]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/cifs/file.c
VFS: normal filesystems (and lustre): d_inode() annotations
[mirror_ubuntu-bionic-kernel.git] / fs / cifs / file.c
1 /*
2 * fs/cifs/file.c
3 *
4 * vfs operations that deal with files
5 *
6 * Copyright (C) International Business Machines Corp., 2002,2010
7 * Author(s): Steve French (sfrench@us.ibm.com)
8 * Jeremy Allison (jra@samba.org)
9 *
10 * This library is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU Lesser General Public License as published
12 * by the Free Software Foundation; either version 2.1 of the License, or
13 * (at your option) any later version.
14 *
15 * This library is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
18 * the GNU Lesser General Public License for more details.
19 *
20 * You should have received a copy of the GNU Lesser General Public License
21 * along with this library; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 */
24 #include <linux/fs.h>
25 #include <linux/backing-dev.h>
26 #include <linux/stat.h>
27 #include <linux/fcntl.h>
28 #include <linux/pagemap.h>
29 #include <linux/pagevec.h>
30 #include <linux/writeback.h>
31 #include <linux/task_io_accounting_ops.h>
32 #include <linux/delay.h>
33 #include <linux/mount.h>
34 #include <linux/slab.h>
35 #include <linux/swap.h>
36 #include <asm/div64.h>
37 #include "cifsfs.h"
38 #include "cifspdu.h"
39 #include "cifsglob.h"
40 #include "cifsproto.h"
41 #include "cifs_unicode.h"
42 #include "cifs_debug.h"
43 #include "cifs_fs_sb.h"
44 #include "fscache.h"
45
46
47 static inline int cifs_convert_flags(unsigned int flags)
48 {
49 if ((flags & O_ACCMODE) == O_RDONLY)
50 return GENERIC_READ;
51 else if ((flags & O_ACCMODE) == O_WRONLY)
52 return GENERIC_WRITE;
53 else if ((flags & O_ACCMODE) == O_RDWR) {
54 /* GENERIC_ALL is too much permission to request
55 can cause unnecessary access denied on create */
56 /* return GENERIC_ALL; */
57 return (GENERIC_READ | GENERIC_WRITE);
58 }
59
60 return (READ_CONTROL | FILE_WRITE_ATTRIBUTES | FILE_READ_ATTRIBUTES |
61 FILE_WRITE_EA | FILE_APPEND_DATA | FILE_WRITE_DATA |
62 FILE_READ_DATA);
63 }
64
65 static u32 cifs_posix_convert_flags(unsigned int flags)
66 {
67 u32 posix_flags = 0;
68
69 if ((flags & O_ACCMODE) == O_RDONLY)
70 posix_flags = SMB_O_RDONLY;
71 else if ((flags & O_ACCMODE) == O_WRONLY)
72 posix_flags = SMB_O_WRONLY;
73 else if ((flags & O_ACCMODE) == O_RDWR)
74 posix_flags = SMB_O_RDWR;
75
76 if (flags & O_CREAT) {
77 posix_flags |= SMB_O_CREAT;
78 if (flags & O_EXCL)
79 posix_flags |= SMB_O_EXCL;
80 } else if (flags & O_EXCL)
81 cifs_dbg(FYI, "Application %s pid %d has incorrectly set O_EXCL flag but not O_CREAT on file open. Ignoring O_EXCL\n",
82 current->comm, current->tgid);
83
84 if (flags & O_TRUNC)
85 posix_flags |= SMB_O_TRUNC;
86 /* be safe and imply O_SYNC for O_DSYNC */
87 if (flags & O_DSYNC)
88 posix_flags |= SMB_O_SYNC;
89 if (flags & O_DIRECTORY)
90 posix_flags |= SMB_O_DIRECTORY;
91 if (flags & O_NOFOLLOW)
92 posix_flags |= SMB_O_NOFOLLOW;
93 if (flags & O_DIRECT)
94 posix_flags |= SMB_O_DIRECT;
95
96 return posix_flags;
97 }
98
99 static inline int cifs_get_disposition(unsigned int flags)
100 {
101 if ((flags & (O_CREAT | O_EXCL)) == (O_CREAT | O_EXCL))
102 return FILE_CREATE;
103 else if ((flags & (O_CREAT | O_TRUNC)) == (O_CREAT | O_TRUNC))
104 return FILE_OVERWRITE_IF;
105 else if ((flags & O_CREAT) == O_CREAT)
106 return FILE_OPEN_IF;
107 else if ((flags & O_TRUNC) == O_TRUNC)
108 return FILE_OVERWRITE;
109 else
110 return FILE_OPEN;
111 }
112
113 int cifs_posix_open(char *full_path, struct inode **pinode,
114 struct super_block *sb, int mode, unsigned int f_flags,
115 __u32 *poplock, __u16 *pnetfid, unsigned int xid)
116 {
117 int rc;
118 FILE_UNIX_BASIC_INFO *presp_data;
119 __u32 posix_flags = 0;
120 struct cifs_sb_info *cifs_sb = CIFS_SB(sb);
121 struct cifs_fattr fattr;
122 struct tcon_link *tlink;
123 struct cifs_tcon *tcon;
124
125 cifs_dbg(FYI, "posix open %s\n", full_path);
126
127 presp_data = kzalloc(sizeof(FILE_UNIX_BASIC_INFO), GFP_KERNEL);
128 if (presp_data == NULL)
129 return -ENOMEM;
130
131 tlink = cifs_sb_tlink(cifs_sb);
132 if (IS_ERR(tlink)) {
133 rc = PTR_ERR(tlink);
134 goto posix_open_ret;
135 }
136
137 tcon = tlink_tcon(tlink);
138 mode &= ~current_umask();
139
140 posix_flags = cifs_posix_convert_flags(f_flags);
141 rc = CIFSPOSIXCreate(xid, tcon, posix_flags, mode, pnetfid, presp_data,
142 poplock, full_path, cifs_sb->local_nls,
143 cifs_sb->mnt_cifs_flags &
144 CIFS_MOUNT_MAP_SPECIAL_CHR);
145 cifs_put_tlink(tlink);
146
147 if (rc)
148 goto posix_open_ret;
149
150 if (presp_data->Type == cpu_to_le32(-1))
151 goto posix_open_ret; /* open ok, caller does qpathinfo */
152
153 if (!pinode)
154 goto posix_open_ret; /* caller does not need info */
155
156 cifs_unix_basic_to_fattr(&fattr, presp_data, cifs_sb);
157
158 /* get new inode and set it up */
159 if (*pinode == NULL) {
160 cifs_fill_uniqueid(sb, &fattr);
161 *pinode = cifs_iget(sb, &fattr);
162 if (!*pinode) {
163 rc = -ENOMEM;
164 goto posix_open_ret;
165 }
166 } else {
167 cifs_fattr_to_inode(*pinode, &fattr);
168 }
169
170 posix_open_ret:
171 kfree(presp_data);
172 return rc;
173 }
174
175 static int
176 cifs_nt_open(char *full_path, struct inode *inode, struct cifs_sb_info *cifs_sb,
177 struct cifs_tcon *tcon, unsigned int f_flags, __u32 *oplock,
178 struct cifs_fid *fid, unsigned int xid)
179 {
180 int rc;
181 int desired_access;
182 int disposition;
183 int create_options = CREATE_NOT_DIR;
184 FILE_ALL_INFO *buf;
185 struct TCP_Server_Info *server = tcon->ses->server;
186 struct cifs_open_parms oparms;
187
188 if (!server->ops->open)
189 return -ENOSYS;
190
191 desired_access = cifs_convert_flags(f_flags);
192
193 /*********************************************************************
194 * open flag mapping table:
195 *
196 * POSIX Flag CIFS Disposition
197 * ---------- ----------------
198 * O_CREAT FILE_OPEN_IF
199 * O_CREAT | O_EXCL FILE_CREATE
200 * O_CREAT | O_TRUNC FILE_OVERWRITE_IF
201 * O_TRUNC FILE_OVERWRITE
202 * none of the above FILE_OPEN
203 *
204 * Note that there is not a direct match between disposition
205 * FILE_SUPERSEDE (ie create whether or not file exists although
206 * O_CREAT | O_TRUNC is similar but truncates the existing
207 * file rather than creating a new file as FILE_SUPERSEDE does
208 * (which uses the attributes / metadata passed in on open call)
209 *?
210 *? O_SYNC is a reasonable match to CIFS writethrough flag
211 *? and the read write flags match reasonably. O_LARGEFILE
212 *? is irrelevant because largefile support is always used
213 *? by this client. Flags O_APPEND, O_DIRECT, O_DIRECTORY,
214 * O_FASYNC, O_NOFOLLOW, O_NONBLOCK need further investigation
215 *********************************************************************/
216
217 disposition = cifs_get_disposition(f_flags);
218
219 /* BB pass O_SYNC flag through on file attributes .. BB */
220
221 buf = kmalloc(sizeof(FILE_ALL_INFO), GFP_KERNEL);
222 if (!buf)
223 return -ENOMEM;
224
225 if (backup_cred(cifs_sb))
226 create_options |= CREATE_OPEN_BACKUP_INTENT;
227
228 oparms.tcon = tcon;
229 oparms.cifs_sb = cifs_sb;
230 oparms.desired_access = desired_access;
231 oparms.create_options = create_options;
232 oparms.disposition = disposition;
233 oparms.path = full_path;
234 oparms.fid = fid;
235 oparms.reconnect = false;
236
237 rc = server->ops->open(xid, &oparms, oplock, buf);
238
239 if (rc)
240 goto out;
241
242 if (tcon->unix_ext)
243 rc = cifs_get_inode_info_unix(&inode, full_path, inode->i_sb,
244 xid);
245 else
246 rc = cifs_get_inode_info(&inode, full_path, buf, inode->i_sb,
247 xid, fid);
248
249 out:
250 kfree(buf);
251 return rc;
252 }
253
254 static bool
255 cifs_has_mand_locks(struct cifsInodeInfo *cinode)
256 {
257 struct cifs_fid_locks *cur;
258 bool has_locks = false;
259
260 down_read(&cinode->lock_sem);
261 list_for_each_entry(cur, &cinode->llist, llist) {
262 if (!list_empty(&cur->locks)) {
263 has_locks = true;
264 break;
265 }
266 }
267 up_read(&cinode->lock_sem);
268 return has_locks;
269 }
270
271 struct cifsFileInfo *
272 cifs_new_fileinfo(struct cifs_fid *fid, struct file *file,
273 struct tcon_link *tlink, __u32 oplock)
274 {
275 struct dentry *dentry = file->f_path.dentry;
276 struct inode *inode = d_inode(dentry);
277 struct cifsInodeInfo *cinode = CIFS_I(inode);
278 struct cifsFileInfo *cfile;
279 struct cifs_fid_locks *fdlocks;
280 struct cifs_tcon *tcon = tlink_tcon(tlink);
281 struct TCP_Server_Info *server = tcon->ses->server;
282
283 cfile = kzalloc(sizeof(struct cifsFileInfo), GFP_KERNEL);
284 if (cfile == NULL)
285 return cfile;
286
287 fdlocks = kzalloc(sizeof(struct cifs_fid_locks), GFP_KERNEL);
288 if (!fdlocks) {
289 kfree(cfile);
290 return NULL;
291 }
292
293 INIT_LIST_HEAD(&fdlocks->locks);
294 fdlocks->cfile = cfile;
295 cfile->llist = fdlocks;
296 down_write(&cinode->lock_sem);
297 list_add(&fdlocks->llist, &cinode->llist);
298 up_write(&cinode->lock_sem);
299
300 cfile->count = 1;
301 cfile->pid = current->tgid;
302 cfile->uid = current_fsuid();
303 cfile->dentry = dget(dentry);
304 cfile->f_flags = file->f_flags;
305 cfile->invalidHandle = false;
306 cfile->tlink = cifs_get_tlink(tlink);
307 INIT_WORK(&cfile->oplock_break, cifs_oplock_break);
308 mutex_init(&cfile->fh_mutex);
309
310 cifs_sb_active(inode->i_sb);
311
312 /*
313 * If the server returned a read oplock and we have mandatory brlocks,
314 * set oplock level to None.
315 */
316 if (server->ops->is_read_op(oplock) && cifs_has_mand_locks(cinode)) {
317 cifs_dbg(FYI, "Reset oplock val from read to None due to mand locks\n");
318 oplock = 0;
319 }
320
321 spin_lock(&cifs_file_list_lock);
322 if (fid->pending_open->oplock != CIFS_OPLOCK_NO_CHANGE && oplock)
323 oplock = fid->pending_open->oplock;
324 list_del(&fid->pending_open->olist);
325
326 fid->purge_cache = false;
327 server->ops->set_fid(cfile, fid, oplock);
328
329 list_add(&cfile->tlist, &tcon->openFileList);
330 /* if readable file instance put first in list*/
331 if (file->f_mode & FMODE_READ)
332 list_add(&cfile->flist, &cinode->openFileList);
333 else
334 list_add_tail(&cfile->flist, &cinode->openFileList);
335 spin_unlock(&cifs_file_list_lock);
336
337 if (fid->purge_cache)
338 cifs_zap_mapping(inode);
339
340 file->private_data = cfile;
341 return cfile;
342 }
343
344 struct cifsFileInfo *
345 cifsFileInfo_get(struct cifsFileInfo *cifs_file)
346 {
347 spin_lock(&cifs_file_list_lock);
348 cifsFileInfo_get_locked(cifs_file);
349 spin_unlock(&cifs_file_list_lock);
350 return cifs_file;
351 }
352
353 /*
354 * Release a reference on the file private data. This may involve closing
355 * the filehandle out on the server. Must be called without holding
356 * cifs_file_list_lock.
357 */
358 void cifsFileInfo_put(struct cifsFileInfo *cifs_file)
359 {
360 struct inode *inode = d_inode(cifs_file->dentry);
361 struct cifs_tcon *tcon = tlink_tcon(cifs_file->tlink);
362 struct TCP_Server_Info *server = tcon->ses->server;
363 struct cifsInodeInfo *cifsi = CIFS_I(inode);
364 struct super_block *sb = inode->i_sb;
365 struct cifs_sb_info *cifs_sb = CIFS_SB(sb);
366 struct cifsLockInfo *li, *tmp;
367 struct cifs_fid fid;
368 struct cifs_pending_open open;
369 bool oplock_break_cancelled;
370
371 spin_lock(&cifs_file_list_lock);
372 if (--cifs_file->count > 0) {
373 spin_unlock(&cifs_file_list_lock);
374 return;
375 }
376
377 if (server->ops->get_lease_key)
378 server->ops->get_lease_key(inode, &fid);
379
380 /* store open in pending opens to make sure we don't miss lease break */
381 cifs_add_pending_open_locked(&fid, cifs_file->tlink, &open);
382
383 /* remove it from the lists */
384 list_del(&cifs_file->flist);
385 list_del(&cifs_file->tlist);
386
387 if (list_empty(&cifsi->openFileList)) {
388 cifs_dbg(FYI, "closing last open instance for inode %p\n",
389 d_inode(cifs_file->dentry));
390 /*
391 * In strict cache mode we need invalidate mapping on the last
392 * close because it may cause a error when we open this file
393 * again and get at least level II oplock.
394 */
395 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_STRICT_IO)
396 set_bit(CIFS_INO_INVALID_MAPPING, &cifsi->flags);
397 cifs_set_oplock_level(cifsi, 0);
398 }
399 spin_unlock(&cifs_file_list_lock);
400
401 oplock_break_cancelled = cancel_work_sync(&cifs_file->oplock_break);
402
403 if (!tcon->need_reconnect && !cifs_file->invalidHandle) {
404 struct TCP_Server_Info *server = tcon->ses->server;
405 unsigned int xid;
406
407 xid = get_xid();
408 if (server->ops->close)
409 server->ops->close(xid, tcon, &cifs_file->fid);
410 _free_xid(xid);
411 }
412
413 if (oplock_break_cancelled)
414 cifs_done_oplock_break(cifsi);
415
416 cifs_del_pending_open(&open);
417
418 /*
419 * Delete any outstanding lock records. We'll lose them when the file
420 * is closed anyway.
421 */
422 down_write(&cifsi->lock_sem);
423 list_for_each_entry_safe(li, tmp, &cifs_file->llist->locks, llist) {
424 list_del(&li->llist);
425 cifs_del_lock_waiters(li);
426 kfree(li);
427 }
428 list_del(&cifs_file->llist->llist);
429 kfree(cifs_file->llist);
430 up_write(&cifsi->lock_sem);
431
432 cifs_put_tlink(cifs_file->tlink);
433 dput(cifs_file->dentry);
434 cifs_sb_deactive(sb);
435 kfree(cifs_file);
436 }
437
438 int cifs_open(struct inode *inode, struct file *file)
439
440 {
441 int rc = -EACCES;
442 unsigned int xid;
443 __u32 oplock;
444 struct cifs_sb_info *cifs_sb;
445 struct TCP_Server_Info *server;
446 struct cifs_tcon *tcon;
447 struct tcon_link *tlink;
448 struct cifsFileInfo *cfile = NULL;
449 char *full_path = NULL;
450 bool posix_open_ok = false;
451 struct cifs_fid fid;
452 struct cifs_pending_open open;
453
454 xid = get_xid();
455
456 cifs_sb = CIFS_SB(inode->i_sb);
457 tlink = cifs_sb_tlink(cifs_sb);
458 if (IS_ERR(tlink)) {
459 free_xid(xid);
460 return PTR_ERR(tlink);
461 }
462 tcon = tlink_tcon(tlink);
463 server = tcon->ses->server;
464
465 full_path = build_path_from_dentry(file->f_path.dentry);
466 if (full_path == NULL) {
467 rc = -ENOMEM;
468 goto out;
469 }
470
471 cifs_dbg(FYI, "inode = 0x%p file flags are 0x%x for %s\n",
472 inode, file->f_flags, full_path);
473
474 if (file->f_flags & O_DIRECT &&
475 cifs_sb->mnt_cifs_flags & CIFS_MOUNT_STRICT_IO) {
476 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_NO_BRL)
477 file->f_op = &cifs_file_direct_nobrl_ops;
478 else
479 file->f_op = &cifs_file_direct_ops;
480 }
481
482 if (server->oplocks)
483 oplock = REQ_OPLOCK;
484 else
485 oplock = 0;
486
487 if (!tcon->broken_posix_open && tcon->unix_ext &&
488 cap_unix(tcon->ses) && (CIFS_UNIX_POSIX_PATH_OPS_CAP &
489 le64_to_cpu(tcon->fsUnixInfo.Capability))) {
490 /* can not refresh inode info since size could be stale */
491 rc = cifs_posix_open(full_path, &inode, inode->i_sb,
492 cifs_sb->mnt_file_mode /* ignored */,
493 file->f_flags, &oplock, &fid.netfid, xid);
494 if (rc == 0) {
495 cifs_dbg(FYI, "posix open succeeded\n");
496 posix_open_ok = true;
497 } else if ((rc == -EINVAL) || (rc == -EOPNOTSUPP)) {
498 if (tcon->ses->serverNOS)
499 cifs_dbg(VFS, "server %s of type %s returned unexpected error on SMB posix open, disabling posix open support. Check if server update available.\n",
500 tcon->ses->serverName,
501 tcon->ses->serverNOS);
502 tcon->broken_posix_open = true;
503 } else if ((rc != -EIO) && (rc != -EREMOTE) &&
504 (rc != -EOPNOTSUPP)) /* path not found or net err */
505 goto out;
506 /*
507 * Else fallthrough to retry open the old way on network i/o
508 * or DFS errors.
509 */
510 }
511
512 if (server->ops->get_lease_key)
513 server->ops->get_lease_key(inode, &fid);
514
515 cifs_add_pending_open(&fid, tlink, &open);
516
517 if (!posix_open_ok) {
518 if (server->ops->get_lease_key)
519 server->ops->get_lease_key(inode, &fid);
520
521 rc = cifs_nt_open(full_path, inode, cifs_sb, tcon,
522 file->f_flags, &oplock, &fid, xid);
523 if (rc) {
524 cifs_del_pending_open(&open);
525 goto out;
526 }
527 }
528
529 cfile = cifs_new_fileinfo(&fid, file, tlink, oplock);
530 if (cfile == NULL) {
531 if (server->ops->close)
532 server->ops->close(xid, tcon, &fid);
533 cifs_del_pending_open(&open);
534 rc = -ENOMEM;
535 goto out;
536 }
537
538 cifs_fscache_set_inode_cookie(inode, file);
539
540 if ((oplock & CIFS_CREATE_ACTION) && !posix_open_ok && tcon->unix_ext) {
541 /*
542 * Time to set mode which we can not set earlier due to
543 * problems creating new read-only files.
544 */
545 struct cifs_unix_set_info_args args = {
546 .mode = inode->i_mode,
547 .uid = INVALID_UID, /* no change */
548 .gid = INVALID_GID, /* no change */
549 .ctime = NO_CHANGE_64,
550 .atime = NO_CHANGE_64,
551 .mtime = NO_CHANGE_64,
552 .device = 0,
553 };
554 CIFSSMBUnixSetFileInfo(xid, tcon, &args, fid.netfid,
555 cfile->pid);
556 }
557
558 out:
559 kfree(full_path);
560 free_xid(xid);
561 cifs_put_tlink(tlink);
562 return rc;
563 }
564
565 static int cifs_push_posix_locks(struct cifsFileInfo *cfile);
566
567 /*
568 * Try to reacquire byte range locks that were released when session
569 * to server was lost.
570 */
571 static int
572 cifs_relock_file(struct cifsFileInfo *cfile)
573 {
574 struct cifs_sb_info *cifs_sb = CIFS_SB(cfile->dentry->d_sb);
575 struct cifsInodeInfo *cinode = CIFS_I(d_inode(cfile->dentry));
576 struct cifs_tcon *tcon = tlink_tcon(cfile->tlink);
577 int rc = 0;
578
579 down_read(&cinode->lock_sem);
580 if (cinode->can_cache_brlcks) {
581 /* can cache locks - no need to relock */
582 up_read(&cinode->lock_sem);
583 return rc;
584 }
585
586 if (cap_unix(tcon->ses) &&
587 (CIFS_UNIX_FCNTL_CAP & le64_to_cpu(tcon->fsUnixInfo.Capability)) &&
588 ((cifs_sb->mnt_cifs_flags & CIFS_MOUNT_NOPOSIXBRL) == 0))
589 rc = cifs_push_posix_locks(cfile);
590 else
591 rc = tcon->ses->server->ops->push_mand_locks(cfile);
592
593 up_read(&cinode->lock_sem);
594 return rc;
595 }
596
597 static int
598 cifs_reopen_file(struct cifsFileInfo *cfile, bool can_flush)
599 {
600 int rc = -EACCES;
601 unsigned int xid;
602 __u32 oplock;
603 struct cifs_sb_info *cifs_sb;
604 struct cifs_tcon *tcon;
605 struct TCP_Server_Info *server;
606 struct cifsInodeInfo *cinode;
607 struct inode *inode;
608 char *full_path = NULL;
609 int desired_access;
610 int disposition = FILE_OPEN;
611 int create_options = CREATE_NOT_DIR;
612 struct cifs_open_parms oparms;
613
614 xid = get_xid();
615 mutex_lock(&cfile->fh_mutex);
616 if (!cfile->invalidHandle) {
617 mutex_unlock(&cfile->fh_mutex);
618 rc = 0;
619 free_xid(xid);
620 return rc;
621 }
622
623 inode = d_inode(cfile->dentry);
624 cifs_sb = CIFS_SB(inode->i_sb);
625 tcon = tlink_tcon(cfile->tlink);
626 server = tcon->ses->server;
627
628 /*
629 * Can not grab rename sem here because various ops, including those
630 * that already have the rename sem can end up causing writepage to get
631 * called and if the server was down that means we end up here, and we
632 * can never tell if the caller already has the rename_sem.
633 */
634 full_path = build_path_from_dentry(cfile->dentry);
635 if (full_path == NULL) {
636 rc = -ENOMEM;
637 mutex_unlock(&cfile->fh_mutex);
638 free_xid(xid);
639 return rc;
640 }
641
642 cifs_dbg(FYI, "inode = 0x%p file flags 0x%x for %s\n",
643 inode, cfile->f_flags, full_path);
644
645 if (tcon->ses->server->oplocks)
646 oplock = REQ_OPLOCK;
647 else
648 oplock = 0;
649
650 if (tcon->unix_ext && cap_unix(tcon->ses) &&
651 (CIFS_UNIX_POSIX_PATH_OPS_CAP &
652 le64_to_cpu(tcon->fsUnixInfo.Capability))) {
653 /*
654 * O_CREAT, O_EXCL and O_TRUNC already had their effect on the
655 * original open. Must mask them off for a reopen.
656 */
657 unsigned int oflags = cfile->f_flags &
658 ~(O_CREAT | O_EXCL | O_TRUNC);
659
660 rc = cifs_posix_open(full_path, NULL, inode->i_sb,
661 cifs_sb->mnt_file_mode /* ignored */,
662 oflags, &oplock, &cfile->fid.netfid, xid);
663 if (rc == 0) {
664 cifs_dbg(FYI, "posix reopen succeeded\n");
665 oparms.reconnect = true;
666 goto reopen_success;
667 }
668 /*
669 * fallthrough to retry open the old way on errors, especially
670 * in the reconnect path it is important to retry hard
671 */
672 }
673
674 desired_access = cifs_convert_flags(cfile->f_flags);
675
676 if (backup_cred(cifs_sb))
677 create_options |= CREATE_OPEN_BACKUP_INTENT;
678
679 if (server->ops->get_lease_key)
680 server->ops->get_lease_key(inode, &cfile->fid);
681
682 oparms.tcon = tcon;
683 oparms.cifs_sb = cifs_sb;
684 oparms.desired_access = desired_access;
685 oparms.create_options = create_options;
686 oparms.disposition = disposition;
687 oparms.path = full_path;
688 oparms.fid = &cfile->fid;
689 oparms.reconnect = true;
690
691 /*
692 * Can not refresh inode by passing in file_info buf to be returned by
693 * ops->open and then calling get_inode_info with returned buf since
694 * file might have write behind data that needs to be flushed and server
695 * version of file size can be stale. If we knew for sure that inode was
696 * not dirty locally we could do this.
697 */
698 rc = server->ops->open(xid, &oparms, &oplock, NULL);
699 if (rc == -ENOENT && oparms.reconnect == false) {
700 /* durable handle timeout is expired - open the file again */
701 rc = server->ops->open(xid, &oparms, &oplock, NULL);
702 /* indicate that we need to relock the file */
703 oparms.reconnect = true;
704 }
705
706 if (rc) {
707 mutex_unlock(&cfile->fh_mutex);
708 cifs_dbg(FYI, "cifs_reopen returned 0x%x\n", rc);
709 cifs_dbg(FYI, "oplock: %d\n", oplock);
710 goto reopen_error_exit;
711 }
712
713 reopen_success:
714 cfile->invalidHandle = false;
715 mutex_unlock(&cfile->fh_mutex);
716 cinode = CIFS_I(inode);
717
718 if (can_flush) {
719 rc = filemap_write_and_wait(inode->i_mapping);
720 mapping_set_error(inode->i_mapping, rc);
721
722 if (tcon->unix_ext)
723 rc = cifs_get_inode_info_unix(&inode, full_path,
724 inode->i_sb, xid);
725 else
726 rc = cifs_get_inode_info(&inode, full_path, NULL,
727 inode->i_sb, xid, NULL);
728 }
729 /*
730 * Else we are writing out data to server already and could deadlock if
731 * we tried to flush data, and since we do not know if we have data that
732 * would invalidate the current end of file on the server we can not go
733 * to the server to get the new inode info.
734 */
735
736 server->ops->set_fid(cfile, &cfile->fid, oplock);
737 if (oparms.reconnect)
738 cifs_relock_file(cfile);
739
740 reopen_error_exit:
741 kfree(full_path);
742 free_xid(xid);
743 return rc;
744 }
745
746 int cifs_close(struct inode *inode, struct file *file)
747 {
748 if (file->private_data != NULL) {
749 cifsFileInfo_put(file->private_data);
750 file->private_data = NULL;
751 }
752
753 /* return code from the ->release op is always ignored */
754 return 0;
755 }
756
757 int cifs_closedir(struct inode *inode, struct file *file)
758 {
759 int rc = 0;
760 unsigned int xid;
761 struct cifsFileInfo *cfile = file->private_data;
762 struct cifs_tcon *tcon;
763 struct TCP_Server_Info *server;
764 char *buf;
765
766 cifs_dbg(FYI, "Closedir inode = 0x%p\n", inode);
767
768 if (cfile == NULL)
769 return rc;
770
771 xid = get_xid();
772 tcon = tlink_tcon(cfile->tlink);
773 server = tcon->ses->server;
774
775 cifs_dbg(FYI, "Freeing private data in close dir\n");
776 spin_lock(&cifs_file_list_lock);
777 if (server->ops->dir_needs_close(cfile)) {
778 cfile->invalidHandle = true;
779 spin_unlock(&cifs_file_list_lock);
780 if (server->ops->close_dir)
781 rc = server->ops->close_dir(xid, tcon, &cfile->fid);
782 else
783 rc = -ENOSYS;
784 cifs_dbg(FYI, "Closing uncompleted readdir with rc %d\n", rc);
785 /* not much we can do if it fails anyway, ignore rc */
786 rc = 0;
787 } else
788 spin_unlock(&cifs_file_list_lock);
789
790 buf = cfile->srch_inf.ntwrk_buf_start;
791 if (buf) {
792 cifs_dbg(FYI, "closedir free smb buf in srch struct\n");
793 cfile->srch_inf.ntwrk_buf_start = NULL;
794 if (cfile->srch_inf.smallBuf)
795 cifs_small_buf_release(buf);
796 else
797 cifs_buf_release(buf);
798 }
799
800 cifs_put_tlink(cfile->tlink);
801 kfree(file->private_data);
802 file->private_data = NULL;
803 /* BB can we lock the filestruct while this is going on? */
804 free_xid(xid);
805 return rc;
806 }
807
808 static struct cifsLockInfo *
809 cifs_lock_init(__u64 offset, __u64 length, __u8 type)
810 {
811 struct cifsLockInfo *lock =
812 kmalloc(sizeof(struct cifsLockInfo), GFP_KERNEL);
813 if (!lock)
814 return lock;
815 lock->offset = offset;
816 lock->length = length;
817 lock->type = type;
818 lock->pid = current->tgid;
819 INIT_LIST_HEAD(&lock->blist);
820 init_waitqueue_head(&lock->block_q);
821 return lock;
822 }
823
824 void
825 cifs_del_lock_waiters(struct cifsLockInfo *lock)
826 {
827 struct cifsLockInfo *li, *tmp;
828 list_for_each_entry_safe(li, tmp, &lock->blist, blist) {
829 list_del_init(&li->blist);
830 wake_up(&li->block_q);
831 }
832 }
833
834 #define CIFS_LOCK_OP 0
835 #define CIFS_READ_OP 1
836 #define CIFS_WRITE_OP 2
837
838 /* @rw_check : 0 - no op, 1 - read, 2 - write */
839 static bool
840 cifs_find_fid_lock_conflict(struct cifs_fid_locks *fdlocks, __u64 offset,
841 __u64 length, __u8 type, struct cifsFileInfo *cfile,
842 struct cifsLockInfo **conf_lock, int rw_check)
843 {
844 struct cifsLockInfo *li;
845 struct cifsFileInfo *cur_cfile = fdlocks->cfile;
846 struct TCP_Server_Info *server = tlink_tcon(cfile->tlink)->ses->server;
847
848 list_for_each_entry(li, &fdlocks->locks, llist) {
849 if (offset + length <= li->offset ||
850 offset >= li->offset + li->length)
851 continue;
852 if (rw_check != CIFS_LOCK_OP && current->tgid == li->pid &&
853 server->ops->compare_fids(cfile, cur_cfile)) {
854 /* shared lock prevents write op through the same fid */
855 if (!(li->type & server->vals->shared_lock_type) ||
856 rw_check != CIFS_WRITE_OP)
857 continue;
858 }
859 if ((type & server->vals->shared_lock_type) &&
860 ((server->ops->compare_fids(cfile, cur_cfile) &&
861 current->tgid == li->pid) || type == li->type))
862 continue;
863 if (conf_lock)
864 *conf_lock = li;
865 return true;
866 }
867 return false;
868 }
869
870 bool
871 cifs_find_lock_conflict(struct cifsFileInfo *cfile, __u64 offset, __u64 length,
872 __u8 type, struct cifsLockInfo **conf_lock,
873 int rw_check)
874 {
875 bool rc = false;
876 struct cifs_fid_locks *cur;
877 struct cifsInodeInfo *cinode = CIFS_I(d_inode(cfile->dentry));
878
879 list_for_each_entry(cur, &cinode->llist, llist) {
880 rc = cifs_find_fid_lock_conflict(cur, offset, length, type,
881 cfile, conf_lock, rw_check);
882 if (rc)
883 break;
884 }
885
886 return rc;
887 }
888
889 /*
890 * Check if there is another lock that prevents us to set the lock (mandatory
891 * style). If such a lock exists, update the flock structure with its
892 * properties. Otherwise, set the flock type to F_UNLCK if we can cache brlocks
893 * or leave it the same if we can't. Returns 0 if we don't need to request to
894 * the server or 1 otherwise.
895 */
896 static int
897 cifs_lock_test(struct cifsFileInfo *cfile, __u64 offset, __u64 length,
898 __u8 type, struct file_lock *flock)
899 {
900 int rc = 0;
901 struct cifsLockInfo *conf_lock;
902 struct cifsInodeInfo *cinode = CIFS_I(d_inode(cfile->dentry));
903 struct TCP_Server_Info *server = tlink_tcon(cfile->tlink)->ses->server;
904 bool exist;
905
906 down_read(&cinode->lock_sem);
907
908 exist = cifs_find_lock_conflict(cfile, offset, length, type,
909 &conf_lock, CIFS_LOCK_OP);
910 if (exist) {
911 flock->fl_start = conf_lock->offset;
912 flock->fl_end = conf_lock->offset + conf_lock->length - 1;
913 flock->fl_pid = conf_lock->pid;
914 if (conf_lock->type & server->vals->shared_lock_type)
915 flock->fl_type = F_RDLCK;
916 else
917 flock->fl_type = F_WRLCK;
918 } else if (!cinode->can_cache_brlcks)
919 rc = 1;
920 else
921 flock->fl_type = F_UNLCK;
922
923 up_read(&cinode->lock_sem);
924 return rc;
925 }
926
927 static void
928 cifs_lock_add(struct cifsFileInfo *cfile, struct cifsLockInfo *lock)
929 {
930 struct cifsInodeInfo *cinode = CIFS_I(d_inode(cfile->dentry));
931 down_write(&cinode->lock_sem);
932 list_add_tail(&lock->llist, &cfile->llist->locks);
933 up_write(&cinode->lock_sem);
934 }
935
936 /*
937 * Set the byte-range lock (mandatory style). Returns:
938 * 1) 0, if we set the lock and don't need to request to the server;
939 * 2) 1, if no locks prevent us but we need to request to the server;
940 * 3) -EACCESS, if there is a lock that prevents us and wait is false.
941 */
942 static int
943 cifs_lock_add_if(struct cifsFileInfo *cfile, struct cifsLockInfo *lock,
944 bool wait)
945 {
946 struct cifsLockInfo *conf_lock;
947 struct cifsInodeInfo *cinode = CIFS_I(d_inode(cfile->dentry));
948 bool exist;
949 int rc = 0;
950
951 try_again:
952 exist = false;
953 down_write(&cinode->lock_sem);
954
955 exist = cifs_find_lock_conflict(cfile, lock->offset, lock->length,
956 lock->type, &conf_lock, CIFS_LOCK_OP);
957 if (!exist && cinode->can_cache_brlcks) {
958 list_add_tail(&lock->llist, &cfile->llist->locks);
959 up_write(&cinode->lock_sem);
960 return rc;
961 }
962
963 if (!exist)
964 rc = 1;
965 else if (!wait)
966 rc = -EACCES;
967 else {
968 list_add_tail(&lock->blist, &conf_lock->blist);
969 up_write(&cinode->lock_sem);
970 rc = wait_event_interruptible(lock->block_q,
971 (lock->blist.prev == &lock->blist) &&
972 (lock->blist.next == &lock->blist));
973 if (!rc)
974 goto try_again;
975 down_write(&cinode->lock_sem);
976 list_del_init(&lock->blist);
977 }
978
979 up_write(&cinode->lock_sem);
980 return rc;
981 }
982
983 /*
984 * Check if there is another lock that prevents us to set the lock (posix
985 * style). If such a lock exists, update the flock structure with its
986 * properties. Otherwise, set the flock type to F_UNLCK if we can cache brlocks
987 * or leave it the same if we can't. Returns 0 if we don't need to request to
988 * the server or 1 otherwise.
989 */
990 static int
991 cifs_posix_lock_test(struct file *file, struct file_lock *flock)
992 {
993 int rc = 0;
994 struct cifsInodeInfo *cinode = CIFS_I(file_inode(file));
995 unsigned char saved_type = flock->fl_type;
996
997 if ((flock->fl_flags & FL_POSIX) == 0)
998 return 1;
999
1000 down_read(&cinode->lock_sem);
1001 posix_test_lock(file, flock);
1002
1003 if (flock->fl_type == F_UNLCK && !cinode->can_cache_brlcks) {
1004 flock->fl_type = saved_type;
1005 rc = 1;
1006 }
1007
1008 up_read(&cinode->lock_sem);
1009 return rc;
1010 }
1011
1012 /*
1013 * Set the byte-range lock (posix style). Returns:
1014 * 1) 0, if we set the lock and don't need to request to the server;
1015 * 2) 1, if we need to request to the server;
1016 * 3) <0, if the error occurs while setting the lock.
1017 */
1018 static int
1019 cifs_posix_lock_set(struct file *file, struct file_lock *flock)
1020 {
1021 struct cifsInodeInfo *cinode = CIFS_I(file_inode(file));
1022 int rc = 1;
1023
1024 if ((flock->fl_flags & FL_POSIX) == 0)
1025 return rc;
1026
1027 try_again:
1028 down_write(&cinode->lock_sem);
1029 if (!cinode->can_cache_brlcks) {
1030 up_write(&cinode->lock_sem);
1031 return rc;
1032 }
1033
1034 rc = posix_lock_file(file, flock, NULL);
1035 up_write(&cinode->lock_sem);
1036 if (rc == FILE_LOCK_DEFERRED) {
1037 rc = wait_event_interruptible(flock->fl_wait, !flock->fl_next);
1038 if (!rc)
1039 goto try_again;
1040 posix_unblock_lock(flock);
1041 }
1042 return rc;
1043 }
1044
1045 int
1046 cifs_push_mandatory_locks(struct cifsFileInfo *cfile)
1047 {
1048 unsigned int xid;
1049 int rc = 0, stored_rc;
1050 struct cifsLockInfo *li, *tmp;
1051 struct cifs_tcon *tcon;
1052 unsigned int num, max_num, max_buf;
1053 LOCKING_ANDX_RANGE *buf, *cur;
1054 int types[] = {LOCKING_ANDX_LARGE_FILES,
1055 LOCKING_ANDX_SHARED_LOCK | LOCKING_ANDX_LARGE_FILES};
1056 int i;
1057
1058 xid = get_xid();
1059 tcon = tlink_tcon(cfile->tlink);
1060
1061 /*
1062 * Accessing maxBuf is racy with cifs_reconnect - need to store value
1063 * and check it for zero before using.
1064 */
1065 max_buf = tcon->ses->server->maxBuf;
1066 if (!max_buf) {
1067 free_xid(xid);
1068 return -EINVAL;
1069 }
1070
1071 max_num = (max_buf - sizeof(struct smb_hdr)) /
1072 sizeof(LOCKING_ANDX_RANGE);
1073 buf = kcalloc(max_num, sizeof(LOCKING_ANDX_RANGE), GFP_KERNEL);
1074 if (!buf) {
1075 free_xid(xid);
1076 return -ENOMEM;
1077 }
1078
1079 for (i = 0; i < 2; i++) {
1080 cur = buf;
1081 num = 0;
1082 list_for_each_entry_safe(li, tmp, &cfile->llist->locks, llist) {
1083 if (li->type != types[i])
1084 continue;
1085 cur->Pid = cpu_to_le16(li->pid);
1086 cur->LengthLow = cpu_to_le32((u32)li->length);
1087 cur->LengthHigh = cpu_to_le32((u32)(li->length>>32));
1088 cur->OffsetLow = cpu_to_le32((u32)li->offset);
1089 cur->OffsetHigh = cpu_to_le32((u32)(li->offset>>32));
1090 if (++num == max_num) {
1091 stored_rc = cifs_lockv(xid, tcon,
1092 cfile->fid.netfid,
1093 (__u8)li->type, 0, num,
1094 buf);
1095 if (stored_rc)
1096 rc = stored_rc;
1097 cur = buf;
1098 num = 0;
1099 } else
1100 cur++;
1101 }
1102
1103 if (num) {
1104 stored_rc = cifs_lockv(xid, tcon, cfile->fid.netfid,
1105 (__u8)types[i], 0, num, buf);
1106 if (stored_rc)
1107 rc = stored_rc;
1108 }
1109 }
1110
1111 kfree(buf);
1112 free_xid(xid);
1113 return rc;
1114 }
1115
1116 struct lock_to_push {
1117 struct list_head llist;
1118 __u64 offset;
1119 __u64 length;
1120 __u32 pid;
1121 __u16 netfid;
1122 __u8 type;
1123 };
1124
1125 static int
1126 cifs_push_posix_locks(struct cifsFileInfo *cfile)
1127 {
1128 struct inode *inode = d_inode(cfile->dentry);
1129 struct cifs_tcon *tcon = tlink_tcon(cfile->tlink);
1130 struct file_lock *flock;
1131 struct file_lock_context *flctx = inode->i_flctx;
1132 unsigned int count = 0, i;
1133 int rc = 0, xid, type;
1134 struct list_head locks_to_send, *el;
1135 struct lock_to_push *lck, *tmp;
1136 __u64 length;
1137
1138 xid = get_xid();
1139
1140 if (!flctx)
1141 goto out;
1142
1143 spin_lock(&flctx->flc_lock);
1144 list_for_each(el, &flctx->flc_posix) {
1145 count++;
1146 }
1147 spin_unlock(&flctx->flc_lock);
1148
1149 INIT_LIST_HEAD(&locks_to_send);
1150
1151 /*
1152 * Allocating count locks is enough because no FL_POSIX locks can be
1153 * added to the list while we are holding cinode->lock_sem that
1154 * protects locking operations of this inode.
1155 */
1156 for (i = 0; i < count; i++) {
1157 lck = kmalloc(sizeof(struct lock_to_push), GFP_KERNEL);
1158 if (!lck) {
1159 rc = -ENOMEM;
1160 goto err_out;
1161 }
1162 list_add_tail(&lck->llist, &locks_to_send);
1163 }
1164
1165 el = locks_to_send.next;
1166 spin_lock(&flctx->flc_lock);
1167 list_for_each_entry(flock, &flctx->flc_posix, fl_list) {
1168 if (el == &locks_to_send) {
1169 /*
1170 * The list ended. We don't have enough allocated
1171 * structures - something is really wrong.
1172 */
1173 cifs_dbg(VFS, "Can't push all brlocks!\n");
1174 break;
1175 }
1176 length = 1 + flock->fl_end - flock->fl_start;
1177 if (flock->fl_type == F_RDLCK || flock->fl_type == F_SHLCK)
1178 type = CIFS_RDLCK;
1179 else
1180 type = CIFS_WRLCK;
1181 lck = list_entry(el, struct lock_to_push, llist);
1182 lck->pid = flock->fl_pid;
1183 lck->netfid = cfile->fid.netfid;
1184 lck->length = length;
1185 lck->type = type;
1186 lck->offset = flock->fl_start;
1187 }
1188 spin_unlock(&flctx->flc_lock);
1189
1190 list_for_each_entry_safe(lck, tmp, &locks_to_send, llist) {
1191 int stored_rc;
1192
1193 stored_rc = CIFSSMBPosixLock(xid, tcon, lck->netfid, lck->pid,
1194 lck->offset, lck->length, NULL,
1195 lck->type, 0);
1196 if (stored_rc)
1197 rc = stored_rc;
1198 list_del(&lck->llist);
1199 kfree(lck);
1200 }
1201
1202 out:
1203 free_xid(xid);
1204 return rc;
1205 err_out:
1206 list_for_each_entry_safe(lck, tmp, &locks_to_send, llist) {
1207 list_del(&lck->llist);
1208 kfree(lck);
1209 }
1210 goto out;
1211 }
1212
1213 static int
1214 cifs_push_locks(struct cifsFileInfo *cfile)
1215 {
1216 struct cifs_sb_info *cifs_sb = CIFS_SB(cfile->dentry->d_sb);
1217 struct cifsInodeInfo *cinode = CIFS_I(d_inode(cfile->dentry));
1218 struct cifs_tcon *tcon = tlink_tcon(cfile->tlink);
1219 int rc = 0;
1220
1221 /* we are going to update can_cache_brlcks here - need a write access */
1222 down_write(&cinode->lock_sem);
1223 if (!cinode->can_cache_brlcks) {
1224 up_write(&cinode->lock_sem);
1225 return rc;
1226 }
1227
1228 if (cap_unix(tcon->ses) &&
1229 (CIFS_UNIX_FCNTL_CAP & le64_to_cpu(tcon->fsUnixInfo.Capability)) &&
1230 ((cifs_sb->mnt_cifs_flags & CIFS_MOUNT_NOPOSIXBRL) == 0))
1231 rc = cifs_push_posix_locks(cfile);
1232 else
1233 rc = tcon->ses->server->ops->push_mand_locks(cfile);
1234
1235 cinode->can_cache_brlcks = false;
1236 up_write(&cinode->lock_sem);
1237 return rc;
1238 }
1239
1240 static void
1241 cifs_read_flock(struct file_lock *flock, __u32 *type, int *lock, int *unlock,
1242 bool *wait_flag, struct TCP_Server_Info *server)
1243 {
1244 if (flock->fl_flags & FL_POSIX)
1245 cifs_dbg(FYI, "Posix\n");
1246 if (flock->fl_flags & FL_FLOCK)
1247 cifs_dbg(FYI, "Flock\n");
1248 if (flock->fl_flags & FL_SLEEP) {
1249 cifs_dbg(FYI, "Blocking lock\n");
1250 *wait_flag = true;
1251 }
1252 if (flock->fl_flags & FL_ACCESS)
1253 cifs_dbg(FYI, "Process suspended by mandatory locking - not implemented yet\n");
1254 if (flock->fl_flags & FL_LEASE)
1255 cifs_dbg(FYI, "Lease on file - not implemented yet\n");
1256 if (flock->fl_flags &
1257 (~(FL_POSIX | FL_FLOCK | FL_SLEEP |
1258 FL_ACCESS | FL_LEASE | FL_CLOSE)))
1259 cifs_dbg(FYI, "Unknown lock flags 0x%x\n", flock->fl_flags);
1260
1261 *type = server->vals->large_lock_type;
1262 if (flock->fl_type == F_WRLCK) {
1263 cifs_dbg(FYI, "F_WRLCK\n");
1264 *type |= server->vals->exclusive_lock_type;
1265 *lock = 1;
1266 } else if (flock->fl_type == F_UNLCK) {
1267 cifs_dbg(FYI, "F_UNLCK\n");
1268 *type |= server->vals->unlock_lock_type;
1269 *unlock = 1;
1270 /* Check if unlock includes more than one lock range */
1271 } else if (flock->fl_type == F_RDLCK) {
1272 cifs_dbg(FYI, "F_RDLCK\n");
1273 *type |= server->vals->shared_lock_type;
1274 *lock = 1;
1275 } else if (flock->fl_type == F_EXLCK) {
1276 cifs_dbg(FYI, "F_EXLCK\n");
1277 *type |= server->vals->exclusive_lock_type;
1278 *lock = 1;
1279 } else if (flock->fl_type == F_SHLCK) {
1280 cifs_dbg(FYI, "F_SHLCK\n");
1281 *type |= server->vals->shared_lock_type;
1282 *lock = 1;
1283 } else
1284 cifs_dbg(FYI, "Unknown type of lock\n");
1285 }
1286
1287 static int
1288 cifs_getlk(struct file *file, struct file_lock *flock, __u32 type,
1289 bool wait_flag, bool posix_lck, unsigned int xid)
1290 {
1291 int rc = 0;
1292 __u64 length = 1 + flock->fl_end - flock->fl_start;
1293 struct cifsFileInfo *cfile = (struct cifsFileInfo *)file->private_data;
1294 struct cifs_tcon *tcon = tlink_tcon(cfile->tlink);
1295 struct TCP_Server_Info *server = tcon->ses->server;
1296 __u16 netfid = cfile->fid.netfid;
1297
1298 if (posix_lck) {
1299 int posix_lock_type;
1300
1301 rc = cifs_posix_lock_test(file, flock);
1302 if (!rc)
1303 return rc;
1304
1305 if (type & server->vals->shared_lock_type)
1306 posix_lock_type = CIFS_RDLCK;
1307 else
1308 posix_lock_type = CIFS_WRLCK;
1309 rc = CIFSSMBPosixLock(xid, tcon, netfid, current->tgid,
1310 flock->fl_start, length, flock,
1311 posix_lock_type, wait_flag);
1312 return rc;
1313 }
1314
1315 rc = cifs_lock_test(cfile, flock->fl_start, length, type, flock);
1316 if (!rc)
1317 return rc;
1318
1319 /* BB we could chain these into one lock request BB */
1320 rc = server->ops->mand_lock(xid, cfile, flock->fl_start, length, type,
1321 1, 0, false);
1322 if (rc == 0) {
1323 rc = server->ops->mand_lock(xid, cfile, flock->fl_start, length,
1324 type, 0, 1, false);
1325 flock->fl_type = F_UNLCK;
1326 if (rc != 0)
1327 cifs_dbg(VFS, "Error unlocking previously locked range %d during test of lock\n",
1328 rc);
1329 return 0;
1330 }
1331
1332 if (type & server->vals->shared_lock_type) {
1333 flock->fl_type = F_WRLCK;
1334 return 0;
1335 }
1336
1337 type &= ~server->vals->exclusive_lock_type;
1338
1339 rc = server->ops->mand_lock(xid, cfile, flock->fl_start, length,
1340 type | server->vals->shared_lock_type,
1341 1, 0, false);
1342 if (rc == 0) {
1343 rc = server->ops->mand_lock(xid, cfile, flock->fl_start, length,
1344 type | server->vals->shared_lock_type, 0, 1, false);
1345 flock->fl_type = F_RDLCK;
1346 if (rc != 0)
1347 cifs_dbg(VFS, "Error unlocking previously locked range %d during test of lock\n",
1348 rc);
1349 } else
1350 flock->fl_type = F_WRLCK;
1351
1352 return 0;
1353 }
1354
1355 void
1356 cifs_move_llist(struct list_head *source, struct list_head *dest)
1357 {
1358 struct list_head *li, *tmp;
1359 list_for_each_safe(li, tmp, source)
1360 list_move(li, dest);
1361 }
1362
1363 void
1364 cifs_free_llist(struct list_head *llist)
1365 {
1366 struct cifsLockInfo *li, *tmp;
1367 list_for_each_entry_safe(li, tmp, llist, llist) {
1368 cifs_del_lock_waiters(li);
1369 list_del(&li->llist);
1370 kfree(li);
1371 }
1372 }
1373
1374 int
1375 cifs_unlock_range(struct cifsFileInfo *cfile, struct file_lock *flock,
1376 unsigned int xid)
1377 {
1378 int rc = 0, stored_rc;
1379 int types[] = {LOCKING_ANDX_LARGE_FILES,
1380 LOCKING_ANDX_SHARED_LOCK | LOCKING_ANDX_LARGE_FILES};
1381 unsigned int i;
1382 unsigned int max_num, num, max_buf;
1383 LOCKING_ANDX_RANGE *buf, *cur;
1384 struct cifs_tcon *tcon = tlink_tcon(cfile->tlink);
1385 struct cifsInodeInfo *cinode = CIFS_I(d_inode(cfile->dentry));
1386 struct cifsLockInfo *li, *tmp;
1387 __u64 length = 1 + flock->fl_end - flock->fl_start;
1388 struct list_head tmp_llist;
1389
1390 INIT_LIST_HEAD(&tmp_llist);
1391
1392 /*
1393 * Accessing maxBuf is racy with cifs_reconnect - need to store value
1394 * and check it for zero before using.
1395 */
1396 max_buf = tcon->ses->server->maxBuf;
1397 if (!max_buf)
1398 return -EINVAL;
1399
1400 max_num = (max_buf - sizeof(struct smb_hdr)) /
1401 sizeof(LOCKING_ANDX_RANGE);
1402 buf = kcalloc(max_num, sizeof(LOCKING_ANDX_RANGE), GFP_KERNEL);
1403 if (!buf)
1404 return -ENOMEM;
1405
1406 down_write(&cinode->lock_sem);
1407 for (i = 0; i < 2; i++) {
1408 cur = buf;
1409 num = 0;
1410 list_for_each_entry_safe(li, tmp, &cfile->llist->locks, llist) {
1411 if (flock->fl_start > li->offset ||
1412 (flock->fl_start + length) <
1413 (li->offset + li->length))
1414 continue;
1415 if (current->tgid != li->pid)
1416 continue;
1417 if (types[i] != li->type)
1418 continue;
1419 if (cinode->can_cache_brlcks) {
1420 /*
1421 * We can cache brlock requests - simply remove
1422 * a lock from the file's list.
1423 */
1424 list_del(&li->llist);
1425 cifs_del_lock_waiters(li);
1426 kfree(li);
1427 continue;
1428 }
1429 cur->Pid = cpu_to_le16(li->pid);
1430 cur->LengthLow = cpu_to_le32((u32)li->length);
1431 cur->LengthHigh = cpu_to_le32((u32)(li->length>>32));
1432 cur->OffsetLow = cpu_to_le32((u32)li->offset);
1433 cur->OffsetHigh = cpu_to_le32((u32)(li->offset>>32));
1434 /*
1435 * We need to save a lock here to let us add it again to
1436 * the file's list if the unlock range request fails on
1437 * the server.
1438 */
1439 list_move(&li->llist, &tmp_llist);
1440 if (++num == max_num) {
1441 stored_rc = cifs_lockv(xid, tcon,
1442 cfile->fid.netfid,
1443 li->type, num, 0, buf);
1444 if (stored_rc) {
1445 /*
1446 * We failed on the unlock range
1447 * request - add all locks from the tmp
1448 * list to the head of the file's list.
1449 */
1450 cifs_move_llist(&tmp_llist,
1451 &cfile->llist->locks);
1452 rc = stored_rc;
1453 } else
1454 /*
1455 * The unlock range request succeed -
1456 * free the tmp list.
1457 */
1458 cifs_free_llist(&tmp_llist);
1459 cur = buf;
1460 num = 0;
1461 } else
1462 cur++;
1463 }
1464 if (num) {
1465 stored_rc = cifs_lockv(xid, tcon, cfile->fid.netfid,
1466 types[i], num, 0, buf);
1467 if (stored_rc) {
1468 cifs_move_llist(&tmp_llist,
1469 &cfile->llist->locks);
1470 rc = stored_rc;
1471 } else
1472 cifs_free_llist(&tmp_llist);
1473 }
1474 }
1475
1476 up_write(&cinode->lock_sem);
1477 kfree(buf);
1478 return rc;
1479 }
1480
1481 static int
1482 cifs_setlk(struct file *file, struct file_lock *flock, __u32 type,
1483 bool wait_flag, bool posix_lck, int lock, int unlock,
1484 unsigned int xid)
1485 {
1486 int rc = 0;
1487 __u64 length = 1 + flock->fl_end - flock->fl_start;
1488 struct cifsFileInfo *cfile = (struct cifsFileInfo *)file->private_data;
1489 struct cifs_tcon *tcon = tlink_tcon(cfile->tlink);
1490 struct TCP_Server_Info *server = tcon->ses->server;
1491 struct inode *inode = d_inode(cfile->dentry);
1492
1493 if (posix_lck) {
1494 int posix_lock_type;
1495
1496 rc = cifs_posix_lock_set(file, flock);
1497 if (!rc || rc < 0)
1498 return rc;
1499
1500 if (type & server->vals->shared_lock_type)
1501 posix_lock_type = CIFS_RDLCK;
1502 else
1503 posix_lock_type = CIFS_WRLCK;
1504
1505 if (unlock == 1)
1506 posix_lock_type = CIFS_UNLCK;
1507
1508 rc = CIFSSMBPosixLock(xid, tcon, cfile->fid.netfid,
1509 current->tgid, flock->fl_start, length,
1510 NULL, posix_lock_type, wait_flag);
1511 goto out;
1512 }
1513
1514 if (lock) {
1515 struct cifsLockInfo *lock;
1516
1517 lock = cifs_lock_init(flock->fl_start, length, type);
1518 if (!lock)
1519 return -ENOMEM;
1520
1521 rc = cifs_lock_add_if(cfile, lock, wait_flag);
1522 if (rc < 0) {
1523 kfree(lock);
1524 return rc;
1525 }
1526 if (!rc)
1527 goto out;
1528
1529 /*
1530 * Windows 7 server can delay breaking lease from read to None
1531 * if we set a byte-range lock on a file - break it explicitly
1532 * before sending the lock to the server to be sure the next
1533 * read won't conflict with non-overlapted locks due to
1534 * pagereading.
1535 */
1536 if (!CIFS_CACHE_WRITE(CIFS_I(inode)) &&
1537 CIFS_CACHE_READ(CIFS_I(inode))) {
1538 cifs_zap_mapping(inode);
1539 cifs_dbg(FYI, "Set no oplock for inode=%p due to mand locks\n",
1540 inode);
1541 CIFS_I(inode)->oplock = 0;
1542 }
1543
1544 rc = server->ops->mand_lock(xid, cfile, flock->fl_start, length,
1545 type, 1, 0, wait_flag);
1546 if (rc) {
1547 kfree(lock);
1548 return rc;
1549 }
1550
1551 cifs_lock_add(cfile, lock);
1552 } else if (unlock)
1553 rc = server->ops->mand_unlock_range(cfile, flock, xid);
1554
1555 out:
1556 if (flock->fl_flags & FL_POSIX)
1557 posix_lock_file_wait(file, flock);
1558 return rc;
1559 }
1560
1561 int cifs_lock(struct file *file, int cmd, struct file_lock *flock)
1562 {
1563 int rc, xid;
1564 int lock = 0, unlock = 0;
1565 bool wait_flag = false;
1566 bool posix_lck = false;
1567 struct cifs_sb_info *cifs_sb;
1568 struct cifs_tcon *tcon;
1569 struct cifsInodeInfo *cinode;
1570 struct cifsFileInfo *cfile;
1571 __u16 netfid;
1572 __u32 type;
1573
1574 rc = -EACCES;
1575 xid = get_xid();
1576
1577 cifs_dbg(FYI, "Lock parm: 0x%x flockflags: 0x%x flocktype: 0x%x start: %lld end: %lld\n",
1578 cmd, flock->fl_flags, flock->fl_type,
1579 flock->fl_start, flock->fl_end);
1580
1581 cfile = (struct cifsFileInfo *)file->private_data;
1582 tcon = tlink_tcon(cfile->tlink);
1583
1584 cifs_read_flock(flock, &type, &lock, &unlock, &wait_flag,
1585 tcon->ses->server);
1586
1587 cifs_sb = CIFS_FILE_SB(file);
1588 netfid = cfile->fid.netfid;
1589 cinode = CIFS_I(file_inode(file));
1590
1591 if (cap_unix(tcon->ses) &&
1592 (CIFS_UNIX_FCNTL_CAP & le64_to_cpu(tcon->fsUnixInfo.Capability)) &&
1593 ((cifs_sb->mnt_cifs_flags & CIFS_MOUNT_NOPOSIXBRL) == 0))
1594 posix_lck = true;
1595 /*
1596 * BB add code here to normalize offset and length to account for
1597 * negative length which we can not accept over the wire.
1598 */
1599 if (IS_GETLK(cmd)) {
1600 rc = cifs_getlk(file, flock, type, wait_flag, posix_lck, xid);
1601 free_xid(xid);
1602 return rc;
1603 }
1604
1605 if (!lock && !unlock) {
1606 /*
1607 * if no lock or unlock then nothing to do since we do not
1608 * know what it is
1609 */
1610 free_xid(xid);
1611 return -EOPNOTSUPP;
1612 }
1613
1614 rc = cifs_setlk(file, flock, type, wait_flag, posix_lck, lock, unlock,
1615 xid);
1616 free_xid(xid);
1617 return rc;
1618 }
1619
1620 /*
1621 * update the file size (if needed) after a write. Should be called with
1622 * the inode->i_lock held
1623 */
1624 void
1625 cifs_update_eof(struct cifsInodeInfo *cifsi, loff_t offset,
1626 unsigned int bytes_written)
1627 {
1628 loff_t end_of_write = offset + bytes_written;
1629
1630 if (end_of_write > cifsi->server_eof)
1631 cifsi->server_eof = end_of_write;
1632 }
1633
1634 static ssize_t
1635 cifs_write(struct cifsFileInfo *open_file, __u32 pid, const char *write_data,
1636 size_t write_size, loff_t *offset)
1637 {
1638 int rc = 0;
1639 unsigned int bytes_written = 0;
1640 unsigned int total_written;
1641 struct cifs_sb_info *cifs_sb;
1642 struct cifs_tcon *tcon;
1643 struct TCP_Server_Info *server;
1644 unsigned int xid;
1645 struct dentry *dentry = open_file->dentry;
1646 struct cifsInodeInfo *cifsi = CIFS_I(d_inode(dentry));
1647 struct cifs_io_parms io_parms;
1648
1649 cifs_sb = CIFS_SB(dentry->d_sb);
1650
1651 cifs_dbg(FYI, "write %zd bytes to offset %lld of %pd\n",
1652 write_size, *offset, dentry);
1653
1654 tcon = tlink_tcon(open_file->tlink);
1655 server = tcon->ses->server;
1656
1657 if (!server->ops->sync_write)
1658 return -ENOSYS;
1659
1660 xid = get_xid();
1661
1662 for (total_written = 0; write_size > total_written;
1663 total_written += bytes_written) {
1664 rc = -EAGAIN;
1665 while (rc == -EAGAIN) {
1666 struct kvec iov[2];
1667 unsigned int len;
1668
1669 if (open_file->invalidHandle) {
1670 /* we could deadlock if we called
1671 filemap_fdatawait from here so tell
1672 reopen_file not to flush data to
1673 server now */
1674 rc = cifs_reopen_file(open_file, false);
1675 if (rc != 0)
1676 break;
1677 }
1678
1679 len = min(server->ops->wp_retry_size(d_inode(dentry)),
1680 (unsigned int)write_size - total_written);
1681 /* iov[0] is reserved for smb header */
1682 iov[1].iov_base = (char *)write_data + total_written;
1683 iov[1].iov_len = len;
1684 io_parms.pid = pid;
1685 io_parms.tcon = tcon;
1686 io_parms.offset = *offset;
1687 io_parms.length = len;
1688 rc = server->ops->sync_write(xid, &open_file->fid,
1689 &io_parms, &bytes_written, iov, 1);
1690 }
1691 if (rc || (bytes_written == 0)) {
1692 if (total_written)
1693 break;
1694 else {
1695 free_xid(xid);
1696 return rc;
1697 }
1698 } else {
1699 spin_lock(&d_inode(dentry)->i_lock);
1700 cifs_update_eof(cifsi, *offset, bytes_written);
1701 spin_unlock(&d_inode(dentry)->i_lock);
1702 *offset += bytes_written;
1703 }
1704 }
1705
1706 cifs_stats_bytes_written(tcon, total_written);
1707
1708 if (total_written > 0) {
1709 spin_lock(&d_inode(dentry)->i_lock);
1710 if (*offset > d_inode(dentry)->i_size)
1711 i_size_write(d_inode(dentry), *offset);
1712 spin_unlock(&d_inode(dentry)->i_lock);
1713 }
1714 mark_inode_dirty_sync(d_inode(dentry));
1715 free_xid(xid);
1716 return total_written;
1717 }
1718
1719 struct cifsFileInfo *find_readable_file(struct cifsInodeInfo *cifs_inode,
1720 bool fsuid_only)
1721 {
1722 struct cifsFileInfo *open_file = NULL;
1723 struct cifs_sb_info *cifs_sb = CIFS_SB(cifs_inode->vfs_inode.i_sb);
1724
1725 /* only filter by fsuid on multiuser mounts */
1726 if (!(cifs_sb->mnt_cifs_flags & CIFS_MOUNT_MULTIUSER))
1727 fsuid_only = false;
1728
1729 spin_lock(&cifs_file_list_lock);
1730 /* we could simply get the first_list_entry since write-only entries
1731 are always at the end of the list but since the first entry might
1732 have a close pending, we go through the whole list */
1733 list_for_each_entry(open_file, &cifs_inode->openFileList, flist) {
1734 if (fsuid_only && !uid_eq(open_file->uid, current_fsuid()))
1735 continue;
1736 if (OPEN_FMODE(open_file->f_flags) & FMODE_READ) {
1737 if (!open_file->invalidHandle) {
1738 /* found a good file */
1739 /* lock it so it will not be closed on us */
1740 cifsFileInfo_get_locked(open_file);
1741 spin_unlock(&cifs_file_list_lock);
1742 return open_file;
1743 } /* else might as well continue, and look for
1744 another, or simply have the caller reopen it
1745 again rather than trying to fix this handle */
1746 } else /* write only file */
1747 break; /* write only files are last so must be done */
1748 }
1749 spin_unlock(&cifs_file_list_lock);
1750 return NULL;
1751 }
1752
1753 struct cifsFileInfo *find_writable_file(struct cifsInodeInfo *cifs_inode,
1754 bool fsuid_only)
1755 {
1756 struct cifsFileInfo *open_file, *inv_file = NULL;
1757 struct cifs_sb_info *cifs_sb;
1758 bool any_available = false;
1759 int rc;
1760 unsigned int refind = 0;
1761
1762 /* Having a null inode here (because mapping->host was set to zero by
1763 the VFS or MM) should not happen but we had reports of on oops (due to
1764 it being zero) during stress testcases so we need to check for it */
1765
1766 if (cifs_inode == NULL) {
1767 cifs_dbg(VFS, "Null inode passed to cifs_writeable_file\n");
1768 dump_stack();
1769 return NULL;
1770 }
1771
1772 cifs_sb = CIFS_SB(cifs_inode->vfs_inode.i_sb);
1773
1774 /* only filter by fsuid on multiuser mounts */
1775 if (!(cifs_sb->mnt_cifs_flags & CIFS_MOUNT_MULTIUSER))
1776 fsuid_only = false;
1777
1778 spin_lock(&cifs_file_list_lock);
1779 refind_writable:
1780 if (refind > MAX_REOPEN_ATT) {
1781 spin_unlock(&cifs_file_list_lock);
1782 return NULL;
1783 }
1784 list_for_each_entry(open_file, &cifs_inode->openFileList, flist) {
1785 if (!any_available && open_file->pid != current->tgid)
1786 continue;
1787 if (fsuid_only && !uid_eq(open_file->uid, current_fsuid()))
1788 continue;
1789 if (OPEN_FMODE(open_file->f_flags) & FMODE_WRITE) {
1790 if (!open_file->invalidHandle) {
1791 /* found a good writable file */
1792 cifsFileInfo_get_locked(open_file);
1793 spin_unlock(&cifs_file_list_lock);
1794 return open_file;
1795 } else {
1796 if (!inv_file)
1797 inv_file = open_file;
1798 }
1799 }
1800 }
1801 /* couldn't find useable FH with same pid, try any available */
1802 if (!any_available) {
1803 any_available = true;
1804 goto refind_writable;
1805 }
1806
1807 if (inv_file) {
1808 any_available = false;
1809 cifsFileInfo_get_locked(inv_file);
1810 }
1811
1812 spin_unlock(&cifs_file_list_lock);
1813
1814 if (inv_file) {
1815 rc = cifs_reopen_file(inv_file, false);
1816 if (!rc)
1817 return inv_file;
1818 else {
1819 spin_lock(&cifs_file_list_lock);
1820 list_move_tail(&inv_file->flist,
1821 &cifs_inode->openFileList);
1822 spin_unlock(&cifs_file_list_lock);
1823 cifsFileInfo_put(inv_file);
1824 spin_lock(&cifs_file_list_lock);
1825 ++refind;
1826 inv_file = NULL;
1827 goto refind_writable;
1828 }
1829 }
1830
1831 return NULL;
1832 }
1833
1834 static int cifs_partialpagewrite(struct page *page, unsigned from, unsigned to)
1835 {
1836 struct address_space *mapping = page->mapping;
1837 loff_t offset = (loff_t)page->index << PAGE_CACHE_SHIFT;
1838 char *write_data;
1839 int rc = -EFAULT;
1840 int bytes_written = 0;
1841 struct inode *inode;
1842 struct cifsFileInfo *open_file;
1843
1844 if (!mapping || !mapping->host)
1845 return -EFAULT;
1846
1847 inode = page->mapping->host;
1848
1849 offset += (loff_t)from;
1850 write_data = kmap(page);
1851 write_data += from;
1852
1853 if ((to > PAGE_CACHE_SIZE) || (from > to)) {
1854 kunmap(page);
1855 return -EIO;
1856 }
1857
1858 /* racing with truncate? */
1859 if (offset > mapping->host->i_size) {
1860 kunmap(page);
1861 return 0; /* don't care */
1862 }
1863
1864 /* check to make sure that we are not extending the file */
1865 if (mapping->host->i_size - offset < (loff_t)to)
1866 to = (unsigned)(mapping->host->i_size - offset);
1867
1868 open_file = find_writable_file(CIFS_I(mapping->host), false);
1869 if (open_file) {
1870 bytes_written = cifs_write(open_file, open_file->pid,
1871 write_data, to - from, &offset);
1872 cifsFileInfo_put(open_file);
1873 /* Does mm or vfs already set times? */
1874 inode->i_atime = inode->i_mtime = current_fs_time(inode->i_sb);
1875 if ((bytes_written > 0) && (offset))
1876 rc = 0;
1877 else if (bytes_written < 0)
1878 rc = bytes_written;
1879 } else {
1880 cifs_dbg(FYI, "No writeable filehandles for inode\n");
1881 rc = -EIO;
1882 }
1883
1884 kunmap(page);
1885 return rc;
1886 }
1887
1888 static struct cifs_writedata *
1889 wdata_alloc_and_fillpages(pgoff_t tofind, struct address_space *mapping,
1890 pgoff_t end, pgoff_t *index,
1891 unsigned int *found_pages)
1892 {
1893 unsigned int nr_pages;
1894 struct page **pages;
1895 struct cifs_writedata *wdata;
1896
1897 wdata = cifs_writedata_alloc((unsigned int)tofind,
1898 cifs_writev_complete);
1899 if (!wdata)
1900 return NULL;
1901
1902 /*
1903 * find_get_pages_tag seems to return a max of 256 on each
1904 * iteration, so we must call it several times in order to
1905 * fill the array or the wsize is effectively limited to
1906 * 256 * PAGE_CACHE_SIZE.
1907 */
1908 *found_pages = 0;
1909 pages = wdata->pages;
1910 do {
1911 nr_pages = find_get_pages_tag(mapping, index,
1912 PAGECACHE_TAG_DIRTY, tofind,
1913 pages);
1914 *found_pages += nr_pages;
1915 tofind -= nr_pages;
1916 pages += nr_pages;
1917 } while (nr_pages && tofind && *index <= end);
1918
1919 return wdata;
1920 }
1921
1922 static unsigned int
1923 wdata_prepare_pages(struct cifs_writedata *wdata, unsigned int found_pages,
1924 struct address_space *mapping,
1925 struct writeback_control *wbc,
1926 pgoff_t end, pgoff_t *index, pgoff_t *next, bool *done)
1927 {
1928 unsigned int nr_pages = 0, i;
1929 struct page *page;
1930
1931 for (i = 0; i < found_pages; i++) {
1932 page = wdata->pages[i];
1933 /*
1934 * At this point we hold neither mapping->tree_lock nor
1935 * lock on the page itself: the page may be truncated or
1936 * invalidated (changing page->mapping to NULL), or even
1937 * swizzled back from swapper_space to tmpfs file
1938 * mapping
1939 */
1940
1941 if (nr_pages == 0)
1942 lock_page(page);
1943 else if (!trylock_page(page))
1944 break;
1945
1946 if (unlikely(page->mapping != mapping)) {
1947 unlock_page(page);
1948 break;
1949 }
1950
1951 if (!wbc->range_cyclic && page->index > end) {
1952 *done = true;
1953 unlock_page(page);
1954 break;
1955 }
1956
1957 if (*next && (page->index != *next)) {
1958 /* Not next consecutive page */
1959 unlock_page(page);
1960 break;
1961 }
1962
1963 if (wbc->sync_mode != WB_SYNC_NONE)
1964 wait_on_page_writeback(page);
1965
1966 if (PageWriteback(page) ||
1967 !clear_page_dirty_for_io(page)) {
1968 unlock_page(page);
1969 break;
1970 }
1971
1972 /*
1973 * This actually clears the dirty bit in the radix tree.
1974 * See cifs_writepage() for more commentary.
1975 */
1976 set_page_writeback(page);
1977 if (page_offset(page) >= i_size_read(mapping->host)) {
1978 *done = true;
1979 unlock_page(page);
1980 end_page_writeback(page);
1981 break;
1982 }
1983
1984 wdata->pages[i] = page;
1985 *next = page->index + 1;
1986 ++nr_pages;
1987 }
1988
1989 /* reset index to refind any pages skipped */
1990 if (nr_pages == 0)
1991 *index = wdata->pages[0]->index + 1;
1992
1993 /* put any pages we aren't going to use */
1994 for (i = nr_pages; i < found_pages; i++) {
1995 page_cache_release(wdata->pages[i]);
1996 wdata->pages[i] = NULL;
1997 }
1998
1999 return nr_pages;
2000 }
2001
2002 static int
2003 wdata_send_pages(struct cifs_writedata *wdata, unsigned int nr_pages,
2004 struct address_space *mapping, struct writeback_control *wbc)
2005 {
2006 int rc = 0;
2007 struct TCP_Server_Info *server;
2008 unsigned int i;
2009
2010 wdata->sync_mode = wbc->sync_mode;
2011 wdata->nr_pages = nr_pages;
2012 wdata->offset = page_offset(wdata->pages[0]);
2013 wdata->pagesz = PAGE_CACHE_SIZE;
2014 wdata->tailsz = min(i_size_read(mapping->host) -
2015 page_offset(wdata->pages[nr_pages - 1]),
2016 (loff_t)PAGE_CACHE_SIZE);
2017 wdata->bytes = ((nr_pages - 1) * PAGE_CACHE_SIZE) + wdata->tailsz;
2018
2019 if (wdata->cfile != NULL)
2020 cifsFileInfo_put(wdata->cfile);
2021 wdata->cfile = find_writable_file(CIFS_I(mapping->host), false);
2022 if (!wdata->cfile) {
2023 cifs_dbg(VFS, "No writable handles for inode\n");
2024 rc = -EBADF;
2025 } else {
2026 wdata->pid = wdata->cfile->pid;
2027 server = tlink_tcon(wdata->cfile->tlink)->ses->server;
2028 rc = server->ops->async_writev(wdata, cifs_writedata_release);
2029 }
2030
2031 for (i = 0; i < nr_pages; ++i)
2032 unlock_page(wdata->pages[i]);
2033
2034 return rc;
2035 }
2036
2037 static int cifs_writepages(struct address_space *mapping,
2038 struct writeback_control *wbc)
2039 {
2040 struct cifs_sb_info *cifs_sb = CIFS_SB(mapping->host->i_sb);
2041 struct TCP_Server_Info *server;
2042 bool done = false, scanned = false, range_whole = false;
2043 pgoff_t end, index;
2044 struct cifs_writedata *wdata;
2045 int rc = 0;
2046
2047 /*
2048 * If wsize is smaller than the page cache size, default to writing
2049 * one page at a time via cifs_writepage
2050 */
2051 if (cifs_sb->wsize < PAGE_CACHE_SIZE)
2052 return generic_writepages(mapping, wbc);
2053
2054 if (wbc->range_cyclic) {
2055 index = mapping->writeback_index; /* Start from prev offset */
2056 end = -1;
2057 } else {
2058 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2059 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2060 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2061 range_whole = true;
2062 scanned = true;
2063 }
2064 server = cifs_sb_master_tcon(cifs_sb)->ses->server;
2065 retry:
2066 while (!done && index <= end) {
2067 unsigned int i, nr_pages, found_pages, wsize, credits;
2068 pgoff_t next = 0, tofind, saved_index = index;
2069
2070 rc = server->ops->wait_mtu_credits(server, cifs_sb->wsize,
2071 &wsize, &credits);
2072 if (rc)
2073 break;
2074
2075 tofind = min((wsize / PAGE_CACHE_SIZE) - 1, end - index) + 1;
2076
2077 wdata = wdata_alloc_and_fillpages(tofind, mapping, end, &index,
2078 &found_pages);
2079 if (!wdata) {
2080 rc = -ENOMEM;
2081 add_credits_and_wake_if(server, credits, 0);
2082 break;
2083 }
2084
2085 if (found_pages == 0) {
2086 kref_put(&wdata->refcount, cifs_writedata_release);
2087 add_credits_and_wake_if(server, credits, 0);
2088 break;
2089 }
2090
2091 nr_pages = wdata_prepare_pages(wdata, found_pages, mapping, wbc,
2092 end, &index, &next, &done);
2093
2094 /* nothing to write? */
2095 if (nr_pages == 0) {
2096 kref_put(&wdata->refcount, cifs_writedata_release);
2097 add_credits_and_wake_if(server, credits, 0);
2098 continue;
2099 }
2100
2101 wdata->credits = credits;
2102
2103 rc = wdata_send_pages(wdata, nr_pages, mapping, wbc);
2104
2105 /* send failure -- clean up the mess */
2106 if (rc != 0) {
2107 add_credits_and_wake_if(server, wdata->credits, 0);
2108 for (i = 0; i < nr_pages; ++i) {
2109 if (rc == -EAGAIN)
2110 redirty_page_for_writepage(wbc,
2111 wdata->pages[i]);
2112 else
2113 SetPageError(wdata->pages[i]);
2114 end_page_writeback(wdata->pages[i]);
2115 page_cache_release(wdata->pages[i]);
2116 }
2117 if (rc != -EAGAIN)
2118 mapping_set_error(mapping, rc);
2119 }
2120 kref_put(&wdata->refcount, cifs_writedata_release);
2121
2122 if (wbc->sync_mode == WB_SYNC_ALL && rc == -EAGAIN) {
2123 index = saved_index;
2124 continue;
2125 }
2126
2127 wbc->nr_to_write -= nr_pages;
2128 if (wbc->nr_to_write <= 0)
2129 done = true;
2130
2131 index = next;
2132 }
2133
2134 if (!scanned && !done) {
2135 /*
2136 * We hit the last page and there is more work to be done: wrap
2137 * back to the start of the file
2138 */
2139 scanned = true;
2140 index = 0;
2141 goto retry;
2142 }
2143
2144 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2145 mapping->writeback_index = index;
2146
2147 return rc;
2148 }
2149
2150 static int
2151 cifs_writepage_locked(struct page *page, struct writeback_control *wbc)
2152 {
2153 int rc;
2154 unsigned int xid;
2155
2156 xid = get_xid();
2157 /* BB add check for wbc flags */
2158 page_cache_get(page);
2159 if (!PageUptodate(page))
2160 cifs_dbg(FYI, "ppw - page not up to date\n");
2161
2162 /*
2163 * Set the "writeback" flag, and clear "dirty" in the radix tree.
2164 *
2165 * A writepage() implementation always needs to do either this,
2166 * or re-dirty the page with "redirty_page_for_writepage()" in
2167 * the case of a failure.
2168 *
2169 * Just unlocking the page will cause the radix tree tag-bits
2170 * to fail to update with the state of the page correctly.
2171 */
2172 set_page_writeback(page);
2173 retry_write:
2174 rc = cifs_partialpagewrite(page, 0, PAGE_CACHE_SIZE);
2175 if (rc == -EAGAIN && wbc->sync_mode == WB_SYNC_ALL)
2176 goto retry_write;
2177 else if (rc == -EAGAIN)
2178 redirty_page_for_writepage(wbc, page);
2179 else if (rc != 0)
2180 SetPageError(page);
2181 else
2182 SetPageUptodate(page);
2183 end_page_writeback(page);
2184 page_cache_release(page);
2185 free_xid(xid);
2186 return rc;
2187 }
2188
2189 static int cifs_writepage(struct page *page, struct writeback_control *wbc)
2190 {
2191 int rc = cifs_writepage_locked(page, wbc);
2192 unlock_page(page);
2193 return rc;
2194 }
2195
2196 static int cifs_write_end(struct file *file, struct address_space *mapping,
2197 loff_t pos, unsigned len, unsigned copied,
2198 struct page *page, void *fsdata)
2199 {
2200 int rc;
2201 struct inode *inode = mapping->host;
2202 struct cifsFileInfo *cfile = file->private_data;
2203 struct cifs_sb_info *cifs_sb = CIFS_SB(cfile->dentry->d_sb);
2204 __u32 pid;
2205
2206 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_RWPIDFORWARD)
2207 pid = cfile->pid;
2208 else
2209 pid = current->tgid;
2210
2211 cifs_dbg(FYI, "write_end for page %p from pos %lld with %d bytes\n",
2212 page, pos, copied);
2213
2214 if (PageChecked(page)) {
2215 if (copied == len)
2216 SetPageUptodate(page);
2217 ClearPageChecked(page);
2218 } else if (!PageUptodate(page) && copied == PAGE_CACHE_SIZE)
2219 SetPageUptodate(page);
2220
2221 if (!PageUptodate(page)) {
2222 char *page_data;
2223 unsigned offset = pos & (PAGE_CACHE_SIZE - 1);
2224 unsigned int xid;
2225
2226 xid = get_xid();
2227 /* this is probably better than directly calling
2228 partialpage_write since in this function the file handle is
2229 known which we might as well leverage */
2230 /* BB check if anything else missing out of ppw
2231 such as updating last write time */
2232 page_data = kmap(page);
2233 rc = cifs_write(cfile, pid, page_data + offset, copied, &pos);
2234 /* if (rc < 0) should we set writebehind rc? */
2235 kunmap(page);
2236
2237 free_xid(xid);
2238 } else {
2239 rc = copied;
2240 pos += copied;
2241 set_page_dirty(page);
2242 }
2243
2244 if (rc > 0) {
2245 spin_lock(&inode->i_lock);
2246 if (pos > inode->i_size)
2247 i_size_write(inode, pos);
2248 spin_unlock(&inode->i_lock);
2249 }
2250
2251 unlock_page(page);
2252 page_cache_release(page);
2253
2254 return rc;
2255 }
2256
2257 int cifs_strict_fsync(struct file *file, loff_t start, loff_t end,
2258 int datasync)
2259 {
2260 unsigned int xid;
2261 int rc = 0;
2262 struct cifs_tcon *tcon;
2263 struct TCP_Server_Info *server;
2264 struct cifsFileInfo *smbfile = file->private_data;
2265 struct inode *inode = file_inode(file);
2266 struct cifs_sb_info *cifs_sb = CIFS_SB(inode->i_sb);
2267
2268 rc = filemap_write_and_wait_range(inode->i_mapping, start, end);
2269 if (rc)
2270 return rc;
2271 mutex_lock(&inode->i_mutex);
2272
2273 xid = get_xid();
2274
2275 cifs_dbg(FYI, "Sync file - name: %pD datasync: 0x%x\n",
2276 file, datasync);
2277
2278 if (!CIFS_CACHE_READ(CIFS_I(inode))) {
2279 rc = cifs_zap_mapping(inode);
2280 if (rc) {
2281 cifs_dbg(FYI, "rc: %d during invalidate phase\n", rc);
2282 rc = 0; /* don't care about it in fsync */
2283 }
2284 }
2285
2286 tcon = tlink_tcon(smbfile->tlink);
2287 if (!(cifs_sb->mnt_cifs_flags & CIFS_MOUNT_NOSSYNC)) {
2288 server = tcon->ses->server;
2289 if (server->ops->flush)
2290 rc = server->ops->flush(xid, tcon, &smbfile->fid);
2291 else
2292 rc = -ENOSYS;
2293 }
2294
2295 free_xid(xid);
2296 mutex_unlock(&inode->i_mutex);
2297 return rc;
2298 }
2299
2300 int cifs_fsync(struct file *file, loff_t start, loff_t end, int datasync)
2301 {
2302 unsigned int xid;
2303 int rc = 0;
2304 struct cifs_tcon *tcon;
2305 struct TCP_Server_Info *server;
2306 struct cifsFileInfo *smbfile = file->private_data;
2307 struct cifs_sb_info *cifs_sb = CIFS_FILE_SB(file);
2308 struct inode *inode = file->f_mapping->host;
2309
2310 rc = filemap_write_and_wait_range(inode->i_mapping, start, end);
2311 if (rc)
2312 return rc;
2313 mutex_lock(&inode->i_mutex);
2314
2315 xid = get_xid();
2316
2317 cifs_dbg(FYI, "Sync file - name: %pD datasync: 0x%x\n",
2318 file, datasync);
2319
2320 tcon = tlink_tcon(smbfile->tlink);
2321 if (!(cifs_sb->mnt_cifs_flags & CIFS_MOUNT_NOSSYNC)) {
2322 server = tcon->ses->server;
2323 if (server->ops->flush)
2324 rc = server->ops->flush(xid, tcon, &smbfile->fid);
2325 else
2326 rc = -ENOSYS;
2327 }
2328
2329 free_xid(xid);
2330 mutex_unlock(&inode->i_mutex);
2331 return rc;
2332 }
2333
2334 /*
2335 * As file closes, flush all cached write data for this inode checking
2336 * for write behind errors.
2337 */
2338 int cifs_flush(struct file *file, fl_owner_t id)
2339 {
2340 struct inode *inode = file_inode(file);
2341 int rc = 0;
2342
2343 if (file->f_mode & FMODE_WRITE)
2344 rc = filemap_write_and_wait(inode->i_mapping);
2345
2346 cifs_dbg(FYI, "Flush inode %p file %p rc %d\n", inode, file, rc);
2347
2348 return rc;
2349 }
2350
2351 static int
2352 cifs_write_allocate_pages(struct page **pages, unsigned long num_pages)
2353 {
2354 int rc = 0;
2355 unsigned long i;
2356
2357 for (i = 0; i < num_pages; i++) {
2358 pages[i] = alloc_page(GFP_KERNEL|__GFP_HIGHMEM);
2359 if (!pages[i]) {
2360 /*
2361 * save number of pages we have already allocated and
2362 * return with ENOMEM error
2363 */
2364 num_pages = i;
2365 rc = -ENOMEM;
2366 break;
2367 }
2368 }
2369
2370 if (rc) {
2371 for (i = 0; i < num_pages; i++)
2372 put_page(pages[i]);
2373 }
2374 return rc;
2375 }
2376
2377 static inline
2378 size_t get_numpages(const size_t wsize, const size_t len, size_t *cur_len)
2379 {
2380 size_t num_pages;
2381 size_t clen;
2382
2383 clen = min_t(const size_t, len, wsize);
2384 num_pages = DIV_ROUND_UP(clen, PAGE_SIZE);
2385
2386 if (cur_len)
2387 *cur_len = clen;
2388
2389 return num_pages;
2390 }
2391
2392 static void
2393 cifs_uncached_writedata_release(struct kref *refcount)
2394 {
2395 int i;
2396 struct cifs_writedata *wdata = container_of(refcount,
2397 struct cifs_writedata, refcount);
2398
2399 for (i = 0; i < wdata->nr_pages; i++)
2400 put_page(wdata->pages[i]);
2401 cifs_writedata_release(refcount);
2402 }
2403
2404 static void
2405 cifs_uncached_writev_complete(struct work_struct *work)
2406 {
2407 struct cifs_writedata *wdata = container_of(work,
2408 struct cifs_writedata, work);
2409 struct inode *inode = d_inode(wdata->cfile->dentry);
2410 struct cifsInodeInfo *cifsi = CIFS_I(inode);
2411
2412 spin_lock(&inode->i_lock);
2413 cifs_update_eof(cifsi, wdata->offset, wdata->bytes);
2414 if (cifsi->server_eof > inode->i_size)
2415 i_size_write(inode, cifsi->server_eof);
2416 spin_unlock(&inode->i_lock);
2417
2418 complete(&wdata->done);
2419
2420 kref_put(&wdata->refcount, cifs_uncached_writedata_release);
2421 }
2422
2423 static int
2424 wdata_fill_from_iovec(struct cifs_writedata *wdata, struct iov_iter *from,
2425 size_t *len, unsigned long *num_pages)
2426 {
2427 size_t save_len, copied, bytes, cur_len = *len;
2428 unsigned long i, nr_pages = *num_pages;
2429
2430 save_len = cur_len;
2431 for (i = 0; i < nr_pages; i++) {
2432 bytes = min_t(const size_t, cur_len, PAGE_SIZE);
2433 copied = copy_page_from_iter(wdata->pages[i], 0, bytes, from);
2434 cur_len -= copied;
2435 /*
2436 * If we didn't copy as much as we expected, then that
2437 * may mean we trod into an unmapped area. Stop copying
2438 * at that point. On the next pass through the big
2439 * loop, we'll likely end up getting a zero-length
2440 * write and bailing out of it.
2441 */
2442 if (copied < bytes)
2443 break;
2444 }
2445 cur_len = save_len - cur_len;
2446 *len = cur_len;
2447
2448 /*
2449 * If we have no data to send, then that probably means that
2450 * the copy above failed altogether. That's most likely because
2451 * the address in the iovec was bogus. Return -EFAULT and let
2452 * the caller free anything we allocated and bail out.
2453 */
2454 if (!cur_len)
2455 return -EFAULT;
2456
2457 /*
2458 * i + 1 now represents the number of pages we actually used in
2459 * the copy phase above.
2460 */
2461 *num_pages = i + 1;
2462 return 0;
2463 }
2464
2465 static int
2466 cifs_write_from_iter(loff_t offset, size_t len, struct iov_iter *from,
2467 struct cifsFileInfo *open_file,
2468 struct cifs_sb_info *cifs_sb, struct list_head *wdata_list)
2469 {
2470 int rc = 0;
2471 size_t cur_len;
2472 unsigned long nr_pages, num_pages, i;
2473 struct cifs_writedata *wdata;
2474 struct iov_iter saved_from;
2475 loff_t saved_offset = offset;
2476 pid_t pid;
2477 struct TCP_Server_Info *server;
2478
2479 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_RWPIDFORWARD)
2480 pid = open_file->pid;
2481 else
2482 pid = current->tgid;
2483
2484 server = tlink_tcon(open_file->tlink)->ses->server;
2485 memcpy(&saved_from, from, sizeof(struct iov_iter));
2486
2487 do {
2488 unsigned int wsize, credits;
2489
2490 rc = server->ops->wait_mtu_credits(server, cifs_sb->wsize,
2491 &wsize, &credits);
2492 if (rc)
2493 break;
2494
2495 nr_pages = get_numpages(wsize, len, &cur_len);
2496 wdata = cifs_writedata_alloc(nr_pages,
2497 cifs_uncached_writev_complete);
2498 if (!wdata) {
2499 rc = -ENOMEM;
2500 add_credits_and_wake_if(server, credits, 0);
2501 break;
2502 }
2503
2504 rc = cifs_write_allocate_pages(wdata->pages, nr_pages);
2505 if (rc) {
2506 kfree(wdata);
2507 add_credits_and_wake_if(server, credits, 0);
2508 break;
2509 }
2510
2511 num_pages = nr_pages;
2512 rc = wdata_fill_from_iovec(wdata, from, &cur_len, &num_pages);
2513 if (rc) {
2514 for (i = 0; i < nr_pages; i++)
2515 put_page(wdata->pages[i]);
2516 kfree(wdata);
2517 add_credits_and_wake_if(server, credits, 0);
2518 break;
2519 }
2520
2521 /*
2522 * Bring nr_pages down to the number of pages we actually used,
2523 * and free any pages that we didn't use.
2524 */
2525 for ( ; nr_pages > num_pages; nr_pages--)
2526 put_page(wdata->pages[nr_pages - 1]);
2527
2528 wdata->sync_mode = WB_SYNC_ALL;
2529 wdata->nr_pages = nr_pages;
2530 wdata->offset = (__u64)offset;
2531 wdata->cfile = cifsFileInfo_get(open_file);
2532 wdata->pid = pid;
2533 wdata->bytes = cur_len;
2534 wdata->pagesz = PAGE_SIZE;
2535 wdata->tailsz = cur_len - ((nr_pages - 1) * PAGE_SIZE);
2536 wdata->credits = credits;
2537
2538 if (!wdata->cfile->invalidHandle ||
2539 !cifs_reopen_file(wdata->cfile, false))
2540 rc = server->ops->async_writev(wdata,
2541 cifs_uncached_writedata_release);
2542 if (rc) {
2543 add_credits_and_wake_if(server, wdata->credits, 0);
2544 kref_put(&wdata->refcount,
2545 cifs_uncached_writedata_release);
2546 if (rc == -EAGAIN) {
2547 memcpy(from, &saved_from,
2548 sizeof(struct iov_iter));
2549 iov_iter_advance(from, offset - saved_offset);
2550 continue;
2551 }
2552 break;
2553 }
2554
2555 list_add_tail(&wdata->list, wdata_list);
2556 offset += cur_len;
2557 len -= cur_len;
2558 } while (len > 0);
2559
2560 return rc;
2561 }
2562
2563 ssize_t cifs_user_writev(struct kiocb *iocb, struct iov_iter *from)
2564 {
2565 struct file *file = iocb->ki_filp;
2566 ssize_t total_written = 0;
2567 struct cifsFileInfo *open_file;
2568 struct cifs_tcon *tcon;
2569 struct cifs_sb_info *cifs_sb;
2570 struct cifs_writedata *wdata, *tmp;
2571 struct list_head wdata_list;
2572 struct iov_iter saved_from;
2573 int rc;
2574
2575 /*
2576 * BB - optimize the way when signing is disabled. We can drop this
2577 * extra memory-to-memory copying and use iovec buffers for constructing
2578 * write request.
2579 */
2580
2581 rc = generic_write_checks(iocb, from);
2582 if (rc <= 0)
2583 return rc;
2584
2585 INIT_LIST_HEAD(&wdata_list);
2586 cifs_sb = CIFS_FILE_SB(file);
2587 open_file = file->private_data;
2588 tcon = tlink_tcon(open_file->tlink);
2589
2590 if (!tcon->ses->server->ops->async_writev)
2591 return -ENOSYS;
2592
2593 memcpy(&saved_from, from, sizeof(struct iov_iter));
2594
2595 rc = cifs_write_from_iter(iocb->ki_pos, iov_iter_count(from), from,
2596 open_file, cifs_sb, &wdata_list);
2597
2598 /*
2599 * If at least one write was successfully sent, then discard any rc
2600 * value from the later writes. If the other write succeeds, then
2601 * we'll end up returning whatever was written. If it fails, then
2602 * we'll get a new rc value from that.
2603 */
2604 if (!list_empty(&wdata_list))
2605 rc = 0;
2606
2607 /*
2608 * Wait for and collect replies for any successful sends in order of
2609 * increasing offset. Once an error is hit or we get a fatal signal
2610 * while waiting, then return without waiting for any more replies.
2611 */
2612 restart_loop:
2613 list_for_each_entry_safe(wdata, tmp, &wdata_list, list) {
2614 if (!rc) {
2615 /* FIXME: freezable too? */
2616 rc = wait_for_completion_killable(&wdata->done);
2617 if (rc)
2618 rc = -EINTR;
2619 else if (wdata->result)
2620 rc = wdata->result;
2621 else
2622 total_written += wdata->bytes;
2623
2624 /* resend call if it's a retryable error */
2625 if (rc == -EAGAIN) {
2626 struct list_head tmp_list;
2627 struct iov_iter tmp_from;
2628
2629 INIT_LIST_HEAD(&tmp_list);
2630 list_del_init(&wdata->list);
2631
2632 memcpy(&tmp_from, &saved_from,
2633 sizeof(struct iov_iter));
2634 iov_iter_advance(&tmp_from,
2635 wdata->offset - iocb->ki_pos);
2636
2637 rc = cifs_write_from_iter(wdata->offset,
2638 wdata->bytes, &tmp_from,
2639 open_file, cifs_sb, &tmp_list);
2640
2641 list_splice(&tmp_list, &wdata_list);
2642
2643 kref_put(&wdata->refcount,
2644 cifs_uncached_writedata_release);
2645 goto restart_loop;
2646 }
2647 }
2648 list_del_init(&wdata->list);
2649 kref_put(&wdata->refcount, cifs_uncached_writedata_release);
2650 }
2651
2652 if (unlikely(!total_written))
2653 return rc;
2654
2655 iocb->ki_pos += total_written;
2656 set_bit(CIFS_INO_INVALID_MAPPING, &CIFS_I(file_inode(file))->flags);
2657 cifs_stats_bytes_written(tcon, total_written);
2658 return total_written;
2659 }
2660
2661 static ssize_t
2662 cifs_writev(struct kiocb *iocb, struct iov_iter *from)
2663 {
2664 struct file *file = iocb->ki_filp;
2665 struct cifsFileInfo *cfile = (struct cifsFileInfo *)file->private_data;
2666 struct inode *inode = file->f_mapping->host;
2667 struct cifsInodeInfo *cinode = CIFS_I(inode);
2668 struct TCP_Server_Info *server = tlink_tcon(cfile->tlink)->ses->server;
2669 ssize_t rc;
2670
2671 /*
2672 * We need to hold the sem to be sure nobody modifies lock list
2673 * with a brlock that prevents writing.
2674 */
2675 down_read(&cinode->lock_sem);
2676 mutex_lock(&inode->i_mutex);
2677
2678 rc = generic_write_checks(iocb, from);
2679 if (rc <= 0)
2680 goto out;
2681
2682 if (!cifs_find_lock_conflict(cfile, iocb->ki_pos, iov_iter_count(from),
2683 server->vals->exclusive_lock_type, NULL,
2684 CIFS_WRITE_OP))
2685 rc = __generic_file_write_iter(iocb, from);
2686 else
2687 rc = -EACCES;
2688 out:
2689 mutex_unlock(&inode->i_mutex);
2690
2691 if (rc > 0) {
2692 ssize_t err = generic_write_sync(file, iocb->ki_pos - rc, rc);
2693 if (err < 0)
2694 rc = err;
2695 }
2696 up_read(&cinode->lock_sem);
2697 return rc;
2698 }
2699
2700 ssize_t
2701 cifs_strict_writev(struct kiocb *iocb, struct iov_iter *from)
2702 {
2703 struct inode *inode = file_inode(iocb->ki_filp);
2704 struct cifsInodeInfo *cinode = CIFS_I(inode);
2705 struct cifs_sb_info *cifs_sb = CIFS_SB(inode->i_sb);
2706 struct cifsFileInfo *cfile = (struct cifsFileInfo *)
2707 iocb->ki_filp->private_data;
2708 struct cifs_tcon *tcon = tlink_tcon(cfile->tlink);
2709 ssize_t written;
2710
2711 written = cifs_get_writer(cinode);
2712 if (written)
2713 return written;
2714
2715 if (CIFS_CACHE_WRITE(cinode)) {
2716 if (cap_unix(tcon->ses) &&
2717 (CIFS_UNIX_FCNTL_CAP & le64_to_cpu(tcon->fsUnixInfo.Capability))
2718 && ((cifs_sb->mnt_cifs_flags & CIFS_MOUNT_NOPOSIXBRL) == 0)) {
2719 written = generic_file_write_iter(iocb, from);
2720 goto out;
2721 }
2722 written = cifs_writev(iocb, from);
2723 goto out;
2724 }
2725 /*
2726 * For non-oplocked files in strict cache mode we need to write the data
2727 * to the server exactly from the pos to pos+len-1 rather than flush all
2728 * affected pages because it may cause a error with mandatory locks on
2729 * these pages but not on the region from pos to ppos+len-1.
2730 */
2731 written = cifs_user_writev(iocb, from);
2732 if (written > 0 && CIFS_CACHE_READ(cinode)) {
2733 /*
2734 * Windows 7 server can delay breaking level2 oplock if a write
2735 * request comes - break it on the client to prevent reading
2736 * an old data.
2737 */
2738 cifs_zap_mapping(inode);
2739 cifs_dbg(FYI, "Set no oplock for inode=%p after a write operation\n",
2740 inode);
2741 cinode->oplock = 0;
2742 }
2743 out:
2744 cifs_put_writer(cinode);
2745 return written;
2746 }
2747
2748 static struct cifs_readdata *
2749 cifs_readdata_alloc(unsigned int nr_pages, work_func_t complete)
2750 {
2751 struct cifs_readdata *rdata;
2752
2753 rdata = kzalloc(sizeof(*rdata) + (sizeof(struct page *) * nr_pages),
2754 GFP_KERNEL);
2755 if (rdata != NULL) {
2756 kref_init(&rdata->refcount);
2757 INIT_LIST_HEAD(&rdata->list);
2758 init_completion(&rdata->done);
2759 INIT_WORK(&rdata->work, complete);
2760 }
2761
2762 return rdata;
2763 }
2764
2765 void
2766 cifs_readdata_release(struct kref *refcount)
2767 {
2768 struct cifs_readdata *rdata = container_of(refcount,
2769 struct cifs_readdata, refcount);
2770
2771 if (rdata->cfile)
2772 cifsFileInfo_put(rdata->cfile);
2773
2774 kfree(rdata);
2775 }
2776
2777 static int
2778 cifs_read_allocate_pages(struct cifs_readdata *rdata, unsigned int nr_pages)
2779 {
2780 int rc = 0;
2781 struct page *page;
2782 unsigned int i;
2783
2784 for (i = 0; i < nr_pages; i++) {
2785 page = alloc_page(GFP_KERNEL|__GFP_HIGHMEM);
2786 if (!page) {
2787 rc = -ENOMEM;
2788 break;
2789 }
2790 rdata->pages[i] = page;
2791 }
2792
2793 if (rc) {
2794 for (i = 0; i < nr_pages; i++) {
2795 put_page(rdata->pages[i]);
2796 rdata->pages[i] = NULL;
2797 }
2798 }
2799 return rc;
2800 }
2801
2802 static void
2803 cifs_uncached_readdata_release(struct kref *refcount)
2804 {
2805 struct cifs_readdata *rdata = container_of(refcount,
2806 struct cifs_readdata, refcount);
2807 unsigned int i;
2808
2809 for (i = 0; i < rdata->nr_pages; i++) {
2810 put_page(rdata->pages[i]);
2811 rdata->pages[i] = NULL;
2812 }
2813 cifs_readdata_release(refcount);
2814 }
2815
2816 /**
2817 * cifs_readdata_to_iov - copy data from pages in response to an iovec
2818 * @rdata: the readdata response with list of pages holding data
2819 * @iter: destination for our data
2820 *
2821 * This function copies data from a list of pages in a readdata response into
2822 * an array of iovecs. It will first calculate where the data should go
2823 * based on the info in the readdata and then copy the data into that spot.
2824 */
2825 static int
2826 cifs_readdata_to_iov(struct cifs_readdata *rdata, struct iov_iter *iter)
2827 {
2828 size_t remaining = rdata->got_bytes;
2829 unsigned int i;
2830
2831 for (i = 0; i < rdata->nr_pages; i++) {
2832 struct page *page = rdata->pages[i];
2833 size_t copy = min_t(size_t, remaining, PAGE_SIZE);
2834 size_t written = copy_page_to_iter(page, 0, copy, iter);
2835 remaining -= written;
2836 if (written < copy && iov_iter_count(iter) > 0)
2837 break;
2838 }
2839 return remaining ? -EFAULT : 0;
2840 }
2841
2842 static void
2843 cifs_uncached_readv_complete(struct work_struct *work)
2844 {
2845 struct cifs_readdata *rdata = container_of(work,
2846 struct cifs_readdata, work);
2847
2848 complete(&rdata->done);
2849 kref_put(&rdata->refcount, cifs_uncached_readdata_release);
2850 }
2851
2852 static int
2853 cifs_uncached_read_into_pages(struct TCP_Server_Info *server,
2854 struct cifs_readdata *rdata, unsigned int len)
2855 {
2856 int result = 0;
2857 unsigned int i;
2858 unsigned int nr_pages = rdata->nr_pages;
2859 struct kvec iov;
2860
2861 rdata->got_bytes = 0;
2862 rdata->tailsz = PAGE_SIZE;
2863 for (i = 0; i < nr_pages; i++) {
2864 struct page *page = rdata->pages[i];
2865
2866 if (len >= PAGE_SIZE) {
2867 /* enough data to fill the page */
2868 iov.iov_base = kmap(page);
2869 iov.iov_len = PAGE_SIZE;
2870 cifs_dbg(FYI, "%u: iov_base=%p iov_len=%zu\n",
2871 i, iov.iov_base, iov.iov_len);
2872 len -= PAGE_SIZE;
2873 } else if (len > 0) {
2874 /* enough for partial page, fill and zero the rest */
2875 iov.iov_base = kmap(page);
2876 iov.iov_len = len;
2877 cifs_dbg(FYI, "%u: iov_base=%p iov_len=%zu\n",
2878 i, iov.iov_base, iov.iov_len);
2879 memset(iov.iov_base + len, '\0', PAGE_SIZE - len);
2880 rdata->tailsz = len;
2881 len = 0;
2882 } else {
2883 /* no need to hold page hostage */
2884 rdata->pages[i] = NULL;
2885 rdata->nr_pages--;
2886 put_page(page);
2887 continue;
2888 }
2889
2890 result = cifs_readv_from_socket(server, &iov, 1, iov.iov_len);
2891 kunmap(page);
2892 if (result < 0)
2893 break;
2894
2895 rdata->got_bytes += result;
2896 }
2897
2898 return rdata->got_bytes > 0 && result != -ECONNABORTED ?
2899 rdata->got_bytes : result;
2900 }
2901
2902 static int
2903 cifs_send_async_read(loff_t offset, size_t len, struct cifsFileInfo *open_file,
2904 struct cifs_sb_info *cifs_sb, struct list_head *rdata_list)
2905 {
2906 struct cifs_readdata *rdata;
2907 unsigned int npages, rsize, credits;
2908 size_t cur_len;
2909 int rc;
2910 pid_t pid;
2911 struct TCP_Server_Info *server;
2912
2913 server = tlink_tcon(open_file->tlink)->ses->server;
2914
2915 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_RWPIDFORWARD)
2916 pid = open_file->pid;
2917 else
2918 pid = current->tgid;
2919
2920 do {
2921 rc = server->ops->wait_mtu_credits(server, cifs_sb->rsize,
2922 &rsize, &credits);
2923 if (rc)
2924 break;
2925
2926 cur_len = min_t(const size_t, len, rsize);
2927 npages = DIV_ROUND_UP(cur_len, PAGE_SIZE);
2928
2929 /* allocate a readdata struct */
2930 rdata = cifs_readdata_alloc(npages,
2931 cifs_uncached_readv_complete);
2932 if (!rdata) {
2933 add_credits_and_wake_if(server, credits, 0);
2934 rc = -ENOMEM;
2935 break;
2936 }
2937
2938 rc = cifs_read_allocate_pages(rdata, npages);
2939 if (rc)
2940 goto error;
2941
2942 rdata->cfile = cifsFileInfo_get(open_file);
2943 rdata->nr_pages = npages;
2944 rdata->offset = offset;
2945 rdata->bytes = cur_len;
2946 rdata->pid = pid;
2947 rdata->pagesz = PAGE_SIZE;
2948 rdata->read_into_pages = cifs_uncached_read_into_pages;
2949 rdata->credits = credits;
2950
2951 if (!rdata->cfile->invalidHandle ||
2952 !cifs_reopen_file(rdata->cfile, true))
2953 rc = server->ops->async_readv(rdata);
2954 error:
2955 if (rc) {
2956 add_credits_and_wake_if(server, rdata->credits, 0);
2957 kref_put(&rdata->refcount,
2958 cifs_uncached_readdata_release);
2959 if (rc == -EAGAIN)
2960 continue;
2961 break;
2962 }
2963
2964 list_add_tail(&rdata->list, rdata_list);
2965 offset += cur_len;
2966 len -= cur_len;
2967 } while (len > 0);
2968
2969 return rc;
2970 }
2971
2972 ssize_t cifs_user_readv(struct kiocb *iocb, struct iov_iter *to)
2973 {
2974 struct file *file = iocb->ki_filp;
2975 ssize_t rc;
2976 size_t len;
2977 ssize_t total_read = 0;
2978 loff_t offset = iocb->ki_pos;
2979 struct cifs_sb_info *cifs_sb;
2980 struct cifs_tcon *tcon;
2981 struct cifsFileInfo *open_file;
2982 struct cifs_readdata *rdata, *tmp;
2983 struct list_head rdata_list;
2984
2985 len = iov_iter_count(to);
2986 if (!len)
2987 return 0;
2988
2989 INIT_LIST_HEAD(&rdata_list);
2990 cifs_sb = CIFS_FILE_SB(file);
2991 open_file = file->private_data;
2992 tcon = tlink_tcon(open_file->tlink);
2993
2994 if (!tcon->ses->server->ops->async_readv)
2995 return -ENOSYS;
2996
2997 if ((file->f_flags & O_ACCMODE) == O_WRONLY)
2998 cifs_dbg(FYI, "attempting read on write only file instance\n");
2999
3000 rc = cifs_send_async_read(offset, len, open_file, cifs_sb, &rdata_list);
3001
3002 /* if at least one read request send succeeded, then reset rc */
3003 if (!list_empty(&rdata_list))
3004 rc = 0;
3005
3006 len = iov_iter_count(to);
3007 /* the loop below should proceed in the order of increasing offsets */
3008 again:
3009 list_for_each_entry_safe(rdata, tmp, &rdata_list, list) {
3010 if (!rc) {
3011 /* FIXME: freezable sleep too? */
3012 rc = wait_for_completion_killable(&rdata->done);
3013 if (rc)
3014 rc = -EINTR;
3015 else if (rdata->result == -EAGAIN) {
3016 /* resend call if it's a retryable error */
3017 struct list_head tmp_list;
3018 unsigned int got_bytes = rdata->got_bytes;
3019
3020 list_del_init(&rdata->list);
3021 INIT_LIST_HEAD(&tmp_list);
3022
3023 /*
3024 * Got a part of data and then reconnect has
3025 * happened -- fill the buffer and continue
3026 * reading.
3027 */
3028 if (got_bytes && got_bytes < rdata->bytes) {
3029 rc = cifs_readdata_to_iov(rdata, to);
3030 if (rc) {
3031 kref_put(&rdata->refcount,
3032 cifs_uncached_readdata_release);
3033 continue;
3034 }
3035 }
3036
3037 rc = cifs_send_async_read(
3038 rdata->offset + got_bytes,
3039 rdata->bytes - got_bytes,
3040 rdata->cfile, cifs_sb,
3041 &tmp_list);
3042
3043 list_splice(&tmp_list, &rdata_list);
3044
3045 kref_put(&rdata->refcount,
3046 cifs_uncached_readdata_release);
3047 goto again;
3048 } else if (rdata->result)
3049 rc = rdata->result;
3050 else
3051 rc = cifs_readdata_to_iov(rdata, to);
3052
3053 /* if there was a short read -- discard anything left */
3054 if (rdata->got_bytes && rdata->got_bytes < rdata->bytes)
3055 rc = -ENODATA;
3056 }
3057 list_del_init(&rdata->list);
3058 kref_put(&rdata->refcount, cifs_uncached_readdata_release);
3059 }
3060
3061 total_read = len - iov_iter_count(to);
3062
3063 cifs_stats_bytes_read(tcon, total_read);
3064
3065 /* mask nodata case */
3066 if (rc == -ENODATA)
3067 rc = 0;
3068
3069 if (total_read) {
3070 iocb->ki_pos += total_read;
3071 return total_read;
3072 }
3073 return rc;
3074 }
3075
3076 ssize_t
3077 cifs_strict_readv(struct kiocb *iocb, struct iov_iter *to)
3078 {
3079 struct inode *inode = file_inode(iocb->ki_filp);
3080 struct cifsInodeInfo *cinode = CIFS_I(inode);
3081 struct cifs_sb_info *cifs_sb = CIFS_SB(inode->i_sb);
3082 struct cifsFileInfo *cfile = (struct cifsFileInfo *)
3083 iocb->ki_filp->private_data;
3084 struct cifs_tcon *tcon = tlink_tcon(cfile->tlink);
3085 int rc = -EACCES;
3086
3087 /*
3088 * In strict cache mode we need to read from the server all the time
3089 * if we don't have level II oplock because the server can delay mtime
3090 * change - so we can't make a decision about inode invalidating.
3091 * And we can also fail with pagereading if there are mandatory locks
3092 * on pages affected by this read but not on the region from pos to
3093 * pos+len-1.
3094 */
3095 if (!CIFS_CACHE_READ(cinode))
3096 return cifs_user_readv(iocb, to);
3097
3098 if (cap_unix(tcon->ses) &&
3099 (CIFS_UNIX_FCNTL_CAP & le64_to_cpu(tcon->fsUnixInfo.Capability)) &&
3100 ((cifs_sb->mnt_cifs_flags & CIFS_MOUNT_NOPOSIXBRL) == 0))
3101 return generic_file_read_iter(iocb, to);
3102
3103 /*
3104 * We need to hold the sem to be sure nobody modifies lock list
3105 * with a brlock that prevents reading.
3106 */
3107 down_read(&cinode->lock_sem);
3108 if (!cifs_find_lock_conflict(cfile, iocb->ki_pos, iov_iter_count(to),
3109 tcon->ses->server->vals->shared_lock_type,
3110 NULL, CIFS_READ_OP))
3111 rc = generic_file_read_iter(iocb, to);
3112 up_read(&cinode->lock_sem);
3113 return rc;
3114 }
3115
3116 static ssize_t
3117 cifs_read(struct file *file, char *read_data, size_t read_size, loff_t *offset)
3118 {
3119 int rc = -EACCES;
3120 unsigned int bytes_read = 0;
3121 unsigned int total_read;
3122 unsigned int current_read_size;
3123 unsigned int rsize;
3124 struct cifs_sb_info *cifs_sb;
3125 struct cifs_tcon *tcon;
3126 struct TCP_Server_Info *server;
3127 unsigned int xid;
3128 char *cur_offset;
3129 struct cifsFileInfo *open_file;
3130 struct cifs_io_parms io_parms;
3131 int buf_type = CIFS_NO_BUFFER;
3132 __u32 pid;
3133
3134 xid = get_xid();
3135 cifs_sb = CIFS_FILE_SB(file);
3136
3137 /* FIXME: set up handlers for larger reads and/or convert to async */
3138 rsize = min_t(unsigned int, cifs_sb->rsize, CIFSMaxBufSize);
3139
3140 if (file->private_data == NULL) {
3141 rc = -EBADF;
3142 free_xid(xid);
3143 return rc;
3144 }
3145 open_file = file->private_data;
3146 tcon = tlink_tcon(open_file->tlink);
3147 server = tcon->ses->server;
3148
3149 if (!server->ops->sync_read) {
3150 free_xid(xid);
3151 return -ENOSYS;
3152 }
3153
3154 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_RWPIDFORWARD)
3155 pid = open_file->pid;
3156 else
3157 pid = current->tgid;
3158
3159 if ((file->f_flags & O_ACCMODE) == O_WRONLY)
3160 cifs_dbg(FYI, "attempting read on write only file instance\n");
3161
3162 for (total_read = 0, cur_offset = read_data; read_size > total_read;
3163 total_read += bytes_read, cur_offset += bytes_read) {
3164 do {
3165 current_read_size = min_t(uint, read_size - total_read,
3166 rsize);
3167 /*
3168 * For windows me and 9x we do not want to request more
3169 * than it negotiated since it will refuse the read
3170 * then.
3171 */
3172 if ((tcon->ses) && !(tcon->ses->capabilities &
3173 tcon->ses->server->vals->cap_large_files)) {
3174 current_read_size = min_t(uint,
3175 current_read_size, CIFSMaxBufSize);
3176 }
3177 if (open_file->invalidHandle) {
3178 rc = cifs_reopen_file(open_file, true);
3179 if (rc != 0)
3180 break;
3181 }
3182 io_parms.pid = pid;
3183 io_parms.tcon = tcon;
3184 io_parms.offset = *offset;
3185 io_parms.length = current_read_size;
3186 rc = server->ops->sync_read(xid, &open_file->fid, &io_parms,
3187 &bytes_read, &cur_offset,
3188 &buf_type);
3189 } while (rc == -EAGAIN);
3190
3191 if (rc || (bytes_read == 0)) {
3192 if (total_read) {
3193 break;
3194 } else {
3195 free_xid(xid);
3196 return rc;
3197 }
3198 } else {
3199 cifs_stats_bytes_read(tcon, total_read);
3200 *offset += bytes_read;
3201 }
3202 }
3203 free_xid(xid);
3204 return total_read;
3205 }
3206
3207 /*
3208 * If the page is mmap'ed into a process' page tables, then we need to make
3209 * sure that it doesn't change while being written back.
3210 */
3211 static int
3212 cifs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
3213 {
3214 struct page *page = vmf->page;
3215
3216 lock_page(page);
3217 return VM_FAULT_LOCKED;
3218 }
3219
3220 static struct vm_operations_struct cifs_file_vm_ops = {
3221 .fault = filemap_fault,
3222 .map_pages = filemap_map_pages,
3223 .page_mkwrite = cifs_page_mkwrite,
3224 };
3225
3226 int cifs_file_strict_mmap(struct file *file, struct vm_area_struct *vma)
3227 {
3228 int rc, xid;
3229 struct inode *inode = file_inode(file);
3230
3231 xid = get_xid();
3232
3233 if (!CIFS_CACHE_READ(CIFS_I(inode))) {
3234 rc = cifs_zap_mapping(inode);
3235 if (rc)
3236 return rc;
3237 }
3238
3239 rc = generic_file_mmap(file, vma);
3240 if (rc == 0)
3241 vma->vm_ops = &cifs_file_vm_ops;
3242 free_xid(xid);
3243 return rc;
3244 }
3245
3246 int cifs_file_mmap(struct file *file, struct vm_area_struct *vma)
3247 {
3248 int rc, xid;
3249
3250 xid = get_xid();
3251 rc = cifs_revalidate_file(file);
3252 if (rc) {
3253 cifs_dbg(FYI, "Validation prior to mmap failed, error=%d\n",
3254 rc);
3255 free_xid(xid);
3256 return rc;
3257 }
3258 rc = generic_file_mmap(file, vma);
3259 if (rc == 0)
3260 vma->vm_ops = &cifs_file_vm_ops;
3261 free_xid(xid);
3262 return rc;
3263 }
3264
3265 static void
3266 cifs_readv_complete(struct work_struct *work)
3267 {
3268 unsigned int i, got_bytes;
3269 struct cifs_readdata *rdata = container_of(work,
3270 struct cifs_readdata, work);
3271
3272 got_bytes = rdata->got_bytes;
3273 for (i = 0; i < rdata->nr_pages; i++) {
3274 struct page *page = rdata->pages[i];
3275
3276 lru_cache_add_file(page);
3277
3278 if (rdata->result == 0 ||
3279 (rdata->result == -EAGAIN && got_bytes)) {
3280 flush_dcache_page(page);
3281 SetPageUptodate(page);
3282 }
3283
3284 unlock_page(page);
3285
3286 if (rdata->result == 0 ||
3287 (rdata->result == -EAGAIN && got_bytes))
3288 cifs_readpage_to_fscache(rdata->mapping->host, page);
3289
3290 got_bytes -= min_t(unsigned int, PAGE_CACHE_SIZE, got_bytes);
3291
3292 page_cache_release(page);
3293 rdata->pages[i] = NULL;
3294 }
3295 kref_put(&rdata->refcount, cifs_readdata_release);
3296 }
3297
3298 static int
3299 cifs_readpages_read_into_pages(struct TCP_Server_Info *server,
3300 struct cifs_readdata *rdata, unsigned int len)
3301 {
3302 int result = 0;
3303 unsigned int i;
3304 u64 eof;
3305 pgoff_t eof_index;
3306 unsigned int nr_pages = rdata->nr_pages;
3307 struct kvec iov;
3308
3309 /* determine the eof that the server (probably) has */
3310 eof = CIFS_I(rdata->mapping->host)->server_eof;
3311 eof_index = eof ? (eof - 1) >> PAGE_CACHE_SHIFT : 0;
3312 cifs_dbg(FYI, "eof=%llu eof_index=%lu\n", eof, eof_index);
3313
3314 rdata->got_bytes = 0;
3315 rdata->tailsz = PAGE_CACHE_SIZE;
3316 for (i = 0; i < nr_pages; i++) {
3317 struct page *page = rdata->pages[i];
3318
3319 if (len >= PAGE_CACHE_SIZE) {
3320 /* enough data to fill the page */
3321 iov.iov_base = kmap(page);
3322 iov.iov_len = PAGE_CACHE_SIZE;
3323 cifs_dbg(FYI, "%u: idx=%lu iov_base=%p iov_len=%zu\n",
3324 i, page->index, iov.iov_base, iov.iov_len);
3325 len -= PAGE_CACHE_SIZE;
3326 } else if (len > 0) {
3327 /* enough for partial page, fill and zero the rest */
3328 iov.iov_base = kmap(page);
3329 iov.iov_len = len;
3330 cifs_dbg(FYI, "%u: idx=%lu iov_base=%p iov_len=%zu\n",
3331 i, page->index, iov.iov_base, iov.iov_len);
3332 memset(iov.iov_base + len,
3333 '\0', PAGE_CACHE_SIZE - len);
3334 rdata->tailsz = len;
3335 len = 0;
3336 } else if (page->index > eof_index) {
3337 /*
3338 * The VFS will not try to do readahead past the
3339 * i_size, but it's possible that we have outstanding
3340 * writes with gaps in the middle and the i_size hasn't
3341 * caught up yet. Populate those with zeroed out pages
3342 * to prevent the VFS from repeatedly attempting to
3343 * fill them until the writes are flushed.
3344 */
3345 zero_user(page, 0, PAGE_CACHE_SIZE);
3346 lru_cache_add_file(page);
3347 flush_dcache_page(page);
3348 SetPageUptodate(page);
3349 unlock_page(page);
3350 page_cache_release(page);
3351 rdata->pages[i] = NULL;
3352 rdata->nr_pages--;
3353 continue;
3354 } else {
3355 /* no need to hold page hostage */
3356 lru_cache_add_file(page);
3357 unlock_page(page);
3358 page_cache_release(page);
3359 rdata->pages[i] = NULL;
3360 rdata->nr_pages--;
3361 continue;
3362 }
3363
3364 result = cifs_readv_from_socket(server, &iov, 1, iov.iov_len);
3365 kunmap(page);
3366 if (result < 0)
3367 break;
3368
3369 rdata->got_bytes += result;
3370 }
3371
3372 return rdata->got_bytes > 0 && result != -ECONNABORTED ?
3373 rdata->got_bytes : result;
3374 }
3375
3376 static int
3377 readpages_get_pages(struct address_space *mapping, struct list_head *page_list,
3378 unsigned int rsize, struct list_head *tmplist,
3379 unsigned int *nr_pages, loff_t *offset, unsigned int *bytes)
3380 {
3381 struct page *page, *tpage;
3382 unsigned int expected_index;
3383 int rc;
3384
3385 INIT_LIST_HEAD(tmplist);
3386
3387 page = list_entry(page_list->prev, struct page, lru);
3388
3389 /*
3390 * Lock the page and put it in the cache. Since no one else
3391 * should have access to this page, we're safe to simply set
3392 * PG_locked without checking it first.
3393 */
3394 __set_page_locked(page);
3395 rc = add_to_page_cache_locked(page, mapping,
3396 page->index, GFP_KERNEL);
3397
3398 /* give up if we can't stick it in the cache */
3399 if (rc) {
3400 __clear_page_locked(page);
3401 return rc;
3402 }
3403
3404 /* move first page to the tmplist */
3405 *offset = (loff_t)page->index << PAGE_CACHE_SHIFT;
3406 *bytes = PAGE_CACHE_SIZE;
3407 *nr_pages = 1;
3408 list_move_tail(&page->lru, tmplist);
3409
3410 /* now try and add more pages onto the request */
3411 expected_index = page->index + 1;
3412 list_for_each_entry_safe_reverse(page, tpage, page_list, lru) {
3413 /* discontinuity ? */
3414 if (page->index != expected_index)
3415 break;
3416
3417 /* would this page push the read over the rsize? */
3418 if (*bytes + PAGE_CACHE_SIZE > rsize)
3419 break;
3420
3421 __set_page_locked(page);
3422 if (add_to_page_cache_locked(page, mapping, page->index,
3423 GFP_KERNEL)) {
3424 __clear_page_locked(page);
3425 break;
3426 }
3427 list_move_tail(&page->lru, tmplist);
3428 (*bytes) += PAGE_CACHE_SIZE;
3429 expected_index++;
3430 (*nr_pages)++;
3431 }
3432 return rc;
3433 }
3434
3435 static int cifs_readpages(struct file *file, struct address_space *mapping,
3436 struct list_head *page_list, unsigned num_pages)
3437 {
3438 int rc;
3439 struct list_head tmplist;
3440 struct cifsFileInfo *open_file = file->private_data;
3441 struct cifs_sb_info *cifs_sb = CIFS_FILE_SB(file);
3442 struct TCP_Server_Info *server;
3443 pid_t pid;
3444
3445 /*
3446 * Reads as many pages as possible from fscache. Returns -ENOBUFS
3447 * immediately if the cookie is negative
3448 *
3449 * After this point, every page in the list might have PG_fscache set,
3450 * so we will need to clean that up off of every page we don't use.
3451 */
3452 rc = cifs_readpages_from_fscache(mapping->host, mapping, page_list,
3453 &num_pages);
3454 if (rc == 0)
3455 return rc;
3456
3457 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_RWPIDFORWARD)
3458 pid = open_file->pid;
3459 else
3460 pid = current->tgid;
3461
3462 rc = 0;
3463 server = tlink_tcon(open_file->tlink)->ses->server;
3464
3465 cifs_dbg(FYI, "%s: file=%p mapping=%p num_pages=%u\n",
3466 __func__, file, mapping, num_pages);
3467
3468 /*
3469 * Start with the page at end of list and move it to private
3470 * list. Do the same with any following pages until we hit
3471 * the rsize limit, hit an index discontinuity, or run out of
3472 * pages. Issue the async read and then start the loop again
3473 * until the list is empty.
3474 *
3475 * Note that list order is important. The page_list is in
3476 * the order of declining indexes. When we put the pages in
3477 * the rdata->pages, then we want them in increasing order.
3478 */
3479 while (!list_empty(page_list)) {
3480 unsigned int i, nr_pages, bytes, rsize;
3481 loff_t offset;
3482 struct page *page, *tpage;
3483 struct cifs_readdata *rdata;
3484 unsigned credits;
3485
3486 rc = server->ops->wait_mtu_credits(server, cifs_sb->rsize,
3487 &rsize, &credits);
3488 if (rc)
3489 break;
3490
3491 /*
3492 * Give up immediately if rsize is too small to read an entire
3493 * page. The VFS will fall back to readpage. We should never
3494 * reach this point however since we set ra_pages to 0 when the
3495 * rsize is smaller than a cache page.
3496 */
3497 if (unlikely(rsize < PAGE_CACHE_SIZE)) {
3498 add_credits_and_wake_if(server, credits, 0);
3499 return 0;
3500 }
3501
3502 rc = readpages_get_pages(mapping, page_list, rsize, &tmplist,
3503 &nr_pages, &offset, &bytes);
3504 if (rc) {
3505 add_credits_and_wake_if(server, credits, 0);
3506 break;
3507 }
3508
3509 rdata = cifs_readdata_alloc(nr_pages, cifs_readv_complete);
3510 if (!rdata) {
3511 /* best to give up if we're out of mem */
3512 list_for_each_entry_safe(page, tpage, &tmplist, lru) {
3513 list_del(&page->lru);
3514 lru_cache_add_file(page);
3515 unlock_page(page);
3516 page_cache_release(page);
3517 }
3518 rc = -ENOMEM;
3519 add_credits_and_wake_if(server, credits, 0);
3520 break;
3521 }
3522
3523 rdata->cfile = cifsFileInfo_get(open_file);
3524 rdata->mapping = mapping;
3525 rdata->offset = offset;
3526 rdata->bytes = bytes;
3527 rdata->pid = pid;
3528 rdata->pagesz = PAGE_CACHE_SIZE;
3529 rdata->read_into_pages = cifs_readpages_read_into_pages;
3530 rdata->credits = credits;
3531
3532 list_for_each_entry_safe(page, tpage, &tmplist, lru) {
3533 list_del(&page->lru);
3534 rdata->pages[rdata->nr_pages++] = page;
3535 }
3536
3537 if (!rdata->cfile->invalidHandle ||
3538 !cifs_reopen_file(rdata->cfile, true))
3539 rc = server->ops->async_readv(rdata);
3540 if (rc) {
3541 add_credits_and_wake_if(server, rdata->credits, 0);
3542 for (i = 0; i < rdata->nr_pages; i++) {
3543 page = rdata->pages[i];
3544 lru_cache_add_file(page);
3545 unlock_page(page);
3546 page_cache_release(page);
3547 }
3548 /* Fallback to the readpage in error/reconnect cases */
3549 kref_put(&rdata->refcount, cifs_readdata_release);
3550 break;
3551 }
3552
3553 kref_put(&rdata->refcount, cifs_readdata_release);
3554 }
3555
3556 /* Any pages that have been shown to fscache but didn't get added to
3557 * the pagecache must be uncached before they get returned to the
3558 * allocator.
3559 */
3560 cifs_fscache_readpages_cancel(mapping->host, page_list);
3561 return rc;
3562 }
3563
3564 /*
3565 * cifs_readpage_worker must be called with the page pinned
3566 */
3567 static int cifs_readpage_worker(struct file *file, struct page *page,
3568 loff_t *poffset)
3569 {
3570 char *read_data;
3571 int rc;
3572
3573 /* Is the page cached? */
3574 rc = cifs_readpage_from_fscache(file_inode(file), page);
3575 if (rc == 0)
3576 goto read_complete;
3577
3578 read_data = kmap(page);
3579 /* for reads over a certain size could initiate async read ahead */
3580
3581 rc = cifs_read(file, read_data, PAGE_CACHE_SIZE, poffset);
3582
3583 if (rc < 0)
3584 goto io_error;
3585 else
3586 cifs_dbg(FYI, "Bytes read %d\n", rc);
3587
3588 file_inode(file)->i_atime =
3589 current_fs_time(file_inode(file)->i_sb);
3590
3591 if (PAGE_CACHE_SIZE > rc)
3592 memset(read_data + rc, 0, PAGE_CACHE_SIZE - rc);
3593
3594 flush_dcache_page(page);
3595 SetPageUptodate(page);
3596
3597 /* send this page to the cache */
3598 cifs_readpage_to_fscache(file_inode(file), page);
3599
3600 rc = 0;
3601
3602 io_error:
3603 kunmap(page);
3604 unlock_page(page);
3605
3606 read_complete:
3607 return rc;
3608 }
3609
3610 static int cifs_readpage(struct file *file, struct page *page)
3611 {
3612 loff_t offset = (loff_t)page->index << PAGE_CACHE_SHIFT;
3613 int rc = -EACCES;
3614 unsigned int xid;
3615
3616 xid = get_xid();
3617
3618 if (file->private_data == NULL) {
3619 rc = -EBADF;
3620 free_xid(xid);
3621 return rc;
3622 }
3623
3624 cifs_dbg(FYI, "readpage %p at offset %d 0x%x\n",
3625 page, (int)offset, (int)offset);
3626
3627 rc = cifs_readpage_worker(file, page, &offset);
3628
3629 free_xid(xid);
3630 return rc;
3631 }
3632
3633 static int is_inode_writable(struct cifsInodeInfo *cifs_inode)
3634 {
3635 struct cifsFileInfo *open_file;
3636
3637 spin_lock(&cifs_file_list_lock);
3638 list_for_each_entry(open_file, &cifs_inode->openFileList, flist) {
3639 if (OPEN_FMODE(open_file->f_flags) & FMODE_WRITE) {
3640 spin_unlock(&cifs_file_list_lock);
3641 return 1;
3642 }
3643 }
3644 spin_unlock(&cifs_file_list_lock);
3645 return 0;
3646 }
3647
3648 /* We do not want to update the file size from server for inodes
3649 open for write - to avoid races with writepage extending
3650 the file - in the future we could consider allowing
3651 refreshing the inode only on increases in the file size
3652 but this is tricky to do without racing with writebehind
3653 page caching in the current Linux kernel design */
3654 bool is_size_safe_to_change(struct cifsInodeInfo *cifsInode, __u64 end_of_file)
3655 {
3656 if (!cifsInode)
3657 return true;
3658
3659 if (is_inode_writable(cifsInode)) {
3660 /* This inode is open for write at least once */
3661 struct cifs_sb_info *cifs_sb;
3662
3663 cifs_sb = CIFS_SB(cifsInode->vfs_inode.i_sb);
3664 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_DIRECT_IO) {
3665 /* since no page cache to corrupt on directio
3666 we can change size safely */
3667 return true;
3668 }
3669
3670 if (i_size_read(&cifsInode->vfs_inode) < end_of_file)
3671 return true;
3672
3673 return false;
3674 } else
3675 return true;
3676 }
3677
3678 static int cifs_write_begin(struct file *file, struct address_space *mapping,
3679 loff_t pos, unsigned len, unsigned flags,
3680 struct page **pagep, void **fsdata)
3681 {
3682 int oncethru = 0;
3683 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
3684 loff_t offset = pos & (PAGE_CACHE_SIZE - 1);
3685 loff_t page_start = pos & PAGE_MASK;
3686 loff_t i_size;
3687 struct page *page;
3688 int rc = 0;
3689
3690 cifs_dbg(FYI, "write_begin from %lld len %d\n", (long long)pos, len);
3691
3692 start:
3693 page = grab_cache_page_write_begin(mapping, index, flags);
3694 if (!page) {
3695 rc = -ENOMEM;
3696 goto out;
3697 }
3698
3699 if (PageUptodate(page))
3700 goto out;
3701
3702 /*
3703 * If we write a full page it will be up to date, no need to read from
3704 * the server. If the write is short, we'll end up doing a sync write
3705 * instead.
3706 */
3707 if (len == PAGE_CACHE_SIZE)
3708 goto out;
3709
3710 /*
3711 * optimize away the read when we have an oplock, and we're not
3712 * expecting to use any of the data we'd be reading in. That
3713 * is, when the page lies beyond the EOF, or straddles the EOF
3714 * and the write will cover all of the existing data.
3715 */
3716 if (CIFS_CACHE_READ(CIFS_I(mapping->host))) {
3717 i_size = i_size_read(mapping->host);
3718 if (page_start >= i_size ||
3719 (offset == 0 && (pos + len) >= i_size)) {
3720 zero_user_segments(page, 0, offset,
3721 offset + len,
3722 PAGE_CACHE_SIZE);
3723 /*
3724 * PageChecked means that the parts of the page
3725 * to which we're not writing are considered up
3726 * to date. Once the data is copied to the
3727 * page, it can be set uptodate.
3728 */
3729 SetPageChecked(page);
3730 goto out;
3731 }
3732 }
3733
3734 if ((file->f_flags & O_ACCMODE) != O_WRONLY && !oncethru) {
3735 /*
3736 * might as well read a page, it is fast enough. If we get
3737 * an error, we don't need to return it. cifs_write_end will
3738 * do a sync write instead since PG_uptodate isn't set.
3739 */
3740 cifs_readpage_worker(file, page, &page_start);
3741 page_cache_release(page);
3742 oncethru = 1;
3743 goto start;
3744 } else {
3745 /* we could try using another file handle if there is one -
3746 but how would we lock it to prevent close of that handle
3747 racing with this read? In any case
3748 this will be written out by write_end so is fine */
3749 }
3750 out:
3751 *pagep = page;
3752 return rc;
3753 }
3754
3755 static int cifs_release_page(struct page *page, gfp_t gfp)
3756 {
3757 if (PagePrivate(page))
3758 return 0;
3759
3760 return cifs_fscache_release_page(page, gfp);
3761 }
3762
3763 static void cifs_invalidate_page(struct page *page, unsigned int offset,
3764 unsigned int length)
3765 {
3766 struct cifsInodeInfo *cifsi = CIFS_I(page->mapping->host);
3767
3768 if (offset == 0 && length == PAGE_CACHE_SIZE)
3769 cifs_fscache_invalidate_page(page, &cifsi->vfs_inode);
3770 }
3771
3772 static int cifs_launder_page(struct page *page)
3773 {
3774 int rc = 0;
3775 loff_t range_start = page_offset(page);
3776 loff_t range_end = range_start + (loff_t)(PAGE_CACHE_SIZE - 1);
3777 struct writeback_control wbc = {
3778 .sync_mode = WB_SYNC_ALL,
3779 .nr_to_write = 0,
3780 .range_start = range_start,
3781 .range_end = range_end,
3782 };
3783
3784 cifs_dbg(FYI, "Launder page: %p\n", page);
3785
3786 if (clear_page_dirty_for_io(page))
3787 rc = cifs_writepage_locked(page, &wbc);
3788
3789 cifs_fscache_invalidate_page(page, page->mapping->host);
3790 return rc;
3791 }
3792
3793 void cifs_oplock_break(struct work_struct *work)
3794 {
3795 struct cifsFileInfo *cfile = container_of(work, struct cifsFileInfo,
3796 oplock_break);
3797 struct inode *inode = d_inode(cfile->dentry);
3798 struct cifsInodeInfo *cinode = CIFS_I(inode);
3799 struct cifs_tcon *tcon = tlink_tcon(cfile->tlink);
3800 struct TCP_Server_Info *server = tcon->ses->server;
3801 int rc = 0;
3802
3803 wait_on_bit(&cinode->flags, CIFS_INODE_PENDING_WRITERS,
3804 TASK_UNINTERRUPTIBLE);
3805
3806 server->ops->downgrade_oplock(server, cinode,
3807 test_bit(CIFS_INODE_DOWNGRADE_OPLOCK_TO_L2, &cinode->flags));
3808
3809 if (!CIFS_CACHE_WRITE(cinode) && CIFS_CACHE_READ(cinode) &&
3810 cifs_has_mand_locks(cinode)) {
3811 cifs_dbg(FYI, "Reset oplock to None for inode=%p due to mand locks\n",
3812 inode);
3813 cinode->oplock = 0;
3814 }
3815
3816 if (inode && S_ISREG(inode->i_mode)) {
3817 if (CIFS_CACHE_READ(cinode))
3818 break_lease(inode, O_RDONLY);
3819 else
3820 break_lease(inode, O_WRONLY);
3821 rc = filemap_fdatawrite(inode->i_mapping);
3822 if (!CIFS_CACHE_READ(cinode)) {
3823 rc = filemap_fdatawait(inode->i_mapping);
3824 mapping_set_error(inode->i_mapping, rc);
3825 cifs_zap_mapping(inode);
3826 }
3827 cifs_dbg(FYI, "Oplock flush inode %p rc %d\n", inode, rc);
3828 }
3829
3830 rc = cifs_push_locks(cfile);
3831 if (rc)
3832 cifs_dbg(VFS, "Push locks rc = %d\n", rc);
3833
3834 /*
3835 * releasing stale oplock after recent reconnect of smb session using
3836 * a now incorrect file handle is not a data integrity issue but do
3837 * not bother sending an oplock release if session to server still is
3838 * disconnected since oplock already released by the server
3839 */
3840 if (!cfile->oplock_break_cancelled) {
3841 rc = tcon->ses->server->ops->oplock_response(tcon, &cfile->fid,
3842 cinode);
3843 cifs_dbg(FYI, "Oplock release rc = %d\n", rc);
3844 }
3845 cifs_done_oplock_break(cinode);
3846 }
3847
3848 /*
3849 * The presence of cifs_direct_io() in the address space ops vector
3850 * allowes open() O_DIRECT flags which would have failed otherwise.
3851 *
3852 * In the non-cached mode (mount with cache=none), we shunt off direct read and write requests
3853 * so this method should never be called.
3854 *
3855 * Direct IO is not yet supported in the cached mode.
3856 */
3857 static ssize_t
3858 cifs_direct_io(struct kiocb *iocb, struct iov_iter *iter, loff_t pos)
3859 {
3860 /*
3861 * FIXME
3862 * Eventually need to support direct IO for non forcedirectio mounts
3863 */
3864 return -EINVAL;
3865 }
3866
3867
3868 const struct address_space_operations cifs_addr_ops = {
3869 .readpage = cifs_readpage,
3870 .readpages = cifs_readpages,
3871 .writepage = cifs_writepage,
3872 .writepages = cifs_writepages,
3873 .write_begin = cifs_write_begin,
3874 .write_end = cifs_write_end,
3875 .set_page_dirty = __set_page_dirty_nobuffers,
3876 .releasepage = cifs_release_page,
3877 .direct_IO = cifs_direct_io,
3878 .invalidatepage = cifs_invalidate_page,
3879 .launder_page = cifs_launder_page,
3880 };
3881
3882 /*
3883 * cifs_readpages requires the server to support a buffer large enough to
3884 * contain the header plus one complete page of data. Otherwise, we need
3885 * to leave cifs_readpages out of the address space operations.
3886 */
3887 const struct address_space_operations cifs_addr_ops_smallbuf = {
3888 .readpage = cifs_readpage,
3889 .writepage = cifs_writepage,
3890 .writepages = cifs_writepages,
3891 .write_begin = cifs_write_begin,
3892 .write_end = cifs_write_end,
3893 .set_page_dirty = __set_page_dirty_nobuffers,
3894 .releasepage = cifs_release_page,
3895 .invalidatepage = cifs_invalidate_page,
3896 .launder_page = cifs_launder_page,
3897 };