]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/crypto/fname.c
License cleanup: add SPDX GPL-2.0 license identifier to files with no license
[mirror_ubuntu-bionic-kernel.git] / fs / crypto / fname.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * This contains functions for filename crypto management
4 *
5 * Copyright (C) 2015, Google, Inc.
6 * Copyright (C) 2015, Motorola Mobility
7 *
8 * Written by Uday Savagaonkar, 2014.
9 * Modified by Jaegeuk Kim, 2015.
10 *
11 * This has not yet undergone a rigorous security audit.
12 */
13
14 #include <linux/scatterlist.h>
15 #include <linux/ratelimit.h>
16 #include "fscrypt_private.h"
17
18 /**
19 * fname_crypt_complete() - completion callback for filename crypto
20 * @req: The asynchronous cipher request context
21 * @res: The result of the cipher operation
22 */
23 static void fname_crypt_complete(struct crypto_async_request *req, int res)
24 {
25 struct fscrypt_completion_result *ecr = req->data;
26
27 if (res == -EINPROGRESS)
28 return;
29 ecr->res = res;
30 complete(&ecr->completion);
31 }
32
33 /**
34 * fname_encrypt() - encrypt a filename
35 *
36 * The caller must have allocated sufficient memory for the @oname string.
37 *
38 * Return: 0 on success, -errno on failure
39 */
40 static int fname_encrypt(struct inode *inode,
41 const struct qstr *iname, struct fscrypt_str *oname)
42 {
43 struct skcipher_request *req = NULL;
44 DECLARE_FS_COMPLETION_RESULT(ecr);
45 struct fscrypt_info *ci = inode->i_crypt_info;
46 struct crypto_skcipher *tfm = ci->ci_ctfm;
47 int res = 0;
48 char iv[FS_CRYPTO_BLOCK_SIZE];
49 struct scatterlist sg;
50 int padding = 4 << (ci->ci_flags & FS_POLICY_FLAGS_PAD_MASK);
51 unsigned int lim;
52 unsigned int cryptlen;
53
54 lim = inode->i_sb->s_cop->max_namelen(inode);
55 if (iname->len <= 0 || iname->len > lim)
56 return -EIO;
57
58 /*
59 * Copy the filename to the output buffer for encrypting in-place and
60 * pad it with the needed number of NUL bytes.
61 */
62 cryptlen = max_t(unsigned int, iname->len, FS_CRYPTO_BLOCK_SIZE);
63 cryptlen = round_up(cryptlen, padding);
64 cryptlen = min(cryptlen, lim);
65 memcpy(oname->name, iname->name, iname->len);
66 memset(oname->name + iname->len, 0, cryptlen - iname->len);
67
68 /* Initialize the IV */
69 memset(iv, 0, FS_CRYPTO_BLOCK_SIZE);
70
71 /* Set up the encryption request */
72 req = skcipher_request_alloc(tfm, GFP_NOFS);
73 if (!req) {
74 printk_ratelimited(KERN_ERR
75 "%s: skcipher_request_alloc() failed\n", __func__);
76 return -ENOMEM;
77 }
78 skcipher_request_set_callback(req,
79 CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
80 fname_crypt_complete, &ecr);
81 sg_init_one(&sg, oname->name, cryptlen);
82 skcipher_request_set_crypt(req, &sg, &sg, cryptlen, iv);
83
84 /* Do the encryption */
85 res = crypto_skcipher_encrypt(req);
86 if (res == -EINPROGRESS || res == -EBUSY) {
87 /* Request is being completed asynchronously; wait for it */
88 wait_for_completion(&ecr.completion);
89 res = ecr.res;
90 }
91 skcipher_request_free(req);
92 if (res < 0) {
93 printk_ratelimited(KERN_ERR
94 "%s: Error (error code %d)\n", __func__, res);
95 return res;
96 }
97
98 oname->len = cryptlen;
99 return 0;
100 }
101
102 /**
103 * fname_decrypt() - decrypt a filename
104 *
105 * The caller must have allocated sufficient memory for the @oname string.
106 *
107 * Return: 0 on success, -errno on failure
108 */
109 static int fname_decrypt(struct inode *inode,
110 const struct fscrypt_str *iname,
111 struct fscrypt_str *oname)
112 {
113 struct skcipher_request *req = NULL;
114 DECLARE_FS_COMPLETION_RESULT(ecr);
115 struct scatterlist src_sg, dst_sg;
116 struct fscrypt_info *ci = inode->i_crypt_info;
117 struct crypto_skcipher *tfm = ci->ci_ctfm;
118 int res = 0;
119 char iv[FS_CRYPTO_BLOCK_SIZE];
120 unsigned lim;
121
122 lim = inode->i_sb->s_cop->max_namelen(inode);
123 if (iname->len <= 0 || iname->len > lim)
124 return -EIO;
125
126 /* Allocate request */
127 req = skcipher_request_alloc(tfm, GFP_NOFS);
128 if (!req) {
129 printk_ratelimited(KERN_ERR
130 "%s: crypto_request_alloc() failed\n", __func__);
131 return -ENOMEM;
132 }
133 skcipher_request_set_callback(req,
134 CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
135 fname_crypt_complete, &ecr);
136
137 /* Initialize IV */
138 memset(iv, 0, FS_CRYPTO_BLOCK_SIZE);
139
140 /* Create decryption request */
141 sg_init_one(&src_sg, iname->name, iname->len);
142 sg_init_one(&dst_sg, oname->name, oname->len);
143 skcipher_request_set_crypt(req, &src_sg, &dst_sg, iname->len, iv);
144 res = crypto_skcipher_decrypt(req);
145 if (res == -EINPROGRESS || res == -EBUSY) {
146 wait_for_completion(&ecr.completion);
147 res = ecr.res;
148 }
149 skcipher_request_free(req);
150 if (res < 0) {
151 printk_ratelimited(KERN_ERR
152 "%s: Error (error code %d)\n", __func__, res);
153 return res;
154 }
155
156 oname->len = strnlen(oname->name, iname->len);
157 return 0;
158 }
159
160 static const char *lookup_table =
161 "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+,";
162
163 #define BASE64_CHARS(nbytes) DIV_ROUND_UP((nbytes) * 4, 3)
164
165 /**
166 * digest_encode() -
167 *
168 * Encodes the input digest using characters from the set [a-zA-Z0-9_+].
169 * The encoded string is roughly 4/3 times the size of the input string.
170 */
171 static int digest_encode(const char *src, int len, char *dst)
172 {
173 int i = 0, bits = 0, ac = 0;
174 char *cp = dst;
175
176 while (i < len) {
177 ac += (((unsigned char) src[i]) << bits);
178 bits += 8;
179 do {
180 *cp++ = lookup_table[ac & 0x3f];
181 ac >>= 6;
182 bits -= 6;
183 } while (bits >= 6);
184 i++;
185 }
186 if (bits)
187 *cp++ = lookup_table[ac & 0x3f];
188 return cp - dst;
189 }
190
191 static int digest_decode(const char *src, int len, char *dst)
192 {
193 int i = 0, bits = 0, ac = 0;
194 const char *p;
195 char *cp = dst;
196
197 while (i < len) {
198 p = strchr(lookup_table, src[i]);
199 if (p == NULL || src[i] == 0)
200 return -2;
201 ac += (p - lookup_table) << bits;
202 bits += 6;
203 if (bits >= 8) {
204 *cp++ = ac & 0xff;
205 ac >>= 8;
206 bits -= 8;
207 }
208 i++;
209 }
210 if (ac)
211 return -1;
212 return cp - dst;
213 }
214
215 u32 fscrypt_fname_encrypted_size(const struct inode *inode, u32 ilen)
216 {
217 int padding = 32;
218 struct fscrypt_info *ci = inode->i_crypt_info;
219
220 if (ci)
221 padding = 4 << (ci->ci_flags & FS_POLICY_FLAGS_PAD_MASK);
222 ilen = max(ilen, (u32)FS_CRYPTO_BLOCK_SIZE);
223 return round_up(ilen, padding);
224 }
225 EXPORT_SYMBOL(fscrypt_fname_encrypted_size);
226
227 /**
228 * fscrypt_fname_crypto_alloc_obuff() -
229 *
230 * Allocates an output buffer that is sufficient for the crypto operation
231 * specified by the context and the direction.
232 */
233 int fscrypt_fname_alloc_buffer(const struct inode *inode,
234 u32 ilen, struct fscrypt_str *crypto_str)
235 {
236 u32 olen = fscrypt_fname_encrypted_size(inode, ilen);
237 const u32 max_encoded_len =
238 max_t(u32, BASE64_CHARS(FSCRYPT_FNAME_MAX_UNDIGESTED_SIZE),
239 1 + BASE64_CHARS(sizeof(struct fscrypt_digested_name)));
240
241 crypto_str->len = olen;
242 olen = max(olen, max_encoded_len);
243
244 /*
245 * Allocated buffer can hold one more character to null-terminate the
246 * string
247 */
248 crypto_str->name = kmalloc(olen + 1, GFP_NOFS);
249 if (!(crypto_str->name))
250 return -ENOMEM;
251 return 0;
252 }
253 EXPORT_SYMBOL(fscrypt_fname_alloc_buffer);
254
255 /**
256 * fscrypt_fname_crypto_free_buffer() -
257 *
258 * Frees the buffer allocated for crypto operation.
259 */
260 void fscrypt_fname_free_buffer(struct fscrypt_str *crypto_str)
261 {
262 if (!crypto_str)
263 return;
264 kfree(crypto_str->name);
265 crypto_str->name = NULL;
266 }
267 EXPORT_SYMBOL(fscrypt_fname_free_buffer);
268
269 /**
270 * fscrypt_fname_disk_to_usr() - converts a filename from disk space to user
271 * space
272 *
273 * The caller must have allocated sufficient memory for the @oname string.
274 *
275 * If the key is available, we'll decrypt the disk name; otherwise, we'll encode
276 * it for presentation. Short names are directly base64-encoded, while long
277 * names are encoded in fscrypt_digested_name format.
278 *
279 * Return: 0 on success, -errno on failure
280 */
281 int fscrypt_fname_disk_to_usr(struct inode *inode,
282 u32 hash, u32 minor_hash,
283 const struct fscrypt_str *iname,
284 struct fscrypt_str *oname)
285 {
286 const struct qstr qname = FSTR_TO_QSTR(iname);
287 struct fscrypt_digested_name digested_name;
288
289 if (fscrypt_is_dot_dotdot(&qname)) {
290 oname->name[0] = '.';
291 oname->name[iname->len - 1] = '.';
292 oname->len = iname->len;
293 return 0;
294 }
295
296 if (iname->len < FS_CRYPTO_BLOCK_SIZE)
297 return -EUCLEAN;
298
299 if (inode->i_crypt_info)
300 return fname_decrypt(inode, iname, oname);
301
302 if (iname->len <= FSCRYPT_FNAME_MAX_UNDIGESTED_SIZE) {
303 oname->len = digest_encode(iname->name, iname->len,
304 oname->name);
305 return 0;
306 }
307 if (hash) {
308 digested_name.hash = hash;
309 digested_name.minor_hash = minor_hash;
310 } else {
311 digested_name.hash = 0;
312 digested_name.minor_hash = 0;
313 }
314 memcpy(digested_name.digest,
315 FSCRYPT_FNAME_DIGEST(iname->name, iname->len),
316 FSCRYPT_FNAME_DIGEST_SIZE);
317 oname->name[0] = '_';
318 oname->len = 1 + digest_encode((const char *)&digested_name,
319 sizeof(digested_name), oname->name + 1);
320 return 0;
321 }
322 EXPORT_SYMBOL(fscrypt_fname_disk_to_usr);
323
324 /**
325 * fscrypt_fname_usr_to_disk() - converts a filename from user space to disk
326 * space
327 *
328 * The caller must have allocated sufficient memory for the @oname string.
329 *
330 * Return: 0 on success, -errno on failure
331 */
332 int fscrypt_fname_usr_to_disk(struct inode *inode,
333 const struct qstr *iname,
334 struct fscrypt_str *oname)
335 {
336 if (fscrypt_is_dot_dotdot(iname)) {
337 oname->name[0] = '.';
338 oname->name[iname->len - 1] = '.';
339 oname->len = iname->len;
340 return 0;
341 }
342 if (inode->i_crypt_info)
343 return fname_encrypt(inode, iname, oname);
344 /*
345 * Without a proper key, a user is not allowed to modify the filenames
346 * in a directory. Consequently, a user space name cannot be mapped to
347 * a disk-space name
348 */
349 return -ENOKEY;
350 }
351 EXPORT_SYMBOL(fscrypt_fname_usr_to_disk);
352
353 /**
354 * fscrypt_setup_filename() - prepare to search a possibly encrypted directory
355 * @dir: the directory that will be searched
356 * @iname: the user-provided filename being searched for
357 * @lookup: 1 if we're allowed to proceed without the key because it's
358 * ->lookup() or we're finding the dir_entry for deletion; 0 if we cannot
359 * proceed without the key because we're going to create the dir_entry.
360 * @fname: the filename information to be filled in
361 *
362 * Given a user-provided filename @iname, this function sets @fname->disk_name
363 * to the name that would be stored in the on-disk directory entry, if possible.
364 * If the directory is unencrypted this is simply @iname. Else, if we have the
365 * directory's encryption key, then @iname is the plaintext, so we encrypt it to
366 * get the disk_name.
367 *
368 * Else, for keyless @lookup operations, @iname is the presented ciphertext, so
369 * we decode it to get either the ciphertext disk_name (for short names) or the
370 * fscrypt_digested_name (for long names). Non-@lookup operations will be
371 * impossible in this case, so we fail them with ENOKEY.
372 *
373 * If successful, fscrypt_free_filename() must be called later to clean up.
374 *
375 * Return: 0 on success, -errno on failure
376 */
377 int fscrypt_setup_filename(struct inode *dir, const struct qstr *iname,
378 int lookup, struct fscrypt_name *fname)
379 {
380 int ret;
381 int digested;
382
383 memset(fname, 0, sizeof(struct fscrypt_name));
384 fname->usr_fname = iname;
385
386 if (!dir->i_sb->s_cop->is_encrypted(dir) ||
387 fscrypt_is_dot_dotdot(iname)) {
388 fname->disk_name.name = (unsigned char *)iname->name;
389 fname->disk_name.len = iname->len;
390 return 0;
391 }
392 ret = fscrypt_get_encryption_info(dir);
393 if (ret && ret != -EOPNOTSUPP)
394 return ret;
395
396 if (dir->i_crypt_info) {
397 ret = fscrypt_fname_alloc_buffer(dir, iname->len,
398 &fname->crypto_buf);
399 if (ret)
400 return ret;
401 ret = fname_encrypt(dir, iname, &fname->crypto_buf);
402 if (ret)
403 goto errout;
404 fname->disk_name.name = fname->crypto_buf.name;
405 fname->disk_name.len = fname->crypto_buf.len;
406 return 0;
407 }
408 if (!lookup)
409 return -ENOKEY;
410
411 /*
412 * We don't have the key and we are doing a lookup; decode the
413 * user-supplied name
414 */
415 if (iname->name[0] == '_') {
416 if (iname->len !=
417 1 + BASE64_CHARS(sizeof(struct fscrypt_digested_name)))
418 return -ENOENT;
419 digested = 1;
420 } else {
421 if (iname->len >
422 BASE64_CHARS(FSCRYPT_FNAME_MAX_UNDIGESTED_SIZE))
423 return -ENOENT;
424 digested = 0;
425 }
426
427 fname->crypto_buf.name =
428 kmalloc(max_t(size_t, FSCRYPT_FNAME_MAX_UNDIGESTED_SIZE,
429 sizeof(struct fscrypt_digested_name)),
430 GFP_KERNEL);
431 if (fname->crypto_buf.name == NULL)
432 return -ENOMEM;
433
434 ret = digest_decode(iname->name + digested, iname->len - digested,
435 fname->crypto_buf.name);
436 if (ret < 0) {
437 ret = -ENOENT;
438 goto errout;
439 }
440 fname->crypto_buf.len = ret;
441 if (digested) {
442 const struct fscrypt_digested_name *n =
443 (const void *)fname->crypto_buf.name;
444 fname->hash = n->hash;
445 fname->minor_hash = n->minor_hash;
446 } else {
447 fname->disk_name.name = fname->crypto_buf.name;
448 fname->disk_name.len = fname->crypto_buf.len;
449 }
450 return 0;
451
452 errout:
453 fscrypt_fname_free_buffer(&fname->crypto_buf);
454 return ret;
455 }
456 EXPORT_SYMBOL(fscrypt_setup_filename);