]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - fs/cifs/misc.c
9f4486b705d5c6cea4959a8c55cc1a1d955e182f
[mirror_ubuntu-kernels.git] / fs / cifs / misc.c
1 // SPDX-License-Identifier: LGPL-2.1
2 /*
3 *
4 * Copyright (C) International Business Machines Corp., 2002,2008
5 * Author(s): Steve French (sfrench@us.ibm.com)
6 *
7 */
8
9 #include <linux/slab.h>
10 #include <linux/ctype.h>
11 #include <linux/mempool.h>
12 #include <linux/vmalloc.h>
13 #include "cifspdu.h"
14 #include "cifsglob.h"
15 #include "cifsproto.h"
16 #include "cifs_debug.h"
17 #include "smberr.h"
18 #include "nterr.h"
19 #include "cifs_unicode.h"
20 #include "smb2pdu.h"
21 #include "cifsfs.h"
22 #ifdef CONFIG_CIFS_DFS_UPCALL
23 #include "dns_resolve.h"
24 #include "dfs_cache.h"
25 #include "dfs.h"
26 #endif
27 #include "fs_context.h"
28 #include "cached_dir.h"
29
30 extern mempool_t *cifs_sm_req_poolp;
31 extern mempool_t *cifs_req_poolp;
32
33 /* The xid serves as a useful identifier for each incoming vfs request,
34 in a similar way to the mid which is useful to track each sent smb,
35 and CurrentXid can also provide a running counter (although it
36 will eventually wrap past zero) of the total vfs operations handled
37 since the cifs fs was mounted */
38
39 unsigned int
40 _get_xid(void)
41 {
42 unsigned int xid;
43
44 spin_lock(&GlobalMid_Lock);
45 GlobalTotalActiveXid++;
46
47 /* keep high water mark for number of simultaneous ops in filesystem */
48 if (GlobalTotalActiveXid > GlobalMaxActiveXid)
49 GlobalMaxActiveXid = GlobalTotalActiveXid;
50 if (GlobalTotalActiveXid > 65000)
51 cifs_dbg(FYI, "warning: more than 65000 requests active\n");
52 xid = GlobalCurrentXid++;
53 spin_unlock(&GlobalMid_Lock);
54 return xid;
55 }
56
57 void
58 _free_xid(unsigned int xid)
59 {
60 spin_lock(&GlobalMid_Lock);
61 /* if (GlobalTotalActiveXid == 0)
62 BUG(); */
63 GlobalTotalActiveXid--;
64 spin_unlock(&GlobalMid_Lock);
65 }
66
67 struct cifs_ses *
68 sesInfoAlloc(void)
69 {
70 struct cifs_ses *ret_buf;
71
72 ret_buf = kzalloc(sizeof(struct cifs_ses), GFP_KERNEL);
73 if (ret_buf) {
74 atomic_inc(&sesInfoAllocCount);
75 spin_lock_init(&ret_buf->ses_lock);
76 ret_buf->ses_status = SES_NEW;
77 ++ret_buf->ses_count;
78 INIT_LIST_HEAD(&ret_buf->smb_ses_list);
79 INIT_LIST_HEAD(&ret_buf->tcon_list);
80 mutex_init(&ret_buf->session_mutex);
81 spin_lock_init(&ret_buf->iface_lock);
82 INIT_LIST_HEAD(&ret_buf->iface_list);
83 spin_lock_init(&ret_buf->chan_lock);
84 }
85 return ret_buf;
86 }
87
88 void
89 sesInfoFree(struct cifs_ses *buf_to_free)
90 {
91 struct cifs_server_iface *iface = NULL, *niface = NULL;
92
93 if (buf_to_free == NULL) {
94 cifs_dbg(FYI, "Null buffer passed to sesInfoFree\n");
95 return;
96 }
97
98 atomic_dec(&sesInfoAllocCount);
99 kfree(buf_to_free->serverOS);
100 kfree(buf_to_free->serverDomain);
101 kfree(buf_to_free->serverNOS);
102 kfree_sensitive(buf_to_free->password);
103 kfree(buf_to_free->user_name);
104 kfree(buf_to_free->domainName);
105 kfree_sensitive(buf_to_free->auth_key.response);
106 spin_lock(&buf_to_free->iface_lock);
107 list_for_each_entry_safe(iface, niface, &buf_to_free->iface_list,
108 iface_head)
109 kref_put(&iface->refcount, release_iface);
110 spin_unlock(&buf_to_free->iface_lock);
111 kfree_sensitive(buf_to_free);
112 }
113
114 struct cifs_tcon *
115 tconInfoAlloc(void)
116 {
117 struct cifs_tcon *ret_buf;
118
119 ret_buf = kzalloc(sizeof(*ret_buf), GFP_KERNEL);
120 if (!ret_buf)
121 return NULL;
122 ret_buf->cfids = init_cached_dirs();
123 if (!ret_buf->cfids) {
124 kfree(ret_buf);
125 return NULL;
126 }
127
128 atomic_inc(&tconInfoAllocCount);
129 ret_buf->status = TID_NEW;
130 ++ret_buf->tc_count;
131 spin_lock_init(&ret_buf->tc_lock);
132 INIT_LIST_HEAD(&ret_buf->openFileList);
133 INIT_LIST_HEAD(&ret_buf->tcon_list);
134 spin_lock_init(&ret_buf->open_file_lock);
135 spin_lock_init(&ret_buf->stat_lock);
136 atomic_set(&ret_buf->num_local_opens, 0);
137 atomic_set(&ret_buf->num_remote_opens, 0);
138 #ifdef CONFIG_CIFS_DFS_UPCALL
139 INIT_LIST_HEAD(&ret_buf->dfs_ses_list);
140 #endif
141
142 return ret_buf;
143 }
144
145 void
146 tconInfoFree(struct cifs_tcon *tcon)
147 {
148 if (tcon == NULL) {
149 cifs_dbg(FYI, "Null buffer passed to tconInfoFree\n");
150 return;
151 }
152 free_cached_dirs(tcon->cfids);
153 atomic_dec(&tconInfoAllocCount);
154 kfree(tcon->nativeFileSystem);
155 kfree_sensitive(tcon->password);
156 #ifdef CONFIG_CIFS_DFS_UPCALL
157 dfs_put_root_smb_sessions(&tcon->dfs_ses_list);
158 #endif
159 kfree(tcon);
160 }
161
162 struct smb_hdr *
163 cifs_buf_get(void)
164 {
165 struct smb_hdr *ret_buf = NULL;
166 /*
167 * SMB2 header is bigger than CIFS one - no problems to clean some
168 * more bytes for CIFS.
169 */
170 size_t buf_size = sizeof(struct smb2_hdr);
171
172 /*
173 * We could use negotiated size instead of max_msgsize -
174 * but it may be more efficient to always alloc same size
175 * albeit slightly larger than necessary and maxbuffersize
176 * defaults to this and can not be bigger.
177 */
178 ret_buf = mempool_alloc(cifs_req_poolp, GFP_NOFS);
179
180 /* clear the first few header bytes */
181 /* for most paths, more is cleared in header_assemble */
182 memset(ret_buf, 0, buf_size + 3);
183 atomic_inc(&buf_alloc_count);
184 #ifdef CONFIG_CIFS_STATS2
185 atomic_inc(&total_buf_alloc_count);
186 #endif /* CONFIG_CIFS_STATS2 */
187
188 return ret_buf;
189 }
190
191 void
192 cifs_buf_release(void *buf_to_free)
193 {
194 if (buf_to_free == NULL) {
195 /* cifs_dbg(FYI, "Null buffer passed to cifs_buf_release\n");*/
196 return;
197 }
198 mempool_free(buf_to_free, cifs_req_poolp);
199
200 atomic_dec(&buf_alloc_count);
201 return;
202 }
203
204 struct smb_hdr *
205 cifs_small_buf_get(void)
206 {
207 struct smb_hdr *ret_buf = NULL;
208
209 /* We could use negotiated size instead of max_msgsize -
210 but it may be more efficient to always alloc same size
211 albeit slightly larger than necessary and maxbuffersize
212 defaults to this and can not be bigger */
213 ret_buf = mempool_alloc(cifs_sm_req_poolp, GFP_NOFS);
214 /* No need to clear memory here, cleared in header assemble */
215 /* memset(ret_buf, 0, sizeof(struct smb_hdr) + 27);*/
216 atomic_inc(&small_buf_alloc_count);
217 #ifdef CONFIG_CIFS_STATS2
218 atomic_inc(&total_small_buf_alloc_count);
219 #endif /* CONFIG_CIFS_STATS2 */
220
221 return ret_buf;
222 }
223
224 void
225 cifs_small_buf_release(void *buf_to_free)
226 {
227
228 if (buf_to_free == NULL) {
229 cifs_dbg(FYI, "Null buffer passed to cifs_small_buf_release\n");
230 return;
231 }
232 mempool_free(buf_to_free, cifs_sm_req_poolp);
233
234 atomic_dec(&small_buf_alloc_count);
235 return;
236 }
237
238 void
239 free_rsp_buf(int resp_buftype, void *rsp)
240 {
241 if (resp_buftype == CIFS_SMALL_BUFFER)
242 cifs_small_buf_release(rsp);
243 else if (resp_buftype == CIFS_LARGE_BUFFER)
244 cifs_buf_release(rsp);
245 }
246
247 /* NB: MID can not be set if treeCon not passed in, in that
248 case it is responsbility of caller to set the mid */
249 void
250 header_assemble(struct smb_hdr *buffer, char smb_command /* command */ ,
251 const struct cifs_tcon *treeCon, int word_count
252 /* length of fixed section (word count) in two byte units */)
253 {
254 char *temp = (char *) buffer;
255
256 memset(temp, 0, 256); /* bigger than MAX_CIFS_HDR_SIZE */
257
258 buffer->smb_buf_length = cpu_to_be32(
259 (2 * word_count) + sizeof(struct smb_hdr) -
260 4 /* RFC 1001 length field does not count */ +
261 2 /* for bcc field itself */) ;
262
263 buffer->Protocol[0] = 0xFF;
264 buffer->Protocol[1] = 'S';
265 buffer->Protocol[2] = 'M';
266 buffer->Protocol[3] = 'B';
267 buffer->Command = smb_command;
268 buffer->Flags = 0x00; /* case sensitive */
269 buffer->Flags2 = SMBFLG2_KNOWS_LONG_NAMES;
270 buffer->Pid = cpu_to_le16((__u16)current->tgid);
271 buffer->PidHigh = cpu_to_le16((__u16)(current->tgid >> 16));
272 if (treeCon) {
273 buffer->Tid = treeCon->tid;
274 if (treeCon->ses) {
275 if (treeCon->ses->capabilities & CAP_UNICODE)
276 buffer->Flags2 |= SMBFLG2_UNICODE;
277 if (treeCon->ses->capabilities & CAP_STATUS32)
278 buffer->Flags2 |= SMBFLG2_ERR_STATUS;
279
280 /* Uid is not converted */
281 buffer->Uid = treeCon->ses->Suid;
282 if (treeCon->ses->server)
283 buffer->Mid = get_next_mid(treeCon->ses->server);
284 }
285 if (treeCon->Flags & SMB_SHARE_IS_IN_DFS)
286 buffer->Flags2 |= SMBFLG2_DFS;
287 if (treeCon->nocase)
288 buffer->Flags |= SMBFLG_CASELESS;
289 if ((treeCon->ses) && (treeCon->ses->server))
290 if (treeCon->ses->server->sign)
291 buffer->Flags2 |= SMBFLG2_SECURITY_SIGNATURE;
292 }
293
294 /* endian conversion of flags is now done just before sending */
295 buffer->WordCount = (char) word_count;
296 return;
297 }
298
299 static int
300 check_smb_hdr(struct smb_hdr *smb)
301 {
302 /* does it have the right SMB "signature" ? */
303 if (*(__le32 *) smb->Protocol != cpu_to_le32(0x424d53ff)) {
304 cifs_dbg(VFS, "Bad protocol string signature header 0x%x\n",
305 *(unsigned int *)smb->Protocol);
306 return 1;
307 }
308
309 /* if it's a response then accept */
310 if (smb->Flags & SMBFLG_RESPONSE)
311 return 0;
312
313 /* only one valid case where server sends us request */
314 if (smb->Command == SMB_COM_LOCKING_ANDX)
315 return 0;
316
317 cifs_dbg(VFS, "Server sent request, not response. mid=%u\n",
318 get_mid(smb));
319 return 1;
320 }
321
322 int
323 checkSMB(char *buf, unsigned int total_read, struct TCP_Server_Info *server)
324 {
325 struct smb_hdr *smb = (struct smb_hdr *)buf;
326 __u32 rfclen = be32_to_cpu(smb->smb_buf_length);
327 __u32 clc_len; /* calculated length */
328 cifs_dbg(FYI, "checkSMB Length: 0x%x, smb_buf_length: 0x%x\n",
329 total_read, rfclen);
330
331 /* is this frame too small to even get to a BCC? */
332 if (total_read < 2 + sizeof(struct smb_hdr)) {
333 if ((total_read >= sizeof(struct smb_hdr) - 1)
334 && (smb->Status.CifsError != 0)) {
335 /* it's an error return */
336 smb->WordCount = 0;
337 /* some error cases do not return wct and bcc */
338 return 0;
339 } else if ((total_read == sizeof(struct smb_hdr) + 1) &&
340 (smb->WordCount == 0)) {
341 char *tmp = (char *)smb;
342 /* Need to work around a bug in two servers here */
343 /* First, check if the part of bcc they sent was zero */
344 if (tmp[sizeof(struct smb_hdr)] == 0) {
345 /* some servers return only half of bcc
346 * on simple responses (wct, bcc both zero)
347 * in particular have seen this on
348 * ulogoffX and FindClose. This leaves
349 * one byte of bcc potentially unitialized
350 */
351 /* zero rest of bcc */
352 tmp[sizeof(struct smb_hdr)+1] = 0;
353 return 0;
354 }
355 cifs_dbg(VFS, "rcvd invalid byte count (bcc)\n");
356 } else {
357 cifs_dbg(VFS, "Length less than smb header size\n");
358 }
359 return -EIO;
360 }
361
362 /* otherwise, there is enough to get to the BCC */
363 if (check_smb_hdr(smb))
364 return -EIO;
365 clc_len = smbCalcSize(smb);
366
367 if (4 + rfclen != total_read) {
368 cifs_dbg(VFS, "Length read does not match RFC1001 length %d\n",
369 rfclen);
370 return -EIO;
371 }
372
373 if (4 + rfclen != clc_len) {
374 __u16 mid = get_mid(smb);
375 /* check if bcc wrapped around for large read responses */
376 if ((rfclen > 64 * 1024) && (rfclen > clc_len)) {
377 /* check if lengths match mod 64K */
378 if (((4 + rfclen) & 0xFFFF) == (clc_len & 0xFFFF))
379 return 0; /* bcc wrapped */
380 }
381 cifs_dbg(FYI, "Calculated size %u vs length %u mismatch for mid=%u\n",
382 clc_len, 4 + rfclen, mid);
383
384 if (4 + rfclen < clc_len) {
385 cifs_dbg(VFS, "RFC1001 size %u smaller than SMB for mid=%u\n",
386 rfclen, mid);
387 return -EIO;
388 } else if (rfclen > clc_len + 512) {
389 /*
390 * Some servers (Windows XP in particular) send more
391 * data than the lengths in the SMB packet would
392 * indicate on certain calls (byte range locks and
393 * trans2 find first calls in particular). While the
394 * client can handle such a frame by ignoring the
395 * trailing data, we choose limit the amount of extra
396 * data to 512 bytes.
397 */
398 cifs_dbg(VFS, "RFC1001 size %u more than 512 bytes larger than SMB for mid=%u\n",
399 rfclen, mid);
400 return -EIO;
401 }
402 }
403 return 0;
404 }
405
406 bool
407 is_valid_oplock_break(char *buffer, struct TCP_Server_Info *srv)
408 {
409 struct smb_hdr *buf = (struct smb_hdr *)buffer;
410 struct smb_com_lock_req *pSMB = (struct smb_com_lock_req *)buf;
411 struct TCP_Server_Info *pserver;
412 struct cifs_ses *ses;
413 struct cifs_tcon *tcon;
414 struct cifsInodeInfo *pCifsInode;
415 struct cifsFileInfo *netfile;
416
417 cifs_dbg(FYI, "Checking for oplock break or dnotify response\n");
418 if ((pSMB->hdr.Command == SMB_COM_NT_TRANSACT) &&
419 (pSMB->hdr.Flags & SMBFLG_RESPONSE)) {
420 struct smb_com_transaction_change_notify_rsp *pSMBr =
421 (struct smb_com_transaction_change_notify_rsp *)buf;
422 struct file_notify_information *pnotify;
423 __u32 data_offset = 0;
424 size_t len = srv->total_read - sizeof(pSMBr->hdr.smb_buf_length);
425
426 if (get_bcc(buf) > sizeof(struct file_notify_information)) {
427 data_offset = le32_to_cpu(pSMBr->DataOffset);
428
429 if (data_offset >
430 len - sizeof(struct file_notify_information)) {
431 cifs_dbg(FYI, "Invalid data_offset %u\n",
432 data_offset);
433 return true;
434 }
435 pnotify = (struct file_notify_information *)
436 ((char *)&pSMBr->hdr.Protocol + data_offset);
437 cifs_dbg(FYI, "dnotify on %s Action: 0x%x\n",
438 pnotify->FileName, pnotify->Action);
439 /* cifs_dump_mem("Rcvd notify Data: ",buf,
440 sizeof(struct smb_hdr)+60); */
441 return true;
442 }
443 if (pSMBr->hdr.Status.CifsError) {
444 cifs_dbg(FYI, "notify err 0x%x\n",
445 pSMBr->hdr.Status.CifsError);
446 return true;
447 }
448 return false;
449 }
450 if (pSMB->hdr.Command != SMB_COM_LOCKING_ANDX)
451 return false;
452 if (pSMB->hdr.Flags & SMBFLG_RESPONSE) {
453 /* no sense logging error on invalid handle on oplock
454 break - harmless race between close request and oplock
455 break response is expected from time to time writing out
456 large dirty files cached on the client */
457 if ((NT_STATUS_INVALID_HANDLE) ==
458 le32_to_cpu(pSMB->hdr.Status.CifsError)) {
459 cifs_dbg(FYI, "Invalid handle on oplock break\n");
460 return true;
461 } else if (ERRbadfid ==
462 le16_to_cpu(pSMB->hdr.Status.DosError.Error)) {
463 return true;
464 } else {
465 return false; /* on valid oplock brk we get "request" */
466 }
467 }
468 if (pSMB->hdr.WordCount != 8)
469 return false;
470
471 cifs_dbg(FYI, "oplock type 0x%x level 0x%x\n",
472 pSMB->LockType, pSMB->OplockLevel);
473 if (!(pSMB->LockType & LOCKING_ANDX_OPLOCK_RELEASE))
474 return false;
475
476 /* If server is a channel, select the primary channel */
477 pserver = CIFS_SERVER_IS_CHAN(srv) ? srv->primary_server : srv;
478
479 /* look up tcon based on tid & uid */
480 spin_lock(&cifs_tcp_ses_lock);
481 list_for_each_entry(ses, &pserver->smb_ses_list, smb_ses_list) {
482 list_for_each_entry(tcon, &ses->tcon_list, tcon_list) {
483 if (tcon->tid != buf->Tid)
484 continue;
485
486 cifs_stats_inc(&tcon->stats.cifs_stats.num_oplock_brks);
487 spin_lock(&tcon->open_file_lock);
488 list_for_each_entry(netfile, &tcon->openFileList, tlist) {
489 if (pSMB->Fid != netfile->fid.netfid)
490 continue;
491
492 cifs_dbg(FYI, "file id match, oplock break\n");
493 pCifsInode = CIFS_I(d_inode(netfile->dentry));
494
495 set_bit(CIFS_INODE_PENDING_OPLOCK_BREAK,
496 &pCifsInode->flags);
497
498 netfile->oplock_epoch = 0;
499 netfile->oplock_level = pSMB->OplockLevel;
500 netfile->oplock_break_cancelled = false;
501 cifs_queue_oplock_break(netfile);
502
503 spin_unlock(&tcon->open_file_lock);
504 spin_unlock(&cifs_tcp_ses_lock);
505 return true;
506 }
507 spin_unlock(&tcon->open_file_lock);
508 spin_unlock(&cifs_tcp_ses_lock);
509 cifs_dbg(FYI, "No matching file for oplock break\n");
510 return true;
511 }
512 }
513 spin_unlock(&cifs_tcp_ses_lock);
514 cifs_dbg(FYI, "Can not process oplock break for non-existent connection\n");
515 return true;
516 }
517
518 void
519 dump_smb(void *buf, int smb_buf_length)
520 {
521 if (traceSMB == 0)
522 return;
523
524 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_NONE, 8, 2, buf,
525 smb_buf_length, true);
526 }
527
528 void
529 cifs_autodisable_serverino(struct cifs_sb_info *cifs_sb)
530 {
531 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_SERVER_INUM) {
532 struct cifs_tcon *tcon = NULL;
533
534 if (cifs_sb->master_tlink)
535 tcon = cifs_sb_master_tcon(cifs_sb);
536
537 cifs_sb->mnt_cifs_flags &= ~CIFS_MOUNT_SERVER_INUM;
538 cifs_sb->mnt_cifs_serverino_autodisabled = true;
539 cifs_dbg(VFS, "Autodisabling the use of server inode numbers on %s\n",
540 tcon ? tcon->tree_name : "new server");
541 cifs_dbg(VFS, "The server doesn't seem to support them properly or the files might be on different servers (DFS)\n");
542 cifs_dbg(VFS, "Hardlinks will not be recognized on this mount. Consider mounting with the \"noserverino\" option to silence this message.\n");
543
544 }
545 }
546
547 void cifs_set_oplock_level(struct cifsInodeInfo *cinode, __u32 oplock)
548 {
549 oplock &= 0xF;
550
551 if (oplock == OPLOCK_EXCLUSIVE) {
552 cinode->oplock = CIFS_CACHE_WRITE_FLG | CIFS_CACHE_READ_FLG;
553 cifs_dbg(FYI, "Exclusive Oplock granted on inode %p\n",
554 &cinode->netfs.inode);
555 } else if (oplock == OPLOCK_READ) {
556 cinode->oplock = CIFS_CACHE_READ_FLG;
557 cifs_dbg(FYI, "Level II Oplock granted on inode %p\n",
558 &cinode->netfs.inode);
559 } else
560 cinode->oplock = 0;
561 }
562
563 /*
564 * We wait for oplock breaks to be processed before we attempt to perform
565 * writes.
566 */
567 int cifs_get_writer(struct cifsInodeInfo *cinode)
568 {
569 int rc;
570
571 start:
572 rc = wait_on_bit(&cinode->flags, CIFS_INODE_PENDING_OPLOCK_BREAK,
573 TASK_KILLABLE);
574 if (rc)
575 return rc;
576
577 spin_lock(&cinode->writers_lock);
578 if (!cinode->writers)
579 set_bit(CIFS_INODE_PENDING_WRITERS, &cinode->flags);
580 cinode->writers++;
581 /* Check to see if we have started servicing an oplock break */
582 if (test_bit(CIFS_INODE_PENDING_OPLOCK_BREAK, &cinode->flags)) {
583 cinode->writers--;
584 if (cinode->writers == 0) {
585 clear_bit(CIFS_INODE_PENDING_WRITERS, &cinode->flags);
586 wake_up_bit(&cinode->flags, CIFS_INODE_PENDING_WRITERS);
587 }
588 spin_unlock(&cinode->writers_lock);
589 goto start;
590 }
591 spin_unlock(&cinode->writers_lock);
592 return 0;
593 }
594
595 void cifs_put_writer(struct cifsInodeInfo *cinode)
596 {
597 spin_lock(&cinode->writers_lock);
598 cinode->writers--;
599 if (cinode->writers == 0) {
600 clear_bit(CIFS_INODE_PENDING_WRITERS, &cinode->flags);
601 wake_up_bit(&cinode->flags, CIFS_INODE_PENDING_WRITERS);
602 }
603 spin_unlock(&cinode->writers_lock);
604 }
605
606 /**
607 * cifs_queue_oplock_break - queue the oplock break handler for cfile
608 * @cfile: The file to break the oplock on
609 *
610 * This function is called from the demultiplex thread when it
611 * receives an oplock break for @cfile.
612 *
613 * Assumes the tcon->open_file_lock is held.
614 * Assumes cfile->file_info_lock is NOT held.
615 */
616 void cifs_queue_oplock_break(struct cifsFileInfo *cfile)
617 {
618 /*
619 * Bump the handle refcount now while we hold the
620 * open_file_lock to enforce the validity of it for the oplock
621 * break handler. The matching put is done at the end of the
622 * handler.
623 */
624 cifsFileInfo_get(cfile);
625
626 queue_work(cifsoplockd_wq, &cfile->oplock_break);
627 }
628
629 void cifs_done_oplock_break(struct cifsInodeInfo *cinode)
630 {
631 clear_bit(CIFS_INODE_PENDING_OPLOCK_BREAK, &cinode->flags);
632 wake_up_bit(&cinode->flags, CIFS_INODE_PENDING_OPLOCK_BREAK);
633 }
634
635 bool
636 backup_cred(struct cifs_sb_info *cifs_sb)
637 {
638 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_CIFS_BACKUPUID) {
639 if (uid_eq(cifs_sb->ctx->backupuid, current_fsuid()))
640 return true;
641 }
642 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_CIFS_BACKUPGID) {
643 if (in_group_p(cifs_sb->ctx->backupgid))
644 return true;
645 }
646
647 return false;
648 }
649
650 void
651 cifs_del_pending_open(struct cifs_pending_open *open)
652 {
653 spin_lock(&tlink_tcon(open->tlink)->open_file_lock);
654 list_del(&open->olist);
655 spin_unlock(&tlink_tcon(open->tlink)->open_file_lock);
656 }
657
658 void
659 cifs_add_pending_open_locked(struct cifs_fid *fid, struct tcon_link *tlink,
660 struct cifs_pending_open *open)
661 {
662 memcpy(open->lease_key, fid->lease_key, SMB2_LEASE_KEY_SIZE);
663 open->oplock = CIFS_OPLOCK_NO_CHANGE;
664 open->tlink = tlink;
665 fid->pending_open = open;
666 list_add_tail(&open->olist, &tlink_tcon(tlink)->pending_opens);
667 }
668
669 void
670 cifs_add_pending_open(struct cifs_fid *fid, struct tcon_link *tlink,
671 struct cifs_pending_open *open)
672 {
673 spin_lock(&tlink_tcon(tlink)->open_file_lock);
674 cifs_add_pending_open_locked(fid, tlink, open);
675 spin_unlock(&tlink_tcon(open->tlink)->open_file_lock);
676 }
677
678 /*
679 * Critical section which runs after acquiring deferred_lock.
680 * As there is no reference count on cifs_deferred_close, pdclose
681 * should not be used outside deferred_lock.
682 */
683 bool
684 cifs_is_deferred_close(struct cifsFileInfo *cfile, struct cifs_deferred_close **pdclose)
685 {
686 struct cifs_deferred_close *dclose;
687
688 list_for_each_entry(dclose, &CIFS_I(d_inode(cfile->dentry))->deferred_closes, dlist) {
689 if ((dclose->netfid == cfile->fid.netfid) &&
690 (dclose->persistent_fid == cfile->fid.persistent_fid) &&
691 (dclose->volatile_fid == cfile->fid.volatile_fid)) {
692 *pdclose = dclose;
693 return true;
694 }
695 }
696 return false;
697 }
698
699 /*
700 * Critical section which runs after acquiring deferred_lock.
701 */
702 void
703 cifs_add_deferred_close(struct cifsFileInfo *cfile, struct cifs_deferred_close *dclose)
704 {
705 bool is_deferred = false;
706 struct cifs_deferred_close *pdclose;
707
708 is_deferred = cifs_is_deferred_close(cfile, &pdclose);
709 if (is_deferred) {
710 kfree(dclose);
711 return;
712 }
713
714 dclose->tlink = cfile->tlink;
715 dclose->netfid = cfile->fid.netfid;
716 dclose->persistent_fid = cfile->fid.persistent_fid;
717 dclose->volatile_fid = cfile->fid.volatile_fid;
718 list_add_tail(&dclose->dlist, &CIFS_I(d_inode(cfile->dentry))->deferred_closes);
719 }
720
721 /*
722 * Critical section which runs after acquiring deferred_lock.
723 */
724 void
725 cifs_del_deferred_close(struct cifsFileInfo *cfile)
726 {
727 bool is_deferred = false;
728 struct cifs_deferred_close *dclose;
729
730 is_deferred = cifs_is_deferred_close(cfile, &dclose);
731 if (!is_deferred)
732 return;
733 list_del(&dclose->dlist);
734 kfree(dclose);
735 }
736
737 void
738 cifs_close_deferred_file(struct cifsInodeInfo *cifs_inode)
739 {
740 struct cifsFileInfo *cfile = NULL;
741 struct file_list *tmp_list, *tmp_next_list;
742 struct list_head file_head;
743
744 if (cifs_inode == NULL)
745 return;
746
747 INIT_LIST_HEAD(&file_head);
748 spin_lock(&cifs_inode->open_file_lock);
749 list_for_each_entry(cfile, &cifs_inode->openFileList, flist) {
750 if (delayed_work_pending(&cfile->deferred)) {
751 if (cancel_delayed_work(&cfile->deferred)) {
752 cifs_del_deferred_close(cfile);
753
754 tmp_list = kmalloc(sizeof(struct file_list), GFP_ATOMIC);
755 if (tmp_list == NULL)
756 break;
757 tmp_list->cfile = cfile;
758 list_add_tail(&tmp_list->list, &file_head);
759 }
760 }
761 }
762 spin_unlock(&cifs_inode->open_file_lock);
763
764 list_for_each_entry_safe(tmp_list, tmp_next_list, &file_head, list) {
765 _cifsFileInfo_put(tmp_list->cfile, true, false);
766 list_del(&tmp_list->list);
767 kfree(tmp_list);
768 }
769 }
770
771 void
772 cifs_close_all_deferred_files(struct cifs_tcon *tcon)
773 {
774 struct cifsFileInfo *cfile;
775 struct file_list *tmp_list, *tmp_next_list;
776 struct list_head file_head;
777
778 INIT_LIST_HEAD(&file_head);
779 spin_lock(&tcon->open_file_lock);
780 list_for_each_entry(cfile, &tcon->openFileList, tlist) {
781 if (delayed_work_pending(&cfile->deferred)) {
782 if (cancel_delayed_work(&cfile->deferred)) {
783 cifs_del_deferred_close(cfile);
784
785 tmp_list = kmalloc(sizeof(struct file_list), GFP_ATOMIC);
786 if (tmp_list == NULL)
787 break;
788 tmp_list->cfile = cfile;
789 list_add_tail(&tmp_list->list, &file_head);
790 }
791 }
792 }
793 spin_unlock(&tcon->open_file_lock);
794
795 list_for_each_entry_safe(tmp_list, tmp_next_list, &file_head, list) {
796 _cifsFileInfo_put(tmp_list->cfile, true, false);
797 list_del(&tmp_list->list);
798 kfree(tmp_list);
799 }
800 }
801 void
802 cifs_close_deferred_file_under_dentry(struct cifs_tcon *tcon, const char *path)
803 {
804 struct cifsFileInfo *cfile;
805 struct file_list *tmp_list, *tmp_next_list;
806 struct list_head file_head;
807 void *page;
808 const char *full_path;
809
810 INIT_LIST_HEAD(&file_head);
811 page = alloc_dentry_path();
812 spin_lock(&tcon->open_file_lock);
813 list_for_each_entry(cfile, &tcon->openFileList, tlist) {
814 full_path = build_path_from_dentry(cfile->dentry, page);
815 if (strstr(full_path, path)) {
816 if (delayed_work_pending(&cfile->deferred)) {
817 if (cancel_delayed_work(&cfile->deferred)) {
818 cifs_del_deferred_close(cfile);
819
820 tmp_list = kmalloc(sizeof(struct file_list), GFP_ATOMIC);
821 if (tmp_list == NULL)
822 break;
823 tmp_list->cfile = cfile;
824 list_add_tail(&tmp_list->list, &file_head);
825 }
826 }
827 }
828 }
829 spin_unlock(&tcon->open_file_lock);
830
831 list_for_each_entry_safe(tmp_list, tmp_next_list, &file_head, list) {
832 _cifsFileInfo_put(tmp_list->cfile, true, false);
833 list_del(&tmp_list->list);
834 kfree(tmp_list);
835 }
836 free_dentry_path(page);
837 }
838
839 /* parses DFS referral V3 structure
840 * caller is responsible for freeing target_nodes
841 * returns:
842 * - on success - 0
843 * - on failure - errno
844 */
845 int
846 parse_dfs_referrals(struct get_dfs_referral_rsp *rsp, u32 rsp_size,
847 unsigned int *num_of_nodes,
848 struct dfs_info3_param **target_nodes,
849 const struct nls_table *nls_codepage, int remap,
850 const char *searchName, bool is_unicode)
851 {
852 int i, rc = 0;
853 char *data_end;
854 struct dfs_referral_level_3 *ref;
855
856 *num_of_nodes = le16_to_cpu(rsp->NumberOfReferrals);
857
858 if (*num_of_nodes < 1) {
859 cifs_dbg(VFS, "num_referrals: must be at least > 0, but we get num_referrals = %d\n",
860 *num_of_nodes);
861 rc = -EINVAL;
862 goto parse_DFS_referrals_exit;
863 }
864
865 ref = (struct dfs_referral_level_3 *) &(rsp->referrals);
866 if (ref->VersionNumber != cpu_to_le16(3)) {
867 cifs_dbg(VFS, "Referrals of V%d version are not supported, should be V3\n",
868 le16_to_cpu(ref->VersionNumber));
869 rc = -EINVAL;
870 goto parse_DFS_referrals_exit;
871 }
872
873 /* get the upper boundary of the resp buffer */
874 data_end = (char *)rsp + rsp_size;
875
876 cifs_dbg(FYI, "num_referrals: %d dfs flags: 0x%x ...\n",
877 *num_of_nodes, le32_to_cpu(rsp->DFSFlags));
878
879 *target_nodes = kcalloc(*num_of_nodes, sizeof(struct dfs_info3_param),
880 GFP_KERNEL);
881 if (*target_nodes == NULL) {
882 rc = -ENOMEM;
883 goto parse_DFS_referrals_exit;
884 }
885
886 /* collect necessary data from referrals */
887 for (i = 0; i < *num_of_nodes; i++) {
888 char *temp;
889 int max_len;
890 struct dfs_info3_param *node = (*target_nodes)+i;
891
892 node->flags = le32_to_cpu(rsp->DFSFlags);
893 if (is_unicode) {
894 __le16 *tmp = kmalloc(strlen(searchName)*2 + 2,
895 GFP_KERNEL);
896 if (tmp == NULL) {
897 rc = -ENOMEM;
898 goto parse_DFS_referrals_exit;
899 }
900 cifsConvertToUTF16((__le16 *) tmp, searchName,
901 PATH_MAX, nls_codepage, remap);
902 node->path_consumed = cifs_utf16_bytes(tmp,
903 le16_to_cpu(rsp->PathConsumed),
904 nls_codepage);
905 kfree(tmp);
906 } else
907 node->path_consumed = le16_to_cpu(rsp->PathConsumed);
908
909 node->server_type = le16_to_cpu(ref->ServerType);
910 node->ref_flag = le16_to_cpu(ref->ReferralEntryFlags);
911
912 /* copy DfsPath */
913 temp = (char *)ref + le16_to_cpu(ref->DfsPathOffset);
914 max_len = data_end - temp;
915 node->path_name = cifs_strndup_from_utf16(temp, max_len,
916 is_unicode, nls_codepage);
917 if (!node->path_name) {
918 rc = -ENOMEM;
919 goto parse_DFS_referrals_exit;
920 }
921
922 /* copy link target UNC */
923 temp = (char *)ref + le16_to_cpu(ref->NetworkAddressOffset);
924 max_len = data_end - temp;
925 node->node_name = cifs_strndup_from_utf16(temp, max_len,
926 is_unicode, nls_codepage);
927 if (!node->node_name) {
928 rc = -ENOMEM;
929 goto parse_DFS_referrals_exit;
930 }
931
932 node->ttl = le32_to_cpu(ref->TimeToLive);
933
934 ref++;
935 }
936
937 parse_DFS_referrals_exit:
938 if (rc) {
939 free_dfs_info_array(*target_nodes, *num_of_nodes);
940 *target_nodes = NULL;
941 *num_of_nodes = 0;
942 }
943 return rc;
944 }
945
946 struct cifs_aio_ctx *
947 cifs_aio_ctx_alloc(void)
948 {
949 struct cifs_aio_ctx *ctx;
950
951 /*
952 * Must use kzalloc to initialize ctx->bv to NULL and ctx->direct_io
953 * to false so that we know when we have to unreference pages within
954 * cifs_aio_ctx_release()
955 */
956 ctx = kzalloc(sizeof(struct cifs_aio_ctx), GFP_KERNEL);
957 if (!ctx)
958 return NULL;
959
960 INIT_LIST_HEAD(&ctx->list);
961 mutex_init(&ctx->aio_mutex);
962 init_completion(&ctx->done);
963 kref_init(&ctx->refcount);
964 return ctx;
965 }
966
967 void
968 cifs_aio_ctx_release(struct kref *refcount)
969 {
970 struct cifs_aio_ctx *ctx = container_of(refcount,
971 struct cifs_aio_ctx, refcount);
972
973 cifsFileInfo_put(ctx->cfile);
974
975 /*
976 * ctx->bv is only set if setup_aio_ctx_iter() was call successfuly
977 * which means that iov_iter_get_pages() was a success and thus that
978 * we have taken reference on pages.
979 */
980 if (ctx->bv) {
981 unsigned i;
982
983 for (i = 0; i < ctx->npages; i++) {
984 if (ctx->should_dirty)
985 set_page_dirty(ctx->bv[i].bv_page);
986 put_page(ctx->bv[i].bv_page);
987 }
988 kvfree(ctx->bv);
989 }
990
991 kfree(ctx);
992 }
993
994 #define CIFS_AIO_KMALLOC_LIMIT (1024 * 1024)
995
996 int
997 setup_aio_ctx_iter(struct cifs_aio_ctx *ctx, struct iov_iter *iter, int rw)
998 {
999 ssize_t rc;
1000 unsigned int cur_npages;
1001 unsigned int npages = 0;
1002 unsigned int i;
1003 size_t len;
1004 size_t count = iov_iter_count(iter);
1005 unsigned int saved_len;
1006 size_t start;
1007 unsigned int max_pages = iov_iter_npages(iter, INT_MAX);
1008 struct page **pages = NULL;
1009 struct bio_vec *bv = NULL;
1010
1011 if (iov_iter_is_kvec(iter)) {
1012 memcpy(&ctx->iter, iter, sizeof(*iter));
1013 ctx->len = count;
1014 iov_iter_advance(iter, count);
1015 return 0;
1016 }
1017
1018 if (array_size(max_pages, sizeof(*bv)) <= CIFS_AIO_KMALLOC_LIMIT)
1019 bv = kmalloc_array(max_pages, sizeof(*bv), GFP_KERNEL);
1020
1021 if (!bv) {
1022 bv = vmalloc(array_size(max_pages, sizeof(*bv)));
1023 if (!bv)
1024 return -ENOMEM;
1025 }
1026
1027 if (array_size(max_pages, sizeof(*pages)) <= CIFS_AIO_KMALLOC_LIMIT)
1028 pages = kmalloc_array(max_pages, sizeof(*pages), GFP_KERNEL);
1029
1030 if (!pages) {
1031 pages = vmalloc(array_size(max_pages, sizeof(*pages)));
1032 if (!pages) {
1033 kvfree(bv);
1034 return -ENOMEM;
1035 }
1036 }
1037
1038 saved_len = count;
1039
1040 while (count && npages < max_pages) {
1041 rc = iov_iter_get_pages2(iter, pages, count, max_pages, &start);
1042 if (rc < 0) {
1043 cifs_dbg(VFS, "Couldn't get user pages (rc=%zd)\n", rc);
1044 break;
1045 }
1046
1047 if (rc > count) {
1048 cifs_dbg(VFS, "get pages rc=%zd more than %zu\n", rc,
1049 count);
1050 break;
1051 }
1052
1053 count -= rc;
1054 rc += start;
1055 cur_npages = DIV_ROUND_UP(rc, PAGE_SIZE);
1056
1057 if (npages + cur_npages > max_pages) {
1058 cifs_dbg(VFS, "out of vec array capacity (%u vs %u)\n",
1059 npages + cur_npages, max_pages);
1060 break;
1061 }
1062
1063 for (i = 0; i < cur_npages; i++) {
1064 len = rc > PAGE_SIZE ? PAGE_SIZE : rc;
1065 bv[npages + i].bv_page = pages[i];
1066 bv[npages + i].bv_offset = start;
1067 bv[npages + i].bv_len = len - start;
1068 rc -= len;
1069 start = 0;
1070 }
1071
1072 npages += cur_npages;
1073 }
1074
1075 kvfree(pages);
1076 ctx->bv = bv;
1077 ctx->len = saved_len - count;
1078 ctx->npages = npages;
1079 iov_iter_bvec(&ctx->iter, rw, ctx->bv, npages, ctx->len);
1080 return 0;
1081 }
1082
1083 /**
1084 * cifs_alloc_hash - allocate hash and hash context together
1085 * @name: The name of the crypto hash algo
1086 * @sdesc: SHASH descriptor where to put the pointer to the hash TFM
1087 *
1088 * The caller has to make sure @sdesc is initialized to either NULL or
1089 * a valid context. It can be freed via cifs_free_hash().
1090 */
1091 int
1092 cifs_alloc_hash(const char *name, struct shash_desc **sdesc)
1093 {
1094 int rc = 0;
1095 struct crypto_shash *alg = NULL;
1096
1097 if (*sdesc)
1098 return 0;
1099
1100 alg = crypto_alloc_shash(name, 0, 0);
1101 if (IS_ERR(alg)) {
1102 cifs_dbg(VFS, "Could not allocate shash TFM '%s'\n", name);
1103 rc = PTR_ERR(alg);
1104 *sdesc = NULL;
1105 return rc;
1106 }
1107
1108 *sdesc = kmalloc(sizeof(struct shash_desc) + crypto_shash_descsize(alg), GFP_KERNEL);
1109 if (*sdesc == NULL) {
1110 cifs_dbg(VFS, "no memory left to allocate shash TFM '%s'\n", name);
1111 crypto_free_shash(alg);
1112 return -ENOMEM;
1113 }
1114
1115 (*sdesc)->tfm = alg;
1116 return 0;
1117 }
1118
1119 /**
1120 * cifs_free_hash - free hash and hash context together
1121 * @sdesc: Where to find the pointer to the hash TFM
1122 *
1123 * Freeing a NULL descriptor is safe.
1124 */
1125 void
1126 cifs_free_hash(struct shash_desc **sdesc)
1127 {
1128 if (unlikely(!sdesc) || !*sdesc)
1129 return;
1130
1131 if ((*sdesc)->tfm) {
1132 crypto_free_shash((*sdesc)->tfm);
1133 (*sdesc)->tfm = NULL;
1134 }
1135
1136 kfree_sensitive(*sdesc);
1137 *sdesc = NULL;
1138 }
1139
1140 /**
1141 * rqst_page_get_length - obtain the length and offset for a page in smb_rqst
1142 * @rqst: The request descriptor
1143 * @page: The index of the page to query
1144 * @len: Where to store the length for this page:
1145 * @offset: Where to store the offset for this page
1146 */
1147 void rqst_page_get_length(const struct smb_rqst *rqst, unsigned int page,
1148 unsigned int *len, unsigned int *offset)
1149 {
1150 *len = rqst->rq_pagesz;
1151 *offset = (page == 0) ? rqst->rq_offset : 0;
1152
1153 if (rqst->rq_npages == 1 || page == rqst->rq_npages-1)
1154 *len = rqst->rq_tailsz;
1155 else if (page == 0)
1156 *len = rqst->rq_pagesz - rqst->rq_offset;
1157 }
1158
1159 void extract_unc_hostname(const char *unc, const char **h, size_t *len)
1160 {
1161 const char *end;
1162
1163 /* skip initial slashes */
1164 while (*unc && (*unc == '\\' || *unc == '/'))
1165 unc++;
1166
1167 end = unc;
1168
1169 while (*end && !(*end == '\\' || *end == '/'))
1170 end++;
1171
1172 *h = unc;
1173 *len = end - unc;
1174 }
1175
1176 /**
1177 * copy_path_name - copy src path to dst, possibly truncating
1178 * @dst: The destination buffer
1179 * @src: The source name
1180 *
1181 * returns number of bytes written (including trailing nul)
1182 */
1183 int copy_path_name(char *dst, const char *src)
1184 {
1185 int name_len;
1186
1187 /*
1188 * PATH_MAX includes nul, so if strlen(src) >= PATH_MAX it
1189 * will truncate and strlen(dst) will be PATH_MAX-1
1190 */
1191 name_len = strscpy(dst, src, PATH_MAX);
1192 if (WARN_ON_ONCE(name_len < 0))
1193 name_len = PATH_MAX-1;
1194
1195 /* we count the trailing nul */
1196 name_len++;
1197 return name_len;
1198 }
1199
1200 struct super_cb_data {
1201 void *data;
1202 struct super_block *sb;
1203 };
1204
1205 static void tcp_super_cb(struct super_block *sb, void *arg)
1206 {
1207 struct super_cb_data *sd = arg;
1208 struct TCP_Server_Info *server = sd->data;
1209 struct cifs_sb_info *cifs_sb;
1210 struct cifs_tcon *tcon;
1211
1212 if (sd->sb)
1213 return;
1214
1215 cifs_sb = CIFS_SB(sb);
1216 tcon = cifs_sb_master_tcon(cifs_sb);
1217 if (tcon->ses->server == server)
1218 sd->sb = sb;
1219 }
1220
1221 static struct super_block *__cifs_get_super(void (*f)(struct super_block *, void *),
1222 void *data)
1223 {
1224 struct super_cb_data sd = {
1225 .data = data,
1226 .sb = NULL,
1227 };
1228 struct file_system_type **fs_type = (struct file_system_type *[]) {
1229 &cifs_fs_type, &smb3_fs_type, NULL,
1230 };
1231
1232 for (; *fs_type; fs_type++) {
1233 iterate_supers_type(*fs_type, f, &sd);
1234 if (sd.sb) {
1235 /*
1236 * Grab an active reference in order to prevent automounts (DFS links)
1237 * of expiring and then freeing up our cifs superblock pointer while
1238 * we're doing failover.
1239 */
1240 cifs_sb_active(sd.sb);
1241 return sd.sb;
1242 }
1243 }
1244 return ERR_PTR(-EINVAL);
1245 }
1246
1247 static void __cifs_put_super(struct super_block *sb)
1248 {
1249 if (!IS_ERR_OR_NULL(sb))
1250 cifs_sb_deactive(sb);
1251 }
1252
1253 struct super_block *cifs_get_tcp_super(struct TCP_Server_Info *server)
1254 {
1255 return __cifs_get_super(tcp_super_cb, server);
1256 }
1257
1258 void cifs_put_tcp_super(struct super_block *sb)
1259 {
1260 __cifs_put_super(sb);
1261 }
1262
1263 #ifdef CONFIG_CIFS_DFS_UPCALL
1264 int match_target_ip(struct TCP_Server_Info *server,
1265 const char *share, size_t share_len,
1266 bool *result)
1267 {
1268 int rc;
1269 char *target;
1270 struct sockaddr_storage ss;
1271
1272 *result = false;
1273
1274 target = kzalloc(share_len + 3, GFP_KERNEL);
1275 if (!target)
1276 return -ENOMEM;
1277
1278 scnprintf(target, share_len + 3, "\\\\%.*s", (int)share_len, share);
1279
1280 cifs_dbg(FYI, "%s: target name: %s\n", __func__, target + 2);
1281
1282 rc = dns_resolve_server_name_to_ip(target, (struct sockaddr *)&ss, NULL);
1283 kfree(target);
1284
1285 if (rc < 0)
1286 return rc;
1287
1288 spin_lock(&server->srv_lock);
1289 *result = cifs_match_ipaddr((struct sockaddr *)&server->dstaddr, (struct sockaddr *)&ss);
1290 spin_unlock(&server->srv_lock);
1291 cifs_dbg(FYI, "%s: ip addresses match: %u\n", __func__, *result);
1292 return 0;
1293 }
1294
1295 int cifs_update_super_prepath(struct cifs_sb_info *cifs_sb, char *prefix)
1296 {
1297 kfree(cifs_sb->prepath);
1298
1299 if (prefix && *prefix) {
1300 cifs_sb->prepath = kstrdup(prefix, GFP_ATOMIC);
1301 if (!cifs_sb->prepath)
1302 return -ENOMEM;
1303
1304 convert_delimiter(cifs_sb->prepath, CIFS_DIR_SEP(cifs_sb));
1305 } else
1306 cifs_sb->prepath = NULL;
1307
1308 cifs_sb->mnt_cifs_flags |= CIFS_MOUNT_USE_PREFIX_PATH;
1309 return 0;
1310 }
1311
1312 /*
1313 * Handle weird Windows SMB server behaviour. It responds with
1314 * STATUS_OBJECT_NAME_INVALID code to SMB2 QUERY_INFO request for
1315 * "\<server>\<dfsname>\<linkpath>" DFS reference, where <dfsname> contains
1316 * non-ASCII unicode symbols.
1317 */
1318 int cifs_inval_name_dfs_link_error(const unsigned int xid,
1319 struct cifs_tcon *tcon,
1320 struct cifs_sb_info *cifs_sb,
1321 const char *full_path,
1322 bool *islink)
1323 {
1324 struct cifs_ses *ses = tcon->ses;
1325 size_t len;
1326 char *path;
1327 char *ref_path;
1328
1329 *islink = false;
1330
1331 /*
1332 * Fast path - skip check when @full_path doesn't have a prefix path to
1333 * look up or tcon is not DFS.
1334 */
1335 if (strlen(full_path) < 2 || !cifs_sb ||
1336 (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_NO_DFS) ||
1337 !is_tcon_dfs(tcon) || !ses->server->origin_fullpath)
1338 return 0;
1339
1340 /*
1341 * Slow path - tcon is DFS and @full_path has prefix path, so attempt
1342 * to get a referral to figure out whether it is an DFS link.
1343 */
1344 len = strnlen(tcon->tree_name, MAX_TREE_SIZE + 1) + strlen(full_path) + 1;
1345 path = kmalloc(len, GFP_KERNEL);
1346 if (!path)
1347 return -ENOMEM;
1348
1349 scnprintf(path, len, "%s%s", tcon->tree_name, full_path);
1350 ref_path = dfs_cache_canonical_path(path + 1, cifs_sb->local_nls,
1351 cifs_remap(cifs_sb));
1352 kfree(path);
1353
1354 if (IS_ERR(ref_path)) {
1355 if (PTR_ERR(ref_path) != -EINVAL)
1356 return PTR_ERR(ref_path);
1357 } else {
1358 struct dfs_info3_param *refs = NULL;
1359 int num_refs = 0;
1360
1361 /*
1362 * XXX: we are not using dfs_cache_find() here because we might
1363 * end filling all the DFS cache and thus potentially
1364 * removing cached DFS targets that the client would eventually
1365 * need during failover.
1366 */
1367 ses = CIFS_DFS_ROOT_SES(ses);
1368 if (ses->server->ops->get_dfs_refer &&
1369 !ses->server->ops->get_dfs_refer(xid, ses, ref_path, &refs,
1370 &num_refs, cifs_sb->local_nls,
1371 cifs_remap(cifs_sb)))
1372 *islink = refs[0].server_type == DFS_TYPE_LINK;
1373 free_dfs_info_array(refs, num_refs);
1374 kfree(ref_path);
1375 }
1376 return 0;
1377 }
1378 #endif