]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/cifs/file.c
Switch may_open() and break_lease() to passing O_...
[mirror_ubuntu-artful-kernel.git] / fs / cifs / file.c
1 /*
2 * fs/cifs/file.c
3 *
4 * vfs operations that deal with files
5 *
6 * Copyright (C) International Business Machines Corp., 2002,2007
7 * Author(s): Steve French (sfrench@us.ibm.com)
8 * Jeremy Allison (jra@samba.org)
9 *
10 * This library is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU Lesser General Public License as published
12 * by the Free Software Foundation; either version 2.1 of the License, or
13 * (at your option) any later version.
14 *
15 * This library is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
18 * the GNU Lesser General Public License for more details.
19 *
20 * You should have received a copy of the GNU Lesser General Public License
21 * along with this library; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 */
24 #include <linux/fs.h>
25 #include <linux/backing-dev.h>
26 #include <linux/stat.h>
27 #include <linux/fcntl.h>
28 #include <linux/pagemap.h>
29 #include <linux/pagevec.h>
30 #include <linux/writeback.h>
31 #include <linux/task_io_accounting_ops.h>
32 #include <linux/delay.h>
33 #include <linux/mount.h>
34 #include <asm/div64.h>
35 #include "cifsfs.h"
36 #include "cifspdu.h"
37 #include "cifsglob.h"
38 #include "cifsproto.h"
39 #include "cifs_unicode.h"
40 #include "cifs_debug.h"
41 #include "cifs_fs_sb.h"
42
43 static inline int cifs_convert_flags(unsigned int flags)
44 {
45 if ((flags & O_ACCMODE) == O_RDONLY)
46 return GENERIC_READ;
47 else if ((flags & O_ACCMODE) == O_WRONLY)
48 return GENERIC_WRITE;
49 else if ((flags & O_ACCMODE) == O_RDWR) {
50 /* GENERIC_ALL is too much permission to request
51 can cause unnecessary access denied on create */
52 /* return GENERIC_ALL; */
53 return (GENERIC_READ | GENERIC_WRITE);
54 }
55
56 return (READ_CONTROL | FILE_WRITE_ATTRIBUTES | FILE_READ_ATTRIBUTES |
57 FILE_WRITE_EA | FILE_APPEND_DATA | FILE_WRITE_DATA |
58 FILE_READ_DATA);
59 }
60
61 static inline fmode_t cifs_posix_convert_flags(unsigned int flags)
62 {
63 fmode_t posix_flags = 0;
64
65 if ((flags & O_ACCMODE) == O_RDONLY)
66 posix_flags = FMODE_READ;
67 else if ((flags & O_ACCMODE) == O_WRONLY)
68 posix_flags = FMODE_WRITE;
69 else if ((flags & O_ACCMODE) == O_RDWR) {
70 /* GENERIC_ALL is too much permission to request
71 can cause unnecessary access denied on create */
72 /* return GENERIC_ALL; */
73 posix_flags = FMODE_READ | FMODE_WRITE;
74 }
75 /* can not map O_CREAT or O_EXCL or O_TRUNC flags when
76 reopening a file. They had their effect on the original open */
77 if (flags & O_APPEND)
78 posix_flags |= (fmode_t)O_APPEND;
79 if (flags & O_DSYNC)
80 posix_flags |= (fmode_t)O_DSYNC;
81 if (flags & __O_SYNC)
82 posix_flags |= (fmode_t)__O_SYNC;
83 if (flags & O_DIRECTORY)
84 posix_flags |= (fmode_t)O_DIRECTORY;
85 if (flags & O_NOFOLLOW)
86 posix_flags |= (fmode_t)O_NOFOLLOW;
87 if (flags & O_DIRECT)
88 posix_flags |= (fmode_t)O_DIRECT;
89
90 return posix_flags;
91 }
92
93 static inline int cifs_get_disposition(unsigned int flags)
94 {
95 if ((flags & (O_CREAT | O_EXCL)) == (O_CREAT | O_EXCL))
96 return FILE_CREATE;
97 else if ((flags & (O_CREAT | O_TRUNC)) == (O_CREAT | O_TRUNC))
98 return FILE_OVERWRITE_IF;
99 else if ((flags & O_CREAT) == O_CREAT)
100 return FILE_OPEN_IF;
101 else if ((flags & O_TRUNC) == O_TRUNC)
102 return FILE_OVERWRITE;
103 else
104 return FILE_OPEN;
105 }
106
107 /* all arguments to this function must be checked for validity in caller */
108 static inline int
109 cifs_posix_open_inode_helper(struct inode *inode, struct file *file,
110 struct cifsInodeInfo *pCifsInode,
111 struct cifsFileInfo *pCifsFile, __u32 oplock,
112 u16 netfid)
113 {
114
115 write_lock(&GlobalSMBSeslock);
116
117 pCifsInode = CIFS_I(file->f_path.dentry->d_inode);
118 if (pCifsInode == NULL) {
119 write_unlock(&GlobalSMBSeslock);
120 return -EINVAL;
121 }
122
123 if (pCifsInode->clientCanCacheRead) {
124 /* we have the inode open somewhere else
125 no need to discard cache data */
126 goto psx_client_can_cache;
127 }
128
129 /* BB FIXME need to fix this check to move it earlier into posix_open
130 BB fIX following section BB FIXME */
131
132 /* if not oplocked, invalidate inode pages if mtime or file
133 size changed */
134 /* temp = cifs_NTtimeToUnix(le64_to_cpu(buf->LastWriteTime));
135 if (timespec_equal(&file->f_path.dentry->d_inode->i_mtime, &temp) &&
136 (file->f_path.dentry->d_inode->i_size ==
137 (loff_t)le64_to_cpu(buf->EndOfFile))) {
138 cFYI(1, ("inode unchanged on server"));
139 } else {
140 if (file->f_path.dentry->d_inode->i_mapping) {
141 rc = filemap_write_and_wait(file->f_path.dentry->d_inode->i_mapping);
142 if (rc != 0)
143 CIFS_I(file->f_path.dentry->d_inode)->write_behind_rc = rc;
144 }
145 cFYI(1, ("invalidating remote inode since open detected it "
146 "changed"));
147 invalidate_remote_inode(file->f_path.dentry->d_inode);
148 } */
149
150 psx_client_can_cache:
151 if ((oplock & 0xF) == OPLOCK_EXCLUSIVE) {
152 pCifsInode->clientCanCacheAll = true;
153 pCifsInode->clientCanCacheRead = true;
154 cFYI(1, ("Exclusive Oplock granted on inode %p",
155 file->f_path.dentry->d_inode));
156 } else if ((oplock & 0xF) == OPLOCK_READ)
157 pCifsInode->clientCanCacheRead = true;
158
159 /* will have to change the unlock if we reenable the
160 filemap_fdatawrite (which does not seem necessary */
161 write_unlock(&GlobalSMBSeslock);
162 return 0;
163 }
164
165 static struct cifsFileInfo *
166 cifs_fill_filedata(struct file *file)
167 {
168 struct list_head *tmp;
169 struct cifsFileInfo *pCifsFile = NULL;
170 struct cifsInodeInfo *pCifsInode = NULL;
171
172 /* search inode for this file and fill in file->private_data */
173 pCifsInode = CIFS_I(file->f_path.dentry->d_inode);
174 read_lock(&GlobalSMBSeslock);
175 list_for_each(tmp, &pCifsInode->openFileList) {
176 pCifsFile = list_entry(tmp, struct cifsFileInfo, flist);
177 if ((pCifsFile->pfile == NULL) &&
178 (pCifsFile->pid == current->tgid)) {
179 /* mode set in cifs_create */
180
181 /* needed for writepage */
182 pCifsFile->pfile = file;
183 file->private_data = pCifsFile;
184 break;
185 }
186 }
187 read_unlock(&GlobalSMBSeslock);
188
189 if (file->private_data != NULL) {
190 return pCifsFile;
191 } else if ((file->f_flags & O_CREAT) && (file->f_flags & O_EXCL))
192 cERROR(1, ("could not find file instance for "
193 "new file %p", file));
194 return NULL;
195 }
196
197 /* all arguments to this function must be checked for validity in caller */
198 static inline int cifs_open_inode_helper(struct inode *inode, struct file *file,
199 struct cifsInodeInfo *pCifsInode, struct cifsFileInfo *pCifsFile,
200 struct cifsTconInfo *pTcon, int *oplock, FILE_ALL_INFO *buf,
201 char *full_path, int xid)
202 {
203 struct timespec temp;
204 int rc;
205
206 if (pCifsInode->clientCanCacheRead) {
207 /* we have the inode open somewhere else
208 no need to discard cache data */
209 goto client_can_cache;
210 }
211
212 /* BB need same check in cifs_create too? */
213 /* if not oplocked, invalidate inode pages if mtime or file
214 size changed */
215 temp = cifs_NTtimeToUnix(buf->LastWriteTime);
216 if (timespec_equal(&file->f_path.dentry->d_inode->i_mtime, &temp) &&
217 (file->f_path.dentry->d_inode->i_size ==
218 (loff_t)le64_to_cpu(buf->EndOfFile))) {
219 cFYI(1, ("inode unchanged on server"));
220 } else {
221 if (file->f_path.dentry->d_inode->i_mapping) {
222 /* BB no need to lock inode until after invalidate
223 since namei code should already have it locked? */
224 rc = filemap_write_and_wait(file->f_path.dentry->d_inode->i_mapping);
225 if (rc != 0)
226 CIFS_I(file->f_path.dentry->d_inode)->write_behind_rc = rc;
227 }
228 cFYI(1, ("invalidating remote inode since open detected it "
229 "changed"));
230 invalidate_remote_inode(file->f_path.dentry->d_inode);
231 }
232
233 client_can_cache:
234 if (pTcon->unix_ext)
235 rc = cifs_get_inode_info_unix(&file->f_path.dentry->d_inode,
236 full_path, inode->i_sb, xid);
237 else
238 rc = cifs_get_inode_info(&file->f_path.dentry->d_inode,
239 full_path, buf, inode->i_sb, xid, NULL);
240
241 if ((*oplock & 0xF) == OPLOCK_EXCLUSIVE) {
242 pCifsInode->clientCanCacheAll = true;
243 pCifsInode->clientCanCacheRead = true;
244 cFYI(1, ("Exclusive Oplock granted on inode %p",
245 file->f_path.dentry->d_inode));
246 } else if ((*oplock & 0xF) == OPLOCK_READ)
247 pCifsInode->clientCanCacheRead = true;
248
249 return rc;
250 }
251
252 int cifs_open(struct inode *inode, struct file *file)
253 {
254 int rc = -EACCES;
255 int xid;
256 __u32 oplock;
257 struct cifs_sb_info *cifs_sb;
258 struct cifsTconInfo *tcon;
259 struct cifsFileInfo *pCifsFile;
260 struct cifsInodeInfo *pCifsInode;
261 char *full_path = NULL;
262 int desiredAccess;
263 int disposition;
264 __u16 netfid;
265 FILE_ALL_INFO *buf = NULL;
266
267 xid = GetXid();
268
269 cifs_sb = CIFS_SB(inode->i_sb);
270 tcon = cifs_sb->tcon;
271
272 pCifsInode = CIFS_I(file->f_path.dentry->d_inode);
273 pCifsFile = cifs_fill_filedata(file);
274 if (pCifsFile) {
275 rc = 0;
276 FreeXid(xid);
277 return rc;
278 }
279
280 full_path = build_path_from_dentry(file->f_path.dentry);
281 if (full_path == NULL) {
282 rc = -ENOMEM;
283 FreeXid(xid);
284 return rc;
285 }
286
287 cFYI(1, ("inode = 0x%p file flags are 0x%x for %s",
288 inode, file->f_flags, full_path));
289
290 if (oplockEnabled)
291 oplock = REQ_OPLOCK;
292 else
293 oplock = 0;
294
295 if (!tcon->broken_posix_open && tcon->unix_ext &&
296 (tcon->ses->capabilities & CAP_UNIX) &&
297 (CIFS_UNIX_POSIX_PATH_OPS_CAP &
298 le64_to_cpu(tcon->fsUnixInfo.Capability))) {
299 int oflags = (int) cifs_posix_convert_flags(file->f_flags);
300 /* can not refresh inode info since size could be stale */
301 rc = cifs_posix_open(full_path, &inode, file->f_path.mnt,
302 cifs_sb->mnt_file_mode /* ignored */,
303 oflags, &oplock, &netfid, xid);
304 if (rc == 0) {
305 cFYI(1, ("posix open succeeded"));
306 /* no need for special case handling of setting mode
307 on read only files needed here */
308
309 pCifsFile = cifs_fill_filedata(file);
310 cifs_posix_open_inode_helper(inode, file, pCifsInode,
311 pCifsFile, oplock, netfid);
312 goto out;
313 } else if ((rc == -EINVAL) || (rc == -EOPNOTSUPP)) {
314 if (tcon->ses->serverNOS)
315 cERROR(1, ("server %s of type %s returned"
316 " unexpected error on SMB posix open"
317 ", disabling posix open support."
318 " Check if server update available.",
319 tcon->ses->serverName,
320 tcon->ses->serverNOS));
321 tcon->broken_posix_open = true;
322 } else if ((rc != -EIO) && (rc != -EREMOTE) &&
323 (rc != -EOPNOTSUPP)) /* path not found or net err */
324 goto out;
325 /* else fallthrough to retry open the old way on network i/o
326 or DFS errors */
327 }
328
329 desiredAccess = cifs_convert_flags(file->f_flags);
330
331 /*********************************************************************
332 * open flag mapping table:
333 *
334 * POSIX Flag CIFS Disposition
335 * ---------- ----------------
336 * O_CREAT FILE_OPEN_IF
337 * O_CREAT | O_EXCL FILE_CREATE
338 * O_CREAT | O_TRUNC FILE_OVERWRITE_IF
339 * O_TRUNC FILE_OVERWRITE
340 * none of the above FILE_OPEN
341 *
342 * Note that there is not a direct match between disposition
343 * FILE_SUPERSEDE (ie create whether or not file exists although
344 * O_CREAT | O_TRUNC is similar but truncates the existing
345 * file rather than creating a new file as FILE_SUPERSEDE does
346 * (which uses the attributes / metadata passed in on open call)
347 *?
348 *? O_SYNC is a reasonable match to CIFS writethrough flag
349 *? and the read write flags match reasonably. O_LARGEFILE
350 *? is irrelevant because largefile support is always used
351 *? by this client. Flags O_APPEND, O_DIRECT, O_DIRECTORY,
352 * O_FASYNC, O_NOFOLLOW, O_NONBLOCK need further investigation
353 *********************************************************************/
354
355 disposition = cifs_get_disposition(file->f_flags);
356
357 /* BB pass O_SYNC flag through on file attributes .. BB */
358
359 /* Also refresh inode by passing in file_info buf returned by SMBOpen
360 and calling get_inode_info with returned buf (at least helps
361 non-Unix server case) */
362
363 /* BB we can not do this if this is the second open of a file
364 and the first handle has writebehind data, we might be
365 able to simply do a filemap_fdatawrite/filemap_fdatawait first */
366 buf = kmalloc(sizeof(FILE_ALL_INFO), GFP_KERNEL);
367 if (!buf) {
368 rc = -ENOMEM;
369 goto out;
370 }
371
372 if (cifs_sb->tcon->ses->capabilities & CAP_NT_SMBS)
373 rc = CIFSSMBOpen(xid, tcon, full_path, disposition,
374 desiredAccess, CREATE_NOT_DIR, &netfid, &oplock, buf,
375 cifs_sb->local_nls, cifs_sb->mnt_cifs_flags
376 & CIFS_MOUNT_MAP_SPECIAL_CHR);
377 else
378 rc = -EIO; /* no NT SMB support fall into legacy open below */
379
380 if (rc == -EIO) {
381 /* Old server, try legacy style OpenX */
382 rc = SMBLegacyOpen(xid, tcon, full_path, disposition,
383 desiredAccess, CREATE_NOT_DIR, &netfid, &oplock, buf,
384 cifs_sb->local_nls, cifs_sb->mnt_cifs_flags
385 & CIFS_MOUNT_MAP_SPECIAL_CHR);
386 }
387 if (rc) {
388 cFYI(1, ("cifs_open returned 0x%x", rc));
389 goto out;
390 }
391
392 pCifsFile = cifs_new_fileinfo(inode, netfid, file, file->f_path.mnt,
393 file->f_flags);
394 file->private_data = pCifsFile;
395 if (file->private_data == NULL) {
396 rc = -ENOMEM;
397 goto out;
398 }
399
400 rc = cifs_open_inode_helper(inode, file, pCifsInode, pCifsFile, tcon,
401 &oplock, buf, full_path, xid);
402
403 if (oplock & CIFS_CREATE_ACTION) {
404 /* time to set mode which we can not set earlier due to
405 problems creating new read-only files */
406 if (tcon->unix_ext) {
407 struct cifs_unix_set_info_args args = {
408 .mode = inode->i_mode,
409 .uid = NO_CHANGE_64,
410 .gid = NO_CHANGE_64,
411 .ctime = NO_CHANGE_64,
412 .atime = NO_CHANGE_64,
413 .mtime = NO_CHANGE_64,
414 .device = 0,
415 };
416 CIFSSMBUnixSetPathInfo(xid, tcon, full_path, &args,
417 cifs_sb->local_nls,
418 cifs_sb->mnt_cifs_flags &
419 CIFS_MOUNT_MAP_SPECIAL_CHR);
420 }
421 }
422
423 out:
424 kfree(buf);
425 kfree(full_path);
426 FreeXid(xid);
427 return rc;
428 }
429
430 /* Try to reacquire byte range locks that were released when session */
431 /* to server was lost */
432 static int cifs_relock_file(struct cifsFileInfo *cifsFile)
433 {
434 int rc = 0;
435
436 /* BB list all locks open on this file and relock */
437
438 return rc;
439 }
440
441 static int cifs_reopen_file(struct file *file, bool can_flush)
442 {
443 int rc = -EACCES;
444 int xid;
445 __u32 oplock;
446 struct cifs_sb_info *cifs_sb;
447 struct cifsTconInfo *tcon;
448 struct cifsFileInfo *pCifsFile;
449 struct cifsInodeInfo *pCifsInode;
450 struct inode *inode;
451 char *full_path = NULL;
452 int desiredAccess;
453 int disposition = FILE_OPEN;
454 __u16 netfid;
455
456 if (file->private_data)
457 pCifsFile = (struct cifsFileInfo *)file->private_data;
458 else
459 return -EBADF;
460
461 xid = GetXid();
462 mutex_lock(&pCifsFile->fh_mutex);
463 if (!pCifsFile->invalidHandle) {
464 mutex_unlock(&pCifsFile->fh_mutex);
465 rc = 0;
466 FreeXid(xid);
467 return rc;
468 }
469
470 if (file->f_path.dentry == NULL) {
471 cERROR(1, ("no valid name if dentry freed"));
472 dump_stack();
473 rc = -EBADF;
474 goto reopen_error_exit;
475 }
476
477 inode = file->f_path.dentry->d_inode;
478 if (inode == NULL) {
479 cERROR(1, ("inode not valid"));
480 dump_stack();
481 rc = -EBADF;
482 goto reopen_error_exit;
483 }
484
485 cifs_sb = CIFS_SB(inode->i_sb);
486 tcon = cifs_sb->tcon;
487
488 /* can not grab rename sem here because various ops, including
489 those that already have the rename sem can end up causing writepage
490 to get called and if the server was down that means we end up here,
491 and we can never tell if the caller already has the rename_sem */
492 full_path = build_path_from_dentry(file->f_path.dentry);
493 if (full_path == NULL) {
494 rc = -ENOMEM;
495 reopen_error_exit:
496 mutex_unlock(&pCifsFile->fh_mutex);
497 FreeXid(xid);
498 return rc;
499 }
500
501 cFYI(1, ("inode = 0x%p file flags 0x%x for %s",
502 inode, file->f_flags, full_path));
503
504 if (oplockEnabled)
505 oplock = REQ_OPLOCK;
506 else
507 oplock = 0;
508
509 if (tcon->unix_ext && (tcon->ses->capabilities & CAP_UNIX) &&
510 (CIFS_UNIX_POSIX_PATH_OPS_CAP &
511 le64_to_cpu(tcon->fsUnixInfo.Capability))) {
512 int oflags = (int) cifs_posix_convert_flags(file->f_flags);
513 /* can not refresh inode info since size could be stale */
514 rc = cifs_posix_open(full_path, NULL, file->f_path.mnt,
515 cifs_sb->mnt_file_mode /* ignored */,
516 oflags, &oplock, &netfid, xid);
517 if (rc == 0) {
518 cFYI(1, ("posix reopen succeeded"));
519 goto reopen_success;
520 }
521 /* fallthrough to retry open the old way on errors, especially
522 in the reconnect path it is important to retry hard */
523 }
524
525 desiredAccess = cifs_convert_flags(file->f_flags);
526
527 /* Can not refresh inode by passing in file_info buf to be returned
528 by SMBOpen and then calling get_inode_info with returned buf
529 since file might have write behind data that needs to be flushed
530 and server version of file size can be stale. If we knew for sure
531 that inode was not dirty locally we could do this */
532
533 rc = CIFSSMBOpen(xid, tcon, full_path, disposition, desiredAccess,
534 CREATE_NOT_DIR, &netfid, &oplock, NULL,
535 cifs_sb->local_nls, cifs_sb->mnt_cifs_flags &
536 CIFS_MOUNT_MAP_SPECIAL_CHR);
537 if (rc) {
538 mutex_unlock(&pCifsFile->fh_mutex);
539 cFYI(1, ("cifs_open returned 0x%x", rc));
540 cFYI(1, ("oplock: %d", oplock));
541 } else {
542 reopen_success:
543 pCifsFile->netfid = netfid;
544 pCifsFile->invalidHandle = false;
545 mutex_unlock(&pCifsFile->fh_mutex);
546 pCifsInode = CIFS_I(inode);
547 if (pCifsInode) {
548 if (can_flush) {
549 rc = filemap_write_and_wait(inode->i_mapping);
550 if (rc != 0)
551 CIFS_I(inode)->write_behind_rc = rc;
552 /* temporarily disable caching while we
553 go to server to get inode info */
554 pCifsInode->clientCanCacheAll = false;
555 pCifsInode->clientCanCacheRead = false;
556 if (tcon->unix_ext)
557 rc = cifs_get_inode_info_unix(&inode,
558 full_path, inode->i_sb, xid);
559 else
560 rc = cifs_get_inode_info(&inode,
561 full_path, NULL, inode->i_sb,
562 xid, NULL);
563 } /* else we are writing out data to server already
564 and could deadlock if we tried to flush data, and
565 since we do not know if we have data that would
566 invalidate the current end of file on the server
567 we can not go to the server to get the new inod
568 info */
569 if ((oplock & 0xF) == OPLOCK_EXCLUSIVE) {
570 pCifsInode->clientCanCacheAll = true;
571 pCifsInode->clientCanCacheRead = true;
572 cFYI(1, ("Exclusive Oplock granted on inode %p",
573 file->f_path.dentry->d_inode));
574 } else if ((oplock & 0xF) == OPLOCK_READ) {
575 pCifsInode->clientCanCacheRead = true;
576 pCifsInode->clientCanCacheAll = false;
577 } else {
578 pCifsInode->clientCanCacheRead = false;
579 pCifsInode->clientCanCacheAll = false;
580 }
581 cifs_relock_file(pCifsFile);
582 }
583 }
584 kfree(full_path);
585 FreeXid(xid);
586 return rc;
587 }
588
589 int cifs_close(struct inode *inode, struct file *file)
590 {
591 int rc = 0;
592 int xid, timeout;
593 struct cifs_sb_info *cifs_sb;
594 struct cifsTconInfo *pTcon;
595 struct cifsFileInfo *pSMBFile =
596 (struct cifsFileInfo *)file->private_data;
597
598 xid = GetXid();
599
600 cifs_sb = CIFS_SB(inode->i_sb);
601 pTcon = cifs_sb->tcon;
602 if (pSMBFile) {
603 struct cifsLockInfo *li, *tmp;
604 write_lock(&GlobalSMBSeslock);
605 pSMBFile->closePend = true;
606 if (pTcon) {
607 /* no sense reconnecting to close a file that is
608 already closed */
609 if (!pTcon->need_reconnect) {
610 write_unlock(&GlobalSMBSeslock);
611 timeout = 2;
612 while ((atomic_read(&pSMBFile->count) != 1)
613 && (timeout <= 2048)) {
614 /* Give write a better chance to get to
615 server ahead of the close. We do not
616 want to add a wait_q here as it would
617 increase the memory utilization as
618 the struct would be in each open file,
619 but this should give enough time to
620 clear the socket */
621 cFYI(DBG2,
622 ("close delay, write pending"));
623 msleep(timeout);
624 timeout *= 4;
625 }
626 if (!pTcon->need_reconnect &&
627 !pSMBFile->invalidHandle)
628 rc = CIFSSMBClose(xid, pTcon,
629 pSMBFile->netfid);
630 } else
631 write_unlock(&GlobalSMBSeslock);
632 } else
633 write_unlock(&GlobalSMBSeslock);
634
635 /* Delete any outstanding lock records.
636 We'll lose them when the file is closed anyway. */
637 mutex_lock(&pSMBFile->lock_mutex);
638 list_for_each_entry_safe(li, tmp, &pSMBFile->llist, llist) {
639 list_del(&li->llist);
640 kfree(li);
641 }
642 mutex_unlock(&pSMBFile->lock_mutex);
643
644 write_lock(&GlobalSMBSeslock);
645 list_del(&pSMBFile->flist);
646 list_del(&pSMBFile->tlist);
647 write_unlock(&GlobalSMBSeslock);
648 cifsFileInfo_put(file->private_data);
649 file->private_data = NULL;
650 } else
651 rc = -EBADF;
652
653 read_lock(&GlobalSMBSeslock);
654 if (list_empty(&(CIFS_I(inode)->openFileList))) {
655 cFYI(1, ("closing last open instance for inode %p", inode));
656 /* if the file is not open we do not know if we can cache info
657 on this inode, much less write behind and read ahead */
658 CIFS_I(inode)->clientCanCacheRead = false;
659 CIFS_I(inode)->clientCanCacheAll = false;
660 }
661 read_unlock(&GlobalSMBSeslock);
662 if ((rc == 0) && CIFS_I(inode)->write_behind_rc)
663 rc = CIFS_I(inode)->write_behind_rc;
664 FreeXid(xid);
665 return rc;
666 }
667
668 int cifs_closedir(struct inode *inode, struct file *file)
669 {
670 int rc = 0;
671 int xid;
672 struct cifsFileInfo *pCFileStruct =
673 (struct cifsFileInfo *)file->private_data;
674 char *ptmp;
675
676 cFYI(1, ("Closedir inode = 0x%p", inode));
677
678 xid = GetXid();
679
680 if (pCFileStruct) {
681 struct cifsTconInfo *pTcon;
682 struct cifs_sb_info *cifs_sb =
683 CIFS_SB(file->f_path.dentry->d_sb);
684
685 pTcon = cifs_sb->tcon;
686
687 cFYI(1, ("Freeing private data in close dir"));
688 write_lock(&GlobalSMBSeslock);
689 if (!pCFileStruct->srch_inf.endOfSearch &&
690 !pCFileStruct->invalidHandle) {
691 pCFileStruct->invalidHandle = true;
692 write_unlock(&GlobalSMBSeslock);
693 rc = CIFSFindClose(xid, pTcon, pCFileStruct->netfid);
694 cFYI(1, ("Closing uncompleted readdir with rc %d",
695 rc));
696 /* not much we can do if it fails anyway, ignore rc */
697 rc = 0;
698 } else
699 write_unlock(&GlobalSMBSeslock);
700 ptmp = pCFileStruct->srch_inf.ntwrk_buf_start;
701 if (ptmp) {
702 cFYI(1, ("closedir free smb buf in srch struct"));
703 pCFileStruct->srch_inf.ntwrk_buf_start = NULL;
704 if (pCFileStruct->srch_inf.smallBuf)
705 cifs_small_buf_release(ptmp);
706 else
707 cifs_buf_release(ptmp);
708 }
709 kfree(file->private_data);
710 file->private_data = NULL;
711 }
712 /* BB can we lock the filestruct while this is going on? */
713 FreeXid(xid);
714 return rc;
715 }
716
717 static int store_file_lock(struct cifsFileInfo *fid, __u64 len,
718 __u64 offset, __u8 lockType)
719 {
720 struct cifsLockInfo *li =
721 kmalloc(sizeof(struct cifsLockInfo), GFP_KERNEL);
722 if (li == NULL)
723 return -ENOMEM;
724 li->offset = offset;
725 li->length = len;
726 li->type = lockType;
727 mutex_lock(&fid->lock_mutex);
728 list_add(&li->llist, &fid->llist);
729 mutex_unlock(&fid->lock_mutex);
730 return 0;
731 }
732
733 int cifs_lock(struct file *file, int cmd, struct file_lock *pfLock)
734 {
735 int rc, xid;
736 __u32 numLock = 0;
737 __u32 numUnlock = 0;
738 __u64 length;
739 bool wait_flag = false;
740 struct cifs_sb_info *cifs_sb;
741 struct cifsTconInfo *tcon;
742 __u16 netfid;
743 __u8 lockType = LOCKING_ANDX_LARGE_FILES;
744 bool posix_locking = 0;
745
746 length = 1 + pfLock->fl_end - pfLock->fl_start;
747 rc = -EACCES;
748 xid = GetXid();
749
750 cFYI(1, ("Lock parm: 0x%x flockflags: "
751 "0x%x flocktype: 0x%x start: %lld end: %lld",
752 cmd, pfLock->fl_flags, pfLock->fl_type, pfLock->fl_start,
753 pfLock->fl_end));
754
755 if (pfLock->fl_flags & FL_POSIX)
756 cFYI(1, ("Posix"));
757 if (pfLock->fl_flags & FL_FLOCK)
758 cFYI(1, ("Flock"));
759 if (pfLock->fl_flags & FL_SLEEP) {
760 cFYI(1, ("Blocking lock"));
761 wait_flag = true;
762 }
763 if (pfLock->fl_flags & FL_ACCESS)
764 cFYI(1, ("Process suspended by mandatory locking - "
765 "not implemented yet"));
766 if (pfLock->fl_flags & FL_LEASE)
767 cFYI(1, ("Lease on file - not implemented yet"));
768 if (pfLock->fl_flags &
769 (~(FL_POSIX | FL_FLOCK | FL_SLEEP | FL_ACCESS | FL_LEASE)))
770 cFYI(1, ("Unknown lock flags 0x%x", pfLock->fl_flags));
771
772 if (pfLock->fl_type == F_WRLCK) {
773 cFYI(1, ("F_WRLCK "));
774 numLock = 1;
775 } else if (pfLock->fl_type == F_UNLCK) {
776 cFYI(1, ("F_UNLCK"));
777 numUnlock = 1;
778 /* Check if unlock includes more than
779 one lock range */
780 } else if (pfLock->fl_type == F_RDLCK) {
781 cFYI(1, ("F_RDLCK"));
782 lockType |= LOCKING_ANDX_SHARED_LOCK;
783 numLock = 1;
784 } else if (pfLock->fl_type == F_EXLCK) {
785 cFYI(1, ("F_EXLCK"));
786 numLock = 1;
787 } else if (pfLock->fl_type == F_SHLCK) {
788 cFYI(1, ("F_SHLCK"));
789 lockType |= LOCKING_ANDX_SHARED_LOCK;
790 numLock = 1;
791 } else
792 cFYI(1, ("Unknown type of lock"));
793
794 cifs_sb = CIFS_SB(file->f_path.dentry->d_sb);
795 tcon = cifs_sb->tcon;
796
797 if (file->private_data == NULL) {
798 rc = -EBADF;
799 FreeXid(xid);
800 return rc;
801 }
802 netfid = ((struct cifsFileInfo *)file->private_data)->netfid;
803
804 if ((tcon->ses->capabilities & CAP_UNIX) &&
805 (CIFS_UNIX_FCNTL_CAP & le64_to_cpu(tcon->fsUnixInfo.Capability)) &&
806 ((cifs_sb->mnt_cifs_flags & CIFS_MOUNT_NOPOSIXBRL) == 0))
807 posix_locking = 1;
808 /* BB add code here to normalize offset and length to
809 account for negative length which we can not accept over the
810 wire */
811 if (IS_GETLK(cmd)) {
812 if (posix_locking) {
813 int posix_lock_type;
814 if (lockType & LOCKING_ANDX_SHARED_LOCK)
815 posix_lock_type = CIFS_RDLCK;
816 else
817 posix_lock_type = CIFS_WRLCK;
818 rc = CIFSSMBPosixLock(xid, tcon, netfid, 1 /* get */,
819 length, pfLock,
820 posix_lock_type, wait_flag);
821 FreeXid(xid);
822 return rc;
823 }
824
825 /* BB we could chain these into one lock request BB */
826 rc = CIFSSMBLock(xid, tcon, netfid, length, pfLock->fl_start,
827 0, 1, lockType, 0 /* wait flag */ );
828 if (rc == 0) {
829 rc = CIFSSMBLock(xid, tcon, netfid, length,
830 pfLock->fl_start, 1 /* numUnlock */ ,
831 0 /* numLock */ , lockType,
832 0 /* wait flag */ );
833 pfLock->fl_type = F_UNLCK;
834 if (rc != 0)
835 cERROR(1, ("Error unlocking previously locked "
836 "range %d during test of lock", rc));
837 rc = 0;
838
839 } else {
840 /* if rc == ERR_SHARING_VIOLATION ? */
841 rc = 0; /* do not change lock type to unlock
842 since range in use */
843 }
844
845 FreeXid(xid);
846 return rc;
847 }
848
849 if (!numLock && !numUnlock) {
850 /* if no lock or unlock then nothing
851 to do since we do not know what it is */
852 FreeXid(xid);
853 return -EOPNOTSUPP;
854 }
855
856 if (posix_locking) {
857 int posix_lock_type;
858 if (lockType & LOCKING_ANDX_SHARED_LOCK)
859 posix_lock_type = CIFS_RDLCK;
860 else
861 posix_lock_type = CIFS_WRLCK;
862
863 if (numUnlock == 1)
864 posix_lock_type = CIFS_UNLCK;
865
866 rc = CIFSSMBPosixLock(xid, tcon, netfid, 0 /* set */,
867 length, pfLock,
868 posix_lock_type, wait_flag);
869 } else {
870 struct cifsFileInfo *fid =
871 (struct cifsFileInfo *)file->private_data;
872
873 if (numLock) {
874 rc = CIFSSMBLock(xid, tcon, netfid, length,
875 pfLock->fl_start,
876 0, numLock, lockType, wait_flag);
877
878 if (rc == 0) {
879 /* For Windows locks we must store them. */
880 rc = store_file_lock(fid, length,
881 pfLock->fl_start, lockType);
882 }
883 } else if (numUnlock) {
884 /* For each stored lock that this unlock overlaps
885 completely, unlock it. */
886 int stored_rc = 0;
887 struct cifsLockInfo *li, *tmp;
888
889 rc = 0;
890 mutex_lock(&fid->lock_mutex);
891 list_for_each_entry_safe(li, tmp, &fid->llist, llist) {
892 if (pfLock->fl_start <= li->offset &&
893 (pfLock->fl_start + length) >=
894 (li->offset + li->length)) {
895 stored_rc = CIFSSMBLock(xid, tcon,
896 netfid,
897 li->length, li->offset,
898 1, 0, li->type, false);
899 if (stored_rc)
900 rc = stored_rc;
901
902 list_del(&li->llist);
903 kfree(li);
904 }
905 }
906 mutex_unlock(&fid->lock_mutex);
907 }
908 }
909
910 if (pfLock->fl_flags & FL_POSIX)
911 posix_lock_file_wait(file, pfLock);
912 FreeXid(xid);
913 return rc;
914 }
915
916 /*
917 * Set the timeout on write requests past EOF. For some servers (Windows)
918 * these calls can be very long.
919 *
920 * If we're writing >10M past the EOF we give a 180s timeout. Anything less
921 * than that gets a 45s timeout. Writes not past EOF get 15s timeouts.
922 * The 10M cutoff is totally arbitrary. A better scheme for this would be
923 * welcome if someone wants to suggest one.
924 *
925 * We may be able to do a better job with this if there were some way to
926 * declare that a file should be sparse.
927 */
928 static int
929 cifs_write_timeout(struct cifsInodeInfo *cifsi, loff_t offset)
930 {
931 if (offset <= cifsi->server_eof)
932 return CIFS_STD_OP;
933 else if (offset > (cifsi->server_eof + (10 * 1024 * 1024)))
934 return CIFS_VLONG_OP;
935 else
936 return CIFS_LONG_OP;
937 }
938
939 /* update the file size (if needed) after a write */
940 static void
941 cifs_update_eof(struct cifsInodeInfo *cifsi, loff_t offset,
942 unsigned int bytes_written)
943 {
944 loff_t end_of_write = offset + bytes_written;
945
946 if (end_of_write > cifsi->server_eof)
947 cifsi->server_eof = end_of_write;
948 }
949
950 ssize_t cifs_user_write(struct file *file, const char __user *write_data,
951 size_t write_size, loff_t *poffset)
952 {
953 int rc = 0;
954 unsigned int bytes_written = 0;
955 unsigned int total_written;
956 struct cifs_sb_info *cifs_sb;
957 struct cifsTconInfo *pTcon;
958 int xid, long_op;
959 struct cifsFileInfo *open_file;
960 struct cifsInodeInfo *cifsi = CIFS_I(file->f_path.dentry->d_inode);
961
962 cifs_sb = CIFS_SB(file->f_path.dentry->d_sb);
963
964 pTcon = cifs_sb->tcon;
965
966 /* cFYI(1,
967 (" write %d bytes to offset %lld of %s", write_size,
968 *poffset, file->f_path.dentry->d_name.name)); */
969
970 if (file->private_data == NULL)
971 return -EBADF;
972 open_file = (struct cifsFileInfo *) file->private_data;
973
974 rc = generic_write_checks(file, poffset, &write_size, 0);
975 if (rc)
976 return rc;
977
978 xid = GetXid();
979
980 long_op = cifs_write_timeout(cifsi, *poffset);
981 for (total_written = 0; write_size > total_written;
982 total_written += bytes_written) {
983 rc = -EAGAIN;
984 while (rc == -EAGAIN) {
985 if (file->private_data == NULL) {
986 /* file has been closed on us */
987 FreeXid(xid);
988 /* if we have gotten here we have written some data
989 and blocked, and the file has been freed on us while
990 we blocked so return what we managed to write */
991 return total_written;
992 }
993 if (open_file->closePend) {
994 FreeXid(xid);
995 if (total_written)
996 return total_written;
997 else
998 return -EBADF;
999 }
1000 if (open_file->invalidHandle) {
1001 /* we could deadlock if we called
1002 filemap_fdatawait from here so tell
1003 reopen_file not to flush data to server
1004 now */
1005 rc = cifs_reopen_file(file, false);
1006 if (rc != 0)
1007 break;
1008 }
1009
1010 rc = CIFSSMBWrite(xid, pTcon,
1011 open_file->netfid,
1012 min_t(const int, cifs_sb->wsize,
1013 write_size - total_written),
1014 *poffset, &bytes_written,
1015 NULL, write_data + total_written, long_op);
1016 }
1017 if (rc || (bytes_written == 0)) {
1018 if (total_written)
1019 break;
1020 else {
1021 FreeXid(xid);
1022 return rc;
1023 }
1024 } else {
1025 cifs_update_eof(cifsi, *poffset, bytes_written);
1026 *poffset += bytes_written;
1027 }
1028 long_op = CIFS_STD_OP; /* subsequent writes fast -
1029 15 seconds is plenty */
1030 }
1031
1032 cifs_stats_bytes_written(pTcon, total_written);
1033
1034 /* since the write may have blocked check these pointers again */
1035 if ((file->f_path.dentry) && (file->f_path.dentry->d_inode)) {
1036 struct inode *inode = file->f_path.dentry->d_inode;
1037 /* Do not update local mtime - server will set its actual value on write
1038 * inode->i_ctime = inode->i_mtime =
1039 * current_fs_time(inode->i_sb);*/
1040 if (total_written > 0) {
1041 spin_lock(&inode->i_lock);
1042 if (*poffset > file->f_path.dentry->d_inode->i_size)
1043 i_size_write(file->f_path.dentry->d_inode,
1044 *poffset);
1045 spin_unlock(&inode->i_lock);
1046 }
1047 mark_inode_dirty_sync(file->f_path.dentry->d_inode);
1048 }
1049 FreeXid(xid);
1050 return total_written;
1051 }
1052
1053 static ssize_t cifs_write(struct file *file, const char *write_data,
1054 size_t write_size, loff_t *poffset)
1055 {
1056 int rc = 0;
1057 unsigned int bytes_written = 0;
1058 unsigned int total_written;
1059 struct cifs_sb_info *cifs_sb;
1060 struct cifsTconInfo *pTcon;
1061 int xid, long_op;
1062 struct cifsFileInfo *open_file;
1063 struct cifsInodeInfo *cifsi = CIFS_I(file->f_path.dentry->d_inode);
1064
1065 cifs_sb = CIFS_SB(file->f_path.dentry->d_sb);
1066
1067 pTcon = cifs_sb->tcon;
1068
1069 cFYI(1, ("write %zd bytes to offset %lld of %s", write_size,
1070 *poffset, file->f_path.dentry->d_name.name));
1071
1072 if (file->private_data == NULL)
1073 return -EBADF;
1074 open_file = (struct cifsFileInfo *)file->private_data;
1075
1076 xid = GetXid();
1077
1078 long_op = cifs_write_timeout(cifsi, *poffset);
1079 for (total_written = 0; write_size > total_written;
1080 total_written += bytes_written) {
1081 rc = -EAGAIN;
1082 while (rc == -EAGAIN) {
1083 if (file->private_data == NULL) {
1084 /* file has been closed on us */
1085 FreeXid(xid);
1086 /* if we have gotten here we have written some data
1087 and blocked, and the file has been freed on us
1088 while we blocked so return what we managed to
1089 write */
1090 return total_written;
1091 }
1092 if (open_file->closePend) {
1093 FreeXid(xid);
1094 if (total_written)
1095 return total_written;
1096 else
1097 return -EBADF;
1098 }
1099 if (open_file->invalidHandle) {
1100 /* we could deadlock if we called
1101 filemap_fdatawait from here so tell
1102 reopen_file not to flush data to
1103 server now */
1104 rc = cifs_reopen_file(file, false);
1105 if (rc != 0)
1106 break;
1107 }
1108 if (experimEnabled || (pTcon->ses->server &&
1109 ((pTcon->ses->server->secMode &
1110 (SECMODE_SIGN_REQUIRED | SECMODE_SIGN_ENABLED))
1111 == 0))) {
1112 struct kvec iov[2];
1113 unsigned int len;
1114
1115 len = min((size_t)cifs_sb->wsize,
1116 write_size - total_written);
1117 /* iov[0] is reserved for smb header */
1118 iov[1].iov_base = (char *)write_data +
1119 total_written;
1120 iov[1].iov_len = len;
1121 rc = CIFSSMBWrite2(xid, pTcon,
1122 open_file->netfid, len,
1123 *poffset, &bytes_written,
1124 iov, 1, long_op);
1125 } else
1126 rc = CIFSSMBWrite(xid, pTcon,
1127 open_file->netfid,
1128 min_t(const int, cifs_sb->wsize,
1129 write_size - total_written),
1130 *poffset, &bytes_written,
1131 write_data + total_written,
1132 NULL, long_op);
1133 }
1134 if (rc || (bytes_written == 0)) {
1135 if (total_written)
1136 break;
1137 else {
1138 FreeXid(xid);
1139 return rc;
1140 }
1141 } else {
1142 cifs_update_eof(cifsi, *poffset, bytes_written);
1143 *poffset += bytes_written;
1144 }
1145 long_op = CIFS_STD_OP; /* subsequent writes fast -
1146 15 seconds is plenty */
1147 }
1148
1149 cifs_stats_bytes_written(pTcon, total_written);
1150
1151 /* since the write may have blocked check these pointers again */
1152 if ((file->f_path.dentry) && (file->f_path.dentry->d_inode)) {
1153 /*BB We could make this contingent on superblock ATIME flag too */
1154 /* file->f_path.dentry->d_inode->i_ctime =
1155 file->f_path.dentry->d_inode->i_mtime = CURRENT_TIME;*/
1156 if (total_written > 0) {
1157 spin_lock(&file->f_path.dentry->d_inode->i_lock);
1158 if (*poffset > file->f_path.dentry->d_inode->i_size)
1159 i_size_write(file->f_path.dentry->d_inode,
1160 *poffset);
1161 spin_unlock(&file->f_path.dentry->d_inode->i_lock);
1162 }
1163 mark_inode_dirty_sync(file->f_path.dentry->d_inode);
1164 }
1165 FreeXid(xid);
1166 return total_written;
1167 }
1168
1169 #ifdef CONFIG_CIFS_EXPERIMENTAL
1170 struct cifsFileInfo *find_readable_file(struct cifsInodeInfo *cifs_inode)
1171 {
1172 struct cifsFileInfo *open_file = NULL;
1173
1174 read_lock(&GlobalSMBSeslock);
1175 /* we could simply get the first_list_entry since write-only entries
1176 are always at the end of the list but since the first entry might
1177 have a close pending, we go through the whole list */
1178 list_for_each_entry(open_file, &cifs_inode->openFileList, flist) {
1179 if (open_file->closePend)
1180 continue;
1181 if (open_file->pfile && ((open_file->pfile->f_flags & O_RDWR) ||
1182 (open_file->pfile->f_flags & O_RDONLY))) {
1183 if (!open_file->invalidHandle) {
1184 /* found a good file */
1185 /* lock it so it will not be closed on us */
1186 cifsFileInfo_get(open_file);
1187 read_unlock(&GlobalSMBSeslock);
1188 return open_file;
1189 } /* else might as well continue, and look for
1190 another, or simply have the caller reopen it
1191 again rather than trying to fix this handle */
1192 } else /* write only file */
1193 break; /* write only files are last so must be done */
1194 }
1195 read_unlock(&GlobalSMBSeslock);
1196 return NULL;
1197 }
1198 #endif
1199
1200 struct cifsFileInfo *find_writable_file(struct cifsInodeInfo *cifs_inode)
1201 {
1202 struct cifsFileInfo *open_file;
1203 bool any_available = false;
1204 int rc;
1205
1206 /* Having a null inode here (because mapping->host was set to zero by
1207 the VFS or MM) should not happen but we had reports of on oops (due to
1208 it being zero) during stress testcases so we need to check for it */
1209
1210 if (cifs_inode == NULL) {
1211 cERROR(1, ("Null inode passed to cifs_writeable_file"));
1212 dump_stack();
1213 return NULL;
1214 }
1215
1216 read_lock(&GlobalSMBSeslock);
1217 refind_writable:
1218 list_for_each_entry(open_file, &cifs_inode->openFileList, flist) {
1219 if (open_file->closePend ||
1220 (!any_available && open_file->pid != current->tgid))
1221 continue;
1222
1223 if (open_file->pfile &&
1224 ((open_file->pfile->f_flags & O_RDWR) ||
1225 (open_file->pfile->f_flags & O_WRONLY))) {
1226 cifsFileInfo_get(open_file);
1227
1228 if (!open_file->invalidHandle) {
1229 /* found a good writable file */
1230 read_unlock(&GlobalSMBSeslock);
1231 return open_file;
1232 }
1233
1234 read_unlock(&GlobalSMBSeslock);
1235 /* Had to unlock since following call can block */
1236 rc = cifs_reopen_file(open_file->pfile, false);
1237 if (!rc) {
1238 if (!open_file->closePend)
1239 return open_file;
1240 else { /* start over in case this was deleted */
1241 /* since the list could be modified */
1242 read_lock(&GlobalSMBSeslock);
1243 cifsFileInfo_put(open_file);
1244 goto refind_writable;
1245 }
1246 }
1247
1248 /* if it fails, try another handle if possible -
1249 (we can not do this if closePending since
1250 loop could be modified - in which case we
1251 have to start at the beginning of the list
1252 again. Note that it would be bad
1253 to hold up writepages here (rather than
1254 in caller) with continuous retries */
1255 cFYI(1, ("wp failed on reopen file"));
1256 read_lock(&GlobalSMBSeslock);
1257 /* can not use this handle, no write
1258 pending on this one after all */
1259 cifsFileInfo_put(open_file);
1260
1261 if (open_file->closePend) /* list could have changed */
1262 goto refind_writable;
1263 /* else we simply continue to the next entry. Thus
1264 we do not loop on reopen errors. If we
1265 can not reopen the file, for example if we
1266 reconnected to a server with another client
1267 racing to delete or lock the file we would not
1268 make progress if we restarted before the beginning
1269 of the loop here. */
1270 }
1271 }
1272 /* couldn't find useable FH with same pid, try any available */
1273 if (!any_available) {
1274 any_available = true;
1275 goto refind_writable;
1276 }
1277 read_unlock(&GlobalSMBSeslock);
1278 return NULL;
1279 }
1280
1281 static int cifs_partialpagewrite(struct page *page, unsigned from, unsigned to)
1282 {
1283 struct address_space *mapping = page->mapping;
1284 loff_t offset = (loff_t)page->index << PAGE_CACHE_SHIFT;
1285 char *write_data;
1286 int rc = -EFAULT;
1287 int bytes_written = 0;
1288 struct cifs_sb_info *cifs_sb;
1289 struct cifsTconInfo *pTcon;
1290 struct inode *inode;
1291 struct cifsFileInfo *open_file;
1292
1293 if (!mapping || !mapping->host)
1294 return -EFAULT;
1295
1296 inode = page->mapping->host;
1297 cifs_sb = CIFS_SB(inode->i_sb);
1298 pTcon = cifs_sb->tcon;
1299
1300 offset += (loff_t)from;
1301 write_data = kmap(page);
1302 write_data += from;
1303
1304 if ((to > PAGE_CACHE_SIZE) || (from > to)) {
1305 kunmap(page);
1306 return -EIO;
1307 }
1308
1309 /* racing with truncate? */
1310 if (offset > mapping->host->i_size) {
1311 kunmap(page);
1312 return 0; /* don't care */
1313 }
1314
1315 /* check to make sure that we are not extending the file */
1316 if (mapping->host->i_size - offset < (loff_t)to)
1317 to = (unsigned)(mapping->host->i_size - offset);
1318
1319 open_file = find_writable_file(CIFS_I(mapping->host));
1320 if (open_file) {
1321 bytes_written = cifs_write(open_file->pfile, write_data,
1322 to-from, &offset);
1323 cifsFileInfo_put(open_file);
1324 /* Does mm or vfs already set times? */
1325 inode->i_atime = inode->i_mtime = current_fs_time(inode->i_sb);
1326 if ((bytes_written > 0) && (offset))
1327 rc = 0;
1328 else if (bytes_written < 0)
1329 rc = bytes_written;
1330 } else {
1331 cFYI(1, ("No writeable filehandles for inode"));
1332 rc = -EIO;
1333 }
1334
1335 kunmap(page);
1336 return rc;
1337 }
1338
1339 static int cifs_writepages(struct address_space *mapping,
1340 struct writeback_control *wbc)
1341 {
1342 struct backing_dev_info *bdi = mapping->backing_dev_info;
1343 unsigned int bytes_to_write;
1344 unsigned int bytes_written;
1345 struct cifs_sb_info *cifs_sb;
1346 int done = 0;
1347 pgoff_t end;
1348 pgoff_t index;
1349 int range_whole = 0;
1350 struct kvec *iov;
1351 int len;
1352 int n_iov = 0;
1353 pgoff_t next;
1354 int nr_pages;
1355 __u64 offset = 0;
1356 struct cifsFileInfo *open_file;
1357 struct cifsInodeInfo *cifsi = CIFS_I(mapping->host);
1358 struct page *page;
1359 struct pagevec pvec;
1360 int rc = 0;
1361 int scanned = 0;
1362 int xid, long_op;
1363
1364 cifs_sb = CIFS_SB(mapping->host->i_sb);
1365
1366 /*
1367 * If wsize is smaller that the page cache size, default to writing
1368 * one page at a time via cifs_writepage
1369 */
1370 if (cifs_sb->wsize < PAGE_CACHE_SIZE)
1371 return generic_writepages(mapping, wbc);
1372
1373 if ((cifs_sb->tcon->ses) && (cifs_sb->tcon->ses->server))
1374 if (cifs_sb->tcon->ses->server->secMode &
1375 (SECMODE_SIGN_REQUIRED | SECMODE_SIGN_ENABLED))
1376 if (!experimEnabled)
1377 return generic_writepages(mapping, wbc);
1378
1379 iov = kmalloc(32 * sizeof(struct kvec), GFP_KERNEL);
1380 if (iov == NULL)
1381 return generic_writepages(mapping, wbc);
1382
1383
1384 /*
1385 * BB: Is this meaningful for a non-block-device file system?
1386 * If it is, we should test it again after we do I/O
1387 */
1388 if (wbc->nonblocking && bdi_write_congested(bdi)) {
1389 wbc->encountered_congestion = 1;
1390 kfree(iov);
1391 return 0;
1392 }
1393
1394 xid = GetXid();
1395
1396 pagevec_init(&pvec, 0);
1397 if (wbc->range_cyclic) {
1398 index = mapping->writeback_index; /* Start from prev offset */
1399 end = -1;
1400 } else {
1401 index = wbc->range_start >> PAGE_CACHE_SHIFT;
1402 end = wbc->range_end >> PAGE_CACHE_SHIFT;
1403 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
1404 range_whole = 1;
1405 scanned = 1;
1406 }
1407 retry:
1408 while (!done && (index <= end) &&
1409 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
1410 PAGECACHE_TAG_DIRTY,
1411 min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1))) {
1412 int first;
1413 unsigned int i;
1414
1415 first = -1;
1416 next = 0;
1417 n_iov = 0;
1418 bytes_to_write = 0;
1419
1420 for (i = 0; i < nr_pages; i++) {
1421 page = pvec.pages[i];
1422 /*
1423 * At this point we hold neither mapping->tree_lock nor
1424 * lock on the page itself: the page may be truncated or
1425 * invalidated (changing page->mapping to NULL), or even
1426 * swizzled back from swapper_space to tmpfs file
1427 * mapping
1428 */
1429
1430 if (first < 0)
1431 lock_page(page);
1432 else if (!trylock_page(page))
1433 break;
1434
1435 if (unlikely(page->mapping != mapping)) {
1436 unlock_page(page);
1437 break;
1438 }
1439
1440 if (!wbc->range_cyclic && page->index > end) {
1441 done = 1;
1442 unlock_page(page);
1443 break;
1444 }
1445
1446 if (next && (page->index != next)) {
1447 /* Not next consecutive page */
1448 unlock_page(page);
1449 break;
1450 }
1451
1452 if (wbc->sync_mode != WB_SYNC_NONE)
1453 wait_on_page_writeback(page);
1454
1455 if (PageWriteback(page) ||
1456 !clear_page_dirty_for_io(page)) {
1457 unlock_page(page);
1458 break;
1459 }
1460
1461 /*
1462 * This actually clears the dirty bit in the radix tree.
1463 * See cifs_writepage() for more commentary.
1464 */
1465 set_page_writeback(page);
1466
1467 if (page_offset(page) >= mapping->host->i_size) {
1468 done = 1;
1469 unlock_page(page);
1470 end_page_writeback(page);
1471 break;
1472 }
1473
1474 /*
1475 * BB can we get rid of this? pages are held by pvec
1476 */
1477 page_cache_get(page);
1478
1479 len = min(mapping->host->i_size - page_offset(page),
1480 (loff_t)PAGE_CACHE_SIZE);
1481
1482 /* reserve iov[0] for the smb header */
1483 n_iov++;
1484 iov[n_iov].iov_base = kmap(page);
1485 iov[n_iov].iov_len = len;
1486 bytes_to_write += len;
1487
1488 if (first < 0) {
1489 first = i;
1490 offset = page_offset(page);
1491 }
1492 next = page->index + 1;
1493 if (bytes_to_write + PAGE_CACHE_SIZE > cifs_sb->wsize)
1494 break;
1495 }
1496 if (n_iov) {
1497 /* Search for a writable handle every time we call
1498 * CIFSSMBWrite2. We can't rely on the last handle
1499 * we used to still be valid
1500 */
1501 open_file = find_writable_file(CIFS_I(mapping->host));
1502 if (!open_file) {
1503 cERROR(1, ("No writable handles for inode"));
1504 rc = -EBADF;
1505 } else {
1506 long_op = cifs_write_timeout(cifsi, offset);
1507 rc = CIFSSMBWrite2(xid, cifs_sb->tcon,
1508 open_file->netfid,
1509 bytes_to_write, offset,
1510 &bytes_written, iov, n_iov,
1511 long_op);
1512 cifsFileInfo_put(open_file);
1513 cifs_update_eof(cifsi, offset, bytes_written);
1514
1515 if (rc || bytes_written < bytes_to_write) {
1516 cERROR(1, ("Write2 ret %d, wrote %d",
1517 rc, bytes_written));
1518 /* BB what if continued retry is
1519 requested via mount flags? */
1520 if (rc == -ENOSPC)
1521 set_bit(AS_ENOSPC, &mapping->flags);
1522 else
1523 set_bit(AS_EIO, &mapping->flags);
1524 } else {
1525 cifs_stats_bytes_written(cifs_sb->tcon,
1526 bytes_written);
1527 }
1528 }
1529 for (i = 0; i < n_iov; i++) {
1530 page = pvec.pages[first + i];
1531 /* Should we also set page error on
1532 success rc but too little data written? */
1533 /* BB investigate retry logic on temporary
1534 server crash cases and how recovery works
1535 when page marked as error */
1536 if (rc)
1537 SetPageError(page);
1538 kunmap(page);
1539 unlock_page(page);
1540 end_page_writeback(page);
1541 page_cache_release(page);
1542 }
1543 if ((wbc->nr_to_write -= n_iov) <= 0)
1544 done = 1;
1545 index = next;
1546 } else
1547 /* Need to re-find the pages we skipped */
1548 index = pvec.pages[0]->index + 1;
1549
1550 pagevec_release(&pvec);
1551 }
1552 if (!scanned && !done) {
1553 /*
1554 * We hit the last page and there is more work to be done: wrap
1555 * back to the start of the file
1556 */
1557 scanned = 1;
1558 index = 0;
1559 goto retry;
1560 }
1561 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
1562 mapping->writeback_index = index;
1563
1564 FreeXid(xid);
1565 kfree(iov);
1566 return rc;
1567 }
1568
1569 static int cifs_writepage(struct page *page, struct writeback_control *wbc)
1570 {
1571 int rc = -EFAULT;
1572 int xid;
1573
1574 xid = GetXid();
1575 /* BB add check for wbc flags */
1576 page_cache_get(page);
1577 if (!PageUptodate(page))
1578 cFYI(1, ("ppw - page not up to date"));
1579
1580 /*
1581 * Set the "writeback" flag, and clear "dirty" in the radix tree.
1582 *
1583 * A writepage() implementation always needs to do either this,
1584 * or re-dirty the page with "redirty_page_for_writepage()" in
1585 * the case of a failure.
1586 *
1587 * Just unlocking the page will cause the radix tree tag-bits
1588 * to fail to update with the state of the page correctly.
1589 */
1590 set_page_writeback(page);
1591 rc = cifs_partialpagewrite(page, 0, PAGE_CACHE_SIZE);
1592 SetPageUptodate(page); /* BB add check for error and Clearuptodate? */
1593 unlock_page(page);
1594 end_page_writeback(page);
1595 page_cache_release(page);
1596 FreeXid(xid);
1597 return rc;
1598 }
1599
1600 static int cifs_write_end(struct file *file, struct address_space *mapping,
1601 loff_t pos, unsigned len, unsigned copied,
1602 struct page *page, void *fsdata)
1603 {
1604 int rc;
1605 struct inode *inode = mapping->host;
1606
1607 cFYI(1, ("write_end for page %p from pos %lld with %d bytes",
1608 page, pos, copied));
1609
1610 if (PageChecked(page)) {
1611 if (copied == len)
1612 SetPageUptodate(page);
1613 ClearPageChecked(page);
1614 } else if (!PageUptodate(page) && copied == PAGE_CACHE_SIZE)
1615 SetPageUptodate(page);
1616
1617 if (!PageUptodate(page)) {
1618 char *page_data;
1619 unsigned offset = pos & (PAGE_CACHE_SIZE - 1);
1620 int xid;
1621
1622 xid = GetXid();
1623 /* this is probably better than directly calling
1624 partialpage_write since in this function the file handle is
1625 known which we might as well leverage */
1626 /* BB check if anything else missing out of ppw
1627 such as updating last write time */
1628 page_data = kmap(page);
1629 rc = cifs_write(file, page_data + offset, copied, &pos);
1630 /* if (rc < 0) should we set writebehind rc? */
1631 kunmap(page);
1632
1633 FreeXid(xid);
1634 } else {
1635 rc = copied;
1636 pos += copied;
1637 set_page_dirty(page);
1638 }
1639
1640 if (rc > 0) {
1641 spin_lock(&inode->i_lock);
1642 if (pos > inode->i_size)
1643 i_size_write(inode, pos);
1644 spin_unlock(&inode->i_lock);
1645 }
1646
1647 unlock_page(page);
1648 page_cache_release(page);
1649
1650 return rc;
1651 }
1652
1653 int cifs_fsync(struct file *file, struct dentry *dentry, int datasync)
1654 {
1655 int xid;
1656 int rc = 0;
1657 struct cifsTconInfo *tcon;
1658 struct cifsFileInfo *smbfile =
1659 (struct cifsFileInfo *)file->private_data;
1660 struct inode *inode = file->f_path.dentry->d_inode;
1661
1662 xid = GetXid();
1663
1664 cFYI(1, ("Sync file - name: %s datasync: 0x%x",
1665 dentry->d_name.name, datasync));
1666
1667 rc = filemap_write_and_wait(inode->i_mapping);
1668 if (rc == 0) {
1669 rc = CIFS_I(inode)->write_behind_rc;
1670 CIFS_I(inode)->write_behind_rc = 0;
1671 tcon = CIFS_SB(inode->i_sb)->tcon;
1672 if (!rc && tcon && smbfile &&
1673 !(CIFS_SB(inode->i_sb)->mnt_cifs_flags & CIFS_MOUNT_NOSSYNC))
1674 rc = CIFSSMBFlush(xid, tcon, smbfile->netfid);
1675 }
1676
1677 FreeXid(xid);
1678 return rc;
1679 }
1680
1681 /* static void cifs_sync_page(struct page *page)
1682 {
1683 struct address_space *mapping;
1684 struct inode *inode;
1685 unsigned long index = page->index;
1686 unsigned int rpages = 0;
1687 int rc = 0;
1688
1689 cFYI(1, ("sync page %p",page));
1690 mapping = page->mapping;
1691 if (!mapping)
1692 return 0;
1693 inode = mapping->host;
1694 if (!inode)
1695 return; */
1696
1697 /* fill in rpages then
1698 result = cifs_pagein_inode(inode, index, rpages); */ /* BB finish */
1699
1700 /* cFYI(1, ("rpages is %d for sync page of Index %ld", rpages, index));
1701
1702 #if 0
1703 if (rc < 0)
1704 return rc;
1705 return 0;
1706 #endif
1707 } */
1708
1709 /*
1710 * As file closes, flush all cached write data for this inode checking
1711 * for write behind errors.
1712 */
1713 int cifs_flush(struct file *file, fl_owner_t id)
1714 {
1715 struct inode *inode = file->f_path.dentry->d_inode;
1716 int rc = 0;
1717
1718 /* Rather than do the steps manually:
1719 lock the inode for writing
1720 loop through pages looking for write behind data (dirty pages)
1721 coalesce into contiguous 16K (or smaller) chunks to write to server
1722 send to server (prefer in parallel)
1723 deal with writebehind errors
1724 unlock inode for writing
1725 filemapfdatawrite appears easier for the time being */
1726
1727 rc = filemap_fdatawrite(inode->i_mapping);
1728 /* reset wb rc if we were able to write out dirty pages */
1729 if (!rc) {
1730 rc = CIFS_I(inode)->write_behind_rc;
1731 CIFS_I(inode)->write_behind_rc = 0;
1732 }
1733
1734 cFYI(1, ("Flush inode %p file %p rc %d", inode, file, rc));
1735
1736 return rc;
1737 }
1738
1739 ssize_t cifs_user_read(struct file *file, char __user *read_data,
1740 size_t read_size, loff_t *poffset)
1741 {
1742 int rc = -EACCES;
1743 unsigned int bytes_read = 0;
1744 unsigned int total_read = 0;
1745 unsigned int current_read_size;
1746 struct cifs_sb_info *cifs_sb;
1747 struct cifsTconInfo *pTcon;
1748 int xid;
1749 struct cifsFileInfo *open_file;
1750 char *smb_read_data;
1751 char __user *current_offset;
1752 struct smb_com_read_rsp *pSMBr;
1753
1754 xid = GetXid();
1755 cifs_sb = CIFS_SB(file->f_path.dentry->d_sb);
1756 pTcon = cifs_sb->tcon;
1757
1758 if (file->private_data == NULL) {
1759 rc = -EBADF;
1760 FreeXid(xid);
1761 return rc;
1762 }
1763 open_file = (struct cifsFileInfo *)file->private_data;
1764
1765 if ((file->f_flags & O_ACCMODE) == O_WRONLY)
1766 cFYI(1, ("attempting read on write only file instance"));
1767
1768 for (total_read = 0, current_offset = read_data;
1769 read_size > total_read;
1770 total_read += bytes_read, current_offset += bytes_read) {
1771 current_read_size = min_t(const int, read_size - total_read,
1772 cifs_sb->rsize);
1773 rc = -EAGAIN;
1774 smb_read_data = NULL;
1775 while (rc == -EAGAIN) {
1776 int buf_type = CIFS_NO_BUFFER;
1777 if ((open_file->invalidHandle) &&
1778 (!open_file->closePend)) {
1779 rc = cifs_reopen_file(file, true);
1780 if (rc != 0)
1781 break;
1782 }
1783 rc = CIFSSMBRead(xid, pTcon,
1784 open_file->netfid,
1785 current_read_size, *poffset,
1786 &bytes_read, &smb_read_data,
1787 &buf_type);
1788 pSMBr = (struct smb_com_read_rsp *)smb_read_data;
1789 if (smb_read_data) {
1790 if (copy_to_user(current_offset,
1791 smb_read_data +
1792 4 /* RFC1001 length field */ +
1793 le16_to_cpu(pSMBr->DataOffset),
1794 bytes_read))
1795 rc = -EFAULT;
1796
1797 if (buf_type == CIFS_SMALL_BUFFER)
1798 cifs_small_buf_release(smb_read_data);
1799 else if (buf_type == CIFS_LARGE_BUFFER)
1800 cifs_buf_release(smb_read_data);
1801 smb_read_data = NULL;
1802 }
1803 }
1804 if (rc || (bytes_read == 0)) {
1805 if (total_read) {
1806 break;
1807 } else {
1808 FreeXid(xid);
1809 return rc;
1810 }
1811 } else {
1812 cifs_stats_bytes_read(pTcon, bytes_read);
1813 *poffset += bytes_read;
1814 }
1815 }
1816 FreeXid(xid);
1817 return total_read;
1818 }
1819
1820
1821 static ssize_t cifs_read(struct file *file, char *read_data, size_t read_size,
1822 loff_t *poffset)
1823 {
1824 int rc = -EACCES;
1825 unsigned int bytes_read = 0;
1826 unsigned int total_read;
1827 unsigned int current_read_size;
1828 struct cifs_sb_info *cifs_sb;
1829 struct cifsTconInfo *pTcon;
1830 int xid;
1831 char *current_offset;
1832 struct cifsFileInfo *open_file;
1833 int buf_type = CIFS_NO_BUFFER;
1834
1835 xid = GetXid();
1836 cifs_sb = CIFS_SB(file->f_path.dentry->d_sb);
1837 pTcon = cifs_sb->tcon;
1838
1839 if (file->private_data == NULL) {
1840 rc = -EBADF;
1841 FreeXid(xid);
1842 return rc;
1843 }
1844 open_file = (struct cifsFileInfo *)file->private_data;
1845
1846 if ((file->f_flags & O_ACCMODE) == O_WRONLY)
1847 cFYI(1, ("attempting read on write only file instance"));
1848
1849 for (total_read = 0, current_offset = read_data;
1850 read_size > total_read;
1851 total_read += bytes_read, current_offset += bytes_read) {
1852 current_read_size = min_t(const int, read_size - total_read,
1853 cifs_sb->rsize);
1854 /* For windows me and 9x we do not want to request more
1855 than it negotiated since it will refuse the read then */
1856 if ((pTcon->ses) &&
1857 !(pTcon->ses->capabilities & CAP_LARGE_FILES)) {
1858 current_read_size = min_t(const int, current_read_size,
1859 pTcon->ses->server->maxBuf - 128);
1860 }
1861 rc = -EAGAIN;
1862 while (rc == -EAGAIN) {
1863 if ((open_file->invalidHandle) &&
1864 (!open_file->closePend)) {
1865 rc = cifs_reopen_file(file, true);
1866 if (rc != 0)
1867 break;
1868 }
1869 rc = CIFSSMBRead(xid, pTcon,
1870 open_file->netfid,
1871 current_read_size, *poffset,
1872 &bytes_read, &current_offset,
1873 &buf_type);
1874 }
1875 if (rc || (bytes_read == 0)) {
1876 if (total_read) {
1877 break;
1878 } else {
1879 FreeXid(xid);
1880 return rc;
1881 }
1882 } else {
1883 cifs_stats_bytes_read(pTcon, total_read);
1884 *poffset += bytes_read;
1885 }
1886 }
1887 FreeXid(xid);
1888 return total_read;
1889 }
1890
1891 int cifs_file_mmap(struct file *file, struct vm_area_struct *vma)
1892 {
1893 struct dentry *dentry = file->f_path.dentry;
1894 int rc, xid;
1895
1896 xid = GetXid();
1897 rc = cifs_revalidate(dentry);
1898 if (rc) {
1899 cFYI(1, ("Validation prior to mmap failed, error=%d", rc));
1900 FreeXid(xid);
1901 return rc;
1902 }
1903 rc = generic_file_mmap(file, vma);
1904 FreeXid(xid);
1905 return rc;
1906 }
1907
1908
1909 static void cifs_copy_cache_pages(struct address_space *mapping,
1910 struct list_head *pages, int bytes_read, char *data,
1911 struct pagevec *plru_pvec)
1912 {
1913 struct page *page;
1914 char *target;
1915
1916 while (bytes_read > 0) {
1917 if (list_empty(pages))
1918 break;
1919
1920 page = list_entry(pages->prev, struct page, lru);
1921 list_del(&page->lru);
1922
1923 if (add_to_page_cache(page, mapping, page->index,
1924 GFP_KERNEL)) {
1925 page_cache_release(page);
1926 cFYI(1, ("Add page cache failed"));
1927 data += PAGE_CACHE_SIZE;
1928 bytes_read -= PAGE_CACHE_SIZE;
1929 continue;
1930 }
1931
1932 target = kmap_atomic(page, KM_USER0);
1933
1934 if (PAGE_CACHE_SIZE > bytes_read) {
1935 memcpy(target, data, bytes_read);
1936 /* zero the tail end of this partial page */
1937 memset(target + bytes_read, 0,
1938 PAGE_CACHE_SIZE - bytes_read);
1939 bytes_read = 0;
1940 } else {
1941 memcpy(target, data, PAGE_CACHE_SIZE);
1942 bytes_read -= PAGE_CACHE_SIZE;
1943 }
1944 kunmap_atomic(target, KM_USER0);
1945
1946 flush_dcache_page(page);
1947 SetPageUptodate(page);
1948 unlock_page(page);
1949 if (!pagevec_add(plru_pvec, page))
1950 __pagevec_lru_add_file(plru_pvec);
1951 data += PAGE_CACHE_SIZE;
1952 }
1953 return;
1954 }
1955
1956 static int cifs_readpages(struct file *file, struct address_space *mapping,
1957 struct list_head *page_list, unsigned num_pages)
1958 {
1959 int rc = -EACCES;
1960 int xid;
1961 loff_t offset;
1962 struct page *page;
1963 struct cifs_sb_info *cifs_sb;
1964 struct cifsTconInfo *pTcon;
1965 unsigned int bytes_read = 0;
1966 unsigned int read_size, i;
1967 char *smb_read_data = NULL;
1968 struct smb_com_read_rsp *pSMBr;
1969 struct pagevec lru_pvec;
1970 struct cifsFileInfo *open_file;
1971 int buf_type = CIFS_NO_BUFFER;
1972
1973 xid = GetXid();
1974 if (file->private_data == NULL) {
1975 rc = -EBADF;
1976 FreeXid(xid);
1977 return rc;
1978 }
1979 open_file = (struct cifsFileInfo *)file->private_data;
1980 cifs_sb = CIFS_SB(file->f_path.dentry->d_sb);
1981 pTcon = cifs_sb->tcon;
1982
1983 pagevec_init(&lru_pvec, 0);
1984 cFYI(DBG2, ("rpages: num pages %d", num_pages));
1985 for (i = 0; i < num_pages; ) {
1986 unsigned contig_pages;
1987 struct page *tmp_page;
1988 unsigned long expected_index;
1989
1990 if (list_empty(page_list))
1991 break;
1992
1993 page = list_entry(page_list->prev, struct page, lru);
1994 offset = (loff_t)page->index << PAGE_CACHE_SHIFT;
1995
1996 /* count adjacent pages that we will read into */
1997 contig_pages = 0;
1998 expected_index =
1999 list_entry(page_list->prev, struct page, lru)->index;
2000 list_for_each_entry_reverse(tmp_page, page_list, lru) {
2001 if (tmp_page->index == expected_index) {
2002 contig_pages++;
2003 expected_index++;
2004 } else
2005 break;
2006 }
2007 if (contig_pages + i > num_pages)
2008 contig_pages = num_pages - i;
2009
2010 /* for reads over a certain size could initiate async
2011 read ahead */
2012
2013 read_size = contig_pages * PAGE_CACHE_SIZE;
2014 /* Read size needs to be in multiples of one page */
2015 read_size = min_t(const unsigned int, read_size,
2016 cifs_sb->rsize & PAGE_CACHE_MASK);
2017 cFYI(DBG2, ("rpages: read size 0x%x contiguous pages %d",
2018 read_size, contig_pages));
2019 rc = -EAGAIN;
2020 while (rc == -EAGAIN) {
2021 if ((open_file->invalidHandle) &&
2022 (!open_file->closePend)) {
2023 rc = cifs_reopen_file(file, true);
2024 if (rc != 0)
2025 break;
2026 }
2027
2028 rc = CIFSSMBRead(xid, pTcon,
2029 open_file->netfid,
2030 read_size, offset,
2031 &bytes_read, &smb_read_data,
2032 &buf_type);
2033 /* BB more RC checks ? */
2034 if (rc == -EAGAIN) {
2035 if (smb_read_data) {
2036 if (buf_type == CIFS_SMALL_BUFFER)
2037 cifs_small_buf_release(smb_read_data);
2038 else if (buf_type == CIFS_LARGE_BUFFER)
2039 cifs_buf_release(smb_read_data);
2040 smb_read_data = NULL;
2041 }
2042 }
2043 }
2044 if ((rc < 0) || (smb_read_data == NULL)) {
2045 cFYI(1, ("Read error in readpages: %d", rc));
2046 break;
2047 } else if (bytes_read > 0) {
2048 task_io_account_read(bytes_read);
2049 pSMBr = (struct smb_com_read_rsp *)smb_read_data;
2050 cifs_copy_cache_pages(mapping, page_list, bytes_read,
2051 smb_read_data + 4 /* RFC1001 hdr */ +
2052 le16_to_cpu(pSMBr->DataOffset), &lru_pvec);
2053
2054 i += bytes_read >> PAGE_CACHE_SHIFT;
2055 cifs_stats_bytes_read(pTcon, bytes_read);
2056 if ((bytes_read & PAGE_CACHE_MASK) != bytes_read) {
2057 i++; /* account for partial page */
2058
2059 /* server copy of file can have smaller size
2060 than client */
2061 /* BB do we need to verify this common case ?
2062 this case is ok - if we are at server EOF
2063 we will hit it on next read */
2064
2065 /* break; */
2066 }
2067 } else {
2068 cFYI(1, ("No bytes read (%d) at offset %lld . "
2069 "Cleaning remaining pages from readahead list",
2070 bytes_read, offset));
2071 /* BB turn off caching and do new lookup on
2072 file size at server? */
2073 break;
2074 }
2075 if (smb_read_data) {
2076 if (buf_type == CIFS_SMALL_BUFFER)
2077 cifs_small_buf_release(smb_read_data);
2078 else if (buf_type == CIFS_LARGE_BUFFER)
2079 cifs_buf_release(smb_read_data);
2080 smb_read_data = NULL;
2081 }
2082 bytes_read = 0;
2083 }
2084
2085 pagevec_lru_add_file(&lru_pvec);
2086
2087 /* need to free smb_read_data buf before exit */
2088 if (smb_read_data) {
2089 if (buf_type == CIFS_SMALL_BUFFER)
2090 cifs_small_buf_release(smb_read_data);
2091 else if (buf_type == CIFS_LARGE_BUFFER)
2092 cifs_buf_release(smb_read_data);
2093 smb_read_data = NULL;
2094 }
2095
2096 FreeXid(xid);
2097 return rc;
2098 }
2099
2100 static int cifs_readpage_worker(struct file *file, struct page *page,
2101 loff_t *poffset)
2102 {
2103 char *read_data;
2104 int rc;
2105
2106 page_cache_get(page);
2107 read_data = kmap(page);
2108 /* for reads over a certain size could initiate async read ahead */
2109
2110 rc = cifs_read(file, read_data, PAGE_CACHE_SIZE, poffset);
2111
2112 if (rc < 0)
2113 goto io_error;
2114 else
2115 cFYI(1, ("Bytes read %d", rc));
2116
2117 file->f_path.dentry->d_inode->i_atime =
2118 current_fs_time(file->f_path.dentry->d_inode->i_sb);
2119
2120 if (PAGE_CACHE_SIZE > rc)
2121 memset(read_data + rc, 0, PAGE_CACHE_SIZE - rc);
2122
2123 flush_dcache_page(page);
2124 SetPageUptodate(page);
2125 rc = 0;
2126
2127 io_error:
2128 kunmap(page);
2129 page_cache_release(page);
2130 return rc;
2131 }
2132
2133 static int cifs_readpage(struct file *file, struct page *page)
2134 {
2135 loff_t offset = (loff_t)page->index << PAGE_CACHE_SHIFT;
2136 int rc = -EACCES;
2137 int xid;
2138
2139 xid = GetXid();
2140
2141 if (file->private_data == NULL) {
2142 rc = -EBADF;
2143 FreeXid(xid);
2144 return rc;
2145 }
2146
2147 cFYI(1, ("readpage %p at offset %d 0x%x\n",
2148 page, (int)offset, (int)offset));
2149
2150 rc = cifs_readpage_worker(file, page, &offset);
2151
2152 unlock_page(page);
2153
2154 FreeXid(xid);
2155 return rc;
2156 }
2157
2158 static int is_inode_writable(struct cifsInodeInfo *cifs_inode)
2159 {
2160 struct cifsFileInfo *open_file;
2161
2162 read_lock(&GlobalSMBSeslock);
2163 list_for_each_entry(open_file, &cifs_inode->openFileList, flist) {
2164 if (open_file->closePend)
2165 continue;
2166 if (open_file->pfile &&
2167 ((open_file->pfile->f_flags & O_RDWR) ||
2168 (open_file->pfile->f_flags & O_WRONLY))) {
2169 read_unlock(&GlobalSMBSeslock);
2170 return 1;
2171 }
2172 }
2173 read_unlock(&GlobalSMBSeslock);
2174 return 0;
2175 }
2176
2177 /* We do not want to update the file size from server for inodes
2178 open for write - to avoid races with writepage extending
2179 the file - in the future we could consider allowing
2180 refreshing the inode only on increases in the file size
2181 but this is tricky to do without racing with writebehind
2182 page caching in the current Linux kernel design */
2183 bool is_size_safe_to_change(struct cifsInodeInfo *cifsInode, __u64 end_of_file)
2184 {
2185 if (!cifsInode)
2186 return true;
2187
2188 if (is_inode_writable(cifsInode)) {
2189 /* This inode is open for write at least once */
2190 struct cifs_sb_info *cifs_sb;
2191
2192 cifs_sb = CIFS_SB(cifsInode->vfs_inode.i_sb);
2193 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_DIRECT_IO) {
2194 /* since no page cache to corrupt on directio
2195 we can change size safely */
2196 return true;
2197 }
2198
2199 if (i_size_read(&cifsInode->vfs_inode) < end_of_file)
2200 return true;
2201
2202 return false;
2203 } else
2204 return true;
2205 }
2206
2207 static int cifs_write_begin(struct file *file, struct address_space *mapping,
2208 loff_t pos, unsigned len, unsigned flags,
2209 struct page **pagep, void **fsdata)
2210 {
2211 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
2212 loff_t offset = pos & (PAGE_CACHE_SIZE - 1);
2213 loff_t page_start = pos & PAGE_MASK;
2214 loff_t i_size;
2215 struct page *page;
2216 int rc = 0;
2217
2218 cFYI(1, ("write_begin from %lld len %d", (long long)pos, len));
2219
2220 page = grab_cache_page_write_begin(mapping, index, flags);
2221 if (!page) {
2222 rc = -ENOMEM;
2223 goto out;
2224 }
2225
2226 if (PageUptodate(page))
2227 goto out;
2228
2229 /*
2230 * If we write a full page it will be up to date, no need to read from
2231 * the server. If the write is short, we'll end up doing a sync write
2232 * instead.
2233 */
2234 if (len == PAGE_CACHE_SIZE)
2235 goto out;
2236
2237 /*
2238 * optimize away the read when we have an oplock, and we're not
2239 * expecting to use any of the data we'd be reading in. That
2240 * is, when the page lies beyond the EOF, or straddles the EOF
2241 * and the write will cover all of the existing data.
2242 */
2243 if (CIFS_I(mapping->host)->clientCanCacheRead) {
2244 i_size = i_size_read(mapping->host);
2245 if (page_start >= i_size ||
2246 (offset == 0 && (pos + len) >= i_size)) {
2247 zero_user_segments(page, 0, offset,
2248 offset + len,
2249 PAGE_CACHE_SIZE);
2250 /*
2251 * PageChecked means that the parts of the page
2252 * to which we're not writing are considered up
2253 * to date. Once the data is copied to the
2254 * page, it can be set uptodate.
2255 */
2256 SetPageChecked(page);
2257 goto out;
2258 }
2259 }
2260
2261 if ((file->f_flags & O_ACCMODE) != O_WRONLY) {
2262 /*
2263 * might as well read a page, it is fast enough. If we get
2264 * an error, we don't need to return it. cifs_write_end will
2265 * do a sync write instead since PG_uptodate isn't set.
2266 */
2267 cifs_readpage_worker(file, page, &page_start);
2268 } else {
2269 /* we could try using another file handle if there is one -
2270 but how would we lock it to prevent close of that handle
2271 racing with this read? In any case
2272 this will be written out by write_end so is fine */
2273 }
2274 out:
2275 *pagep = page;
2276 return rc;
2277 }
2278
2279 static void
2280 cifs_oplock_break(struct slow_work *work)
2281 {
2282 struct cifsFileInfo *cfile = container_of(work, struct cifsFileInfo,
2283 oplock_break);
2284 struct inode *inode = cfile->pInode;
2285 struct cifsInodeInfo *cinode = CIFS_I(inode);
2286 struct cifs_sb_info *cifs_sb = CIFS_SB(cfile->mnt->mnt_sb);
2287 int rc, waitrc = 0;
2288
2289 if (inode && S_ISREG(inode->i_mode)) {
2290 #ifdef CONFIG_CIFS_EXPERIMENTAL
2291 if (cinode->clientCanCacheAll == 0)
2292 break_lease(inode, O_RDONLY);
2293 else if (cinode->clientCanCacheRead == 0)
2294 break_lease(inode, O_WRONLY);
2295 #endif
2296 rc = filemap_fdatawrite(inode->i_mapping);
2297 if (cinode->clientCanCacheRead == 0) {
2298 waitrc = filemap_fdatawait(inode->i_mapping);
2299 invalidate_remote_inode(inode);
2300 }
2301 if (!rc)
2302 rc = waitrc;
2303 if (rc)
2304 cinode->write_behind_rc = rc;
2305 cFYI(1, ("Oplock flush inode %p rc %d", inode, rc));
2306 }
2307
2308 /*
2309 * releasing stale oplock after recent reconnect of smb session using
2310 * a now incorrect file handle is not a data integrity issue but do
2311 * not bother sending an oplock release if session to server still is
2312 * disconnected since oplock already released by the server
2313 */
2314 if (!cfile->closePend && !cfile->oplock_break_cancelled) {
2315 rc = CIFSSMBLock(0, cifs_sb->tcon, cfile->netfid, 0, 0, 0, 0,
2316 LOCKING_ANDX_OPLOCK_RELEASE, false);
2317 cFYI(1, ("Oplock release rc = %d", rc));
2318 }
2319 }
2320
2321 static int
2322 cifs_oplock_break_get(struct slow_work *work)
2323 {
2324 struct cifsFileInfo *cfile = container_of(work, struct cifsFileInfo,
2325 oplock_break);
2326 mntget(cfile->mnt);
2327 cifsFileInfo_get(cfile);
2328 return 0;
2329 }
2330
2331 static void
2332 cifs_oplock_break_put(struct slow_work *work)
2333 {
2334 struct cifsFileInfo *cfile = container_of(work, struct cifsFileInfo,
2335 oplock_break);
2336 mntput(cfile->mnt);
2337 cifsFileInfo_put(cfile);
2338 }
2339
2340 const struct slow_work_ops cifs_oplock_break_ops = {
2341 .get_ref = cifs_oplock_break_get,
2342 .put_ref = cifs_oplock_break_put,
2343 .execute = cifs_oplock_break,
2344 };
2345
2346 const struct address_space_operations cifs_addr_ops = {
2347 .readpage = cifs_readpage,
2348 .readpages = cifs_readpages,
2349 .writepage = cifs_writepage,
2350 .writepages = cifs_writepages,
2351 .write_begin = cifs_write_begin,
2352 .write_end = cifs_write_end,
2353 .set_page_dirty = __set_page_dirty_nobuffers,
2354 /* .sync_page = cifs_sync_page, */
2355 /* .direct_IO = */
2356 };
2357
2358 /*
2359 * cifs_readpages requires the server to support a buffer large enough to
2360 * contain the header plus one complete page of data. Otherwise, we need
2361 * to leave cifs_readpages out of the address space operations.
2362 */
2363 const struct address_space_operations cifs_addr_ops_smallbuf = {
2364 .readpage = cifs_readpage,
2365 .writepage = cifs_writepage,
2366 .writepages = cifs_writepages,
2367 .write_begin = cifs_write_begin,
2368 .write_end = cifs_write_end,
2369 .set_page_dirty = __set_page_dirty_nobuffers,
2370 /* .sync_page = cifs_sync_page, */
2371 /* .direct_IO = */
2372 };