]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/cifs/file.c
Merge tag 'kbuild-fixes-v5.1' of git://git.kernel.org/pub/scm/linux/kernel/git/masahi...
[mirror_ubuntu-jammy-kernel.git] / fs / cifs / file.c
1 /*
2 * fs/cifs/file.c
3 *
4 * vfs operations that deal with files
5 *
6 * Copyright (C) International Business Machines Corp., 2002,2010
7 * Author(s): Steve French (sfrench@us.ibm.com)
8 * Jeremy Allison (jra@samba.org)
9 *
10 * This library is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU Lesser General Public License as published
12 * by the Free Software Foundation; either version 2.1 of the License, or
13 * (at your option) any later version.
14 *
15 * This library is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
18 * the GNU Lesser General Public License for more details.
19 *
20 * You should have received a copy of the GNU Lesser General Public License
21 * along with this library; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 */
24 #include <linux/fs.h>
25 #include <linux/backing-dev.h>
26 #include <linux/stat.h>
27 #include <linux/fcntl.h>
28 #include <linux/pagemap.h>
29 #include <linux/pagevec.h>
30 #include <linux/writeback.h>
31 #include <linux/task_io_accounting_ops.h>
32 #include <linux/delay.h>
33 #include <linux/mount.h>
34 #include <linux/slab.h>
35 #include <linux/swap.h>
36 #include <linux/mm.h>
37 #include <asm/div64.h>
38 #include "cifsfs.h"
39 #include "cifspdu.h"
40 #include "cifsglob.h"
41 #include "cifsproto.h"
42 #include "cifs_unicode.h"
43 #include "cifs_debug.h"
44 #include "cifs_fs_sb.h"
45 #include "fscache.h"
46 #include "smbdirect.h"
47
48 static inline int cifs_convert_flags(unsigned int flags)
49 {
50 if ((flags & O_ACCMODE) == O_RDONLY)
51 return GENERIC_READ;
52 else if ((flags & O_ACCMODE) == O_WRONLY)
53 return GENERIC_WRITE;
54 else if ((flags & O_ACCMODE) == O_RDWR) {
55 /* GENERIC_ALL is too much permission to request
56 can cause unnecessary access denied on create */
57 /* return GENERIC_ALL; */
58 return (GENERIC_READ | GENERIC_WRITE);
59 }
60
61 return (READ_CONTROL | FILE_WRITE_ATTRIBUTES | FILE_READ_ATTRIBUTES |
62 FILE_WRITE_EA | FILE_APPEND_DATA | FILE_WRITE_DATA |
63 FILE_READ_DATA);
64 }
65
66 static u32 cifs_posix_convert_flags(unsigned int flags)
67 {
68 u32 posix_flags = 0;
69
70 if ((flags & O_ACCMODE) == O_RDONLY)
71 posix_flags = SMB_O_RDONLY;
72 else if ((flags & O_ACCMODE) == O_WRONLY)
73 posix_flags = SMB_O_WRONLY;
74 else if ((flags & O_ACCMODE) == O_RDWR)
75 posix_flags = SMB_O_RDWR;
76
77 if (flags & O_CREAT) {
78 posix_flags |= SMB_O_CREAT;
79 if (flags & O_EXCL)
80 posix_flags |= SMB_O_EXCL;
81 } else if (flags & O_EXCL)
82 cifs_dbg(FYI, "Application %s pid %d has incorrectly set O_EXCL flag but not O_CREAT on file open. Ignoring O_EXCL\n",
83 current->comm, current->tgid);
84
85 if (flags & O_TRUNC)
86 posix_flags |= SMB_O_TRUNC;
87 /* be safe and imply O_SYNC for O_DSYNC */
88 if (flags & O_DSYNC)
89 posix_flags |= SMB_O_SYNC;
90 if (flags & O_DIRECTORY)
91 posix_flags |= SMB_O_DIRECTORY;
92 if (flags & O_NOFOLLOW)
93 posix_flags |= SMB_O_NOFOLLOW;
94 if (flags & O_DIRECT)
95 posix_flags |= SMB_O_DIRECT;
96
97 return posix_flags;
98 }
99
100 static inline int cifs_get_disposition(unsigned int flags)
101 {
102 if ((flags & (O_CREAT | O_EXCL)) == (O_CREAT | O_EXCL))
103 return FILE_CREATE;
104 else if ((flags & (O_CREAT | O_TRUNC)) == (O_CREAT | O_TRUNC))
105 return FILE_OVERWRITE_IF;
106 else if ((flags & O_CREAT) == O_CREAT)
107 return FILE_OPEN_IF;
108 else if ((flags & O_TRUNC) == O_TRUNC)
109 return FILE_OVERWRITE;
110 else
111 return FILE_OPEN;
112 }
113
114 int cifs_posix_open(char *full_path, struct inode **pinode,
115 struct super_block *sb, int mode, unsigned int f_flags,
116 __u32 *poplock, __u16 *pnetfid, unsigned int xid)
117 {
118 int rc;
119 FILE_UNIX_BASIC_INFO *presp_data;
120 __u32 posix_flags = 0;
121 struct cifs_sb_info *cifs_sb = CIFS_SB(sb);
122 struct cifs_fattr fattr;
123 struct tcon_link *tlink;
124 struct cifs_tcon *tcon;
125
126 cifs_dbg(FYI, "posix open %s\n", full_path);
127
128 presp_data = kzalloc(sizeof(FILE_UNIX_BASIC_INFO), GFP_KERNEL);
129 if (presp_data == NULL)
130 return -ENOMEM;
131
132 tlink = cifs_sb_tlink(cifs_sb);
133 if (IS_ERR(tlink)) {
134 rc = PTR_ERR(tlink);
135 goto posix_open_ret;
136 }
137
138 tcon = tlink_tcon(tlink);
139 mode &= ~current_umask();
140
141 posix_flags = cifs_posix_convert_flags(f_flags);
142 rc = CIFSPOSIXCreate(xid, tcon, posix_flags, mode, pnetfid, presp_data,
143 poplock, full_path, cifs_sb->local_nls,
144 cifs_remap(cifs_sb));
145 cifs_put_tlink(tlink);
146
147 if (rc)
148 goto posix_open_ret;
149
150 if (presp_data->Type == cpu_to_le32(-1))
151 goto posix_open_ret; /* open ok, caller does qpathinfo */
152
153 if (!pinode)
154 goto posix_open_ret; /* caller does not need info */
155
156 cifs_unix_basic_to_fattr(&fattr, presp_data, cifs_sb);
157
158 /* get new inode and set it up */
159 if (*pinode == NULL) {
160 cifs_fill_uniqueid(sb, &fattr);
161 *pinode = cifs_iget(sb, &fattr);
162 if (!*pinode) {
163 rc = -ENOMEM;
164 goto posix_open_ret;
165 }
166 } else {
167 cifs_fattr_to_inode(*pinode, &fattr);
168 }
169
170 posix_open_ret:
171 kfree(presp_data);
172 return rc;
173 }
174
175 static int
176 cifs_nt_open(char *full_path, struct inode *inode, struct cifs_sb_info *cifs_sb,
177 struct cifs_tcon *tcon, unsigned int f_flags, __u32 *oplock,
178 struct cifs_fid *fid, unsigned int xid)
179 {
180 int rc;
181 int desired_access;
182 int disposition;
183 int create_options = CREATE_NOT_DIR;
184 FILE_ALL_INFO *buf;
185 struct TCP_Server_Info *server = tcon->ses->server;
186 struct cifs_open_parms oparms;
187
188 if (!server->ops->open)
189 return -ENOSYS;
190
191 desired_access = cifs_convert_flags(f_flags);
192
193 /*********************************************************************
194 * open flag mapping table:
195 *
196 * POSIX Flag CIFS Disposition
197 * ---------- ----------------
198 * O_CREAT FILE_OPEN_IF
199 * O_CREAT | O_EXCL FILE_CREATE
200 * O_CREAT | O_TRUNC FILE_OVERWRITE_IF
201 * O_TRUNC FILE_OVERWRITE
202 * none of the above FILE_OPEN
203 *
204 * Note that there is not a direct match between disposition
205 * FILE_SUPERSEDE (ie create whether or not file exists although
206 * O_CREAT | O_TRUNC is similar but truncates the existing
207 * file rather than creating a new file as FILE_SUPERSEDE does
208 * (which uses the attributes / metadata passed in on open call)
209 *?
210 *? O_SYNC is a reasonable match to CIFS writethrough flag
211 *? and the read write flags match reasonably. O_LARGEFILE
212 *? is irrelevant because largefile support is always used
213 *? by this client. Flags O_APPEND, O_DIRECT, O_DIRECTORY,
214 * O_FASYNC, O_NOFOLLOW, O_NONBLOCK need further investigation
215 *********************************************************************/
216
217 disposition = cifs_get_disposition(f_flags);
218
219 /* BB pass O_SYNC flag through on file attributes .. BB */
220
221 buf = kmalloc(sizeof(FILE_ALL_INFO), GFP_KERNEL);
222 if (!buf)
223 return -ENOMEM;
224
225 if (backup_cred(cifs_sb))
226 create_options |= CREATE_OPEN_BACKUP_INTENT;
227
228 /* O_SYNC also has bit for O_DSYNC so following check picks up either */
229 if (f_flags & O_SYNC)
230 create_options |= CREATE_WRITE_THROUGH;
231
232 if (f_flags & O_DIRECT)
233 create_options |= CREATE_NO_BUFFER;
234
235 oparms.tcon = tcon;
236 oparms.cifs_sb = cifs_sb;
237 oparms.desired_access = desired_access;
238 oparms.create_options = create_options;
239 oparms.disposition = disposition;
240 oparms.path = full_path;
241 oparms.fid = fid;
242 oparms.reconnect = false;
243
244 rc = server->ops->open(xid, &oparms, oplock, buf);
245
246 if (rc)
247 goto out;
248
249 if (tcon->unix_ext)
250 rc = cifs_get_inode_info_unix(&inode, full_path, inode->i_sb,
251 xid);
252 else
253 rc = cifs_get_inode_info(&inode, full_path, buf, inode->i_sb,
254 xid, fid);
255
256 out:
257 kfree(buf);
258 return rc;
259 }
260
261 static bool
262 cifs_has_mand_locks(struct cifsInodeInfo *cinode)
263 {
264 struct cifs_fid_locks *cur;
265 bool has_locks = false;
266
267 down_read(&cinode->lock_sem);
268 list_for_each_entry(cur, &cinode->llist, llist) {
269 if (!list_empty(&cur->locks)) {
270 has_locks = true;
271 break;
272 }
273 }
274 up_read(&cinode->lock_sem);
275 return has_locks;
276 }
277
278 struct cifsFileInfo *
279 cifs_new_fileinfo(struct cifs_fid *fid, struct file *file,
280 struct tcon_link *tlink, __u32 oplock)
281 {
282 struct dentry *dentry = file_dentry(file);
283 struct inode *inode = d_inode(dentry);
284 struct cifsInodeInfo *cinode = CIFS_I(inode);
285 struct cifsFileInfo *cfile;
286 struct cifs_fid_locks *fdlocks;
287 struct cifs_tcon *tcon = tlink_tcon(tlink);
288 struct TCP_Server_Info *server = tcon->ses->server;
289
290 cfile = kzalloc(sizeof(struct cifsFileInfo), GFP_KERNEL);
291 if (cfile == NULL)
292 return cfile;
293
294 fdlocks = kzalloc(sizeof(struct cifs_fid_locks), GFP_KERNEL);
295 if (!fdlocks) {
296 kfree(cfile);
297 return NULL;
298 }
299
300 INIT_LIST_HEAD(&fdlocks->locks);
301 fdlocks->cfile = cfile;
302 cfile->llist = fdlocks;
303 down_write(&cinode->lock_sem);
304 list_add(&fdlocks->llist, &cinode->llist);
305 up_write(&cinode->lock_sem);
306
307 cfile->count = 1;
308 cfile->pid = current->tgid;
309 cfile->uid = current_fsuid();
310 cfile->dentry = dget(dentry);
311 cfile->f_flags = file->f_flags;
312 cfile->invalidHandle = false;
313 cfile->tlink = cifs_get_tlink(tlink);
314 INIT_WORK(&cfile->oplock_break, cifs_oplock_break);
315 mutex_init(&cfile->fh_mutex);
316 spin_lock_init(&cfile->file_info_lock);
317
318 cifs_sb_active(inode->i_sb);
319
320 /*
321 * If the server returned a read oplock and we have mandatory brlocks,
322 * set oplock level to None.
323 */
324 if (server->ops->is_read_op(oplock) && cifs_has_mand_locks(cinode)) {
325 cifs_dbg(FYI, "Reset oplock val from read to None due to mand locks\n");
326 oplock = 0;
327 }
328
329 spin_lock(&tcon->open_file_lock);
330 if (fid->pending_open->oplock != CIFS_OPLOCK_NO_CHANGE && oplock)
331 oplock = fid->pending_open->oplock;
332 list_del(&fid->pending_open->olist);
333
334 fid->purge_cache = false;
335 server->ops->set_fid(cfile, fid, oplock);
336
337 list_add(&cfile->tlist, &tcon->openFileList);
338 atomic_inc(&tcon->num_local_opens);
339
340 /* if readable file instance put first in list*/
341 if (file->f_mode & FMODE_READ)
342 list_add(&cfile->flist, &cinode->openFileList);
343 else
344 list_add_tail(&cfile->flist, &cinode->openFileList);
345 spin_unlock(&tcon->open_file_lock);
346
347 if (fid->purge_cache)
348 cifs_zap_mapping(inode);
349
350 file->private_data = cfile;
351 return cfile;
352 }
353
354 struct cifsFileInfo *
355 cifsFileInfo_get(struct cifsFileInfo *cifs_file)
356 {
357 spin_lock(&cifs_file->file_info_lock);
358 cifsFileInfo_get_locked(cifs_file);
359 spin_unlock(&cifs_file->file_info_lock);
360 return cifs_file;
361 }
362
363 /*
364 * Release a reference on the file private data. This may involve closing
365 * the filehandle out on the server. Must be called without holding
366 * tcon->open_file_lock and cifs_file->file_info_lock.
367 */
368 void cifsFileInfo_put(struct cifsFileInfo *cifs_file)
369 {
370 struct inode *inode = d_inode(cifs_file->dentry);
371 struct cifs_tcon *tcon = tlink_tcon(cifs_file->tlink);
372 struct TCP_Server_Info *server = tcon->ses->server;
373 struct cifsInodeInfo *cifsi = CIFS_I(inode);
374 struct super_block *sb = inode->i_sb;
375 struct cifs_sb_info *cifs_sb = CIFS_SB(sb);
376 struct cifsLockInfo *li, *tmp;
377 struct cifs_fid fid;
378 struct cifs_pending_open open;
379 bool oplock_break_cancelled;
380
381 spin_lock(&tcon->open_file_lock);
382
383 spin_lock(&cifs_file->file_info_lock);
384 if (--cifs_file->count > 0) {
385 spin_unlock(&cifs_file->file_info_lock);
386 spin_unlock(&tcon->open_file_lock);
387 return;
388 }
389 spin_unlock(&cifs_file->file_info_lock);
390
391 if (server->ops->get_lease_key)
392 server->ops->get_lease_key(inode, &fid);
393
394 /* store open in pending opens to make sure we don't miss lease break */
395 cifs_add_pending_open_locked(&fid, cifs_file->tlink, &open);
396
397 /* remove it from the lists */
398 list_del(&cifs_file->flist);
399 list_del(&cifs_file->tlist);
400 atomic_dec(&tcon->num_local_opens);
401
402 if (list_empty(&cifsi->openFileList)) {
403 cifs_dbg(FYI, "closing last open instance for inode %p\n",
404 d_inode(cifs_file->dentry));
405 /*
406 * In strict cache mode we need invalidate mapping on the last
407 * close because it may cause a error when we open this file
408 * again and get at least level II oplock.
409 */
410 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_STRICT_IO)
411 set_bit(CIFS_INO_INVALID_MAPPING, &cifsi->flags);
412 cifs_set_oplock_level(cifsi, 0);
413 }
414
415 spin_unlock(&tcon->open_file_lock);
416
417 oplock_break_cancelled = cancel_work_sync(&cifs_file->oplock_break);
418
419 if (!tcon->need_reconnect && !cifs_file->invalidHandle) {
420 struct TCP_Server_Info *server = tcon->ses->server;
421 unsigned int xid;
422
423 xid = get_xid();
424 if (server->ops->close)
425 server->ops->close(xid, tcon, &cifs_file->fid);
426 _free_xid(xid);
427 }
428
429 if (oplock_break_cancelled)
430 cifs_done_oplock_break(cifsi);
431
432 cifs_del_pending_open(&open);
433
434 /*
435 * Delete any outstanding lock records. We'll lose them when the file
436 * is closed anyway.
437 */
438 down_write(&cifsi->lock_sem);
439 list_for_each_entry_safe(li, tmp, &cifs_file->llist->locks, llist) {
440 list_del(&li->llist);
441 cifs_del_lock_waiters(li);
442 kfree(li);
443 }
444 list_del(&cifs_file->llist->llist);
445 kfree(cifs_file->llist);
446 up_write(&cifsi->lock_sem);
447
448 cifs_put_tlink(cifs_file->tlink);
449 dput(cifs_file->dentry);
450 cifs_sb_deactive(sb);
451 kfree(cifs_file);
452 }
453
454 int cifs_open(struct inode *inode, struct file *file)
455
456 {
457 int rc = -EACCES;
458 unsigned int xid;
459 __u32 oplock;
460 struct cifs_sb_info *cifs_sb;
461 struct TCP_Server_Info *server;
462 struct cifs_tcon *tcon;
463 struct tcon_link *tlink;
464 struct cifsFileInfo *cfile = NULL;
465 char *full_path = NULL;
466 bool posix_open_ok = false;
467 struct cifs_fid fid;
468 struct cifs_pending_open open;
469
470 xid = get_xid();
471
472 cifs_sb = CIFS_SB(inode->i_sb);
473 tlink = cifs_sb_tlink(cifs_sb);
474 if (IS_ERR(tlink)) {
475 free_xid(xid);
476 return PTR_ERR(tlink);
477 }
478 tcon = tlink_tcon(tlink);
479 server = tcon->ses->server;
480
481 full_path = build_path_from_dentry(file_dentry(file));
482 if (full_path == NULL) {
483 rc = -ENOMEM;
484 goto out;
485 }
486
487 cifs_dbg(FYI, "inode = 0x%p file flags are 0x%x for %s\n",
488 inode, file->f_flags, full_path);
489
490 if (file->f_flags & O_DIRECT &&
491 cifs_sb->mnt_cifs_flags & CIFS_MOUNT_STRICT_IO) {
492 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_NO_BRL)
493 file->f_op = &cifs_file_direct_nobrl_ops;
494 else
495 file->f_op = &cifs_file_direct_ops;
496 }
497
498 if (server->oplocks)
499 oplock = REQ_OPLOCK;
500 else
501 oplock = 0;
502
503 if (!tcon->broken_posix_open && tcon->unix_ext &&
504 cap_unix(tcon->ses) && (CIFS_UNIX_POSIX_PATH_OPS_CAP &
505 le64_to_cpu(tcon->fsUnixInfo.Capability))) {
506 /* can not refresh inode info since size could be stale */
507 rc = cifs_posix_open(full_path, &inode, inode->i_sb,
508 cifs_sb->mnt_file_mode /* ignored */,
509 file->f_flags, &oplock, &fid.netfid, xid);
510 if (rc == 0) {
511 cifs_dbg(FYI, "posix open succeeded\n");
512 posix_open_ok = true;
513 } else if ((rc == -EINVAL) || (rc == -EOPNOTSUPP)) {
514 if (tcon->ses->serverNOS)
515 cifs_dbg(VFS, "server %s of type %s returned unexpected error on SMB posix open, disabling posix open support. Check if server update available.\n",
516 tcon->ses->serverName,
517 tcon->ses->serverNOS);
518 tcon->broken_posix_open = true;
519 } else if ((rc != -EIO) && (rc != -EREMOTE) &&
520 (rc != -EOPNOTSUPP)) /* path not found or net err */
521 goto out;
522 /*
523 * Else fallthrough to retry open the old way on network i/o
524 * or DFS errors.
525 */
526 }
527
528 if (server->ops->get_lease_key)
529 server->ops->get_lease_key(inode, &fid);
530
531 cifs_add_pending_open(&fid, tlink, &open);
532
533 if (!posix_open_ok) {
534 if (server->ops->get_lease_key)
535 server->ops->get_lease_key(inode, &fid);
536
537 rc = cifs_nt_open(full_path, inode, cifs_sb, tcon,
538 file->f_flags, &oplock, &fid, xid);
539 if (rc) {
540 cifs_del_pending_open(&open);
541 goto out;
542 }
543 }
544
545 cfile = cifs_new_fileinfo(&fid, file, tlink, oplock);
546 if (cfile == NULL) {
547 if (server->ops->close)
548 server->ops->close(xid, tcon, &fid);
549 cifs_del_pending_open(&open);
550 rc = -ENOMEM;
551 goto out;
552 }
553
554 cifs_fscache_set_inode_cookie(inode, file);
555
556 if ((oplock & CIFS_CREATE_ACTION) && !posix_open_ok && tcon->unix_ext) {
557 /*
558 * Time to set mode which we can not set earlier due to
559 * problems creating new read-only files.
560 */
561 struct cifs_unix_set_info_args args = {
562 .mode = inode->i_mode,
563 .uid = INVALID_UID, /* no change */
564 .gid = INVALID_GID, /* no change */
565 .ctime = NO_CHANGE_64,
566 .atime = NO_CHANGE_64,
567 .mtime = NO_CHANGE_64,
568 .device = 0,
569 };
570 CIFSSMBUnixSetFileInfo(xid, tcon, &args, fid.netfid,
571 cfile->pid);
572 }
573
574 out:
575 kfree(full_path);
576 free_xid(xid);
577 cifs_put_tlink(tlink);
578 return rc;
579 }
580
581 static int cifs_push_posix_locks(struct cifsFileInfo *cfile);
582
583 /*
584 * Try to reacquire byte range locks that were released when session
585 * to server was lost.
586 */
587 static int
588 cifs_relock_file(struct cifsFileInfo *cfile)
589 {
590 struct cifs_sb_info *cifs_sb = CIFS_SB(cfile->dentry->d_sb);
591 struct cifsInodeInfo *cinode = CIFS_I(d_inode(cfile->dentry));
592 struct cifs_tcon *tcon = tlink_tcon(cfile->tlink);
593 int rc = 0;
594
595 down_read_nested(&cinode->lock_sem, SINGLE_DEPTH_NESTING);
596 if (cinode->can_cache_brlcks) {
597 /* can cache locks - no need to relock */
598 up_read(&cinode->lock_sem);
599 return rc;
600 }
601
602 if (cap_unix(tcon->ses) &&
603 (CIFS_UNIX_FCNTL_CAP & le64_to_cpu(tcon->fsUnixInfo.Capability)) &&
604 ((cifs_sb->mnt_cifs_flags & CIFS_MOUNT_NOPOSIXBRL) == 0))
605 rc = cifs_push_posix_locks(cfile);
606 else
607 rc = tcon->ses->server->ops->push_mand_locks(cfile);
608
609 up_read(&cinode->lock_sem);
610 return rc;
611 }
612
613 static int
614 cifs_reopen_file(struct cifsFileInfo *cfile, bool can_flush)
615 {
616 int rc = -EACCES;
617 unsigned int xid;
618 __u32 oplock;
619 struct cifs_sb_info *cifs_sb;
620 struct cifs_tcon *tcon;
621 struct TCP_Server_Info *server;
622 struct cifsInodeInfo *cinode;
623 struct inode *inode;
624 char *full_path = NULL;
625 int desired_access;
626 int disposition = FILE_OPEN;
627 int create_options = CREATE_NOT_DIR;
628 struct cifs_open_parms oparms;
629
630 xid = get_xid();
631 mutex_lock(&cfile->fh_mutex);
632 if (!cfile->invalidHandle) {
633 mutex_unlock(&cfile->fh_mutex);
634 rc = 0;
635 free_xid(xid);
636 return rc;
637 }
638
639 inode = d_inode(cfile->dentry);
640 cifs_sb = CIFS_SB(inode->i_sb);
641 tcon = tlink_tcon(cfile->tlink);
642 server = tcon->ses->server;
643
644 /*
645 * Can not grab rename sem here because various ops, including those
646 * that already have the rename sem can end up causing writepage to get
647 * called and if the server was down that means we end up here, and we
648 * can never tell if the caller already has the rename_sem.
649 */
650 full_path = build_path_from_dentry(cfile->dentry);
651 if (full_path == NULL) {
652 rc = -ENOMEM;
653 mutex_unlock(&cfile->fh_mutex);
654 free_xid(xid);
655 return rc;
656 }
657
658 cifs_dbg(FYI, "inode = 0x%p file flags 0x%x for %s\n",
659 inode, cfile->f_flags, full_path);
660
661 if (tcon->ses->server->oplocks)
662 oplock = REQ_OPLOCK;
663 else
664 oplock = 0;
665
666 if (tcon->unix_ext && cap_unix(tcon->ses) &&
667 (CIFS_UNIX_POSIX_PATH_OPS_CAP &
668 le64_to_cpu(tcon->fsUnixInfo.Capability))) {
669 /*
670 * O_CREAT, O_EXCL and O_TRUNC already had their effect on the
671 * original open. Must mask them off for a reopen.
672 */
673 unsigned int oflags = cfile->f_flags &
674 ~(O_CREAT | O_EXCL | O_TRUNC);
675
676 rc = cifs_posix_open(full_path, NULL, inode->i_sb,
677 cifs_sb->mnt_file_mode /* ignored */,
678 oflags, &oplock, &cfile->fid.netfid, xid);
679 if (rc == 0) {
680 cifs_dbg(FYI, "posix reopen succeeded\n");
681 oparms.reconnect = true;
682 goto reopen_success;
683 }
684 /*
685 * fallthrough to retry open the old way on errors, especially
686 * in the reconnect path it is important to retry hard
687 */
688 }
689
690 desired_access = cifs_convert_flags(cfile->f_flags);
691
692 if (backup_cred(cifs_sb))
693 create_options |= CREATE_OPEN_BACKUP_INTENT;
694
695 if (server->ops->get_lease_key)
696 server->ops->get_lease_key(inode, &cfile->fid);
697
698 oparms.tcon = tcon;
699 oparms.cifs_sb = cifs_sb;
700 oparms.desired_access = desired_access;
701 oparms.create_options = create_options;
702 oparms.disposition = disposition;
703 oparms.path = full_path;
704 oparms.fid = &cfile->fid;
705 oparms.reconnect = true;
706
707 /*
708 * Can not refresh inode by passing in file_info buf to be returned by
709 * ops->open and then calling get_inode_info with returned buf since
710 * file might have write behind data that needs to be flushed and server
711 * version of file size can be stale. If we knew for sure that inode was
712 * not dirty locally we could do this.
713 */
714 rc = server->ops->open(xid, &oparms, &oplock, NULL);
715 if (rc == -ENOENT && oparms.reconnect == false) {
716 /* durable handle timeout is expired - open the file again */
717 rc = server->ops->open(xid, &oparms, &oplock, NULL);
718 /* indicate that we need to relock the file */
719 oparms.reconnect = true;
720 }
721
722 if (rc) {
723 mutex_unlock(&cfile->fh_mutex);
724 cifs_dbg(FYI, "cifs_reopen returned 0x%x\n", rc);
725 cifs_dbg(FYI, "oplock: %d\n", oplock);
726 goto reopen_error_exit;
727 }
728
729 reopen_success:
730 cfile->invalidHandle = false;
731 mutex_unlock(&cfile->fh_mutex);
732 cinode = CIFS_I(inode);
733
734 if (can_flush) {
735 rc = filemap_write_and_wait(inode->i_mapping);
736 if (!is_interrupt_error(rc))
737 mapping_set_error(inode->i_mapping, rc);
738
739 if (tcon->unix_ext)
740 rc = cifs_get_inode_info_unix(&inode, full_path,
741 inode->i_sb, xid);
742 else
743 rc = cifs_get_inode_info(&inode, full_path, NULL,
744 inode->i_sb, xid, NULL);
745 }
746 /*
747 * Else we are writing out data to server already and could deadlock if
748 * we tried to flush data, and since we do not know if we have data that
749 * would invalidate the current end of file on the server we can not go
750 * to the server to get the new inode info.
751 */
752
753 /*
754 * If the server returned a read oplock and we have mandatory brlocks,
755 * set oplock level to None.
756 */
757 if (server->ops->is_read_op(oplock) && cifs_has_mand_locks(cinode)) {
758 cifs_dbg(FYI, "Reset oplock val from read to None due to mand locks\n");
759 oplock = 0;
760 }
761
762 server->ops->set_fid(cfile, &cfile->fid, oplock);
763 if (oparms.reconnect)
764 cifs_relock_file(cfile);
765
766 reopen_error_exit:
767 kfree(full_path);
768 free_xid(xid);
769 return rc;
770 }
771
772 int cifs_close(struct inode *inode, struct file *file)
773 {
774 if (file->private_data != NULL) {
775 cifsFileInfo_put(file->private_data);
776 file->private_data = NULL;
777 }
778
779 /* return code from the ->release op is always ignored */
780 return 0;
781 }
782
783 void
784 cifs_reopen_persistent_handles(struct cifs_tcon *tcon)
785 {
786 struct cifsFileInfo *open_file;
787 struct list_head *tmp;
788 struct list_head *tmp1;
789 struct list_head tmp_list;
790
791 if (!tcon->use_persistent || !tcon->need_reopen_files)
792 return;
793
794 tcon->need_reopen_files = false;
795
796 cifs_dbg(FYI, "Reopen persistent handles");
797 INIT_LIST_HEAD(&tmp_list);
798
799 /* list all files open on tree connection, reopen resilient handles */
800 spin_lock(&tcon->open_file_lock);
801 list_for_each(tmp, &tcon->openFileList) {
802 open_file = list_entry(tmp, struct cifsFileInfo, tlist);
803 if (!open_file->invalidHandle)
804 continue;
805 cifsFileInfo_get(open_file);
806 list_add_tail(&open_file->rlist, &tmp_list);
807 }
808 spin_unlock(&tcon->open_file_lock);
809
810 list_for_each_safe(tmp, tmp1, &tmp_list) {
811 open_file = list_entry(tmp, struct cifsFileInfo, rlist);
812 if (cifs_reopen_file(open_file, false /* do not flush */))
813 tcon->need_reopen_files = true;
814 list_del_init(&open_file->rlist);
815 cifsFileInfo_put(open_file);
816 }
817 }
818
819 int cifs_closedir(struct inode *inode, struct file *file)
820 {
821 int rc = 0;
822 unsigned int xid;
823 struct cifsFileInfo *cfile = file->private_data;
824 struct cifs_tcon *tcon;
825 struct TCP_Server_Info *server;
826 char *buf;
827
828 cifs_dbg(FYI, "Closedir inode = 0x%p\n", inode);
829
830 if (cfile == NULL)
831 return rc;
832
833 xid = get_xid();
834 tcon = tlink_tcon(cfile->tlink);
835 server = tcon->ses->server;
836
837 cifs_dbg(FYI, "Freeing private data in close dir\n");
838 spin_lock(&cfile->file_info_lock);
839 if (server->ops->dir_needs_close(cfile)) {
840 cfile->invalidHandle = true;
841 spin_unlock(&cfile->file_info_lock);
842 if (server->ops->close_dir)
843 rc = server->ops->close_dir(xid, tcon, &cfile->fid);
844 else
845 rc = -ENOSYS;
846 cifs_dbg(FYI, "Closing uncompleted readdir with rc %d\n", rc);
847 /* not much we can do if it fails anyway, ignore rc */
848 rc = 0;
849 } else
850 spin_unlock(&cfile->file_info_lock);
851
852 buf = cfile->srch_inf.ntwrk_buf_start;
853 if (buf) {
854 cifs_dbg(FYI, "closedir free smb buf in srch struct\n");
855 cfile->srch_inf.ntwrk_buf_start = NULL;
856 if (cfile->srch_inf.smallBuf)
857 cifs_small_buf_release(buf);
858 else
859 cifs_buf_release(buf);
860 }
861
862 cifs_put_tlink(cfile->tlink);
863 kfree(file->private_data);
864 file->private_data = NULL;
865 /* BB can we lock the filestruct while this is going on? */
866 free_xid(xid);
867 return rc;
868 }
869
870 static struct cifsLockInfo *
871 cifs_lock_init(__u64 offset, __u64 length, __u8 type, __u16 flags)
872 {
873 struct cifsLockInfo *lock =
874 kmalloc(sizeof(struct cifsLockInfo), GFP_KERNEL);
875 if (!lock)
876 return lock;
877 lock->offset = offset;
878 lock->length = length;
879 lock->type = type;
880 lock->pid = current->tgid;
881 lock->flags = flags;
882 INIT_LIST_HEAD(&lock->blist);
883 init_waitqueue_head(&lock->block_q);
884 return lock;
885 }
886
887 void
888 cifs_del_lock_waiters(struct cifsLockInfo *lock)
889 {
890 struct cifsLockInfo *li, *tmp;
891 list_for_each_entry_safe(li, tmp, &lock->blist, blist) {
892 list_del_init(&li->blist);
893 wake_up(&li->block_q);
894 }
895 }
896
897 #define CIFS_LOCK_OP 0
898 #define CIFS_READ_OP 1
899 #define CIFS_WRITE_OP 2
900
901 /* @rw_check : 0 - no op, 1 - read, 2 - write */
902 static bool
903 cifs_find_fid_lock_conflict(struct cifs_fid_locks *fdlocks, __u64 offset,
904 __u64 length, __u8 type, __u16 flags,
905 struct cifsFileInfo *cfile,
906 struct cifsLockInfo **conf_lock, int rw_check)
907 {
908 struct cifsLockInfo *li;
909 struct cifsFileInfo *cur_cfile = fdlocks->cfile;
910 struct TCP_Server_Info *server = tlink_tcon(cfile->tlink)->ses->server;
911
912 list_for_each_entry(li, &fdlocks->locks, llist) {
913 if (offset + length <= li->offset ||
914 offset >= li->offset + li->length)
915 continue;
916 if (rw_check != CIFS_LOCK_OP && current->tgid == li->pid &&
917 server->ops->compare_fids(cfile, cur_cfile)) {
918 /* shared lock prevents write op through the same fid */
919 if (!(li->type & server->vals->shared_lock_type) ||
920 rw_check != CIFS_WRITE_OP)
921 continue;
922 }
923 if ((type & server->vals->shared_lock_type) &&
924 ((server->ops->compare_fids(cfile, cur_cfile) &&
925 current->tgid == li->pid) || type == li->type))
926 continue;
927 if (rw_check == CIFS_LOCK_OP &&
928 (flags & FL_OFDLCK) && (li->flags & FL_OFDLCK) &&
929 server->ops->compare_fids(cfile, cur_cfile))
930 continue;
931 if (conf_lock)
932 *conf_lock = li;
933 return true;
934 }
935 return false;
936 }
937
938 bool
939 cifs_find_lock_conflict(struct cifsFileInfo *cfile, __u64 offset, __u64 length,
940 __u8 type, __u16 flags,
941 struct cifsLockInfo **conf_lock, int rw_check)
942 {
943 bool rc = false;
944 struct cifs_fid_locks *cur;
945 struct cifsInodeInfo *cinode = CIFS_I(d_inode(cfile->dentry));
946
947 list_for_each_entry(cur, &cinode->llist, llist) {
948 rc = cifs_find_fid_lock_conflict(cur, offset, length, type,
949 flags, cfile, conf_lock,
950 rw_check);
951 if (rc)
952 break;
953 }
954
955 return rc;
956 }
957
958 /*
959 * Check if there is another lock that prevents us to set the lock (mandatory
960 * style). If such a lock exists, update the flock structure with its
961 * properties. Otherwise, set the flock type to F_UNLCK if we can cache brlocks
962 * or leave it the same if we can't. Returns 0 if we don't need to request to
963 * the server or 1 otherwise.
964 */
965 static int
966 cifs_lock_test(struct cifsFileInfo *cfile, __u64 offset, __u64 length,
967 __u8 type, struct file_lock *flock)
968 {
969 int rc = 0;
970 struct cifsLockInfo *conf_lock;
971 struct cifsInodeInfo *cinode = CIFS_I(d_inode(cfile->dentry));
972 struct TCP_Server_Info *server = tlink_tcon(cfile->tlink)->ses->server;
973 bool exist;
974
975 down_read(&cinode->lock_sem);
976
977 exist = cifs_find_lock_conflict(cfile, offset, length, type,
978 flock->fl_flags, &conf_lock,
979 CIFS_LOCK_OP);
980 if (exist) {
981 flock->fl_start = conf_lock->offset;
982 flock->fl_end = conf_lock->offset + conf_lock->length - 1;
983 flock->fl_pid = conf_lock->pid;
984 if (conf_lock->type & server->vals->shared_lock_type)
985 flock->fl_type = F_RDLCK;
986 else
987 flock->fl_type = F_WRLCK;
988 } else if (!cinode->can_cache_brlcks)
989 rc = 1;
990 else
991 flock->fl_type = F_UNLCK;
992
993 up_read(&cinode->lock_sem);
994 return rc;
995 }
996
997 static void
998 cifs_lock_add(struct cifsFileInfo *cfile, struct cifsLockInfo *lock)
999 {
1000 struct cifsInodeInfo *cinode = CIFS_I(d_inode(cfile->dentry));
1001 down_write(&cinode->lock_sem);
1002 list_add_tail(&lock->llist, &cfile->llist->locks);
1003 up_write(&cinode->lock_sem);
1004 }
1005
1006 /*
1007 * Set the byte-range lock (mandatory style). Returns:
1008 * 1) 0, if we set the lock and don't need to request to the server;
1009 * 2) 1, if no locks prevent us but we need to request to the server;
1010 * 3) -EACCES, if there is a lock that prevents us and wait is false.
1011 */
1012 static int
1013 cifs_lock_add_if(struct cifsFileInfo *cfile, struct cifsLockInfo *lock,
1014 bool wait)
1015 {
1016 struct cifsLockInfo *conf_lock;
1017 struct cifsInodeInfo *cinode = CIFS_I(d_inode(cfile->dentry));
1018 bool exist;
1019 int rc = 0;
1020
1021 try_again:
1022 exist = false;
1023 down_write(&cinode->lock_sem);
1024
1025 exist = cifs_find_lock_conflict(cfile, lock->offset, lock->length,
1026 lock->type, lock->flags, &conf_lock,
1027 CIFS_LOCK_OP);
1028 if (!exist && cinode->can_cache_brlcks) {
1029 list_add_tail(&lock->llist, &cfile->llist->locks);
1030 up_write(&cinode->lock_sem);
1031 return rc;
1032 }
1033
1034 if (!exist)
1035 rc = 1;
1036 else if (!wait)
1037 rc = -EACCES;
1038 else {
1039 list_add_tail(&lock->blist, &conf_lock->blist);
1040 up_write(&cinode->lock_sem);
1041 rc = wait_event_interruptible(lock->block_q,
1042 (lock->blist.prev == &lock->blist) &&
1043 (lock->blist.next == &lock->blist));
1044 if (!rc)
1045 goto try_again;
1046 down_write(&cinode->lock_sem);
1047 list_del_init(&lock->blist);
1048 }
1049
1050 up_write(&cinode->lock_sem);
1051 return rc;
1052 }
1053
1054 /*
1055 * Check if there is another lock that prevents us to set the lock (posix
1056 * style). If such a lock exists, update the flock structure with its
1057 * properties. Otherwise, set the flock type to F_UNLCK if we can cache brlocks
1058 * or leave it the same if we can't. Returns 0 if we don't need to request to
1059 * the server or 1 otherwise.
1060 */
1061 static int
1062 cifs_posix_lock_test(struct file *file, struct file_lock *flock)
1063 {
1064 int rc = 0;
1065 struct cifsInodeInfo *cinode = CIFS_I(file_inode(file));
1066 unsigned char saved_type = flock->fl_type;
1067
1068 if ((flock->fl_flags & FL_POSIX) == 0)
1069 return 1;
1070
1071 down_read(&cinode->lock_sem);
1072 posix_test_lock(file, flock);
1073
1074 if (flock->fl_type == F_UNLCK && !cinode->can_cache_brlcks) {
1075 flock->fl_type = saved_type;
1076 rc = 1;
1077 }
1078
1079 up_read(&cinode->lock_sem);
1080 return rc;
1081 }
1082
1083 /*
1084 * Set the byte-range lock (posix style). Returns:
1085 * 1) 0, if we set the lock and don't need to request to the server;
1086 * 2) 1, if we need to request to the server;
1087 * 3) <0, if the error occurs while setting the lock.
1088 */
1089 static int
1090 cifs_posix_lock_set(struct file *file, struct file_lock *flock)
1091 {
1092 struct cifsInodeInfo *cinode = CIFS_I(file_inode(file));
1093 int rc = 1;
1094
1095 if ((flock->fl_flags & FL_POSIX) == 0)
1096 return rc;
1097
1098 try_again:
1099 down_write(&cinode->lock_sem);
1100 if (!cinode->can_cache_brlcks) {
1101 up_write(&cinode->lock_sem);
1102 return rc;
1103 }
1104
1105 rc = posix_lock_file(file, flock, NULL);
1106 up_write(&cinode->lock_sem);
1107 if (rc == FILE_LOCK_DEFERRED) {
1108 rc = wait_event_interruptible(flock->fl_wait, !flock->fl_blocker);
1109 if (!rc)
1110 goto try_again;
1111 locks_delete_block(flock);
1112 }
1113 return rc;
1114 }
1115
1116 int
1117 cifs_push_mandatory_locks(struct cifsFileInfo *cfile)
1118 {
1119 unsigned int xid;
1120 int rc = 0, stored_rc;
1121 struct cifsLockInfo *li, *tmp;
1122 struct cifs_tcon *tcon;
1123 unsigned int num, max_num, max_buf;
1124 LOCKING_ANDX_RANGE *buf, *cur;
1125 static const int types[] = {
1126 LOCKING_ANDX_LARGE_FILES,
1127 LOCKING_ANDX_SHARED_LOCK | LOCKING_ANDX_LARGE_FILES
1128 };
1129 int i;
1130
1131 xid = get_xid();
1132 tcon = tlink_tcon(cfile->tlink);
1133
1134 /*
1135 * Accessing maxBuf is racy with cifs_reconnect - need to store value
1136 * and check it before using.
1137 */
1138 max_buf = tcon->ses->server->maxBuf;
1139 if (max_buf < (sizeof(struct smb_hdr) + sizeof(LOCKING_ANDX_RANGE))) {
1140 free_xid(xid);
1141 return -EINVAL;
1142 }
1143
1144 BUILD_BUG_ON(sizeof(struct smb_hdr) + sizeof(LOCKING_ANDX_RANGE) >
1145 PAGE_SIZE);
1146 max_buf = min_t(unsigned int, max_buf - sizeof(struct smb_hdr),
1147 PAGE_SIZE);
1148 max_num = (max_buf - sizeof(struct smb_hdr)) /
1149 sizeof(LOCKING_ANDX_RANGE);
1150 buf = kcalloc(max_num, sizeof(LOCKING_ANDX_RANGE), GFP_KERNEL);
1151 if (!buf) {
1152 free_xid(xid);
1153 return -ENOMEM;
1154 }
1155
1156 for (i = 0; i < 2; i++) {
1157 cur = buf;
1158 num = 0;
1159 list_for_each_entry_safe(li, tmp, &cfile->llist->locks, llist) {
1160 if (li->type != types[i])
1161 continue;
1162 cur->Pid = cpu_to_le16(li->pid);
1163 cur->LengthLow = cpu_to_le32((u32)li->length);
1164 cur->LengthHigh = cpu_to_le32((u32)(li->length>>32));
1165 cur->OffsetLow = cpu_to_le32((u32)li->offset);
1166 cur->OffsetHigh = cpu_to_le32((u32)(li->offset>>32));
1167 if (++num == max_num) {
1168 stored_rc = cifs_lockv(xid, tcon,
1169 cfile->fid.netfid,
1170 (__u8)li->type, 0, num,
1171 buf);
1172 if (stored_rc)
1173 rc = stored_rc;
1174 cur = buf;
1175 num = 0;
1176 } else
1177 cur++;
1178 }
1179
1180 if (num) {
1181 stored_rc = cifs_lockv(xid, tcon, cfile->fid.netfid,
1182 (__u8)types[i], 0, num, buf);
1183 if (stored_rc)
1184 rc = stored_rc;
1185 }
1186 }
1187
1188 kfree(buf);
1189 free_xid(xid);
1190 return rc;
1191 }
1192
1193 static __u32
1194 hash_lockowner(fl_owner_t owner)
1195 {
1196 return cifs_lock_secret ^ hash32_ptr((const void *)owner);
1197 }
1198
1199 struct lock_to_push {
1200 struct list_head llist;
1201 __u64 offset;
1202 __u64 length;
1203 __u32 pid;
1204 __u16 netfid;
1205 __u8 type;
1206 };
1207
1208 static int
1209 cifs_push_posix_locks(struct cifsFileInfo *cfile)
1210 {
1211 struct inode *inode = d_inode(cfile->dentry);
1212 struct cifs_tcon *tcon = tlink_tcon(cfile->tlink);
1213 struct file_lock *flock;
1214 struct file_lock_context *flctx = inode->i_flctx;
1215 unsigned int count = 0, i;
1216 int rc = 0, xid, type;
1217 struct list_head locks_to_send, *el;
1218 struct lock_to_push *lck, *tmp;
1219 __u64 length;
1220
1221 xid = get_xid();
1222
1223 if (!flctx)
1224 goto out;
1225
1226 spin_lock(&flctx->flc_lock);
1227 list_for_each(el, &flctx->flc_posix) {
1228 count++;
1229 }
1230 spin_unlock(&flctx->flc_lock);
1231
1232 INIT_LIST_HEAD(&locks_to_send);
1233
1234 /*
1235 * Allocating count locks is enough because no FL_POSIX locks can be
1236 * added to the list while we are holding cinode->lock_sem that
1237 * protects locking operations of this inode.
1238 */
1239 for (i = 0; i < count; i++) {
1240 lck = kmalloc(sizeof(struct lock_to_push), GFP_KERNEL);
1241 if (!lck) {
1242 rc = -ENOMEM;
1243 goto err_out;
1244 }
1245 list_add_tail(&lck->llist, &locks_to_send);
1246 }
1247
1248 el = locks_to_send.next;
1249 spin_lock(&flctx->flc_lock);
1250 list_for_each_entry(flock, &flctx->flc_posix, fl_list) {
1251 if (el == &locks_to_send) {
1252 /*
1253 * The list ended. We don't have enough allocated
1254 * structures - something is really wrong.
1255 */
1256 cifs_dbg(VFS, "Can't push all brlocks!\n");
1257 break;
1258 }
1259 length = 1 + flock->fl_end - flock->fl_start;
1260 if (flock->fl_type == F_RDLCK || flock->fl_type == F_SHLCK)
1261 type = CIFS_RDLCK;
1262 else
1263 type = CIFS_WRLCK;
1264 lck = list_entry(el, struct lock_to_push, llist);
1265 lck->pid = hash_lockowner(flock->fl_owner);
1266 lck->netfid = cfile->fid.netfid;
1267 lck->length = length;
1268 lck->type = type;
1269 lck->offset = flock->fl_start;
1270 }
1271 spin_unlock(&flctx->flc_lock);
1272
1273 list_for_each_entry_safe(lck, tmp, &locks_to_send, llist) {
1274 int stored_rc;
1275
1276 stored_rc = CIFSSMBPosixLock(xid, tcon, lck->netfid, lck->pid,
1277 lck->offset, lck->length, NULL,
1278 lck->type, 0);
1279 if (stored_rc)
1280 rc = stored_rc;
1281 list_del(&lck->llist);
1282 kfree(lck);
1283 }
1284
1285 out:
1286 free_xid(xid);
1287 return rc;
1288 err_out:
1289 list_for_each_entry_safe(lck, tmp, &locks_to_send, llist) {
1290 list_del(&lck->llist);
1291 kfree(lck);
1292 }
1293 goto out;
1294 }
1295
1296 static int
1297 cifs_push_locks(struct cifsFileInfo *cfile)
1298 {
1299 struct cifs_sb_info *cifs_sb = CIFS_SB(cfile->dentry->d_sb);
1300 struct cifsInodeInfo *cinode = CIFS_I(d_inode(cfile->dentry));
1301 struct cifs_tcon *tcon = tlink_tcon(cfile->tlink);
1302 int rc = 0;
1303
1304 /* we are going to update can_cache_brlcks here - need a write access */
1305 down_write(&cinode->lock_sem);
1306 if (!cinode->can_cache_brlcks) {
1307 up_write(&cinode->lock_sem);
1308 return rc;
1309 }
1310
1311 if (cap_unix(tcon->ses) &&
1312 (CIFS_UNIX_FCNTL_CAP & le64_to_cpu(tcon->fsUnixInfo.Capability)) &&
1313 ((cifs_sb->mnt_cifs_flags & CIFS_MOUNT_NOPOSIXBRL) == 0))
1314 rc = cifs_push_posix_locks(cfile);
1315 else
1316 rc = tcon->ses->server->ops->push_mand_locks(cfile);
1317
1318 cinode->can_cache_brlcks = false;
1319 up_write(&cinode->lock_sem);
1320 return rc;
1321 }
1322
1323 static void
1324 cifs_read_flock(struct file_lock *flock, __u32 *type, int *lock, int *unlock,
1325 bool *wait_flag, struct TCP_Server_Info *server)
1326 {
1327 if (flock->fl_flags & FL_POSIX)
1328 cifs_dbg(FYI, "Posix\n");
1329 if (flock->fl_flags & FL_FLOCK)
1330 cifs_dbg(FYI, "Flock\n");
1331 if (flock->fl_flags & FL_SLEEP) {
1332 cifs_dbg(FYI, "Blocking lock\n");
1333 *wait_flag = true;
1334 }
1335 if (flock->fl_flags & FL_ACCESS)
1336 cifs_dbg(FYI, "Process suspended by mandatory locking - not implemented yet\n");
1337 if (flock->fl_flags & FL_LEASE)
1338 cifs_dbg(FYI, "Lease on file - not implemented yet\n");
1339 if (flock->fl_flags &
1340 (~(FL_POSIX | FL_FLOCK | FL_SLEEP |
1341 FL_ACCESS | FL_LEASE | FL_CLOSE | FL_OFDLCK)))
1342 cifs_dbg(FYI, "Unknown lock flags 0x%x\n", flock->fl_flags);
1343
1344 *type = server->vals->large_lock_type;
1345 if (flock->fl_type == F_WRLCK) {
1346 cifs_dbg(FYI, "F_WRLCK\n");
1347 *type |= server->vals->exclusive_lock_type;
1348 *lock = 1;
1349 } else if (flock->fl_type == F_UNLCK) {
1350 cifs_dbg(FYI, "F_UNLCK\n");
1351 *type |= server->vals->unlock_lock_type;
1352 *unlock = 1;
1353 /* Check if unlock includes more than one lock range */
1354 } else if (flock->fl_type == F_RDLCK) {
1355 cifs_dbg(FYI, "F_RDLCK\n");
1356 *type |= server->vals->shared_lock_type;
1357 *lock = 1;
1358 } else if (flock->fl_type == F_EXLCK) {
1359 cifs_dbg(FYI, "F_EXLCK\n");
1360 *type |= server->vals->exclusive_lock_type;
1361 *lock = 1;
1362 } else if (flock->fl_type == F_SHLCK) {
1363 cifs_dbg(FYI, "F_SHLCK\n");
1364 *type |= server->vals->shared_lock_type;
1365 *lock = 1;
1366 } else
1367 cifs_dbg(FYI, "Unknown type of lock\n");
1368 }
1369
1370 static int
1371 cifs_getlk(struct file *file, struct file_lock *flock, __u32 type,
1372 bool wait_flag, bool posix_lck, unsigned int xid)
1373 {
1374 int rc = 0;
1375 __u64 length = 1 + flock->fl_end - flock->fl_start;
1376 struct cifsFileInfo *cfile = (struct cifsFileInfo *)file->private_data;
1377 struct cifs_tcon *tcon = tlink_tcon(cfile->tlink);
1378 struct TCP_Server_Info *server = tcon->ses->server;
1379 __u16 netfid = cfile->fid.netfid;
1380
1381 if (posix_lck) {
1382 int posix_lock_type;
1383
1384 rc = cifs_posix_lock_test(file, flock);
1385 if (!rc)
1386 return rc;
1387
1388 if (type & server->vals->shared_lock_type)
1389 posix_lock_type = CIFS_RDLCK;
1390 else
1391 posix_lock_type = CIFS_WRLCK;
1392 rc = CIFSSMBPosixLock(xid, tcon, netfid,
1393 hash_lockowner(flock->fl_owner),
1394 flock->fl_start, length, flock,
1395 posix_lock_type, wait_flag);
1396 return rc;
1397 }
1398
1399 rc = cifs_lock_test(cfile, flock->fl_start, length, type, flock);
1400 if (!rc)
1401 return rc;
1402
1403 /* BB we could chain these into one lock request BB */
1404 rc = server->ops->mand_lock(xid, cfile, flock->fl_start, length, type,
1405 1, 0, false);
1406 if (rc == 0) {
1407 rc = server->ops->mand_lock(xid, cfile, flock->fl_start, length,
1408 type, 0, 1, false);
1409 flock->fl_type = F_UNLCK;
1410 if (rc != 0)
1411 cifs_dbg(VFS, "Error unlocking previously locked range %d during test of lock\n",
1412 rc);
1413 return 0;
1414 }
1415
1416 if (type & server->vals->shared_lock_type) {
1417 flock->fl_type = F_WRLCK;
1418 return 0;
1419 }
1420
1421 type &= ~server->vals->exclusive_lock_type;
1422
1423 rc = server->ops->mand_lock(xid, cfile, flock->fl_start, length,
1424 type | server->vals->shared_lock_type,
1425 1, 0, false);
1426 if (rc == 0) {
1427 rc = server->ops->mand_lock(xid, cfile, flock->fl_start, length,
1428 type | server->vals->shared_lock_type, 0, 1, false);
1429 flock->fl_type = F_RDLCK;
1430 if (rc != 0)
1431 cifs_dbg(VFS, "Error unlocking previously locked range %d during test of lock\n",
1432 rc);
1433 } else
1434 flock->fl_type = F_WRLCK;
1435
1436 return 0;
1437 }
1438
1439 void
1440 cifs_move_llist(struct list_head *source, struct list_head *dest)
1441 {
1442 struct list_head *li, *tmp;
1443 list_for_each_safe(li, tmp, source)
1444 list_move(li, dest);
1445 }
1446
1447 void
1448 cifs_free_llist(struct list_head *llist)
1449 {
1450 struct cifsLockInfo *li, *tmp;
1451 list_for_each_entry_safe(li, tmp, llist, llist) {
1452 cifs_del_lock_waiters(li);
1453 list_del(&li->llist);
1454 kfree(li);
1455 }
1456 }
1457
1458 int
1459 cifs_unlock_range(struct cifsFileInfo *cfile, struct file_lock *flock,
1460 unsigned int xid)
1461 {
1462 int rc = 0, stored_rc;
1463 static const int types[] = {
1464 LOCKING_ANDX_LARGE_FILES,
1465 LOCKING_ANDX_SHARED_LOCK | LOCKING_ANDX_LARGE_FILES
1466 };
1467 unsigned int i;
1468 unsigned int max_num, num, max_buf;
1469 LOCKING_ANDX_RANGE *buf, *cur;
1470 struct cifs_tcon *tcon = tlink_tcon(cfile->tlink);
1471 struct cifsInodeInfo *cinode = CIFS_I(d_inode(cfile->dentry));
1472 struct cifsLockInfo *li, *tmp;
1473 __u64 length = 1 + flock->fl_end - flock->fl_start;
1474 struct list_head tmp_llist;
1475
1476 INIT_LIST_HEAD(&tmp_llist);
1477
1478 /*
1479 * Accessing maxBuf is racy with cifs_reconnect - need to store value
1480 * and check it before using.
1481 */
1482 max_buf = tcon->ses->server->maxBuf;
1483 if (max_buf < (sizeof(struct smb_hdr) + sizeof(LOCKING_ANDX_RANGE)))
1484 return -EINVAL;
1485
1486 BUILD_BUG_ON(sizeof(struct smb_hdr) + sizeof(LOCKING_ANDX_RANGE) >
1487 PAGE_SIZE);
1488 max_buf = min_t(unsigned int, max_buf - sizeof(struct smb_hdr),
1489 PAGE_SIZE);
1490 max_num = (max_buf - sizeof(struct smb_hdr)) /
1491 sizeof(LOCKING_ANDX_RANGE);
1492 buf = kcalloc(max_num, sizeof(LOCKING_ANDX_RANGE), GFP_KERNEL);
1493 if (!buf)
1494 return -ENOMEM;
1495
1496 down_write(&cinode->lock_sem);
1497 for (i = 0; i < 2; i++) {
1498 cur = buf;
1499 num = 0;
1500 list_for_each_entry_safe(li, tmp, &cfile->llist->locks, llist) {
1501 if (flock->fl_start > li->offset ||
1502 (flock->fl_start + length) <
1503 (li->offset + li->length))
1504 continue;
1505 if (current->tgid != li->pid)
1506 continue;
1507 if (types[i] != li->type)
1508 continue;
1509 if (cinode->can_cache_brlcks) {
1510 /*
1511 * We can cache brlock requests - simply remove
1512 * a lock from the file's list.
1513 */
1514 list_del(&li->llist);
1515 cifs_del_lock_waiters(li);
1516 kfree(li);
1517 continue;
1518 }
1519 cur->Pid = cpu_to_le16(li->pid);
1520 cur->LengthLow = cpu_to_le32((u32)li->length);
1521 cur->LengthHigh = cpu_to_le32((u32)(li->length>>32));
1522 cur->OffsetLow = cpu_to_le32((u32)li->offset);
1523 cur->OffsetHigh = cpu_to_le32((u32)(li->offset>>32));
1524 /*
1525 * We need to save a lock here to let us add it again to
1526 * the file's list if the unlock range request fails on
1527 * the server.
1528 */
1529 list_move(&li->llist, &tmp_llist);
1530 if (++num == max_num) {
1531 stored_rc = cifs_lockv(xid, tcon,
1532 cfile->fid.netfid,
1533 li->type, num, 0, buf);
1534 if (stored_rc) {
1535 /*
1536 * We failed on the unlock range
1537 * request - add all locks from the tmp
1538 * list to the head of the file's list.
1539 */
1540 cifs_move_llist(&tmp_llist,
1541 &cfile->llist->locks);
1542 rc = stored_rc;
1543 } else
1544 /*
1545 * The unlock range request succeed -
1546 * free the tmp list.
1547 */
1548 cifs_free_llist(&tmp_llist);
1549 cur = buf;
1550 num = 0;
1551 } else
1552 cur++;
1553 }
1554 if (num) {
1555 stored_rc = cifs_lockv(xid, tcon, cfile->fid.netfid,
1556 types[i], num, 0, buf);
1557 if (stored_rc) {
1558 cifs_move_llist(&tmp_llist,
1559 &cfile->llist->locks);
1560 rc = stored_rc;
1561 } else
1562 cifs_free_llist(&tmp_llist);
1563 }
1564 }
1565
1566 up_write(&cinode->lock_sem);
1567 kfree(buf);
1568 return rc;
1569 }
1570
1571 static int
1572 cifs_setlk(struct file *file, struct file_lock *flock, __u32 type,
1573 bool wait_flag, bool posix_lck, int lock, int unlock,
1574 unsigned int xid)
1575 {
1576 int rc = 0;
1577 __u64 length = 1 + flock->fl_end - flock->fl_start;
1578 struct cifsFileInfo *cfile = (struct cifsFileInfo *)file->private_data;
1579 struct cifs_tcon *tcon = tlink_tcon(cfile->tlink);
1580 struct TCP_Server_Info *server = tcon->ses->server;
1581 struct inode *inode = d_inode(cfile->dentry);
1582
1583 if (posix_lck) {
1584 int posix_lock_type;
1585
1586 rc = cifs_posix_lock_set(file, flock);
1587 if (!rc || rc < 0)
1588 return rc;
1589
1590 if (type & server->vals->shared_lock_type)
1591 posix_lock_type = CIFS_RDLCK;
1592 else
1593 posix_lock_type = CIFS_WRLCK;
1594
1595 if (unlock == 1)
1596 posix_lock_type = CIFS_UNLCK;
1597
1598 rc = CIFSSMBPosixLock(xid, tcon, cfile->fid.netfid,
1599 hash_lockowner(flock->fl_owner),
1600 flock->fl_start, length,
1601 NULL, posix_lock_type, wait_flag);
1602 goto out;
1603 }
1604
1605 if (lock) {
1606 struct cifsLockInfo *lock;
1607
1608 lock = cifs_lock_init(flock->fl_start, length, type,
1609 flock->fl_flags);
1610 if (!lock)
1611 return -ENOMEM;
1612
1613 rc = cifs_lock_add_if(cfile, lock, wait_flag);
1614 if (rc < 0) {
1615 kfree(lock);
1616 return rc;
1617 }
1618 if (!rc)
1619 goto out;
1620
1621 /*
1622 * Windows 7 server can delay breaking lease from read to None
1623 * if we set a byte-range lock on a file - break it explicitly
1624 * before sending the lock to the server to be sure the next
1625 * read won't conflict with non-overlapted locks due to
1626 * pagereading.
1627 */
1628 if (!CIFS_CACHE_WRITE(CIFS_I(inode)) &&
1629 CIFS_CACHE_READ(CIFS_I(inode))) {
1630 cifs_zap_mapping(inode);
1631 cifs_dbg(FYI, "Set no oplock for inode=%p due to mand locks\n",
1632 inode);
1633 CIFS_I(inode)->oplock = 0;
1634 }
1635
1636 rc = server->ops->mand_lock(xid, cfile, flock->fl_start, length,
1637 type, 1, 0, wait_flag);
1638 if (rc) {
1639 kfree(lock);
1640 return rc;
1641 }
1642
1643 cifs_lock_add(cfile, lock);
1644 } else if (unlock)
1645 rc = server->ops->mand_unlock_range(cfile, flock, xid);
1646
1647 out:
1648 if (flock->fl_flags & FL_POSIX) {
1649 /*
1650 * If this is a request to remove all locks because we
1651 * are closing the file, it doesn't matter if the
1652 * unlocking failed as both cifs.ko and the SMB server
1653 * remove the lock on file close
1654 */
1655 if (rc) {
1656 cifs_dbg(VFS, "%s failed rc=%d\n", __func__, rc);
1657 if (!(flock->fl_flags & FL_CLOSE))
1658 return rc;
1659 }
1660 rc = locks_lock_file_wait(file, flock);
1661 }
1662 return rc;
1663 }
1664
1665 int cifs_lock(struct file *file, int cmd, struct file_lock *flock)
1666 {
1667 int rc, xid;
1668 int lock = 0, unlock = 0;
1669 bool wait_flag = false;
1670 bool posix_lck = false;
1671 struct cifs_sb_info *cifs_sb;
1672 struct cifs_tcon *tcon;
1673 struct cifsInodeInfo *cinode;
1674 struct cifsFileInfo *cfile;
1675 __u16 netfid;
1676 __u32 type;
1677
1678 rc = -EACCES;
1679 xid = get_xid();
1680
1681 cifs_dbg(FYI, "Lock parm: 0x%x flockflags: 0x%x flocktype: 0x%x start: %lld end: %lld\n",
1682 cmd, flock->fl_flags, flock->fl_type,
1683 flock->fl_start, flock->fl_end);
1684
1685 cfile = (struct cifsFileInfo *)file->private_data;
1686 tcon = tlink_tcon(cfile->tlink);
1687
1688 cifs_read_flock(flock, &type, &lock, &unlock, &wait_flag,
1689 tcon->ses->server);
1690 cifs_sb = CIFS_FILE_SB(file);
1691 netfid = cfile->fid.netfid;
1692 cinode = CIFS_I(file_inode(file));
1693
1694 if (cap_unix(tcon->ses) &&
1695 (CIFS_UNIX_FCNTL_CAP & le64_to_cpu(tcon->fsUnixInfo.Capability)) &&
1696 ((cifs_sb->mnt_cifs_flags & CIFS_MOUNT_NOPOSIXBRL) == 0))
1697 posix_lck = true;
1698 /*
1699 * BB add code here to normalize offset and length to account for
1700 * negative length which we can not accept over the wire.
1701 */
1702 if (IS_GETLK(cmd)) {
1703 rc = cifs_getlk(file, flock, type, wait_flag, posix_lck, xid);
1704 free_xid(xid);
1705 return rc;
1706 }
1707
1708 if (!lock && !unlock) {
1709 /*
1710 * if no lock or unlock then nothing to do since we do not
1711 * know what it is
1712 */
1713 free_xid(xid);
1714 return -EOPNOTSUPP;
1715 }
1716
1717 rc = cifs_setlk(file, flock, type, wait_flag, posix_lck, lock, unlock,
1718 xid);
1719 free_xid(xid);
1720 return rc;
1721 }
1722
1723 /*
1724 * update the file size (if needed) after a write. Should be called with
1725 * the inode->i_lock held
1726 */
1727 void
1728 cifs_update_eof(struct cifsInodeInfo *cifsi, loff_t offset,
1729 unsigned int bytes_written)
1730 {
1731 loff_t end_of_write = offset + bytes_written;
1732
1733 if (end_of_write > cifsi->server_eof)
1734 cifsi->server_eof = end_of_write;
1735 }
1736
1737 static ssize_t
1738 cifs_write(struct cifsFileInfo *open_file, __u32 pid, const char *write_data,
1739 size_t write_size, loff_t *offset)
1740 {
1741 int rc = 0;
1742 unsigned int bytes_written = 0;
1743 unsigned int total_written;
1744 struct cifs_sb_info *cifs_sb;
1745 struct cifs_tcon *tcon;
1746 struct TCP_Server_Info *server;
1747 unsigned int xid;
1748 struct dentry *dentry = open_file->dentry;
1749 struct cifsInodeInfo *cifsi = CIFS_I(d_inode(dentry));
1750 struct cifs_io_parms io_parms;
1751
1752 cifs_sb = CIFS_SB(dentry->d_sb);
1753
1754 cifs_dbg(FYI, "write %zd bytes to offset %lld of %pd\n",
1755 write_size, *offset, dentry);
1756
1757 tcon = tlink_tcon(open_file->tlink);
1758 server = tcon->ses->server;
1759
1760 if (!server->ops->sync_write)
1761 return -ENOSYS;
1762
1763 xid = get_xid();
1764
1765 for (total_written = 0; write_size > total_written;
1766 total_written += bytes_written) {
1767 rc = -EAGAIN;
1768 while (rc == -EAGAIN) {
1769 struct kvec iov[2];
1770 unsigned int len;
1771
1772 if (open_file->invalidHandle) {
1773 /* we could deadlock if we called
1774 filemap_fdatawait from here so tell
1775 reopen_file not to flush data to
1776 server now */
1777 rc = cifs_reopen_file(open_file, false);
1778 if (rc != 0)
1779 break;
1780 }
1781
1782 len = min(server->ops->wp_retry_size(d_inode(dentry)),
1783 (unsigned int)write_size - total_written);
1784 /* iov[0] is reserved for smb header */
1785 iov[1].iov_base = (char *)write_data + total_written;
1786 iov[1].iov_len = len;
1787 io_parms.pid = pid;
1788 io_parms.tcon = tcon;
1789 io_parms.offset = *offset;
1790 io_parms.length = len;
1791 rc = server->ops->sync_write(xid, &open_file->fid,
1792 &io_parms, &bytes_written, iov, 1);
1793 }
1794 if (rc || (bytes_written == 0)) {
1795 if (total_written)
1796 break;
1797 else {
1798 free_xid(xid);
1799 return rc;
1800 }
1801 } else {
1802 spin_lock(&d_inode(dentry)->i_lock);
1803 cifs_update_eof(cifsi, *offset, bytes_written);
1804 spin_unlock(&d_inode(dentry)->i_lock);
1805 *offset += bytes_written;
1806 }
1807 }
1808
1809 cifs_stats_bytes_written(tcon, total_written);
1810
1811 if (total_written > 0) {
1812 spin_lock(&d_inode(dentry)->i_lock);
1813 if (*offset > d_inode(dentry)->i_size)
1814 i_size_write(d_inode(dentry), *offset);
1815 spin_unlock(&d_inode(dentry)->i_lock);
1816 }
1817 mark_inode_dirty_sync(d_inode(dentry));
1818 free_xid(xid);
1819 return total_written;
1820 }
1821
1822 struct cifsFileInfo *find_readable_file(struct cifsInodeInfo *cifs_inode,
1823 bool fsuid_only)
1824 {
1825 struct cifsFileInfo *open_file = NULL;
1826 struct cifs_sb_info *cifs_sb = CIFS_SB(cifs_inode->vfs_inode.i_sb);
1827 struct cifs_tcon *tcon = cifs_sb_master_tcon(cifs_sb);
1828
1829 /* only filter by fsuid on multiuser mounts */
1830 if (!(cifs_sb->mnt_cifs_flags & CIFS_MOUNT_MULTIUSER))
1831 fsuid_only = false;
1832
1833 spin_lock(&tcon->open_file_lock);
1834 /* we could simply get the first_list_entry since write-only entries
1835 are always at the end of the list but since the first entry might
1836 have a close pending, we go through the whole list */
1837 list_for_each_entry(open_file, &cifs_inode->openFileList, flist) {
1838 if (fsuid_only && !uid_eq(open_file->uid, current_fsuid()))
1839 continue;
1840 if (OPEN_FMODE(open_file->f_flags) & FMODE_READ) {
1841 if (!open_file->invalidHandle) {
1842 /* found a good file */
1843 /* lock it so it will not be closed on us */
1844 cifsFileInfo_get(open_file);
1845 spin_unlock(&tcon->open_file_lock);
1846 return open_file;
1847 } /* else might as well continue, and look for
1848 another, or simply have the caller reopen it
1849 again rather than trying to fix this handle */
1850 } else /* write only file */
1851 break; /* write only files are last so must be done */
1852 }
1853 spin_unlock(&tcon->open_file_lock);
1854 return NULL;
1855 }
1856
1857 /* Return -EBADF if no handle is found and general rc otherwise */
1858 int
1859 cifs_get_writable_file(struct cifsInodeInfo *cifs_inode, bool fsuid_only,
1860 struct cifsFileInfo **ret_file)
1861 {
1862 struct cifsFileInfo *open_file, *inv_file = NULL;
1863 struct cifs_sb_info *cifs_sb;
1864 struct cifs_tcon *tcon;
1865 bool any_available = false;
1866 int rc = -EBADF;
1867 unsigned int refind = 0;
1868
1869 *ret_file = NULL;
1870
1871 /*
1872 * Having a null inode here (because mapping->host was set to zero by
1873 * the VFS or MM) should not happen but we had reports of on oops (due
1874 * to it being zero) during stress testcases so we need to check for it
1875 */
1876
1877 if (cifs_inode == NULL) {
1878 cifs_dbg(VFS, "Null inode passed to cifs_writeable_file\n");
1879 dump_stack();
1880 return rc;
1881 }
1882
1883 cifs_sb = CIFS_SB(cifs_inode->vfs_inode.i_sb);
1884 tcon = cifs_sb_master_tcon(cifs_sb);
1885
1886 /* only filter by fsuid on multiuser mounts */
1887 if (!(cifs_sb->mnt_cifs_flags & CIFS_MOUNT_MULTIUSER))
1888 fsuid_only = false;
1889
1890 spin_lock(&tcon->open_file_lock);
1891 refind_writable:
1892 if (refind > MAX_REOPEN_ATT) {
1893 spin_unlock(&tcon->open_file_lock);
1894 return rc;
1895 }
1896 list_for_each_entry(open_file, &cifs_inode->openFileList, flist) {
1897 if (!any_available && open_file->pid != current->tgid)
1898 continue;
1899 if (fsuid_only && !uid_eq(open_file->uid, current_fsuid()))
1900 continue;
1901 if (OPEN_FMODE(open_file->f_flags) & FMODE_WRITE) {
1902 if (!open_file->invalidHandle) {
1903 /* found a good writable file */
1904 cifsFileInfo_get(open_file);
1905 spin_unlock(&tcon->open_file_lock);
1906 *ret_file = open_file;
1907 return 0;
1908 } else {
1909 if (!inv_file)
1910 inv_file = open_file;
1911 }
1912 }
1913 }
1914 /* couldn't find useable FH with same pid, try any available */
1915 if (!any_available) {
1916 any_available = true;
1917 goto refind_writable;
1918 }
1919
1920 if (inv_file) {
1921 any_available = false;
1922 cifsFileInfo_get(inv_file);
1923 }
1924
1925 spin_unlock(&tcon->open_file_lock);
1926
1927 if (inv_file) {
1928 rc = cifs_reopen_file(inv_file, false);
1929 if (!rc) {
1930 *ret_file = inv_file;
1931 return 0;
1932 }
1933
1934 spin_lock(&tcon->open_file_lock);
1935 list_move_tail(&inv_file->flist, &cifs_inode->openFileList);
1936 spin_unlock(&tcon->open_file_lock);
1937 cifsFileInfo_put(inv_file);
1938 ++refind;
1939 inv_file = NULL;
1940 spin_lock(&tcon->open_file_lock);
1941 goto refind_writable;
1942 }
1943
1944 return rc;
1945 }
1946
1947 struct cifsFileInfo *
1948 find_writable_file(struct cifsInodeInfo *cifs_inode, bool fsuid_only)
1949 {
1950 struct cifsFileInfo *cfile;
1951 int rc;
1952
1953 rc = cifs_get_writable_file(cifs_inode, fsuid_only, &cfile);
1954 if (rc)
1955 cifs_dbg(FYI, "couldn't find writable handle rc=%d", rc);
1956
1957 return cfile;
1958 }
1959
1960 static int cifs_partialpagewrite(struct page *page, unsigned from, unsigned to)
1961 {
1962 struct address_space *mapping = page->mapping;
1963 loff_t offset = (loff_t)page->index << PAGE_SHIFT;
1964 char *write_data;
1965 int rc = -EFAULT;
1966 int bytes_written = 0;
1967 struct inode *inode;
1968 struct cifsFileInfo *open_file;
1969
1970 if (!mapping || !mapping->host)
1971 return -EFAULT;
1972
1973 inode = page->mapping->host;
1974
1975 offset += (loff_t)from;
1976 write_data = kmap(page);
1977 write_data += from;
1978
1979 if ((to > PAGE_SIZE) || (from > to)) {
1980 kunmap(page);
1981 return -EIO;
1982 }
1983
1984 /* racing with truncate? */
1985 if (offset > mapping->host->i_size) {
1986 kunmap(page);
1987 return 0; /* don't care */
1988 }
1989
1990 /* check to make sure that we are not extending the file */
1991 if (mapping->host->i_size - offset < (loff_t)to)
1992 to = (unsigned)(mapping->host->i_size - offset);
1993
1994 rc = cifs_get_writable_file(CIFS_I(mapping->host), false, &open_file);
1995 if (!rc) {
1996 bytes_written = cifs_write(open_file, open_file->pid,
1997 write_data, to - from, &offset);
1998 cifsFileInfo_put(open_file);
1999 /* Does mm or vfs already set times? */
2000 inode->i_atime = inode->i_mtime = current_time(inode);
2001 if ((bytes_written > 0) && (offset))
2002 rc = 0;
2003 else if (bytes_written < 0)
2004 rc = bytes_written;
2005 else
2006 rc = -EFAULT;
2007 } else {
2008 cifs_dbg(FYI, "No writable handle for write page rc=%d\n", rc);
2009 if (!is_retryable_error(rc))
2010 rc = -EIO;
2011 }
2012
2013 kunmap(page);
2014 return rc;
2015 }
2016
2017 static struct cifs_writedata *
2018 wdata_alloc_and_fillpages(pgoff_t tofind, struct address_space *mapping,
2019 pgoff_t end, pgoff_t *index,
2020 unsigned int *found_pages)
2021 {
2022 struct cifs_writedata *wdata;
2023
2024 wdata = cifs_writedata_alloc((unsigned int)tofind,
2025 cifs_writev_complete);
2026 if (!wdata)
2027 return NULL;
2028
2029 *found_pages = find_get_pages_range_tag(mapping, index, end,
2030 PAGECACHE_TAG_DIRTY, tofind, wdata->pages);
2031 return wdata;
2032 }
2033
2034 static unsigned int
2035 wdata_prepare_pages(struct cifs_writedata *wdata, unsigned int found_pages,
2036 struct address_space *mapping,
2037 struct writeback_control *wbc,
2038 pgoff_t end, pgoff_t *index, pgoff_t *next, bool *done)
2039 {
2040 unsigned int nr_pages = 0, i;
2041 struct page *page;
2042
2043 for (i = 0; i < found_pages; i++) {
2044 page = wdata->pages[i];
2045 /*
2046 * At this point we hold neither the i_pages lock nor the
2047 * page lock: the page may be truncated or invalidated
2048 * (changing page->mapping to NULL), or even swizzled
2049 * back from swapper_space to tmpfs file mapping
2050 */
2051
2052 if (nr_pages == 0)
2053 lock_page(page);
2054 else if (!trylock_page(page))
2055 break;
2056
2057 if (unlikely(page->mapping != mapping)) {
2058 unlock_page(page);
2059 break;
2060 }
2061
2062 if (!wbc->range_cyclic && page->index > end) {
2063 *done = true;
2064 unlock_page(page);
2065 break;
2066 }
2067
2068 if (*next && (page->index != *next)) {
2069 /* Not next consecutive page */
2070 unlock_page(page);
2071 break;
2072 }
2073
2074 if (wbc->sync_mode != WB_SYNC_NONE)
2075 wait_on_page_writeback(page);
2076
2077 if (PageWriteback(page) ||
2078 !clear_page_dirty_for_io(page)) {
2079 unlock_page(page);
2080 break;
2081 }
2082
2083 /*
2084 * This actually clears the dirty bit in the radix tree.
2085 * See cifs_writepage() for more commentary.
2086 */
2087 set_page_writeback(page);
2088 if (page_offset(page) >= i_size_read(mapping->host)) {
2089 *done = true;
2090 unlock_page(page);
2091 end_page_writeback(page);
2092 break;
2093 }
2094
2095 wdata->pages[i] = page;
2096 *next = page->index + 1;
2097 ++nr_pages;
2098 }
2099
2100 /* reset index to refind any pages skipped */
2101 if (nr_pages == 0)
2102 *index = wdata->pages[0]->index + 1;
2103
2104 /* put any pages we aren't going to use */
2105 for (i = nr_pages; i < found_pages; i++) {
2106 put_page(wdata->pages[i]);
2107 wdata->pages[i] = NULL;
2108 }
2109
2110 return nr_pages;
2111 }
2112
2113 static int
2114 wdata_send_pages(struct cifs_writedata *wdata, unsigned int nr_pages,
2115 struct address_space *mapping, struct writeback_control *wbc)
2116 {
2117 int rc;
2118 struct TCP_Server_Info *server =
2119 tlink_tcon(wdata->cfile->tlink)->ses->server;
2120
2121 wdata->sync_mode = wbc->sync_mode;
2122 wdata->nr_pages = nr_pages;
2123 wdata->offset = page_offset(wdata->pages[0]);
2124 wdata->pagesz = PAGE_SIZE;
2125 wdata->tailsz = min(i_size_read(mapping->host) -
2126 page_offset(wdata->pages[nr_pages - 1]),
2127 (loff_t)PAGE_SIZE);
2128 wdata->bytes = ((nr_pages - 1) * PAGE_SIZE) + wdata->tailsz;
2129 wdata->pid = wdata->cfile->pid;
2130
2131 rc = adjust_credits(server, &wdata->credits, wdata->bytes);
2132 if (rc)
2133 return rc;
2134
2135 if (wdata->cfile->invalidHandle)
2136 rc = -EAGAIN;
2137 else
2138 rc = server->ops->async_writev(wdata, cifs_writedata_release);
2139
2140 return rc;
2141 }
2142
2143 static int cifs_writepages(struct address_space *mapping,
2144 struct writeback_control *wbc)
2145 {
2146 struct inode *inode = mapping->host;
2147 struct cifs_sb_info *cifs_sb = CIFS_SB(inode->i_sb);
2148 struct TCP_Server_Info *server;
2149 bool done = false, scanned = false, range_whole = false;
2150 pgoff_t end, index;
2151 struct cifs_writedata *wdata;
2152 struct cifsFileInfo *cfile = NULL;
2153 int rc = 0;
2154 int saved_rc = 0;
2155 unsigned int xid;
2156
2157 /*
2158 * If wsize is smaller than the page cache size, default to writing
2159 * one page at a time via cifs_writepage
2160 */
2161 if (cifs_sb->wsize < PAGE_SIZE)
2162 return generic_writepages(mapping, wbc);
2163
2164 xid = get_xid();
2165 if (wbc->range_cyclic) {
2166 index = mapping->writeback_index; /* Start from prev offset */
2167 end = -1;
2168 } else {
2169 index = wbc->range_start >> PAGE_SHIFT;
2170 end = wbc->range_end >> PAGE_SHIFT;
2171 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2172 range_whole = true;
2173 scanned = true;
2174 }
2175 server = cifs_sb_master_tcon(cifs_sb)->ses->server;
2176 retry:
2177 while (!done && index <= end) {
2178 unsigned int i, nr_pages, found_pages, wsize;
2179 pgoff_t next = 0, tofind, saved_index = index;
2180 struct cifs_credits credits_on_stack;
2181 struct cifs_credits *credits = &credits_on_stack;
2182 int get_file_rc = 0;
2183
2184 if (cfile)
2185 cifsFileInfo_put(cfile);
2186
2187 rc = cifs_get_writable_file(CIFS_I(inode), false, &cfile);
2188
2189 /* in case of an error store it to return later */
2190 if (rc)
2191 get_file_rc = rc;
2192
2193 rc = server->ops->wait_mtu_credits(server, cifs_sb->wsize,
2194 &wsize, credits);
2195 if (rc != 0) {
2196 done = true;
2197 break;
2198 }
2199
2200 tofind = min((wsize / PAGE_SIZE) - 1, end - index) + 1;
2201
2202 wdata = wdata_alloc_and_fillpages(tofind, mapping, end, &index,
2203 &found_pages);
2204 if (!wdata) {
2205 rc = -ENOMEM;
2206 done = true;
2207 add_credits_and_wake_if(server, credits, 0);
2208 break;
2209 }
2210
2211 if (found_pages == 0) {
2212 kref_put(&wdata->refcount, cifs_writedata_release);
2213 add_credits_and_wake_if(server, credits, 0);
2214 break;
2215 }
2216
2217 nr_pages = wdata_prepare_pages(wdata, found_pages, mapping, wbc,
2218 end, &index, &next, &done);
2219
2220 /* nothing to write? */
2221 if (nr_pages == 0) {
2222 kref_put(&wdata->refcount, cifs_writedata_release);
2223 add_credits_and_wake_if(server, credits, 0);
2224 continue;
2225 }
2226
2227 wdata->credits = credits_on_stack;
2228 wdata->cfile = cfile;
2229 cfile = NULL;
2230
2231 if (!wdata->cfile) {
2232 cifs_dbg(VFS, "No writable handle in writepages rc=%d\n",
2233 get_file_rc);
2234 if (is_retryable_error(get_file_rc))
2235 rc = get_file_rc;
2236 else
2237 rc = -EBADF;
2238 } else
2239 rc = wdata_send_pages(wdata, nr_pages, mapping, wbc);
2240
2241 for (i = 0; i < nr_pages; ++i)
2242 unlock_page(wdata->pages[i]);
2243
2244 /* send failure -- clean up the mess */
2245 if (rc != 0) {
2246 add_credits_and_wake_if(server, &wdata->credits, 0);
2247 for (i = 0; i < nr_pages; ++i) {
2248 if (is_retryable_error(rc))
2249 redirty_page_for_writepage(wbc,
2250 wdata->pages[i]);
2251 else
2252 SetPageError(wdata->pages[i]);
2253 end_page_writeback(wdata->pages[i]);
2254 put_page(wdata->pages[i]);
2255 }
2256 if (!is_retryable_error(rc))
2257 mapping_set_error(mapping, rc);
2258 }
2259 kref_put(&wdata->refcount, cifs_writedata_release);
2260
2261 if (wbc->sync_mode == WB_SYNC_ALL && rc == -EAGAIN) {
2262 index = saved_index;
2263 continue;
2264 }
2265
2266 /* Return immediately if we received a signal during writing */
2267 if (is_interrupt_error(rc)) {
2268 done = true;
2269 break;
2270 }
2271
2272 if (rc != 0 && saved_rc == 0)
2273 saved_rc = rc;
2274
2275 wbc->nr_to_write -= nr_pages;
2276 if (wbc->nr_to_write <= 0)
2277 done = true;
2278
2279 index = next;
2280 }
2281
2282 if (!scanned && !done) {
2283 /*
2284 * We hit the last page and there is more work to be done: wrap
2285 * back to the start of the file
2286 */
2287 scanned = true;
2288 index = 0;
2289 goto retry;
2290 }
2291
2292 if (saved_rc != 0)
2293 rc = saved_rc;
2294
2295 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2296 mapping->writeback_index = index;
2297
2298 if (cfile)
2299 cifsFileInfo_put(cfile);
2300 free_xid(xid);
2301 return rc;
2302 }
2303
2304 static int
2305 cifs_writepage_locked(struct page *page, struct writeback_control *wbc)
2306 {
2307 int rc;
2308 unsigned int xid;
2309
2310 xid = get_xid();
2311 /* BB add check for wbc flags */
2312 get_page(page);
2313 if (!PageUptodate(page))
2314 cifs_dbg(FYI, "ppw - page not up to date\n");
2315
2316 /*
2317 * Set the "writeback" flag, and clear "dirty" in the radix tree.
2318 *
2319 * A writepage() implementation always needs to do either this,
2320 * or re-dirty the page with "redirty_page_for_writepage()" in
2321 * the case of a failure.
2322 *
2323 * Just unlocking the page will cause the radix tree tag-bits
2324 * to fail to update with the state of the page correctly.
2325 */
2326 set_page_writeback(page);
2327 retry_write:
2328 rc = cifs_partialpagewrite(page, 0, PAGE_SIZE);
2329 if (is_retryable_error(rc)) {
2330 if (wbc->sync_mode == WB_SYNC_ALL && rc == -EAGAIN)
2331 goto retry_write;
2332 redirty_page_for_writepage(wbc, page);
2333 } else if (rc != 0) {
2334 SetPageError(page);
2335 mapping_set_error(page->mapping, rc);
2336 } else {
2337 SetPageUptodate(page);
2338 }
2339 end_page_writeback(page);
2340 put_page(page);
2341 free_xid(xid);
2342 return rc;
2343 }
2344
2345 static int cifs_writepage(struct page *page, struct writeback_control *wbc)
2346 {
2347 int rc = cifs_writepage_locked(page, wbc);
2348 unlock_page(page);
2349 return rc;
2350 }
2351
2352 static int cifs_write_end(struct file *file, struct address_space *mapping,
2353 loff_t pos, unsigned len, unsigned copied,
2354 struct page *page, void *fsdata)
2355 {
2356 int rc;
2357 struct inode *inode = mapping->host;
2358 struct cifsFileInfo *cfile = file->private_data;
2359 struct cifs_sb_info *cifs_sb = CIFS_SB(cfile->dentry->d_sb);
2360 __u32 pid;
2361
2362 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_RWPIDFORWARD)
2363 pid = cfile->pid;
2364 else
2365 pid = current->tgid;
2366
2367 cifs_dbg(FYI, "write_end for page %p from pos %lld with %d bytes\n",
2368 page, pos, copied);
2369
2370 if (PageChecked(page)) {
2371 if (copied == len)
2372 SetPageUptodate(page);
2373 ClearPageChecked(page);
2374 } else if (!PageUptodate(page) && copied == PAGE_SIZE)
2375 SetPageUptodate(page);
2376
2377 if (!PageUptodate(page)) {
2378 char *page_data;
2379 unsigned offset = pos & (PAGE_SIZE - 1);
2380 unsigned int xid;
2381
2382 xid = get_xid();
2383 /* this is probably better than directly calling
2384 partialpage_write since in this function the file handle is
2385 known which we might as well leverage */
2386 /* BB check if anything else missing out of ppw
2387 such as updating last write time */
2388 page_data = kmap(page);
2389 rc = cifs_write(cfile, pid, page_data + offset, copied, &pos);
2390 /* if (rc < 0) should we set writebehind rc? */
2391 kunmap(page);
2392
2393 free_xid(xid);
2394 } else {
2395 rc = copied;
2396 pos += copied;
2397 set_page_dirty(page);
2398 }
2399
2400 if (rc > 0) {
2401 spin_lock(&inode->i_lock);
2402 if (pos > inode->i_size)
2403 i_size_write(inode, pos);
2404 spin_unlock(&inode->i_lock);
2405 }
2406
2407 unlock_page(page);
2408 put_page(page);
2409
2410 return rc;
2411 }
2412
2413 int cifs_strict_fsync(struct file *file, loff_t start, loff_t end,
2414 int datasync)
2415 {
2416 unsigned int xid;
2417 int rc = 0;
2418 struct cifs_tcon *tcon;
2419 struct TCP_Server_Info *server;
2420 struct cifsFileInfo *smbfile = file->private_data;
2421 struct inode *inode = file_inode(file);
2422 struct cifs_sb_info *cifs_sb = CIFS_SB(inode->i_sb);
2423
2424 rc = file_write_and_wait_range(file, start, end);
2425 if (rc)
2426 return rc;
2427 inode_lock(inode);
2428
2429 xid = get_xid();
2430
2431 cifs_dbg(FYI, "Sync file - name: %pD datasync: 0x%x\n",
2432 file, datasync);
2433
2434 if (!CIFS_CACHE_READ(CIFS_I(inode))) {
2435 rc = cifs_zap_mapping(inode);
2436 if (rc) {
2437 cifs_dbg(FYI, "rc: %d during invalidate phase\n", rc);
2438 rc = 0; /* don't care about it in fsync */
2439 }
2440 }
2441
2442 tcon = tlink_tcon(smbfile->tlink);
2443 if (!(cifs_sb->mnt_cifs_flags & CIFS_MOUNT_NOSSYNC)) {
2444 server = tcon->ses->server;
2445 if (server->ops->flush)
2446 rc = server->ops->flush(xid, tcon, &smbfile->fid);
2447 else
2448 rc = -ENOSYS;
2449 }
2450
2451 free_xid(xid);
2452 inode_unlock(inode);
2453 return rc;
2454 }
2455
2456 int cifs_fsync(struct file *file, loff_t start, loff_t end, int datasync)
2457 {
2458 unsigned int xid;
2459 int rc = 0;
2460 struct cifs_tcon *tcon;
2461 struct TCP_Server_Info *server;
2462 struct cifsFileInfo *smbfile = file->private_data;
2463 struct cifs_sb_info *cifs_sb = CIFS_FILE_SB(file);
2464 struct inode *inode = file->f_mapping->host;
2465
2466 rc = file_write_and_wait_range(file, start, end);
2467 if (rc)
2468 return rc;
2469 inode_lock(inode);
2470
2471 xid = get_xid();
2472
2473 cifs_dbg(FYI, "Sync file - name: %pD datasync: 0x%x\n",
2474 file, datasync);
2475
2476 tcon = tlink_tcon(smbfile->tlink);
2477 if (!(cifs_sb->mnt_cifs_flags & CIFS_MOUNT_NOSSYNC)) {
2478 server = tcon->ses->server;
2479 if (server->ops->flush)
2480 rc = server->ops->flush(xid, tcon, &smbfile->fid);
2481 else
2482 rc = -ENOSYS;
2483 }
2484
2485 free_xid(xid);
2486 inode_unlock(inode);
2487 return rc;
2488 }
2489
2490 /*
2491 * As file closes, flush all cached write data for this inode checking
2492 * for write behind errors.
2493 */
2494 int cifs_flush(struct file *file, fl_owner_t id)
2495 {
2496 struct inode *inode = file_inode(file);
2497 int rc = 0;
2498
2499 if (file->f_mode & FMODE_WRITE)
2500 rc = filemap_write_and_wait(inode->i_mapping);
2501
2502 cifs_dbg(FYI, "Flush inode %p file %p rc %d\n", inode, file, rc);
2503
2504 return rc;
2505 }
2506
2507 static int
2508 cifs_write_allocate_pages(struct page **pages, unsigned long num_pages)
2509 {
2510 int rc = 0;
2511 unsigned long i;
2512
2513 for (i = 0; i < num_pages; i++) {
2514 pages[i] = alloc_page(GFP_KERNEL|__GFP_HIGHMEM);
2515 if (!pages[i]) {
2516 /*
2517 * save number of pages we have already allocated and
2518 * return with ENOMEM error
2519 */
2520 num_pages = i;
2521 rc = -ENOMEM;
2522 break;
2523 }
2524 }
2525
2526 if (rc) {
2527 for (i = 0; i < num_pages; i++)
2528 put_page(pages[i]);
2529 }
2530 return rc;
2531 }
2532
2533 static inline
2534 size_t get_numpages(const size_t wsize, const size_t len, size_t *cur_len)
2535 {
2536 size_t num_pages;
2537 size_t clen;
2538
2539 clen = min_t(const size_t, len, wsize);
2540 num_pages = DIV_ROUND_UP(clen, PAGE_SIZE);
2541
2542 if (cur_len)
2543 *cur_len = clen;
2544
2545 return num_pages;
2546 }
2547
2548 static void
2549 cifs_uncached_writedata_release(struct kref *refcount)
2550 {
2551 int i;
2552 struct cifs_writedata *wdata = container_of(refcount,
2553 struct cifs_writedata, refcount);
2554
2555 kref_put(&wdata->ctx->refcount, cifs_aio_ctx_release);
2556 for (i = 0; i < wdata->nr_pages; i++)
2557 put_page(wdata->pages[i]);
2558 cifs_writedata_release(refcount);
2559 }
2560
2561 static void collect_uncached_write_data(struct cifs_aio_ctx *ctx);
2562
2563 static void
2564 cifs_uncached_writev_complete(struct work_struct *work)
2565 {
2566 struct cifs_writedata *wdata = container_of(work,
2567 struct cifs_writedata, work);
2568 struct inode *inode = d_inode(wdata->cfile->dentry);
2569 struct cifsInodeInfo *cifsi = CIFS_I(inode);
2570
2571 spin_lock(&inode->i_lock);
2572 cifs_update_eof(cifsi, wdata->offset, wdata->bytes);
2573 if (cifsi->server_eof > inode->i_size)
2574 i_size_write(inode, cifsi->server_eof);
2575 spin_unlock(&inode->i_lock);
2576
2577 complete(&wdata->done);
2578 collect_uncached_write_data(wdata->ctx);
2579 /* the below call can possibly free the last ref to aio ctx */
2580 kref_put(&wdata->refcount, cifs_uncached_writedata_release);
2581 }
2582
2583 static int
2584 wdata_fill_from_iovec(struct cifs_writedata *wdata, struct iov_iter *from,
2585 size_t *len, unsigned long *num_pages)
2586 {
2587 size_t save_len, copied, bytes, cur_len = *len;
2588 unsigned long i, nr_pages = *num_pages;
2589
2590 save_len = cur_len;
2591 for (i = 0; i < nr_pages; i++) {
2592 bytes = min_t(const size_t, cur_len, PAGE_SIZE);
2593 copied = copy_page_from_iter(wdata->pages[i], 0, bytes, from);
2594 cur_len -= copied;
2595 /*
2596 * If we didn't copy as much as we expected, then that
2597 * may mean we trod into an unmapped area. Stop copying
2598 * at that point. On the next pass through the big
2599 * loop, we'll likely end up getting a zero-length
2600 * write and bailing out of it.
2601 */
2602 if (copied < bytes)
2603 break;
2604 }
2605 cur_len = save_len - cur_len;
2606 *len = cur_len;
2607
2608 /*
2609 * If we have no data to send, then that probably means that
2610 * the copy above failed altogether. That's most likely because
2611 * the address in the iovec was bogus. Return -EFAULT and let
2612 * the caller free anything we allocated and bail out.
2613 */
2614 if (!cur_len)
2615 return -EFAULT;
2616
2617 /*
2618 * i + 1 now represents the number of pages we actually used in
2619 * the copy phase above.
2620 */
2621 *num_pages = i + 1;
2622 return 0;
2623 }
2624
2625 static int
2626 cifs_resend_wdata(struct cifs_writedata *wdata, struct list_head *wdata_list,
2627 struct cifs_aio_ctx *ctx)
2628 {
2629 unsigned int wsize;
2630 struct cifs_credits credits;
2631 int rc;
2632 struct TCP_Server_Info *server =
2633 tlink_tcon(wdata->cfile->tlink)->ses->server;
2634
2635 do {
2636 if (wdata->cfile->invalidHandle) {
2637 rc = cifs_reopen_file(wdata->cfile, false);
2638 if (rc == -EAGAIN)
2639 continue;
2640 else if (rc)
2641 break;
2642 }
2643
2644
2645 /*
2646 * Wait for credits to resend this wdata.
2647 * Note: we are attempting to resend the whole wdata not in
2648 * segments
2649 */
2650 do {
2651 rc = server->ops->wait_mtu_credits(server, wdata->bytes,
2652 &wsize, &credits);
2653 if (rc)
2654 goto fail;
2655
2656 if (wsize < wdata->bytes) {
2657 add_credits_and_wake_if(server, &credits, 0);
2658 msleep(1000);
2659 }
2660 } while (wsize < wdata->bytes);
2661 wdata->credits = credits;
2662
2663 rc = adjust_credits(server, &wdata->credits, wdata->bytes);
2664
2665 if (!rc) {
2666 if (wdata->cfile->invalidHandle)
2667 rc = -EAGAIN;
2668 else
2669 rc = server->ops->async_writev(wdata,
2670 cifs_uncached_writedata_release);
2671 }
2672
2673 /* If the write was successfully sent, we are done */
2674 if (!rc) {
2675 list_add_tail(&wdata->list, wdata_list);
2676 return 0;
2677 }
2678
2679 /* Roll back credits and retry if needed */
2680 add_credits_and_wake_if(server, &wdata->credits, 0);
2681 } while (rc == -EAGAIN);
2682
2683 fail:
2684 kref_put(&wdata->refcount, cifs_uncached_writedata_release);
2685 return rc;
2686 }
2687
2688 static int
2689 cifs_write_from_iter(loff_t offset, size_t len, struct iov_iter *from,
2690 struct cifsFileInfo *open_file,
2691 struct cifs_sb_info *cifs_sb, struct list_head *wdata_list,
2692 struct cifs_aio_ctx *ctx)
2693 {
2694 int rc = 0;
2695 size_t cur_len;
2696 unsigned long nr_pages, num_pages, i;
2697 struct cifs_writedata *wdata;
2698 struct iov_iter saved_from = *from;
2699 loff_t saved_offset = offset;
2700 pid_t pid;
2701 struct TCP_Server_Info *server;
2702 struct page **pagevec;
2703 size_t start;
2704 unsigned int xid;
2705
2706 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_RWPIDFORWARD)
2707 pid = open_file->pid;
2708 else
2709 pid = current->tgid;
2710
2711 server = tlink_tcon(open_file->tlink)->ses->server;
2712 xid = get_xid();
2713
2714 do {
2715 unsigned int wsize;
2716 struct cifs_credits credits_on_stack;
2717 struct cifs_credits *credits = &credits_on_stack;
2718
2719 if (open_file->invalidHandle) {
2720 rc = cifs_reopen_file(open_file, false);
2721 if (rc == -EAGAIN)
2722 continue;
2723 else if (rc)
2724 break;
2725 }
2726
2727 rc = server->ops->wait_mtu_credits(server, cifs_sb->wsize,
2728 &wsize, credits);
2729 if (rc)
2730 break;
2731
2732 cur_len = min_t(const size_t, len, wsize);
2733
2734 if (ctx->direct_io) {
2735 ssize_t result;
2736
2737 result = iov_iter_get_pages_alloc(
2738 from, &pagevec, cur_len, &start);
2739 if (result < 0) {
2740 cifs_dbg(VFS,
2741 "direct_writev couldn't get user pages "
2742 "(rc=%zd) iter type %d iov_offset %zd "
2743 "count %zd\n",
2744 result, from->type,
2745 from->iov_offset, from->count);
2746 dump_stack();
2747
2748 rc = result;
2749 add_credits_and_wake_if(server, credits, 0);
2750 break;
2751 }
2752 cur_len = (size_t)result;
2753 iov_iter_advance(from, cur_len);
2754
2755 nr_pages =
2756 (cur_len + start + PAGE_SIZE - 1) / PAGE_SIZE;
2757
2758 wdata = cifs_writedata_direct_alloc(pagevec,
2759 cifs_uncached_writev_complete);
2760 if (!wdata) {
2761 rc = -ENOMEM;
2762 add_credits_and_wake_if(server, credits, 0);
2763 break;
2764 }
2765
2766
2767 wdata->page_offset = start;
2768 wdata->tailsz =
2769 nr_pages > 1 ?
2770 cur_len - (PAGE_SIZE - start) -
2771 (nr_pages - 2) * PAGE_SIZE :
2772 cur_len;
2773 } else {
2774 nr_pages = get_numpages(wsize, len, &cur_len);
2775 wdata = cifs_writedata_alloc(nr_pages,
2776 cifs_uncached_writev_complete);
2777 if (!wdata) {
2778 rc = -ENOMEM;
2779 add_credits_and_wake_if(server, credits, 0);
2780 break;
2781 }
2782
2783 rc = cifs_write_allocate_pages(wdata->pages, nr_pages);
2784 if (rc) {
2785 kvfree(wdata->pages);
2786 kfree(wdata);
2787 add_credits_and_wake_if(server, credits, 0);
2788 break;
2789 }
2790
2791 num_pages = nr_pages;
2792 rc = wdata_fill_from_iovec(
2793 wdata, from, &cur_len, &num_pages);
2794 if (rc) {
2795 for (i = 0; i < nr_pages; i++)
2796 put_page(wdata->pages[i]);
2797 kvfree(wdata->pages);
2798 kfree(wdata);
2799 add_credits_and_wake_if(server, credits, 0);
2800 break;
2801 }
2802
2803 /*
2804 * Bring nr_pages down to the number of pages we
2805 * actually used, and free any pages that we didn't use.
2806 */
2807 for ( ; nr_pages > num_pages; nr_pages--)
2808 put_page(wdata->pages[nr_pages - 1]);
2809
2810 wdata->tailsz = cur_len - ((nr_pages - 1) * PAGE_SIZE);
2811 }
2812
2813 wdata->sync_mode = WB_SYNC_ALL;
2814 wdata->nr_pages = nr_pages;
2815 wdata->offset = (__u64)offset;
2816 wdata->cfile = cifsFileInfo_get(open_file);
2817 wdata->pid = pid;
2818 wdata->bytes = cur_len;
2819 wdata->pagesz = PAGE_SIZE;
2820 wdata->credits = credits_on_stack;
2821 wdata->ctx = ctx;
2822 kref_get(&ctx->refcount);
2823
2824 rc = adjust_credits(server, &wdata->credits, wdata->bytes);
2825
2826 if (!rc) {
2827 if (wdata->cfile->invalidHandle)
2828 rc = -EAGAIN;
2829 else
2830 rc = server->ops->async_writev(wdata,
2831 cifs_uncached_writedata_release);
2832 }
2833
2834 if (rc) {
2835 add_credits_and_wake_if(server, &wdata->credits, 0);
2836 kref_put(&wdata->refcount,
2837 cifs_uncached_writedata_release);
2838 if (rc == -EAGAIN) {
2839 *from = saved_from;
2840 iov_iter_advance(from, offset - saved_offset);
2841 continue;
2842 }
2843 break;
2844 }
2845
2846 list_add_tail(&wdata->list, wdata_list);
2847 offset += cur_len;
2848 len -= cur_len;
2849 } while (len > 0);
2850
2851 free_xid(xid);
2852 return rc;
2853 }
2854
2855 static void collect_uncached_write_data(struct cifs_aio_ctx *ctx)
2856 {
2857 struct cifs_writedata *wdata, *tmp;
2858 struct cifs_tcon *tcon;
2859 struct cifs_sb_info *cifs_sb;
2860 struct dentry *dentry = ctx->cfile->dentry;
2861 unsigned int i;
2862 int rc;
2863
2864 tcon = tlink_tcon(ctx->cfile->tlink);
2865 cifs_sb = CIFS_SB(dentry->d_sb);
2866
2867 mutex_lock(&ctx->aio_mutex);
2868
2869 if (list_empty(&ctx->list)) {
2870 mutex_unlock(&ctx->aio_mutex);
2871 return;
2872 }
2873
2874 rc = ctx->rc;
2875 /*
2876 * Wait for and collect replies for any successful sends in order of
2877 * increasing offset. Once an error is hit, then return without waiting
2878 * for any more replies.
2879 */
2880 restart_loop:
2881 list_for_each_entry_safe(wdata, tmp, &ctx->list, list) {
2882 if (!rc) {
2883 if (!try_wait_for_completion(&wdata->done)) {
2884 mutex_unlock(&ctx->aio_mutex);
2885 return;
2886 }
2887
2888 if (wdata->result)
2889 rc = wdata->result;
2890 else
2891 ctx->total_len += wdata->bytes;
2892
2893 /* resend call if it's a retryable error */
2894 if (rc == -EAGAIN) {
2895 struct list_head tmp_list;
2896 struct iov_iter tmp_from = ctx->iter;
2897
2898 INIT_LIST_HEAD(&tmp_list);
2899 list_del_init(&wdata->list);
2900
2901 if (ctx->direct_io)
2902 rc = cifs_resend_wdata(
2903 wdata, &tmp_list, ctx);
2904 else {
2905 iov_iter_advance(&tmp_from,
2906 wdata->offset - ctx->pos);
2907
2908 rc = cifs_write_from_iter(wdata->offset,
2909 wdata->bytes, &tmp_from,
2910 ctx->cfile, cifs_sb, &tmp_list,
2911 ctx);
2912
2913 kref_put(&wdata->refcount,
2914 cifs_uncached_writedata_release);
2915 }
2916
2917 list_splice(&tmp_list, &ctx->list);
2918 goto restart_loop;
2919 }
2920 }
2921 list_del_init(&wdata->list);
2922 kref_put(&wdata->refcount, cifs_uncached_writedata_release);
2923 }
2924
2925 if (!ctx->direct_io)
2926 for (i = 0; i < ctx->npages; i++)
2927 put_page(ctx->bv[i].bv_page);
2928
2929 cifs_stats_bytes_written(tcon, ctx->total_len);
2930 set_bit(CIFS_INO_INVALID_MAPPING, &CIFS_I(dentry->d_inode)->flags);
2931
2932 ctx->rc = (rc == 0) ? ctx->total_len : rc;
2933
2934 mutex_unlock(&ctx->aio_mutex);
2935
2936 if (ctx->iocb && ctx->iocb->ki_complete)
2937 ctx->iocb->ki_complete(ctx->iocb, ctx->rc, 0);
2938 else
2939 complete(&ctx->done);
2940 }
2941
2942 static ssize_t __cifs_writev(
2943 struct kiocb *iocb, struct iov_iter *from, bool direct)
2944 {
2945 struct file *file = iocb->ki_filp;
2946 ssize_t total_written = 0;
2947 struct cifsFileInfo *cfile;
2948 struct cifs_tcon *tcon;
2949 struct cifs_sb_info *cifs_sb;
2950 struct cifs_aio_ctx *ctx;
2951 struct iov_iter saved_from = *from;
2952 size_t len = iov_iter_count(from);
2953 int rc;
2954
2955 /*
2956 * iov_iter_get_pages_alloc doesn't work with ITER_KVEC.
2957 * In this case, fall back to non-direct write function.
2958 * this could be improved by getting pages directly in ITER_KVEC
2959 */
2960 if (direct && from->type & ITER_KVEC) {
2961 cifs_dbg(FYI, "use non-direct cifs_writev for kvec I/O\n");
2962 direct = false;
2963 }
2964
2965 rc = generic_write_checks(iocb, from);
2966 if (rc <= 0)
2967 return rc;
2968
2969 cifs_sb = CIFS_FILE_SB(file);
2970 cfile = file->private_data;
2971 tcon = tlink_tcon(cfile->tlink);
2972
2973 if (!tcon->ses->server->ops->async_writev)
2974 return -ENOSYS;
2975
2976 ctx = cifs_aio_ctx_alloc();
2977 if (!ctx)
2978 return -ENOMEM;
2979
2980 ctx->cfile = cifsFileInfo_get(cfile);
2981
2982 if (!is_sync_kiocb(iocb))
2983 ctx->iocb = iocb;
2984
2985 ctx->pos = iocb->ki_pos;
2986
2987 if (direct) {
2988 ctx->direct_io = true;
2989 ctx->iter = *from;
2990 ctx->len = len;
2991 } else {
2992 rc = setup_aio_ctx_iter(ctx, from, WRITE);
2993 if (rc) {
2994 kref_put(&ctx->refcount, cifs_aio_ctx_release);
2995 return rc;
2996 }
2997 }
2998
2999 /* grab a lock here due to read response handlers can access ctx */
3000 mutex_lock(&ctx->aio_mutex);
3001
3002 rc = cifs_write_from_iter(iocb->ki_pos, ctx->len, &saved_from,
3003 cfile, cifs_sb, &ctx->list, ctx);
3004
3005 /*
3006 * If at least one write was successfully sent, then discard any rc
3007 * value from the later writes. If the other write succeeds, then
3008 * we'll end up returning whatever was written. If it fails, then
3009 * we'll get a new rc value from that.
3010 */
3011 if (!list_empty(&ctx->list))
3012 rc = 0;
3013
3014 mutex_unlock(&ctx->aio_mutex);
3015
3016 if (rc) {
3017 kref_put(&ctx->refcount, cifs_aio_ctx_release);
3018 return rc;
3019 }
3020
3021 if (!is_sync_kiocb(iocb)) {
3022 kref_put(&ctx->refcount, cifs_aio_ctx_release);
3023 return -EIOCBQUEUED;
3024 }
3025
3026 rc = wait_for_completion_killable(&ctx->done);
3027 if (rc) {
3028 mutex_lock(&ctx->aio_mutex);
3029 ctx->rc = rc = -EINTR;
3030 total_written = ctx->total_len;
3031 mutex_unlock(&ctx->aio_mutex);
3032 } else {
3033 rc = ctx->rc;
3034 total_written = ctx->total_len;
3035 }
3036
3037 kref_put(&ctx->refcount, cifs_aio_ctx_release);
3038
3039 if (unlikely(!total_written))
3040 return rc;
3041
3042 iocb->ki_pos += total_written;
3043 return total_written;
3044 }
3045
3046 ssize_t cifs_direct_writev(struct kiocb *iocb, struct iov_iter *from)
3047 {
3048 return __cifs_writev(iocb, from, true);
3049 }
3050
3051 ssize_t cifs_user_writev(struct kiocb *iocb, struct iov_iter *from)
3052 {
3053 return __cifs_writev(iocb, from, false);
3054 }
3055
3056 static ssize_t
3057 cifs_writev(struct kiocb *iocb, struct iov_iter *from)
3058 {
3059 struct file *file = iocb->ki_filp;
3060 struct cifsFileInfo *cfile = (struct cifsFileInfo *)file->private_data;
3061 struct inode *inode = file->f_mapping->host;
3062 struct cifsInodeInfo *cinode = CIFS_I(inode);
3063 struct TCP_Server_Info *server = tlink_tcon(cfile->tlink)->ses->server;
3064 ssize_t rc;
3065
3066 inode_lock(inode);
3067 /*
3068 * We need to hold the sem to be sure nobody modifies lock list
3069 * with a brlock that prevents writing.
3070 */
3071 down_read(&cinode->lock_sem);
3072
3073 rc = generic_write_checks(iocb, from);
3074 if (rc <= 0)
3075 goto out;
3076
3077 if (!cifs_find_lock_conflict(cfile, iocb->ki_pos, iov_iter_count(from),
3078 server->vals->exclusive_lock_type, 0,
3079 NULL, CIFS_WRITE_OP))
3080 rc = __generic_file_write_iter(iocb, from);
3081 else
3082 rc = -EACCES;
3083 out:
3084 up_read(&cinode->lock_sem);
3085 inode_unlock(inode);
3086
3087 if (rc > 0)
3088 rc = generic_write_sync(iocb, rc);
3089 return rc;
3090 }
3091
3092 ssize_t
3093 cifs_strict_writev(struct kiocb *iocb, struct iov_iter *from)
3094 {
3095 struct inode *inode = file_inode(iocb->ki_filp);
3096 struct cifsInodeInfo *cinode = CIFS_I(inode);
3097 struct cifs_sb_info *cifs_sb = CIFS_SB(inode->i_sb);
3098 struct cifsFileInfo *cfile = (struct cifsFileInfo *)
3099 iocb->ki_filp->private_data;
3100 struct cifs_tcon *tcon = tlink_tcon(cfile->tlink);
3101 ssize_t written;
3102
3103 written = cifs_get_writer(cinode);
3104 if (written)
3105 return written;
3106
3107 if (CIFS_CACHE_WRITE(cinode)) {
3108 if (cap_unix(tcon->ses) &&
3109 (CIFS_UNIX_FCNTL_CAP & le64_to_cpu(tcon->fsUnixInfo.Capability))
3110 && ((cifs_sb->mnt_cifs_flags & CIFS_MOUNT_NOPOSIXBRL) == 0)) {
3111 written = generic_file_write_iter(iocb, from);
3112 goto out;
3113 }
3114 written = cifs_writev(iocb, from);
3115 goto out;
3116 }
3117 /*
3118 * For non-oplocked files in strict cache mode we need to write the data
3119 * to the server exactly from the pos to pos+len-1 rather than flush all
3120 * affected pages because it may cause a error with mandatory locks on
3121 * these pages but not on the region from pos to ppos+len-1.
3122 */
3123 written = cifs_user_writev(iocb, from);
3124 if (CIFS_CACHE_READ(cinode)) {
3125 /*
3126 * We have read level caching and we have just sent a write
3127 * request to the server thus making data in the cache stale.
3128 * Zap the cache and set oplock/lease level to NONE to avoid
3129 * reading stale data from the cache. All subsequent read
3130 * operations will read new data from the server.
3131 */
3132 cifs_zap_mapping(inode);
3133 cifs_dbg(FYI, "Set Oplock/Lease to NONE for inode=%p after write\n",
3134 inode);
3135 cinode->oplock = 0;
3136 }
3137 out:
3138 cifs_put_writer(cinode);
3139 return written;
3140 }
3141
3142 static struct cifs_readdata *
3143 cifs_readdata_direct_alloc(struct page **pages, work_func_t complete)
3144 {
3145 struct cifs_readdata *rdata;
3146
3147 rdata = kzalloc(sizeof(*rdata), GFP_KERNEL);
3148 if (rdata != NULL) {
3149 rdata->pages = pages;
3150 kref_init(&rdata->refcount);
3151 INIT_LIST_HEAD(&rdata->list);
3152 init_completion(&rdata->done);
3153 INIT_WORK(&rdata->work, complete);
3154 }
3155
3156 return rdata;
3157 }
3158
3159 static struct cifs_readdata *
3160 cifs_readdata_alloc(unsigned int nr_pages, work_func_t complete)
3161 {
3162 struct page **pages =
3163 kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL);
3164 struct cifs_readdata *ret = NULL;
3165
3166 if (pages) {
3167 ret = cifs_readdata_direct_alloc(pages, complete);
3168 if (!ret)
3169 kfree(pages);
3170 }
3171
3172 return ret;
3173 }
3174
3175 void
3176 cifs_readdata_release(struct kref *refcount)
3177 {
3178 struct cifs_readdata *rdata = container_of(refcount,
3179 struct cifs_readdata, refcount);
3180 #ifdef CONFIG_CIFS_SMB_DIRECT
3181 if (rdata->mr) {
3182 smbd_deregister_mr(rdata->mr);
3183 rdata->mr = NULL;
3184 }
3185 #endif
3186 if (rdata->cfile)
3187 cifsFileInfo_put(rdata->cfile);
3188
3189 kvfree(rdata->pages);
3190 kfree(rdata);
3191 }
3192
3193 static int
3194 cifs_read_allocate_pages(struct cifs_readdata *rdata, unsigned int nr_pages)
3195 {
3196 int rc = 0;
3197 struct page *page;
3198 unsigned int i;
3199
3200 for (i = 0; i < nr_pages; i++) {
3201 page = alloc_page(GFP_KERNEL|__GFP_HIGHMEM);
3202 if (!page) {
3203 rc = -ENOMEM;
3204 break;
3205 }
3206 rdata->pages[i] = page;
3207 }
3208
3209 if (rc) {
3210 for (i = 0; i < nr_pages; i++) {
3211 put_page(rdata->pages[i]);
3212 rdata->pages[i] = NULL;
3213 }
3214 }
3215 return rc;
3216 }
3217
3218 static void
3219 cifs_uncached_readdata_release(struct kref *refcount)
3220 {
3221 struct cifs_readdata *rdata = container_of(refcount,
3222 struct cifs_readdata, refcount);
3223 unsigned int i;
3224
3225 kref_put(&rdata->ctx->refcount, cifs_aio_ctx_release);
3226 for (i = 0; i < rdata->nr_pages; i++) {
3227 put_page(rdata->pages[i]);
3228 }
3229 cifs_readdata_release(refcount);
3230 }
3231
3232 /**
3233 * cifs_readdata_to_iov - copy data from pages in response to an iovec
3234 * @rdata: the readdata response with list of pages holding data
3235 * @iter: destination for our data
3236 *
3237 * This function copies data from a list of pages in a readdata response into
3238 * an array of iovecs. It will first calculate where the data should go
3239 * based on the info in the readdata and then copy the data into that spot.
3240 */
3241 static int
3242 cifs_readdata_to_iov(struct cifs_readdata *rdata, struct iov_iter *iter)
3243 {
3244 size_t remaining = rdata->got_bytes;
3245 unsigned int i;
3246
3247 for (i = 0; i < rdata->nr_pages; i++) {
3248 struct page *page = rdata->pages[i];
3249 size_t copy = min_t(size_t, remaining, PAGE_SIZE);
3250 size_t written;
3251
3252 if (unlikely(iov_iter_is_pipe(iter))) {
3253 void *addr = kmap_atomic(page);
3254
3255 written = copy_to_iter(addr, copy, iter);
3256 kunmap_atomic(addr);
3257 } else
3258 written = copy_page_to_iter(page, 0, copy, iter);
3259 remaining -= written;
3260 if (written < copy && iov_iter_count(iter) > 0)
3261 break;
3262 }
3263 return remaining ? -EFAULT : 0;
3264 }
3265
3266 static void collect_uncached_read_data(struct cifs_aio_ctx *ctx);
3267
3268 static void
3269 cifs_uncached_readv_complete(struct work_struct *work)
3270 {
3271 struct cifs_readdata *rdata = container_of(work,
3272 struct cifs_readdata, work);
3273
3274 complete(&rdata->done);
3275 collect_uncached_read_data(rdata->ctx);
3276 /* the below call can possibly free the last ref to aio ctx */
3277 kref_put(&rdata->refcount, cifs_uncached_readdata_release);
3278 }
3279
3280 static int
3281 uncached_fill_pages(struct TCP_Server_Info *server,
3282 struct cifs_readdata *rdata, struct iov_iter *iter,
3283 unsigned int len)
3284 {
3285 int result = 0;
3286 unsigned int i;
3287 unsigned int nr_pages = rdata->nr_pages;
3288 unsigned int page_offset = rdata->page_offset;
3289
3290 rdata->got_bytes = 0;
3291 rdata->tailsz = PAGE_SIZE;
3292 for (i = 0; i < nr_pages; i++) {
3293 struct page *page = rdata->pages[i];
3294 size_t n;
3295 unsigned int segment_size = rdata->pagesz;
3296
3297 if (i == 0)
3298 segment_size -= page_offset;
3299 else
3300 page_offset = 0;
3301
3302
3303 if (len <= 0) {
3304 /* no need to hold page hostage */
3305 rdata->pages[i] = NULL;
3306 rdata->nr_pages--;
3307 put_page(page);
3308 continue;
3309 }
3310
3311 n = len;
3312 if (len >= segment_size)
3313 /* enough data to fill the page */
3314 n = segment_size;
3315 else
3316 rdata->tailsz = len;
3317 len -= n;
3318
3319 if (iter)
3320 result = copy_page_from_iter(
3321 page, page_offset, n, iter);
3322 #ifdef CONFIG_CIFS_SMB_DIRECT
3323 else if (rdata->mr)
3324 result = n;
3325 #endif
3326 else
3327 result = cifs_read_page_from_socket(
3328 server, page, page_offset, n);
3329 if (result < 0)
3330 break;
3331
3332 rdata->got_bytes += result;
3333 }
3334
3335 return rdata->got_bytes > 0 && result != -ECONNABORTED ?
3336 rdata->got_bytes : result;
3337 }
3338
3339 static int
3340 cifs_uncached_read_into_pages(struct TCP_Server_Info *server,
3341 struct cifs_readdata *rdata, unsigned int len)
3342 {
3343 return uncached_fill_pages(server, rdata, NULL, len);
3344 }
3345
3346 static int
3347 cifs_uncached_copy_into_pages(struct TCP_Server_Info *server,
3348 struct cifs_readdata *rdata,
3349 struct iov_iter *iter)
3350 {
3351 return uncached_fill_pages(server, rdata, iter, iter->count);
3352 }
3353
3354 static int cifs_resend_rdata(struct cifs_readdata *rdata,
3355 struct list_head *rdata_list,
3356 struct cifs_aio_ctx *ctx)
3357 {
3358 unsigned int rsize;
3359 struct cifs_credits credits;
3360 int rc;
3361 struct TCP_Server_Info *server =
3362 tlink_tcon(rdata->cfile->tlink)->ses->server;
3363
3364 do {
3365 if (rdata->cfile->invalidHandle) {
3366 rc = cifs_reopen_file(rdata->cfile, true);
3367 if (rc == -EAGAIN)
3368 continue;
3369 else if (rc)
3370 break;
3371 }
3372
3373 /*
3374 * Wait for credits to resend this rdata.
3375 * Note: we are attempting to resend the whole rdata not in
3376 * segments
3377 */
3378 do {
3379 rc = server->ops->wait_mtu_credits(server, rdata->bytes,
3380 &rsize, &credits);
3381
3382 if (rc)
3383 goto fail;
3384
3385 if (rsize < rdata->bytes) {
3386 add_credits_and_wake_if(server, &credits, 0);
3387 msleep(1000);
3388 }
3389 } while (rsize < rdata->bytes);
3390 rdata->credits = credits;
3391
3392 rc = adjust_credits(server, &rdata->credits, rdata->bytes);
3393 if (!rc) {
3394 if (rdata->cfile->invalidHandle)
3395 rc = -EAGAIN;
3396 else
3397 rc = server->ops->async_readv(rdata);
3398 }
3399
3400 /* If the read was successfully sent, we are done */
3401 if (!rc) {
3402 /* Add to aio pending list */
3403 list_add_tail(&rdata->list, rdata_list);
3404 return 0;
3405 }
3406
3407 /* Roll back credits and retry if needed */
3408 add_credits_and_wake_if(server, &rdata->credits, 0);
3409 } while (rc == -EAGAIN);
3410
3411 fail:
3412 kref_put(&rdata->refcount, cifs_uncached_readdata_release);
3413 return rc;
3414 }
3415
3416 static int
3417 cifs_send_async_read(loff_t offset, size_t len, struct cifsFileInfo *open_file,
3418 struct cifs_sb_info *cifs_sb, struct list_head *rdata_list,
3419 struct cifs_aio_ctx *ctx)
3420 {
3421 struct cifs_readdata *rdata;
3422 unsigned int npages, rsize;
3423 struct cifs_credits credits_on_stack;
3424 struct cifs_credits *credits = &credits_on_stack;
3425 size_t cur_len;
3426 int rc;
3427 pid_t pid;
3428 struct TCP_Server_Info *server;
3429 struct page **pagevec;
3430 size_t start;
3431 struct iov_iter direct_iov = ctx->iter;
3432
3433 server = tlink_tcon(open_file->tlink)->ses->server;
3434
3435 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_RWPIDFORWARD)
3436 pid = open_file->pid;
3437 else
3438 pid = current->tgid;
3439
3440 if (ctx->direct_io)
3441 iov_iter_advance(&direct_iov, offset - ctx->pos);
3442
3443 do {
3444 if (open_file->invalidHandle) {
3445 rc = cifs_reopen_file(open_file, true);
3446 if (rc == -EAGAIN)
3447 continue;
3448 else if (rc)
3449 break;
3450 }
3451
3452 rc = server->ops->wait_mtu_credits(server, cifs_sb->rsize,
3453 &rsize, credits);
3454 if (rc)
3455 break;
3456
3457 cur_len = min_t(const size_t, len, rsize);
3458
3459 if (ctx->direct_io) {
3460 ssize_t result;
3461
3462 result = iov_iter_get_pages_alloc(
3463 &direct_iov, &pagevec,
3464 cur_len, &start);
3465 if (result < 0) {
3466 cifs_dbg(VFS,
3467 "couldn't get user pages (rc=%zd)"
3468 " iter type %d"
3469 " iov_offset %zd count %zd\n",
3470 result, direct_iov.type,
3471 direct_iov.iov_offset,
3472 direct_iov.count);
3473 dump_stack();
3474
3475 rc = result;
3476 add_credits_and_wake_if(server, credits, 0);
3477 break;
3478 }
3479 cur_len = (size_t)result;
3480 iov_iter_advance(&direct_iov, cur_len);
3481
3482 rdata = cifs_readdata_direct_alloc(
3483 pagevec, cifs_uncached_readv_complete);
3484 if (!rdata) {
3485 add_credits_and_wake_if(server, credits, 0);
3486 rc = -ENOMEM;
3487 break;
3488 }
3489
3490 npages = (cur_len + start + PAGE_SIZE-1) / PAGE_SIZE;
3491 rdata->page_offset = start;
3492 rdata->tailsz = npages > 1 ?
3493 cur_len-(PAGE_SIZE-start)-(npages-2)*PAGE_SIZE :
3494 cur_len;
3495
3496 } else {
3497
3498 npages = DIV_ROUND_UP(cur_len, PAGE_SIZE);
3499 /* allocate a readdata struct */
3500 rdata = cifs_readdata_alloc(npages,
3501 cifs_uncached_readv_complete);
3502 if (!rdata) {
3503 add_credits_and_wake_if(server, credits, 0);
3504 rc = -ENOMEM;
3505 break;
3506 }
3507
3508 rc = cifs_read_allocate_pages(rdata, npages);
3509 if (rc) {
3510 kvfree(rdata->pages);
3511 kfree(rdata);
3512 add_credits_and_wake_if(server, credits, 0);
3513 break;
3514 }
3515
3516 rdata->tailsz = PAGE_SIZE;
3517 }
3518
3519 rdata->cfile = cifsFileInfo_get(open_file);
3520 rdata->nr_pages = npages;
3521 rdata->offset = offset;
3522 rdata->bytes = cur_len;
3523 rdata->pid = pid;
3524 rdata->pagesz = PAGE_SIZE;
3525 rdata->read_into_pages = cifs_uncached_read_into_pages;
3526 rdata->copy_into_pages = cifs_uncached_copy_into_pages;
3527 rdata->credits = credits_on_stack;
3528 rdata->ctx = ctx;
3529 kref_get(&ctx->refcount);
3530
3531 rc = adjust_credits(server, &rdata->credits, rdata->bytes);
3532
3533 if (!rc) {
3534 if (rdata->cfile->invalidHandle)
3535 rc = -EAGAIN;
3536 else
3537 rc = server->ops->async_readv(rdata);
3538 }
3539
3540 if (rc) {
3541 add_credits_and_wake_if(server, &rdata->credits, 0);
3542 kref_put(&rdata->refcount,
3543 cifs_uncached_readdata_release);
3544 if (rc == -EAGAIN) {
3545 iov_iter_revert(&direct_iov, cur_len);
3546 continue;
3547 }
3548 break;
3549 }
3550
3551 list_add_tail(&rdata->list, rdata_list);
3552 offset += cur_len;
3553 len -= cur_len;
3554 } while (len > 0);
3555
3556 return rc;
3557 }
3558
3559 static void
3560 collect_uncached_read_data(struct cifs_aio_ctx *ctx)
3561 {
3562 struct cifs_readdata *rdata, *tmp;
3563 struct iov_iter *to = &ctx->iter;
3564 struct cifs_sb_info *cifs_sb;
3565 struct cifs_tcon *tcon;
3566 unsigned int i;
3567 int rc;
3568
3569 tcon = tlink_tcon(ctx->cfile->tlink);
3570 cifs_sb = CIFS_SB(ctx->cfile->dentry->d_sb);
3571
3572 mutex_lock(&ctx->aio_mutex);
3573
3574 if (list_empty(&ctx->list)) {
3575 mutex_unlock(&ctx->aio_mutex);
3576 return;
3577 }
3578
3579 rc = ctx->rc;
3580 /* the loop below should proceed in the order of increasing offsets */
3581 again:
3582 list_for_each_entry_safe(rdata, tmp, &ctx->list, list) {
3583 if (!rc) {
3584 if (!try_wait_for_completion(&rdata->done)) {
3585 mutex_unlock(&ctx->aio_mutex);
3586 return;
3587 }
3588
3589 if (rdata->result == -EAGAIN) {
3590 /* resend call if it's a retryable error */
3591 struct list_head tmp_list;
3592 unsigned int got_bytes = rdata->got_bytes;
3593
3594 list_del_init(&rdata->list);
3595 INIT_LIST_HEAD(&tmp_list);
3596
3597 /*
3598 * Got a part of data and then reconnect has
3599 * happened -- fill the buffer and continue
3600 * reading.
3601 */
3602 if (got_bytes && got_bytes < rdata->bytes) {
3603 rc = 0;
3604 if (!ctx->direct_io)
3605 rc = cifs_readdata_to_iov(rdata, to);
3606 if (rc) {
3607 kref_put(&rdata->refcount,
3608 cifs_uncached_readdata_release);
3609 continue;
3610 }
3611 }
3612
3613 if (ctx->direct_io) {
3614 /*
3615 * Re-use rdata as this is a
3616 * direct I/O
3617 */
3618 rc = cifs_resend_rdata(
3619 rdata,
3620 &tmp_list, ctx);
3621 } else {
3622 rc = cifs_send_async_read(
3623 rdata->offset + got_bytes,
3624 rdata->bytes - got_bytes,
3625 rdata->cfile, cifs_sb,
3626 &tmp_list, ctx);
3627
3628 kref_put(&rdata->refcount,
3629 cifs_uncached_readdata_release);
3630 }
3631
3632 list_splice(&tmp_list, &ctx->list);
3633
3634 goto again;
3635 } else if (rdata->result)
3636 rc = rdata->result;
3637 else if (!ctx->direct_io)
3638 rc = cifs_readdata_to_iov(rdata, to);
3639
3640 /* if there was a short read -- discard anything left */
3641 if (rdata->got_bytes && rdata->got_bytes < rdata->bytes)
3642 rc = -ENODATA;
3643
3644 ctx->total_len += rdata->got_bytes;
3645 }
3646 list_del_init(&rdata->list);
3647 kref_put(&rdata->refcount, cifs_uncached_readdata_release);
3648 }
3649
3650 if (!ctx->direct_io) {
3651 for (i = 0; i < ctx->npages; i++) {
3652 if (ctx->should_dirty)
3653 set_page_dirty(ctx->bv[i].bv_page);
3654 put_page(ctx->bv[i].bv_page);
3655 }
3656
3657 ctx->total_len = ctx->len - iov_iter_count(to);
3658 }
3659
3660 /* mask nodata case */
3661 if (rc == -ENODATA)
3662 rc = 0;
3663
3664 ctx->rc = (rc == 0) ? ctx->total_len : rc;
3665
3666 mutex_unlock(&ctx->aio_mutex);
3667
3668 if (ctx->iocb && ctx->iocb->ki_complete)
3669 ctx->iocb->ki_complete(ctx->iocb, ctx->rc, 0);
3670 else
3671 complete(&ctx->done);
3672 }
3673
3674 static ssize_t __cifs_readv(
3675 struct kiocb *iocb, struct iov_iter *to, bool direct)
3676 {
3677 size_t len;
3678 struct file *file = iocb->ki_filp;
3679 struct cifs_sb_info *cifs_sb;
3680 struct cifsFileInfo *cfile;
3681 struct cifs_tcon *tcon;
3682 ssize_t rc, total_read = 0;
3683 loff_t offset = iocb->ki_pos;
3684 struct cifs_aio_ctx *ctx;
3685
3686 /*
3687 * iov_iter_get_pages_alloc() doesn't work with ITER_KVEC,
3688 * fall back to data copy read path
3689 * this could be improved by getting pages directly in ITER_KVEC
3690 */
3691 if (direct && to->type & ITER_KVEC) {
3692 cifs_dbg(FYI, "use non-direct cifs_user_readv for kvec I/O\n");
3693 direct = false;
3694 }
3695
3696 len = iov_iter_count(to);
3697 if (!len)
3698 return 0;
3699
3700 cifs_sb = CIFS_FILE_SB(file);
3701 cfile = file->private_data;
3702 tcon = tlink_tcon(cfile->tlink);
3703
3704 if (!tcon->ses->server->ops->async_readv)
3705 return -ENOSYS;
3706
3707 if ((file->f_flags & O_ACCMODE) == O_WRONLY)
3708 cifs_dbg(FYI, "attempting read on write only file instance\n");
3709
3710 ctx = cifs_aio_ctx_alloc();
3711 if (!ctx)
3712 return -ENOMEM;
3713
3714 ctx->cfile = cifsFileInfo_get(cfile);
3715
3716 if (!is_sync_kiocb(iocb))
3717 ctx->iocb = iocb;
3718
3719 if (iter_is_iovec(to))
3720 ctx->should_dirty = true;
3721
3722 if (direct) {
3723 ctx->pos = offset;
3724 ctx->direct_io = true;
3725 ctx->iter = *to;
3726 ctx->len = len;
3727 } else {
3728 rc = setup_aio_ctx_iter(ctx, to, READ);
3729 if (rc) {
3730 kref_put(&ctx->refcount, cifs_aio_ctx_release);
3731 return rc;
3732 }
3733 len = ctx->len;
3734 }
3735
3736 /* grab a lock here due to read response handlers can access ctx */
3737 mutex_lock(&ctx->aio_mutex);
3738
3739 rc = cifs_send_async_read(offset, len, cfile, cifs_sb, &ctx->list, ctx);
3740
3741 /* if at least one read request send succeeded, then reset rc */
3742 if (!list_empty(&ctx->list))
3743 rc = 0;
3744
3745 mutex_unlock(&ctx->aio_mutex);
3746
3747 if (rc) {
3748 kref_put(&ctx->refcount, cifs_aio_ctx_release);
3749 return rc;
3750 }
3751
3752 if (!is_sync_kiocb(iocb)) {
3753 kref_put(&ctx->refcount, cifs_aio_ctx_release);
3754 return -EIOCBQUEUED;
3755 }
3756
3757 rc = wait_for_completion_killable(&ctx->done);
3758 if (rc) {
3759 mutex_lock(&ctx->aio_mutex);
3760 ctx->rc = rc = -EINTR;
3761 total_read = ctx->total_len;
3762 mutex_unlock(&ctx->aio_mutex);
3763 } else {
3764 rc = ctx->rc;
3765 total_read = ctx->total_len;
3766 }
3767
3768 kref_put(&ctx->refcount, cifs_aio_ctx_release);
3769
3770 if (total_read) {
3771 iocb->ki_pos += total_read;
3772 return total_read;
3773 }
3774 return rc;
3775 }
3776
3777 ssize_t cifs_direct_readv(struct kiocb *iocb, struct iov_iter *to)
3778 {
3779 return __cifs_readv(iocb, to, true);
3780 }
3781
3782 ssize_t cifs_user_readv(struct kiocb *iocb, struct iov_iter *to)
3783 {
3784 return __cifs_readv(iocb, to, false);
3785 }
3786
3787 ssize_t
3788 cifs_strict_readv(struct kiocb *iocb, struct iov_iter *to)
3789 {
3790 struct inode *inode = file_inode(iocb->ki_filp);
3791 struct cifsInodeInfo *cinode = CIFS_I(inode);
3792 struct cifs_sb_info *cifs_sb = CIFS_SB(inode->i_sb);
3793 struct cifsFileInfo *cfile = (struct cifsFileInfo *)
3794 iocb->ki_filp->private_data;
3795 struct cifs_tcon *tcon = tlink_tcon(cfile->tlink);
3796 int rc = -EACCES;
3797
3798 /*
3799 * In strict cache mode we need to read from the server all the time
3800 * if we don't have level II oplock because the server can delay mtime
3801 * change - so we can't make a decision about inode invalidating.
3802 * And we can also fail with pagereading if there are mandatory locks
3803 * on pages affected by this read but not on the region from pos to
3804 * pos+len-1.
3805 */
3806 if (!CIFS_CACHE_READ(cinode))
3807 return cifs_user_readv(iocb, to);
3808
3809 if (cap_unix(tcon->ses) &&
3810 (CIFS_UNIX_FCNTL_CAP & le64_to_cpu(tcon->fsUnixInfo.Capability)) &&
3811 ((cifs_sb->mnt_cifs_flags & CIFS_MOUNT_NOPOSIXBRL) == 0))
3812 return generic_file_read_iter(iocb, to);
3813
3814 /*
3815 * We need to hold the sem to be sure nobody modifies lock list
3816 * with a brlock that prevents reading.
3817 */
3818 down_read(&cinode->lock_sem);
3819 if (!cifs_find_lock_conflict(cfile, iocb->ki_pos, iov_iter_count(to),
3820 tcon->ses->server->vals->shared_lock_type,
3821 0, NULL, CIFS_READ_OP))
3822 rc = generic_file_read_iter(iocb, to);
3823 up_read(&cinode->lock_sem);
3824 return rc;
3825 }
3826
3827 static ssize_t
3828 cifs_read(struct file *file, char *read_data, size_t read_size, loff_t *offset)
3829 {
3830 int rc = -EACCES;
3831 unsigned int bytes_read = 0;
3832 unsigned int total_read;
3833 unsigned int current_read_size;
3834 unsigned int rsize;
3835 struct cifs_sb_info *cifs_sb;
3836 struct cifs_tcon *tcon;
3837 struct TCP_Server_Info *server;
3838 unsigned int xid;
3839 char *cur_offset;
3840 struct cifsFileInfo *open_file;
3841 struct cifs_io_parms io_parms;
3842 int buf_type = CIFS_NO_BUFFER;
3843 __u32 pid;
3844
3845 xid = get_xid();
3846 cifs_sb = CIFS_FILE_SB(file);
3847
3848 /* FIXME: set up handlers for larger reads and/or convert to async */
3849 rsize = min_t(unsigned int, cifs_sb->rsize, CIFSMaxBufSize);
3850
3851 if (file->private_data == NULL) {
3852 rc = -EBADF;
3853 free_xid(xid);
3854 return rc;
3855 }
3856 open_file = file->private_data;
3857 tcon = tlink_tcon(open_file->tlink);
3858 server = tcon->ses->server;
3859
3860 if (!server->ops->sync_read) {
3861 free_xid(xid);
3862 return -ENOSYS;
3863 }
3864
3865 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_RWPIDFORWARD)
3866 pid = open_file->pid;
3867 else
3868 pid = current->tgid;
3869
3870 if ((file->f_flags & O_ACCMODE) == O_WRONLY)
3871 cifs_dbg(FYI, "attempting read on write only file instance\n");
3872
3873 for (total_read = 0, cur_offset = read_data; read_size > total_read;
3874 total_read += bytes_read, cur_offset += bytes_read) {
3875 do {
3876 current_read_size = min_t(uint, read_size - total_read,
3877 rsize);
3878 /*
3879 * For windows me and 9x we do not want to request more
3880 * than it negotiated since it will refuse the read
3881 * then.
3882 */
3883 if ((tcon->ses) && !(tcon->ses->capabilities &
3884 tcon->ses->server->vals->cap_large_files)) {
3885 current_read_size = min_t(uint,
3886 current_read_size, CIFSMaxBufSize);
3887 }
3888 if (open_file->invalidHandle) {
3889 rc = cifs_reopen_file(open_file, true);
3890 if (rc != 0)
3891 break;
3892 }
3893 io_parms.pid = pid;
3894 io_parms.tcon = tcon;
3895 io_parms.offset = *offset;
3896 io_parms.length = current_read_size;
3897 rc = server->ops->sync_read(xid, &open_file->fid, &io_parms,
3898 &bytes_read, &cur_offset,
3899 &buf_type);
3900 } while (rc == -EAGAIN);
3901
3902 if (rc || (bytes_read == 0)) {
3903 if (total_read) {
3904 break;
3905 } else {
3906 free_xid(xid);
3907 return rc;
3908 }
3909 } else {
3910 cifs_stats_bytes_read(tcon, total_read);
3911 *offset += bytes_read;
3912 }
3913 }
3914 free_xid(xid);
3915 return total_read;
3916 }
3917
3918 /*
3919 * If the page is mmap'ed into a process' page tables, then we need to make
3920 * sure that it doesn't change while being written back.
3921 */
3922 static vm_fault_t
3923 cifs_page_mkwrite(struct vm_fault *vmf)
3924 {
3925 struct page *page = vmf->page;
3926
3927 lock_page(page);
3928 return VM_FAULT_LOCKED;
3929 }
3930
3931 static const struct vm_operations_struct cifs_file_vm_ops = {
3932 .fault = filemap_fault,
3933 .map_pages = filemap_map_pages,
3934 .page_mkwrite = cifs_page_mkwrite,
3935 };
3936
3937 int cifs_file_strict_mmap(struct file *file, struct vm_area_struct *vma)
3938 {
3939 int xid, rc = 0;
3940 struct inode *inode = file_inode(file);
3941
3942 xid = get_xid();
3943
3944 if (!CIFS_CACHE_READ(CIFS_I(inode)))
3945 rc = cifs_zap_mapping(inode);
3946 if (!rc)
3947 rc = generic_file_mmap(file, vma);
3948 if (!rc)
3949 vma->vm_ops = &cifs_file_vm_ops;
3950
3951 free_xid(xid);
3952 return rc;
3953 }
3954
3955 int cifs_file_mmap(struct file *file, struct vm_area_struct *vma)
3956 {
3957 int rc, xid;
3958
3959 xid = get_xid();
3960
3961 rc = cifs_revalidate_file(file);
3962 if (rc)
3963 cifs_dbg(FYI, "Validation prior to mmap failed, error=%d\n",
3964 rc);
3965 if (!rc)
3966 rc = generic_file_mmap(file, vma);
3967 if (!rc)
3968 vma->vm_ops = &cifs_file_vm_ops;
3969
3970 free_xid(xid);
3971 return rc;
3972 }
3973
3974 static void
3975 cifs_readv_complete(struct work_struct *work)
3976 {
3977 unsigned int i, got_bytes;
3978 struct cifs_readdata *rdata = container_of(work,
3979 struct cifs_readdata, work);
3980
3981 got_bytes = rdata->got_bytes;
3982 for (i = 0; i < rdata->nr_pages; i++) {
3983 struct page *page = rdata->pages[i];
3984
3985 lru_cache_add_file(page);
3986
3987 if (rdata->result == 0 ||
3988 (rdata->result == -EAGAIN && got_bytes)) {
3989 flush_dcache_page(page);
3990 SetPageUptodate(page);
3991 }
3992
3993 unlock_page(page);
3994
3995 if (rdata->result == 0 ||
3996 (rdata->result == -EAGAIN && got_bytes))
3997 cifs_readpage_to_fscache(rdata->mapping->host, page);
3998
3999 got_bytes -= min_t(unsigned int, PAGE_SIZE, got_bytes);
4000
4001 put_page(page);
4002 rdata->pages[i] = NULL;
4003 }
4004 kref_put(&rdata->refcount, cifs_readdata_release);
4005 }
4006
4007 static int
4008 readpages_fill_pages(struct TCP_Server_Info *server,
4009 struct cifs_readdata *rdata, struct iov_iter *iter,
4010 unsigned int len)
4011 {
4012 int result = 0;
4013 unsigned int i;
4014 u64 eof;
4015 pgoff_t eof_index;
4016 unsigned int nr_pages = rdata->nr_pages;
4017 unsigned int page_offset = rdata->page_offset;
4018
4019 /* determine the eof that the server (probably) has */
4020 eof = CIFS_I(rdata->mapping->host)->server_eof;
4021 eof_index = eof ? (eof - 1) >> PAGE_SHIFT : 0;
4022 cifs_dbg(FYI, "eof=%llu eof_index=%lu\n", eof, eof_index);
4023
4024 rdata->got_bytes = 0;
4025 rdata->tailsz = PAGE_SIZE;
4026 for (i = 0; i < nr_pages; i++) {
4027 struct page *page = rdata->pages[i];
4028 unsigned int to_read = rdata->pagesz;
4029 size_t n;
4030
4031 if (i == 0)
4032 to_read -= page_offset;
4033 else
4034 page_offset = 0;
4035
4036 n = to_read;
4037
4038 if (len >= to_read) {
4039 len -= to_read;
4040 } else if (len > 0) {
4041 /* enough for partial page, fill and zero the rest */
4042 zero_user(page, len + page_offset, to_read - len);
4043 n = rdata->tailsz = len;
4044 len = 0;
4045 } else if (page->index > eof_index) {
4046 /*
4047 * The VFS will not try to do readahead past the
4048 * i_size, but it's possible that we have outstanding
4049 * writes with gaps in the middle and the i_size hasn't
4050 * caught up yet. Populate those with zeroed out pages
4051 * to prevent the VFS from repeatedly attempting to
4052 * fill them until the writes are flushed.
4053 */
4054 zero_user(page, 0, PAGE_SIZE);
4055 lru_cache_add_file(page);
4056 flush_dcache_page(page);
4057 SetPageUptodate(page);
4058 unlock_page(page);
4059 put_page(page);
4060 rdata->pages[i] = NULL;
4061 rdata->nr_pages--;
4062 continue;
4063 } else {
4064 /* no need to hold page hostage */
4065 lru_cache_add_file(page);
4066 unlock_page(page);
4067 put_page(page);
4068 rdata->pages[i] = NULL;
4069 rdata->nr_pages--;
4070 continue;
4071 }
4072
4073 if (iter)
4074 result = copy_page_from_iter(
4075 page, page_offset, n, iter);
4076 #ifdef CONFIG_CIFS_SMB_DIRECT
4077 else if (rdata->mr)
4078 result = n;
4079 #endif
4080 else
4081 result = cifs_read_page_from_socket(
4082 server, page, page_offset, n);
4083 if (result < 0)
4084 break;
4085
4086 rdata->got_bytes += result;
4087 }
4088
4089 return rdata->got_bytes > 0 && result != -ECONNABORTED ?
4090 rdata->got_bytes : result;
4091 }
4092
4093 static int
4094 cifs_readpages_read_into_pages(struct TCP_Server_Info *server,
4095 struct cifs_readdata *rdata, unsigned int len)
4096 {
4097 return readpages_fill_pages(server, rdata, NULL, len);
4098 }
4099
4100 static int
4101 cifs_readpages_copy_into_pages(struct TCP_Server_Info *server,
4102 struct cifs_readdata *rdata,
4103 struct iov_iter *iter)
4104 {
4105 return readpages_fill_pages(server, rdata, iter, iter->count);
4106 }
4107
4108 static int
4109 readpages_get_pages(struct address_space *mapping, struct list_head *page_list,
4110 unsigned int rsize, struct list_head *tmplist,
4111 unsigned int *nr_pages, loff_t *offset, unsigned int *bytes)
4112 {
4113 struct page *page, *tpage;
4114 unsigned int expected_index;
4115 int rc;
4116 gfp_t gfp = readahead_gfp_mask(mapping);
4117
4118 INIT_LIST_HEAD(tmplist);
4119
4120 page = lru_to_page(page_list);
4121
4122 /*
4123 * Lock the page and put it in the cache. Since no one else
4124 * should have access to this page, we're safe to simply set
4125 * PG_locked without checking it first.
4126 */
4127 __SetPageLocked(page);
4128 rc = add_to_page_cache_locked(page, mapping,
4129 page->index, gfp);
4130
4131 /* give up if we can't stick it in the cache */
4132 if (rc) {
4133 __ClearPageLocked(page);
4134 return rc;
4135 }
4136
4137 /* move first page to the tmplist */
4138 *offset = (loff_t)page->index << PAGE_SHIFT;
4139 *bytes = PAGE_SIZE;
4140 *nr_pages = 1;
4141 list_move_tail(&page->lru, tmplist);
4142
4143 /* now try and add more pages onto the request */
4144 expected_index = page->index + 1;
4145 list_for_each_entry_safe_reverse(page, tpage, page_list, lru) {
4146 /* discontinuity ? */
4147 if (page->index != expected_index)
4148 break;
4149
4150 /* would this page push the read over the rsize? */
4151 if (*bytes + PAGE_SIZE > rsize)
4152 break;
4153
4154 __SetPageLocked(page);
4155 if (add_to_page_cache_locked(page, mapping, page->index, gfp)) {
4156 __ClearPageLocked(page);
4157 break;
4158 }
4159 list_move_tail(&page->lru, tmplist);
4160 (*bytes) += PAGE_SIZE;
4161 expected_index++;
4162 (*nr_pages)++;
4163 }
4164 return rc;
4165 }
4166
4167 static int cifs_readpages(struct file *file, struct address_space *mapping,
4168 struct list_head *page_list, unsigned num_pages)
4169 {
4170 int rc;
4171 struct list_head tmplist;
4172 struct cifsFileInfo *open_file = file->private_data;
4173 struct cifs_sb_info *cifs_sb = CIFS_FILE_SB(file);
4174 struct TCP_Server_Info *server;
4175 pid_t pid;
4176 unsigned int xid;
4177
4178 xid = get_xid();
4179 /*
4180 * Reads as many pages as possible from fscache. Returns -ENOBUFS
4181 * immediately if the cookie is negative
4182 *
4183 * After this point, every page in the list might have PG_fscache set,
4184 * so we will need to clean that up off of every page we don't use.
4185 */
4186 rc = cifs_readpages_from_fscache(mapping->host, mapping, page_list,
4187 &num_pages);
4188 if (rc == 0) {
4189 free_xid(xid);
4190 return rc;
4191 }
4192
4193 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_RWPIDFORWARD)
4194 pid = open_file->pid;
4195 else
4196 pid = current->tgid;
4197
4198 rc = 0;
4199 server = tlink_tcon(open_file->tlink)->ses->server;
4200
4201 cifs_dbg(FYI, "%s: file=%p mapping=%p num_pages=%u\n",
4202 __func__, file, mapping, num_pages);
4203
4204 /*
4205 * Start with the page at end of list and move it to private
4206 * list. Do the same with any following pages until we hit
4207 * the rsize limit, hit an index discontinuity, or run out of
4208 * pages. Issue the async read and then start the loop again
4209 * until the list is empty.
4210 *
4211 * Note that list order is important. The page_list is in
4212 * the order of declining indexes. When we put the pages in
4213 * the rdata->pages, then we want them in increasing order.
4214 */
4215 while (!list_empty(page_list)) {
4216 unsigned int i, nr_pages, bytes, rsize;
4217 loff_t offset;
4218 struct page *page, *tpage;
4219 struct cifs_readdata *rdata;
4220 struct cifs_credits credits_on_stack;
4221 struct cifs_credits *credits = &credits_on_stack;
4222
4223 if (open_file->invalidHandle) {
4224 rc = cifs_reopen_file(open_file, true);
4225 if (rc == -EAGAIN)
4226 continue;
4227 else if (rc)
4228 break;
4229 }
4230
4231 rc = server->ops->wait_mtu_credits(server, cifs_sb->rsize,
4232 &rsize, credits);
4233 if (rc)
4234 break;
4235
4236 /*
4237 * Give up immediately if rsize is too small to read an entire
4238 * page. The VFS will fall back to readpage. We should never
4239 * reach this point however since we set ra_pages to 0 when the
4240 * rsize is smaller than a cache page.
4241 */
4242 if (unlikely(rsize < PAGE_SIZE)) {
4243 add_credits_and_wake_if(server, credits, 0);
4244 free_xid(xid);
4245 return 0;
4246 }
4247
4248 rc = readpages_get_pages(mapping, page_list, rsize, &tmplist,
4249 &nr_pages, &offset, &bytes);
4250 if (rc) {
4251 add_credits_and_wake_if(server, credits, 0);
4252 break;
4253 }
4254
4255 rdata = cifs_readdata_alloc(nr_pages, cifs_readv_complete);
4256 if (!rdata) {
4257 /* best to give up if we're out of mem */
4258 list_for_each_entry_safe(page, tpage, &tmplist, lru) {
4259 list_del(&page->lru);
4260 lru_cache_add_file(page);
4261 unlock_page(page);
4262 put_page(page);
4263 }
4264 rc = -ENOMEM;
4265 add_credits_and_wake_if(server, credits, 0);
4266 break;
4267 }
4268
4269 rdata->cfile = cifsFileInfo_get(open_file);
4270 rdata->mapping = mapping;
4271 rdata->offset = offset;
4272 rdata->bytes = bytes;
4273 rdata->pid = pid;
4274 rdata->pagesz = PAGE_SIZE;
4275 rdata->tailsz = PAGE_SIZE;
4276 rdata->read_into_pages = cifs_readpages_read_into_pages;
4277 rdata->copy_into_pages = cifs_readpages_copy_into_pages;
4278 rdata->credits = credits_on_stack;
4279
4280 list_for_each_entry_safe(page, tpage, &tmplist, lru) {
4281 list_del(&page->lru);
4282 rdata->pages[rdata->nr_pages++] = page;
4283 }
4284
4285 rc = adjust_credits(server, &rdata->credits, rdata->bytes);
4286
4287 if (!rc) {
4288 if (rdata->cfile->invalidHandle)
4289 rc = -EAGAIN;
4290 else
4291 rc = server->ops->async_readv(rdata);
4292 }
4293
4294 if (rc) {
4295 add_credits_and_wake_if(server, &rdata->credits, 0);
4296 for (i = 0; i < rdata->nr_pages; i++) {
4297 page = rdata->pages[i];
4298 lru_cache_add_file(page);
4299 unlock_page(page);
4300 put_page(page);
4301 }
4302 /* Fallback to the readpage in error/reconnect cases */
4303 kref_put(&rdata->refcount, cifs_readdata_release);
4304 break;
4305 }
4306
4307 kref_put(&rdata->refcount, cifs_readdata_release);
4308 }
4309
4310 /* Any pages that have been shown to fscache but didn't get added to
4311 * the pagecache must be uncached before they get returned to the
4312 * allocator.
4313 */
4314 cifs_fscache_readpages_cancel(mapping->host, page_list);
4315 free_xid(xid);
4316 return rc;
4317 }
4318
4319 /*
4320 * cifs_readpage_worker must be called with the page pinned
4321 */
4322 static int cifs_readpage_worker(struct file *file, struct page *page,
4323 loff_t *poffset)
4324 {
4325 char *read_data;
4326 int rc;
4327
4328 /* Is the page cached? */
4329 rc = cifs_readpage_from_fscache(file_inode(file), page);
4330 if (rc == 0)
4331 goto read_complete;
4332
4333 read_data = kmap(page);
4334 /* for reads over a certain size could initiate async read ahead */
4335
4336 rc = cifs_read(file, read_data, PAGE_SIZE, poffset);
4337
4338 if (rc < 0)
4339 goto io_error;
4340 else
4341 cifs_dbg(FYI, "Bytes read %d\n", rc);
4342
4343 /* we do not want atime to be less than mtime, it broke some apps */
4344 file_inode(file)->i_atime = current_time(file_inode(file));
4345 if (timespec64_compare(&(file_inode(file)->i_atime), &(file_inode(file)->i_mtime)))
4346 file_inode(file)->i_atime = file_inode(file)->i_mtime;
4347 else
4348 file_inode(file)->i_atime = current_time(file_inode(file));
4349
4350 if (PAGE_SIZE > rc)
4351 memset(read_data + rc, 0, PAGE_SIZE - rc);
4352
4353 flush_dcache_page(page);
4354 SetPageUptodate(page);
4355
4356 /* send this page to the cache */
4357 cifs_readpage_to_fscache(file_inode(file), page);
4358
4359 rc = 0;
4360
4361 io_error:
4362 kunmap(page);
4363 unlock_page(page);
4364
4365 read_complete:
4366 return rc;
4367 }
4368
4369 static int cifs_readpage(struct file *file, struct page *page)
4370 {
4371 loff_t offset = (loff_t)page->index << PAGE_SHIFT;
4372 int rc = -EACCES;
4373 unsigned int xid;
4374
4375 xid = get_xid();
4376
4377 if (file->private_data == NULL) {
4378 rc = -EBADF;
4379 free_xid(xid);
4380 return rc;
4381 }
4382
4383 cifs_dbg(FYI, "readpage %p at offset %d 0x%x\n",
4384 page, (int)offset, (int)offset);
4385
4386 rc = cifs_readpage_worker(file, page, &offset);
4387
4388 free_xid(xid);
4389 return rc;
4390 }
4391
4392 static int is_inode_writable(struct cifsInodeInfo *cifs_inode)
4393 {
4394 struct cifsFileInfo *open_file;
4395 struct cifs_tcon *tcon =
4396 cifs_sb_master_tcon(CIFS_SB(cifs_inode->vfs_inode.i_sb));
4397
4398 spin_lock(&tcon->open_file_lock);
4399 list_for_each_entry(open_file, &cifs_inode->openFileList, flist) {
4400 if (OPEN_FMODE(open_file->f_flags) & FMODE_WRITE) {
4401 spin_unlock(&tcon->open_file_lock);
4402 return 1;
4403 }
4404 }
4405 spin_unlock(&tcon->open_file_lock);
4406 return 0;
4407 }
4408
4409 /* We do not want to update the file size from server for inodes
4410 open for write - to avoid races with writepage extending
4411 the file - in the future we could consider allowing
4412 refreshing the inode only on increases in the file size
4413 but this is tricky to do without racing with writebehind
4414 page caching in the current Linux kernel design */
4415 bool is_size_safe_to_change(struct cifsInodeInfo *cifsInode, __u64 end_of_file)
4416 {
4417 if (!cifsInode)
4418 return true;
4419
4420 if (is_inode_writable(cifsInode)) {
4421 /* This inode is open for write at least once */
4422 struct cifs_sb_info *cifs_sb;
4423
4424 cifs_sb = CIFS_SB(cifsInode->vfs_inode.i_sb);
4425 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_DIRECT_IO) {
4426 /* since no page cache to corrupt on directio
4427 we can change size safely */
4428 return true;
4429 }
4430
4431 if (i_size_read(&cifsInode->vfs_inode) < end_of_file)
4432 return true;
4433
4434 return false;
4435 } else
4436 return true;
4437 }
4438
4439 static int cifs_write_begin(struct file *file, struct address_space *mapping,
4440 loff_t pos, unsigned len, unsigned flags,
4441 struct page **pagep, void **fsdata)
4442 {
4443 int oncethru = 0;
4444 pgoff_t index = pos >> PAGE_SHIFT;
4445 loff_t offset = pos & (PAGE_SIZE - 1);
4446 loff_t page_start = pos & PAGE_MASK;
4447 loff_t i_size;
4448 struct page *page;
4449 int rc = 0;
4450
4451 cifs_dbg(FYI, "write_begin from %lld len %d\n", (long long)pos, len);
4452
4453 start:
4454 page = grab_cache_page_write_begin(mapping, index, flags);
4455 if (!page) {
4456 rc = -ENOMEM;
4457 goto out;
4458 }
4459
4460 if (PageUptodate(page))
4461 goto out;
4462
4463 /*
4464 * If we write a full page it will be up to date, no need to read from
4465 * the server. If the write is short, we'll end up doing a sync write
4466 * instead.
4467 */
4468 if (len == PAGE_SIZE)
4469 goto out;
4470
4471 /*
4472 * optimize away the read when we have an oplock, and we're not
4473 * expecting to use any of the data we'd be reading in. That
4474 * is, when the page lies beyond the EOF, or straddles the EOF
4475 * and the write will cover all of the existing data.
4476 */
4477 if (CIFS_CACHE_READ(CIFS_I(mapping->host))) {
4478 i_size = i_size_read(mapping->host);
4479 if (page_start >= i_size ||
4480 (offset == 0 && (pos + len) >= i_size)) {
4481 zero_user_segments(page, 0, offset,
4482 offset + len,
4483 PAGE_SIZE);
4484 /*
4485 * PageChecked means that the parts of the page
4486 * to which we're not writing are considered up
4487 * to date. Once the data is copied to the
4488 * page, it can be set uptodate.
4489 */
4490 SetPageChecked(page);
4491 goto out;
4492 }
4493 }
4494
4495 if ((file->f_flags & O_ACCMODE) != O_WRONLY && !oncethru) {
4496 /*
4497 * might as well read a page, it is fast enough. If we get
4498 * an error, we don't need to return it. cifs_write_end will
4499 * do a sync write instead since PG_uptodate isn't set.
4500 */
4501 cifs_readpage_worker(file, page, &page_start);
4502 put_page(page);
4503 oncethru = 1;
4504 goto start;
4505 } else {
4506 /* we could try using another file handle if there is one -
4507 but how would we lock it to prevent close of that handle
4508 racing with this read? In any case
4509 this will be written out by write_end so is fine */
4510 }
4511 out:
4512 *pagep = page;
4513 return rc;
4514 }
4515
4516 static int cifs_release_page(struct page *page, gfp_t gfp)
4517 {
4518 if (PagePrivate(page))
4519 return 0;
4520
4521 return cifs_fscache_release_page(page, gfp);
4522 }
4523
4524 static void cifs_invalidate_page(struct page *page, unsigned int offset,
4525 unsigned int length)
4526 {
4527 struct cifsInodeInfo *cifsi = CIFS_I(page->mapping->host);
4528
4529 if (offset == 0 && length == PAGE_SIZE)
4530 cifs_fscache_invalidate_page(page, &cifsi->vfs_inode);
4531 }
4532
4533 static int cifs_launder_page(struct page *page)
4534 {
4535 int rc = 0;
4536 loff_t range_start = page_offset(page);
4537 loff_t range_end = range_start + (loff_t)(PAGE_SIZE - 1);
4538 struct writeback_control wbc = {
4539 .sync_mode = WB_SYNC_ALL,
4540 .nr_to_write = 0,
4541 .range_start = range_start,
4542 .range_end = range_end,
4543 };
4544
4545 cifs_dbg(FYI, "Launder page: %p\n", page);
4546
4547 if (clear_page_dirty_for_io(page))
4548 rc = cifs_writepage_locked(page, &wbc);
4549
4550 cifs_fscache_invalidate_page(page, page->mapping->host);
4551 return rc;
4552 }
4553
4554 void cifs_oplock_break(struct work_struct *work)
4555 {
4556 struct cifsFileInfo *cfile = container_of(work, struct cifsFileInfo,
4557 oplock_break);
4558 struct inode *inode = d_inode(cfile->dentry);
4559 struct cifsInodeInfo *cinode = CIFS_I(inode);
4560 struct cifs_tcon *tcon = tlink_tcon(cfile->tlink);
4561 struct TCP_Server_Info *server = tcon->ses->server;
4562 int rc = 0;
4563
4564 wait_on_bit(&cinode->flags, CIFS_INODE_PENDING_WRITERS,
4565 TASK_UNINTERRUPTIBLE);
4566
4567 server->ops->downgrade_oplock(server, cinode,
4568 test_bit(CIFS_INODE_DOWNGRADE_OPLOCK_TO_L2, &cinode->flags));
4569
4570 if (!CIFS_CACHE_WRITE(cinode) && CIFS_CACHE_READ(cinode) &&
4571 cifs_has_mand_locks(cinode)) {
4572 cifs_dbg(FYI, "Reset oplock to None for inode=%p due to mand locks\n",
4573 inode);
4574 cinode->oplock = 0;
4575 }
4576
4577 if (inode && S_ISREG(inode->i_mode)) {
4578 if (CIFS_CACHE_READ(cinode))
4579 break_lease(inode, O_RDONLY);
4580 else
4581 break_lease(inode, O_WRONLY);
4582 rc = filemap_fdatawrite(inode->i_mapping);
4583 if (!CIFS_CACHE_READ(cinode)) {
4584 rc = filemap_fdatawait(inode->i_mapping);
4585 mapping_set_error(inode->i_mapping, rc);
4586 cifs_zap_mapping(inode);
4587 }
4588 cifs_dbg(FYI, "Oplock flush inode %p rc %d\n", inode, rc);
4589 }
4590
4591 rc = cifs_push_locks(cfile);
4592 if (rc)
4593 cifs_dbg(VFS, "Push locks rc = %d\n", rc);
4594
4595 /*
4596 * releasing stale oplock after recent reconnect of smb session using
4597 * a now incorrect file handle is not a data integrity issue but do
4598 * not bother sending an oplock release if session to server still is
4599 * disconnected since oplock already released by the server
4600 */
4601 if (!cfile->oplock_break_cancelled) {
4602 rc = tcon->ses->server->ops->oplock_response(tcon, &cfile->fid,
4603 cinode);
4604 cifs_dbg(FYI, "Oplock release rc = %d\n", rc);
4605 }
4606 cifs_done_oplock_break(cinode);
4607 }
4608
4609 /*
4610 * The presence of cifs_direct_io() in the address space ops vector
4611 * allowes open() O_DIRECT flags which would have failed otherwise.
4612 *
4613 * In the non-cached mode (mount with cache=none), we shunt off direct read and write requests
4614 * so this method should never be called.
4615 *
4616 * Direct IO is not yet supported in the cached mode.
4617 */
4618 static ssize_t
4619 cifs_direct_io(struct kiocb *iocb, struct iov_iter *iter)
4620 {
4621 /*
4622 * FIXME
4623 * Eventually need to support direct IO for non forcedirectio mounts
4624 */
4625 return -EINVAL;
4626 }
4627
4628
4629 const struct address_space_operations cifs_addr_ops = {
4630 .readpage = cifs_readpage,
4631 .readpages = cifs_readpages,
4632 .writepage = cifs_writepage,
4633 .writepages = cifs_writepages,
4634 .write_begin = cifs_write_begin,
4635 .write_end = cifs_write_end,
4636 .set_page_dirty = __set_page_dirty_nobuffers,
4637 .releasepage = cifs_release_page,
4638 .direct_IO = cifs_direct_io,
4639 .invalidatepage = cifs_invalidate_page,
4640 .launder_page = cifs_launder_page,
4641 };
4642
4643 /*
4644 * cifs_readpages requires the server to support a buffer large enough to
4645 * contain the header plus one complete page of data. Otherwise, we need
4646 * to leave cifs_readpages out of the address space operations.
4647 */
4648 const struct address_space_operations cifs_addr_ops_smallbuf = {
4649 .readpage = cifs_readpage,
4650 .writepage = cifs_writepage,
4651 .writepages = cifs_writepages,
4652 .write_begin = cifs_write_begin,
4653 .write_end = cifs_write_end,
4654 .set_page_dirty = __set_page_dirty_nobuffers,
4655 .releasepage = cifs_release_page,
4656 .invalidatepage = cifs_invalidate_page,
4657 .launder_page = cifs_launder_page,
4658 };