);
626 return rc;
627 }
628
629 inode = d_inode(cfile->dentry);
630 cifs_sb = CIFS_SB(inode->i_sb);
631 tcon = tlink_tcon(cfile->tlink);
632 server = tcon->ses->server;
633
634 /*
635 * Can not grab rename sem here because various ops, including those
636 * that already have the rename sem can end up causing writepage to get
637 * called and if the server was down that means we end up here, and we
638 * can never tell if the caller already has the rename_sem.
639 */
640 full_path = build_path_from_dentry(cfile->dentry);
641 if (full_path == NULL) {
642 rc = -ENOMEM;
643 mutex_unlock(&cfile->fh_mutex);
644 free_xid(xid);
645 return rc;
646 }
647
648 cifs_dbg(FYI, "inode = 0x%p file flags 0x%x for %s\n",
649 inode, cfile->f_flags, full_path);
650
651 if (tcon->ses->server->oplocks)
652 oplock = REQ_OPLOCK;
653 else
654 oplock = 0;
655
656 if (tcon->unix_ext && cap_unix(tcon->ses) &&
657 (CIFS_UNIX_POSIX_PATH_OPS_CAP &
658 le64_to_cpu(tcon->fsUnixInfo.Capability))) {
659 /*
660 * O_CREAT, O_EXCL and O_TRUNC already had their effect on the
661 * original open. Must mask them off for a reopen.
662 */
663 unsigned int oflags = cfile->f_flags &
664 ~(O_CREAT | O_EXCL | O_TRUNC);
665
666 rc = cifs_posix_open(full_path, NULL, inode->i_sb,
667 cifs_sb->mnt_file_mode /* ignored */,
668 oflags, &oplock, &cfile->fid.netfid, xid);
669 if (rc == 0) {
670 cifs_dbg(FYI, "posix reopen succeeded\n");
671 oparms.reconnect = true;
672 goto reopen_success;
673 }
674 /*
675 * fallthrough to retry open the old way on errors, especially
676 * in the reconnect path it is important to retry hard
677 */
678 }
679
680 desired_access = cifs_convert_flags(cfile->f_flags);
681
682 if (backup_cred(cifs_sb))
683 create_options |= CREATE_OPEN_BACKUP_INTENT;
684
685 if (server->ops->get_lease_key)
686 server->ops->get_lease_key(inode, &cfile->fid);
687
688 oparms.tcon = tcon;
689 oparms.cifs_sb = cifs_sb;
690 oparms.desired_access = desired_access;
691 oparms.create_options = create_options;
692 oparms.disposition = disposition;
693 oparms.path = full_path;
694 oparms.fid = &cfile->fid;
695 oparms.reconnect = true;
696
697 /*
698 * Can not refresh inode by passing in file_info buf to be returned by
699 * ops->open and then calling get_inode_info with returned buf since
700 * file might have write behind data that needs to be flushed and server
701 * version of file size can be stale. If we knew for sure that inode was
702 * not dirty locally we could do this.
703 */
704 rc = server->ops->open(xid, &oparms, &oplock, NULL);
705 if (rc == -ENOENT && oparms.reconnect == false) {
706 /* durable handle timeout is expired - open the file again */
707 rc = server->ops->open(xid, &oparms, &oplock, NULL);
708 /* indicate that we need to relock the file */
709 oparms.reconnect = true;
710 }
711
712 if (rc) {
713 mutex_unlock(&cfile->fh_mutex);
714 cifs_dbg(FYI, "cifs_reopen returned 0x%x\n", rc);
715 cifs_dbg(FYI, "oplock: %d\n", oplock);
716 goto reopen_error_exit;
717 }
718
719 reopen_success:
720 cfile->invalidHandle = false;
721 mutex_unlock(&cfile->fh_mutex);
722 cinode = CIFS_I(inode);
723
724 if (can_flush) {
725 rc = filemap_write_and_wait(inode->i_mapping);
726 mapping_set_error(inode->i_mapping, rc);
727
728 if (tcon->unix_ext)
729 rc = cifs_get_inode_info_unix(&inode, full_path,
730 inode->i_sb, xid);
731 else
732 rc = cifs_get_inode_info(&inode, full_path, NULL,
733 inode->i_sb, xid, NULL);
734 }
735 /*
736 * Else we are writing out data to server already and could deadlock if
737 * we tried to flush data, and since we do not know if we have data that
738 * would invalidate the current end of file on the server we can not go
739 * to the server to get the new inode info.
740 */
741
742 /*
743 * If the server returned a read oplock and we have mandatory brlocks,
744 * set oplock level to None.
745 */
746 if (server->ops->is_read_op(oplock) && cifs_has_mand_locks(cinode)) {
747 cifs_dbg(FYI, "Reset oplock val from read to None due to mand locks\n");
748 oplock = 0;
749 }
750
751 server->ops->set_fid(cfile, &cfile->fid, oplock);
752 if (oparms.reconnect)
753 cifs_relock_file(cfile);
754
755 reopen_error_exit:
756 kfree(full_path);
757 free_xid(xid);
758 return rc;
759 }
760
761 int cifs_close(struct inode *inode, struct file *file)
762 {
763 if (file->private_data != NULL) {
764 cifsFileInfo_put(file->private_data);
765 file->private_data = NULL;
766 }
767
768 /* return code from the ->release op is always ignored */
769 return 0;
770 }
771
772 void
773 cifs_reopen_persistent_handles(struct cifs_tcon *tcon)
774 {
775 struct cifsFileInfo *open_file;
776 struct list_head *tmp;
777 struct list_head *tmp1;
778 struct list_head tmp_list;
779
780 if (!tcon->use_persistent || !tcon->need_reopen_files)
781 return;
782
783 tcon->need_reopen_files = false;
784
785 cifs_dbg(FYI, "Reopen persistent handles");
786 INIT_LIST_HEAD(&tmp_list);
787
788 /* list all files open on tree connection, reopen resilient handles */
789 spin_lock(&tcon->open_file_lock);
790 list_for_each(tmp, &tcon->openFileList) {
791 open_file = list_entry(tmp, struct cifsFileInfo, tlist);
792 if (!open_file->invalidHandle)
793 continue;
794 cifsFileInfo_get(open_file);
795 list_add_tail(&open_file->rlist, &tmp_list);
796 }
797 spin_unlock(&tcon->open_file_lock);
798
799 list_for_each_safe(tmp, tmp1, &tmp_list) {
800 open_file = list_entry(tmp, struct cifsFileInfo, rlist);
801 if (cifs_reopen_file(open_file, false /* do not flush */))
802 tcon->need_reopen_files = true;
803 list_del_init(&open_file->rlist);
804 cifsFileInfo_put(open_file);
805 }
806 }
807
808 int cifs_closedir(struct inode *inode, struct file *file)
809 {
810 int rc = 0;
811 unsigned int xid;
812 struct cifsFileInfo *cfile = file->private_data;
813 struct cifs_tcon *tcon;
814 struct TCP_Server_Info *server;
815 char *buf;
816
817 cifs_dbg(FYI, "Closedir inode = 0x%p\n", inode);
818
819 if (cfile == NULL)
820 return rc;
821
822 xid = get_xid();
823 tcon = tlink_tcon(cfile->tlink);
824 server = tcon->ses->server;
825
826 cifs_dbg(FYI, "Freeing private data in close dir\n");
827 spin_lock(&cfile->file_info_lock);
828 if (server->ops->dir_needs_close(cfile)) {
829 cfile->invalidHandle = true;
830 spin_unlock(&cfile->file_info_lock);
831 if (server->ops->close_dir)
832 rc = server->ops->close_dir(xid, tcon, &cfile->fid);
833 else
834 rc = -ENOSYS;
835 cifs_dbg(FYI, "Closing uncompleted readdir with rc %d\n", rc);
836 /* not much we can do if it fails anyway, ignore rc */
837 rc = 0;
838 } else
839 spin_unlock(&cfile->file_info_lock);
840
841 buf = cfile->srch_inf.ntwrk_buf_start;
842 if (buf) {
843 cifs_dbg(FYI, "closedir free smb buf in srch struct\n");
844 cfile->srch_inf.ntwrk_buf_start = NULL;
845 if (cfile->srch_inf.smallBuf)
846 cifs_small_buf_release(buf);
847 else
848 cifs_buf_release(buf);
849 }
850
851 cifs_put_tlink(cfile->tlink);
852 kfree(file->private_data);
853 file->private_data = NULL;
854 /* BB can we lock the filestruct while this is going on? */
855 free_xid(xid);
856 return rc;
857 }
858
859 static struct cifsLockInfo *
860 cifs_lock_init(__u64 offset, __u64 length, __u8 type)
861 {
862 struct cifsLockInfo *lock =
863 kmalloc(sizeof(struct cifsLockInfo), GFP_KERNEL);
864 if (!lock)
865 return lock;
866 lock->offset = offset;
867 lock->length = length;
868 lock->type = type;
869 lock->pid = current->tgid;
870 INIT_LIST_HEAD(&lock->blist);
871 init_waitqueue_head(&lock->block_q);
872 return lock;
873 }
874
875 void
876 cifs_del_lock_waiters(struct cifsLockInfo *lock)
877 {
878 struct cifsLockInfo *li, *tmp;
879 list_for_each_entry_safe(li, tmp, &lock->blist, blist) {
880 list_del_init(&li->blist);
881 wake_up(&li->block_q);
882 }
883 }
884
885 #define CIFS_LOCK_OP 0
886 #define CIFS_READ_OP 1
887 #define CIFS_WRITE_OP 2
888
889 /* @rw_check : 0 - no op, 1 - read, 2 - write */
890 static bool
891 cifs_find_fid_lock_conflict(struct cifs_fid_locks *fdlocks, __u64 offset,
892 __u64 length, __u8 type, struct cifsFileInfo *cfile,
893 struct cifsLockInfo **conf_lock, int rw_check)
894 {
895 struct cifsLockInfo *li;
896 struct cifsFileInfo *cur_cfile = fdlocks->cfile;
897 struct TCP_Server_Info *server = tlink_tcon(cfile->tlink)->ses->server;
898
899 list_for_each_entry(li, &fdlocks->locks, llist) {
900 if (offset + length <= li->offset ||
901 offset >= li->offset + li->length)
902 continue;
903 if (rw_check != CIFS_LOCK_OP && current->tgid == li->pid &&
904 server->ops->compare_fids(cfile, cur_cfile)) {
905 /* shared lock prevents write op through the same fid */
906 if (!(li->type & server->vals->shared_lock_type) ||
907 rw_check != CIFS_WRITE_OP)
908 continue;
909 }
910 if ((type & server->vals->shared_lock_type) &&
911 ((server->ops->compare_fids(cfile, cur_cfile) &&
912 current->tgid == li->pid) || type == li->type))
913 continue;
914 if (conf_lock)
915 *conf_lock = li;
916 return true;
917 }
918 return false;
919 }
920
921 bool
922 cifs_find_lock_conflict(struct cifsFileInfo *cfile, __u64 offset, __u64 length,
923 __u8 type, struct cifsLockInfo **conf_lock,
924 int rw_check)
925 {
926 bool rc = false;
927 struct cifs_fid_locks *cur;
928 struct cifsInodeInfo *cinode = CIFS_I(d_inode(cfile->dentry));
929
930 list_for_each_entry(cur, &cinode->llist, llist) {
931 rc = cifs_find_fid_lock_conflict(cur, offset, length, type,
932 cfile, conf_lock, rw_check);
933 if (rc)
934 break;
935 }
936
937 return rc;
938 }
939
940 /*
941 * Check if there is another lock that prevents us to set the lock (mandatory
942 * style). If such a lock exists, update the flock structure with its
943 * properties. Otherwise, set the flock type to F_UNLCK if we can cache brlocks
944 * or leave it the same if we can't. Returns 0 if we don't need to request to
945 * the server or 1 otherwise.
946 */
947 static int
948 cifs_lock_test(struct cifsFileInfo *cfile, __u64 offset, __u64 length,
949 __u8 type, struct file_lock *flock)
950 {
951 int rc = 0;
952 struct cifsLockInfo *conf_lock;
953 struct cifsInodeInfo *cinode = CIFS_I(d_inode(cfile->dentry));
954 struct TCP_Server_Info *server = tlink_tcon(cfile->tlink)->ses->server;
955 bool exist;
956
957 down_read(&cinode->lock_sem);
958
959 exist = cifs_find_lock_conflict(cfile, offset, length, type,
960 &conf_lock, CIFS_LOCK_OP);
961 if (exist) {
962 flock->fl_start = conf_lock->offset;
963 flock->fl_end = conf_lock->offset + conf_lock->length - 1;
964 flock->fl_pid = conf_lock->pid;
965 if (conf_lock->type & server->vals->shared_lock_type)
966 flock->fl_type = F_RDLCK;
967 else
968 flock->fl_type = F_WRLCK;
969 } else if (!cinode->can_cache_brlcks)
970 rc = 1;
971 else
972 flock->fl_type = F_UNLCK;
973
974 up_read(&cinode->lock_sem);
975 return rc;
976 }
977
978 static void
979 cifs_lock_add(struct cifsFileInfo *cfile, struct cifsLockInfo *lock)
980 {
981 struct cifsInodeInfo *cinode = CIFS_I(d_inode(cfile->dentry));
982 down_write(&cinode->lock_sem);
983 list_add_tail(&lock->llist, &cfile->llist->locks);
984 up_write(&cinode->lock_sem);
985 }
986
987 /*
988 * Set the byte-range lock (mandatory style). Returns:
989 * 1) 0, if we set the lock and don't need to request to the server;
990 * 2) 1, if no locks prevent us but we need to request to the server;
991 * 3) -EACCESS, if there is a lock that prevents us and wait is false.
992 */
993 static int
994 cifs_lock_add_if(struct cifsFileInfo *cfile, struct cifsLockInfo *lock,
995 bool wait)
996 {
997 struct cifsLockInfo *conf_lock;
998 struct cifsInodeInfo *cinode = CIFS_I(d_inode(cfile->dentry));
999 bool exist;
1000 int rc = 0;
1001
1002 try_again:
1003 exist = false;
1004 down_write(&cinode->lock_sem);
1005
1006 exist = cifs_find_lock_conflict(cfile, lock->offset, lock->length,
1007 lock->type, &conf_lock, CIFS_LOCK_OP);
1008 if (!exist && cinode->can_cache_brlcks) {
1009 list_add_tail(&lock->llist, &cfile->llist->locks);
1010 up_write(&cinode->lock_sem);
1011 return rc;
1012 }
1013
1014 if (!exist)
1015 rc = 1;
1016 else if (!wait)
1017 rc = -EACCES;
1018 else {
1019 list_add_tail(&lock->blist, &conf_lock->blist);
1020 up_write(&cinode->lock_sem);
1021 rc = wait_event_interruptible(lock->block_q,
1022 (lock->blist.prev == &lock->blist) &&
1023 (lock->blist.next == &lock->blist));
1024 if (!rc)
1025 goto try_again;
1026 down_write(&cinode->lock_sem);
1027 list_del_init(&lock->blist);
1028 }
1029
1030 up_write(&cinode->lock_sem);
1031 return rc;
1032 }
1033
1034 /*
1035 * Check if there is another lock that prevents us to set the lock (posix
1036 * style). If such a lock exists, update the flock structure with its
1037 * properties. Otherwise, set the flock type to F_UNLCK if we can cache brlocks
1038 * or leave it the same if we can't. Returns 0 if we don't need to request to
1039 * the server or 1 otherwise.
1040 */
1041 static int
1042 cifs_posix_lock_test(struct file *file, struct file_lock *flock)
1043 {
1044 int rc = 0;
1045 struct cifsInodeInfo *cinode = CIFS_I(file_inode(file));
1046 unsigned char saved_type = flock->fl_type;
1047
1048 if ((flock->fl_flags & FL_POSIX) == 0)
1049 return 1;
1050
1051 down_read(&cinode->lock_sem);
1052 posix_test_lock(file, flock);
1053
1054 if (flock->fl_type == F_UNLCK && !cinode->can_cache_brlcks) {
1055 flock->fl_type = saved_type;
1056 rc = 1;
1057 }
1058
1059 up_read(&cinode->lock_sem);
1060 return rc;
1061 }
1062
1063 /*
1064 * Set the byte-range lock (posix style). Returns:
1065 * 1) 0, if we set the lock and don't need to request to the server;
1066 * 2) 1, if we need to request to the server;
1067 * 3) <0, if the error occurs while setting the lock.
1068 */
1069 static int
1070 cifs_posix_lock_set(struct file *file, struct file_lock *flock)
1071 {
1072 struct cifsInodeInfo *cinode = CIFS_I(file_inode(file));
1073 int rc = 1;
1074
1075 if ((flock->fl_flags & FL_POSIX) == 0)
1076 return rc;
1077
1078 try_again:
1079 down_write(&cinode->lock_sem);
1080 if (!cinode->can_cache_brlcks) {
1081 up_write(&cinode->lock_sem);
1082 return rc;
1083 }
1084
1085 rc = posix_lock_file(file, flock, NULL);
1086 up_write(&cinode->lock_sem);
1087 if (rc == FILE_LOCK_DEFERRED) {
1088 rc = wait_event_interruptible(flock->fl_wait, !flock->fl_next);
1089 if (!rc)
1090 goto try_again;
1091 posix_unblock_lock(flock);
1092 }
1093 return rc;
1094 }
1095
1096 int
1097 cifs_push_mandatory_locks(struct cifsFileInfo *cfile)
1098 {
1099 unsigned int xid;
1100 int rc = 0, stored_rc;
1101 struct cifsLockInfo *li, *tmp;
1102 struct cifs_tcon *tcon;
1103 unsigned int num, max_num, max_buf;
1104 LOCKING_ANDX_RANGE *buf, *cur;
1105 int types[] = {LOCKING_ANDX_LARGE_FILES,
1106 LOCKING_ANDX_SHARED_LOCK | LOCKING_ANDX_LARGE_FILES};
1107 int i;
1108
1109 xid = get_xid();
1110 tcon = tlink_tcon(cfile->tlink);
1111
1112 /*
1113 * Accessing maxBuf is racy with cifs_reconnect - need to store value
1114 * and check it for zero before using.
1115 */
1116 max_buf = tcon->ses->server->maxBuf;
1117 if (!max_buf) {
1118 free_xid(xid);
1119 return -EINVAL;
1120 }
1121
1122 max_num = (max_buf - sizeof(struct smb_hdr)) /
1123 sizeof(LOCKING_ANDX_RANGE);
1124 buf = kcalloc(max_num, sizeof(LOCKING_ANDX_RANGE), GFP_KERNEL);
1125 if (!buf) {
1126 free_xid(xid);
1127 return -ENOMEM;
1128 }
1129
1130 for (i = 0; i < 2; i++) {
1131 cur = buf;
1132 num = 0;
1133 list_for_each_entry_safe(li, tmp, &cfile->llist->locks, llist) {
1134 if (li->type != types[i])
1135 continue;
1136 cur->Pid = cpu_to_le16(li->pid);
1137 cur->LengthLow = cpu_to_le32((u32)li->length);
1138 cur->LengthHigh = cpu_to_le32((u32)(li->length>>32));
1139 cur->OffsetLow = cpu_to_le32((u32)li->offset);
1140 cur->OffsetHigh = cpu_to_le32((u32)(li->offset>>32));
1141 if (++num == max_num) {
1142 stored_rc = cifs_lockv(xid, tcon,
1143 cfile->fid.netfid,
1144 (__u8)li->type, 0, num,
1145 buf);
1146 if (stored_rc)
1147 rc = stored_rc;
1148 cur = buf;
1149 num = 0;
1150 } else
1151 cur++;
1152 }
1153
1154 if (num) {
1155 stored_rc = cifs_lockv(xid, tcon, cfile->fid.netfid,
1156 (__u8)types[i], 0, num, buf);
1157 if (stored_rc)
1158 rc = stored_rc;
1159 }
1160 }
1161
1162 kfree(buf);
1163 free_xid(xid);
1164 return rc;
1165 }
1166
1167 static __u32
1168 hash_lockowner(fl_owner_t owner)
1169 {
1170 return cifs_lock_secret ^ hash32_ptr((const void *)owner);
1171 }
1172
1173 struct lock_to_push {
1174 struct list_head llist;
1175 __u64 offset;
1176 __u64 length;
1177 __u32 pid;
1178 __u16 netfid;
1179 __u8 type;
1180 };
1181
1182 static int
1183 cifs_push_posix_locks(struct cifsFileInfo *cfile)
1184 {
1185 struct inode *inode = d_inode(cfile->dentry);
1186 struct cifs_tcon *tcon = tlink_tcon(cfile->tlink);
1187 struct file_lock *flock;
1188 struct file_lock_context *flctx = inode->i_flctx;
1189 unsigned int count = 0, i;
1190 int rc = 0, xid, type;
1191 struct list_head locks_to_send, *el;
1192 struct lock_to_push *lck, *tmp;
1193 __u64 length;
1194
1195 xid = get_xid();
1196
1197 if (!flctx)
1198 goto out;
1199
1200 spin_lock(&flctx->flc_lock);
1201 list_for_each(el, &flctx->flc_posix) {
1202 count++;
1203 }
1204 spin_unlock(&flctx->flc_lock);
1205
1206 INIT_LIST_HEAD(&locks_to_send);
1207
1208 /*
1209 * Allocating count locks is enough because no FL_POSIX locks can be
1210 * added to the list while we are holding cinode->lock_sem that
1211 * protects locking operations of this inode.
1212 */
1213 for (i = 0; i < count; i++) {
1214 lck = kmalloc(sizeof(struct lock_to_push), GFP_KERNEL);
1215 if (!lck) {
1216 rc = -ENOMEM;
1217 goto err_out;
1218 }
1219 list_add_tail(&lck->llist, &locks_to_send);
1220 }
1221
1222 el = locks_to_send.next;
1223 spin_lock(&flctx->flc_lock);
1224 list_for_each_entry(flock, &flctx->flc_posix, fl_list) {
1225 if (el == &locks_to_send) {
1226 /*
1227 * The list ended. We don't have enough allocated
1228 * structures - something is really wrong.
1229 */
1230 cifs_dbg(VFS, "Can't push all brlocks!\n");
1231 break;
1232 }
1233 length = 1 + flock->fl_end - flock->fl_start;
1234 if (flock->fl_type == F_RDLCK || flock->fl_type == F_SHLCK)
1235 type = CIFS_RDLCK;
1236 else
1237 type = CIFS_WRLCK;
1238 lck = list_entry(el, struct lock_to_push, llist);
1239 lck->pid = hash_lockowner(flock->fl_owner);
1240 lck->netfid = cfile->fid.netfid;
1241 lck->length = length;
1242 lck->type = type;
1243 lck->offset = flock->fl_start;
1244 }
1245 spin_unlock(&flctx->flc_lock);
1246
1247 list_for_each_entry_safe(lck, tmp, &locks_to_send, llist) {
1248 int stored_rc;
1249
1250 stored_rc = CIFSSMBPosixLock(xid, tcon, lck->netfid, lck->pid,
1251 lck->offset, lck->length, NULL,
1252 lck->type, 0);
1253 if (stored_rc)
1254 rc = stored_rc;
1255 list_del(&lck->llist);
1256 kfree(lck);
1257 }
1258
1259 out:
1260 free_xid(xid);
1261 return rc;
1262 err_out:
1263 list_for_each_entry_safe(lck, tmp, &locks_to_send, llist) {
1264 list_del(&lck->llist);
1265 kfree(lck);
1266 }
1267 goto out;
1268 }
1269
1270 static int
1271 cifs_push_locks(struct cifsFileInfo *cfile)
1272 {
1273 struct cifs_sb_info *cifs_sb = CIFS_SB(cfile->dentry->d_sb);
1274 struct cifsInodeInfo *cinode = CIFS_I(d_inode(cfile->dentry));
1275 struct cifs_tcon *tcon = tlink_tcon(cfile->tlink);
1276 int rc = 0;
1277
1278 /* we are going to update can_cache_brlcks here - need a write access */
1279 down_write(&cinode->lock_sem);
1280 if (!cinode->can_cache_brlcks) {
1281 up_write(&cinode->lock_sem);
1282 return rc;
1283 }
1284
1285 if (cap_unix(tcon->ses) &&
1286 (CIFS_UNIX_FCNTL_CAP & le64_to_cpu(tcon->fsUnixInfo.Capability)) &&
1287 ((cifs_sb->mnt_cifs_flags & CIFS_MOUNT_NOPOSIXBRL) == 0))
1288 rc = cifs_push_posix_locks(cfile);
1289 else
1290 rc = tcon->ses->server->ops->push_mand_locks(cfile);
1291
1292 cinode->can_cache_brlcks = false;
1293 up_write(&cinode->lock_sem);
1294 return rc;
1295 }
1296
1297 static void
1298 cifs_read_flock(struct file_lock *flock, __u32 *type, int *lock, int *unlock,
1299 bool *wait_flag, struct TCP_Server_Info *server)
1300 {
1301 if (flock->fl_flags & FL_POSIX)
1302 cifs_dbg(FYI, "Posix\n");
1303 if (flock->fl_flags & FL_FLOCK)
1304 cifs_dbg(FYI, "Flock\n");
1305 if (flock->fl_flags & FL_SLEEP) {
1306 cifs_dbg(FYI, "Blocking lock\n");
1307 *wait_flag = true;
1308 }
1309 if (flock->fl_flags & FL_ACCESS)
1310 cifs_dbg(FYI, "Process suspended by mandatory locking - not implemented yet\n");
1311 if (flock->fl_flags & FL_LEASE)
1312 cifs_dbg(FYI, "Lease on file - not implemented yet\n");
1313 if (flock->fl_flags &
1314 (~(FL_POSIX | FL_FLOCK | FL_SLEEP |
1315 FL_ACCESS | FL_LEASE | FL_CLOSE)))
1316 cifs_dbg(FYI, "Unknown lock flags 0x%x\n", flock->fl_flags);
1317
1318 *type = server->vals->large_lock_type;
1319 if (flock->fl_type == F_WRLCK) {
1320 cifs_dbg(FYI, "F_WRLCK\n");
1321 *type |= server->vals->exclusive_lock_type;
1322 *lock = 1;
1323 } else if (flock->fl_type == F_UNLCK) {
1324 cifs_dbg(FYI, "F_UNLCK\n");
1325 *type |= server->vals->unlock_lock_type;
1326 *unlock = 1;
1327 /* Check if unlock includes more than one lock range */
1328 } else if (flock->fl_type == F_RDLCK) {
1329 cifs_dbg(FYI, "F_RDLCK\n");
1330 *type |= server->vals->shared_lock_type;
1331 *lock = 1;
1332 } else if (flock->fl_type == F_EXLCK) {
1333 cifs_dbg(FYI, "F_EXLCK\n");
1334 *type |= server->vals->exclusive_lock_type;
1335 *lock = 1;
1336 } else if (flock->fl_type == F_SHLCK) {
1337 cifs_dbg(FYI, "F_SHLCK\n");
1338 *type |= server->vals->shared_lock_type;
1339 *lock = 1;
1340 } else
1341 cifs_dbg(FYI, "Unknown type of lock\n");
1342 }
1343
1344 static int
1345 cifs_getlk(struct file *file, struct file_lock *flock, __u32 type,
1346 bool wait_flag, bool posix_lck, unsigned int xid)
1347 {
1348 int rc = 0;
1349 __u64 length = 1 + flock->fl_end - flock->fl_start;
1350 struct cifsFileInfo *cfile = (struct cifsFileInfo *)file->private_data;
1351 struct cifs_tcon *tcon = tlink_tcon(cfile->tlink);
1352 struct TCP_Server_Info *server = tcon->ses->server;
1353 __u16 netfid = cfile->fid.netfid;
1354
1355 if (posix_lck) {
1356 int posix_lock_type;
1357
1358 rc = cifs_posix_lock_test(file, flock);
1359 if (!rc)
1360 return rc;
1361
1362 if (type & server->vals->shared_lock_type)
1363 posix_lock_type = CIFS_RDLCK;
1364 else
1365 posix_lock_type = CIFS_WRLCK;
1366 rc = CIFSSMBPosixLock(xid, tcon, netfid,
1367 hash_lockowner(flock->fl_owner),
1368 flock->fl_start, length, flock,
1369 posix_lock_type, wait_flag);
1370 return rc;
1371 }
1372
1373 rc = cifs_lock_test(cfile, flock->fl_start, length, type, flock);
1374 if (!rc)
1375 return rc;
1376
1377 /* BB we could chain these into one lock request BB */
1378 rc = server->ops->mand_lock(xid, cfile, flock->fl_start, length, type,
1379 1, 0, false);
1380 if (rc == 0) {
1381 rc = server->ops->mand_lock(xid, cfile, flock->fl_start, length,
1382 type, 0, 1, false);
1383 flock->fl_type = F_UNLCK;
1384 if (rc != 0)
1385 cifs_dbg(VFS, "Error unlocking previously locked range %d during test of lock\n",
1386 rc);
1387 return 0;
1388 }
1389
1390 if (type & server->vals->shared_lock_type) {
1391 flock->fl_type = F_WRLCK;
1392 return 0;
1393 }
1394
1395 type &= ~server->vals->exclusive_lock_type;
1396
1397 rc = server->ops->mand_lock(xid, cfile, flock->fl_start, length,
1398 type | server->vals->shared_lock_type,
1399 1, 0, false);
1400 if (rc == 0) {
1401 rc = server->ops->mand_lock(xid, cfile, flock->fl_start, length,
1402 type | server->vals->shared_lock_type, 0, 1, false);
1403 flock->fl_type = F_RDLCK;
1404 if (rc != 0)
1405 cifs_dbg(VFS, "Error unlocking previously locked range %d during test of lock\n",
1406 rc);
1407 } else
1408 flock->fl_type = F_WRLCK;
1409
1410 return 0;
1411 }
1412
1413 void
1414 cifs_move_llist(struct list_head *source, struct list_head *dest)
1415 {
1416 struct list_head *li, *tmp;
1417 list_for_each_safe(li, tmp, source)
1418 list_move(li, dest);
1419 }
1420
1421 void
1422 cifs_free_llist(struct list_head *llist)
1423 {
1424 struct cifsLockInfo *li, *tmp;
1425 list_for_each_entry_safe(li, tmp, llist, llist) {
1426 cifs_del_lock_waiters(li);
1427 list_del(&li->llist);
1428 kfree(li);
1429 }
1430 }
1431
1432 int
1433 cifs_unlock_range(struct cifsFileInfo *cfile, struct file_lock *flock,
1434 unsigned int xid)
1435 {
1436 int rc = 0, stored_rc;
1437 int types[] = {LOCKING_ANDX_LARGE_FILES,
1438 LOCKING_ANDX_SHARED_LOCK | LOCKING_ANDX_LARGE_FILES};
1439 unsigned int i;
1440 unsigned int max_num, num, max_buf;
1441 LOCKING_ANDX_RANGE *buf, *cur;
1442 struct cifs_tcon *tcon = tlink_tcon(cfile->tlink);
1443 struct cifsInodeInfo *cinode = CIFS_I(d_inode(cfile->dentry));
1444 struct cifsLockInfo *li, *tmp;
1445 __u64 length = 1 + flock->fl_end - flock->fl_start;
1446 struct list_head tmp_llist;
1447
1448 INIT_LIST_HEAD(&tmp_llist);
1449
1450 /*
1451 * Accessing maxBuf is racy with cifs_reconnect - need to store value
1452 * and check it for zero before using.
1453 */
1454 max_buf = tcon->ses->server->maxBuf;
1455 if (!max_buf)
1456 return -EINVAL;
1457
1458 max_num = (max_buf - sizeof(struct smb_hdr)) /
1459 sizeof(LOCKING_ANDX_RANGE);
1460 buf = kcalloc(max_num, sizeof(LOCKING_ANDX_RANGE), GFP_KERNEL);
1461 if (!buf)
1462 return -ENOMEM;
1463
1464 down_write(&cinode->lock_sem);
1465 for (i = 0; i < 2; i++) {
1466 cur = buf;
1467 num = 0;
1468 list_for_each_entry_safe(li, tmp, &cfile->llist->locks, llist) {
1469 if (flock->fl_start > li->offset ||
1470 (flock->fl_start + length) <
1471 (li->offset + li->length))
1472 continue;
1473 if (current->tgid != li->pid)
1474 continue;
1475 if (types[i] != li->type)
1476 continue;
1477 if (cinode->can_cache_brlcks) {
1478 /*
1479 * We can cache brlock requests - simply remove
1480 * a lock from the file's list.
1481 */
1482 list_del(&li->llist);
1483 cifs_del_lock_waiters(li);
1484 kfree(li);
1485 continue;
1486 }
1487 cur->Pid = cpu_to_le16(li->pid);
1488 cur->LengthLow = cpu_to_le32((u32)li->length);
1489 cur->LengthHigh = cpu_to_le32((u32)(li->length>>32));
1490 cur->OffsetLow = cpu_to_le32((u32)li->offset);
1491 cur->OffsetHigh = cpu_to_le32((u32)(li->offset>>32));
1492 /*
1493 * We need to save a lock here to let us add it again to
1494 * the file's list if the unlock range request fails on
1495 * the server.
1496 */
1497 list_move(&li->llist, &tmp_llist);
1498 if (++num == max_num) {
1499 stored_rc = cifs_lockv(xid, tcon,
1500 cfile->fid.netfid,
1501 li->type, num, 0, buf);
1502 if (stored_rc) {
1503 /*
1504 * We failed on the unlock range
1505 * request - add all locks from the tmp
1506 * list to the head of the file's list.
1507 */
1508 cifs_move_llist(&tmp_llist,
1509 &cfile->llist->locks);
1510 rc = stored_rc;
1511 } else
1512 /*
1513 * The unlock range request succeed -
1514 * free the tmp list.
1515 */
1516 cifs_free_llist(&tmp_llist);
1517 cur = buf;
1518 num = 0;
1519 } else
1520 cur++;
1521 }
1522 if (num) {
1523 stored_rc = cifs_lockv(xid, tcon, cfile->fid.netfid,
1524 types[i], num, 0, buf);
1525 if (stored_rc) {
1526 cifs_move_llist(&tmp_llist,
1527 &cfile->llist->locks);
1528 rc = stored_rc;
1529 } else
1530 cifs_free_llist(&tmp_llist);
1531 }
1532 }
1533
1534 up_write(&cinode->lock_sem);
1535 kfree(buf);
1536 return rc;
1537 }
1538
1539 static int
1540 cifs_setlk(struct file *file, struct file_lock *flock, __u32 type,
1541 bool wait_flag, bool posix_lck, int lock, int unlock,
1542 unsigned int xid)
1543 {
1544 int rc = 0;
1545 __u64 length = 1 + flock->fl_end - flock->fl_start;
1546 struct cifsFileInfo *cfile = (struct cifsFileInfo *)file->private_data;
1547 struct cifs_tcon *tcon = tlink_tcon(cfile->tlink);
1548 struct TCP_Server_Info *server = tcon->ses->server;
1549 struct inode *inode = d_inode(cfile->dentry);
1550
1551 if (posix_lck) {
1552 int posix_lock_type;
1553
1554 rc = cifs_posix_lock_set(file, flock);
1555 if (!rc || rc < 0)
1556 return rc;
1557
1558 if (type & server->vals->shared_lock_type)
1559 posix_lock_type = CIFS_RDLCK;
1560 else
1561 posix_lock_type = CIFS_WRLCK;
1562
1563 if (unlock == 1)
1564 posix_lock_type = CIFS_UNLCK;
1565
1566 rc = CIFSSMBPosixLock(xid, tcon, cfile->fid.netfid,
1567 hash_lockowner(flock->fl_owner),
1568 flock->fl_start, length,
1569 NULL, posix_lock_type, wait_flag);
1570 goto out;
1571 }
1572
1573 if (lock) {
1574 struct cifsLockInfo *lock;
1575
1576 lock = cifs_lock_init(flock->fl_start, length, type);
1577 if (!lock)
1578 return -ENOMEM;
1579
1580 rc = cifs_lock_add_if(cfile, lock, wait_flag);
1581 if (rc < 0) {
1582 kfree(lock);
1583 return rc;
1584 }
1585 if (!rc)
1586 goto out;
1587
1588 /*
1589 * Windows 7 server can delay breaking lease from read to None
1590 * if we set a byte-range lock on a file - break it explicitly
1591 * before sending the lock to the server to be sure the next
1592 * read won't conflict with non-overlapted locks due to
1593 * pagereading.
1594 */
1595 if (!CIFS_CACHE_WRITE(CIFS_I(inode)) &&
1596 CIFS_CACHE_READ(CIFS_I(inode))) {
1597 cifs_zap_mapping(inode);
1598 cifs_dbg(FYI, "Set no oplock for inode=%p due to mand locks\n",
1599 inode);
1600 CIFS_I(inode)->oplock = 0;
1601 }
1602
1603 rc = server->ops->mand_lock(xid, cfile, flock->fl_start, length,
1604 type, 1, 0, wait_flag);
1605 if (rc) {
1606 kfree(lock);
1607 return rc;
1608 }
1609
1610 cifs_lock_add(cfile, lock);
1611 } else if (unlock)
1612 rc = server->ops->mand_unlock_range(cfile, flock, xid);
1613
1614 out:
1615 if (flock->fl_flags & FL_POSIX && !rc)
1616 rc = locks_lock_file_wait(file, flock);
1617 return rc;
1618 }
1619
1620 int cifs_lock(struct file *file, int cmd, struct file_lock *flock)
1621 {
1622 int rc, xid;
1623 int lock = 0, unlock = 0;
1624 bool wait_flag = false;
1625 bool posix_lck = false;
1626 struct cifs_sb_info *cifs_sb;
1627 struct cifs_tcon *tcon;
1628 struct cifsInodeInfo *cinode;
1629 struct cifsFileInfo *cfile;
1630 __u16 netfid;
1631 __u32 type;
1632
1633 rc = -EACCES;
1634 xid = get_xid();
1635
1636 cifs_dbg(FYI, "Lock parm: 0x%x flockflags: 0x%x flocktype: 0x%x start: %lld end: %lld\n",
1637 cmd, flock->fl_flags, flock->fl_type,
1638 flock->fl_start, flock->fl_end);
1639
1640 cfile = (struct cifsFileInfo *)file->private_data;
1641 tcon = tlink_tcon(cfile->tlink);
1642
1643 cifs_read_flock(flock, &type, &lock, &unlock, &wait_flag,
1644 tcon->ses->server);
1645
1646 cifs_sb = CIFS_FILE_SB(file);
1647 netfid = cfile->fid.netfid;
1648 cinode = CIFS_I(file_inode(file));
1649
1650 if (cap_unix(tcon->ses) &&
1651 (CIFS_UNIX_FCNTL_CAP & le64_to_cpu(tcon->fsUnixInfo.Capability)) &&
1652 ((cifs_sb->mnt_cifs_flags & CIFS_MOUNT_NOPOSIXBRL) == 0))
1653 posix_lck = true;
1654 /*
1655 * BB add code here to normalize offset and length to account for
1656 * negative length which we can not accept over the wire.
1657 */
1658 if (IS_GETLK(cmd)) {
1659 rc = cifs_getlk(file, flock, type, wait_flag, posix_lck, xid);
1660 free_xid(xid);
1661 return rc;
1662 }
1663
1664 if (!lock && !unlock) {
1665 /*
1666 * if no lock or unlock then nothing to do since we do not
1667 * know what it is
1668 */
1669 free_xid(xid);
1670 return -EOPNOTSUPP;
1671 }
1672
1673 rc = cifs_setlk(file, flock, type, wait_flag, posix_lck, lock, unlock,
1674 xid);
1675 free_xid(xid);
1676 return rc;
1677 }
1678
1679 /*
1680 * update the file size (if needed) after a write. Should be called with
1681 * the inode->i_lock held
1682 */
1683 void
1684 cifs_update_eof(struct cifsInodeInfo *cifsi, loff_t offset,
1685 unsigned int bytes_written)
1686 {
1687 loff_t end_of_write = offset + bytes_written;
1688
1689 if (end_of_write > cifsi->server_eof)
1690 cifsi->server_eof = end_of_write;
1691 }
1692
1693 static ssize_t
1694 cifs_write(struct cifsFileInfo *open_file, __u32 pid, const char *write_data,
1695 size_t write_size, loff_t *offset)
1696 {
1697 int rc = 0;
1698 unsigned int bytes_written = 0;
1699 unsigned int total_written;
1700 struct cifs_sb_info *cifs_sb;
1701 struct cifs_tcon *tcon;
1702 struct TCP_Server_Info *server;
1703 unsigned int xid;
1704 struct dentry *dentry = open_file->dentry;
1705 struct cifsInodeInfo *cifsi = CIFS_I(d_inode(dentry));
1706 struct cifs_io_parms io_parms;
1707
1708 cifs_sb = CIFS_SB(dentry->d_sb);
1709
1710 cifs_dbg(FYI, "write %zd bytes to offset %lld of %pd\n",
1711 write_size, *offset, dentry);
1712
1713 tcon = tlink_tcon(open_file->tlink);
1714 server = tcon->ses->server;
1715
1716 if (!server->ops->sync_write)
1717 return -ENOSYS;
1718
1719 xid = get_xid();
1720
1721 for (total_written = 0; write_size > total_written;
1722 total_written += bytes_written) {
1723 rc = -EAGAIN;
1724 while (rc == -EAGAIN) {
1725 struct kvec iov[2];
1726 unsigned int len;
1727
1728 if (open_file->invalidHandle) {
1729 /* we could deadlock if we called
1730 filemap_fdatawait from here so tell
1731 reopen_file not to flush data to
1732 server now */
1733 rc = cifs_reopen_file(open_file, false);
1734 if (rc != 0)
1735 break;
1736 }
1737
1738 len = min(server->ops->wp_retry_size(d_inode(dentry)),
1739 (unsigned int)write_size - total_written);
1740 /* iov[0] is reserved for smb header */
1741 iov[1].iov_base = (char *)write_data + total_written;
1742 iov[1].iov_len = len;
1743 io_parms.pid = pid;
1744 io_parms.tcon = tcon;
1745 io_parms.offset = *offset;
1746 io_parms.length = len;
1747 rc = server->ops->sync_write(xid, &open_file->fid,
1748 &io_parms, &bytes_written, iov, 1);
1749 }
1750 if (rc || (bytes_written == 0)) {
1751 if (total_written)
1752 break;
1753 else {
1754 free_xid(xid);
1755 return rc;
1756 }
1757 } else {
1758 spin_lock(&d_inode(dentry)->i_lock);
1759 cifs_update_eof(cifsi, *offset, bytes_written);
1760 spin_unlock(&d_inode(dentry)->i_lock);
1761 *offset += bytes_written;
1762 }
1763 }
1764
1765 cifs_stats_bytes_written(tcon, total_written);
1766
1767 if (total_written > 0) {
1768 spin_lock(&d_inode(dentry)->i_lock);
1769 if (*offset > d_inode(dentry)->i_size)
1770 i_size_write(d_inode(dentry), *offset);
1771 spin_unlock(&d_inode(dentry)->i_lock);
1772 }
1773 mark_inode_dirty_sync(d_inode(dentry));
1774 free_xid(xid);
1775 return total_written;
1776 }
1777
1778 struct cifsFileInfo *find_readable_file(struct cifsInodeInfo *cifs_inode,
1779 bool fsuid_only)
1780 {
1781 struct cifsFileInfo *open_file = NULL;
1782 struct cifs_sb_info *cifs_sb = CIFS_SB(cifs_inode->vfs_inode.i_sb);
1783 struct cifs_tcon *tcon = cifs_sb_master_tcon(cifs_sb);
1784
1785 /* only filter by fsuid on multiuser mounts */
1786 if (!(cifs_sb->mnt_cifs_flags & CIFS_MOUNT_MULTIUSER))
1787 fsuid_only = false;
1788
1789 spin_lock(&tcon->open_file_lock);
1790 /* we could simply get the first_list_entry since write-only entries
1791 are always at the end of the list but since the first entry might
1792 have a close pending, we go through the whole list */
1793 list_for_each_entry(open_file, &cifs_inode->openFileList, flist) {
1794 if (fsuid_only && !uid_eq(open_file->uid, current_fsuid()))
1795 continue;
1796 if (OPEN_FMODE(open_file->f_flags) & FMODE_READ) {
1797 if (!open_file->invalidHandle) {
1798 /* found a good file */
1799 /* lock it so it will not be closed on us */
1800 cifsFileInfo_get(open_file);
1801 spin_unlock(&tcon->open_file_lock);
1802 return open_file;
1803 } /* else might as well continue, and look for
1804 another, or simply have the caller reopen it
1805 again rather than trying to fix this handle */
1806 } else /* write only file */
1807 break; /* write only files are last so must be done */
1808 }
1809 spin_unlock(&tcon->open_file_lock);
1810 return NULL;
1811 }
1812
1813 struct cifsFileInfo *find_writable_file(struct cifsInodeInfo *cifs_inode,
1814 bool fsuid_only)
1815 {
1816 struct cifsFileInfo *open_file, *inv_file = NULL;
1817 struct cifs_sb_info *cifs_sb;
1818 struct cifs_tcon *tcon;
1819 bool any_available = false;
1820 int rc;
1821 unsigned int refind = 0;
1822
1823 /* Having a null inode here (because mapping->host was set to zero by
1824 the VFS or MM) should not happen but we had reports of on oops (due to
1825 it being zero) during stress testcases so we need to check for it */
1826
1827 if (cifs_inode == NULL) {
1828 cifs_dbg(VFS, "Null inode passed to cifs_writeable_file\n");
1829 dump_stack();
1830 return NULL;
1831 }
1832
1833 cifs_sb = CIFS_SB(cifs_inode->vfs_inode.i_sb);
1834 tcon = cifs_sb_master_tcon(cifs_sb);
1835
1836 /* only filter by fsuid on multiuser mounts */
1837 if (!(cifs_sb->mnt_cifs_flags & CIFS_MOUNT_MULTIUSER))
1838 fsuid_only = false;
1839
1840 spin_lock(&tcon->open_file_lock);
1841 refind_writable:
1842 if (refind > MAX_REOPEN_ATT) {
1843 spin_unlock(&tcon->open_file_lock);
1844 return NULL;
1845 }
1846 list_for_each_entry(open_file, &cifs_inode->openFileList, flist) {
1847 if (!any_available && open_file->pid != current->tgid)
1848 continue;
1849 if (fsuid_only && !uid_eq(open_file->uid, current_fsuid()))
1850 continue;
1851 if (OPEN_FMODE(open_file->f_flags) & FMODE_WRITE) {
1852 if (!open_file->invalidHandle) {
1853 /* found a good writable file */
1854 cifsFileInfo_get(open_file);
1855 spin_unlock(&tcon->open_file_lock);
1856 return open_file;
1857 } else {
1858 if (!inv_file)
1859 inv_file = open_file;
1860 }
1861 }
1862 }
1863 /* couldn't find useable FH with same pid, try any available */
1864 if (!any_available) {
1865 any_available = true;
1866 goto refind_writable;
1867 }
1868
1869 if (inv_file) {
1870 any_available = false;
1871 cifsFileInfo_get(inv_file);
1872 }
1873
1874 spin_unlock(&tcon->open_file_lock);
1875
1876 if (inv_file) {
1877 rc = cifs_reopen_file(inv_file, false);
1878 if (!rc)
1879 return inv_file;
1880 else {
1881 spin_lock(&tcon->open_file_lock);
1882 list_move_tail(&inv_file->flist,
1883 &cifs_inode->openFileList);
1884 spin_unlock(&tcon->open_file_lock);
1885 cifsFileInfo_put(inv_file);
1886 ++refind;
1887 inv_file = NULL;
1888 spin_lock(&tcon->open_file_lock);
1889 goto refind_writable;
1890 }
1891 }
1892
1893 return NULL;
1894 }
1895
1896 static int cifs_partialpagewrite(struct page *page, unsigned from, unsigned to)
1897 {
1898 struct address_space *mapping = page->mapping;
1899 loff_t offset = (loff_t)page->index << PAGE_SHIFT;
1900 char *write_data;
1901 int rc = -EFAULT;
1902 int bytes_written = 0;
1903 struct inode *inode;
1904 struct cifsFileInfo *open_file;
1905
1906 if (!mapping || !mapping->host)
1907 return -EFAULT;
1908
1909 inode = page->mapping->host;
1910
1911 offset += (loff_t)from;
1912 write_data = kmap(page);
1913 write_data += from;
1914
1915 if ((to > PAGE_SIZE) || (from > to)) {
1916 kunmap(page);
1917 return -EIO;
1918 }
1919
1920 /* racing with truncate? */
1921 if (offset > mapping->host->i_size) {
1922 kunmap(page);
1923 return 0; /* don't care */
1924 }
1925
1926 /* check to make sure that we are not extending the file */
1927 if (mapping->host->i_size - offset < (loff_t)to)
1928 to = (unsigned)(mapping->host->i_size - offset);
1929
1930 open_file = find_writable_file(CIFS_I(mapping->host), false);
1931 if (open_file) {
1932 bytes_written = cifs_write(open_file, open_file->pid,
1933 write_data, to - from, &offset);
1934 cifsFileInfo_put(open_file);
1935 /* Does mm or vfs already set times? */
1936 inode->i_atime = inode->i_mtime = current_time(inode);
1937 if ((bytes_written > 0) && (offset))
1938 rc = 0;
1939 else if (bytes_written < 0)
1940 rc = bytes_written;
1941 } else {
1942 cifs_dbg(FYI, "No writeable filehandles for inode\n");
1943 rc = -EIO;
1944 }
1945
1946 kunmap(page);
1947 return rc;
1948 }
1949
1950 static struct cifs_writedata *
1951 wdata_alloc_and_fillpages(pgoff_t tofind, struct address_space *mapping,
1952 pgoff_t end, pgoff_t *index,
1953 unsigned int *found_pages)
1954 {
1955 unsigned int nr_pages;
1956 struct page **pages;
1957 struct cifs_writedata *wdata;
1958
1959 wdata = cifs_writedata_alloc((unsigned int)tofind,
1960 cifs_writev_complete);
1961 if (!wdata)
1962 return NULL;
1963
1964 /*
1965 * find_get_pages_tag seems to return a max of 256 on each
1966 * iteration, so we must call it several times in order to
1967 * fill the array or the wsize is effectively limited to
1968 * 256 * PAGE_SIZE.
1969 */
1970 *found_pages = 0;
1971 pages = wdata->pages;
1972 do {
1973 nr_pages = find_get_pages_tag(mapping, index,
1974 PAGECACHE_TAG_DIRTY, tofind,
1975 pages);
1976 *found_pages += nr_pages;
1977 tofind -= nr_pages;
1978 pages += nr_pages;
1979 } while (nr_pages && tofind && *index <= end);
1980
1981 return wdata;
1982 }
1983
1984 static unsigned int
1985 wdata_prepare_pages(struct cifs_writedata *wdata, unsigned int found_pages,
1986 struct address_space *mapping,
1987 struct writeback_control *wbc,
1988 pgoff_t end, pgoff_t *index, pgoff_t *next, bool *done)
1989 {
1990 unsigned int nr_pages = 0, i;
1991 struct page *page;
1992
1993 for (i = 0; i < found_pages; i++) {
1994 page = wdata->pages[i];
1995 /*
1996 * At this point we hold neither mapping->tree_lock nor
1997 * lock on the page itself: the page may be truncated or
1998 * invalidated (changing page->mapping to NULL), or even
1999 * swizzled back from swapper_space to tmpfs file
2000 * mapping
2001 */
2002
2003 if (nr_pages == 0)
2004 lock_page(page);
2005 else if (!trylock_page(page))
2006 break;
2007
2008 if (unlikely(page->mapping != mapping)) {
2009 unlock_page(page);
2010 break;
2011 }
2012
2013 if (!wbc->range_cyclic && page->index > end) {
2014 *done = true;
2015 unlock_page(page);
2016 break;
2017 }
2018
2019 if (*next && (page->index != *next)) {
2020 /* Not next consecutive page */
2021 unlock_page(page);
2022 break;
2023 }
2024
2025 if (wbc->sync_mode != WB_SYNC_NONE)
2026 wait_on_page_writeback(page);
2027
2028 if (PageWriteback(page) ||
2029 !clear_page_dirty_for_io(page)) {
2030 unlock_page(page);
2031 break;
2032 }
2033
2034 /*
2035 * This actually clears the dirty bit in the radix tree.
2036 * See cifs_writepage() for more commentary.
2037 */
2038 set_page_writeback(page);
2039 if (page_offset(page) >= i_size_read(mapping->host)) {
2040 *done = true;
2041 unlock_page(page);
2042 end_page_writeback(page);
2043 break;
2044 }
2045
2046 wdata->pages[i] = page;
2047 *next = page->index + 1;
2048 ++nr_pages;
2049 }
2050
2051 /* reset index to refind any pages skipped */
2052 if (nr_pages == 0)
2053 *index = wdata->pages[0]->index + 1;
2054
2055 /* put any pages we aren't going to use */
2056 for (i = nr_pages; i < found_pages; i++) {
2057 put_page(wdata->pages[i]);
2058 wdata->pages[i] = NULL;
2059 }
2060
2061 return nr_pages;
2062 }
2063
2064 static int
2065 wdata_send_pages(struct cifs_writedata *wdata, unsigned int nr_pages,
2066 struct address_space *mapping, struct writeback_control *wbc)
2067 {
2068 int rc = 0;
2069 struct TCP_Server_Info *server;
2070 unsigned int i;
2071
2072 wdata->sync_mode = wbc->sync_mode;
2073 wdata->nr_pages = nr_pages;
2074 wdata->offset = page_offset(wdata->pages[0]);
2075 wdata->pagesz = PAGE_SIZE;
2076 wdata->tailsz = min(i_size_read(mapping->host) -
2077 page_offset(wdata->pages[nr_pages - 1]),
2078 (loff_t)PAGE_SIZE);
2079 wdata->bytes = ((nr_pages - 1) * PAGE_SIZE) + wdata->tailsz;
2080
2081 if (wdata->cfile != NULL)
2082 cifsFileInfo_put(wdata->cfile);
2083 wdata->cfile = find_writable_file(CIFS_I(mapping->host), false);
2084 if (!wdata->cfile) {
2085 cifs_dbg(VFS, "No writable handles for inode\n");
2086 rc = -EBADF;
2087 } else {
2088 wdata->pid = wdata->cfile->pid;
2089 server = tlink_tcon(wdata->cfile->tlink)->ses->server;
2090 rc = server->ops->async_writev(wdata, cifs_writedata_release);
2091 }
2092
2093 for (i = 0; i < nr_pages; ++i)
2094 unlock_page(wdata->pages[i]);
2095
2096 return rc;
2097 }
2098
2099 static int cifs_writepages(struct address_space *mapping,
2100 struct writeback_control *wbc)
2101 {
2102 struct cifs_sb_info *cifs_sb = CIFS_SB(mapping->host->i_sb);
2103 struct TCP_Server_Info *server;
2104 bool done = false, scanned = false, range_whole = false;
2105 pgoff_t end, index;
2106 struct cifs_writedata *wdata;
2107 int rc = 0;
2108
2109 /*
2110 * If wsize is smaller than the page cache size, default to writing
2111 * one page at a time via cifs_writepage
2112 */
2113 if (cifs_sb->wsize < PAGE_SIZE)
2114 return generic_writepages(mapping, wbc);
2115
2116 if (wbc->range_cyclic) {
2117 index = mapping->writeback_index; /* Start from prev offset */
2118 end = -1;
2119 } else {
2120 index = wbc->range_start >> PAGE_SHIFT;
2121 end = wbc->range_end >> PAGE_SHIFT;
2122 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2123 range_whole = true;
2124 scanned = true;
2125 }
2126 server = cifs_sb_master_tcon(cifs_sb)->ses->server;
2127 retry:
2128 while (!done && index <= end) {
2129 unsigned int i, nr_pages, found_pages, wsize, credits;
2130 pgoff_t next = 0, tofind, saved_index = index;
2131
2132 rc = server->ops->wait_mtu_credits(server, cifs_sb->wsize,
2133 &wsize, &credits);
2134 if (rc)
2135 break;
2136
2137 tofind = min((wsize / PAGE_SIZE) - 1, end - index) + 1;
2138
2139 wdata = wdata_alloc_and_fillpages(tofind, mapping, end, &index,
2140 &found_pages);
2141 if (!wdata) {
2142 rc = -ENOMEM;
2143 add_credits_and_wake_if(server, credits, 0);
2144 break;
2145 }
2146
2147 if (found_pages == 0) {
2148 kref_put(&wdata->refcount, cifs_writedata_release);
2149 add_credits_and_wake_if(server, credits, 0);
2150 break;
2151 }
2152
2153 nr_pages = wdata_prepare_pages(wdata, found_pages, mapping, wbc,
2154 end, &index, &next, &done);
2155
2156 /* nothing to write? */
2157 if (nr_pages == 0) {
2158 kref_put(&wdata->refcount, cifs_writedata_release);
2159 add_credits_and_wake_if(server, credits, 0);
2160 continue;
2161 }
2162
2163 wdata->credits = credits;
2164
2165 rc = wdata_send_pages(wdata, nr_pages, mapping, wbc);
2166
2167 /* send failure -- clean up the mess */
2168 if (rc != 0) {
2169 add_credits_and_wake_if(server, wdata->credits, 0);
2170 for (i = 0; i < nr_pages; ++i) {
2171 if (rc == -EAGAIN)
2172 redirty_page_for_writepage(wbc,
2173 wdata->pages[i]);
2174 else
2175 SetPageError(wdata->pages[i]);
2176 end_page_writeback(wdata->pages[i]);
2177 put_page(wdata->pages[i]);
2178 }
2179 if (rc != -EAGAIN)
2180 mapping_set_error(mapping, rc);
2181 }
2182 kref_put(&wdata->refcount, cifs_writedata_release);
2183
2184 if (wbc->sync_mode == WB_SYNC_ALL && rc == -EAGAIN) {
2185 index = saved_index;
2186 continue;
2187 }
2188
2189 wbc->nr_to_write -= nr_pages;
2190 if (wbc->nr_to_write <= 0)
2191 done = true;
2192
2193 index = next;
2194 }
2195
2196 if (!scanned && !done) {
2197 /*
2198 * We hit the last page and there is more work to be done: wrap
2199 * back to the start of the file
2200 */
2201 scanned = true;
2202 index = 0;
2203 goto retry;
2204 }
2205
2206 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2207 mapping->writeback_index = index;
2208
2209 return rc;
2210 }
2211
2212 static int
2213 cifs_writepage_locked(struct page *page, struct writeback_control *wbc)
2214 {
2215 int rc;
2216 unsigned int xid;
2217
2218 xid = get_xid();
2219 /* BB add check for wbc flags */
2220 get_page(page);
2221 if (!PageUptodate(page))
2222 cifs_dbg(FYI, "ppw - page not up to date\n");
2223
2224 /*
2225 * Set the "writeback" flag, and clear "dirty" in the radix tree.
2226 *
2227 * A writepage() implementation always needs to do either this,
2228 * or re-dirty the page with "redirty_page_for_writepage()" in
2229 * the case of a failure.
2230 *
2231 * Just unlocking the page will cause the radix tree tag-bits
2232 * to fail to update with the state of the page correctly.
2233 */
2234 set_page_writeback(page);
2235 retry_write:
2236 rc = cifs_partialpagewrite(page, 0, PAGE_SIZE);
2237 if (rc == -EAGAIN && wbc->sync_mode == WB_SYNC_ALL)
2238 goto retry_write;
2239 else if (rc == -EAGAIN)
2240 redirty_page_for_writepage(wbc, page);
2241 else if (rc != 0)
2242 SetPageError(page);
2243 else
2244 SetPageUptodate(page);
2245 end_page_writeback(page);
2246 put_page(page);
2247 free_xid(xid);
2248 return rc;
2249 }
2250
2251 static int cifs_writepage(struct page *page, struct writeback_control *wbc)
2252 {
2253 int rc = cifs_writepage_locked(page, wbc);
2254 unlock_page(page);
2255 return rc;
2256 }
2257
2258 static int cifs_write_end(struct file *file, struct address_space *mapping,
2259 loff_t pos, unsigned len, unsigned copied,
2260 struct page *page, void *fsdata)
2261 {
2262 int rc;
2263 struct inode *inode = mapping->host;
2264 struct cifsFileInfo *cfile = file->private_data;
2265 struct cifs_sb_info *cifs_sb = CIFS_SB(cfile->dentry->d_sb);
2266 __u32 pid;
2267
2268 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_RWPIDFORWARD)
2269 pid = cfile->pid;
2270 else
2271 pid = current->tgid;
2272
2273 cifs_dbg(FYI, "write_end for page %p from pos %lld with %d bytes\n",
2274 page, pos, copied);
2275
2276 if (PageChecked(page)) {
2277 if (copied == len)
2278 SetPageUptodate(page);
2279 ClearPageChecked(page);
2280 } else if (!PageUptodate(page) && copied == PAGE_SIZE)
2281 SetPageUptodate(page);
2282
2283 if (!PageUptodate(page)) {
2284 char *page_data;
2285 unsigned offset = pos & (PAGE_SIZE - 1);
2286 unsigned int xid;
2287
2288 xid = get_xid();
2289 /* this is probably better than directly calling
2290 partialpage_write since in this function the file handle is
2291 known which we might as well leverage */
2292 /* BB check if anything else missing out of ppw
2293 such as updating last write time */
2294 page_data = kmap(page);
2295 rc = cifs_write(cfile, pid, page_data + offset, copied, &pos);
2296 /* if (rc < 0) should we set writebehind rc? */
2297 kunmap(page);
2298
2299 free_xid(xid);
2300 } else {
2301 rc = copied;
2302 pos += copied;
2303 set_page_dirty(page);
2304 }
2305
2306 if (rc > 0) {
2307 spin_lock(&inode->i_lock);
2308 if (pos > inode->i_size)
2309 i_size_write(inode, pos);
2310 spin_unlock(&inode->i_lock);
2311 }
2312
2313 unlock_page(page);
2314 put_page(page);
2315
2316 return rc;
2317 }
2318
2319 int cifs_strict_fsync(struct file *file, loff_t start, loff_t end,
2320 int datasync)
2321 {
2322 unsigned int xid;
2323 int rc = 0;
2324 struct cifs_tcon *tcon;
2325 struct TCP_Server_Info *server;
2326 struct cifsFileInfo *smbfile = file->private_data;
2327 struct inode *inode = file_inode(file);
2328 struct cifs_sb_info *cifs_sb = CIFS_SB(inode->i_sb);
2329
2330 rc = filemap_write_and_wait_range(inode->i_mapping, start, end);
2331 if (rc)
2332 return rc;
2333 inode_lock(inode);
2334
2335 xid = get_xid();
2336
2337 cifs_dbg(FYI, "Sync file - name: %pD datasync: 0x%x\n",
2338 file, datasync);
2339
2340 if (!CIFS_CACHE_READ(CIFS_I(inode))) {
2341 rc = cifs_zap_mapping(inode);
2342 if (rc) {
2343 cifs_dbg(FYI, "rc: %d during invalidate phase\n", rc);
2344 rc = 0; /* don't care about it in fsync */
2345 }
2346 }
2347
2348 tcon = tlink_tcon(smbfile->tlink);
2349 if (!(cifs_sb->mnt_cifs_flags & CIFS_MOUNT_NOSSYNC)) {
2350 server = tcon->ses->server;
2351 if (server->ops->flush)
2352 rc = server->ops->flush(xid, tcon, &smbfile->fid);
2353 else
2354 rc = -ENOSYS;
2355 }
2356
2357 free_xid(xid);
2358 inode_unlock(inode);
2359 return rc;
2360 }
2361
2362 int cifs_fsync(struct file *file, loff_t start, loff_t end, int datasync)
2363 {
2364 unsigned int xid;
2365 int rc = 0;
2366 struct cifs_tcon *tcon;
2367 struct TCP_Server_Info *server;
2368 struct cifsFileInfo *smbfile = file->private_data;
2369 struct cifs_sb_info *cifs_sb = CIFS_FILE_SB(file);
2370 struct inode *inode = file->f_mapping->host;
2371
2372 rc = filemap_write_and_wait_range(inode->i_mapping, start, end);
2373 if (rc)
2374 return rc;
2375 inode_lock(inode);
2376
2377 xid = get_xid();
2378
2379 cifs_dbg(FYI, "Sync file - name: %pD datasync: 0x%x\n",
2380 file, datasync);
2381
2382 tcon = tlink_tcon(smbfile->tlink);
2383 if (!(cifs_sb->mnt_cifs_flags & CIFS_MOUNT_NOSSYNC)) {
2384 server = tcon->ses->server;
2385 if (server->ops->flush)
2386 rc = server->ops->flush(xid, tcon, &smbfile->fid);
2387 else
2388 rc = -ENOSYS;
2389 }
2390
2391 free_xid(xid);
2392 inode_unlock(inode);
2393 return rc;
2394 }
2395
2396 /*
2397 * As file closes, flush all cached write data for this inode checking
2398 * for write behind errors.
2399 */
2400 int cifs_flush(struct file *file, fl_owner_t id)
2401 {
2402 struct inode *inode = file_inode(file);
2403 int rc = 0;
2404
2405 if (file->f_mode & FMODE_WRITE)
2406 rc = filemap_write_and_wait(inode->i_mapping);
2407
2408 cifs_dbg(FYI, "Flush inode %p file %p rc %d\n", inode, file, rc);
2409
2410 return rc;
2411 }
2412
2413 static int
2414 cifs_write_allocate_pages(struct page **pages, unsigned long num_pages)
2415 {
2416 int rc = 0;
2417 unsigned long i;
2418
2419 for (i = 0; i < num_pages; i++) {
2420 pages[i] = alloc_page(GFP_KERNEL|__GFP_HIGHMEM);
2421 if (!pages[i]) {
2422 /*
2423 * save number of pages we have already allocated and
2424 * return with ENOMEM error
2425 */
2426 num_pages = i;
2427 rc = -ENOMEM;
2428 break;
2429 }
2430 }
2431
2432 if (rc) {
2433 for (i = 0; i < num_pages; i++)
2434 put_page(pages[i]);
2435 }
2436 return rc;
2437 }
2438
2439 static inline
2440 size_t get_numpages(const size_t wsize, const size_t len, size_t *cur_len)
2441 {
2442 size_t num_pages;
2443 size_t clen;
2444
2445 clen = min_t(const size_t, len, wsize);
2446 num_pages = DIV_ROUND_UP(clen, PAGE_SIZE);
2447
2448 if (cur_len)
2449 *cur_len = clen;
2450
2451 return num_pages;
2452 }
2453
2454 static void
2455 cifs_uncached_writedata_release(struct kref *refcount)
2456 {
2457 int i;
2458 struct cifs_writedata *wdata = container_of(refcount,
2459 struct cifs_writedata, refcount);
2460
2461 kref_put(&wdata->ctx->refcount, cifs_aio_ctx_release);
2462 for (i = 0; i < wdata->nr_pages; i++)
2463 put_page(wdata->pages[i]);
2464 cifs_writedata_release(refcount);
2465 }
2466
2467 static void collect_uncached_write_data(struct cifs_aio_ctx *ctx);
2468
2469 static void
2470 cifs_uncached_writev_complete(struct work_struct *work)
2471 {
2472 struct cifs_writedata *wdata = container_of(work,
2473 struct cifs_writedata, work);
2474 struct inode *inode = d_inode(wdata->cfile->dentry);
2475 struct cifsInodeInfo *cifsi = CIFS_I(inode);
2476
2477 spin_lock(&inode->i_lock);
2478 cifs_update_eof(cifsi, wdata->offset, wdata->bytes);
2479 if (cifsi->server_eof > inode->i_size)
2480 i_size_write(inode, cifsi->server_eof);
2481 spin_unlock(&inode->i_lock);
2482
2483 complete(&wdata->done);
2484 collect_uncached_write_data(wdata->ctx);
2485 /* the below call can possibly free the last ref to aio ctx */
2486 kref_put(&wdata->refcount, cifs_uncached_writedata_release);
2487 }
2488
2489 static int
2490 wdata_fill_from_iovec(struct cifs_writedata *wdata, struct iov_iter *from,
2491 size_t *len, unsigned long *num_pages)
2492 {
2493 size_t save_len, copied, bytes, cur_len = *len;
2494 unsigned long i, nr_pages = *num_pages;
2495
2496 save_len = cur_len;
2497 for (i = 0; i < nr_pages; i++) {
2498 bytes = min_t(const size_t, cur_len, PAGE_SIZE);
2499 copied = copy_page_from_iter(wdata->pages[i], 0, bytes, from);
2500 cur_len -= copied;
2501 /*
2502 * If we didn't copy as much as we expected, then that
2503 * may mean we trod into an unmapped area. Stop copying
2504 * at that point. On the next pass through the big
2505 * loop, we'll likely end up getting a zero-length
2506 * write and bailing out of it.
2507 */
2508 if (copied < bytes)
2509 break;
2510 }
2511 cur_len = save_len - cur_len;
2512 *len = cur_len;
2513
2514 /*
2515 * If we have no data to send, then that probably means that
2516 * the copy above failed altogether. That's most likely because
2517 * the address in the iovec was bogus. Return -EFAULT and let
2518 * the caller free anything we allocated and bail out.
2519 */
2520 if (!cur_len)
2521 return -EFAULT;
2522
2523 /*
2524 * i + 1 now represents the number of pages we actually used in
2525 * the copy phase above.
2526 */
2527 *num_pages = i + 1;
2528 return 0;
2529 }
2530
2531 static int
2532 cifs_write_from_iter(loff_t offset, size_t len, struct iov_iter *from,
2533 struct cifsFileInfo *open_file,
2534 struct cifs_sb_info *cifs_sb, struct list_head *wdata_list,
2535 struct cifs_aio_ctx *ctx)
2536 {
2537 int rc = 0;
2538 size_t cur_len;
2539 unsigned long nr_pages, num_pages, i;
2540 struct cifs_writedata *wdata;
2541 struct iov_iter saved_from = *from;
2542 loff_t saved_offset = offset;
2543 pid_t pid;
2544 struct TCP_Server_Info *server;
2545
2546 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_RWPIDFORWARD)
2547 pid = open_file->pid;
2548 else
2549 pid = current->tgid;
2550
2551 server = tlink_tcon(open_file->tlink)->ses->server;
2552
2553 do {
2554 unsigned int wsize, credits;
2555
2556 rc = server->ops->wait_mtu_credits(server, cifs_sb->wsize,
2557 &wsize, &credits);
2558 if (rc)
2559 break;
2560
2561 nr_pages = get_numpages(wsize, len, &cur_len);
2562 wdata = cifs_writedata_alloc(nr_pages,
2563 cifs_uncached_writev_complete);
2564 if (!wdata) {
2565 rc = -ENOMEM;
2566 add_credits_and_wake_if(server, credits, 0);
2567 break;
2568 }
2569
2570 rc = cifs_write_allocate_pages(wdata->pages, nr_pages);
2571 if (rc) {
2572 kfree(wdata);
2573 add_credits_and_wake_if(server, credits, 0);
2574 break;
2575 }
2576
2577 num_pages = nr_pages;
2578 rc = wdata_fill_from_iovec(wdata, from, &cur_len, &num_pages);
2579 if (rc) {
2580 for (i = 0; i < nr_pages; i++)
2581 put_page(wdata->pages[i]);
2582 kfree(wdata);
2583 add_credits_and_wake_if(server, credits, 0);
2584 break;
2585 }
2586
2587 /*
2588 * Bring nr_pages down to the number of pages we actually used,
2589 * and free any pages that we didn't use.
2590 */
2591 for ( ; nr_pages > num_pages; nr_pages--)
2592 put_page(wdata->pages[nr_pages - 1]);
2593
2594 wdata->sync_mode = WB_SYNC_ALL;
2595 wdata->nr_pages = nr_pages;
2596 wdata->offset = (__u64)offset;
2597 wdata->cfile = cifsFileInfo_get(open_file);
2598 wdata->pid = pid;
2599 wdata->bytes = cur_len;
2600 wdata->pagesz = PAGE_SIZE;
2601 wdata->tailsz = cur_len - ((nr_pages - 1) * PAGE_SIZE);
2602 wdata->credits = credits;
2603 wdata->ctx = ctx;
2604 kref_get(&ctx->refcount);
2605
2606 if (!wdata->cfile->invalidHandle ||
2607 !(rc = cifs_reopen_file(wdata->cfile, false)))
2608 rc = server->ops->async_writev(wdata,
2609 cifs_uncached_writedata_release);
2610 if (rc) {
2611 add_credits_and_wake_if(server, wdata->credits, 0);
2612 kref_put(&wdata->refcount,
2613 cifs_uncached_writedata_release);
2614 if (rc == -EAGAIN) {
2615 *from = saved_from;
2616 iov_iter_advance(from, offset - saved_offset);
2617 continue;
2618 }
2619 break;
2620 }
2621
2622 list_add_tail(&wdata->list, wdata_list);
2623 offset += cur_len;
2624 len -= cur_len;
2625 } while (len > 0);
2626
2627 return rc;
2628 }
2629
2630 static void collect_uncached_write_data(struct cifs_aio_ctx *ctx)
2631 {
2632 struct cifs_writedata *wdata, *tmp;
2633 struct cifs_tcon *tcon;
2634 struct cifs_sb_info *cifs_sb;
2635 struct dentry *dentry = ctx->cfile->dentry;
2636 unsigned int i;
2637 int rc;
2638
2639 tcon = tlink_tcon(ctx->cfile->tlink);
2640 cifs_sb = CIFS_SB(dentry->d_sb);
2641
2642 mutex_lock(&ctx->aio_mutex);
2643
2644 if (list_empty(&ctx->list)) {
2645 mutex_unlock(&ctx->aio_mutex);
2646 return;
2647 }
2648
2649 rc = ctx->rc;
2650 /*
2651 * Wait for and collect replies for any successful sends in order of
2652 * increasing offset. Once an error is hit, then return without waiting
2653 * for any more replies.
2654 */
2655 restart_loop:
2656 list_for_each_entry_safe(wdata, tmp, &ctx->list, list) {
2657 if (!rc) {
2658 if (!try_wait_for_completion(&wdata->done)) {
2659 mutex_unlock(&ctx->aio_mutex);
2660 return;
2661 }
2662
2663 if (wdata->result)
2664 rc = wdata->result;
2665 else
2666 ctx->total_len += wdata->bytes;
2667
2668 /* resend call if it's a retryable error */
2669 if (rc == -EAGAIN) {
2670 struct list_head tmp_list;
2671 struct iov_iter tmp_from = ctx->iter;
2672
2673 INIT_LIST_HEAD(&tmp_list);
2674 list_del_init(&wdata->list);
2675
2676 iov_iter_advance(&tmp_from,
2677 wdata->offset - ctx->pos);
2678
2679 rc = cifs_write_from_iter(wdata->offset,
2680 wdata->bytes, &tmp_from,
2681 ctx->cfile, cifs_sb, &tmp_list,
2682 ctx);
2683
2684 list_splice(&tmp_list, &ctx->list);
2685
2686 kref_put(&wdata->refcount,
2687 cifs_uncached_writedata_release);
2688 goto restart_loop;
2689 }
2690 }
2691 list_del_init(&wdata->list);
2692 kref_put(&wdata->refcount, cifs_uncached_writedata_release);
2693 }
2694
2695 for (i = 0; i < ctx->npages; i++)
2696 put_page(ctx->bv[i].bv_page);
2697
2698 cifs_stats_bytes_written(tcon, ctx->total_len);
2699 set_bit(CIFS_INO_INVALID_MAPPING, &CIFS_I(dentry->d_inode)->flags);
2700
2701 ctx->rc = (rc == 0) ? ctx->total_len : rc;
2702
2703 mutex_unlock(&ctx->aio_mutex);
2704
2705 if (ctx->iocb && ctx->iocb->ki_complete)
2706 ctx->iocb->ki_complete(ctx->iocb, ctx->rc, 0);
2707 else
2708 complete(&ctx->done);
2709 }
2710
2711 ssize_t cifs_user_writev(struct kiocb *iocb, struct iov_iter *from)
2712 {
2713 struct file *file = iocb->ki_filp;
2714 ssize_t total_written = 0;
2715 struct cifsFileInfo *cfile;
2716 struct cifs_tcon *tcon;
2717 struct cifs_sb_info *cifs_sb;
2718 struct cifs_aio_ctx *ctx;
2719 struct iov_iter saved_from = *from;
2720 int rc;
2721
2722 /*
2723 * BB - optimize the way when signing is disabled. We can drop this
2724 * extra memory-to-memory copying and use iovec buffers for constructing
2725 * write request.
2726 */
2727
2728 rc = generic_write_checks(iocb, from);
2729 if (rc <= 0)
2730 return rc;
2731
2732 cifs_sb = CIFS_FILE_SB(file);
2733 cfile = file->private_data;
2734 tcon = tlink_tcon(cfile->tlink);
2735
2736 if (!tcon->ses->server->ops->async_writev)
2737 return -ENOSYS;
2738
2739 ctx = cifs_aio_ctx_alloc();
2740 if (!ctx)
2741 return -ENOMEM;
2742
2743 ctx->cfile = cifsFileInfo_get(cfile);
2744
2745 if (!is_sync_kiocb(iocb))
2746 ctx->iocb = iocb;
2747
2748 ctx->pos = iocb->ki_pos;
2749
2750 rc = setup_aio_ctx_iter(ctx, from, WRITE);
2751 if (rc) {
2752 kref_put(&ctx->refcount, cifs_aio_ctx_release);
2753 return rc;
2754 }
2755
2756 /* grab a lock here due to read response handlers can access ctx */
2757 mutex_lock(&ctx->aio_mutex);
2758
2759 rc = cifs_write_from_iter(iocb->ki_pos, ctx->len, &saved_from,
2760 cfile, cifs_sb, &ctx->list, ctx);
2761
2762 /*
2763 * If at least one write was successfully sent, then discard any rc
2764 * value from the later writes. If the other write succeeds, then
2765 * we'll end up returning whatever was written. If it fails, then
2766 * we'll get a new rc value from that.
2767 */
2768 if (!list_empty(&ctx->list))
2769 rc = 0;
2770
2771 mutex_unlock(&ctx->aio_mutex);
2772
2773 if (rc) {
2774 kref_put(&ctx->refcount, cifs_aio_ctx_release);
2775 return rc;
2776 }
2777
2778 if (!is_sync_kiocb(iocb)) {
2779 kref_put(&ctx->refcount, cifs_aio_ctx_release);
2780 return -EIOCBQUEUED;
2781 }
2782
2783 rc = wait_for_completion_killable(&ctx->done);
2784 if (rc) {
2785 mutex_lock(&ctx->aio_mutex);
2786 ctx->rc = rc = -EINTR;
2787 total_written = ctx->total_len;
2788 mutex_unlock(&ctx->aio_mutex);
2789 } else {
2790 rc = ctx->rc;
2791 total_written = ctx->total_len;
2792 }
2793
2794 kref_put(&ctx->refcount, cifs_aio_ctx_release);
2795
2796 if (unlikely(!total_written))
2797 return rc;
2798
2799 iocb->ki_pos += total_written;
2800 return total_written;
2801 }
2802
2803 static ssize_t
2804 cifs_writev(struct kiocb *iocb, struct iov_iter *from)
2805 {
2806 struct file *file = iocb->ki_filp;
2807 struct cifsFileInfo *cfile = (struct cifsFileInfo *)file->private_data;
2808 struct inode *inode = file->f_mapping->host;
2809 struct cifsInodeInfo *cinode = CIFS_I(inode);
2810 struct TCP_Server_Info *server = tlink_tcon(cfile->tlink)->ses->server;
2811 ssize_t rc;
2812
2813 /*
2814 * We need to hold the sem to be sure nobody modifies lock list
2815 * with a brlock that prevents writing.
2816 */
2817 down_read(&cinode->lock_sem);
2818 inode_lock(inode);
2819
2820 rc = generic_write_checks(iocb, from);
2821 if (rc <= 0)
2822 goto out;
2823
2824 if (!cifs_find_lock_conflict(cfile, iocb->ki_pos, iov_iter_count(from),
2825 server->vals->exclusive_lock_type, NULL,
2826 CIFS_WRITE_OP))
2827 rc = __generic_file_write_iter(iocb, from);
2828 else
2829 rc = -EACCES;
2830 out:
2831 inode_unlock(inode);
2832
2833 if (rc > 0)
2834 rc = generic_write_sync(iocb, rc);
2835 up_read(&cinode->lock_sem);
2836 return rc;
2837 }
2838
2839 ssize_t
2840 cifs_strict_writev(struct kiocb *iocb, struct iov_iter *from)
2841 {
2842 struct inode *inode = file_inode(iocb->ki_filp);
2843 struct cifsInodeInfo *cinode = CIFS_I(inode);
2844 struct cifs_sb_info *cifs_sb = CIFS_SB(inode->i_sb);
2845 struct cifsFileInfo *cfile = (struct cifsFileInfo *)
2846 iocb->ki_filp->private_data;
2847 struct cifs_tcon *tcon = tlink_tcon(cfile->tlink);
2848 ssize_t written;
2849
2850 written = cifs_get_writer(cinode);
2851 if (written)
2852 return written;
2853
2854 if (CIFS_CACHE_WRITE(cinode)) {
2855 if (cap_unix(tcon->ses) &&
2856 (CIFS_UNIX_FCNTL_CAP & le64_to_cpu(tcon->fsUnixInfo.Capability))
2857 && ((cifs_sb->mnt_cifs_flags & CIFS_MOUNT_NOPOSIXBRL) == 0)) {
2858 written = generic_file_write_iter(iocb, from);
2859 goto out;
2860 }
2861 written = cifs_writev(iocb, from);
2862 goto out;
2863 }
2864 /*
2865 * For non-oplocked files in strict cache mode we need to write the data
2866 * to the server exactly from the pos to pos+len-1 rather than flush all
2867 * affected pages because it may cause a error with mandatory locks on
2868 * these pages but not on the region from pos to ppos+len-1.
2869 */
2870 written = cifs_user_writev(iocb, from);
2871 if (written > 0 && CIFS_CACHE_READ(cinode)) {
2872 /*
2873 * Windows 7 server can delay breaking level2 oplock if a write
2874 * request comes - break it on the client to prevent reading
2875 * an old data.
2876 */
2877 cifs_zap_mapping(inode);
2878 cifs_dbg(FYI, "Set no oplock for inode=%p after a write operation\n",
2879 inode);
2880 cinode->oplock = 0;
2881 }
2882 out:
2883 cifs_put_writer(cinode);
2884 return written;
2885 }
2886
2887 static struct cifs_readdata *
2888 cifs_readdata_alloc(unsigned int nr_pages, work_func_t complete)
2889 {
2890 struct cifs_readdata *rdata;
2891
2892 rdata = kzalloc(sizeof(*rdata) + (sizeof(struct page *) * nr_pages),
2893 GFP_KERNEL);
2894 if (rdata != NULL) {
2895 kref_init(&rdata->refcount);
2896 INIT_LIST_HEAD(&rdata->list);
2897 init_completion(&rdata->done);
2898 INIT_WORK(&rdata->work, complete);
2899 }
2900
2901 return rdata;
2902 }
2903
2904 void
2905 cifs_readdata_release(struct kref *refcount)
2906 {
2907 struct cifs_readdata *rdata = container_of(refcount,
2908 struct cifs_readdata, refcount);
2909
2910 if (rdata->cfile)
2911 cifsFileInfo_put(rdata->cfile);
2912
2913 kfree(rdata);
2914 }
2915
2916 static int
2917 cifs_read_allocate_pages(struct cifs_readdata *rdata, unsigned int nr_pages)
2918 {
2919 int rc = 0;
2920 struct page *page;
2921 unsigned int i;
2922
2923 for (i = 0; i < nr_pages; i++) {
2924 page = alloc_page(GFP_KERNEL|__GFP_HIGHMEM);
2925 if (!page) {
2926 rc = -ENOMEM;
2927 break;
2928 }
2929 rdata->pages[i] = page;
2930 }
2931
2932 if (rc) {
2933 for (i = 0; i < nr_pages; i++) {
2934 put_page(rdata->pages[i]);
2935 rdata->pages[i] = NULL;
2936 }
2937 }
2938 return rc;
2939 }
2940
2941 static void
2942 cifs_uncached_readdata_release(struct kref *refcount)
2943 {
2944 struct cifs_readdata *rdata = container_of(refcount,
2945 struct cifs_readdata, refcount);
2946 unsigned int i;
2947
2948 kref_put(&rdata->ctx->refcount, cifs_aio_ctx_release);
2949 for (i = 0; i < rdata->nr_pages; i++) {
2950 put_page(rdata->pages[i]);
2951 rdata->pages[i] = NULL;
2952 }
2953 cifs_readdata_release(refcount);
2954 }
2955
2956 /**
2957 * cifs_readdata_to_iov - copy data from pages in response to an iovec
2958 * @rdata: the readdata response with list of pages holding data
2959 * @iter: destination for our data
2960 *
2961 * This function copies data from a list of pages in a readdata response into
2962 * an array of iovecs. It will first calculate where the data should go
2963 * based on the info in the readdata and then copy the data into that spot.
2964 */
2965 static int
2966 cifs_readdata_to_iov(struct cifs_readdata *rdata, struct iov_iter *iter)
2967 {
2968 size_t remaining = rdata->got_bytes;
2969 unsigned int i;
2970
2971 for (i = 0; i < rdata->nr_pages; i++) {
2972 struct page *page = rdata->pages[i];
2973 size_t copy = min_t(size_t, remaining, PAGE_SIZE);
2974 size_t written;
2975
2976 if (unlikely(iter->type & ITER_PIPE)) {
2977 void *addr = kmap_atomic(page);
2978
2979 written = copy_to_iter(addr, copy, iter);
2980 kunmap_atomic(addr);
2981 } else
2982 written = copy_page_to_iter(page, 0, copy, iter);
2983 remaining -= written;
2984 if (written < copy && iov_iter_count(iter) > 0)
2985 break;
2986 }
2987 return remaining ? -EFAULT : 0;
2988 }
2989
2990 static void collect_uncached_read_data(struct cifs_aio_ctx *ctx);
2991
2992 static void
2993 cifs_uncached_readv_complete(struct work_struct *work)
2994 {
2995 struct cifs_readdata *rdata = container_of(work,
2996 struct cifs_readdata, work);
2997
2998 complete(&rdata->done);
2999 collect_uncached_read_data(rdata->ctx);
3000 /* the below call can possibly free the last ref to aio ctx */
3001 kref_put(&rdata->refcount, cifs_uncached_readdata_release);
3002 }
3003
3004 static int
3005 uncached_fill_pages(struct TCP_Server_Info *server,
3006 struct cifs_readdata *rdata, struct iov_iter *iter,
3007 unsigned int len)
3008 {
3009 int result = 0;
3010 unsigned int i;
3011 unsigned int nr_pages = rdata->nr_pages;
3012
3013 rdata->got_bytes = 0;
3014 rdata->tailsz = PAGE_SIZE;
3015 for (i = 0; i < nr_pages; i++) {
3016 struct page *page = rdata->pages[i];
3017 size_t n;
3018
3019 if (len <= 0) {
3020 /* no need to hold page hostage */
3021 rdata->pages[i] = NULL;
3022 rdata->nr_pages--;
3023 put_page(page);
3024 continue;
3025 }
3026 n = len;
3027 if (len >= PAGE_SIZE) {
3028 /* enough data to fill the page */
3029 n = PAGE_SIZE;
3030 len -= n;
3031 } else {
3032 zero_user(page, len, PAGE_SIZE - len);
3033 rdata->tailsz = len;
3034 len = 0;
3035 }
3036 if (iter)
3037 result = copy_page_from_iter(page, 0, n, iter);
3038 else
3039 result = cifs_read_page_from_socket(server, page, n);
3040 if (result < 0)
3041 break;
3042
3043 rdata->got_bytes += result;
3044 }
3045
3046 return rdata->got_bytes > 0 && result != -ECONNABORTED ?
3047 rdata->got_bytes : result;
3048 }
3049
3050 static int
3051 cifs_uncached_read_into_pages(struct TCP_Server_Info *server,
3052 struct cifs_readdata *rdata, unsigned int len)
3053 {
3054 return uncached_fill_pages(server, rdata, NULL, len);
3055 }
3056
3057 static int
3058 cifs_uncached_copy_into_pages(struct TCP_Server_Info *server,
3059 struct cifs_readdata *rdata,
3060 struct iov_iter *iter)
3061 {
3062 return uncached_fill_pages(server, rdata, iter, iter->count);
3063 }
3064
3065 static int
3066 cifs_send_async_read(loff_t offset, size_t len, struct cifsFileInfo *open_file,
3067 struct cifs_sb_info *cifs_sb, struct list_head *rdata_list,
3068 struct cifs_aio_ctx *ctx)
3069 {
3070 struct cifs_readdata *rdata;
3071 unsigned int npages, rsize, credits;
3072 size_t cur_len;
3073 int rc;
3074 pid_t pid;
3075 struct TCP_Server_Info *server;
3076
3077 server = tlink_tcon(open_file->tlink)->ses->server;
3078
3079 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_RWPIDFORWARD)
3080 pid = open_file->pid;
3081 else
3082 pid = current->tgid;
3083
3084 do {
3085 rc = server->ops->wait_mtu_credits(server, cifs_sb->rsize,
3086 &rsize, &credits);
3087 if (rc)
3088 break;
3089
3090 cur_len = min_t(const size_t, len, rsize);
3091 npages = DIV_ROUND_UP(cur_len, PAGE_SIZE);
3092
3093 /* allocate a readdata struct */
3094 rdata = cifs_readdata_alloc(npages,
3095 cifs_uncached_readv_complete);
3096 if (!rdata) {
3097 add_credits_and_wake_if(server, credits, 0);
3098 rc = -ENOMEM;
3099 break;
3100 }
3101
3102 rc = cifs_read_allocate_pages(rdata, npages);
3103 if (rc)
3104 goto error;
3105
3106 rdata->cfile = cifsFileInfo_get(open_file);
3107 rdata->nr_pages = npages;
3108 rdata->offset = offset;
3109 rdata->bytes = cur_len;
3110 rdata->pid = pid;
3111 rdata->pagesz = PAGE_SIZE;
3112 rdata->read_into_pages = cifs_uncached_read_into_pages;
3113 rdata->copy_into_pages = cifs_uncached_copy_into_pages;
3114 rdata->credits = credits;
3115 rdata->ctx = ctx;
3116 kref_get(&ctx->refcount);
3117
3118 if (!rdata->cfile->invalidHandle ||
3119 !(rc = cifs_reopen_file(rdata->cfile, true)))
3120 rc = server->ops->async_readv(rdata);
3121 error:
3122 if (rc) {
3123 add_credits_and_wake_if(server, rdata->credits, 0);
3124 kref_put(&rdata->refcount,
3125 cifs_uncached_readdata_release);
3126 if (rc == -EAGAIN)
3127 continue;
3128 break;
3129 }
3130
3131 list_add_tail(&rdata->list, rdata_list);
3132 offset += cur_len;
3133 len -= cur_len;
3134 } while (len > 0);
3135
3136 return rc;
3137 }
3138
3139 static void
3140 collect_uncached_read_data(struct cifs_aio_ctx *ctx)
3141 {
3142 struct cifs_readdata *rdata, *tmp;
3143 struct iov_iter *to = &ctx->iter;
3144 struct cifs_sb_info *cifs_sb;
3145 struct cifs_tcon *tcon;
3146 unsigned int i;
3147 int rc;
3148
3149 tcon = tlink_tcon(ctx->cfile->tlink);
3150 cifs_sb = CIFS_SB(ctx->cfile->dentry->d_sb);
3151
3152 mutex_lock(&ctx->aio_mutex);
3153
3154 if (list_empty(&ctx->list)) {
3155 mutex_unlock(&ctx->aio_mutex);
3156 return;
3157 }
3158
3159 rc = ctx->rc;
3160 /* the loop below should proceed in the order of increasing offsets */
3161 again:
3162 list_for_each_entry_safe(rdata, tmp, &ctx->list, list) {
3163 if (!rc) {
3164 if (!try_wait_for_completion(&rdata->done)) {
3165 mutex_unlock(&ctx->aio_mutex);
3166 return;
3167 }
3168
3169 if (rdata->result == -EAGAIN) {
3170 /* resend call if it's a retryable error */
3171 struct list_head tmp_list;
3172 unsigned int got_bytes = rdata->got_bytes;
3173
3174 list_del_init(&rdata->list);
3175 INIT_LIST_HEAD(&tmp_list);
3176
3177 /*
3178 * Got a part of data and then reconnect has
3179 * happened -- fill the buffer and continue
3180 * reading.
3181 */
3182 if (got_bytes && got_bytes < rdata->bytes) {
3183 rc = cifs_readdata_to_iov(rdata, to);
3184 if (rc) {
3185 kref_put(&rdata->refcount,
3186 cifs_uncached_readdata_release);
3187 continue;
3188 }
3189 }
3190
3191 rc = cifs_send_async_read(
3192 rdata->offset + got_bytes,
3193 rdata->bytes - got_bytes,
3194 rdata->cfile, cifs_sb,
3195 &tmp_list, ctx);
3196
3197 list_splice(&tmp_list, &ctx->list);
3198
3199 kref_put(&rdata->refcount,
3200 cifs_uncached_readdata_release);
3201 goto again;
3202 } else if (rdata->result)
3203 rc = rdata->result;
3204 else
3205 rc = cifs_readdata_to_iov(rdata, to);
3206
3207 /* if there was a short read -- discard anything left */
3208 if (rdata->got_bytes && rdata->got_bytes < rdata->bytes)
3209 rc = -ENODATA;
3210 }
3211 list_del_init(&rdata->list);
3212 kref_put(&rdata->refcount, cifs_uncached_readdata_release);
3213 }
3214
3215 for (i = 0; i < ctx->npages; i++) {
3216 if (ctx->should_dirty)
3217 set_page_dirty(ctx->bv[i].bv_page);
3218 put_page(ctx->bv[i].bv_page);
3219 }
3220
3221 ctx->total_len = ctx->len - iov_iter_count(to);
3222
3223 cifs_stats_bytes_read(tcon, ctx->total_len);
3224
3225 /* mask nodata case */
3226 if (rc == -ENODATA)
3227 rc = 0;
3228
3229 ctx->rc = (rc == 0) ? ctx->total_len : rc;
3230
3231 mutex_unlock(&ctx->aio_mutex);
3232
3233 if (ctx->iocb && ctx->iocb->ki_complete)
3234 ctx->iocb->ki_complete(ctx->iocb, ctx->rc, 0);
3235 else
3236 complete(&ctx->done);
3237 }
3238
3239 ssize_t cifs_user_readv(struct kiocb *iocb, struct iov_iter *to)
3240 {
3241 struct file *file = iocb->ki_filp;
3242 ssize_t rc;
3243 size_t len;
3244 ssize_t total_read = 0;
3245 loff_t offset = iocb->ki_pos;
3246 struct cifs_sb_info *cifs_sb;
3247 struct cifs_tcon *tcon;
3248 struct cifsFileInfo *cfile;
3249 struct cifs_aio_ctx *ctx;
3250
3251 len = iov_iter_count(to);
3252 if (!len)
3253 return 0;
3254
3255 cifs_sb = CIFS_FILE_SB(file);
3256 cfile = file->private_data;
3257 tcon = tlink_tcon(cfile->tlink);
3258
3259 if (!tcon->ses->server->ops->async_readv)
3260 return -ENOSYS;
3261
3262 if ((file->f_flags & O_ACCMODE) == O_WRONLY)
3263 cifs_dbg(FYI, "attempting read on write only file instance\n");
3264
3265 ctx = cifs_aio_ctx_alloc();
3266 if (!ctx)
3267 return -ENOMEM;
3268
3269 ctx->cfile = cifsFileInfo_get(cfile);
3270
3271 if (!is_sync_kiocb(iocb))
3272 ctx->iocb = iocb;
3273
3274 if (to->type & ITER_IOVEC)
3275 ctx->should_dirty = true;
3276
3277 rc = setup_aio_ctx_iter(ctx, to, READ);
3278 if (rc) {
3279 kref_put(&ctx->refcount, cifs_aio_ctx_release);
3280 return rc;
3281 }
3282
3283 len = ctx->len;
3284
3285 /* grab a lock here due to read response handlers can access ctx */
3286 mutex_lock(&ctx->aio_mutex);
3287
3288 rc = cifs_send_async_read(offset, len, cfile, cifs_sb, &ctx->list, ctx);
3289
3290 /* if at least one read request send succeeded, then reset rc */
3291 if (!list_empty(&ctx->list))
3292 rc = 0;
3293
3294 mutex_unlock(&ctx->aio_mutex);
3295
3296 if (rc) {
3297 kref_put(&ctx->refcount, cifs_aio_ctx_release);
3298 return rc;
3299 }
3300
3301 if (!is_sync_kiocb(iocb)) {
3302 kref_put(&ctx->refcount, cifs_aio_ctx_release);
3303 return -EIOCBQUEUED;
3304 }
3305
3306 rc = wait_for_completion_killable(&ctx->done);
3307 if (rc) {
3308 mutex_lock(&ctx->aio_mutex);
3309 ctx->rc = rc = -EINTR;
3310 total_read = ctx->total_len;
3311 mutex_unlock(&ctx->aio_mutex);
3312 } else {
3313 rc = ctx->rc;
3314 total_read = ctx->total_len;
3315 }
3316
3317 kref_put(&ctx->refcount, cifs_aio_ctx_release);
3318
3319 if (total_read) {
3320 iocb->ki_pos += total_read;
3321 return total_read;
3322 }
3323 return rc;
3324 }
3325
3326 ssize_t
3327 cifs_strict_readv(struct kiocb *iocb, struct iov_iter *to)
3328 {
3329 struct inode *inode = file_inode(iocb->ki_filp);
3330 struct cifsInodeInfo *cinode = CIFS_I(inode);
3331 struct cifs_sb_info *cifs_sb = CIFS_SB(inode->i_sb);
3332 struct cifsFileInfo *cfile = (struct cifsFileInfo *)
3333 iocb->ki_filp->private_data;
3334 struct cifs_tcon *tcon = tlink_tcon(cfile->tlink);
3335 int rc = -EACCES;
3336
3337 /*
3338 * In strict cache mode we need to read from the server all the time
3339 * if we don't have level II oplock because the server can delay mtime
3340 * change - so we can't make a decision about inode invalidating.
3341 * And we can also fail with pagereading if there are mandatory locks
3342 * on pages affected by this read but not on the region from pos to
3343 * pos+len-1.
3344 */
3345 if (!CIFS_CACHE_READ(cinode))
3346 return cifs_user_readv(iocb, to);
3347
3348 if (cap_unix(tcon->ses) &&
3349 (CIFS_UNIX_FCNTL_CAP & le64_to_cpu(tcon->fsUnixInfo.Capability)) &&
3350 ((cifs_sb->mnt_cifs_flags & CIFS_MOUNT_NOPOSIXBRL) == 0))
3351 return generic_file_read_iter(iocb, to);
3352
3353 /*
3354 * We need to hold the sem to be sure nobody modifies lock list
3355 * with a brlock that prevents reading.
3356 */
3357 down_read(&cinode->lock_sem);
3358 if (!cifs_find_lock_conflict(cfile, iocb->ki_pos, iov_iter_count(to),
3359 tcon->ses->server->vals->shared_lock_type,
3360 NULL, CIFS_READ_OP))
3361 rc = generic_file_read_iter(iocb, to);
3362 up_read(&cinode->lock_sem);
3363 return rc;
3364 }
3365
3366 static ssize_t
3367 cifs_read(struct file *file, char *read_data, size_t read_size, loff_t *offset)
3368 {
3369 int rc = -EACCES;
3370 unsigned int bytes_read = 0;
3371 unsigned int total_read;
3372 unsigned int current_read_size;
3373 unsigned int rsize;
3374 struct cifs_sb_info *cifs_sb;
3375 struct cifs_tcon *tcon;
3376 struct TCP_Server_Info *server;
3377 unsigned int xid;
3378 char *cur_offset;
3379 struct cifsFileInfo *open_file;
3380 struct cifs_io_parms io_parms;
3381 int buf_type = CIFS_NO_BUFFER;
3382 __u32 pid;
3383
3384 xid = get_xid();
3385 cifs_sb = CIFS_FILE_SB(file);
3386
3387 /* FIXME: set up handlers for larger reads and/or convert to async */
3388 rsize = min_t(unsigned int, cifs_sb->rsize, CIFSMaxBufSize);
3389
3390 if (file->private_data == NULL) {
3391 rc = -EBADF;
3392 free_xid(xid);
3393 return rc;
3394 }
3395 open_file = file->private_data;
3396 tcon = tlink_tcon(open_file->tlink);
3397 server = tcon->ses->server;
3398
3399 if (!server->ops->sync_read) {
3400 free_xid(xid);
3401 return -ENOSYS;
3402 }
3403
3404 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_RWPIDFORWARD)
3405 pid = open_file->pid;
3406 else
3407 pid = current->tgid;
3408
3409 if ((file->f_flags & O_ACCMODE) == O_WRONLY)
3410 cifs_dbg(FYI, "attempting read on write only file instance\n");
3411
3412 for (total_read = 0, cur_offset = read_data; read_size > total_read;
3413 total_read += bytes_read, cur_offset += bytes_read) {
3414 do {
3415 current_read_size = min_t(uint, read_size - total_read,
3416 rsize);
3417 /*
3418 * For windows me and 9x we do not want to request more
3419 * than it negotiated since it will refuse the read
3420 * then.
3421 */
3422 if ((tcon->ses) && !(tcon->ses->capabilities &
3423 tcon->ses->server->vals->cap_large_files)) {
3424 current_read_size = min_t(uint,
3425 current_read_size, CIFSMaxBufSize);
3426 }
3427 if (open_file->invalidHandle) {
3428 rc = cifs_reopen_file(open_file, true);
3429 if (rc != 0)
3430 break;
3431 }
3432 io_parms.pid = pid;
3433 io_parms.tcon = tcon;
3434 io_parms.offset = *offset;
3435 io_parms.length = current_read_size;
3436 rc = server->ops->sync_read(xid, &open_file->fid, &io_parms,
3437 &bytes_read, &cur_offset,
3438 &buf_type);
3439 } while (rc == -EAGAIN);
3440
3441 if (rc || (bytes_read == 0)) {
3442 if (total_read) {
3443 break;
3444 } else {
3445 free_xid(xid);
3446 return rc;
3447 }
3448 } else {
3449 cifs_stats_bytes_read(tcon, total_read);
3450 *offset += bytes_read;
3451 }
3452 }
3453 free_xid(xid);
3454 return total_read;
3455 }
3456
3457 /*
3458 * If the page is mmap'ed into a process' page tables, then we need to make
3459 * sure that it doesn't change while being written back.
3460 */
3461 static int
3462 cifs_page_mkwrite(struct vm_fault *vmf)
3463 {
3464 struct page *page = vmf->page;
3465
3466 lock_page(page);
3467 return VM_FAULT_LOCKED;
3468 }
3469
3470 static const struct vm_operations_struct cifs_file_vm_ops = {
3471 .fault = filemap_fault,
3472 .map_pages = filemap_map_pages,
3473 .page_mkwrite = cifs_page_mkwrite,
3474 };
3475
3476 int cifs_file_strict_mmap(struct file *file, struct vm_area_struct *vma)
3477 {
3478 int rc, xid;
3479 struct inode *inode = file_inode(file);
3480
3481 xid = get_xid();
3482
3483 if (!CIFS_CACHE_READ(CIFS_I(inode))) {
3484 rc = cifs_zap_mapping(inode);
3485 if (rc)
3486 return rc;
3487 }
3488
3489 rc = generic_file_mmap(file, vma);
3490 if (rc == 0)
3491 vma->vm_ops = &cifs_file_vm_ops;
3492 free_xid(xid);
3493 return rc;
3494 }
3495
3496 int cifs_file_mmap(struct file *file, struct vm_area_struct *vma)
3497 {
3498 int rc, xid;
3499
3500 xid = get_xid();
3501 rc = cifs_revalidate_file(file);
3502 if (rc) {
3503 cifs_dbg(FYI, "Validation prior to mmap failed, error=%d\n",
3504 rc);
3505 free_xid(xid);
3506 return rc;
3507 }
3508 rc = generic_file_mmap(file, vma);
3509 if (rc == 0)
3510 vma->vm_ops = &cifs_file_vm_ops;
3511 free_xid(xid);
3512 return rc;
3513 }
3514
3515 static void
3516 cifs_readv_complete(struct work_struct *work)
3517 {
3518 unsigned int i, got_bytes;
3519 struct cifs_readdata *rdata = container_of(work,
3520 struct cifs_readdata, work);
3521
3522 got_bytes = rdata->got_bytes;
3523 for (i = 0; i < rdata->nr_pages; i++) {
3524 struct page *page = rdata->pages[i];
3525
3526 lru_cache_add_file(page);
3527
3528 if (rdata->result == 0 ||
3529 (rdata->result == -EAGAIN && got_bytes)) {
3530 flush_dcache_page(page);
3531 SetPageUptodate(page);
3532 }
3533
3534 unlock_page(page);
3535
3536 if (rdata->result == 0 ||
3537 (rdata->result == -EAGAIN && got_bytes))
3538 cifs_readpage_to_fscache(rdata->mapping->host, page);
3539
3540 got_bytes -= min_t(unsigned int, PAGE_SIZE, got_bytes);
3541
3542 put_page(page);
3543 rdata->pages[i] = NULL;
3544 }
3545 kref_put(&rdata->refcount, cifs_readdata_release);
3546 }
3547
3548 static int
3549 readpages_fill_pages(struct TCP_Server_Info *server,
3550 struct cifs_readdata *rdata, struct iov_iter *iter,
3551 unsigned int len)
3552 {
3553 int result = 0;
3554 unsigned int i;
3555 u64 eof;
3556 pgoff_t eof_index;
3557 unsigned int nr_pages = rdata->nr_pages;
3558
3559 /* determine the eof that the server (probably) has */
3560 eof = CIFS_I(rdata->mapping->host)->server_eof;
3561 eof_index = eof ? (eof - 1) >> PAGE_SHIFT : 0;
3562 cifs_dbg(FYI, "eof=%llu eof_index=%lu\n", eof, eof_index);
3563
3564 rdata->got_bytes = 0;
3565 rdata->tailsz = PAGE_SIZE;
3566 for (i = 0; i < nr_pages; i++) {
3567 struct page *page = rdata->pages[i];
3568 size_t n = PAGE_SIZE;
3569
3570 if (len >= PAGE_SIZE) {
3571 len -= PAGE_SIZE;
3572 } else if (len > 0) {
3573 /* enough for partial page, fill and zero the rest */
3574 zero_user(page, len, PAGE_SIZE - len);
3575 n = rdata->tailsz = len;
3576 len = 0;
3577 } else if (page->index > eof_index) {
3578 /*
3579 * The VFS will not try to do readahead past the
3580 * i_size, but it's possible that we have outstanding
3581 * writes with gaps in the middle and the i_size hasn't
3582 * caught up yet. Populate those with zeroed out pages
3583 * to prevent the VFS from repeatedly attempting to
3584 * fill them until the writes are flushed.
3585 */
3586 zero_user(page, 0, PAGE_SIZE);
3587 lru_cache_add_file(page);
3588 flush_dcache_page(page);
3589 SetPageUptodate(page);
3590 unlock_page(page);
3591 put_page(page);
3592 rdata->pages[i] = NULL;
3593 rdata->nr_pages--;
3594 continue;
3595 } else {
3596 /* no need to hold page hostage */
3597 lru_cache_add_file(page);
3598 unlock_page(page);
3599 put_page(page);
3600 rdata->pages[i] = NULL;
3601 rdata->nr_pages--;
3602 continue;
3603 }
3604
3605 if (iter)
3606 result = copy_page_from_iter(page, 0, n, iter);
3607 else
3608 result = cifs_read_page_from_socket(server, page, n);
3609 if (result < 0)
3610 break;
3611
3612 rdata->got_bytes += result;
3613 }
3614
3615 return rdata->got_bytes > 0 && result != -ECONNABORTED ?
3616 rdata->got_bytes : result;
3617 }
3618
3619 static int
3620 cifs_readpages_read_into_pages(struct TCP_Server_Info *server,
3621 struct cifs_readdata *rdata, unsigned int len)
3622 {
3623 return readpages_fill_pages(server, rdata, NULL, len);
3624 }
3625
3626 static int
3627 cifs_readpages_copy_into_pages(struct TCP_Server_Info *server,
3628 struct cifs_readdata *rdata,
3629 struct iov_iter *iter)
3630 {
3631 return readpages_fill_pages(server, rdata, iter, iter->count);
3632 }
3633
3634 static int
3635 readpages_get_pages(struct address_space *mapping, struct list_head *page_list,
3636 unsigned int rsize, struct list_head *tmplist,
3637 unsigned int *nr_pages, loff_t *offset, unsigned int *bytes)
3638 {
3639 struct page *page, *tpage;
3640 unsigned int expected_index;
3641 int rc;
3642 gfp_t gfp = readahead_gfp_mask(mapping);
3643
3644 INIT_LIST_HEAD(tmplist);
3645
3646 page = list_entry(page_list->prev, struct page, lru);
3647
3648 /*
3649 * Lock the page and put it in the cache. Since no one else
3650 * should have access to this page, we're safe to simply set
3651 * PG_locked without checking it first.
3652 */
3653 __SetPageLocked(page);
3654 rc = add_to_page_cache_locked(page, mapping,
3655 page->index, gfp);
3656
3657 /* give up if we can't stick it in the cache */
3658 if (rc) {
3659 __ClearPageLocked(page);
3660 return rc;
3661 }
3662
3663 /* move first page to the tmplist */
3664 *offset = (loff_t)page->index << PAGE_SHIFT;
3665 *bytes = PAGE_SIZE;
3666 *nr_pages = 1;
3667 list_move_tail(&page->lru, tmplist);
3668
3669 /* now try and add more pages onto the request */
3670 expected_index = page->index + 1;
3671 list_for_each_entry_safe_reverse(page, tpage, page_list, lru) {
3672 /* discontinuity ? */
3673 if (page->index != expected_index)
3674 break;
3675
3676 /* would this page push the read over the rsize? */
3677 if (*bytes + PAGE_SIZE > rsize)
3678 break;
3679
3680 __SetPageLocked(page);
3681 if (add_to_page_cache_locked(page, mapping, page->index, gfp)) {
3682 __ClearPageLocked(page);
3683 break;
3684 }
3685 list_move_tail(&page->lru, tmplist);
3686 (*bytes) += PAGE_SIZE;
3687 expected_index++;
3688 (*nr_pages)++;
3689 }
3690 return rc;
3691 }
3692
3693 static int cifs_readpages(struct file *file, struct address_space *mapping,
3694 struct list_head *page_list, unsigned num_pages)
3695 {
3696 int rc;
3697 struct list_head tmplist;
3698 struct cifsFileInfo *open_file = file->private_data;
3699 struct cifs_sb_info *cifs_sb = CIFS_FILE_SB(file);
3700 struct TCP_Server_Info *server;
3701 pid_t pid;
3702
3703 /*
3704 * Reads as many pages as possible from fscache. Returns -ENOBUFS
3705 * immediately if the cookie is negative
3706 *
3707 * After this point, every page in the list might have PG_fscache set,
3708 * so we will need to clean that up off of every page we don't use.
3709 */
3710 rc = cifs_readpages_from_fscache(mapping->host, mapping, page_list,
3711 &num_pages);
3712 if (rc == 0)
3713 return rc;
3714
3715 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_RWPIDFORWARD)
3716 pid = open_file->pid;
3717 else
3718 pid = current->tgid;
3719
3720 rc = 0;
3721 server = tlink_tcon(open_file->tlink)->ses->server;
3722
3723 cifs_dbg(FYI, "%s: file=%p mapping=%p num_pages=%u\n",
3724 __func__, file, mapping, num_pages);
3725
3726 /*
3727 * Start with the page at end of list and move it to private
3728 * list. Do the same with any following pages until we hit
3729 * the rsize limit, hit an index discontinuity, or run out of
3730 * pages. Issue the async read and then start the loop again
3731 * until the list is empty.
3732 *
3733 * Note that list order is important. The page_list is in
3734 * the order of declining indexes. When we put the pages in
3735 * the rdata->pages, then we want them in increasing order.
3736 */
3737 while (!list_empty(page_list)) {
3738 unsigned int i, nr_pages, bytes, rsize;
3739 loff_t offset;
3740 struct page *page, *tpage;
3741 struct cifs_readdata *rdata;
3742 unsigned credits;
3743
3744 rc = server->ops->wait_mtu_credits(server, cifs_sb->rsize,
3745 &rsize, &credits);
3746 if (rc)
3747 break;
3748
3749 /*
3750 * Give up immediately if rsize is too small to read an entire
3751 * page. The VFS will fall back to readpage. We should never
3752 * reach this point however since we set ra_pages to 0 when the
3753 * rsize is smaller than a cache page.
3754 */
3755 if (unlikely(rsize < PAGE_SIZE)) {
3756 add_credits_and_wake_if(server, credits, 0);
3757 return 0;
3758 }
3759
3760 rc = readpages_get_pages(mapping, page_list, rsize, &tmplist,
3761 &nr_pages, &offset, &bytes);
3762 if (rc) {
3763 add_credits_and_wake_if(server, credits, 0);
3764 break;
3765 }
3766
3767 rdata = cifs_readdata_alloc(nr_pages, cifs_readv_complete);
3768 if (!rdata) {
3769 /* best to give up if we're out of mem */
3770 list_for_each_entry_safe(page, tpage, &tmplist, lru) {
3771 list_del(&page->lru);
3772 lru_cache_add_file(page);
3773 unlock_page(page);
3774 put_page(page);
3775 }
3776 rc = -ENOMEM;
3777 add_credits_and_wake_if(server, credits, 0);
3778 break;
3779 }
3780
3781 rdata->cfile = cifsFileInfo_get(open_file);
3782 rdata->mapping = mapping;
3783 rdata->offset = offset;
3784 rdata->bytes = bytes;
3785 rdata->pid = pid;
3786 rdata->pagesz = PAGE_SIZE;
3787 rdata->read_into_pages = cifs_readpages_read_into_pages;
3788 rdata->copy_into_pages = cifs_readpages_copy_into_pages;
3789 rdata->credits = credits;
3790
3791 list_for_each_entry_safe(page, tpage, &tmplist, lru) {
3792 list_del(&page->lru);
3793 rdata->pages[rdata->nr_pages++] = page;
3794 }
3795
3796 if (!rdata->cfile->invalidHandle ||
3797 !(rc = cifs_reopen_file(rdata->cfile, true)))
3798 rc = server->ops->async_readv(rdata);
3799 if (rc) {
3800 add_credits_and_wake_if(server, rdata->credits, 0);
3801 for (i = 0; i < rdata->nr_pages; i++) {
3802 page = rdata->pages[i];
3803 lru_cache_add_file(page);
3804 unlock_page(page);
3805 put_page(page);
3806 }
3807 /* Fallback to the readpage in error/reconnect cases */
3808 kref_put(&rdata->refcount, cifs_readdata_release);
3809 break;
3810 }
3811
3812 kref_put(&rdata->refcount, cifs_readdata_release);
3813 }
3814
3815 /* Any pages that have been shown to fscache but didn't get added to
3816 * the pagecache must be uncached before they get returned to the
3817 * allocator.
3818 */
3819 cifs_fscache_readpages_cancel(mapping->host, page_list);
3820 return rc;
3821 }
3822
3823 /*
3824 * cifs_readpage_worker must be called with the page pinned
3825 */
3826 static int cifs_readpage_worker(struct file *file, struct page *page,
3827 loff_t *poffset)
3828 {
3829 char *read_data;
3830 int rc;
3831
3832 /* Is the page cached? */
3833 rc = cifs_readpage_from_fscache(file_inode(file), page);
3834 if (rc == 0)
3835 goto read_complete;
3836
3837 read_data = kmap(page);
3838 /* for reads over a certain size could initiate async read ahead */
3839
3840 rc = cifs_read(file, read_data, PAGE_SIZE, poffset);
3841
3842 if (rc < 0)
3843 goto io_error;
3844 else
3845 cifs_dbg(FYI, "Bytes read %d\n", rc);
3846
3847 file_inode(file)->i_atime =
3848 current_time(file_inode(file));
3849
3850 if (PAGE_SIZE > rc)
3851 memset(read_data + rc, 0, PAGE_SIZE - rc);
3852
3853 flush_dcache_page(page);
3854 SetPageUptodate(page);
3855
3856 /* send this page to the cache */
3857 cifs_readpage_to_fscache(file_inode(file), page);
3858
3859 rc = 0;
3860
3861 io_error:
3862 kunmap(page);
3863 unlock_page(page);
3864
3865 read_complete:
3866 return rc;
3867 }
3868
3869 static int cifs_readpage(struct file *file, struct page *page)
3870 {
3871 loff_t offset = (loff_t)page->index << PAGE_SHIFT;
3872 int rc = -EACCES;
3873 unsigned int xid;
3874
3875 xid = get_xid();
3876
3877 if (file->private_data == NULL) {
3878 rc = -EBADF;
3879 free_xid(xid);
3880 return rc;
3881 }
3882
3883 cifs_dbg(FYI, "readpage %p at offset %d 0x%x\n",
3884 page, (int)offset, (int)offset);
3885
3886 rc = cifs_readpage_worker(file, page, &offset);
3887
3888 free_xid(xid);
3889 return rc;
3890 }
3891
3892 static int is_inode_writable(struct cifsInodeInfo *cifs_inode)
3893 {
3894 struct cifsFileInfo *open_file;
3895 struct cifs_tcon *tcon =
3896 cifs_sb_master_tcon(CIFS_SB(cifs_inode->vfs_inode.i_sb));
3897
3898 spin_lock(&tcon->open_file_lock);
3899 list_for_each_entry(open_file, &cifs_inode->openFileList, flist) {
3900 if (OPEN_FMODE(open_file->f_flags) & FMODE_WRITE) {
3901 spin_unlock(&tcon->open_file_lock);
3902 return 1;
3903 }
3904 }
3905 spin_unlock(&tcon->open_file_lock);
3906 return 0;
3907 }
3908
3909 /* We do not want to update the file size from server for inodes
3910 open for write - to avoid races with writepage extending
3911 the file - in the future we could consider allowing
3912 refreshing the inode only on increases in the file size
3913 but this is tricky to do without racing with writebehind
3914 page caching in the current Linux kernel design */
3915 bool is_size_safe_to_change(struct cifsInodeInfo *cifsInode, __u64 end_of_file)
3916 {
3917 if (!cifsInode)
3918 return true;
3919
3920 if (is_inode_writable(cifsInode)) {
3921 /* This inode is open for write at least once */
3922 struct cifs_sb_info *cifs_sb;
3923
3924 cifs_sb = CIFS_SB(cifsInode->vfs_inode.i_sb);
3925 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_DIRECT_IO) {
3926 /* since no page cache to corrupt on directio
3927 we can change size safely */
3928 return true;
3929 }
3930
3931 if (i_size_read(&cifsInode->vfs_inode) < end_of_file)
3932 return true;
3933
3934 return false;
3935 } else
3936 return true;
3937 }
3938
3939 static int cifs_write_begin(struct file *file, struct address_space *mapping,
3940 loff_t pos, unsigned len, unsigned flags,
3941 struct page **pagep, void **fsdata)
3942 {
3943 int oncethru = 0;
3944 pgoff_t index = pos >> PAGE_SHIFT;
3945 loff_t offset = pos & (PAGE_SIZE - 1);
3946 loff_t page_start = pos & PAGE_MASK;
3947 loff_t i_size;
3948 struct page *page;
3949 int rc = 0;
3950
3951 cifs_dbg(FYI, "write_begin from %lld len %d\n", (long long)pos, len);
3952
3953 start:
3954 page = grab_cache_page_write_begin(mapping, index, flags);
3955 if (!page) {
3956 rc = -ENOMEM;
3957 goto out;
3958 }
3959
3960 if (PageUptodate(page))
3961 goto out;
3962
3963 /*
3964 * If we write a full page it will be up to date, no need to read from
3965 * the server. If the write is short, we'll end up doing a sync write
3966 * instead.
3967 */
3968 if (len == PAGE_SIZE)
3969 goto out;
3970
3971 /*
3972 * optimize away the read when we have an oplock, and we're not
3973 * expecting to use any of the data we'd be reading in. That
3974 * is, when the page lies beyond the EOF, or straddles the EOF
3975 * and the write will cover all of the existing data.
3976 */
3977 if (CIFS_CACHE_READ(CIFS_I(mapping->host))) {
3978 i_size = i_size_read(mapping->host);
3979 if (page_start >= i_size ||
3980 (offset == 0 && (pos + len) >= i_size)) {
3981 zero_user_segments(page, 0, offset,
3982 offset + len,
3983 PAGE_SIZE);
3984 /*
3985 * PageChecked means that the parts of the page
3986 * to which we're not writing are considered up
3987 * to date. Once the data is copied to the
3988 * page, it can be set uptodate.
3989 */
3990 SetPageChecked(page);
3991 goto out;
3992 }
3993 }
3994
3995 if ((file->f_flags & O_ACCMODE) != O_WRONLY && !oncethru) {
3996 /*
3997 * might as well read a page, it is fast enough. If we get
3998 * an error, we don't need to return it. cifs_write_end will
3999 * do a sync write instead since PG_uptodate isn't set.
4000 */
4001 cifs_readpage_worker(file, page, &page_start);
4002 put_page(page);
4003 oncethru = 1;
4004 goto start;
4005 } else {
4006 /* we could try using another file handle if there is one -
4007 but how would we lock it to prevent close of that handle
4008 racing with this read? In any case
4009 this will be written out by write_end so is fine */
4010 }
4011 out:
4012 *pagep = page;
4013 return rc;
4014 }
4015
4016 static int cifs_release_page(struct page *page, gfp_t gfp)
4017 {
4018 if (PagePrivate(page))
4019 return 0;
4020
4021 return cifs_fscache_release_page(page, gfp);
4022 }
4023
4024 static void cifs_invalidate_page(struct page *page, unsigned int offset,
4025 unsigned int length)
4026 {
4027 struct cifsInodeInfo *cifsi = CIFS_I(page->mapping->host);
4028
4029 if (offset == 0 && length == PAGE_SIZE)
4030 cifs_fscache_invalidate_page(page, &cifsi->vfs_inode);
4031 }
4032
4033 static int cifs_launder_page(struct page *page)
4034 {
4035 int rc = 0;
4036 loff_t range_start = page_offset(page);
4037 loff_t range_end = range_start + (loff_t)(PAGE_SIZE - 1);
4038 struct writeback_control wbc = {
4039 .sync_mode = WB_SYNC_ALL,
4040 .nr_to_write = 0,
4041 .range_start = range_start,
4042 .range_end = range_end,
4043 };
4044
4045 cifs_dbg(FYI, "Launder page: %p\n", page);
4046
4047 if (clear_page_dirty_for_io(page))
4048 rc = cifs_writepage_locked(page, &wbc);
4049
4050 cifs_fscache_invalidate_page(page, page->mapping->host);
4051 return rc;
4052 }
4053
4054 void cifs_oplock_break(struct work_struct *work)
4055 {
4056 struct cifsFileInfo *cfile = container_of(work, struct cifsFileInfo,
4057 oplock_break);
4058 struct inode *inode = d_inode(cfile->dentry);
4059 struct cifsInodeInfo *cinode = CIFS_I(inode);
4060 struct cifs_tcon *tcon = tlink_tcon(cfile->tlink);
4061 struct TCP_Server_Info *server = tcon->ses->server;
4062 int rc = 0;
4063
4064 wait_on_bit(&cinode->flags, CIFS_INODE_PENDING_WRITERS,
4065 TASK_UNINTERRUPTIBLE);
4066
4067 server->ops->downgrade_oplock(server, cinode,
4068 test_bit(CIFS_INODE_DOWNGRADE_OPLOCK_TO_L2, &cinode->flags));
4069
4070 if (!CIFS_CACHE_WRITE(cinode) && CIFS_CACHE_READ(cinode) &&
4071 cifs_has_mand_locks(cinode)) {
4072 cifs_dbg(FYI, "Reset oplock to None for inode=%p due to mand locks\n",
4073 inode);
4074 cinode->oplock = 0;
4075 }
4076
4077 if (inode && S_ISREG(inode->i_mode)) {
4078 if (CIFS_CACHE_READ(cinode))
4079 break_lease(inode, O_RDONLY);
4080 else
4081 break_lease(inode, O_WRONLY);
4082 rc = filemap_fdatawrite(inode->i_mapping);
4083 if (!CIFS_CACHE_READ(cinode)) {
4084 rc = filemap_fdatawait(inode->i_mapping);
4085 mapping_set_error(inode->i_mapping, rc);
4086 cifs_zap_mapping(inode);
4087 }
4088 cifs_dbg(FYI, "Oplock flush inode %p rc %d\n", inode, rc);
4089 }
4090
4091 rc = cifs_push_locks(cfile);
4092 if (rc)
4093 cifs_dbg(VFS, "Push locks rc = %d\n", rc);
4094
4095 /*
4096 * releasing stale oplock after recent reconnect of smb session using
4097 * a now incorrect file handle is not a data integrity issue but do
4098 * not bother sending an oplock release if session to server still is
4099 * disconnected since oplock already released by the server
4100 */
4101 if (!cfile->oplock_break_cancelled) {
4102 rc = tcon->ses->server->ops->oplock_response(tcon, &cfile->fid,
4103 cinode);
4104 cifs_dbg(FYI, "Oplock release rc = %d\n", rc);
4105 }
4106 cifs_done_oplock_break(cinode);
4107 }
4108
4109 /*
4110 * The presence of cifs_direct_io() in the address space ops vector
4111 * allowes open() O_DIRECT flags which would have failed otherwise.
4112 *
4113 * In the non-cached mode (mount with cache=none), we shunt off direct read and write requests
4114 * so this method should never be called.
4115 *
4116 * Direct IO is not yet supported in the cached mode.
4117 */
4118 static ssize_t
4119 cifs_direct_io(struct kiocb *iocb, struct iov_iter *iter)
4120 {
4121 /*
4122 * FIXME
4123 * Eventually need to support direct IO for non forcedirectio mounts
4124 */
4125 return -EINVAL;
4126 }
4127
4128
4129 const struct address_space_operations cifs_addr_ops = {
4130 .readpage = cifs_readpage,
4131 .readpages = cifs_readpages,
4132 .writepage = cifs_writepage,
4133 .writepages = cifs_writepages,
4134 .write_begin = cifs_write_begin,
4135 .write_end = cifs_write_end,
4136 .set_page_dirty = __set_page_dirty_nobuffers,
4137 .releasepage = cifs_release_page,
4138 .direct_IO = cifs_direct_io,
4139 .invalidatepage = cifs_invalidate_page,
4140 .launder_page = cifs_launder_page,
4141 };
4142
4143 /*
4144 * cifs_readpages requires the server to support a buffer large enough to
4145 * contain the header plus one complete page of data. Otherwise, we need
4146 * to leave cifs_readpages out of the address space operations.
4147 */
4148 const struct address_space_operations cifs_addr_ops_smallbuf = {
4149 .readpage = cifs_readpage,
4150 .writepage = cifs_writepage,
4151 .writepages = cifs_writepages,
4152 .write_begin = cifs_write_begin,
4153 .write_end = cifs_write_end,
4154 .set_page_dirty = __set_page_dirty_nobuffers,
4155 .releasepage = cifs_release_page,
4156 .invalidatepage = cifs_invalidate_page,
4157 .launder_page = cifs_launder_page,
4158 };