]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - fs/crypto/crypto.c
afs: Fix double inc of vnode->cb_break
[mirror_ubuntu-eoan-kernel.git] / fs / crypto / crypto.c
1 /*
2 * This contains encryption functions for per-file encryption.
3 *
4 * Copyright (C) 2015, Google, Inc.
5 * Copyright (C) 2015, Motorola Mobility
6 *
7 * Written by Michael Halcrow, 2014.
8 *
9 * Filename encryption additions
10 * Uday Savagaonkar, 2014
11 * Encryption policy handling additions
12 * Ildar Muslukhov, 2014
13 * Add fscrypt_pullback_bio_page()
14 * Jaegeuk Kim, 2015.
15 *
16 * This has not yet undergone a rigorous security audit.
17 *
18 * The usage of AES-XTS should conform to recommendations in NIST
19 * Special Publication 800-38E and IEEE P1619/D16.
20 */
21
22 #include <linux/pagemap.h>
23 #include <linux/mempool.h>
24 #include <linux/module.h>
25 #include <linux/scatterlist.h>
26 #include <linux/ratelimit.h>
27 #include <linux/dcache.h>
28 #include <linux/namei.h>
29 #include <crypto/aes.h>
30 #include <crypto/skcipher.h>
31 #include "fscrypt_private.h"
32
33 static unsigned int num_prealloc_crypto_pages = 32;
34 static unsigned int num_prealloc_crypto_ctxs = 128;
35
36 module_param(num_prealloc_crypto_pages, uint, 0444);
37 MODULE_PARM_DESC(num_prealloc_crypto_pages,
38 "Number of crypto pages to preallocate");
39 module_param(num_prealloc_crypto_ctxs, uint, 0444);
40 MODULE_PARM_DESC(num_prealloc_crypto_ctxs,
41 "Number of crypto contexts to preallocate");
42
43 static mempool_t *fscrypt_bounce_page_pool = NULL;
44
45 static LIST_HEAD(fscrypt_free_ctxs);
46 static DEFINE_SPINLOCK(fscrypt_ctx_lock);
47
48 static struct workqueue_struct *fscrypt_read_workqueue;
49 static DEFINE_MUTEX(fscrypt_init_mutex);
50
51 static struct kmem_cache *fscrypt_ctx_cachep;
52 struct kmem_cache *fscrypt_info_cachep;
53
54 void fscrypt_enqueue_decrypt_work(struct work_struct *work)
55 {
56 queue_work(fscrypt_read_workqueue, work);
57 }
58 EXPORT_SYMBOL(fscrypt_enqueue_decrypt_work);
59
60 /**
61 * fscrypt_release_ctx() - Releases an encryption context
62 * @ctx: The encryption context to release.
63 *
64 * If the encryption context was allocated from the pre-allocated pool, returns
65 * it to that pool. Else, frees it.
66 *
67 * If there's a bounce page in the context, this frees that.
68 */
69 void fscrypt_release_ctx(struct fscrypt_ctx *ctx)
70 {
71 unsigned long flags;
72
73 if (ctx->flags & FS_CTX_HAS_BOUNCE_BUFFER_FL && ctx->w.bounce_page) {
74 mempool_free(ctx->w.bounce_page, fscrypt_bounce_page_pool);
75 ctx->w.bounce_page = NULL;
76 }
77 ctx->w.control_page = NULL;
78 if (ctx->flags & FS_CTX_REQUIRES_FREE_ENCRYPT_FL) {
79 kmem_cache_free(fscrypt_ctx_cachep, ctx);
80 } else {
81 spin_lock_irqsave(&fscrypt_ctx_lock, flags);
82 list_add(&ctx->free_list, &fscrypt_free_ctxs);
83 spin_unlock_irqrestore(&fscrypt_ctx_lock, flags);
84 }
85 }
86 EXPORT_SYMBOL(fscrypt_release_ctx);
87
88 /**
89 * fscrypt_get_ctx() - Gets an encryption context
90 * @gfp_flags: The gfp flag for memory allocation
91 *
92 * Allocates and initializes an encryption context.
93 *
94 * Return: A new encryption context on success; an ERR_PTR() otherwise.
95 */
96 struct fscrypt_ctx *fscrypt_get_ctx(gfp_t gfp_flags)
97 {
98 struct fscrypt_ctx *ctx;
99 unsigned long flags;
100
101 /*
102 * We first try getting the ctx from a free list because in
103 * the common case the ctx will have an allocated and
104 * initialized crypto tfm, so it's probably a worthwhile
105 * optimization. For the bounce page, we first try getting it
106 * from the kernel allocator because that's just about as fast
107 * as getting it from a list and because a cache of free pages
108 * should generally be a "last resort" option for a filesystem
109 * to be able to do its job.
110 */
111 spin_lock_irqsave(&fscrypt_ctx_lock, flags);
112 ctx = list_first_entry_or_null(&fscrypt_free_ctxs,
113 struct fscrypt_ctx, free_list);
114 if (ctx)
115 list_del(&ctx->free_list);
116 spin_unlock_irqrestore(&fscrypt_ctx_lock, flags);
117 if (!ctx) {
118 ctx = kmem_cache_zalloc(fscrypt_ctx_cachep, gfp_flags);
119 if (!ctx)
120 return ERR_PTR(-ENOMEM);
121 ctx->flags |= FS_CTX_REQUIRES_FREE_ENCRYPT_FL;
122 } else {
123 ctx->flags &= ~FS_CTX_REQUIRES_FREE_ENCRYPT_FL;
124 }
125 ctx->flags &= ~FS_CTX_HAS_BOUNCE_BUFFER_FL;
126 return ctx;
127 }
128 EXPORT_SYMBOL(fscrypt_get_ctx);
129
130 void fscrypt_generate_iv(union fscrypt_iv *iv, u64 lblk_num,
131 const struct fscrypt_info *ci)
132 {
133 memset(iv, 0, ci->ci_mode->ivsize);
134 iv->lblk_num = cpu_to_le64(lblk_num);
135
136 if (ci->ci_flags & FS_POLICY_FLAG_DIRECT_KEY)
137 memcpy(iv->nonce, ci->ci_nonce, FS_KEY_DERIVATION_NONCE_SIZE);
138
139 if (ci->ci_essiv_tfm != NULL)
140 crypto_cipher_encrypt_one(ci->ci_essiv_tfm, iv->raw, iv->raw);
141 }
142
143 int fscrypt_do_page_crypto(const struct inode *inode, fscrypt_direction_t rw,
144 u64 lblk_num, struct page *src_page,
145 struct page *dest_page, unsigned int len,
146 unsigned int offs, gfp_t gfp_flags)
147 {
148 union fscrypt_iv iv;
149 struct skcipher_request *req = NULL;
150 DECLARE_CRYPTO_WAIT(wait);
151 struct scatterlist dst, src;
152 struct fscrypt_info *ci = inode->i_crypt_info;
153 struct crypto_skcipher *tfm = ci->ci_ctfm;
154 int res = 0;
155
156 BUG_ON(len == 0);
157
158 fscrypt_generate_iv(&iv, lblk_num, ci);
159
160 req = skcipher_request_alloc(tfm, gfp_flags);
161 if (!req)
162 return -ENOMEM;
163
164 skcipher_request_set_callback(
165 req, CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
166 crypto_req_done, &wait);
167
168 sg_init_table(&dst, 1);
169 sg_set_page(&dst, dest_page, len, offs);
170 sg_init_table(&src, 1);
171 sg_set_page(&src, src_page, len, offs);
172 skcipher_request_set_crypt(req, &src, &dst, len, &iv);
173 if (rw == FS_DECRYPT)
174 res = crypto_wait_req(crypto_skcipher_decrypt(req), &wait);
175 else
176 res = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
177 skcipher_request_free(req);
178 if (res) {
179 fscrypt_err(inode->i_sb,
180 "%scryption failed for inode %lu, block %llu: %d",
181 (rw == FS_DECRYPT ? "de" : "en"),
182 inode->i_ino, lblk_num, res);
183 return res;
184 }
185 return 0;
186 }
187
188 struct page *fscrypt_alloc_bounce_page(struct fscrypt_ctx *ctx,
189 gfp_t gfp_flags)
190 {
191 ctx->w.bounce_page = mempool_alloc(fscrypt_bounce_page_pool, gfp_flags);
192 if (ctx->w.bounce_page == NULL)
193 return ERR_PTR(-ENOMEM);
194 ctx->flags |= FS_CTX_HAS_BOUNCE_BUFFER_FL;
195 return ctx->w.bounce_page;
196 }
197
198 /**
199 * fscypt_encrypt_page() - Encrypts a page
200 * @inode: The inode for which the encryption should take place
201 * @page: The page to encrypt. Must be locked for bounce-page
202 * encryption.
203 * @len: Length of data to encrypt in @page and encrypted
204 * data in returned page.
205 * @offs: Offset of data within @page and returned
206 * page holding encrypted data.
207 * @lblk_num: Logical block number. This must be unique for multiple
208 * calls with same inode, except when overwriting
209 * previously written data.
210 * @gfp_flags: The gfp flag for memory allocation
211 *
212 * Encrypts @page using the ctx encryption context. Performs encryption
213 * either in-place or into a newly allocated bounce page.
214 * Called on the page write path.
215 *
216 * Bounce page allocation is the default.
217 * In this case, the contents of @page are encrypted and stored in an
218 * allocated bounce page. @page has to be locked and the caller must call
219 * fscrypt_restore_control_page() on the returned ciphertext page to
220 * release the bounce buffer and the encryption context.
221 *
222 * In-place encryption is used by setting the FS_CFLG_OWN_PAGES flag in
223 * fscrypt_operations. Here, the input-page is returned with its content
224 * encrypted.
225 *
226 * Return: A page with the encrypted content on success. Else, an
227 * error value or NULL.
228 */
229 struct page *fscrypt_encrypt_page(const struct inode *inode,
230 struct page *page,
231 unsigned int len,
232 unsigned int offs,
233 u64 lblk_num, gfp_t gfp_flags)
234
235 {
236 struct fscrypt_ctx *ctx;
237 struct page *ciphertext_page = page;
238 int err;
239
240 BUG_ON(len % FS_CRYPTO_BLOCK_SIZE != 0);
241
242 if (inode->i_sb->s_cop->flags & FS_CFLG_OWN_PAGES) {
243 /* with inplace-encryption we just encrypt the page */
244 err = fscrypt_do_page_crypto(inode, FS_ENCRYPT, lblk_num, page,
245 ciphertext_page, len, offs,
246 gfp_flags);
247 if (err)
248 return ERR_PTR(err);
249
250 return ciphertext_page;
251 }
252
253 BUG_ON(!PageLocked(page));
254
255 ctx = fscrypt_get_ctx(gfp_flags);
256 if (IS_ERR(ctx))
257 return ERR_CAST(ctx);
258
259 /* The encryption operation will require a bounce page. */
260 ciphertext_page = fscrypt_alloc_bounce_page(ctx, gfp_flags);
261 if (IS_ERR(ciphertext_page))
262 goto errout;
263
264 ctx->w.control_page = page;
265 err = fscrypt_do_page_crypto(inode, FS_ENCRYPT, lblk_num,
266 page, ciphertext_page, len, offs,
267 gfp_flags);
268 if (err) {
269 ciphertext_page = ERR_PTR(err);
270 goto errout;
271 }
272 SetPagePrivate(ciphertext_page);
273 set_page_private(ciphertext_page, (unsigned long)ctx);
274 lock_page(ciphertext_page);
275 return ciphertext_page;
276
277 errout:
278 fscrypt_release_ctx(ctx);
279 return ciphertext_page;
280 }
281 EXPORT_SYMBOL(fscrypt_encrypt_page);
282
283 /**
284 * fscrypt_decrypt_page() - Decrypts a page in-place
285 * @inode: The corresponding inode for the page to decrypt.
286 * @page: The page to decrypt. Must be locked in case
287 * it is a writeback page (FS_CFLG_OWN_PAGES unset).
288 * @len: Number of bytes in @page to be decrypted.
289 * @offs: Start of data in @page.
290 * @lblk_num: Logical block number.
291 *
292 * Decrypts page in-place using the ctx encryption context.
293 *
294 * Called from the read completion callback.
295 *
296 * Return: Zero on success, non-zero otherwise.
297 */
298 int fscrypt_decrypt_page(const struct inode *inode, struct page *page,
299 unsigned int len, unsigned int offs, u64 lblk_num)
300 {
301 if (!(inode->i_sb->s_cop->flags & FS_CFLG_OWN_PAGES))
302 BUG_ON(!PageLocked(page));
303
304 return fscrypt_do_page_crypto(inode, FS_DECRYPT, lblk_num, page, page,
305 len, offs, GFP_NOFS);
306 }
307 EXPORT_SYMBOL(fscrypt_decrypt_page);
308
309 /*
310 * Validate dentries in encrypted directories to make sure we aren't potentially
311 * caching stale dentries after a key has been added.
312 */
313 static int fscrypt_d_revalidate(struct dentry *dentry, unsigned int flags)
314 {
315 struct dentry *dir;
316 int err;
317 int valid;
318
319 /*
320 * Plaintext names are always valid, since fscrypt doesn't support
321 * reverting to ciphertext names without evicting the directory's inode
322 * -- which implies eviction of the dentries in the directory.
323 */
324 if (!(dentry->d_flags & DCACHE_ENCRYPTED_NAME))
325 return 1;
326
327 /*
328 * Ciphertext name; valid if the directory's key is still unavailable.
329 *
330 * Although fscrypt forbids rename() on ciphertext names, we still must
331 * use dget_parent() here rather than use ->d_parent directly. That's
332 * because a corrupted fs image may contain directory hard links, which
333 * the VFS handles by moving the directory's dentry tree in the dcache
334 * each time ->lookup() finds the directory and it already has a dentry
335 * elsewhere. Thus ->d_parent can be changing, and we must safely grab
336 * a reference to some ->d_parent to prevent it from being freed.
337 */
338
339 if (flags & LOOKUP_RCU)
340 return -ECHILD;
341
342 dir = dget_parent(dentry);
343 err = fscrypt_get_encryption_info(d_inode(dir));
344 valid = !fscrypt_has_encryption_key(d_inode(dir));
345 dput(dir);
346
347 if (err < 0)
348 return err;
349
350 return valid;
351 }
352
353 const struct dentry_operations fscrypt_d_ops = {
354 .d_revalidate = fscrypt_d_revalidate,
355 };
356
357 void fscrypt_restore_control_page(struct page *page)
358 {
359 struct fscrypt_ctx *ctx;
360
361 ctx = (struct fscrypt_ctx *)page_private(page);
362 set_page_private(page, (unsigned long)NULL);
363 ClearPagePrivate(page);
364 unlock_page(page);
365 fscrypt_release_ctx(ctx);
366 }
367 EXPORT_SYMBOL(fscrypt_restore_control_page);
368
369 static void fscrypt_destroy(void)
370 {
371 struct fscrypt_ctx *pos, *n;
372
373 list_for_each_entry_safe(pos, n, &fscrypt_free_ctxs, free_list)
374 kmem_cache_free(fscrypt_ctx_cachep, pos);
375 INIT_LIST_HEAD(&fscrypt_free_ctxs);
376 mempool_destroy(fscrypt_bounce_page_pool);
377 fscrypt_bounce_page_pool = NULL;
378 }
379
380 /**
381 * fscrypt_initialize() - allocate major buffers for fs encryption.
382 * @cop_flags: fscrypt operations flags
383 *
384 * We only call this when we start accessing encrypted files, since it
385 * results in memory getting allocated that wouldn't otherwise be used.
386 *
387 * Return: Zero on success, non-zero otherwise.
388 */
389 int fscrypt_initialize(unsigned int cop_flags)
390 {
391 int i, res = -ENOMEM;
392
393 /* No need to allocate a bounce page pool if this FS won't use it. */
394 if (cop_flags & FS_CFLG_OWN_PAGES)
395 return 0;
396
397 mutex_lock(&fscrypt_init_mutex);
398 if (fscrypt_bounce_page_pool)
399 goto already_initialized;
400
401 for (i = 0; i < num_prealloc_crypto_ctxs; i++) {
402 struct fscrypt_ctx *ctx;
403
404 ctx = kmem_cache_zalloc(fscrypt_ctx_cachep, GFP_NOFS);
405 if (!ctx)
406 goto fail;
407 list_add(&ctx->free_list, &fscrypt_free_ctxs);
408 }
409
410 fscrypt_bounce_page_pool =
411 mempool_create_page_pool(num_prealloc_crypto_pages, 0);
412 if (!fscrypt_bounce_page_pool)
413 goto fail;
414
415 already_initialized:
416 mutex_unlock(&fscrypt_init_mutex);
417 return 0;
418 fail:
419 fscrypt_destroy();
420 mutex_unlock(&fscrypt_init_mutex);
421 return res;
422 }
423
424 void fscrypt_msg(struct super_block *sb, const char *level,
425 const char *fmt, ...)
426 {
427 static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
428 DEFAULT_RATELIMIT_BURST);
429 struct va_format vaf;
430 va_list args;
431
432 if (!__ratelimit(&rs))
433 return;
434
435 va_start(args, fmt);
436 vaf.fmt = fmt;
437 vaf.va = &args;
438 if (sb)
439 printk("%sfscrypt (%s): %pV\n", level, sb->s_id, &vaf);
440 else
441 printk("%sfscrypt: %pV\n", level, &vaf);
442 va_end(args);
443 }
444
445 /**
446 * fscrypt_init() - Set up for fs encryption.
447 */
448 static int __init fscrypt_init(void)
449 {
450 /*
451 * Use an unbound workqueue to allow bios to be decrypted in parallel
452 * even when they happen to complete on the same CPU. This sacrifices
453 * locality, but it's worthwhile since decryption is CPU-intensive.
454 *
455 * Also use a high-priority workqueue to prioritize decryption work,
456 * which blocks reads from completing, over regular application tasks.
457 */
458 fscrypt_read_workqueue = alloc_workqueue("fscrypt_read_queue",
459 WQ_UNBOUND | WQ_HIGHPRI,
460 num_online_cpus());
461 if (!fscrypt_read_workqueue)
462 goto fail;
463
464 fscrypt_ctx_cachep = KMEM_CACHE(fscrypt_ctx, SLAB_RECLAIM_ACCOUNT);
465 if (!fscrypt_ctx_cachep)
466 goto fail_free_queue;
467
468 fscrypt_info_cachep = KMEM_CACHE(fscrypt_info, SLAB_RECLAIM_ACCOUNT);
469 if (!fscrypt_info_cachep)
470 goto fail_free_ctx;
471
472 return 0;
473
474 fail_free_ctx:
475 kmem_cache_destroy(fscrypt_ctx_cachep);
476 fail_free_queue:
477 destroy_workqueue(fscrypt_read_workqueue);
478 fail:
479 return -ENOMEM;
480 }
481 module_init(fscrypt_init)
482
483 /**
484 * fscrypt_exit() - Shutdown the fs encryption system
485 */
486 static void __exit fscrypt_exit(void)
487 {
488 fscrypt_destroy();
489
490 if (fscrypt_read_workqueue)
491 destroy_workqueue(fscrypt_read_workqueue);
492 kmem_cache_destroy(fscrypt_ctx_cachep);
493 kmem_cache_destroy(fscrypt_info_cachep);
494
495 fscrypt_essiv_cleanup();
496 }
497 module_exit(fscrypt_exit);
498
499 MODULE_LICENSE("GPL");