]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/cifs/file.c
fs/cifs: reopen persistent handles on reconnect
[mirror_ubuntu-bionic-kernel.git] / fs / cifs / file.c
1 /*
2 * fs/cifs/file.c
3 *
4 * vfs operations that deal with files
5 *
6 * Copyright (C) International Business Machines Corp., 2002,2010
7 * Author(s): Steve French (sfrench@us.ibm.com)
8 * Jeremy Allison (jra@samba.org)
9 *
10 * This library is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU Lesser General Public License as published
12 * by the Free Software Foundation; either version 2.1 of the License, or
13 * (at your option) any later version.
14 *
15 * This library is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
18 * the GNU Lesser General Public License for more details.
19 *
20 * You should have received a copy of the GNU Lesser General Public License
21 * along with this library; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 */
24 #include <linux/fs.h>
25 #include <linux/backing-dev.h>
26 #include <linux/stat.h>
27 #include <linux/fcntl.h>
28 #include <linux/pagemap.h>
29 #include <linux/pagevec.h>
30 #include <linux/writeback.h>
31 #include <linux/task_io_accounting_ops.h>
32 #include <linux/delay.h>
33 #include <linux/mount.h>
34 #include <linux/slab.h>
35 #include <linux/swap.h>
36 #include <asm/div64.h>
37 #include "cifsfs.h"
38 #include "cifspdu.h"
39 #include "cifsglob.h"
40 #include "cifsproto.h"
41 #include "cifs_unicode.h"
42 #include "cifs_debug.h"
43 #include "cifs_fs_sb.h"
44 #include "fscache.h"
45
46
47 static inline int cifs_convert_flags(unsigned int flags)
48 {
49 if ((flags & O_ACCMODE) == O_RDONLY)
50 return GENERIC_READ;
51 else if ((flags & O_ACCMODE) == O_WRONLY)
52 return GENERIC_WRITE;
53 else if ((flags & O_ACCMODE) == O_RDWR) {
54 /* GENERIC_ALL is too much permission to request
55 can cause unnecessary access denied on create */
56 /* return GENERIC_ALL; */
57 return (GENERIC_READ | GENERIC_WRITE);
58 }
59
60 return (READ_CONTROL | FILE_WRITE_ATTRIBUTES | FILE_READ_ATTRIBUTES |
61 FILE_WRITE_EA | FILE_APPEND_DATA | FILE_WRITE_DATA |
62 FILE_READ_DATA);
63 }
64
65 static u32 cifs_posix_convert_flags(unsigned int flags)
66 {
67 u32 posix_flags = 0;
68
69 if ((flags & O_ACCMODE) == O_RDONLY)
70 posix_flags = SMB_O_RDONLY;
71 else if ((flags & O_ACCMODE) == O_WRONLY)
72 posix_flags = SMB_O_WRONLY;
73 else if ((flags & O_ACCMODE) == O_RDWR)
74 posix_flags = SMB_O_RDWR;
75
76 if (flags & O_CREAT) {
77 posix_flags |= SMB_O_CREAT;
78 if (flags & O_EXCL)
79 posix_flags |= SMB_O_EXCL;
80 } else if (flags & O_EXCL)
81 cifs_dbg(FYI, "Application %s pid %d has incorrectly set O_EXCL flag but not O_CREAT on file open. Ignoring O_EXCL\n",
82 current->comm, current->tgid);
83
84 if (flags & O_TRUNC)
85 posix_flags |= SMB_O_TRUNC;
86 /* be safe and imply O_SYNC for O_DSYNC */
87 if (flags & O_DSYNC)
88 posix_flags |= SMB_O_SYNC;
89 if (flags & O_DIRECTORY)
90 posix_flags |= SMB_O_DIRECTORY;
91 if (flags & O_NOFOLLOW)
92 posix_flags |= SMB_O_NOFOLLOW;
93 if (flags & O_DIRECT)
94 posix_flags |= SMB_O_DIRECT;
95
96 return posix_flags;
97 }
98
99 static inline int cifs_get_disposition(unsigned int flags)
100 {
101 if ((flags & (O_CREAT | O_EXCL)) == (O_CREAT | O_EXCL))
102 return FILE_CREATE;
103 else if ((flags & (O_CREAT | O_TRUNC)) == (O_CREAT | O_TRUNC))
104 return FILE_OVERWRITE_IF;
105 else if ((flags & O_CREAT) == O_CREAT)
106 return FILE_OPEN_IF;
107 else if ((flags & O_TRUNC) == O_TRUNC)
108 return FILE_OVERWRITE;
109 else
110 return FILE_OPEN;
111 }
112
113 int cifs_posix_open(char *full_path, struct inode **pinode,
114 struct super_block *sb, int mode, unsigned int f_flags,
115 __u32 *poplock, __u16 *pnetfid, unsigned int xid)
116 {
117 int rc;
118 FILE_UNIX_BASIC_INFO *presp_data;
119 __u32 posix_flags = 0;
120 struct cifs_sb_info *cifs_sb = CIFS_SB(sb);
121 struct cifs_fattr fattr;
122 struct tcon_link *tlink;
123 struct cifs_tcon *tcon;
124
125 cifs_dbg(FYI, "posix open %s\n", full_path);
126
127 presp_data = kzalloc(sizeof(FILE_UNIX_BASIC_INFO), GFP_KERNEL);
128 if (presp_data == NULL)
129 return -ENOMEM;
130
131 tlink = cifs_sb_tlink(cifs_sb);
132 if (IS_ERR(tlink)) {
133 rc = PTR_ERR(tlink);
134 goto posix_open_ret;
135 }
136
137 tcon = tlink_tcon(tlink);
138 mode &= ~current_umask();
139
140 posix_flags = cifs_posix_convert_flags(f_flags);
141 rc = CIFSPOSIXCreate(xid, tcon, posix_flags, mode, pnetfid, presp_data,
142 poplock, full_path, cifs_sb->local_nls,
143 cifs_remap(cifs_sb));
144 cifs_put_tlink(tlink);
145
146 if (rc)
147 goto posix_open_ret;
148
149 if (presp_data->Type == cpu_to_le32(-1))
150 goto posix_open_ret; /* open ok, caller does qpathinfo */
151
152 if (!pinode)
153 goto posix_open_ret; /* caller does not need info */
154
155 cifs_unix_basic_to_fattr(&fattr, presp_data, cifs_sb);
156
157 /* get new inode and set it up */
158 if (*pinode == NULL) {
159 cifs_fill_uniqueid(sb, &fattr);
160 *pinode = cifs_iget(sb, &fattr);
161 if (!*pinode) {
162 rc = -ENOMEM;
163 goto posix_open_ret;
164 }
165 } else {
166 cifs_fattr_to_inode(*pinode, &fattr);
167 }
168
169 posix_open_ret:
170 kfree(presp_data);
171 return rc;
172 }
173
174 static int
175 cifs_nt_open(char *full_path, struct inode *inode, struct cifs_sb_info *cifs_sb,
176 struct cifs_tcon *tcon, unsigned int f_flags, __u32 *oplock,
177 struct cifs_fid *fid, unsigned int xid)
178 {
179 int rc;
180 int desired_access;
181 int disposition;
182 int create_options = CREATE_NOT_DIR;
183 FILE_ALL_INFO *buf;
184 struct TCP_Server_Info *server = tcon->ses->server;
185 struct cifs_open_parms oparms;
186
187 if (!server->ops->open)
188 return -ENOSYS;
189
190 desired_access = cifs_convert_flags(f_flags);
191
192 /*********************************************************************
193 * open flag mapping table:
194 *
195 * POSIX Flag CIFS Disposition
196 * ---------- ----------------
197 * O_CREAT FILE_OPEN_IF
198 * O_CREAT | O_EXCL FILE_CREATE
199 * O_CREAT | O_TRUNC FILE_OVERWRITE_IF
200 * O_TRUNC FILE_OVERWRITE
201 * none of the above FILE_OPEN
202 *
203 * Note that there is not a direct match between disposition
204 * FILE_SUPERSEDE (ie create whether or not file exists although
205 * O_CREAT | O_TRUNC is similar but truncates the existing
206 * file rather than creating a new file as FILE_SUPERSEDE does
207 * (which uses the attributes / metadata passed in on open call)
208 *?
209 *? O_SYNC is a reasonable match to CIFS writethrough flag
210 *? and the read write flags match reasonably. O_LARGEFILE
211 *? is irrelevant because largefile support is always used
212 *? by this client. Flags O_APPEND, O_DIRECT, O_DIRECTORY,
213 * O_FASYNC, O_NOFOLLOW, O_NONBLOCK need further investigation
214 *********************************************************************/
215
216 disposition = cifs_get_disposition(f_flags);
217
218 /* BB pass O_SYNC flag through on file attributes .. BB */
219
220 buf = kmalloc(sizeof(FILE_ALL_INFO), GFP_KERNEL);
221 if (!buf)
222 return -ENOMEM;
223
224 if (backup_cred(cifs_sb))
225 create_options |= CREATE_OPEN_BACKUP_INTENT;
226
227 oparms.tcon = tcon;
228 oparms.cifs_sb = cifs_sb;
229 oparms.desired_access = desired_access;
230 oparms.create_options = create_options;
231 oparms.disposition = disposition;
232 oparms.path = full_path;
233 oparms.fid = fid;
234 oparms.reconnect = false;
235
236 rc = server->ops->open(xid, &oparms, oplock, buf);
237
238 if (rc)
239 goto out;
240
241 if (tcon->unix_ext)
242 rc = cifs_get_inode_info_unix(&inode, full_path, inode->i_sb,
243 xid);
244 else
245 rc = cifs_get_inode_info(&inode, full_path, buf, inode->i_sb,
246 xid, fid);
247
248 out:
249 kfree(buf);
250 return rc;
251 }
252
253 static bool
254 cifs_has_mand_locks(struct cifsInodeInfo *cinode)
255 {
256 struct cifs_fid_locks *cur;
257 bool has_locks = false;
258
259 down_read(&cinode->lock_sem);
260 list_for_each_entry(cur, &cinode->llist, llist) {
261 if (!list_empty(&cur->locks)) {
262 has_locks = true;
263 break;
264 }
265 }
266 up_read(&cinode->lock_sem);
267 return has_locks;
268 }
269
270 struct cifsFileInfo *
271 cifs_new_fileinfo(struct cifs_fid *fid, struct file *file,
272 struct tcon_link *tlink, __u32 oplock)
273 {
274 struct dentry *dentry = file_dentry(file);
275 struct inode *inode = d_inode(dentry);
276 struct cifsInodeInfo *cinode = CIFS_I(inode);
277 struct cifsFileInfo *cfile;
278 struct cifs_fid_locks *fdlocks;
279 struct cifs_tcon *tcon = tlink_tcon(tlink);
280 struct TCP_Server_Info *server = tcon->ses->server;
281
282 cfile = kzalloc(sizeof(struct cifsFileInfo), GFP_KERNEL);
283 if (cfile == NULL)
284 return cfile;
285
286 fdlocks = kzalloc(sizeof(struct cifs_fid_locks), GFP_KERNEL);
287 if (!fdlocks) {
288 kfree(cfile);
289 return NULL;
290 }
291
292 INIT_LIST_HEAD(&fdlocks->locks);
293 fdlocks->cfile = cfile;
294 cfile->llist = fdlocks;
295 down_write(&cinode->lock_sem);
296 list_add(&fdlocks->llist, &cinode->llist);
297 up_write(&cinode->lock_sem);
298
299 cfile->count = 1;
300 cfile->pid = current->tgid;
301 cfile->uid = current_fsuid();
302 cfile->dentry = dget(dentry);
303 cfile->f_flags = file->f_flags;
304 cfile->invalidHandle = false;
305 cfile->tlink = cifs_get_tlink(tlink);
306 INIT_WORK(&cfile->oplock_break, cifs_oplock_break);
307 mutex_init(&cfile->fh_mutex);
308 spin_lock_init(&cfile->file_info_lock);
309
310 cifs_sb_active(inode->i_sb);
311
312 /*
313 * If the server returned a read oplock and we have mandatory brlocks,
314 * set oplock level to None.
315 */
316 if (server->ops->is_read_op(oplock) && cifs_has_mand_locks(cinode)) {
317 cifs_dbg(FYI, "Reset oplock val from read to None due to mand locks\n");
318 oplock = 0;
319 }
320
321 spin_lock(&tcon->open_file_lock);
322 if (fid->pending_open->oplock != CIFS_OPLOCK_NO_CHANGE && oplock)
323 oplock = fid->pending_open->oplock;
324 list_del(&fid->pending_open->olist);
325
326 fid->purge_cache = false;
327 server->ops->set_fid(cfile, fid, oplock);
328
329 list_add(&cfile->tlist, &tcon->openFileList);
330
331 /* if readable file instance put first in list*/
332 if (file->f_mode & FMODE_READ)
333 list_add(&cfile->flist, &cinode->openFileList);
334 else
335 list_add_tail(&cfile->flist, &cinode->openFileList);
336 spin_unlock(&tcon->open_file_lock);
337
338 if (fid->purge_cache)
339 cifs_zap_mapping(inode);
340
341 file->private_data = cfile;
342 return cfile;
343 }
344
345 struct cifsFileInfo *
346 cifsFileInfo_get(struct cifsFileInfo *cifs_file)
347 {
348 spin_lock(&cifs_file->file_info_lock);
349 cifsFileInfo_get_locked(cifs_file);
350 spin_unlock(&cifs_file->file_info_lock);
351 return cifs_file;
352 }
353
354 /*
355 * Release a reference on the file private data. This may involve closing
356 * the filehandle out on the server. Must be called without holding
357 * tcon->open_file_lock and cifs_file->file_info_lock.
358 */
359 void cifsFileInfo_put(struct cifsFileInfo *cifs_file)
360 {
361 struct inode *inode = d_inode(cifs_file->dentry);
362 struct cifs_tcon *tcon = tlink_tcon(cifs_file->tlink);
363 struct TCP_Server_Info *server = tcon->ses->server;
364 struct cifsInodeInfo *cifsi = CIFS_I(inode);
365 struct super_block *sb = inode->i_sb;
366 struct cifs_sb_info *cifs_sb = CIFS_SB(sb);
367 struct cifsLockInfo *li, *tmp;
368 struct cifs_fid fid;
369 struct cifs_pending_open open;
370 bool oplock_break_cancelled;
371
372 spin_lock(&tcon->open_file_lock);
373
374 spin_lock(&cifs_file->file_info_lock);
375 if (--cifs_file->count > 0) {
376 spin_unlock(&cifs_file->file_info_lock);
377 spin_unlock(&tcon->open_file_lock);
378 return;
379 }
380 spin_unlock(&cifs_file->file_info_lock);
381
382 if (server->ops->get_lease_key)
383 server->ops->get_lease_key(inode, &fid);
384
385 /* store open in pending opens to make sure we don't miss lease break */
386 cifs_add_pending_open_locked(&fid, cifs_file->tlink, &open);
387
388 /* remove it from the lists */
389 list_del(&cifs_file->flist);
390 list_del(&cifs_file->tlist);
391
392 if (list_empty(&cifsi->openFileList)) {
393 cifs_dbg(FYI, "closing last open instance for inode %p\n",
394 d_inode(cifs_file->dentry));
395 /*
396 * In strict cache mode we need invalidate mapping on the last
397 * close because it may cause a error when we open this file
398 * again and get at least level II oplock.
399 */
400 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_STRICT_IO)
401 set_bit(CIFS_INO_INVALID_MAPPING, &cifsi->flags);
402 cifs_set_oplock_level(cifsi, 0);
403 }
404
405 spin_unlock(&tcon->open_file_lock);
406
407 oplock_break_cancelled = cancel_work_sync(&cifs_file->oplock_break);
408
409 if (!tcon->need_reconnect && !cifs_file->invalidHandle) {
410 struct TCP_Server_Info *server = tcon->ses->server;
411 unsigned int xid;
412
413 xid = get_xid();
414 if (server->ops->close)
415 server->ops->close(xid, tcon, &cifs_file->fid);
416 _free_xid(xid);
417 }
418
419 if (oplock_break_cancelled)
420 cifs_done_oplock_break(cifsi);
421
422 cifs_del_pending_open(&open);
423
424 /*
425 * Delete any outstanding lock records. We'll lose them when the file
426 * is closed anyway.
427 */
428 down_write(&cifsi->lock_sem);
429 list_for_each_entry_safe(li, tmp, &cifs_file->llist->locks, llist) {
430 list_del(&li->llist);
431 cifs_del_lock_waiters(li);
432 kfree(li);
433 }
434 list_del(&cifs_file->llist->llist);
435 kfree(cifs_file->llist);
436 up_write(&cifsi->lock_sem);
437
438 cifs_put_tlink(cifs_file->tlink);
439 dput(cifs_file->dentry);
440 cifs_sb_deactive(sb);
441 kfree(cifs_file);
442 }
443
444 int cifs_open(struct inode *inode, struct file *file)
445
446 {
447 int rc = -EACCES;
448 unsigned int xid;
449 __u32 oplock;
450 struct cifs_sb_info *cifs_sb;
451 struct TCP_Server_Info *server;
452 struct cifs_tcon *tcon;
453 struct tcon_link *tlink;
454 struct cifsFileInfo *cfile = NULL;
455 char *full_path = NULL;
456 bool posix_open_ok = false;
457 struct cifs_fid fid;
458 struct cifs_pending_open open;
459
460 xid = get_xid();
461
462 cifs_sb = CIFS_SB(inode->i_sb);
463 tlink = cifs_sb_tlink(cifs_sb);
464 if (IS_ERR(tlink)) {
465 free_xid(xid);
466 return PTR_ERR(tlink);
467 }
468 tcon = tlink_tcon(tlink);
469 server = tcon->ses->server;
470
471 full_path = build_path_from_dentry(file_dentry(file));
472 if (full_path == NULL) {
473 rc = -ENOMEM;
474 goto out;
475 }
476
477 cifs_dbg(FYI, "inode = 0x%p file flags are 0x%x for %s\n",
478 inode, file->f_flags, full_path);
479
480 if (file->f_flags & O_DIRECT &&
481 cifs_sb->mnt_cifs_flags & CIFS_MOUNT_STRICT_IO) {
482 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_NO_BRL)
483 file->f_op = &cifs_file_direct_nobrl_ops;
484 else
485 file->f_op = &cifs_file_direct_ops;
486 }
487
488 if (server->oplocks)
489 oplock = REQ_OPLOCK;
490 else
491 oplock = 0;
492
493 if (!tcon->broken_posix_open && tcon->unix_ext &&
494 cap_unix(tcon->ses) && (CIFS_UNIX_POSIX_PATH_OPS_CAP &
495 le64_to_cpu(tcon->fsUnixInfo.Capability))) {
496 /* can not refresh inode info since size could be stale */
497 rc = cifs_posix_open(full_path, &inode, inode->i_sb,
498 cifs_sb->mnt_file_mode /* ignored */,
499 file->f_flags, &oplock, &fid.netfid, xid);
500 if (rc == 0) {
501 cifs_dbg(FYI, "posix open succeeded\n");
502 posix_open_ok = true;
503 } else if ((rc == -EINVAL) || (rc == -EOPNOTSUPP)) {
504 if (tcon->ses->serverNOS)
505 cifs_dbg(VFS, "server %s of type %s returned unexpected error on SMB posix open, disabling posix open support. Check if server update available.\n",
506 tcon->ses->serverName,
507 tcon->ses->serverNOS);
508 tcon->broken_posix_open = true;
509 } else if ((rc != -EIO) && (rc != -EREMOTE) &&
510 (rc != -EOPNOTSUPP)) /* path not found or net err */
511 goto out;
512 /*
513 * Else fallthrough to retry open the old way on network i/o
514 * or DFS errors.
515 */
516 }
517
518 if (server->ops->get_lease_key)
519 server->ops->get_lease_key(inode, &fid);
520
521 cifs_add_pending_open(&fid, tlink, &open);
522
523 if (!posix_open_ok) {
524 if (server->ops->get_lease_key)
525 server->ops->get_lease_key(inode, &fid);
526
527 rc = cifs_nt_open(full_path, inode, cifs_sb, tcon,
528 file->f_flags, &oplock, &fid, xid);
529 if (rc) {
530 cifs_del_pending_open(&open);
531 goto out;
532 }
533 }
534
535 cfile = cifs_new_fileinfo(&fid, file, tlink, oplock);
536 if (cfile == NULL) {
537 if (server->ops->close)
538 server->ops->close(xid, tcon, &fid);
539 cifs_del_pending_open(&open);
540 rc = -ENOMEM;
541 goto out;
542 }
543
544 cifs_fscache_set_inode_cookie(inode, file);
545
546 if ((oplock & CIFS_CREATE_ACTION) && !posix_open_ok && tcon->unix_ext) {
547 /*
548 * Time to set mode which we can not set earlier due to
549 * problems creating new read-only files.
550 */
551 struct cifs_unix_set_info_args args = {
552 .mode = inode->i_mode,
553 .uid = INVALID_UID, /* no change */
554 .gid = INVALID_GID, /* no change */
555 .ctime = NO_CHANGE_64,
556 .atime = NO_CHANGE_64,
557 .mtime = NO_CHANGE_64,
558 .device = 0,
559 };
560 CIFSSMBUnixSetFileInfo(xid, tcon, &args, fid.netfid,
561 cfile->pid);
562 }
563
564 out:
565 kfree(full_path);
566 free_xid(xid);
567 cifs_put_tlink(tlink);
568 return rc;
569 }
570
571 static int cifs_push_posix_locks(struct cifsFileInfo *cfile);
572
573 /*
574 * Try to reacquire byte range locks that were released when session
575 * to server was lost.
576 */
577 static int
578 cifs_relock_file(struct cifsFileInfo *cfile)
579 {
580 struct cifs_sb_info *cifs_sb = CIFS_SB(cfile->dentry->d_sb);
581 struct cifsInodeInfo *cinode = CIFS_I(d_inode(cfile->dentry));
582 struct cifs_tcon *tcon = tlink_tcon(cfile->tlink);
583 int rc = 0;
584
585 down_read(&cinode->lock_sem);
586 if (cinode->can_cache_brlcks) {
587 /* can cache locks - no need to relock */
588 up_read(&cinode->lock_sem);
589 return rc;
590 }
591
592 if (cap_unix(tcon->ses) &&
593 (CIFS_UNIX_FCNTL_CAP & le64_to_cpu(tcon->fsUnixInfo.Capability)) &&
594 ((cifs_sb->mnt_cifs_flags & CIFS_MOUNT_NOPOSIXBRL) == 0))
595 rc = cifs_push_posix_locks(cfile);
596 else
597 rc = tcon->ses->server->ops->push_mand_locks(cfile);
598
599 up_read(&cinode->lock_sem);
600 return rc;
601 }
602
603 static int
604 cifs_reopen_file(struct cifsFileInfo *cfile, bool can_flush)
605 {
606 int rc = -EACCES;
607 unsigned int xid;
608 __u32 oplock;
609 struct cifs_sb_info *cifs_sb;
610 struct cifs_tcon *tcon;
611 struct TCP_Server_Info *server;
612 struct cifsInodeInfo *cinode;
613 struct inode *inode;
614 char *full_path = NULL;
615 int desired_access;
616 int disposition = FILE_OPEN;
617 int create_options = CREATE_NOT_DIR;
618 struct cifs_open_parms oparms;
619
620 xid = get_xid();
621 mutex_lock(&cfile->fh_mutex);
622 if (!cfile->invalidHandle) {
623 mutex_unlock(&cfile->fh_mutex);
624 rc = 0;
625 free_xid(xid);
626 return rc;
627 }
628
629 inode = d_inode(cfile->dentry);
630 cifs_sb = CIFS_SB(inode->i_sb);
631 tcon = tlink_tcon(cfile->tlink);
632 server = tcon->ses->server;
633
634 /*
635 * Can not grab rename sem here because various ops, including those
636 * that already have the rename sem can end up causing writepage to get
637 * called and if the server was down that means we end up here, and we
638 * can never tell if the caller already has the rename_sem.
639 */
640 full_path = build_path_from_dentry(cfile->dentry);
641 if (full_path == NULL) {
642 rc = -ENOMEM;
643 mutex_unlock(&cfile->fh_mutex);
644 free_xid(xid);
645 return rc;
646 }
647
648 cifs_dbg(FYI, "inode = 0x%p file flags 0x%x for %s\n",
649 inode, cfile->f_flags, full_path);
650
651 if (tcon->ses->server->oplocks)
652 oplock = REQ_OPLOCK;
653 else
654 oplock = 0;
655
656 if (tcon->unix_ext && cap_unix(tcon->ses) &&
657 (CIFS_UNIX_POSIX_PATH_OPS_CAP &
658 le64_to_cpu(tcon->fsUnixInfo.Capability))) {
659 /*
660 * O_CREAT, O_EXCL and O_TRUNC already had their effect on the
661 * original open. Must mask them off for a reopen.
662 */
663 unsigned int oflags = cfile->f_flags &
664 ~(O_CREAT | O_EXCL | O_TRUNC);
665
666 rc = cifs_posix_open(full_path, NULL, inode->i_sb,
667 cifs_sb->mnt_file_mode /* ignored */,
668 oflags, &oplock, &cfile->fid.netfid, xid);
669 if (rc == 0) {
670 cifs_dbg(FYI, "posix reopen succeeded\n");
671 oparms.reconnect = true;
672 goto reopen_success;
673 }
674 /*
675 * fallthrough to retry open the old way on errors, especially
676 * in the reconnect path it is important to retry hard
677 */
678 }
679
680 desired_access = cifs_convert_flags(cfile->f_flags);
681
682 if (backup_cred(cifs_sb))
683 create_options |= CREATE_OPEN_BACKUP_INTENT;
684
685 if (server->ops->get_lease_key)
686 server->ops->get_lease_key(inode, &cfile->fid);
687
688 oparms.tcon = tcon;
689 oparms.cifs_sb = cifs_sb;
690 oparms.desired_access = desired_access;
691 oparms.create_options = create_options;
692 oparms.disposition = disposition;
693 oparms.path = full_path;
694 oparms.fid = &cfile->fid;
695 oparms.reconnect = true;
696
697 /*
698 * Can not refresh inode by passing in file_info buf to be returned by
699 * ops->open and then calling get_inode_info with returned buf since
700 * file might have write behind data that needs to be flushed and server
701 * version of file size can be stale. If we knew for sure that inode was
702 * not dirty locally we could do this.
703 */
704 rc = server->ops->open(xid, &oparms, &oplock, NULL);
705 if (rc == -ENOENT && oparms.reconnect == false) {
706 /* durable handle timeout is expired - open the file again */
707 rc = server->ops->open(xid, &oparms, &oplock, NULL);
708 /* indicate that we need to relock the file */
709 oparms.reconnect = true;
710 }
711
712 if (rc) {
713 mutex_unlock(&cfile->fh_mutex);
714 cifs_dbg(FYI, "cifs_reopen returned 0x%x\n", rc);
715 cifs_dbg(FYI, "oplock: %d\n", oplock);
716 goto reopen_error_exit;
717 }
718
719 reopen_success:
720 cfile->invalidHandle = false;
721 mutex_unlock(&cfile->fh_mutex);
722 cinode = CIFS_I(inode);
723
724 if (can_flush) {
725 rc = filemap_write_and_wait(inode->i_mapping);
726 mapping_set_error(inode->i_mapping, rc);
727
728 if (tcon->unix_ext)
729 rc = cifs_get_inode_info_unix(&inode, full_path,
730 inode->i_sb, xid);
731 else
732 rc = cifs_get_inode_info(&inode, full_path, NULL,
733 inode->i_sb, xid, NULL);
734 }
735 /*
736 * Else we are writing out data to server already and could deadlock if
737 * we tried to flush data, and since we do not know if we have data that
738 * would invalidate the current end of file on the server we can not go
739 * to the server to get the new inode info.
740 */
741
742 server->ops->set_fid(cfile, &cfile->fid, oplock);
743 if (oparms.reconnect)
744 cifs_relock_file(cfile);
745
746 reopen_error_exit:
747 kfree(full_path);
748 free_xid(xid);
749 return rc;
750 }
751
752 int cifs_close(struct inode *inode, struct file *file)
753 {
754 if (file->private_data != NULL) {
755 cifsFileInfo_put(file->private_data);
756 file->private_data = NULL;
757 }
758
759 /* return code from the ->release op is always ignored */
760 return 0;
761 }
762
763 void
764 cifs_reopen_persistent_handles(struct cifs_tcon *tcon)
765 {
766 struct cifsFileInfo *open_file = NULL;
767 struct list_head *tmp;
768 struct list_head *tmp1;
769
770 /* list all files open on tree connection, reopen resilient handles */
771 spin_lock(&tcon->open_file_lock);
772 list_for_each_safe(tmp, tmp1, &tcon->openFileList) {
773 open_file = list_entry(tmp, struct cifsFileInfo, tlist);
774 spin_unlock(&tcon->open_file_lock);
775 cifs_reopen_file(open_file, false /* do not flush */);
776 spin_lock(&tcon->open_file_lock);
777 }
778 spin_unlock(&tcon->open_file_lock);
779 }
780
781 int cifs_closedir(struct inode *inode, struct file *file)
782 {
783 int rc = 0;
784 unsigned int xid;
785 struct cifsFileInfo *cfile = file->private_data;
786 struct cifs_tcon *tcon;
787 struct TCP_Server_Info *server;
788 char *buf;
789
790 cifs_dbg(FYI, "Closedir inode = 0x%p\n", inode);
791
792 if (cfile == NULL)
793 return rc;
794
795 xid = get_xid();
796 tcon = tlink_tcon(cfile->tlink);
797 server = tcon->ses->server;
798
799 cifs_dbg(FYI, "Freeing private data in close dir\n");
800 spin_lock(&cfile->file_info_lock);
801 if (server->ops->dir_needs_close(cfile)) {
802 cfile->invalidHandle = true;
803 spin_unlock(&cfile->file_info_lock);
804 if (server->ops->close_dir)
805 rc = server->ops->close_dir(xid, tcon, &cfile->fid);
806 else
807 rc = -ENOSYS;
808 cifs_dbg(FYI, "Closing uncompleted readdir with rc %d\n", rc);
809 /* not much we can do if it fails anyway, ignore rc */
810 rc = 0;
811 } else
812 spin_unlock(&cfile->file_info_lock);
813
814 buf = cfile->srch_inf.ntwrk_buf_start;
815 if (buf) {
816 cifs_dbg(FYI, "closedir free smb buf in srch struct\n");
817 cfile->srch_inf.ntwrk_buf_start = NULL;
818 if (cfile->srch_inf.smallBuf)
819 cifs_small_buf_release(buf);
820 else
821 cifs_buf_release(buf);
822 }
823
824 cifs_put_tlink(cfile->tlink);
825 kfree(file->private_data);
826 file->private_data = NULL;
827 /* BB can we lock the filestruct while this is going on? */
828 free_xid(xid);
829 return rc;
830 }
831
832 static struct cifsLockInfo *
833 cifs_lock_init(__u64 offset, __u64 length, __u8 type)
834 {
835 struct cifsLockInfo *lock =
836 kmalloc(sizeof(struct cifsLockInfo), GFP_KERNEL);
837 if (!lock)
838 return lock;
839 lock->offset = offset;
840 lock->length = length;
841 lock->type = type;
842 lock->pid = current->tgid;
843 INIT_LIST_HEAD(&lock->blist);
844 init_waitqueue_head(&lock->block_q);
845 return lock;
846 }
847
848 void
849 cifs_del_lock_waiters(struct cifsLockInfo *lock)
850 {
851 struct cifsLockInfo *li, *tmp;
852 list_for_each_entry_safe(li, tmp, &lock->blist, blist) {
853 list_del_init(&li->blist);
854 wake_up(&li->block_q);
855 }
856 }
857
858 #define CIFS_LOCK_OP 0
859 #define CIFS_READ_OP 1
860 #define CIFS_WRITE_OP 2
861
862 /* @rw_check : 0 - no op, 1 - read, 2 - write */
863 static bool
864 cifs_find_fid_lock_conflict(struct cifs_fid_locks *fdlocks, __u64 offset,
865 __u64 length, __u8 type, struct cifsFileInfo *cfile,
866 struct cifsLockInfo **conf_lock, int rw_check)
867 {
868 struct cifsLockInfo *li;
869 struct cifsFileInfo *cur_cfile = fdlocks->cfile;
870 struct TCP_Server_Info *server = tlink_tcon(cfile->tlink)->ses->server;
871
872 list_for_each_entry(li, &fdlocks->locks, llist) {
873 if (offset + length <= li->offset ||
874 offset >= li->offset + li->length)
875 continue;
876 if (rw_check != CIFS_LOCK_OP && current->tgid == li->pid &&
877 server->ops->compare_fids(cfile, cur_cfile)) {
878 /* shared lock prevents write op through the same fid */
879 if (!(li->type & server->vals->shared_lock_type) ||
880 rw_check != CIFS_WRITE_OP)
881 continue;
882 }
883 if ((type & server->vals->shared_lock_type) &&
884 ((server->ops->compare_fids(cfile, cur_cfile) &&
885 current->tgid == li->pid) || type == li->type))
886 continue;
887 if (conf_lock)
888 *conf_lock = li;
889 return true;
890 }
891 return false;
892 }
893
894 bool
895 cifs_find_lock_conflict(struct cifsFileInfo *cfile, __u64 offset, __u64 length,
896 __u8 type, struct cifsLockInfo **conf_lock,
897 int rw_check)
898 {
899 bool rc = false;
900 struct cifs_fid_locks *cur;
901 struct cifsInodeInfo *cinode = CIFS_I(d_inode(cfile->dentry));
902
903 list_for_each_entry(cur, &cinode->llist, llist) {
904 rc = cifs_find_fid_lock_conflict(cur, offset, length, type,
905 cfile, conf_lock, rw_check);
906 if (rc)
907 break;
908 }
909
910 return rc;
911 }
912
913 /*
914 * Check if there is another lock that prevents us to set the lock (mandatory
915 * style). If such a lock exists, update the flock structure with its
916 * properties. Otherwise, set the flock type to F_UNLCK if we can cache brlocks
917 * or leave it the same if we can't. Returns 0 if we don't need to request to
918 * the server or 1 otherwise.
919 */
920 static int
921 cifs_lock_test(struct cifsFileInfo *cfile, __u64 offset, __u64 length,
922 __u8 type, struct file_lock *flock)
923 {
924 int rc = 0;
925 struct cifsLockInfo *conf_lock;
926 struct cifsInodeInfo *cinode = CIFS_I(d_inode(cfile->dentry));
927 struct TCP_Server_Info *server = tlink_tcon(cfile->tlink)->ses->server;
928 bool exist;
929
930 down_read(&cinode->lock_sem);
931
932 exist = cifs_find_lock_conflict(cfile, offset, length, type,
933 &conf_lock, CIFS_LOCK_OP);
934 if (exist) {
935 flock->fl_start = conf_lock->offset;
936 flock->fl_end = conf_lock->offset + conf_lock->length - 1;
937 flock->fl_pid = conf_lock->pid;
938 if (conf_lock->type & server->vals->shared_lock_type)
939 flock->fl_type = F_RDLCK;
940 else
941 flock->fl_type = F_WRLCK;
942 } else if (!cinode->can_cache_brlcks)
943 rc = 1;
944 else
945 flock->fl_type = F_UNLCK;
946
947 up_read(&cinode->lock_sem);
948 return rc;
949 }
950
951 static void
952 cifs_lock_add(struct cifsFileInfo *cfile, struct cifsLockInfo *lock)
953 {
954 struct cifsInodeInfo *cinode = CIFS_I(d_inode(cfile->dentry));
955 down_write(&cinode->lock_sem);
956 list_add_tail(&lock->llist, &cfile->llist->locks);
957 up_write(&cinode->lock_sem);
958 }
959
960 /*
961 * Set the byte-range lock (mandatory style). Returns:
962 * 1) 0, if we set the lock and don't need to request to the server;
963 * 2) 1, if no locks prevent us but we need to request to the server;
964 * 3) -EACCESS, if there is a lock that prevents us and wait is false.
965 */
966 static int
967 cifs_lock_add_if(struct cifsFileInfo *cfile, struct cifsLockInfo *lock,
968 bool wait)
969 {
970 struct cifsLockInfo *conf_lock;
971 struct cifsInodeInfo *cinode = CIFS_I(d_inode(cfile->dentry));
972 bool exist;
973 int rc = 0;
974
975 try_again:
976 exist = false;
977 down_write(&cinode->lock_sem);
978
979 exist = cifs_find_lock_conflict(cfile, lock->offset, lock->length,
980 lock->type, &conf_lock, CIFS_LOCK_OP);
981 if (!exist && cinode->can_cache_brlcks) {
982 list_add_tail(&lock->llist, &cfile->llist->locks);
983 up_write(&cinode->lock_sem);
984 return rc;
985 }
986
987 if (!exist)
988 rc = 1;
989 else if (!wait)
990 rc = -EACCES;
991 else {
992 list_add_tail(&lock->blist, &conf_lock->blist);
993 up_write(&cinode->lock_sem);
994 rc = wait_event_interruptible(lock->block_q,
995 (lock->blist.prev == &lock->blist) &&
996 (lock->blist.next == &lock->blist));
997 if (!rc)
998 goto try_again;
999 down_write(&cinode->lock_sem);
1000 list_del_init(&lock->blist);
1001 }
1002
1003 up_write(&cinode->lock_sem);
1004 return rc;
1005 }
1006
1007 /*
1008 * Check if there is another lock that prevents us to set the lock (posix
1009 * style). If such a lock exists, update the flock structure with its
1010 * properties. Otherwise, set the flock type to F_UNLCK if we can cache brlocks
1011 * or leave it the same if we can't. Returns 0 if we don't need to request to
1012 * the server or 1 otherwise.
1013 */
1014 static int
1015 cifs_posix_lock_test(struct file *file, struct file_lock *flock)
1016 {
1017 int rc = 0;
1018 struct cifsInodeInfo *cinode = CIFS_I(file_inode(file));
1019 unsigned char saved_type = flock->fl_type;
1020
1021 if ((flock->fl_flags & FL_POSIX) == 0)
1022 return 1;
1023
1024 down_read(&cinode->lock_sem);
1025 posix_test_lock(file, flock);
1026
1027 if (flock->fl_type == F_UNLCK && !cinode->can_cache_brlcks) {
1028 flock->fl_type = saved_type;
1029 rc = 1;
1030 }
1031
1032 up_read(&cinode->lock_sem);
1033 return rc;
1034 }
1035
1036 /*
1037 * Set the byte-range lock (posix style). Returns:
1038 * 1) 0, if we set the lock and don't need to request to the server;
1039 * 2) 1, if we need to request to the server;
1040 * 3) <0, if the error occurs while setting the lock.
1041 */
1042 static int
1043 cifs_posix_lock_set(struct file *file, struct file_lock *flock)
1044 {
1045 struct cifsInodeInfo *cinode = CIFS_I(file_inode(file));
1046 int rc = 1;
1047
1048 if ((flock->fl_flags & FL_POSIX) == 0)
1049 return rc;
1050
1051 try_again:
1052 down_write(&cinode->lock_sem);
1053 if (!cinode->can_cache_brlcks) {
1054 up_write(&cinode->lock_sem);
1055 return rc;
1056 }
1057
1058 rc = posix_lock_file(file, flock, NULL);
1059 up_write(&cinode->lock_sem);
1060 if (rc == FILE_LOCK_DEFERRED) {
1061 rc = wait_event_interruptible(flock->fl_wait, !flock->fl_next);
1062 if (!rc)
1063 goto try_again;
1064 posix_unblock_lock(flock);
1065 }
1066 return rc;
1067 }
1068
1069 int
1070 cifs_push_mandatory_locks(struct cifsFileInfo *cfile)
1071 {
1072 unsigned int xid;
1073 int rc = 0, stored_rc;
1074 struct cifsLockInfo *li, *tmp;
1075 struct cifs_tcon *tcon;
1076 unsigned int num, max_num, max_buf;
1077 LOCKING_ANDX_RANGE *buf, *cur;
1078 int types[] = {LOCKING_ANDX_LARGE_FILES,
1079 LOCKING_ANDX_SHARED_LOCK | LOCKING_ANDX_LARGE_FILES};
1080 int i;
1081
1082 xid = get_xid();
1083 tcon = tlink_tcon(cfile->tlink);
1084
1085 /*
1086 * Accessing maxBuf is racy with cifs_reconnect - need to store value
1087 * and check it for zero before using.
1088 */
1089 max_buf = tcon->ses->server->maxBuf;
1090 if (!max_buf) {
1091 free_xid(xid);
1092 return -EINVAL;
1093 }
1094
1095 max_num = (max_buf - sizeof(struct smb_hdr)) /
1096 sizeof(LOCKING_ANDX_RANGE);
1097 buf = kcalloc(max_num, sizeof(LOCKING_ANDX_RANGE), GFP_KERNEL);
1098 if (!buf) {
1099 free_xid(xid);
1100 return -ENOMEM;
1101 }
1102
1103 for (i = 0; i < 2; i++) {
1104 cur = buf;
1105 num = 0;
1106 list_for_each_entry_safe(li, tmp, &cfile->llist->locks, llist) {
1107 if (li->type != types[i])
1108 continue;
1109 cur->Pid = cpu_to_le16(li->pid);
1110 cur->LengthLow = cpu_to_le32((u32)li->length);
1111 cur->LengthHigh = cpu_to_le32((u32)(li->length>>32));
1112 cur->OffsetLow = cpu_to_le32((u32)li->offset);
1113 cur->OffsetHigh = cpu_to_le32((u32)(li->offset>>32));
1114 if (++num == max_num) {
1115 stored_rc = cifs_lockv(xid, tcon,
1116 cfile->fid.netfid,
1117 (__u8)li->type, 0, num,
1118 buf);
1119 if (stored_rc)
1120 rc = stored_rc;
1121 cur = buf;
1122 num = 0;
1123 } else
1124 cur++;
1125 }
1126
1127 if (num) {
1128 stored_rc = cifs_lockv(xid, tcon, cfile->fid.netfid,
1129 (__u8)types[i], 0, num, buf);
1130 if (stored_rc)
1131 rc = stored_rc;
1132 }
1133 }
1134
1135 kfree(buf);
1136 free_xid(xid);
1137 return rc;
1138 }
1139
1140 static __u32
1141 hash_lockowner(fl_owner_t owner)
1142 {
1143 return cifs_lock_secret ^ hash32_ptr((const void *)owner);
1144 }
1145
1146 struct lock_to_push {
1147 struct list_head llist;
1148 __u64 offset;
1149 __u64 length;
1150 __u32 pid;
1151 __u16 netfid;
1152 __u8 type;
1153 };
1154
1155 static int
1156 cifs_push_posix_locks(struct cifsFileInfo *cfile)
1157 {
1158 struct inode *inode = d_inode(cfile->dentry);
1159 struct cifs_tcon *tcon = tlink_tcon(cfile->tlink);
1160 struct file_lock *flock;
1161 struct file_lock_context *flctx = inode->i_flctx;
1162 unsigned int count = 0, i;
1163 int rc = 0, xid, type;
1164 struct list_head locks_to_send, *el;
1165 struct lock_to_push *lck, *tmp;
1166 __u64 length;
1167
1168 xid = get_xid();
1169
1170 if (!flctx)
1171 goto out;
1172
1173 spin_lock(&flctx->flc_lock);
1174 list_for_each(el, &flctx->flc_posix) {
1175 count++;
1176 }
1177 spin_unlock(&flctx->flc_lock);
1178
1179 INIT_LIST_HEAD(&locks_to_send);
1180
1181 /*
1182 * Allocating count locks is enough because no FL_POSIX locks can be
1183 * added to the list while we are holding cinode->lock_sem that
1184 * protects locking operations of this inode.
1185 */
1186 for (i = 0; i < count; i++) {
1187 lck = kmalloc(sizeof(struct lock_to_push), GFP_KERNEL);
1188 if (!lck) {
1189 rc = -ENOMEM;
1190 goto err_out;
1191 }
1192 list_add_tail(&lck->llist, &locks_to_send);
1193 }
1194
1195 el = locks_to_send.next;
1196 spin_lock(&flctx->flc_lock);
1197 list_for_each_entry(flock, &flctx->flc_posix, fl_list) {
1198 if (el == &locks_to_send) {
1199 /*
1200 * The list ended. We don't have enough allocated
1201 * structures - something is really wrong.
1202 */
1203 cifs_dbg(VFS, "Can't push all brlocks!\n");
1204 break;
1205 }
1206 length = 1 + flock->fl_end - flock->fl_start;
1207 if (flock->fl_type == F_RDLCK || flock->fl_type == F_SHLCK)
1208 type = CIFS_RDLCK;
1209 else
1210 type = CIFS_WRLCK;
1211 lck = list_entry(el, struct lock_to_push, llist);
1212 lck->pid = hash_lockowner(flock->fl_owner);
1213 lck->netfid = cfile->fid.netfid;
1214 lck->length = length;
1215 lck->type = type;
1216 lck->offset = flock->fl_start;
1217 }
1218 spin_unlock(&flctx->flc_lock);
1219
1220 list_for_each_entry_safe(lck, tmp, &locks_to_send, llist) {
1221 int stored_rc;
1222
1223 stored_rc = CIFSSMBPosixLock(xid, tcon, lck->netfid, lck->pid,
1224 lck->offset, lck->length, NULL,
1225 lck->type, 0);
1226 if (stored_rc)
1227 rc = stored_rc;
1228 list_del(&lck->llist);
1229 kfree(lck);
1230 }
1231
1232 out:
1233 free_xid(xid);
1234 return rc;
1235 err_out:
1236 list_for_each_entry_safe(lck, tmp, &locks_to_send, llist) {
1237 list_del(&lck->llist);
1238 kfree(lck);
1239 }
1240 goto out;
1241 }
1242
1243 static int
1244 cifs_push_locks(struct cifsFileInfo *cfile)
1245 {
1246 struct cifs_sb_info *cifs_sb = CIFS_SB(cfile->dentry->d_sb);
1247 struct cifsInodeInfo *cinode = CIFS_I(d_inode(cfile->dentry));
1248 struct cifs_tcon *tcon = tlink_tcon(cfile->tlink);
1249 int rc = 0;
1250
1251 /* we are going to update can_cache_brlcks here - need a write access */
1252 down_write(&cinode->lock_sem);
1253 if (!cinode->can_cache_brlcks) {
1254 up_write(&cinode->lock_sem);
1255 return rc;
1256 }
1257
1258 if (cap_unix(tcon->ses) &&
1259 (CIFS_UNIX_FCNTL_CAP & le64_to_cpu(tcon->fsUnixInfo.Capability)) &&
1260 ((cifs_sb->mnt_cifs_flags & CIFS_MOUNT_NOPOSIXBRL) == 0))
1261 rc = cifs_push_posix_locks(cfile);
1262 else
1263 rc = tcon->ses->server->ops->push_mand_locks(cfile);
1264
1265 cinode->can_cache_brlcks = false;
1266 up_write(&cinode->lock_sem);
1267 return rc;
1268 }
1269
1270 static void
1271 cifs_read_flock(struct file_lock *flock, __u32 *type, int *lock, int *unlock,
1272 bool *wait_flag, struct TCP_Server_Info *server)
1273 {
1274 if (flock->fl_flags & FL_POSIX)
1275 cifs_dbg(FYI, "Posix\n");
1276 if (flock->fl_flags & FL_FLOCK)
1277 cifs_dbg(FYI, "Flock\n");
1278 if (flock->fl_flags & FL_SLEEP) {
1279 cifs_dbg(FYI, "Blocking lock\n");
1280 *wait_flag = true;
1281 }
1282 if (flock->fl_flags & FL_ACCESS)
1283 cifs_dbg(FYI, "Process suspended by mandatory locking - not implemented yet\n");
1284 if (flock->fl_flags & FL_LEASE)
1285 cifs_dbg(FYI, "Lease on file - not implemented yet\n");
1286 if (flock->fl_flags &
1287 (~(FL_POSIX | FL_FLOCK | FL_SLEEP |
1288 FL_ACCESS | FL_LEASE | FL_CLOSE)))
1289 cifs_dbg(FYI, "Unknown lock flags 0x%x\n", flock->fl_flags);
1290
1291 *type = server->vals->large_lock_type;
1292 if (flock->fl_type == F_WRLCK) {
1293 cifs_dbg(FYI, "F_WRLCK\n");
1294 *type |= server->vals->exclusive_lock_type;
1295 *lock = 1;
1296 } else if (flock->fl_type == F_UNLCK) {
1297 cifs_dbg(FYI, "F_UNLCK\n");
1298 *type |= server->vals->unlock_lock_type;
1299 *unlock = 1;
1300 /* Check if unlock includes more than one lock range */
1301 } else if (flock->fl_type == F_RDLCK) {
1302 cifs_dbg(FYI, "F_RDLCK\n");
1303 *type |= server->vals->shared_lock_type;
1304 *lock = 1;
1305 } else if (flock->fl_type == F_EXLCK) {
1306 cifs_dbg(FYI, "F_EXLCK\n");
1307 *type |= server->vals->exclusive_lock_type;
1308 *lock = 1;
1309 } else if (flock->fl_type == F_SHLCK) {
1310 cifs_dbg(FYI, "F_SHLCK\n");
1311 *type |= server->vals->shared_lock_type;
1312 *lock = 1;
1313 } else
1314 cifs_dbg(FYI, "Unknown type of lock\n");
1315 }
1316
1317 static int
1318 cifs_getlk(struct file *file, struct file_lock *flock, __u32 type,
1319 bool wait_flag, bool posix_lck, unsigned int xid)
1320 {
1321 int rc = 0;
1322 __u64 length = 1 + flock->fl_end - flock->fl_start;
1323 struct cifsFileInfo *cfile = (struct cifsFileInfo *)file->private_data;
1324 struct cifs_tcon *tcon = tlink_tcon(cfile->tlink);
1325 struct TCP_Server_Info *server = tcon->ses->server;
1326 __u16 netfid = cfile->fid.netfid;
1327
1328 if (posix_lck) {
1329 int posix_lock_type;
1330
1331 rc = cifs_posix_lock_test(file, flock);
1332 if (!rc)
1333 return rc;
1334
1335 if (type & server->vals->shared_lock_type)
1336 posix_lock_type = CIFS_RDLCK;
1337 else
1338 posix_lock_type = CIFS_WRLCK;
1339 rc = CIFSSMBPosixLock(xid, tcon, netfid,
1340 hash_lockowner(flock->fl_owner),
1341 flock->fl_start, length, flock,
1342 posix_lock_type, wait_flag);
1343 return rc;
1344 }
1345
1346 rc = cifs_lock_test(cfile, flock->fl_start, length, type, flock);
1347 if (!rc)
1348 return rc;
1349
1350 /* BB we could chain these into one lock request BB */
1351 rc = server->ops->mand_lock(xid, cfile, flock->fl_start, length, type,
1352 1, 0, false);
1353 if (rc == 0) {
1354 rc = server->ops->mand_lock(xid, cfile, flock->fl_start, length,
1355 type, 0, 1, false);
1356 flock->fl_type = F_UNLCK;
1357 if (rc != 0)
1358 cifs_dbg(VFS, "Error unlocking previously locked range %d during test of lock\n",
1359 rc);
1360 return 0;
1361 }
1362
1363 if (type & server->vals->shared_lock_type) {
1364 flock->fl_type = F_WRLCK;
1365 return 0;
1366 }
1367
1368 type &= ~server->vals->exclusive_lock_type;
1369
1370 rc = server->ops->mand_lock(xid, cfile, flock->fl_start, length,
1371 type | server->vals->shared_lock_type,
1372 1, 0, false);
1373 if (rc == 0) {
1374 rc = server->ops->mand_lock(xid, cfile, flock->fl_start, length,
1375 type | server->vals->shared_lock_type, 0, 1, false);
1376 flock->fl_type = F_RDLCK;
1377 if (rc != 0)
1378 cifs_dbg(VFS, "Error unlocking previously locked range %d during test of lock\n",
1379 rc);
1380 } else
1381 flock->fl_type = F_WRLCK;
1382
1383 return 0;
1384 }
1385
1386 void
1387 cifs_move_llist(struct list_head *source, struct list_head *dest)
1388 {
1389 struct list_head *li, *tmp;
1390 list_for_each_safe(li, tmp, source)
1391 list_move(li, dest);
1392 }
1393
1394 void
1395 cifs_free_llist(struct list_head *llist)
1396 {
1397 struct cifsLockInfo *li, *tmp;
1398 list_for_each_entry_safe(li, tmp, llist, llist) {
1399 cifs_del_lock_waiters(li);
1400 list_del(&li->llist);
1401 kfree(li);
1402 }
1403 }
1404
1405 int
1406 cifs_unlock_range(struct cifsFileInfo *cfile, struct file_lock *flock,
1407 unsigned int xid)
1408 {
1409 int rc = 0, stored_rc;
1410 int types[] = {LOCKING_ANDX_LARGE_FILES,
1411 LOCKING_ANDX_SHARED_LOCK | LOCKING_ANDX_LARGE_FILES};
1412 unsigned int i;
1413 unsigned int max_num, num, max_buf;
1414 LOCKING_ANDX_RANGE *buf, *cur;
1415 struct cifs_tcon *tcon = tlink_tcon(cfile->tlink);
1416 struct cifsInodeInfo *cinode = CIFS_I(d_inode(cfile->dentry));
1417 struct cifsLockInfo *li, *tmp;
1418 __u64 length = 1 + flock->fl_end - flock->fl_start;
1419 struct list_head tmp_llist;
1420
1421 INIT_LIST_HEAD(&tmp_llist);
1422
1423 /*
1424 * Accessing maxBuf is racy with cifs_reconnect - need to store value
1425 * and check it for zero before using.
1426 */
1427 max_buf = tcon->ses->server->maxBuf;
1428 if (!max_buf)
1429 return -EINVAL;
1430
1431 max_num = (max_buf - sizeof(struct smb_hdr)) /
1432 sizeof(LOCKING_ANDX_RANGE);
1433 buf = kcalloc(max_num, sizeof(LOCKING_ANDX_RANGE), GFP_KERNEL);
1434 if (!buf)
1435 return -ENOMEM;
1436
1437 down_write(&cinode->lock_sem);
1438 for (i = 0; i < 2; i++) {
1439 cur = buf;
1440 num = 0;
1441 list_for_each_entry_safe(li, tmp, &cfile->llist->locks, llist) {
1442 if (flock->fl_start > li->offset ||
1443 (flock->fl_start + length) <
1444 (li->offset + li->length))
1445 continue;
1446 if (current->tgid != li->pid)
1447 continue;
1448 if (types[i] != li->type)
1449 continue;
1450 if (cinode->can_cache_brlcks) {
1451 /*
1452 * We can cache brlock requests - simply remove
1453 * a lock from the file's list.
1454 */
1455 list_del(&li->llist);
1456 cifs_del_lock_waiters(li);
1457 kfree(li);
1458 continue;
1459 }
1460 cur->Pid = cpu_to_le16(li->pid);
1461 cur->LengthLow = cpu_to_le32((u32)li->length);
1462 cur->LengthHigh = cpu_to_le32((u32)(li->length>>32));
1463 cur->OffsetLow = cpu_to_le32((u32)li->offset);
1464 cur->OffsetHigh = cpu_to_le32((u32)(li->offset>>32));
1465 /*
1466 * We need to save a lock here to let us add it again to
1467 * the file's list if the unlock range request fails on
1468 * the server.
1469 */
1470 list_move(&li->llist, &tmp_llist);
1471 if (++num == max_num) {
1472 stored_rc = cifs_lockv(xid, tcon,
1473 cfile->fid.netfid,
1474 li->type, num, 0, buf);
1475 if (stored_rc) {
1476 /*
1477 * We failed on the unlock range
1478 * request - add all locks from the tmp
1479 * list to the head of the file's list.
1480 */
1481 cifs_move_llist(&tmp_llist,
1482 &cfile->llist->locks);
1483 rc = stored_rc;
1484 } else
1485 /*
1486 * The unlock range request succeed -
1487 * free the tmp list.
1488 */
1489 cifs_free_llist(&tmp_llist);
1490 cur = buf;
1491 num = 0;
1492 } else
1493 cur++;
1494 }
1495 if (num) {
1496 stored_rc = cifs_lockv(xid, tcon, cfile->fid.netfid,
1497 types[i], num, 0, buf);
1498 if (stored_rc) {
1499 cifs_move_llist(&tmp_llist,
1500 &cfile->llist->locks);
1501 rc = stored_rc;
1502 } else
1503 cifs_free_llist(&tmp_llist);
1504 }
1505 }
1506
1507 up_write(&cinode->lock_sem);
1508 kfree(buf);
1509 return rc;
1510 }
1511
1512 static int
1513 cifs_setlk(struct file *file, struct file_lock *flock, __u32 type,
1514 bool wait_flag, bool posix_lck, int lock, int unlock,
1515 unsigned int xid)
1516 {
1517 int rc = 0;
1518 __u64 length = 1 + flock->fl_end - flock->fl_start;
1519 struct cifsFileInfo *cfile = (struct cifsFileInfo *)file->private_data;
1520 struct cifs_tcon *tcon = tlink_tcon(cfile->tlink);
1521 struct TCP_Server_Info *server = tcon->ses->server;
1522 struct inode *inode = d_inode(cfile->dentry);
1523
1524 if (posix_lck) {
1525 int posix_lock_type;
1526
1527 rc = cifs_posix_lock_set(file, flock);
1528 if (!rc || rc < 0)
1529 return rc;
1530
1531 if (type & server->vals->shared_lock_type)
1532 posix_lock_type = CIFS_RDLCK;
1533 else
1534 posix_lock_type = CIFS_WRLCK;
1535
1536 if (unlock == 1)
1537 posix_lock_type = CIFS_UNLCK;
1538
1539 rc = CIFSSMBPosixLock(xid, tcon, cfile->fid.netfid,
1540 hash_lockowner(flock->fl_owner),
1541 flock->fl_start, length,
1542 NULL, posix_lock_type, wait_flag);
1543 goto out;
1544 }
1545
1546 if (lock) {
1547 struct cifsLockInfo *lock;
1548
1549 lock = cifs_lock_init(flock->fl_start, length, type);
1550 if (!lock)
1551 return -ENOMEM;
1552
1553 rc = cifs_lock_add_if(cfile, lock, wait_flag);
1554 if (rc < 0) {
1555 kfree(lock);
1556 return rc;
1557 }
1558 if (!rc)
1559 goto out;
1560
1561 /*
1562 * Windows 7 server can delay breaking lease from read to None
1563 * if we set a byte-range lock on a file - break it explicitly
1564 * before sending the lock to the server to be sure the next
1565 * read won't conflict with non-overlapted locks due to
1566 * pagereading.
1567 */
1568 if (!CIFS_CACHE_WRITE(CIFS_I(inode)) &&
1569 CIFS_CACHE_READ(CIFS_I(inode))) {
1570 cifs_zap_mapping(inode);
1571 cifs_dbg(FYI, "Set no oplock for inode=%p due to mand locks\n",
1572 inode);
1573 CIFS_I(inode)->oplock = 0;
1574 }
1575
1576 rc = server->ops->mand_lock(xid, cfile, flock->fl_start, length,
1577 type, 1, 0, wait_flag);
1578 if (rc) {
1579 kfree(lock);
1580 return rc;
1581 }
1582
1583 cifs_lock_add(cfile, lock);
1584 } else if (unlock)
1585 rc = server->ops->mand_unlock_range(cfile, flock, xid);
1586
1587 out:
1588 if (flock->fl_flags & FL_POSIX && !rc)
1589 rc = locks_lock_file_wait(file, flock);
1590 return rc;
1591 }
1592
1593 int cifs_lock(struct file *file, int cmd, struct file_lock *flock)
1594 {
1595 int rc, xid;
1596 int lock = 0, unlock = 0;
1597 bool wait_flag = false;
1598 bool posix_lck = false;
1599 struct cifs_sb_info *cifs_sb;
1600 struct cifs_tcon *tcon;
1601 struct cifsInodeInfo *cinode;
1602 struct cifsFileInfo *cfile;
1603 __u16 netfid;
1604 __u32 type;
1605
1606 rc = -EACCES;
1607 xid = get_xid();
1608
1609 cifs_dbg(FYI, "Lock parm: 0x%x flockflags: 0x%x flocktype: 0x%x start: %lld end: %lld\n",
1610 cmd, flock->fl_flags, flock->fl_type,
1611 flock->fl_start, flock->fl_end);
1612
1613 cfile = (struct cifsFileInfo *)file->private_data;
1614 tcon = tlink_tcon(cfile->tlink);
1615
1616 cifs_read_flock(flock, &type, &lock, &unlock, &wait_flag,
1617 tcon->ses->server);
1618
1619 cifs_sb = CIFS_FILE_SB(file);
1620 netfid = cfile->fid.netfid;
1621 cinode = CIFS_I(file_inode(file));
1622
1623 if (cap_unix(tcon->ses) &&
1624 (CIFS_UNIX_FCNTL_CAP & le64_to_cpu(tcon->fsUnixInfo.Capability)) &&
1625 ((cifs_sb->mnt_cifs_flags & CIFS_MOUNT_NOPOSIXBRL) == 0))
1626 posix_lck = true;
1627 /*
1628 * BB add code here to normalize offset and length to account for
1629 * negative length which we can not accept over the wire.
1630 */
1631 if (IS_GETLK(cmd)) {
1632 rc = cifs_getlk(file, flock, type, wait_flag, posix_lck, xid);
1633 free_xid(xid);
1634 return rc;
1635 }
1636
1637 if (!lock && !unlock) {
1638 /*
1639 * if no lock or unlock then nothing to do since we do not
1640 * know what it is
1641 */
1642 free_xid(xid);
1643 return -EOPNOTSUPP;
1644 }
1645
1646 rc = cifs_setlk(file, flock, type, wait_flag, posix_lck, lock, unlock,
1647 xid);
1648 free_xid(xid);
1649 return rc;
1650 }
1651
1652 /*
1653 * update the file size (if needed) after a write. Should be called with
1654 * the inode->i_lock held
1655 */
1656 void
1657 cifs_update_eof(struct cifsInodeInfo *cifsi, loff_t offset,
1658 unsigned int bytes_written)
1659 {
1660 loff_t end_of_write = offset + bytes_written;
1661
1662 if (end_of_write > cifsi->server_eof)
1663 cifsi->server_eof = end_of_write;
1664 }
1665
1666 static ssize_t
1667 cifs_write(struct cifsFileInfo *open_file, __u32 pid, const char *write_data,
1668 size_t write_size, loff_t *offset)
1669 {
1670 int rc = 0;
1671 unsigned int bytes_written = 0;
1672 unsigned int total_written;
1673 struct cifs_sb_info *cifs_sb;
1674 struct cifs_tcon *tcon;
1675 struct TCP_Server_Info *server;
1676 unsigned int xid;
1677 struct dentry *dentry = open_file->dentry;
1678 struct cifsInodeInfo *cifsi = CIFS_I(d_inode(dentry));
1679 struct cifs_io_parms io_parms;
1680
1681 cifs_sb = CIFS_SB(dentry->d_sb);
1682
1683 cifs_dbg(FYI, "write %zd bytes to offset %lld of %pd\n",
1684 write_size, *offset, dentry);
1685
1686 tcon = tlink_tcon(open_file->tlink);
1687 server = tcon->ses->server;
1688
1689 if (!server->ops->sync_write)
1690 return -ENOSYS;
1691
1692 xid = get_xid();
1693
1694 for (total_written = 0; write_size > total_written;
1695 total_written += bytes_written) {
1696 rc = -EAGAIN;
1697 while (rc == -EAGAIN) {
1698 struct kvec iov[2];
1699 unsigned int len;
1700
1701 if (open_file->invalidHandle) {
1702 /* we could deadlock if we called
1703 filemap_fdatawait from here so tell
1704 reopen_file not to flush data to
1705 server now */
1706 rc = cifs_reopen_file(open_file, false);
1707 if (rc != 0)
1708 break;
1709 }
1710
1711 len = min(server->ops->wp_retry_size(d_inode(dentry)),
1712 (unsigned int)write_size - total_written);
1713 /* iov[0] is reserved for smb header */
1714 iov[1].iov_base = (char *)write_data + total_written;
1715 iov[1].iov_len = len;
1716 io_parms.pid = pid;
1717 io_parms.tcon = tcon;
1718 io_parms.offset = *offset;
1719 io_parms.length = len;
1720 rc = server->ops->sync_write(xid, &open_file->fid,
1721 &io_parms, &bytes_written, iov, 1);
1722 }
1723 if (rc || (bytes_written == 0)) {
1724 if (total_written)
1725 break;
1726 else {
1727 free_xid(xid);
1728 return rc;
1729 }
1730 } else {
1731 spin_lock(&d_inode(dentry)->i_lock);
1732 cifs_update_eof(cifsi, *offset, bytes_written);
1733 spin_unlock(&d_inode(dentry)->i_lock);
1734 *offset += bytes_written;
1735 }
1736 }
1737
1738 cifs_stats_bytes_written(tcon, total_written);
1739
1740 if (total_written > 0) {
1741 spin_lock(&d_inode(dentry)->i_lock);
1742 if (*offset > d_inode(dentry)->i_size)
1743 i_size_write(d_inode(dentry), *offset);
1744 spin_unlock(&d_inode(dentry)->i_lock);
1745 }
1746 mark_inode_dirty_sync(d_inode(dentry));
1747 free_xid(xid);
1748 return total_written;
1749 }
1750
1751 struct cifsFileInfo *find_readable_file(struct cifsInodeInfo *cifs_inode,
1752 bool fsuid_only)
1753 {
1754 struct cifsFileInfo *open_file = NULL;
1755 struct cifs_sb_info *cifs_sb = CIFS_SB(cifs_inode->vfs_inode.i_sb);
1756 struct cifs_tcon *tcon = cifs_sb_master_tcon(cifs_sb);
1757
1758 /* only filter by fsuid on multiuser mounts */
1759 if (!(cifs_sb->mnt_cifs_flags & CIFS_MOUNT_MULTIUSER))
1760 fsuid_only = false;
1761
1762 spin_lock(&tcon->open_file_lock);
1763 /* we could simply get the first_list_entry since write-only entries
1764 are always at the end of the list but since the first entry might
1765 have a close pending, we go through the whole list */
1766 list_for_each_entry(open_file, &cifs_inode->openFileList, flist) {
1767 if (fsuid_only && !uid_eq(open_file->uid, current_fsuid()))
1768 continue;
1769 if (OPEN_FMODE(open_file->f_flags) & FMODE_READ) {
1770 if (!open_file->invalidHandle) {
1771 /* found a good file */
1772 /* lock it so it will not be closed on us */
1773 cifsFileInfo_get(open_file);
1774 spin_unlock(&tcon->open_file_lock);
1775 return open_file;
1776 } /* else might as well continue, and look for
1777 another, or simply have the caller reopen it
1778 again rather than trying to fix this handle */
1779 } else /* write only file */
1780 break; /* write only files are last so must be done */
1781 }
1782 spin_unlock(&tcon->open_file_lock);
1783 return NULL;
1784 }
1785
1786 struct cifsFileInfo *find_writable_file(struct cifsInodeInfo *cifs_inode,
1787 bool fsuid_only)
1788 {
1789 struct cifsFileInfo *open_file, *inv_file = NULL;
1790 struct cifs_sb_info *cifs_sb;
1791 struct cifs_tcon *tcon;
1792 bool any_available = false;
1793 int rc;
1794 unsigned int refind = 0;
1795
1796 /* Having a null inode here (because mapping->host was set to zero by
1797 the VFS or MM) should not happen but we had reports of on oops (due to
1798 it being zero) during stress testcases so we need to check for it */
1799
1800 if (cifs_inode == NULL) {
1801 cifs_dbg(VFS, "Null inode passed to cifs_writeable_file\n");
1802 dump_stack();
1803 return NULL;
1804 }
1805
1806 cifs_sb = CIFS_SB(cifs_inode->vfs_inode.i_sb);
1807 tcon = cifs_sb_master_tcon(cifs_sb);
1808
1809 /* only filter by fsuid on multiuser mounts */
1810 if (!(cifs_sb->mnt_cifs_flags & CIFS_MOUNT_MULTIUSER))
1811 fsuid_only = false;
1812
1813 spin_lock(&tcon->open_file_lock);
1814 refind_writable:
1815 if (refind > MAX_REOPEN_ATT) {
1816 spin_unlock(&tcon->open_file_lock);
1817 return NULL;
1818 }
1819 list_for_each_entry(open_file, &cifs_inode->openFileList, flist) {
1820 if (!any_available && open_file->pid != current->tgid)
1821 continue;
1822 if (fsuid_only && !uid_eq(open_file->uid, current_fsuid()))
1823 continue;
1824 if (OPEN_FMODE(open_file->f_flags) & FMODE_WRITE) {
1825 if (!open_file->invalidHandle) {
1826 /* found a good writable file */
1827 cifsFileInfo_get(open_file);
1828 spin_unlock(&tcon->open_file_lock);
1829 return open_file;
1830 } else {
1831 if (!inv_file)
1832 inv_file = open_file;
1833 }
1834 }
1835 }
1836 /* couldn't find useable FH with same pid, try any available */
1837 if (!any_available) {
1838 any_available = true;
1839 goto refind_writable;
1840 }
1841
1842 if (inv_file) {
1843 any_available = false;
1844 cifsFileInfo_get(inv_file);
1845 }
1846
1847 spin_unlock(&tcon->open_file_lock);
1848
1849 if (inv_file) {
1850 rc = cifs_reopen_file(inv_file, false);
1851 if (!rc)
1852 return inv_file;
1853 else {
1854 spin_lock(&tcon->open_file_lock);
1855 list_move_tail(&inv_file->flist,
1856 &cifs_inode->openFileList);
1857 spin_unlock(&tcon->open_file_lock);
1858 cifsFileInfo_put(inv_file);
1859 ++refind;
1860 inv_file = NULL;
1861 spin_lock(&tcon->open_file_lock);
1862 goto refind_writable;
1863 }
1864 }
1865
1866 return NULL;
1867 }
1868
1869 static int cifs_partialpagewrite(struct page *page, unsigned from, unsigned to)
1870 {
1871 struct address_space *mapping = page->mapping;
1872 loff_t offset = (loff_t)page->index << PAGE_SHIFT;
1873 char *write_data;
1874 int rc = -EFAULT;
1875 int bytes_written = 0;
1876 struct inode *inode;
1877 struct cifsFileInfo *open_file;
1878
1879 if (!mapping || !mapping->host)
1880 return -EFAULT;
1881
1882 inode = page->mapping->host;
1883
1884 offset += (loff_t)from;
1885 write_data = kmap(page);
1886 write_data += from;
1887
1888 if ((to > PAGE_SIZE) || (from > to)) {
1889 kunmap(page);
1890 return -EIO;
1891 }
1892
1893 /* racing with truncate? */
1894 if (offset > mapping->host->i_size) {
1895 kunmap(page);
1896 return 0; /* don't care */
1897 }
1898
1899 /* check to make sure that we are not extending the file */
1900 if (mapping->host->i_size - offset < (loff_t)to)
1901 to = (unsigned)(mapping->host->i_size - offset);
1902
1903 open_file = find_writable_file(CIFS_I(mapping->host), false);
1904 if (open_file) {
1905 bytes_written = cifs_write(open_file, open_file->pid,
1906 write_data, to - from, &offset);
1907 cifsFileInfo_put(open_file);
1908 /* Does mm or vfs already set times? */
1909 inode->i_atime = inode->i_mtime = current_time(inode);
1910 if ((bytes_written > 0) && (offset))
1911 rc = 0;
1912 else if (bytes_written < 0)
1913 rc = bytes_written;
1914 } else {
1915 cifs_dbg(FYI, "No writeable filehandles for inode\n");
1916 rc = -EIO;
1917 }
1918
1919 kunmap(page);
1920 return rc;
1921 }
1922
1923 static struct cifs_writedata *
1924 wdata_alloc_and_fillpages(pgoff_t tofind, struct address_space *mapping,
1925 pgoff_t end, pgoff_t *index,
1926 unsigned int *found_pages)
1927 {
1928 unsigned int nr_pages;
1929 struct page **pages;
1930 struct cifs_writedata *wdata;
1931
1932 wdata = cifs_writedata_alloc((unsigned int)tofind,
1933 cifs_writev_complete);
1934 if (!wdata)
1935 return NULL;
1936
1937 /*
1938 * find_get_pages_tag seems to return a max of 256 on each
1939 * iteration, so we must call it several times in order to
1940 * fill the array or the wsize is effectively limited to
1941 * 256 * PAGE_SIZE.
1942 */
1943 *found_pages = 0;
1944 pages = wdata->pages;
1945 do {
1946 nr_pages = find_get_pages_tag(mapping, index,
1947 PAGECACHE_TAG_DIRTY, tofind,
1948 pages);
1949 *found_pages += nr_pages;
1950 tofind -= nr_pages;
1951 pages += nr_pages;
1952 } while (nr_pages && tofind && *index <= end);
1953
1954 return wdata;
1955 }
1956
1957 static unsigned int
1958 wdata_prepare_pages(struct cifs_writedata *wdata, unsigned int found_pages,
1959 struct address_space *mapping,
1960 struct writeback_control *wbc,
1961 pgoff_t end, pgoff_t *index, pgoff_t *next, bool *done)
1962 {
1963 unsigned int nr_pages = 0, i;
1964 struct page *page;
1965
1966 for (i = 0; i < found_pages; i++) {
1967 page = wdata->pages[i];
1968 /*
1969 * At this point we hold neither mapping->tree_lock nor
1970 * lock on the page itself: the page may be truncated or
1971 * invalidated (changing page->mapping to NULL), or even
1972 * swizzled back from swapper_space to tmpfs file
1973 * mapping
1974 */
1975
1976 if (nr_pages == 0)
1977 lock_page(page);
1978 else if (!trylock_page(page))
1979 break;
1980
1981 if (unlikely(page->mapping != mapping)) {
1982 unlock_page(page);
1983 break;
1984 }
1985
1986 if (!wbc->range_cyclic && page->index > end) {
1987 *done = true;
1988 unlock_page(page);
1989 break;
1990 }
1991
1992 if (*next && (page->index != *next)) {
1993 /* Not next consecutive page */
1994 unlock_page(page);
1995 break;
1996 }
1997
1998 if (wbc->sync_mode != WB_SYNC_NONE)
1999 wait_on_page_writeback(page);
2000
2001 if (PageWriteback(page) ||
2002 !clear_page_dirty_for_io(page)) {
2003 unlock_page(page);
2004 break;
2005 }
2006
2007 /*
2008 * This actually clears the dirty bit in the radix tree.
2009 * See cifs_writepage() for more commentary.
2010 */
2011 set_page_writeback(page);
2012 if (page_offset(page) >= i_size_read(mapping->host)) {
2013 *done = true;
2014 unlock_page(page);
2015 end_page_writeback(page);
2016 break;
2017 }
2018
2019 wdata->pages[i] = page;
2020 *next = page->index + 1;
2021 ++nr_pages;
2022 }
2023
2024 /* reset index to refind any pages skipped */
2025 if (nr_pages == 0)
2026 *index = wdata->pages[0]->index + 1;
2027
2028 /* put any pages we aren't going to use */
2029 for (i = nr_pages; i < found_pages; i++) {
2030 put_page(wdata->pages[i]);
2031 wdata->pages[i] = NULL;
2032 }
2033
2034 return nr_pages;
2035 }
2036
2037 static int
2038 wdata_send_pages(struct cifs_writedata *wdata, unsigned int nr_pages,
2039 struct address_space *mapping, struct writeback_control *wbc)
2040 {
2041 int rc = 0;
2042 struct TCP_Server_Info *server;
2043 unsigned int i;
2044
2045 wdata->sync_mode = wbc->sync_mode;
2046 wdata->nr_pages = nr_pages;
2047 wdata->offset = page_offset(wdata->pages[0]);
2048 wdata->pagesz = PAGE_SIZE;
2049 wdata->tailsz = min(i_size_read(mapping->host) -
2050 page_offset(wdata->pages[nr_pages - 1]),
2051 (loff_t)PAGE_SIZE);
2052 wdata->bytes = ((nr_pages - 1) * PAGE_SIZE) + wdata->tailsz;
2053
2054 if (wdata->cfile != NULL)
2055 cifsFileInfo_put(wdata->cfile);
2056 wdata->cfile = find_writable_file(CIFS_I(mapping->host), false);
2057 if (!wdata->cfile) {
2058 cifs_dbg(VFS, "No writable handles for inode\n");
2059 rc = -EBADF;
2060 } else {
2061 wdata->pid = wdata->cfile->pid;
2062 server = tlink_tcon(wdata->cfile->tlink)->ses->server;
2063 rc = server->ops->async_writev(wdata, cifs_writedata_release);
2064 }
2065
2066 for (i = 0; i < nr_pages; ++i)
2067 unlock_page(wdata->pages[i]);
2068
2069 return rc;
2070 }
2071
2072 static int cifs_writepages(struct address_space *mapping,
2073 struct writeback_control *wbc)
2074 {
2075 struct cifs_sb_info *cifs_sb = CIFS_SB(mapping->host->i_sb);
2076 struct TCP_Server_Info *server;
2077 bool done = false, scanned = false, range_whole = false;
2078 pgoff_t end, index;
2079 struct cifs_writedata *wdata;
2080 int rc = 0;
2081
2082 /*
2083 * If wsize is smaller than the page cache size, default to writing
2084 * one page at a time via cifs_writepage
2085 */
2086 if (cifs_sb->wsize < PAGE_SIZE)
2087 return generic_writepages(mapping, wbc);
2088
2089 if (wbc->range_cyclic) {
2090 index = mapping->writeback_index; /* Start from prev offset */
2091 end = -1;
2092 } else {
2093 index = wbc->range_start >> PAGE_SHIFT;
2094 end = wbc->range_end >> PAGE_SHIFT;
2095 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2096 range_whole = true;
2097 scanned = true;
2098 }
2099 server = cifs_sb_master_tcon(cifs_sb)->ses->server;
2100 retry:
2101 while (!done && index <= end) {
2102 unsigned int i, nr_pages, found_pages, wsize, credits;
2103 pgoff_t next = 0, tofind, saved_index = index;
2104
2105 rc = server->ops->wait_mtu_credits(server, cifs_sb->wsize,
2106 &wsize, &credits);
2107 if (rc)
2108 break;
2109
2110 tofind = min((wsize / PAGE_SIZE) - 1, end - index) + 1;
2111
2112 wdata = wdata_alloc_and_fillpages(tofind, mapping, end, &index,
2113 &found_pages);
2114 if (!wdata) {
2115 rc = -ENOMEM;
2116 add_credits_and_wake_if(server, credits, 0);
2117 break;
2118 }
2119
2120 if (found_pages == 0) {
2121 kref_put(&wdata->refcount, cifs_writedata_release);
2122 add_credits_and_wake_if(server, credits, 0);
2123 break;
2124 }
2125
2126 nr_pages = wdata_prepare_pages(wdata, found_pages, mapping, wbc,
2127 end, &index, &next, &done);
2128
2129 /* nothing to write? */
2130 if (nr_pages == 0) {
2131 kref_put(&wdata->refcount, cifs_writedata_release);
2132 add_credits_and_wake_if(server, credits, 0);
2133 continue;
2134 }
2135
2136 wdata->credits = credits;
2137
2138 rc = wdata_send_pages(wdata, nr_pages, mapping, wbc);
2139
2140 /* send failure -- clean up the mess */
2141 if (rc != 0) {
2142 add_credits_and_wake_if(server, wdata->credits, 0);
2143 for (i = 0; i < nr_pages; ++i) {
2144 if (rc == -EAGAIN)
2145 redirty_page_for_writepage(wbc,
2146 wdata->pages[i]);
2147 else
2148 SetPageError(wdata->pages[i]);
2149 end_page_writeback(wdata->pages[i]);
2150 put_page(wdata->pages[i]);
2151 }
2152 if (rc != -EAGAIN)
2153 mapping_set_error(mapping, rc);
2154 }
2155 kref_put(&wdata->refcount, cifs_writedata_release);
2156
2157 if (wbc->sync_mode == WB_SYNC_ALL && rc == -EAGAIN) {
2158 index = saved_index;
2159 continue;
2160 }
2161
2162 wbc->nr_to_write -= nr_pages;
2163 if (wbc->nr_to_write <= 0)
2164 done = true;
2165
2166 index = next;
2167 }
2168
2169 if (!scanned && !done) {
2170 /*
2171 * We hit the last page and there is more work to be done: wrap
2172 * back to the start of the file
2173 */
2174 scanned = true;
2175 index = 0;
2176 goto retry;
2177 }
2178
2179 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2180 mapping->writeback_index = index;
2181
2182 return rc;
2183 }
2184
2185 static int
2186 cifs_writepage_locked(struct page *page, struct writeback_control *wbc)
2187 {
2188 int rc;
2189 unsigned int xid;
2190
2191 xid = get_xid();
2192 /* BB add check for wbc flags */
2193 get_page(page);
2194 if (!PageUptodate(page))
2195 cifs_dbg(FYI, "ppw - page not up to date\n");
2196
2197 /*
2198 * Set the "writeback" flag, and clear "dirty" in the radix tree.
2199 *
2200 * A writepage() implementation always needs to do either this,
2201 * or re-dirty the page with "redirty_page_for_writepage()" in
2202 * the case of a failure.
2203 *
2204 * Just unlocking the page will cause the radix tree tag-bits
2205 * to fail to update with the state of the page correctly.
2206 */
2207 set_page_writeback(page);
2208 retry_write:
2209 rc = cifs_partialpagewrite(page, 0, PAGE_SIZE);
2210 if (rc == -EAGAIN && wbc->sync_mode == WB_SYNC_ALL)
2211 goto retry_write;
2212 else if (rc == -EAGAIN)
2213 redirty_page_for_writepage(wbc, page);
2214 else if (rc != 0)
2215 SetPageError(page);
2216 else
2217 SetPageUptodate(page);
2218 end_page_writeback(page);
2219 put_page(page);
2220 free_xid(xid);
2221 return rc;
2222 }
2223
2224 static int cifs_writepage(struct page *page, struct writeback_control *wbc)
2225 {
2226 int rc = cifs_writepage_locked(page, wbc);
2227 unlock_page(page);
2228 return rc;
2229 }
2230
2231 static int cifs_write_end(struct file *file, struct address_space *mapping,
2232 loff_t pos, unsigned len, unsigned copied,
2233 struct page *page, void *fsdata)
2234 {
2235 int rc;
2236 struct inode *inode = mapping->host;
2237 struct cifsFileInfo *cfile = file->private_data;
2238 struct cifs_sb_info *cifs_sb = CIFS_SB(cfile->dentry->d_sb);
2239 __u32 pid;
2240
2241 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_RWPIDFORWARD)
2242 pid = cfile->pid;
2243 else
2244 pid = current->tgid;
2245
2246 cifs_dbg(FYI, "write_end for page %p from pos %lld with %d bytes\n",
2247 page, pos, copied);
2248
2249 if (PageChecked(page)) {
2250 if (copied == len)
2251 SetPageUptodate(page);
2252 ClearPageChecked(page);
2253 } else if (!PageUptodate(page) && copied == PAGE_SIZE)
2254 SetPageUptodate(page);
2255
2256 if (!PageUptodate(page)) {
2257 char *page_data;
2258 unsigned offset = pos & (PAGE_SIZE - 1);
2259 unsigned int xid;
2260
2261 xid = get_xid();
2262 /* this is probably better than directly calling
2263 partialpage_write since in this function the file handle is
2264 known which we might as well leverage */
2265 /* BB check if anything else missing out of ppw
2266 such as updating last write time */
2267 page_data = kmap(page);
2268 rc = cifs_write(cfile, pid, page_data + offset, copied, &pos);
2269 /* if (rc < 0) should we set writebehind rc? */
2270 kunmap(page);
2271
2272 free_xid(xid);
2273 } else {
2274 rc = copied;
2275 pos += copied;
2276 set_page_dirty(page);
2277 }
2278
2279 if (rc > 0) {
2280 spin_lock(&inode->i_lock);
2281 if (pos > inode->i_size)
2282 i_size_write(inode, pos);
2283 spin_unlock(&inode->i_lock);
2284 }
2285
2286 unlock_page(page);
2287 put_page(page);
2288
2289 return rc;
2290 }
2291
2292 int cifs_strict_fsync(struct file *file, loff_t start, loff_t end,
2293 int datasync)
2294 {
2295 unsigned int xid;
2296 int rc = 0;
2297 struct cifs_tcon *tcon;
2298 struct TCP_Server_Info *server;
2299 struct cifsFileInfo *smbfile = file->private_data;
2300 struct inode *inode = file_inode(file);
2301 struct cifs_sb_info *cifs_sb = CIFS_SB(inode->i_sb);
2302
2303 rc = filemap_write_and_wait_range(inode->i_mapping, start, end);
2304 if (rc)
2305 return rc;
2306 inode_lock(inode);
2307
2308 xid = get_xid();
2309
2310 cifs_dbg(FYI, "Sync file - name: %pD datasync: 0x%x\n",
2311 file, datasync);
2312
2313 if (!CIFS_CACHE_READ(CIFS_I(inode))) {
2314 rc = cifs_zap_mapping(inode);
2315 if (rc) {
2316 cifs_dbg(FYI, "rc: %d during invalidate phase\n", rc);
2317 rc = 0; /* don't care about it in fsync */
2318 }
2319 }
2320
2321 tcon = tlink_tcon(smbfile->tlink);
2322 if (!(cifs_sb->mnt_cifs_flags & CIFS_MOUNT_NOSSYNC)) {
2323 server = tcon->ses->server;
2324 if (server->ops->flush)
2325 rc = server->ops->flush(xid, tcon, &smbfile->fid);
2326 else
2327 rc = -ENOSYS;
2328 }
2329
2330 free_xid(xid);
2331 inode_unlock(inode);
2332 return rc;
2333 }
2334
2335 int cifs_fsync(struct file *file, loff_t start, loff_t end, int datasync)
2336 {
2337 unsigned int xid;
2338 int rc = 0;
2339 struct cifs_tcon *tcon;
2340 struct TCP_Server_Info *server;
2341 struct cifsFileInfo *smbfile = file->private_data;
2342 struct cifs_sb_info *cifs_sb = CIFS_FILE_SB(file);
2343 struct inode *inode = file->f_mapping->host;
2344
2345 rc = filemap_write_and_wait_range(inode->i_mapping, start, end);
2346 if (rc)
2347 return rc;
2348 inode_lock(inode);
2349
2350 xid = get_xid();
2351
2352 cifs_dbg(FYI, "Sync file - name: %pD datasync: 0x%x\n",
2353 file, datasync);
2354
2355 tcon = tlink_tcon(smbfile->tlink);
2356 if (!(cifs_sb->mnt_cifs_flags & CIFS_MOUNT_NOSSYNC)) {
2357 server = tcon->ses->server;
2358 if (server->ops->flush)
2359 rc = server->ops->flush(xid, tcon, &smbfile->fid);
2360 else
2361 rc = -ENOSYS;
2362 }
2363
2364 free_xid(xid);
2365 inode_unlock(inode);
2366 return rc;
2367 }
2368
2369 /*
2370 * As file closes, flush all cached write data for this inode checking
2371 * for write behind errors.
2372 */
2373 int cifs_flush(struct file *file, fl_owner_t id)
2374 {
2375 struct inode *inode = file_inode(file);
2376 int rc = 0;
2377
2378 if (file->f_mode & FMODE_WRITE)
2379 rc = filemap_write_and_wait(inode->i_mapping);
2380
2381 cifs_dbg(FYI, "Flush inode %p file %p rc %d\n", inode, file, rc);
2382
2383 return rc;
2384 }
2385
2386 static int
2387 cifs_write_allocate_pages(struct page **pages, unsigned long num_pages)
2388 {
2389 int rc = 0;
2390 unsigned long i;
2391
2392 for (i = 0; i < num_pages; i++) {
2393 pages[i] = alloc_page(GFP_KERNEL|__GFP_HIGHMEM);
2394 if (!pages[i]) {
2395 /*
2396 * save number of pages we have already allocated and
2397 * return with ENOMEM error
2398 */
2399 num_pages = i;
2400 rc = -ENOMEM;
2401 break;
2402 }
2403 }
2404
2405 if (rc) {
2406 for (i = 0; i < num_pages; i++)
2407 put_page(pages[i]);
2408 }
2409 return rc;
2410 }
2411
2412 static inline
2413 size_t get_numpages(const size_t wsize, const size_t len, size_t *cur_len)
2414 {
2415 size_t num_pages;
2416 size_t clen;
2417
2418 clen = min_t(const size_t, len, wsize);
2419 num_pages = DIV_ROUND_UP(clen, PAGE_SIZE);
2420
2421 if (cur_len)
2422 *cur_len = clen;
2423
2424 return num_pages;
2425 }
2426
2427 static void
2428 cifs_uncached_writedata_release(struct kref *refcount)
2429 {
2430 int i;
2431 struct cifs_writedata *wdata = container_of(refcount,
2432 struct cifs_writedata, refcount);
2433
2434 for (i = 0; i < wdata->nr_pages; i++)
2435 put_page(wdata->pages[i]);
2436 cifs_writedata_release(refcount);
2437 }
2438
2439 static void
2440 cifs_uncached_writev_complete(struct work_struct *work)
2441 {
2442 struct cifs_writedata *wdata = container_of(work,
2443 struct cifs_writedata, work);
2444 struct inode *inode = d_inode(wdata->cfile->dentry);
2445 struct cifsInodeInfo *cifsi = CIFS_I(inode);
2446
2447 spin_lock(&inode->i_lock);
2448 cifs_update_eof(cifsi, wdata->offset, wdata->bytes);
2449 if (cifsi->server_eof > inode->i_size)
2450 i_size_write(inode, cifsi->server_eof);
2451 spin_unlock(&inode->i_lock);
2452
2453 complete(&wdata->done);
2454
2455 kref_put(&wdata->refcount, cifs_uncached_writedata_release);
2456 }
2457
2458 static int
2459 wdata_fill_from_iovec(struct cifs_writedata *wdata, struct iov_iter *from,
2460 size_t *len, unsigned long *num_pages)
2461 {
2462 size_t save_len, copied, bytes, cur_len = *len;
2463 unsigned long i, nr_pages = *num_pages;
2464
2465 save_len = cur_len;
2466 for (i = 0; i < nr_pages; i++) {
2467 bytes = min_t(const size_t, cur_len, PAGE_SIZE);
2468 copied = copy_page_from_iter(wdata->pages[i], 0, bytes, from);
2469 cur_len -= copied;
2470 /*
2471 * If we didn't copy as much as we expected, then that
2472 * may mean we trod into an unmapped area. Stop copying
2473 * at that point. On the next pass through the big
2474 * loop, we'll likely end up getting a zero-length
2475 * write and bailing out of it.
2476 */
2477 if (copied < bytes)
2478 break;
2479 }
2480 cur_len = save_len - cur_len;
2481 *len = cur_len;
2482
2483 /*
2484 * If we have no data to send, then that probably means that
2485 * the copy above failed altogether. That's most likely because
2486 * the address in the iovec was bogus. Return -EFAULT and let
2487 * the caller free anything we allocated and bail out.
2488 */
2489 if (!cur_len)
2490 return -EFAULT;
2491
2492 /*
2493 * i + 1 now represents the number of pages we actually used in
2494 * the copy phase above.
2495 */
2496 *num_pages = i + 1;
2497 return 0;
2498 }
2499
2500 static int
2501 cifs_write_from_iter(loff_t offset, size_t len, struct iov_iter *from,
2502 struct cifsFileInfo *open_file,
2503 struct cifs_sb_info *cifs_sb, struct list_head *wdata_list)
2504 {
2505 int rc = 0;
2506 size_t cur_len;
2507 unsigned long nr_pages, num_pages, i;
2508 struct cifs_writedata *wdata;
2509 struct iov_iter saved_from = *from;
2510 loff_t saved_offset = offset;
2511 pid_t pid;
2512 struct TCP_Server_Info *server;
2513
2514 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_RWPIDFORWARD)
2515 pid = open_file->pid;
2516 else
2517 pid = current->tgid;
2518
2519 server = tlink_tcon(open_file->tlink)->ses->server;
2520
2521 do {
2522 unsigned int wsize, credits;
2523
2524 rc = server->ops->wait_mtu_credits(server, cifs_sb->wsize,
2525 &wsize, &credits);
2526 if (rc)
2527 break;
2528
2529 nr_pages = get_numpages(wsize, len, &cur_len);
2530 wdata = cifs_writedata_alloc(nr_pages,
2531 cifs_uncached_writev_complete);
2532 if (!wdata) {
2533 rc = -ENOMEM;
2534 add_credits_and_wake_if(server, credits, 0);
2535 break;
2536 }
2537
2538 rc = cifs_write_allocate_pages(wdata->pages, nr_pages);
2539 if (rc) {
2540 kfree(wdata);
2541 add_credits_and_wake_if(server, credits, 0);
2542 break;
2543 }
2544
2545 num_pages = nr_pages;
2546 rc = wdata_fill_from_iovec(wdata, from, &cur_len, &num_pages);
2547 if (rc) {
2548 for (i = 0; i < nr_pages; i++)
2549 put_page(wdata->pages[i]);
2550 kfree(wdata);
2551 add_credits_and_wake_if(server, credits, 0);
2552 break;
2553 }
2554
2555 /*
2556 * Bring nr_pages down to the number of pages we actually used,
2557 * and free any pages that we didn't use.
2558 */
2559 for ( ; nr_pages > num_pages; nr_pages--)
2560 put_page(wdata->pages[nr_pages - 1]);
2561
2562 wdata->sync_mode = WB_SYNC_ALL;
2563 wdata->nr_pages = nr_pages;
2564 wdata->offset = (__u64)offset;
2565 wdata->cfile = cifsFileInfo_get(open_file);
2566 wdata->pid = pid;
2567 wdata->bytes = cur_len;
2568 wdata->pagesz = PAGE_SIZE;
2569 wdata->tailsz = cur_len - ((nr_pages - 1) * PAGE_SIZE);
2570 wdata->credits = credits;
2571
2572 if (!wdata->cfile->invalidHandle ||
2573 !cifs_reopen_file(wdata->cfile, false))
2574 rc = server->ops->async_writev(wdata,
2575 cifs_uncached_writedata_release);
2576 if (rc) {
2577 add_credits_and_wake_if(server, wdata->credits, 0);
2578 kref_put(&wdata->refcount,
2579 cifs_uncached_writedata_release);
2580 if (rc == -EAGAIN) {
2581 *from = saved_from;
2582 iov_iter_advance(from, offset - saved_offset);
2583 continue;
2584 }
2585 break;
2586 }
2587
2588 list_add_tail(&wdata->list, wdata_list);
2589 offset += cur_len;
2590 len -= cur_len;
2591 } while (len > 0);
2592
2593 return rc;
2594 }
2595
2596 ssize_t cifs_user_writev(struct kiocb *iocb, struct iov_iter *from)
2597 {
2598 struct file *file = iocb->ki_filp;
2599 ssize_t total_written = 0;
2600 struct cifsFileInfo *open_file;
2601 struct cifs_tcon *tcon;
2602 struct cifs_sb_info *cifs_sb;
2603 struct cifs_writedata *wdata, *tmp;
2604 struct list_head wdata_list;
2605 struct iov_iter saved_from = *from;
2606 int rc;
2607
2608 /*
2609 * BB - optimize the way when signing is disabled. We can drop this
2610 * extra memory-to-memory copying and use iovec buffers for constructing
2611 * write request.
2612 */
2613
2614 rc = generic_write_checks(iocb, from);
2615 if (rc <= 0)
2616 return rc;
2617
2618 INIT_LIST_HEAD(&wdata_list);
2619 cifs_sb = CIFS_FILE_SB(file);
2620 open_file = file->private_data;
2621 tcon = tlink_tcon(open_file->tlink);
2622
2623 if (!tcon->ses->server->ops->async_writev)
2624 return -ENOSYS;
2625
2626 rc = cifs_write_from_iter(iocb->ki_pos, iov_iter_count(from), from,
2627 open_file, cifs_sb, &wdata_list);
2628
2629 /*
2630 * If at least one write was successfully sent, then discard any rc
2631 * value from the later writes. If the other write succeeds, then
2632 * we'll end up returning whatever was written. If it fails, then
2633 * we'll get a new rc value from that.
2634 */
2635 if (!list_empty(&wdata_list))
2636 rc = 0;
2637
2638 /*
2639 * Wait for and collect replies for any successful sends in order of
2640 * increasing offset. Once an error is hit or we get a fatal signal
2641 * while waiting, then return without waiting for any more replies.
2642 */
2643 restart_loop:
2644 list_for_each_entry_safe(wdata, tmp, &wdata_list, list) {
2645 if (!rc) {
2646 /* FIXME: freezable too? */
2647 rc = wait_for_completion_killable(&wdata->done);
2648 if (rc)
2649 rc = -EINTR;
2650 else if (wdata->result)
2651 rc = wdata->result;
2652 else
2653 total_written += wdata->bytes;
2654
2655 /* resend call if it's a retryable error */
2656 if (rc == -EAGAIN) {
2657 struct list_head tmp_list;
2658 struct iov_iter tmp_from = saved_from;
2659
2660 INIT_LIST_HEAD(&tmp_list);
2661 list_del_init(&wdata->list);
2662
2663 iov_iter_advance(&tmp_from,
2664 wdata->offset - iocb->ki_pos);
2665
2666 rc = cifs_write_from_iter(wdata->offset,
2667 wdata->bytes, &tmp_from,
2668 open_file, cifs_sb, &tmp_list);
2669
2670 list_splice(&tmp_list, &wdata_list);
2671
2672 kref_put(&wdata->refcount,
2673 cifs_uncached_writedata_release);
2674 goto restart_loop;
2675 }
2676 }
2677 list_del_init(&wdata->list);
2678 kref_put(&wdata->refcount, cifs_uncached_writedata_release);
2679 }
2680
2681 if (unlikely(!total_written))
2682 return rc;
2683
2684 iocb->ki_pos += total_written;
2685 set_bit(CIFS_INO_INVALID_MAPPING, &CIFS_I(file_inode(file))->flags);
2686 cifs_stats_bytes_written(tcon, total_written);
2687 return total_written;
2688 }
2689
2690 static ssize_t
2691 cifs_writev(struct kiocb *iocb, struct iov_iter *from)
2692 {
2693 struct file *file = iocb->ki_filp;
2694 struct cifsFileInfo *cfile = (struct cifsFileInfo *)file->private_data;
2695 struct inode *inode = file->f_mapping->host;
2696 struct cifsInodeInfo *cinode = CIFS_I(inode);
2697 struct TCP_Server_Info *server = tlink_tcon(cfile->tlink)->ses->server;
2698 ssize_t rc;
2699
2700 /*
2701 * We need to hold the sem to be sure nobody modifies lock list
2702 * with a brlock that prevents writing.
2703 */
2704 down_read(&cinode->lock_sem);
2705 inode_lock(inode);
2706
2707 rc = generic_write_checks(iocb, from);
2708 if (rc <= 0)
2709 goto out;
2710
2711 if (!cifs_find_lock_conflict(cfile, iocb->ki_pos, iov_iter_count(from),
2712 server->vals->exclusive_lock_type, NULL,
2713 CIFS_WRITE_OP))
2714 rc = __generic_file_write_iter(iocb, from);
2715 else
2716 rc = -EACCES;
2717 out:
2718 inode_unlock(inode);
2719
2720 if (rc > 0)
2721 rc = generic_write_sync(iocb, rc);
2722 up_read(&cinode->lock_sem);
2723 return rc;
2724 }
2725
2726 ssize_t
2727 cifs_strict_writev(struct kiocb *iocb, struct iov_iter *from)
2728 {
2729 struct inode *inode = file_inode(iocb->ki_filp);
2730 struct cifsInodeInfo *cinode = CIFS_I(inode);
2731 struct cifs_sb_info *cifs_sb = CIFS_SB(inode->i_sb);
2732 struct cifsFileInfo *cfile = (struct cifsFileInfo *)
2733 iocb->ki_filp->private_data;
2734 struct cifs_tcon *tcon = tlink_tcon(cfile->tlink);
2735 ssize_t written;
2736
2737 written = cifs_get_writer(cinode);
2738 if (written)
2739 return written;
2740
2741 if (CIFS_CACHE_WRITE(cinode)) {
2742 if (cap_unix(tcon->ses) &&
2743 (CIFS_UNIX_FCNTL_CAP & le64_to_cpu(tcon->fsUnixInfo.Capability))
2744 && ((cifs_sb->mnt_cifs_flags & CIFS_MOUNT_NOPOSIXBRL) == 0)) {
2745 written = generic_file_write_iter(iocb, from);
2746 goto out;
2747 }
2748 written = cifs_writev(iocb, from);
2749 goto out;
2750 }
2751 /*
2752 * For non-oplocked files in strict cache mode we need to write the data
2753 * to the server exactly from the pos to pos+len-1 rather than flush all
2754 * affected pages because it may cause a error with mandatory locks on
2755 * these pages but not on the region from pos to ppos+len-1.
2756 */
2757 written = cifs_user_writev(iocb, from);
2758 if (written > 0 && CIFS_CACHE_READ(cinode)) {
2759 /*
2760 * Windows 7 server can delay breaking level2 oplock if a write
2761 * request comes - break it on the client to prevent reading
2762 * an old data.
2763 */
2764 cifs_zap_mapping(inode);
2765 cifs_dbg(FYI, "Set no oplock for inode=%p after a write operation\n",
2766 inode);
2767 cinode->oplock = 0;
2768 }
2769 out:
2770 cifs_put_writer(cinode);
2771 return written;
2772 }
2773
2774 static struct cifs_readdata *
2775 cifs_readdata_alloc(unsigned int nr_pages, work_func_t complete)
2776 {
2777 struct cifs_readdata *rdata;
2778
2779 rdata = kzalloc(sizeof(*rdata) + (sizeof(struct page *) * nr_pages),
2780 GFP_KERNEL);
2781 if (rdata != NULL) {
2782 kref_init(&rdata->refcount);
2783 INIT_LIST_HEAD(&rdata->list);
2784 init_completion(&rdata->done);
2785 INIT_WORK(&rdata->work, complete);
2786 }
2787
2788 return rdata;
2789 }
2790
2791 void
2792 cifs_readdata_release(struct kref *refcount)
2793 {
2794 struct cifs_readdata *rdata = container_of(refcount,
2795 struct cifs_readdata, refcount);
2796
2797 if (rdata->cfile)
2798 cifsFileInfo_put(rdata->cfile);
2799
2800 kfree(rdata);
2801 }
2802
2803 static int
2804 cifs_read_allocate_pages(struct cifs_readdata *rdata, unsigned int nr_pages)
2805 {
2806 int rc = 0;
2807 struct page *page;
2808 unsigned int i;
2809
2810 for (i = 0; i < nr_pages; i++) {
2811 page = alloc_page(GFP_KERNEL|__GFP_HIGHMEM);
2812 if (!page) {
2813 rc = -ENOMEM;
2814 break;
2815 }
2816 rdata->pages[i] = page;
2817 }
2818
2819 if (rc) {
2820 for (i = 0; i < nr_pages; i++) {
2821 put_page(rdata->pages[i]);
2822 rdata->pages[i] = NULL;
2823 }
2824 }
2825 return rc;
2826 }
2827
2828 static void
2829 cifs_uncached_readdata_release(struct kref *refcount)
2830 {
2831 struct cifs_readdata *rdata = container_of(refcount,
2832 struct cifs_readdata, refcount);
2833 unsigned int i;
2834
2835 for (i = 0; i < rdata->nr_pages; i++) {
2836 put_page(rdata->pages[i]);
2837 rdata->pages[i] = NULL;
2838 }
2839 cifs_readdata_release(refcount);
2840 }
2841
2842 /**
2843 * cifs_readdata_to_iov - copy data from pages in response to an iovec
2844 * @rdata: the readdata response with list of pages holding data
2845 * @iter: destination for our data
2846 *
2847 * This function copies data from a list of pages in a readdata response into
2848 * an array of iovecs. It will first calculate where the data should go
2849 * based on the info in the readdata and then copy the data into that spot.
2850 */
2851 static int
2852 cifs_readdata_to_iov(struct cifs_readdata *rdata, struct iov_iter *iter)
2853 {
2854 size_t remaining = rdata->got_bytes;
2855 unsigned int i;
2856
2857 for (i = 0; i < rdata->nr_pages; i++) {
2858 struct page *page = rdata->pages[i];
2859 size_t copy = min_t(size_t, remaining, PAGE_SIZE);
2860 size_t written = copy_page_to_iter(page, 0, copy, iter);
2861 remaining -= written;
2862 if (written < copy && iov_iter_count(iter) > 0)
2863 break;
2864 }
2865 return remaining ? -EFAULT : 0;
2866 }
2867
2868 static void
2869 cifs_uncached_readv_complete(struct work_struct *work)
2870 {
2871 struct cifs_readdata *rdata = container_of(work,
2872 struct cifs_readdata, work);
2873
2874 complete(&rdata->done);
2875 kref_put(&rdata->refcount, cifs_uncached_readdata_release);
2876 }
2877
2878 static int
2879 cifs_uncached_read_into_pages(struct TCP_Server_Info *server,
2880 struct cifs_readdata *rdata, unsigned int len)
2881 {
2882 int result = 0;
2883 unsigned int i;
2884 unsigned int nr_pages = rdata->nr_pages;
2885
2886 rdata->got_bytes = 0;
2887 rdata->tailsz = PAGE_SIZE;
2888 for (i = 0; i < nr_pages; i++) {
2889 struct page *page = rdata->pages[i];
2890 size_t n;
2891
2892 if (len <= 0) {
2893 /* no need to hold page hostage */
2894 rdata->pages[i] = NULL;
2895 rdata->nr_pages--;
2896 put_page(page);
2897 continue;
2898 }
2899 n = len;
2900 if (len >= PAGE_SIZE) {
2901 /* enough data to fill the page */
2902 n = PAGE_SIZE;
2903 len -= n;
2904 } else {
2905 zero_user(page, len, PAGE_SIZE - len);
2906 rdata->tailsz = len;
2907 len = 0;
2908 }
2909 result = cifs_read_page_from_socket(server, page, n);
2910 if (result < 0)
2911 break;
2912
2913 rdata->got_bytes += result;
2914 }
2915
2916 return rdata->got_bytes > 0 && result != -ECONNABORTED ?
2917 rdata->got_bytes : result;
2918 }
2919
2920 static int
2921 cifs_send_async_read(loff_t offset, size_t len, struct cifsFileInfo *open_file,
2922 struct cifs_sb_info *cifs_sb, struct list_head *rdata_list)
2923 {
2924 struct cifs_readdata *rdata;
2925 unsigned int npages, rsize, credits;
2926 size_t cur_len;
2927 int rc;
2928 pid_t pid;
2929 struct TCP_Server_Info *server;
2930
2931 server = tlink_tcon(open_file->tlink)->ses->server;
2932
2933 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_RWPIDFORWARD)
2934 pid = open_file->pid;
2935 else
2936 pid = current->tgid;
2937
2938 do {
2939 rc = server->ops->wait_mtu_credits(server, cifs_sb->rsize,
2940 &rsize, &credits);
2941 if (rc)
2942 break;
2943
2944 cur_len = min_t(const size_t, len, rsize);
2945 npages = DIV_ROUND_UP(cur_len, PAGE_SIZE);
2946
2947 /* allocate a readdata struct */
2948 rdata = cifs_readdata_alloc(npages,
2949 cifs_uncached_readv_complete);
2950 if (!rdata) {
2951 add_credits_and_wake_if(server, credits, 0);
2952 rc = -ENOMEM;
2953 break;
2954 }
2955
2956 rc = cifs_read_allocate_pages(rdata, npages);
2957 if (rc)
2958 goto error;
2959
2960 rdata->cfile = cifsFileInfo_get(open_file);
2961 rdata->nr_pages = npages;
2962 rdata->offset = offset;
2963 rdata->bytes = cur_len;
2964 rdata->pid = pid;
2965 rdata->pagesz = PAGE_SIZE;
2966 rdata->read_into_pages = cifs_uncached_read_into_pages;
2967 rdata->credits = credits;
2968
2969 if (!rdata->cfile->invalidHandle ||
2970 !cifs_reopen_file(rdata->cfile, true))
2971 rc = server->ops->async_readv(rdata);
2972 error:
2973 if (rc) {
2974 add_credits_and_wake_if(server, rdata->credits, 0);
2975 kref_put(&rdata->refcount,
2976 cifs_uncached_readdata_release);
2977 if (rc == -EAGAIN)
2978 continue;
2979 break;
2980 }
2981
2982 list_add_tail(&rdata->list, rdata_list);
2983 offset += cur_len;
2984 len -= cur_len;
2985 } while (len > 0);
2986
2987 return rc;
2988 }
2989
2990 ssize_t cifs_user_readv(struct kiocb *iocb, struct iov_iter *to)
2991 {
2992 struct file *file = iocb->ki_filp;
2993 ssize_t rc;
2994 size_t len;
2995 ssize_t total_read = 0;
2996 loff_t offset = iocb->ki_pos;
2997 struct cifs_sb_info *cifs_sb;
2998 struct cifs_tcon *tcon;
2999 struct cifsFileInfo *open_file;
3000 struct cifs_readdata *rdata, *tmp;
3001 struct list_head rdata_list;
3002
3003 len = iov_iter_count(to);
3004 if (!len)
3005 return 0;
3006
3007 INIT_LIST_HEAD(&rdata_list);
3008 cifs_sb = CIFS_FILE_SB(file);
3009 open_file = file->private_data;
3010 tcon = tlink_tcon(open_file->tlink);
3011
3012 if (!tcon->ses->server->ops->async_readv)
3013 return -ENOSYS;
3014
3015 if ((file->f_flags & O_ACCMODE) == O_WRONLY)
3016 cifs_dbg(FYI, "attempting read on write only file instance\n");
3017
3018 rc = cifs_send_async_read(offset, len, open_file, cifs_sb, &rdata_list);
3019
3020 /* if at least one read request send succeeded, then reset rc */
3021 if (!list_empty(&rdata_list))
3022 rc = 0;
3023
3024 len = iov_iter_count(to);
3025 /* the loop below should proceed in the order of increasing offsets */
3026 again:
3027 list_for_each_entry_safe(rdata, tmp, &rdata_list, list) {
3028 if (!rc) {
3029 /* FIXME: freezable sleep too? */
3030 rc = wait_for_completion_killable(&rdata->done);
3031 if (rc)
3032 rc = -EINTR;
3033 else if (rdata->result == -EAGAIN) {
3034 /* resend call if it's a retryable error */
3035 struct list_head tmp_list;
3036 unsigned int got_bytes = rdata->got_bytes;
3037
3038 list_del_init(&rdata->list);
3039 INIT_LIST_HEAD(&tmp_list);
3040
3041 /*
3042 * Got a part of data and then reconnect has
3043 * happened -- fill the buffer and continue
3044 * reading.
3045 */
3046 if (got_bytes && got_bytes < rdata->bytes) {
3047 rc = cifs_readdata_to_iov(rdata, to);
3048 if (rc) {
3049 kref_put(&rdata->refcount,
3050 cifs_uncached_readdata_release);
3051 continue;
3052 }
3053 }
3054
3055 rc = cifs_send_async_read(
3056 rdata->offset + got_bytes,
3057 rdata->bytes - got_bytes,
3058 rdata->cfile, cifs_sb,
3059 &tmp_list);
3060
3061 list_splice(&tmp_list, &rdata_list);
3062
3063 kref_put(&rdata->refcount,
3064 cifs_uncached_readdata_release);
3065 goto again;
3066 } else if (rdata->result)
3067 rc = rdata->result;
3068 else
3069 rc = cifs_readdata_to_iov(rdata, to);
3070
3071 /* if there was a short read -- discard anything left */
3072 if (rdata->got_bytes && rdata->got_bytes < rdata->bytes)
3073 rc = -ENODATA;
3074 }
3075 list_del_init(&rdata->list);
3076 kref_put(&rdata->refcount, cifs_uncached_readdata_release);
3077 }
3078
3079 total_read = len - iov_iter_count(to);
3080
3081 cifs_stats_bytes_read(tcon, total_read);
3082
3083 /* mask nodata case */
3084 if (rc == -ENODATA)
3085 rc = 0;
3086
3087 if (total_read) {
3088 iocb->ki_pos += total_read;
3089 return total_read;
3090 }
3091 return rc;
3092 }
3093
3094 ssize_t
3095 cifs_strict_readv(struct kiocb *iocb, struct iov_iter *to)
3096 {
3097 struct inode *inode = file_inode(iocb->ki_filp);
3098 struct cifsInodeInfo *cinode = CIFS_I(inode);
3099 struct cifs_sb_info *cifs_sb = CIFS_SB(inode->i_sb);
3100 struct cifsFileInfo *cfile = (struct cifsFileInfo *)
3101 iocb->ki_filp->private_data;
3102 struct cifs_tcon *tcon = tlink_tcon(cfile->tlink);
3103 int rc = -EACCES;
3104
3105 /*
3106 * In strict cache mode we need to read from the server all the time
3107 * if we don't have level II oplock because the server can delay mtime
3108 * change - so we can't make a decision about inode invalidating.
3109 * And we can also fail with pagereading if there are mandatory locks
3110 * on pages affected by this read but not on the region from pos to
3111 * pos+len-1.
3112 */
3113 if (!CIFS_CACHE_READ(cinode))
3114 return cifs_user_readv(iocb, to);
3115
3116 if (cap_unix(tcon->ses) &&
3117 (CIFS_UNIX_FCNTL_CAP & le64_to_cpu(tcon->fsUnixInfo.Capability)) &&
3118 ((cifs_sb->mnt_cifs_flags & CIFS_MOUNT_NOPOSIXBRL) == 0))
3119 return generic_file_read_iter(iocb, to);
3120
3121 /*
3122 * We need to hold the sem to be sure nobody modifies lock list
3123 * with a brlock that prevents reading.
3124 */
3125 down_read(&cinode->lock_sem);
3126 if (!cifs_find_lock_conflict(cfile, iocb->ki_pos, iov_iter_count(to),
3127 tcon->ses->server->vals->shared_lock_type,
3128 NULL, CIFS_READ_OP))
3129 rc = generic_file_read_iter(iocb, to);
3130 up_read(&cinode->lock_sem);
3131 return rc;
3132 }
3133
3134 static ssize_t
3135 cifs_read(struct file *file, char *read_data, size_t read_size, loff_t *offset)
3136 {
3137 int rc = -EACCES;
3138 unsigned int bytes_read = 0;
3139 unsigned int total_read;
3140 unsigned int current_read_size;
3141 unsigned int rsize;
3142 struct cifs_sb_info *cifs_sb;
3143 struct cifs_tcon *tcon;
3144 struct TCP_Server_Info *server;
3145 unsigned int xid;
3146 char *cur_offset;
3147 struct cifsFileInfo *open_file;
3148 struct cifs_io_parms io_parms;
3149 int buf_type = CIFS_NO_BUFFER;
3150 __u32 pid;
3151
3152 xid = get_xid();
3153 cifs_sb = CIFS_FILE_SB(file);
3154
3155 /* FIXME: set up handlers for larger reads and/or convert to async */
3156 rsize = min_t(unsigned int, cifs_sb->rsize, CIFSMaxBufSize);
3157
3158 if (file->private_data == NULL) {
3159 rc = -EBADF;
3160 free_xid(xid);
3161 return rc;
3162 }
3163 open_file = file->private_data;
3164 tcon = tlink_tcon(open_file->tlink);
3165 server = tcon->ses->server;
3166
3167 if (!server->ops->sync_read) {
3168 free_xid(xid);
3169 return -ENOSYS;
3170 }
3171
3172 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_RWPIDFORWARD)
3173 pid = open_file->pid;
3174 else
3175 pid = current->tgid;
3176
3177 if ((file->f_flags & O_ACCMODE) == O_WRONLY)
3178 cifs_dbg(FYI, "attempting read on write only file instance\n");
3179
3180 for (total_read = 0, cur_offset = read_data; read_size > total_read;
3181 total_read += bytes_read, cur_offset += bytes_read) {
3182 do {
3183 current_read_size = min_t(uint, read_size - total_read,
3184 rsize);
3185 /*
3186 * For windows me and 9x we do not want to request more
3187 * than it negotiated since it will refuse the read
3188 * then.
3189 */
3190 if ((tcon->ses) && !(tcon->ses->capabilities &
3191 tcon->ses->server->vals->cap_large_files)) {
3192 current_read_size = min_t(uint,
3193 current_read_size, CIFSMaxBufSize);
3194 }
3195 if (open_file->invalidHandle) {
3196 rc = cifs_reopen_file(open_file, true);
3197 if (rc != 0)
3198 break;
3199 }
3200 io_parms.pid = pid;
3201 io_parms.tcon = tcon;
3202 io_parms.offset = *offset;
3203 io_parms.length = current_read_size;
3204 rc = server->ops->sync_read(xid, &open_file->fid, &io_parms,
3205 &bytes_read, &cur_offset,
3206 &buf_type);
3207 } while (rc == -EAGAIN);
3208
3209 if (rc || (bytes_read == 0)) {
3210 if (total_read) {
3211 break;
3212 } else {
3213 free_xid(xid);
3214 return rc;
3215 }
3216 } else {
3217 cifs_stats_bytes_read(tcon, total_read);
3218 *offset += bytes_read;
3219 }
3220 }
3221 free_xid(xid);
3222 return total_read;
3223 }
3224
3225 /*
3226 * If the page is mmap'ed into a process' page tables, then we need to make
3227 * sure that it doesn't change while being written back.
3228 */
3229 static int
3230 cifs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
3231 {
3232 struct page *page = vmf->page;
3233
3234 lock_page(page);
3235 return VM_FAULT_LOCKED;
3236 }
3237
3238 static const struct vm_operations_struct cifs_file_vm_ops = {
3239 .fault = filemap_fault,
3240 .map_pages = filemap_map_pages,
3241 .page_mkwrite = cifs_page_mkwrite,
3242 };
3243
3244 int cifs_file_strict_mmap(struct file *file, struct vm_area_struct *vma)
3245 {
3246 int rc, xid;
3247 struct inode *inode = file_inode(file);
3248
3249 xid = get_xid();
3250
3251 if (!CIFS_CACHE_READ(CIFS_I(inode))) {
3252 rc = cifs_zap_mapping(inode);
3253 if (rc)
3254 return rc;
3255 }
3256
3257 rc = generic_file_mmap(file, vma);
3258 if (rc == 0)
3259 vma->vm_ops = &cifs_file_vm_ops;
3260 free_xid(xid);
3261 return rc;
3262 }
3263
3264 int cifs_file_mmap(struct file *file, struct vm_area_struct *vma)
3265 {
3266 int rc, xid;
3267
3268 xid = get_xid();
3269 rc = cifs_revalidate_file(file);
3270 if (rc) {
3271 cifs_dbg(FYI, "Validation prior to mmap failed, error=%d\n",
3272 rc);
3273 free_xid(xid);
3274 return rc;
3275 }
3276 rc = generic_file_mmap(file, vma);
3277 if (rc == 0)
3278 vma->vm_ops = &cifs_file_vm_ops;
3279 free_xid(xid);
3280 return rc;
3281 }
3282
3283 static void
3284 cifs_readv_complete(struct work_struct *work)
3285 {
3286 unsigned int i, got_bytes;
3287 struct cifs_readdata *rdata = container_of(work,
3288 struct cifs_readdata, work);
3289
3290 got_bytes = rdata->got_bytes;
3291 for (i = 0; i < rdata->nr_pages; i++) {
3292 struct page *page = rdata->pages[i];
3293
3294 lru_cache_add_file(page);
3295
3296 if (rdata->result == 0 ||
3297 (rdata->result == -EAGAIN && got_bytes)) {
3298 flush_dcache_page(page);
3299 SetPageUptodate(page);
3300 }
3301
3302 unlock_page(page);
3303
3304 if (rdata->result == 0 ||
3305 (rdata->result == -EAGAIN && got_bytes))
3306 cifs_readpage_to_fscache(rdata->mapping->host, page);
3307
3308 got_bytes -= min_t(unsigned int, PAGE_SIZE, got_bytes);
3309
3310 put_page(page);
3311 rdata->pages[i] = NULL;
3312 }
3313 kref_put(&rdata->refcount, cifs_readdata_release);
3314 }
3315
3316 static int
3317 cifs_readpages_read_into_pages(struct TCP_Server_Info *server,
3318 struct cifs_readdata *rdata, unsigned int len)
3319 {
3320 int result = 0;
3321 unsigned int i;
3322 u64 eof;
3323 pgoff_t eof_index;
3324 unsigned int nr_pages = rdata->nr_pages;
3325
3326 /* determine the eof that the server (probably) has */
3327 eof = CIFS_I(rdata->mapping->host)->server_eof;
3328 eof_index = eof ? (eof - 1) >> PAGE_SHIFT : 0;
3329 cifs_dbg(FYI, "eof=%llu eof_index=%lu\n", eof, eof_index);
3330
3331 rdata->got_bytes = 0;
3332 rdata->tailsz = PAGE_SIZE;
3333 for (i = 0; i < nr_pages; i++) {
3334 struct page *page = rdata->pages[i];
3335 size_t n = PAGE_SIZE;
3336
3337 if (len >= PAGE_SIZE) {
3338 len -= PAGE_SIZE;
3339 } else if (len > 0) {
3340 /* enough for partial page, fill and zero the rest */
3341 zero_user(page, len, PAGE_SIZE - len);
3342 n = rdata->tailsz = len;
3343 len = 0;
3344 } else if (page->index > eof_index) {
3345 /*
3346 * The VFS will not try to do readahead past the
3347 * i_size, but it's possible that we have outstanding
3348 * writes with gaps in the middle and the i_size hasn't
3349 * caught up yet. Populate those with zeroed out pages
3350 * to prevent the VFS from repeatedly attempting to
3351 * fill them until the writes are flushed.
3352 */
3353 zero_user(page, 0, PAGE_SIZE);
3354 lru_cache_add_file(page);
3355 flush_dcache_page(page);
3356 SetPageUptodate(page);
3357 unlock_page(page);
3358 put_page(page);
3359 rdata->pages[i] = NULL;
3360 rdata->nr_pages--;
3361 continue;
3362 } else {
3363 /* no need to hold page hostage */
3364 lru_cache_add_file(page);
3365 unlock_page(page);
3366 put_page(page);
3367 rdata->pages[i] = NULL;
3368 rdata->nr_pages--;
3369 continue;
3370 }
3371
3372 result = cifs_read_page_from_socket(server, page, n);
3373 if (result < 0)
3374 break;
3375
3376 rdata->got_bytes += result;
3377 }
3378
3379 return rdata->got_bytes > 0 && result != -ECONNABORTED ?
3380 rdata->got_bytes : result;
3381 }
3382
3383 static int
3384 readpages_get_pages(struct address_space *mapping, struct list_head *page_list,
3385 unsigned int rsize, struct list_head *tmplist,
3386 unsigned int *nr_pages, loff_t *offset, unsigned int *bytes)
3387 {
3388 struct page *page, *tpage;
3389 unsigned int expected_index;
3390 int rc;
3391 gfp_t gfp = readahead_gfp_mask(mapping);
3392
3393 INIT_LIST_HEAD(tmplist);
3394
3395 page = list_entry(page_list->prev, struct page, lru);
3396
3397 /*
3398 * Lock the page and put it in the cache. Since no one else
3399 * should have access to this page, we're safe to simply set
3400 * PG_locked without checking it first.
3401 */
3402 __SetPageLocked(page);
3403 rc = add_to_page_cache_locked(page, mapping,
3404 page->index, gfp);
3405
3406 /* give up if we can't stick it in the cache */
3407 if (rc) {
3408 __ClearPageLocked(page);
3409 return rc;
3410 }
3411
3412 /* move first page to the tmplist */
3413 *offset = (loff_t)page->index << PAGE_SHIFT;
3414 *bytes = PAGE_SIZE;
3415 *nr_pages = 1;
3416 list_move_tail(&page->lru, tmplist);
3417
3418 /* now try and add more pages onto the request */
3419 expected_index = page->index + 1;
3420 list_for_each_entry_safe_reverse(page, tpage, page_list, lru) {
3421 /* discontinuity ? */
3422 if (page->index != expected_index)
3423 break;
3424
3425 /* would this page push the read over the rsize? */
3426 if (*bytes + PAGE_SIZE > rsize)
3427 break;
3428
3429 __SetPageLocked(page);
3430 if (add_to_page_cache_locked(page, mapping, page->index, gfp)) {
3431 __ClearPageLocked(page);
3432 break;
3433 }
3434 list_move_tail(&page->lru, tmplist);
3435 (*bytes) += PAGE_SIZE;
3436 expected_index++;
3437 (*nr_pages)++;
3438 }
3439 return rc;
3440 }
3441
3442 static int cifs_readpages(struct file *file, struct address_space *mapping,
3443 struct list_head *page_list, unsigned num_pages)
3444 {
3445 int rc;
3446 struct list_head tmplist;
3447 struct cifsFileInfo *open_file = file->private_data;
3448 struct cifs_sb_info *cifs_sb = CIFS_FILE_SB(file);
3449 struct TCP_Server_Info *server;
3450 pid_t pid;
3451
3452 /*
3453 * Reads as many pages as possible from fscache. Returns -ENOBUFS
3454 * immediately if the cookie is negative
3455 *
3456 * After this point, every page in the list might have PG_fscache set,
3457 * so we will need to clean that up off of every page we don't use.
3458 */
3459 rc = cifs_readpages_from_fscache(mapping->host, mapping, page_list,
3460 &num_pages);
3461 if (rc == 0)
3462 return rc;
3463
3464 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_RWPIDFORWARD)
3465 pid = open_file->pid;
3466 else
3467 pid = current->tgid;
3468
3469 rc = 0;
3470 server = tlink_tcon(open_file->tlink)->ses->server;
3471
3472 cifs_dbg(FYI, "%s: file=%p mapping=%p num_pages=%u\n",
3473 __func__, file, mapping, num_pages);
3474
3475 /*
3476 * Start with the page at end of list and move it to private
3477 * list. Do the same with any following pages until we hit
3478 * the rsize limit, hit an index discontinuity, or run out of
3479 * pages. Issue the async read and then start the loop again
3480 * until the list is empty.
3481 *
3482 * Note that list order is important. The page_list is in
3483 * the order of declining indexes. When we put the pages in
3484 * the rdata->pages, then we want them in increasing order.
3485 */
3486 while (!list_empty(page_list)) {
3487 unsigned int i, nr_pages, bytes, rsize;
3488 loff_t offset;
3489 struct page *page, *tpage;
3490 struct cifs_readdata *rdata;
3491 unsigned credits;
3492
3493 rc = server->ops->wait_mtu_credits(server, cifs_sb->rsize,
3494 &rsize, &credits);
3495 if (rc)
3496 break;
3497
3498 /*
3499 * Give up immediately if rsize is too small to read an entire
3500 * page. The VFS will fall back to readpage. We should never
3501 * reach this point however since we set ra_pages to 0 when the
3502 * rsize is smaller than a cache page.
3503 */
3504 if (unlikely(rsize < PAGE_SIZE)) {
3505 add_credits_and_wake_if(server, credits, 0);
3506 return 0;
3507 }
3508
3509 rc = readpages_get_pages(mapping, page_list, rsize, &tmplist,
3510 &nr_pages, &offset, &bytes);
3511 if (rc) {
3512 add_credits_and_wake_if(server, credits, 0);
3513 break;
3514 }
3515
3516 rdata = cifs_readdata_alloc(nr_pages, cifs_readv_complete);
3517 if (!rdata) {
3518 /* best to give up if we're out of mem */
3519 list_for_each_entry_safe(page, tpage, &tmplist, lru) {
3520 list_del(&page->lru);
3521 lru_cache_add_file(page);
3522 unlock_page(page);
3523 put_page(page);
3524 }
3525 rc = -ENOMEM;
3526 add_credits_and_wake_if(server, credits, 0);
3527 break;
3528 }
3529
3530 rdata->cfile = cifsFileInfo_get(open_file);
3531 rdata->mapping = mapping;
3532 rdata->offset = offset;
3533 rdata->bytes = bytes;
3534 rdata->pid = pid;
3535 rdata->pagesz = PAGE_SIZE;
3536 rdata->read_into_pages = cifs_readpages_read_into_pages;
3537 rdata->credits = credits;
3538
3539 list_for_each_entry_safe(page, tpage, &tmplist, lru) {
3540 list_del(&page->lru);
3541 rdata->pages[rdata->nr_pages++] = page;
3542 }
3543
3544 if (!rdata->cfile->invalidHandle ||
3545 !cifs_reopen_file(rdata->cfile, true))
3546 rc = server->ops->async_readv(rdata);
3547 if (rc) {
3548 add_credits_and_wake_if(server, rdata->credits, 0);
3549 for (i = 0; i < rdata->nr_pages; i++) {
3550 page = rdata->pages[i];
3551 lru_cache_add_file(page);
3552 unlock_page(page);
3553 put_page(page);
3554 }
3555 /* Fallback to the readpage in error/reconnect cases */
3556 kref_put(&rdata->refcount, cifs_readdata_release);
3557 break;
3558 }
3559
3560 kref_put(&rdata->refcount, cifs_readdata_release);
3561 }
3562
3563 /* Any pages that have been shown to fscache but didn't get added to
3564 * the pagecache must be uncached before they get returned to the
3565 * allocator.
3566 */
3567 cifs_fscache_readpages_cancel(mapping->host, page_list);
3568 return rc;
3569 }
3570
3571 /*
3572 * cifs_readpage_worker must be called with the page pinned
3573 */
3574 static int cifs_readpage_worker(struct file *file, struct page *page,
3575 loff_t *poffset)
3576 {
3577 char *read_data;
3578 int rc;
3579
3580 /* Is the page cached? */
3581 rc = cifs_readpage_from_fscache(file_inode(file), page);
3582 if (rc == 0)
3583 goto read_complete;
3584
3585 read_data = kmap(page);
3586 /* for reads over a certain size could initiate async read ahead */
3587
3588 rc = cifs_read(file, read_data, PAGE_SIZE, poffset);
3589
3590 if (rc < 0)
3591 goto io_error;
3592 else
3593 cifs_dbg(FYI, "Bytes read %d\n", rc);
3594
3595 file_inode(file)->i_atime =
3596 current_time(file_inode(file));
3597
3598 if (PAGE_SIZE > rc)
3599 memset(read_data + rc, 0, PAGE_SIZE - rc);
3600
3601 flush_dcache_page(page);
3602 SetPageUptodate(page);
3603
3604 /* send this page to the cache */
3605 cifs_readpage_to_fscache(file_inode(file), page);
3606
3607 rc = 0;
3608
3609 io_error:
3610 kunmap(page);
3611 unlock_page(page);
3612
3613 read_complete:
3614 return rc;
3615 }
3616
3617 static int cifs_readpage(struct file *file, struct page *page)
3618 {
3619 loff_t offset = (loff_t)page->index << PAGE_SHIFT;
3620 int rc = -EACCES;
3621 unsigned int xid;
3622
3623 xid = get_xid();
3624
3625 if (file->private_data == NULL) {
3626 rc = -EBADF;
3627 free_xid(xid);
3628 return rc;
3629 }
3630
3631 cifs_dbg(FYI, "readpage %p at offset %d 0x%x\n",
3632 page, (int)offset, (int)offset);
3633
3634 rc = cifs_readpage_worker(file, page, &offset);
3635
3636 free_xid(xid);
3637 return rc;
3638 }
3639
3640 static int is_inode_writable(struct cifsInodeInfo *cifs_inode)
3641 {
3642 struct cifsFileInfo *open_file;
3643 struct cifs_tcon *tcon =
3644 cifs_sb_master_tcon(CIFS_SB(cifs_inode->vfs_inode.i_sb));
3645
3646 spin_lock(&tcon->open_file_lock);
3647 list_for_each_entry(open_file, &cifs_inode->openFileList, flist) {
3648 if (OPEN_FMODE(open_file->f_flags) & FMODE_WRITE) {
3649 spin_unlock(&tcon->open_file_lock);
3650 return 1;
3651 }
3652 }
3653 spin_unlock(&tcon->open_file_lock);
3654 return 0;
3655 }
3656
3657 /* We do not want to update the file size from server for inodes
3658 open for write - to avoid races with writepage extending
3659 the file - in the future we could consider allowing
3660 refreshing the inode only on increases in the file size
3661 but this is tricky to do without racing with writebehind
3662 page caching in the current Linux kernel design */
3663 bool is_size_safe_to_change(struct cifsInodeInfo *cifsInode, __u64 end_of_file)
3664 {
3665 if (!cifsInode)
3666 return true;
3667
3668 if (is_inode_writable(cifsInode)) {
3669 /* This inode is open for write at least once */
3670 struct cifs_sb_info *cifs_sb;
3671
3672 cifs_sb = CIFS_SB(cifsInode->vfs_inode.i_sb);
3673 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_DIRECT_IO) {
3674 /* since no page cache to corrupt on directio
3675 we can change size safely */
3676 return true;
3677 }
3678
3679 if (i_size_read(&cifsInode->vfs_inode) < end_of_file)
3680 return true;
3681
3682 return false;
3683 } else
3684 return true;
3685 }
3686
3687 static int cifs_write_begin(struct file *file, struct address_space *mapping,
3688 loff_t pos, unsigned len, unsigned flags,
3689 struct page **pagep, void **fsdata)
3690 {
3691 int oncethru = 0;
3692 pgoff_t index = pos >> PAGE_SHIFT;
3693 loff_t offset = pos & (PAGE_SIZE - 1);
3694 loff_t page_start = pos & PAGE_MASK;
3695 loff_t i_size;
3696 struct page *page;
3697 int rc = 0;
3698
3699 cifs_dbg(FYI, "write_begin from %lld len %d\n", (long long)pos, len);
3700
3701 start:
3702 page = grab_cache_page_write_begin(mapping, index, flags);
3703 if (!page) {
3704 rc = -ENOMEM;
3705 goto out;
3706 }
3707
3708 if (PageUptodate(page))
3709 goto out;
3710
3711 /*
3712 * If we write a full page it will be up to date, no need to read from
3713 * the server. If the write is short, we'll end up doing a sync write
3714 * instead.
3715 */
3716 if (len == PAGE_SIZE)
3717 goto out;
3718
3719 /*
3720 * optimize away the read when we have an oplock, and we're not
3721 * expecting to use any of the data we'd be reading in. That
3722 * is, when the page lies beyond the EOF, or straddles the EOF
3723 * and the write will cover all of the existing data.
3724 */
3725 if (CIFS_CACHE_READ(CIFS_I(mapping->host))) {
3726 i_size = i_size_read(mapping->host);
3727 if (page_start >= i_size ||
3728 (offset == 0 && (pos + len) >= i_size)) {
3729 zero_user_segments(page, 0, offset,
3730 offset + len,
3731 PAGE_SIZE);
3732 /*
3733 * PageChecked means that the parts of the page
3734 * to which we're not writing are considered up
3735 * to date. Once the data is copied to the
3736 * page, it can be set uptodate.
3737 */
3738 SetPageChecked(page);
3739 goto out;
3740 }
3741 }
3742
3743 if ((file->f_flags & O_ACCMODE) != O_WRONLY && !oncethru) {
3744 /*
3745 * might as well read a page, it is fast enough. If we get
3746 * an error, we don't need to return it. cifs_write_end will
3747 * do a sync write instead since PG_uptodate isn't set.
3748 */
3749 cifs_readpage_worker(file, page, &page_start);
3750 put_page(page);
3751 oncethru = 1;
3752 goto start;
3753 } else {
3754 /* we could try using another file handle if there is one -
3755 but how would we lock it to prevent close of that handle
3756 racing with this read? In any case
3757 this will be written out by write_end so is fine */
3758 }
3759 out:
3760 *pagep = page;
3761 return rc;
3762 }
3763
3764 static int cifs_release_page(struct page *page, gfp_t gfp)
3765 {
3766 if (PagePrivate(page))
3767 return 0;
3768
3769 return cifs_fscache_release_page(page, gfp);
3770 }
3771
3772 static void cifs_invalidate_page(struct page *page, unsigned int offset,
3773 unsigned int length)
3774 {
3775 struct cifsInodeInfo *cifsi = CIFS_I(page->mapping->host);
3776
3777 if (offset == 0 && length == PAGE_SIZE)
3778 cifs_fscache_invalidate_page(page, &cifsi->vfs_inode);
3779 }
3780
3781 static int cifs_launder_page(struct page *page)
3782 {
3783 int rc = 0;
3784 loff_t range_start = page_offset(page);
3785 loff_t range_end = range_start + (loff_t)(PAGE_SIZE - 1);
3786 struct writeback_control wbc = {
3787 .sync_mode = WB_SYNC_ALL,
3788 .nr_to_write = 0,
3789 .range_start = range_start,
3790 .range_end = range_end,
3791 };
3792
3793 cifs_dbg(FYI, "Launder page: %p\n", page);
3794
3795 if (clear_page_dirty_for_io(page))
3796 rc = cifs_writepage_locked(page, &wbc);
3797
3798 cifs_fscache_invalidate_page(page, page->mapping->host);
3799 return rc;
3800 }
3801
3802 void cifs_oplock_break(struct work_struct *work)
3803 {
3804 struct cifsFileInfo *cfile = container_of(work, struct cifsFileInfo,
3805 oplock_break);
3806 struct inode *inode = d_inode(cfile->dentry);
3807 struct cifsInodeInfo *cinode = CIFS_I(inode);
3808 struct cifs_tcon *tcon = tlink_tcon(cfile->tlink);
3809 struct TCP_Server_Info *server = tcon->ses->server;
3810 int rc = 0;
3811
3812 wait_on_bit(&cinode->flags, CIFS_INODE_PENDING_WRITERS,
3813 TASK_UNINTERRUPTIBLE);
3814
3815 server->ops->downgrade_oplock(server, cinode,
3816 test_bit(CIFS_INODE_DOWNGRADE_OPLOCK_TO_L2, &cinode->flags));
3817
3818 if (!CIFS_CACHE_WRITE(cinode) && CIFS_CACHE_READ(cinode) &&
3819 cifs_has_mand_locks(cinode)) {
3820 cifs_dbg(FYI, "Reset oplock to None for inode=%p due to mand locks\n",
3821 inode);
3822 cinode->oplock = 0;
3823 }
3824
3825 if (inode && S_ISREG(inode->i_mode)) {
3826 if (CIFS_CACHE_READ(cinode))
3827 break_lease(inode, O_RDONLY);
3828 else
3829 break_lease(inode, O_WRONLY);
3830 rc = filemap_fdatawrite(inode->i_mapping);
3831 if (!CIFS_CACHE_READ(cinode)) {
3832 rc = filemap_fdatawait(inode->i_mapping);
3833 mapping_set_error(inode->i_mapping, rc);
3834 cifs_zap_mapping(inode);
3835 }
3836 cifs_dbg(FYI, "Oplock flush inode %p rc %d\n", inode, rc);
3837 }
3838
3839 rc = cifs_push_locks(cfile);
3840 if (rc)
3841 cifs_dbg(VFS, "Push locks rc = %d\n", rc);
3842
3843 /*
3844 * releasing stale oplock after recent reconnect of smb session using
3845 * a now incorrect file handle is not a data integrity issue but do
3846 * not bother sending an oplock release if session to server still is
3847 * disconnected since oplock already released by the server
3848 */
3849 if (!cfile->oplock_break_cancelled) {
3850 rc = tcon->ses->server->ops->oplock_response(tcon, &cfile->fid,
3851 cinode);
3852 cifs_dbg(FYI, "Oplock release rc = %d\n", rc);
3853 }
3854 cifs_done_oplock_break(cinode);
3855 }
3856
3857 /*
3858 * The presence of cifs_direct_io() in the address space ops vector
3859 * allowes open() O_DIRECT flags which would have failed otherwise.
3860 *
3861 * In the non-cached mode (mount with cache=none), we shunt off direct read and write requests
3862 * so this method should never be called.
3863 *
3864 * Direct IO is not yet supported in the cached mode.
3865 */
3866 static ssize_t
3867 cifs_direct_io(struct kiocb *iocb, struct iov_iter *iter)
3868 {
3869 /*
3870 * FIXME
3871 * Eventually need to support direct IO for non forcedirectio mounts
3872 */
3873 return -EINVAL;
3874 }
3875
3876
3877 const struct address_space_operations cifs_addr_ops = {
3878 .readpage = cifs_readpage,
3879 .readpages = cifs_readpages,
3880 .writepage = cifs_writepage,
3881 .writepages = cifs_writepages,
3882 .write_begin = cifs_write_begin,
3883 .write_end = cifs_write_end,
3884 .set_page_dirty = __set_page_dirty_nobuffers,
3885 .releasepage = cifs_release_page,
3886 .direct_IO = cifs_direct_io,
3887 .invalidatepage = cifs_invalidate_page,
3888 .launder_page = cifs_launder_page,
3889 };
3890
3891 /*
3892 * cifs_readpages requires the server to support a buffer large enough to
3893 * contain the header plus one complete page of data. Otherwise, we need
3894 * to leave cifs_readpages out of the address space operations.
3895 */
3896 const struct address_space_operations cifs_addr_ops_smallbuf = {
3897 .readpage = cifs_readpage,
3898 .writepage = cifs_writepage,
3899 .writepages = cifs_writepages,
3900 .write_begin = cifs_write_begin,
3901 .write_end = cifs_write_end,
3902 .set_page_dirty = __set_page_dirty_nobuffers,
3903 .releasepage = cifs_release_page,
3904 .invalidatepage = cifs_invalidate_page,
3905 .launder_page = cifs_launder_page,
3906 };