]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/coredump.c
floppy: refactor open() flags handling
[mirror_ubuntu-artful-kernel.git] / fs / coredump.c
1 #include <linux/slab.h>
2 #include <linux/file.h>
3 #include <linux/fdtable.h>
4 #include <linux/mm.h>
5 #include <linux/stat.h>
6 #include <linux/fcntl.h>
7 #include <linux/swap.h>
8 #include <linux/string.h>
9 #include <linux/init.h>
10 #include <linux/pagemap.h>
11 #include <linux/perf_event.h>
12 #include <linux/highmem.h>
13 #include <linux/spinlock.h>
14 #include <linux/key.h>
15 #include <linux/personality.h>
16 #include <linux/binfmts.h>
17 #include <linux/coredump.h>
18 #include <linux/utsname.h>
19 #include <linux/pid_namespace.h>
20 #include <linux/module.h>
21 #include <linux/namei.h>
22 #include <linux/mount.h>
23 #include <linux/security.h>
24 #include <linux/syscalls.h>
25 #include <linux/tsacct_kern.h>
26 #include <linux/cn_proc.h>
27 #include <linux/audit.h>
28 #include <linux/tracehook.h>
29 #include <linux/kmod.h>
30 #include <linux/fsnotify.h>
31 #include <linux/fs_struct.h>
32 #include <linux/pipe_fs_i.h>
33 #include <linux/oom.h>
34 #include <linux/compat.h>
35 #include <linux/timekeeping.h>
36
37 #include <asm/uaccess.h>
38 #include <asm/mmu_context.h>
39 #include <asm/tlb.h>
40 #include <asm/exec.h>
41
42 #include <trace/events/task.h>
43 #include "internal.h"
44
45 #include <trace/events/sched.h>
46
47 int core_uses_pid;
48 unsigned int core_pipe_limit;
49 char core_pattern[CORENAME_MAX_SIZE] = "core";
50 static int core_name_size = CORENAME_MAX_SIZE;
51
52 struct core_name {
53 char *corename;
54 int used, size;
55 };
56
57 /* The maximal length of core_pattern is also specified in sysctl.c */
58
59 static int expand_corename(struct core_name *cn, int size)
60 {
61 char *corename = krealloc(cn->corename, size, GFP_KERNEL);
62
63 if (!corename)
64 return -ENOMEM;
65
66 if (size > core_name_size) /* racy but harmless */
67 core_name_size = size;
68
69 cn->size = ksize(corename);
70 cn->corename = corename;
71 return 0;
72 }
73
74 static __printf(2, 0) int cn_vprintf(struct core_name *cn, const char *fmt,
75 va_list arg)
76 {
77 int free, need;
78 va_list arg_copy;
79
80 again:
81 free = cn->size - cn->used;
82
83 va_copy(arg_copy, arg);
84 need = vsnprintf(cn->corename + cn->used, free, fmt, arg_copy);
85 va_end(arg_copy);
86
87 if (need < free) {
88 cn->used += need;
89 return 0;
90 }
91
92 if (!expand_corename(cn, cn->size + need - free + 1))
93 goto again;
94
95 return -ENOMEM;
96 }
97
98 static __printf(2, 3) int cn_printf(struct core_name *cn, const char *fmt, ...)
99 {
100 va_list arg;
101 int ret;
102
103 va_start(arg, fmt);
104 ret = cn_vprintf(cn, fmt, arg);
105 va_end(arg);
106
107 return ret;
108 }
109
110 static __printf(2, 3)
111 int cn_esc_printf(struct core_name *cn, const char *fmt, ...)
112 {
113 int cur = cn->used;
114 va_list arg;
115 int ret;
116
117 va_start(arg, fmt);
118 ret = cn_vprintf(cn, fmt, arg);
119 va_end(arg);
120
121 if (ret == 0) {
122 /*
123 * Ensure that this coredump name component can't cause the
124 * resulting corefile path to consist of a ".." or ".".
125 */
126 if ((cn->used - cur == 1 && cn->corename[cur] == '.') ||
127 (cn->used - cur == 2 && cn->corename[cur] == '.'
128 && cn->corename[cur+1] == '.'))
129 cn->corename[cur] = '!';
130
131 /*
132 * Empty names are fishy and could be used to create a "//" in a
133 * corefile name, causing the coredump to happen one directory
134 * level too high. Enforce that all components of the core
135 * pattern are at least one character long.
136 */
137 if (cn->used == cur)
138 ret = cn_printf(cn, "!");
139 }
140
141 for (; cur < cn->used; ++cur) {
142 if (cn->corename[cur] == '/')
143 cn->corename[cur] = '!';
144 }
145 return ret;
146 }
147
148 static int cn_print_exe_file(struct core_name *cn)
149 {
150 struct file *exe_file;
151 char *pathbuf, *path;
152 int ret;
153
154 exe_file = get_mm_exe_file(current->mm);
155 if (!exe_file)
156 return cn_esc_printf(cn, "%s (path unknown)", current->comm);
157
158 pathbuf = kmalloc(PATH_MAX, GFP_TEMPORARY);
159 if (!pathbuf) {
160 ret = -ENOMEM;
161 goto put_exe_file;
162 }
163
164 path = file_path(exe_file, pathbuf, PATH_MAX);
165 if (IS_ERR(path)) {
166 ret = PTR_ERR(path);
167 goto free_buf;
168 }
169
170 ret = cn_esc_printf(cn, "%s", path);
171
172 free_buf:
173 kfree(pathbuf);
174 put_exe_file:
175 fput(exe_file);
176 return ret;
177 }
178
179 /* format_corename will inspect the pattern parameter, and output a
180 * name into corename, which must have space for at least
181 * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
182 */
183 static int format_corename(struct core_name *cn, struct coredump_params *cprm)
184 {
185 const struct cred *cred = current_cred();
186 const char *pat_ptr = core_pattern;
187 int ispipe = (*pat_ptr == '|');
188 int pid_in_pattern = 0;
189 int err = 0;
190
191 cn->used = 0;
192 cn->corename = NULL;
193 if (expand_corename(cn, core_name_size))
194 return -ENOMEM;
195 cn->corename[0] = '\0';
196
197 if (ispipe)
198 ++pat_ptr;
199
200 /* Repeat as long as we have more pattern to process and more output
201 space */
202 while (*pat_ptr) {
203 if (*pat_ptr != '%') {
204 err = cn_printf(cn, "%c", *pat_ptr++);
205 } else {
206 switch (*++pat_ptr) {
207 /* single % at the end, drop that */
208 case 0:
209 goto out;
210 /* Double percent, output one percent */
211 case '%':
212 err = cn_printf(cn, "%c", '%');
213 break;
214 /* pid */
215 case 'p':
216 pid_in_pattern = 1;
217 err = cn_printf(cn, "%d",
218 task_tgid_vnr(current));
219 break;
220 /* global pid */
221 case 'P':
222 err = cn_printf(cn, "%d",
223 task_tgid_nr(current));
224 break;
225 case 'i':
226 err = cn_printf(cn, "%d",
227 task_pid_vnr(current));
228 break;
229 case 'I':
230 err = cn_printf(cn, "%d",
231 task_pid_nr(current));
232 break;
233 /* uid */
234 case 'u':
235 err = cn_printf(cn, "%u",
236 from_kuid(&init_user_ns,
237 cred->uid));
238 break;
239 /* gid */
240 case 'g':
241 err = cn_printf(cn, "%u",
242 from_kgid(&init_user_ns,
243 cred->gid));
244 break;
245 case 'd':
246 err = cn_printf(cn, "%d",
247 __get_dumpable(cprm->mm_flags));
248 break;
249 /* signal that caused the coredump */
250 case 's':
251 err = cn_printf(cn, "%d",
252 cprm->siginfo->si_signo);
253 break;
254 /* UNIX time of coredump */
255 case 't': {
256 time64_t time;
257
258 time = ktime_get_real_seconds();
259 err = cn_printf(cn, "%lld", time);
260 break;
261 }
262 /* hostname */
263 case 'h':
264 down_read(&uts_sem);
265 err = cn_esc_printf(cn, "%s",
266 utsname()->nodename);
267 up_read(&uts_sem);
268 break;
269 /* executable */
270 case 'e':
271 err = cn_esc_printf(cn, "%s", current->comm);
272 break;
273 case 'E':
274 err = cn_print_exe_file(cn);
275 break;
276 /* core limit size */
277 case 'c':
278 err = cn_printf(cn, "%lu",
279 rlimit(RLIMIT_CORE));
280 break;
281 default:
282 break;
283 }
284 ++pat_ptr;
285 }
286
287 if (err)
288 return err;
289 }
290
291 out:
292 /* Backward compatibility with core_uses_pid:
293 *
294 * If core_pattern does not include a %p (as is the default)
295 * and core_uses_pid is set, then .%pid will be appended to
296 * the filename. Do not do this for piped commands. */
297 if (!ispipe && !pid_in_pattern && core_uses_pid) {
298 err = cn_printf(cn, ".%d", task_tgid_vnr(current));
299 if (err)
300 return err;
301 }
302 return ispipe;
303 }
304
305 static int zap_process(struct task_struct *start, int exit_code, int flags)
306 {
307 struct task_struct *t;
308 int nr = 0;
309
310 /* ignore all signals except SIGKILL, see prepare_signal() */
311 start->signal->flags = SIGNAL_GROUP_COREDUMP | flags;
312 start->signal->group_exit_code = exit_code;
313 start->signal->group_stop_count = 0;
314
315 for_each_thread(start, t) {
316 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
317 if (t != current && t->mm) {
318 sigaddset(&t->pending.signal, SIGKILL);
319 signal_wake_up(t, 1);
320 nr++;
321 }
322 }
323
324 return nr;
325 }
326
327 static int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
328 struct core_state *core_state, int exit_code)
329 {
330 struct task_struct *g, *p;
331 unsigned long flags;
332 int nr = -EAGAIN;
333
334 spin_lock_irq(&tsk->sighand->siglock);
335 if (!signal_group_exit(tsk->signal)) {
336 mm->core_state = core_state;
337 tsk->signal->group_exit_task = tsk;
338 nr = zap_process(tsk, exit_code, 0);
339 clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
340 }
341 spin_unlock_irq(&tsk->sighand->siglock);
342 if (unlikely(nr < 0))
343 return nr;
344
345 tsk->flags |= PF_DUMPCORE;
346 if (atomic_read(&mm->mm_users) == nr + 1)
347 goto done;
348 /*
349 * We should find and kill all tasks which use this mm, and we should
350 * count them correctly into ->nr_threads. We don't take tasklist
351 * lock, but this is safe wrt:
352 *
353 * fork:
354 * None of sub-threads can fork after zap_process(leader). All
355 * processes which were created before this point should be
356 * visible to zap_threads() because copy_process() adds the new
357 * process to the tail of init_task.tasks list, and lock/unlock
358 * of ->siglock provides a memory barrier.
359 *
360 * do_exit:
361 * The caller holds mm->mmap_sem. This means that the task which
362 * uses this mm can't pass exit_mm(), so it can't exit or clear
363 * its ->mm.
364 *
365 * de_thread:
366 * It does list_replace_rcu(&leader->tasks, &current->tasks),
367 * we must see either old or new leader, this does not matter.
368 * However, it can change p->sighand, so lock_task_sighand(p)
369 * must be used. Since p->mm != NULL and we hold ->mmap_sem
370 * it can't fail.
371 *
372 * Note also that "g" can be the old leader with ->mm == NULL
373 * and already unhashed and thus removed from ->thread_group.
374 * This is OK, __unhash_process()->list_del_rcu() does not
375 * clear the ->next pointer, we will find the new leader via
376 * next_thread().
377 */
378 rcu_read_lock();
379 for_each_process(g) {
380 if (g == tsk->group_leader)
381 continue;
382 if (g->flags & PF_KTHREAD)
383 continue;
384
385 for_each_thread(g, p) {
386 if (unlikely(!p->mm))
387 continue;
388 if (unlikely(p->mm == mm)) {
389 lock_task_sighand(p, &flags);
390 nr += zap_process(p, exit_code,
391 SIGNAL_GROUP_EXIT);
392 unlock_task_sighand(p, &flags);
393 }
394 break;
395 }
396 }
397 rcu_read_unlock();
398 done:
399 atomic_set(&core_state->nr_threads, nr);
400 return nr;
401 }
402
403 static int coredump_wait(int exit_code, struct core_state *core_state)
404 {
405 struct task_struct *tsk = current;
406 struct mm_struct *mm = tsk->mm;
407 int core_waiters = -EBUSY;
408
409 init_completion(&core_state->startup);
410 core_state->dumper.task = tsk;
411 core_state->dumper.next = NULL;
412
413 down_write(&mm->mmap_sem);
414 if (!mm->core_state)
415 core_waiters = zap_threads(tsk, mm, core_state, exit_code);
416 up_write(&mm->mmap_sem);
417
418 if (core_waiters > 0) {
419 struct core_thread *ptr;
420
421 wait_for_completion(&core_state->startup);
422 /*
423 * Wait for all the threads to become inactive, so that
424 * all the thread context (extended register state, like
425 * fpu etc) gets copied to the memory.
426 */
427 ptr = core_state->dumper.next;
428 while (ptr != NULL) {
429 wait_task_inactive(ptr->task, 0);
430 ptr = ptr->next;
431 }
432 }
433
434 return core_waiters;
435 }
436
437 static void coredump_finish(struct mm_struct *mm, bool core_dumped)
438 {
439 struct core_thread *curr, *next;
440 struct task_struct *task;
441
442 spin_lock_irq(&current->sighand->siglock);
443 if (core_dumped && !__fatal_signal_pending(current))
444 current->signal->group_exit_code |= 0x80;
445 current->signal->group_exit_task = NULL;
446 current->signal->flags = SIGNAL_GROUP_EXIT;
447 spin_unlock_irq(&current->sighand->siglock);
448
449 next = mm->core_state->dumper.next;
450 while ((curr = next) != NULL) {
451 next = curr->next;
452 task = curr->task;
453 /*
454 * see exit_mm(), curr->task must not see
455 * ->task == NULL before we read ->next.
456 */
457 smp_mb();
458 curr->task = NULL;
459 wake_up_process(task);
460 }
461
462 mm->core_state = NULL;
463 }
464
465 static bool dump_interrupted(void)
466 {
467 /*
468 * SIGKILL or freezing() interrupt the coredumping. Perhaps we
469 * can do try_to_freeze() and check __fatal_signal_pending(),
470 * but then we need to teach dump_write() to restart and clear
471 * TIF_SIGPENDING.
472 */
473 return signal_pending(current);
474 }
475
476 static void wait_for_dump_helpers(struct file *file)
477 {
478 struct pipe_inode_info *pipe = file->private_data;
479
480 pipe_lock(pipe);
481 pipe->readers++;
482 pipe->writers--;
483 wake_up_interruptible_sync(&pipe->wait);
484 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
485 pipe_unlock(pipe);
486
487 /*
488 * We actually want wait_event_freezable() but then we need
489 * to clear TIF_SIGPENDING and improve dump_interrupted().
490 */
491 wait_event_interruptible(pipe->wait, pipe->readers == 1);
492
493 pipe_lock(pipe);
494 pipe->readers--;
495 pipe->writers++;
496 pipe_unlock(pipe);
497 }
498
499 /*
500 * umh_pipe_setup
501 * helper function to customize the process used
502 * to collect the core in userspace. Specifically
503 * it sets up a pipe and installs it as fd 0 (stdin)
504 * for the process. Returns 0 on success, or
505 * PTR_ERR on failure.
506 * Note that it also sets the core limit to 1. This
507 * is a special value that we use to trap recursive
508 * core dumps
509 */
510 static int umh_pipe_setup(struct subprocess_info *info, struct cred *new)
511 {
512 struct file *files[2];
513 struct coredump_params *cp = (struct coredump_params *)info->data;
514 int err = create_pipe_files(files, 0);
515 if (err)
516 return err;
517
518 cp->file = files[1];
519
520 err = replace_fd(0, files[0], 0);
521 fput(files[0]);
522 /* and disallow core files too */
523 current->signal->rlim[RLIMIT_CORE] = (struct rlimit){1, 1};
524
525 return err;
526 }
527
528 void do_coredump(const siginfo_t *siginfo)
529 {
530 struct core_state core_state;
531 struct core_name cn;
532 struct mm_struct *mm = current->mm;
533 struct linux_binfmt * binfmt;
534 const struct cred *old_cred;
535 struct cred *cred;
536 int retval = 0;
537 int ispipe;
538 struct files_struct *displaced;
539 /* require nonrelative corefile path and be extra careful */
540 bool need_suid_safe = false;
541 bool core_dumped = false;
542 static atomic_t core_dump_count = ATOMIC_INIT(0);
543 struct coredump_params cprm = {
544 .siginfo = siginfo,
545 .regs = signal_pt_regs(),
546 .limit = rlimit(RLIMIT_CORE),
547 /*
548 * We must use the same mm->flags while dumping core to avoid
549 * inconsistency of bit flags, since this flag is not protected
550 * by any locks.
551 */
552 .mm_flags = mm->flags,
553 };
554
555 audit_core_dumps(siginfo->si_signo);
556
557 binfmt = mm->binfmt;
558 if (!binfmt || !binfmt->core_dump)
559 goto fail;
560 if (!__get_dumpable(cprm.mm_flags))
561 goto fail;
562
563 cred = prepare_creds();
564 if (!cred)
565 goto fail;
566 /*
567 * We cannot trust fsuid as being the "true" uid of the process
568 * nor do we know its entire history. We only know it was tainted
569 * so we dump it as root in mode 2, and only into a controlled
570 * environment (pipe handler or fully qualified path).
571 */
572 if (__get_dumpable(cprm.mm_flags) == SUID_DUMP_ROOT) {
573 /* Setuid core dump mode */
574 cred->fsuid = GLOBAL_ROOT_UID; /* Dump root private */
575 need_suid_safe = true;
576 }
577
578 retval = coredump_wait(siginfo->si_signo, &core_state);
579 if (retval < 0)
580 goto fail_creds;
581
582 old_cred = override_creds(cred);
583
584 ispipe = format_corename(&cn, &cprm);
585
586 if (ispipe) {
587 int dump_count;
588 char **helper_argv;
589 struct subprocess_info *sub_info;
590
591 if (ispipe < 0) {
592 printk(KERN_WARNING "format_corename failed\n");
593 printk(KERN_WARNING "Aborting core\n");
594 goto fail_unlock;
595 }
596
597 if (cprm.limit == 1) {
598 /* See umh_pipe_setup() which sets RLIMIT_CORE = 1.
599 *
600 * Normally core limits are irrelevant to pipes, since
601 * we're not writing to the file system, but we use
602 * cprm.limit of 1 here as a special value, this is a
603 * consistent way to catch recursive crashes.
604 * We can still crash if the core_pattern binary sets
605 * RLIM_CORE = !1, but it runs as root, and can do
606 * lots of stupid things.
607 *
608 * Note that we use task_tgid_vnr here to grab the pid
609 * of the process group leader. That way we get the
610 * right pid if a thread in a multi-threaded
611 * core_pattern process dies.
612 */
613 printk(KERN_WARNING
614 "Process %d(%s) has RLIMIT_CORE set to 1\n",
615 task_tgid_vnr(current), current->comm);
616 printk(KERN_WARNING "Aborting core\n");
617 goto fail_unlock;
618 }
619 cprm.limit = RLIM_INFINITY;
620
621 dump_count = atomic_inc_return(&core_dump_count);
622 if (core_pipe_limit && (core_pipe_limit < dump_count)) {
623 printk(KERN_WARNING "Pid %d(%s) over core_pipe_limit\n",
624 task_tgid_vnr(current), current->comm);
625 printk(KERN_WARNING "Skipping core dump\n");
626 goto fail_dropcount;
627 }
628
629 helper_argv = argv_split(GFP_KERNEL, cn.corename, NULL);
630 if (!helper_argv) {
631 printk(KERN_WARNING "%s failed to allocate memory\n",
632 __func__);
633 goto fail_dropcount;
634 }
635
636 retval = -ENOMEM;
637 sub_info = call_usermodehelper_setup(helper_argv[0],
638 helper_argv, NULL, GFP_KERNEL,
639 umh_pipe_setup, NULL, &cprm);
640 if (sub_info)
641 retval = call_usermodehelper_exec(sub_info,
642 UMH_WAIT_EXEC);
643
644 argv_free(helper_argv);
645 if (retval) {
646 printk(KERN_INFO "Core dump to |%s pipe failed\n",
647 cn.corename);
648 goto close_fail;
649 }
650 } else {
651 struct inode *inode;
652
653 if (cprm.limit < binfmt->min_coredump)
654 goto fail_unlock;
655
656 if (need_suid_safe && cn.corename[0] != '/') {
657 printk(KERN_WARNING "Pid %d(%s) can only dump core "\
658 "to fully qualified path!\n",
659 task_tgid_vnr(current), current->comm);
660 printk(KERN_WARNING "Skipping core dump\n");
661 goto fail_unlock;
662 }
663
664 /*
665 * Unlink the file if it exists unless this is a SUID
666 * binary - in that case, we're running around with root
667 * privs and don't want to unlink another user's coredump.
668 */
669 if (!need_suid_safe) {
670 mm_segment_t old_fs;
671
672 old_fs = get_fs();
673 set_fs(KERNEL_DS);
674 /*
675 * If it doesn't exist, that's fine. If there's some
676 * other problem, we'll catch it at the filp_open().
677 */
678 (void) sys_unlink((const char __user *)cn.corename);
679 set_fs(old_fs);
680 }
681
682 /*
683 * There is a race between unlinking and creating the
684 * file, but if that causes an EEXIST here, that's
685 * fine - another process raced with us while creating
686 * the corefile, and the other process won. To userspace,
687 * what matters is that at least one of the two processes
688 * writes its coredump successfully, not which one.
689 */
690 cprm.file = filp_open(cn.corename,
691 O_CREAT | 2 | O_NOFOLLOW |
692 O_LARGEFILE | O_EXCL,
693 0600);
694 if (IS_ERR(cprm.file))
695 goto fail_unlock;
696
697 inode = file_inode(cprm.file);
698 if (inode->i_nlink > 1)
699 goto close_fail;
700 if (d_unhashed(cprm.file->f_path.dentry))
701 goto close_fail;
702 /*
703 * AK: actually i see no reason to not allow this for named
704 * pipes etc, but keep the previous behaviour for now.
705 */
706 if (!S_ISREG(inode->i_mode))
707 goto close_fail;
708 /*
709 * Don't dump core if the filesystem changed owner or mode
710 * of the file during file creation. This is an issue when
711 * a process dumps core while its cwd is e.g. on a vfat
712 * filesystem.
713 */
714 if (!uid_eq(inode->i_uid, current_fsuid()))
715 goto close_fail;
716 if ((inode->i_mode & 0677) != 0600)
717 goto close_fail;
718 if (!(cprm.file->f_mode & FMODE_CAN_WRITE))
719 goto close_fail;
720 if (do_truncate(cprm.file->f_path.dentry, 0, 0, cprm.file))
721 goto close_fail;
722 }
723
724 /* get us an unshared descriptor table; almost always a no-op */
725 retval = unshare_files(&displaced);
726 if (retval)
727 goto close_fail;
728 if (displaced)
729 put_files_struct(displaced);
730 if (!dump_interrupted()) {
731 file_start_write(cprm.file);
732 core_dumped = binfmt->core_dump(&cprm);
733 file_end_write(cprm.file);
734 }
735 if (ispipe && core_pipe_limit)
736 wait_for_dump_helpers(cprm.file);
737 close_fail:
738 if (cprm.file)
739 filp_close(cprm.file, NULL);
740 fail_dropcount:
741 if (ispipe)
742 atomic_dec(&core_dump_count);
743 fail_unlock:
744 kfree(cn.corename);
745 coredump_finish(mm, core_dumped);
746 revert_creds(old_cred);
747 fail_creds:
748 put_cred(cred);
749 fail:
750 return;
751 }
752
753 /*
754 * Core dumping helper functions. These are the only things you should
755 * do on a core-file: use only these functions to write out all the
756 * necessary info.
757 */
758 int dump_emit(struct coredump_params *cprm, const void *addr, int nr)
759 {
760 struct file *file = cprm->file;
761 loff_t pos = file->f_pos;
762 ssize_t n;
763 if (cprm->written + nr > cprm->limit)
764 return 0;
765 while (nr) {
766 if (dump_interrupted())
767 return 0;
768 n = __kernel_write(file, addr, nr, &pos);
769 if (n <= 0)
770 return 0;
771 file->f_pos = pos;
772 cprm->written += n;
773 nr -= n;
774 }
775 return 1;
776 }
777 EXPORT_SYMBOL(dump_emit);
778
779 int dump_skip(struct coredump_params *cprm, size_t nr)
780 {
781 static char zeroes[PAGE_SIZE];
782 struct file *file = cprm->file;
783 if (file->f_op->llseek && file->f_op->llseek != no_llseek) {
784 if (cprm->written + nr > cprm->limit)
785 return 0;
786 if (dump_interrupted() ||
787 file->f_op->llseek(file, nr, SEEK_CUR) < 0)
788 return 0;
789 cprm->written += nr;
790 return 1;
791 } else {
792 while (nr > PAGE_SIZE) {
793 if (!dump_emit(cprm, zeroes, PAGE_SIZE))
794 return 0;
795 nr -= PAGE_SIZE;
796 }
797 return dump_emit(cprm, zeroes, nr);
798 }
799 }
800 EXPORT_SYMBOL(dump_skip);
801
802 int dump_align(struct coredump_params *cprm, int align)
803 {
804 unsigned mod = cprm->written & (align - 1);
805 if (align & (align - 1))
806 return 0;
807 return mod ? dump_skip(cprm, align - mod) : 1;
808 }
809 EXPORT_SYMBOL(dump_align);