]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/configfs/dir.c
Merge branch 'release' of git://lm-sensors.org/kernel/mhoffman/hwmon-2.6
[mirror_ubuntu-bionic-kernel.git] / fs / configfs / dir.c
1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
3 *
4 * dir.c - Operations for configfs directories.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public
17 * License along with this program; if not, write to the
18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 * Boston, MA 021110-1307, USA.
20 *
21 * Based on sysfs:
22 * sysfs is Copyright (C) 2001, 2002, 2003 Patrick Mochel
23 *
24 * configfs Copyright (C) 2005 Oracle. All rights reserved.
25 */
26
27 #undef DEBUG
28
29 #include <linux/fs.h>
30 #include <linux/mount.h>
31 #include <linux/module.h>
32 #include <linux/slab.h>
33
34 #include <linux/configfs.h>
35 #include "configfs_internal.h"
36
37 DECLARE_RWSEM(configfs_rename_sem);
38
39 static void configfs_d_iput(struct dentry * dentry,
40 struct inode * inode)
41 {
42 struct configfs_dirent * sd = dentry->d_fsdata;
43
44 if (sd) {
45 BUG_ON(sd->s_dentry != dentry);
46 sd->s_dentry = NULL;
47 configfs_put(sd);
48 }
49 iput(inode);
50 }
51
52 /*
53 * We _must_ delete our dentries on last dput, as the chain-to-parent
54 * behavior is required to clear the parents of default_groups.
55 */
56 static int configfs_d_delete(struct dentry *dentry)
57 {
58 return 1;
59 }
60
61 static struct dentry_operations configfs_dentry_ops = {
62 .d_iput = configfs_d_iput,
63 /* simple_delete_dentry() isn't exported */
64 .d_delete = configfs_d_delete,
65 };
66
67 /*
68 * Allocates a new configfs_dirent and links it to the parent configfs_dirent
69 */
70 static struct configfs_dirent *configfs_new_dirent(struct configfs_dirent * parent_sd,
71 void * element)
72 {
73 struct configfs_dirent * sd;
74
75 sd = kmem_cache_zalloc(configfs_dir_cachep, GFP_KERNEL);
76 if (!sd)
77 return NULL;
78
79 atomic_set(&sd->s_count, 1);
80 INIT_LIST_HEAD(&sd->s_links);
81 INIT_LIST_HEAD(&sd->s_children);
82 list_add(&sd->s_sibling, &parent_sd->s_children);
83 sd->s_element = element;
84
85 return sd;
86 }
87
88 /*
89 *
90 * Return -EEXIST if there is already a configfs element with the same
91 * name for the same parent.
92 *
93 * called with parent inode's i_mutex held
94 */
95 static int configfs_dirent_exists(struct configfs_dirent *parent_sd,
96 const unsigned char *new)
97 {
98 struct configfs_dirent * sd;
99
100 list_for_each_entry(sd, &parent_sd->s_children, s_sibling) {
101 if (sd->s_element) {
102 const unsigned char *existing = configfs_get_name(sd);
103 if (strcmp(existing, new))
104 continue;
105 else
106 return -EEXIST;
107 }
108 }
109
110 return 0;
111 }
112
113
114 int configfs_make_dirent(struct configfs_dirent * parent_sd,
115 struct dentry * dentry, void * element,
116 umode_t mode, int type)
117 {
118 struct configfs_dirent * sd;
119
120 sd = configfs_new_dirent(parent_sd, element);
121 if (!sd)
122 return -ENOMEM;
123
124 sd->s_mode = mode;
125 sd->s_type = type;
126 sd->s_dentry = dentry;
127 if (dentry) {
128 dentry->d_fsdata = configfs_get(sd);
129 dentry->d_op = &configfs_dentry_ops;
130 }
131
132 return 0;
133 }
134
135 static int init_dir(struct inode * inode)
136 {
137 inode->i_op = &configfs_dir_inode_operations;
138 inode->i_fop = &configfs_dir_operations;
139
140 /* directory inodes start off with i_nlink == 2 (for "." entry) */
141 inc_nlink(inode);
142 return 0;
143 }
144
145 static int init_file(struct inode * inode)
146 {
147 inode->i_size = PAGE_SIZE;
148 inode->i_fop = &configfs_file_operations;
149 return 0;
150 }
151
152 static int init_symlink(struct inode * inode)
153 {
154 inode->i_op = &configfs_symlink_inode_operations;
155 return 0;
156 }
157
158 static int create_dir(struct config_item * k, struct dentry * p,
159 struct dentry * d)
160 {
161 int error;
162 umode_t mode = S_IFDIR| S_IRWXU | S_IRUGO | S_IXUGO;
163
164 error = configfs_dirent_exists(p->d_fsdata, d->d_name.name);
165 if (!error)
166 error = configfs_make_dirent(p->d_fsdata, d, k, mode,
167 CONFIGFS_DIR);
168 if (!error) {
169 error = configfs_create(d, mode, init_dir);
170 if (!error) {
171 inc_nlink(p->d_inode);
172 (d)->d_op = &configfs_dentry_ops;
173 } else {
174 struct configfs_dirent *sd = d->d_fsdata;
175 if (sd) {
176 list_del_init(&sd->s_sibling);
177 configfs_put(sd);
178 }
179 }
180 }
181 return error;
182 }
183
184
185 /**
186 * configfs_create_dir - create a directory for an config_item.
187 * @item: config_itemwe're creating directory for.
188 * @dentry: config_item's dentry.
189 */
190
191 static int configfs_create_dir(struct config_item * item, struct dentry *dentry)
192 {
193 struct dentry * parent;
194 int error = 0;
195
196 BUG_ON(!item);
197
198 if (item->ci_parent)
199 parent = item->ci_parent->ci_dentry;
200 else if (configfs_mount && configfs_mount->mnt_sb)
201 parent = configfs_mount->mnt_sb->s_root;
202 else
203 return -EFAULT;
204
205 error = create_dir(item,parent,dentry);
206 if (!error)
207 item->ci_dentry = dentry;
208 return error;
209 }
210
211 int configfs_create_link(struct configfs_symlink *sl,
212 struct dentry *parent,
213 struct dentry *dentry)
214 {
215 int err = 0;
216 umode_t mode = S_IFLNK | S_IRWXUGO;
217
218 err = configfs_make_dirent(parent->d_fsdata, dentry, sl, mode,
219 CONFIGFS_ITEM_LINK);
220 if (!err) {
221 err = configfs_create(dentry, mode, init_symlink);
222 if (!err)
223 dentry->d_op = &configfs_dentry_ops;
224 else {
225 struct configfs_dirent *sd = dentry->d_fsdata;
226 if (sd) {
227 list_del_init(&sd->s_sibling);
228 configfs_put(sd);
229 }
230 }
231 }
232 return err;
233 }
234
235 static void remove_dir(struct dentry * d)
236 {
237 struct dentry * parent = dget(d->d_parent);
238 struct configfs_dirent * sd;
239
240 sd = d->d_fsdata;
241 list_del_init(&sd->s_sibling);
242 configfs_put(sd);
243 if (d->d_inode)
244 simple_rmdir(parent->d_inode,d);
245
246 pr_debug(" o %s removing done (%d)\n",d->d_name.name,
247 atomic_read(&d->d_count));
248
249 dput(parent);
250 }
251
252 /**
253 * configfs_remove_dir - remove an config_item's directory.
254 * @item: config_item we're removing.
255 *
256 * The only thing special about this is that we remove any files in
257 * the directory before we remove the directory, and we've inlined
258 * what used to be configfs_rmdir() below, instead of calling separately.
259 */
260
261 static void configfs_remove_dir(struct config_item * item)
262 {
263 struct dentry * dentry = dget(item->ci_dentry);
264
265 if (!dentry)
266 return;
267
268 remove_dir(dentry);
269 /**
270 * Drop reference from dget() on entrance.
271 */
272 dput(dentry);
273 }
274
275
276 /* attaches attribute's configfs_dirent to the dentry corresponding to the
277 * attribute file
278 */
279 static int configfs_attach_attr(struct configfs_dirent * sd, struct dentry * dentry)
280 {
281 struct configfs_attribute * attr = sd->s_element;
282 int error;
283
284 dentry->d_fsdata = configfs_get(sd);
285 sd->s_dentry = dentry;
286 error = configfs_create(dentry, (attr->ca_mode & S_IALLUGO) | S_IFREG, init_file);
287 if (error) {
288 configfs_put(sd);
289 return error;
290 }
291
292 dentry->d_op = &configfs_dentry_ops;
293 d_rehash(dentry);
294
295 return 0;
296 }
297
298 static struct dentry * configfs_lookup(struct inode *dir,
299 struct dentry *dentry,
300 struct nameidata *nd)
301 {
302 struct configfs_dirent * parent_sd = dentry->d_parent->d_fsdata;
303 struct configfs_dirent * sd;
304 int found = 0;
305 int err = 0;
306
307 list_for_each_entry(sd, &parent_sd->s_children, s_sibling) {
308 if (sd->s_type & CONFIGFS_NOT_PINNED) {
309 const unsigned char * name = configfs_get_name(sd);
310
311 if (strcmp(name, dentry->d_name.name))
312 continue;
313
314 found = 1;
315 err = configfs_attach_attr(sd, dentry);
316 break;
317 }
318 }
319
320 if (!found) {
321 /*
322 * If it doesn't exist and it isn't a NOT_PINNED item,
323 * it must be negative.
324 */
325 return simple_lookup(dir, dentry, nd);
326 }
327
328 return ERR_PTR(err);
329 }
330
331 /*
332 * Only subdirectories count here. Files (CONFIGFS_NOT_PINNED) are
333 * attributes and are removed by rmdir(). We recurse, taking i_mutex
334 * on all children that are candidates for default detach. If the
335 * result is clean, then configfs_detach_group() will handle dropping
336 * i_mutex. If there is an error, the caller will clean up the i_mutex
337 * holders via configfs_detach_rollback().
338 */
339 static int configfs_detach_prep(struct dentry *dentry)
340 {
341 struct configfs_dirent *parent_sd = dentry->d_fsdata;
342 struct configfs_dirent *sd;
343 int ret;
344
345 ret = -EBUSY;
346 if (!list_empty(&parent_sd->s_links))
347 goto out;
348
349 ret = 0;
350 list_for_each_entry(sd, &parent_sd->s_children, s_sibling) {
351 if (sd->s_type & CONFIGFS_NOT_PINNED)
352 continue;
353 if (sd->s_type & CONFIGFS_USET_DEFAULT) {
354 mutex_lock(&sd->s_dentry->d_inode->i_mutex);
355 /* Mark that we've taken i_mutex */
356 sd->s_type |= CONFIGFS_USET_DROPPING;
357
358 /*
359 * Yup, recursive. If there's a problem, blame
360 * deep nesting of default_groups
361 */
362 ret = configfs_detach_prep(sd->s_dentry);
363 if (!ret)
364 continue;
365 } else
366 ret = -ENOTEMPTY;
367
368 break;
369 }
370
371 out:
372 return ret;
373 }
374
375 /*
376 * Walk the tree, dropping i_mutex wherever CONFIGFS_USET_DROPPING is
377 * set.
378 */
379 static void configfs_detach_rollback(struct dentry *dentry)
380 {
381 struct configfs_dirent *parent_sd = dentry->d_fsdata;
382 struct configfs_dirent *sd;
383
384 list_for_each_entry(sd, &parent_sd->s_children, s_sibling) {
385 if (sd->s_type & CONFIGFS_USET_DEFAULT) {
386 configfs_detach_rollback(sd->s_dentry);
387
388 if (sd->s_type & CONFIGFS_USET_DROPPING) {
389 sd->s_type &= ~CONFIGFS_USET_DROPPING;
390 mutex_unlock(&sd->s_dentry->d_inode->i_mutex);
391 }
392 }
393 }
394 }
395
396 static void detach_attrs(struct config_item * item)
397 {
398 struct dentry * dentry = dget(item->ci_dentry);
399 struct configfs_dirent * parent_sd;
400 struct configfs_dirent * sd, * tmp;
401
402 if (!dentry)
403 return;
404
405 pr_debug("configfs %s: dropping attrs for dir\n",
406 dentry->d_name.name);
407
408 parent_sd = dentry->d_fsdata;
409 list_for_each_entry_safe(sd, tmp, &parent_sd->s_children, s_sibling) {
410 if (!sd->s_element || !(sd->s_type & CONFIGFS_NOT_PINNED))
411 continue;
412 list_del_init(&sd->s_sibling);
413 configfs_drop_dentry(sd, dentry);
414 configfs_put(sd);
415 }
416
417 /**
418 * Drop reference from dget() on entrance.
419 */
420 dput(dentry);
421 }
422
423 static int populate_attrs(struct config_item *item)
424 {
425 struct config_item_type *t = item->ci_type;
426 struct configfs_attribute *attr;
427 int error = 0;
428 int i;
429
430 if (!t)
431 return -EINVAL;
432 if (t->ct_attrs) {
433 for (i = 0; (attr = t->ct_attrs[i]) != NULL; i++) {
434 if ((error = configfs_create_file(item, attr)))
435 break;
436 }
437 }
438
439 if (error)
440 detach_attrs(item);
441
442 return error;
443 }
444
445 static int configfs_attach_group(struct config_item *parent_item,
446 struct config_item *item,
447 struct dentry *dentry);
448 static void configfs_detach_group(struct config_item *item);
449
450 static void detach_groups(struct config_group *group)
451 {
452 struct dentry * dentry = dget(group->cg_item.ci_dentry);
453 struct dentry *child;
454 struct configfs_dirent *parent_sd;
455 struct configfs_dirent *sd, *tmp;
456
457 if (!dentry)
458 return;
459
460 parent_sd = dentry->d_fsdata;
461 list_for_each_entry_safe(sd, tmp, &parent_sd->s_children, s_sibling) {
462 if (!sd->s_element ||
463 !(sd->s_type & CONFIGFS_USET_DEFAULT))
464 continue;
465
466 child = sd->s_dentry;
467
468 configfs_detach_group(sd->s_element);
469 child->d_inode->i_flags |= S_DEAD;
470
471 /*
472 * From rmdir/unregister, a configfs_detach_prep() pass
473 * has taken our i_mutex for us. Drop it.
474 * From mkdir/register cleanup, there is no sem held.
475 */
476 if (sd->s_type & CONFIGFS_USET_DROPPING)
477 mutex_unlock(&child->d_inode->i_mutex);
478
479 d_delete(child);
480 dput(child);
481 }
482
483 /**
484 * Drop reference from dget() on entrance.
485 */
486 dput(dentry);
487 }
488
489 /*
490 * This fakes mkdir(2) on a default_groups[] entry. It
491 * creates a dentry, attachs it, and then does fixup
492 * on the sd->s_type.
493 *
494 * We could, perhaps, tweak our parent's ->mkdir for a minute and
495 * try using vfs_mkdir. Just a thought.
496 */
497 static int create_default_group(struct config_group *parent_group,
498 struct config_group *group)
499 {
500 int ret;
501 struct qstr name;
502 struct configfs_dirent *sd;
503 /* We trust the caller holds a reference to parent */
504 struct dentry *child, *parent = parent_group->cg_item.ci_dentry;
505
506 if (!group->cg_item.ci_name)
507 group->cg_item.ci_name = group->cg_item.ci_namebuf;
508 name.name = group->cg_item.ci_name;
509 name.len = strlen(name.name);
510 name.hash = full_name_hash(name.name, name.len);
511
512 ret = -ENOMEM;
513 child = d_alloc(parent, &name);
514 if (child) {
515 d_add(child, NULL);
516
517 ret = configfs_attach_group(&parent_group->cg_item,
518 &group->cg_item, child);
519 if (!ret) {
520 sd = child->d_fsdata;
521 sd->s_type |= CONFIGFS_USET_DEFAULT;
522 } else {
523 d_delete(child);
524 dput(child);
525 }
526 }
527
528 return ret;
529 }
530
531 static int populate_groups(struct config_group *group)
532 {
533 struct config_group *new_group;
534 struct dentry *dentry = group->cg_item.ci_dentry;
535 int ret = 0;
536 int i;
537
538 if (group->default_groups) {
539 /*
540 * FYI, we're faking mkdir here
541 * I'm not sure we need this semaphore, as we're called
542 * from our parent's mkdir. That holds our parent's
543 * i_mutex, so afaik lookup cannot continue through our
544 * parent to find us, let alone mess with our tree.
545 * That said, taking our i_mutex is closer to mkdir
546 * emulation, and shouldn't hurt.
547 */
548 mutex_lock(&dentry->d_inode->i_mutex);
549
550 for (i = 0; group->default_groups[i]; i++) {
551 new_group = group->default_groups[i];
552
553 ret = create_default_group(group, new_group);
554 if (ret)
555 break;
556 }
557
558 mutex_unlock(&dentry->d_inode->i_mutex);
559 }
560
561 if (ret)
562 detach_groups(group);
563
564 return ret;
565 }
566
567 /*
568 * All of link_obj/unlink_obj/link_group/unlink_group require that
569 * subsys->su_mutex is held.
570 */
571
572 static void unlink_obj(struct config_item *item)
573 {
574 struct config_group *group;
575
576 group = item->ci_group;
577 if (group) {
578 list_del_init(&item->ci_entry);
579
580 item->ci_group = NULL;
581 item->ci_parent = NULL;
582
583 /* Drop the reference for ci_entry */
584 config_item_put(item);
585
586 /* Drop the reference for ci_parent */
587 config_group_put(group);
588 }
589 }
590
591 static void link_obj(struct config_item *parent_item, struct config_item *item)
592 {
593 /*
594 * Parent seems redundant with group, but it makes certain
595 * traversals much nicer.
596 */
597 item->ci_parent = parent_item;
598
599 /*
600 * We hold a reference on the parent for the child's ci_parent
601 * link.
602 */
603 item->ci_group = config_group_get(to_config_group(parent_item));
604 list_add_tail(&item->ci_entry, &item->ci_group->cg_children);
605
606 /*
607 * We hold a reference on the child for ci_entry on the parent's
608 * cg_children
609 */
610 config_item_get(item);
611 }
612
613 static void unlink_group(struct config_group *group)
614 {
615 int i;
616 struct config_group *new_group;
617
618 if (group->default_groups) {
619 for (i = 0; group->default_groups[i]; i++) {
620 new_group = group->default_groups[i];
621 unlink_group(new_group);
622 }
623 }
624
625 group->cg_subsys = NULL;
626 unlink_obj(&group->cg_item);
627 }
628
629 static void link_group(struct config_group *parent_group, struct config_group *group)
630 {
631 int i;
632 struct config_group *new_group;
633 struct configfs_subsystem *subsys = NULL; /* gcc is a turd */
634
635 link_obj(&parent_group->cg_item, &group->cg_item);
636
637 if (parent_group->cg_subsys)
638 subsys = parent_group->cg_subsys;
639 else if (configfs_is_root(&parent_group->cg_item))
640 subsys = to_configfs_subsystem(group);
641 else
642 BUG();
643 group->cg_subsys = subsys;
644
645 if (group->default_groups) {
646 for (i = 0; group->default_groups[i]; i++) {
647 new_group = group->default_groups[i];
648 link_group(group, new_group);
649 }
650 }
651 }
652
653 /*
654 * The goal is that configfs_attach_item() (and
655 * configfs_attach_group()) can be called from either the VFS or this
656 * module. That is, they assume that the items have been created,
657 * the dentry allocated, and the dcache is all ready to go.
658 *
659 * If they fail, they must clean up after themselves as if they
660 * had never been called. The caller (VFS or local function) will
661 * handle cleaning up the dcache bits.
662 *
663 * configfs_detach_group() and configfs_detach_item() behave similarly on
664 * the way out. They assume that the proper semaphores are held, they
665 * clean up the configfs items, and they expect their callers will
666 * handle the dcache bits.
667 */
668 static int configfs_attach_item(struct config_item *parent_item,
669 struct config_item *item,
670 struct dentry *dentry)
671 {
672 int ret;
673
674 ret = configfs_create_dir(item, dentry);
675 if (!ret) {
676 ret = populate_attrs(item);
677 if (ret) {
678 configfs_remove_dir(item);
679 d_delete(dentry);
680 }
681 }
682
683 return ret;
684 }
685
686 static void configfs_detach_item(struct config_item *item)
687 {
688 detach_attrs(item);
689 configfs_remove_dir(item);
690 }
691
692 static int configfs_attach_group(struct config_item *parent_item,
693 struct config_item *item,
694 struct dentry *dentry)
695 {
696 int ret;
697 struct configfs_dirent *sd;
698
699 ret = configfs_attach_item(parent_item, item, dentry);
700 if (!ret) {
701 sd = dentry->d_fsdata;
702 sd->s_type |= CONFIGFS_USET_DIR;
703
704 ret = populate_groups(to_config_group(item));
705 if (ret) {
706 configfs_detach_item(item);
707 d_delete(dentry);
708 }
709 }
710
711 return ret;
712 }
713
714 static void configfs_detach_group(struct config_item *item)
715 {
716 detach_groups(to_config_group(item));
717 configfs_detach_item(item);
718 }
719
720 /*
721 * After the item has been detached from the filesystem view, we are
722 * ready to tear it out of the hierarchy. Notify the client before
723 * we do that so they can perform any cleanup that requires
724 * navigating the hierarchy. A client does not need to provide this
725 * callback. The subsystem semaphore MUST be held by the caller, and
726 * references must be valid for both items. It also assumes the
727 * caller has validated ci_type.
728 */
729 static void client_disconnect_notify(struct config_item *parent_item,
730 struct config_item *item)
731 {
732 struct config_item_type *type;
733
734 type = parent_item->ci_type;
735 BUG_ON(!type);
736
737 if (type->ct_group_ops && type->ct_group_ops->disconnect_notify)
738 type->ct_group_ops->disconnect_notify(to_config_group(parent_item),
739 item);
740 }
741
742 /*
743 * Drop the initial reference from make_item()/make_group()
744 * This function assumes that reference is held on item
745 * and that item holds a valid reference to the parent. Also, it
746 * assumes the caller has validated ci_type.
747 */
748 static void client_drop_item(struct config_item *parent_item,
749 struct config_item *item)
750 {
751 struct config_item_type *type;
752
753 type = parent_item->ci_type;
754 BUG_ON(!type);
755
756 /*
757 * If ->drop_item() exists, it is responsible for the
758 * config_item_put().
759 */
760 if (type->ct_group_ops && type->ct_group_ops->drop_item)
761 type->ct_group_ops->drop_item(to_config_group(parent_item),
762 item);
763 else
764 config_item_put(item);
765 }
766
767 #ifdef DEBUG
768 static void configfs_dump_one(struct configfs_dirent *sd, int level)
769 {
770 printk(KERN_INFO "%*s\"%s\":\n", level, " ", configfs_get_name(sd));
771
772 #define type_print(_type) if (sd->s_type & _type) printk(KERN_INFO "%*s %s\n", level, " ", #_type);
773 type_print(CONFIGFS_ROOT);
774 type_print(CONFIGFS_DIR);
775 type_print(CONFIGFS_ITEM_ATTR);
776 type_print(CONFIGFS_ITEM_LINK);
777 type_print(CONFIGFS_USET_DIR);
778 type_print(CONFIGFS_USET_DEFAULT);
779 type_print(CONFIGFS_USET_DROPPING);
780 #undef type_print
781 }
782
783 static int configfs_dump(struct configfs_dirent *sd, int level)
784 {
785 struct configfs_dirent *child_sd;
786 int ret = 0;
787
788 configfs_dump_one(sd, level);
789
790 if (!(sd->s_type & (CONFIGFS_DIR|CONFIGFS_ROOT)))
791 return 0;
792
793 list_for_each_entry(child_sd, &sd->s_children, s_sibling) {
794 ret = configfs_dump(child_sd, level + 2);
795 if (ret)
796 break;
797 }
798
799 return ret;
800 }
801 #endif
802
803
804 /*
805 * configfs_depend_item() and configfs_undepend_item()
806 *
807 * WARNING: Do not call these from a configfs callback!
808 *
809 * This describes these functions and their helpers.
810 *
811 * Allow another kernel system to depend on a config_item. If this
812 * happens, the item cannot go away until the dependant can live without
813 * it. The idea is to give client modules as simple an interface as
814 * possible. When a system asks them to depend on an item, they just
815 * call configfs_depend_item(). If the item is live and the client
816 * driver is in good shape, we'll happily do the work for them.
817 *
818 * Why is the locking complex? Because configfs uses the VFS to handle
819 * all locking, but this function is called outside the normal
820 * VFS->configfs path. So it must take VFS locks to prevent the
821 * VFS->configfs stuff (configfs_mkdir(), configfs_rmdir(), etc). This is
822 * why you can't call these functions underneath configfs callbacks.
823 *
824 * Note, btw, that this can be called at *any* time, even when a configfs
825 * subsystem isn't registered, or when configfs is loading or unloading.
826 * Just like configfs_register_subsystem(). So we take the same
827 * precautions. We pin the filesystem. We lock each i_mutex _in_order_
828 * on our way down the tree. If we can find the target item in the
829 * configfs tree, it must be part of the subsystem tree as well, so we
830 * do not need the subsystem semaphore. Holding the i_mutex chain locks
831 * out mkdir() and rmdir(), who might be racing us.
832 */
833
834 /*
835 * configfs_depend_prep()
836 *
837 * Only subdirectories count here. Files (CONFIGFS_NOT_PINNED) are
838 * attributes. This is similar but not the same to configfs_detach_prep().
839 * Note that configfs_detach_prep() expects the parent to be locked when it
840 * is called, but we lock the parent *inside* configfs_depend_prep(). We
841 * do that so we can unlock it if we find nothing.
842 *
843 * Here we do a depth-first search of the dentry hierarchy looking for
844 * our object. We take i_mutex on each step of the way down. IT IS
845 * ESSENTIAL THAT i_mutex LOCKING IS ORDERED. If we come back up a branch,
846 * we'll drop the i_mutex.
847 *
848 * If the target is not found, -ENOENT is bubbled up and we have released
849 * all locks. If the target was found, the locks will be cleared by
850 * configfs_depend_rollback().
851 *
852 * This adds a requirement that all config_items be unique!
853 *
854 * This is recursive because the locking traversal is tricky. There isn't
855 * much on the stack, though, so folks that need this function - be careful
856 * about your stack! Patches will be accepted to make it iterative.
857 */
858 static int configfs_depend_prep(struct dentry *origin,
859 struct config_item *target)
860 {
861 struct configfs_dirent *child_sd, *sd = origin->d_fsdata;
862 int ret = 0;
863
864 BUG_ON(!origin || !sd);
865
866 /* Lock this guy on the way down */
867 mutex_lock(&sd->s_dentry->d_inode->i_mutex);
868 if (sd->s_element == target) /* Boo-yah */
869 goto out;
870
871 list_for_each_entry(child_sd, &sd->s_children, s_sibling) {
872 if (child_sd->s_type & CONFIGFS_DIR) {
873 ret = configfs_depend_prep(child_sd->s_dentry,
874 target);
875 if (!ret)
876 goto out; /* Child path boo-yah */
877 }
878 }
879
880 /* We looped all our children and didn't find target */
881 mutex_unlock(&sd->s_dentry->d_inode->i_mutex);
882 ret = -ENOENT;
883
884 out:
885 return ret;
886 }
887
888 /*
889 * This is ONLY called if configfs_depend_prep() did its job. So we can
890 * trust the entire path from item back up to origin.
891 *
892 * We walk backwards from item, unlocking each i_mutex. We finish by
893 * unlocking origin.
894 */
895 static void configfs_depend_rollback(struct dentry *origin,
896 struct config_item *item)
897 {
898 struct dentry *dentry = item->ci_dentry;
899
900 while (dentry != origin) {
901 mutex_unlock(&dentry->d_inode->i_mutex);
902 dentry = dentry->d_parent;
903 }
904
905 mutex_unlock(&origin->d_inode->i_mutex);
906 }
907
908 int configfs_depend_item(struct configfs_subsystem *subsys,
909 struct config_item *target)
910 {
911 int ret;
912 struct configfs_dirent *p, *root_sd, *subsys_sd = NULL;
913 struct config_item *s_item = &subsys->su_group.cg_item;
914
915 /*
916 * Pin the configfs filesystem. This means we can safely access
917 * the root of the configfs filesystem.
918 */
919 ret = configfs_pin_fs();
920 if (ret)
921 return ret;
922
923 /*
924 * Next, lock the root directory. We're going to check that the
925 * subsystem is really registered, and so we need to lock out
926 * configfs_[un]register_subsystem().
927 */
928 mutex_lock(&configfs_sb->s_root->d_inode->i_mutex);
929
930 root_sd = configfs_sb->s_root->d_fsdata;
931
932 list_for_each_entry(p, &root_sd->s_children, s_sibling) {
933 if (p->s_type & CONFIGFS_DIR) {
934 if (p->s_element == s_item) {
935 subsys_sd = p;
936 break;
937 }
938 }
939 }
940
941 if (!subsys_sd) {
942 ret = -ENOENT;
943 goto out_unlock_fs;
944 }
945
946 /* Ok, now we can trust subsys/s_item */
947
948 /* Scan the tree, locking i_mutex recursively, return 0 if found */
949 ret = configfs_depend_prep(subsys_sd->s_dentry, target);
950 if (ret)
951 goto out_unlock_fs;
952
953 /* We hold all i_mutexes from the subsystem down to the target */
954 p = target->ci_dentry->d_fsdata;
955 p->s_dependent_count += 1;
956
957 configfs_depend_rollback(subsys_sd->s_dentry, target);
958
959 out_unlock_fs:
960 mutex_unlock(&configfs_sb->s_root->d_inode->i_mutex);
961
962 /*
963 * If we succeeded, the fs is pinned via other methods. If not,
964 * we're done with it anyway. So release_fs() is always right.
965 */
966 configfs_release_fs();
967
968 return ret;
969 }
970 EXPORT_SYMBOL(configfs_depend_item);
971
972 /*
973 * Release the dependent linkage. This is much simpler than
974 * configfs_depend_item() because we know that that the client driver is
975 * pinned, thus the subsystem is pinned, and therefore configfs is pinned.
976 */
977 void configfs_undepend_item(struct configfs_subsystem *subsys,
978 struct config_item *target)
979 {
980 struct configfs_dirent *sd;
981
982 /*
983 * Since we can trust everything is pinned, we just need i_mutex
984 * on the item.
985 */
986 mutex_lock(&target->ci_dentry->d_inode->i_mutex);
987
988 sd = target->ci_dentry->d_fsdata;
989 BUG_ON(sd->s_dependent_count < 1);
990
991 sd->s_dependent_count -= 1;
992
993 /*
994 * After this unlock, we cannot trust the item to stay alive!
995 * DO NOT REFERENCE item after this unlock.
996 */
997 mutex_unlock(&target->ci_dentry->d_inode->i_mutex);
998 }
999 EXPORT_SYMBOL(configfs_undepend_item);
1000
1001 static int configfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1002 {
1003 int ret, module_got = 0;
1004 struct config_group *group;
1005 struct config_item *item;
1006 struct config_item *parent_item;
1007 struct configfs_subsystem *subsys;
1008 struct configfs_dirent *sd;
1009 struct config_item_type *type;
1010 struct module *owner = NULL;
1011 char *name;
1012
1013 if (dentry->d_parent == configfs_sb->s_root) {
1014 ret = -EPERM;
1015 goto out;
1016 }
1017
1018 sd = dentry->d_parent->d_fsdata;
1019 if (!(sd->s_type & CONFIGFS_USET_DIR)) {
1020 ret = -EPERM;
1021 goto out;
1022 }
1023
1024 /* Get a working ref for the duration of this function */
1025 parent_item = configfs_get_config_item(dentry->d_parent);
1026 type = parent_item->ci_type;
1027 subsys = to_config_group(parent_item)->cg_subsys;
1028 BUG_ON(!subsys);
1029
1030 if (!type || !type->ct_group_ops ||
1031 (!type->ct_group_ops->make_group &&
1032 !type->ct_group_ops->make_item)) {
1033 ret = -EPERM; /* Lack-of-mkdir returns -EPERM */
1034 goto out_put;
1035 }
1036
1037 name = kmalloc(dentry->d_name.len + 1, GFP_KERNEL);
1038 if (!name) {
1039 ret = -ENOMEM;
1040 goto out_put;
1041 }
1042
1043 snprintf(name, dentry->d_name.len + 1, "%s", dentry->d_name.name);
1044
1045 mutex_lock(&subsys->su_mutex);
1046 group = NULL;
1047 item = NULL;
1048 if (type->ct_group_ops->make_group) {
1049 group = type->ct_group_ops->make_group(to_config_group(parent_item), name);
1050 if (group) {
1051 link_group(to_config_group(parent_item), group);
1052 item = &group->cg_item;
1053 }
1054 } else {
1055 item = type->ct_group_ops->make_item(to_config_group(parent_item), name);
1056 if (item)
1057 link_obj(parent_item, item);
1058 }
1059 mutex_unlock(&subsys->su_mutex);
1060
1061 kfree(name);
1062 if (!item) {
1063 /*
1064 * If item == NULL, then link_obj() was never called.
1065 * There are no extra references to clean up.
1066 */
1067 ret = -ENOMEM;
1068 goto out_put;
1069 }
1070
1071 /*
1072 * link_obj() has been called (via link_group() for groups).
1073 * From here on out, errors must clean that up.
1074 */
1075
1076 type = item->ci_type;
1077 if (!type) {
1078 ret = -EINVAL;
1079 goto out_unlink;
1080 }
1081
1082 owner = type->ct_owner;
1083 if (!try_module_get(owner)) {
1084 ret = -EINVAL;
1085 goto out_unlink;
1086 }
1087
1088 /*
1089 * I hate doing it this way, but if there is
1090 * an error, module_put() probably should
1091 * happen after any cleanup.
1092 */
1093 module_got = 1;
1094
1095 if (group)
1096 ret = configfs_attach_group(parent_item, item, dentry);
1097 else
1098 ret = configfs_attach_item(parent_item, item, dentry);
1099
1100 out_unlink:
1101 if (ret) {
1102 /* Tear down everything we built up */
1103 mutex_lock(&subsys->su_mutex);
1104
1105 client_disconnect_notify(parent_item, item);
1106 if (group)
1107 unlink_group(group);
1108 else
1109 unlink_obj(item);
1110 client_drop_item(parent_item, item);
1111
1112 mutex_unlock(&subsys->su_mutex);
1113
1114 if (module_got)
1115 module_put(owner);
1116 }
1117
1118 out_put:
1119 /*
1120 * link_obj()/link_group() took a reference from child->parent,
1121 * so the parent is safely pinned. We can drop our working
1122 * reference.
1123 */
1124 config_item_put(parent_item);
1125
1126 out:
1127 return ret;
1128 }
1129
1130 static int configfs_rmdir(struct inode *dir, struct dentry *dentry)
1131 {
1132 struct config_item *parent_item;
1133 struct config_item *item;
1134 struct configfs_subsystem *subsys;
1135 struct configfs_dirent *sd;
1136 struct module *owner = NULL;
1137 int ret;
1138
1139 if (dentry->d_parent == configfs_sb->s_root)
1140 return -EPERM;
1141
1142 sd = dentry->d_fsdata;
1143 if (sd->s_type & CONFIGFS_USET_DEFAULT)
1144 return -EPERM;
1145
1146 /*
1147 * Here's where we check for dependents. We're protected by
1148 * i_mutex.
1149 */
1150 if (sd->s_dependent_count)
1151 return -EBUSY;
1152
1153 /* Get a working ref until we have the child */
1154 parent_item = configfs_get_config_item(dentry->d_parent);
1155 subsys = to_config_group(parent_item)->cg_subsys;
1156 BUG_ON(!subsys);
1157
1158 if (!parent_item->ci_type) {
1159 config_item_put(parent_item);
1160 return -EINVAL;
1161 }
1162
1163 ret = configfs_detach_prep(dentry);
1164 if (ret) {
1165 configfs_detach_rollback(dentry);
1166 config_item_put(parent_item);
1167 return ret;
1168 }
1169
1170 /* Get a working ref for the duration of this function */
1171 item = configfs_get_config_item(dentry);
1172
1173 /* Drop reference from above, item already holds one. */
1174 config_item_put(parent_item);
1175
1176 if (item->ci_type)
1177 owner = item->ci_type->ct_owner;
1178
1179 if (sd->s_type & CONFIGFS_USET_DIR) {
1180 configfs_detach_group(item);
1181
1182 mutex_lock(&subsys->su_mutex);
1183 client_disconnect_notify(parent_item, item);
1184 unlink_group(to_config_group(item));
1185 } else {
1186 configfs_detach_item(item);
1187
1188 mutex_lock(&subsys->su_mutex);
1189 client_disconnect_notify(parent_item, item);
1190 unlink_obj(item);
1191 }
1192
1193 client_drop_item(parent_item, item);
1194 mutex_unlock(&subsys->su_mutex);
1195
1196 /* Drop our reference from above */
1197 config_item_put(item);
1198
1199 module_put(owner);
1200
1201 return 0;
1202 }
1203
1204 const struct inode_operations configfs_dir_inode_operations = {
1205 .mkdir = configfs_mkdir,
1206 .rmdir = configfs_rmdir,
1207 .symlink = configfs_symlink,
1208 .unlink = configfs_unlink,
1209 .lookup = configfs_lookup,
1210 .setattr = configfs_setattr,
1211 };
1212
1213 #if 0
1214 int configfs_rename_dir(struct config_item * item, const char *new_name)
1215 {
1216 int error = 0;
1217 struct dentry * new_dentry, * parent;
1218
1219 if (!strcmp(config_item_name(item), new_name))
1220 return -EINVAL;
1221
1222 if (!item->parent)
1223 return -EINVAL;
1224
1225 down_write(&configfs_rename_sem);
1226 parent = item->parent->dentry;
1227
1228 mutex_lock(&parent->d_inode->i_mutex);
1229
1230 new_dentry = lookup_one_len(new_name, parent, strlen(new_name));
1231 if (!IS_ERR(new_dentry)) {
1232 if (!new_dentry->d_inode) {
1233 error = config_item_set_name(item, "%s", new_name);
1234 if (!error) {
1235 d_add(new_dentry, NULL);
1236 d_move(item->dentry, new_dentry);
1237 }
1238 else
1239 d_delete(new_dentry);
1240 } else
1241 error = -EEXIST;
1242 dput(new_dentry);
1243 }
1244 mutex_unlock(&parent->d_inode->i_mutex);
1245 up_write(&configfs_rename_sem);
1246
1247 return error;
1248 }
1249 #endif
1250
1251 static int configfs_dir_open(struct inode *inode, struct file *file)
1252 {
1253 struct dentry * dentry = file->f_path.dentry;
1254 struct configfs_dirent * parent_sd = dentry->d_fsdata;
1255
1256 mutex_lock(&dentry->d_inode->i_mutex);
1257 file->private_data = configfs_new_dirent(parent_sd, NULL);
1258 mutex_unlock(&dentry->d_inode->i_mutex);
1259
1260 return file->private_data ? 0 : -ENOMEM;
1261
1262 }
1263
1264 static int configfs_dir_close(struct inode *inode, struct file *file)
1265 {
1266 struct dentry * dentry = file->f_path.dentry;
1267 struct configfs_dirent * cursor = file->private_data;
1268
1269 mutex_lock(&dentry->d_inode->i_mutex);
1270 list_del_init(&cursor->s_sibling);
1271 mutex_unlock(&dentry->d_inode->i_mutex);
1272
1273 release_configfs_dirent(cursor);
1274
1275 return 0;
1276 }
1277
1278 /* Relationship between s_mode and the DT_xxx types */
1279 static inline unsigned char dt_type(struct configfs_dirent *sd)
1280 {
1281 return (sd->s_mode >> 12) & 15;
1282 }
1283
1284 static int configfs_readdir(struct file * filp, void * dirent, filldir_t filldir)
1285 {
1286 struct dentry *dentry = filp->f_path.dentry;
1287 struct configfs_dirent * parent_sd = dentry->d_fsdata;
1288 struct configfs_dirent *cursor = filp->private_data;
1289 struct list_head *p, *q = &cursor->s_sibling;
1290 ino_t ino;
1291 int i = filp->f_pos;
1292
1293 switch (i) {
1294 case 0:
1295 ino = dentry->d_inode->i_ino;
1296 if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0)
1297 break;
1298 filp->f_pos++;
1299 i++;
1300 /* fallthrough */
1301 case 1:
1302 ino = parent_ino(dentry);
1303 if (filldir(dirent, "..", 2, i, ino, DT_DIR) < 0)
1304 break;
1305 filp->f_pos++;
1306 i++;
1307 /* fallthrough */
1308 default:
1309 if (filp->f_pos == 2) {
1310 list_move(q, &parent_sd->s_children);
1311 }
1312 for (p=q->next; p!= &parent_sd->s_children; p=p->next) {
1313 struct configfs_dirent *next;
1314 const char * name;
1315 int len;
1316
1317 next = list_entry(p, struct configfs_dirent,
1318 s_sibling);
1319 if (!next->s_element)
1320 continue;
1321
1322 name = configfs_get_name(next);
1323 len = strlen(name);
1324 if (next->s_dentry)
1325 ino = next->s_dentry->d_inode->i_ino;
1326 else
1327 ino = iunique(configfs_sb, 2);
1328
1329 if (filldir(dirent, name, len, filp->f_pos, ino,
1330 dt_type(next)) < 0)
1331 return 0;
1332
1333 list_move(q, p);
1334 p = q;
1335 filp->f_pos++;
1336 }
1337 }
1338 return 0;
1339 }
1340
1341 static loff_t configfs_dir_lseek(struct file * file, loff_t offset, int origin)
1342 {
1343 struct dentry * dentry = file->f_path.dentry;
1344
1345 mutex_lock(&dentry->d_inode->i_mutex);
1346 switch (origin) {
1347 case 1:
1348 offset += file->f_pos;
1349 case 0:
1350 if (offset >= 0)
1351 break;
1352 default:
1353 mutex_unlock(&file->f_path.dentry->d_inode->i_mutex);
1354 return -EINVAL;
1355 }
1356 if (offset != file->f_pos) {
1357 file->f_pos = offset;
1358 if (file->f_pos >= 2) {
1359 struct configfs_dirent *sd = dentry->d_fsdata;
1360 struct configfs_dirent *cursor = file->private_data;
1361 struct list_head *p;
1362 loff_t n = file->f_pos - 2;
1363
1364 list_del(&cursor->s_sibling);
1365 p = sd->s_children.next;
1366 while (n && p != &sd->s_children) {
1367 struct configfs_dirent *next;
1368 next = list_entry(p, struct configfs_dirent,
1369 s_sibling);
1370 if (next->s_element)
1371 n--;
1372 p = p->next;
1373 }
1374 list_add_tail(&cursor->s_sibling, p);
1375 }
1376 }
1377 mutex_unlock(&dentry->d_inode->i_mutex);
1378 return offset;
1379 }
1380
1381 const struct file_operations configfs_dir_operations = {
1382 .open = configfs_dir_open,
1383 .release = configfs_dir_close,
1384 .llseek = configfs_dir_lseek,
1385 .read = generic_read_dir,
1386 .readdir = configfs_readdir,
1387 };
1388
1389 int configfs_register_subsystem(struct configfs_subsystem *subsys)
1390 {
1391 int err;
1392 struct config_group *group = &subsys->su_group;
1393 struct qstr name;
1394 struct dentry *dentry;
1395 struct configfs_dirent *sd;
1396
1397 err = configfs_pin_fs();
1398 if (err)
1399 return err;
1400
1401 if (!group->cg_item.ci_name)
1402 group->cg_item.ci_name = group->cg_item.ci_namebuf;
1403
1404 sd = configfs_sb->s_root->d_fsdata;
1405 link_group(to_config_group(sd->s_element), group);
1406
1407 mutex_lock(&configfs_sb->s_root->d_inode->i_mutex);
1408
1409 name.name = group->cg_item.ci_name;
1410 name.len = strlen(name.name);
1411 name.hash = full_name_hash(name.name, name.len);
1412
1413 err = -ENOMEM;
1414 dentry = d_alloc(configfs_sb->s_root, &name);
1415 if (dentry) {
1416 d_add(dentry, NULL);
1417
1418 err = configfs_attach_group(sd->s_element, &group->cg_item,
1419 dentry);
1420 if (err) {
1421 d_delete(dentry);
1422 dput(dentry);
1423 }
1424 }
1425
1426 mutex_unlock(&configfs_sb->s_root->d_inode->i_mutex);
1427
1428 if (err) {
1429 unlink_group(group);
1430 configfs_release_fs();
1431 }
1432
1433 return err;
1434 }
1435
1436 void configfs_unregister_subsystem(struct configfs_subsystem *subsys)
1437 {
1438 struct config_group *group = &subsys->su_group;
1439 struct dentry *dentry = group->cg_item.ci_dentry;
1440
1441 if (dentry->d_parent != configfs_sb->s_root) {
1442 printk(KERN_ERR "configfs: Tried to unregister non-subsystem!\n");
1443 return;
1444 }
1445
1446 mutex_lock_nested(&configfs_sb->s_root->d_inode->i_mutex,
1447 I_MUTEX_PARENT);
1448 mutex_lock_nested(&dentry->d_inode->i_mutex, I_MUTEX_CHILD);
1449 if (configfs_detach_prep(dentry)) {
1450 printk(KERN_ERR "configfs: Tried to unregister non-empty subsystem!\n");
1451 }
1452 configfs_detach_group(&group->cg_item);
1453 dentry->d_inode->i_flags |= S_DEAD;
1454 mutex_unlock(&dentry->d_inode->i_mutex);
1455
1456 d_delete(dentry);
1457
1458 mutex_unlock(&configfs_sb->s_root->d_inode->i_mutex);
1459
1460 dput(dentry);
1461
1462 unlink_group(group);
1463 configfs_release_fs();
1464 }
1465
1466 EXPORT_SYMBOL(configfs_register_subsystem);
1467 EXPORT_SYMBOL(configfs_unregister_subsystem);