]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - fs/dax.c
NFSv4: Handle case where the lookup of a directory fails
[mirror_ubuntu-focal-kernel.git] / fs / dax.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * fs/dax.c - Direct Access filesystem code
4 * Copyright (c) 2013-2014 Intel Corporation
5 * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
6 * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
7 */
8
9 #include <linux/atomic.h>
10 #include <linux/blkdev.h>
11 #include <linux/buffer_head.h>
12 #include <linux/dax.h>
13 #include <linux/fs.h>
14 #include <linux/genhd.h>
15 #include <linux/highmem.h>
16 #include <linux/memcontrol.h>
17 #include <linux/mm.h>
18 #include <linux/mutex.h>
19 #include <linux/pagevec.h>
20 #include <linux/sched.h>
21 #include <linux/sched/signal.h>
22 #include <linux/uio.h>
23 #include <linux/vmstat.h>
24 #include <linux/pfn_t.h>
25 #include <linux/sizes.h>
26 #include <linux/mmu_notifier.h>
27 #include <linux/iomap.h>
28 #include <asm/pgalloc.h>
29
30 #define CREATE_TRACE_POINTS
31 #include <trace/events/fs_dax.h>
32
33 static inline unsigned int pe_order(enum page_entry_size pe_size)
34 {
35 if (pe_size == PE_SIZE_PTE)
36 return PAGE_SHIFT - PAGE_SHIFT;
37 if (pe_size == PE_SIZE_PMD)
38 return PMD_SHIFT - PAGE_SHIFT;
39 if (pe_size == PE_SIZE_PUD)
40 return PUD_SHIFT - PAGE_SHIFT;
41 return ~0;
42 }
43
44 /* We choose 4096 entries - same as per-zone page wait tables */
45 #define DAX_WAIT_TABLE_BITS 12
46 #define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
47
48 /* The 'colour' (ie low bits) within a PMD of a page offset. */
49 #define PG_PMD_COLOUR ((PMD_SIZE >> PAGE_SHIFT) - 1)
50 #define PG_PMD_NR (PMD_SIZE >> PAGE_SHIFT)
51
52 /* The order of a PMD entry */
53 #define PMD_ORDER (PMD_SHIFT - PAGE_SHIFT)
54
55 static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES];
56
57 static int __init init_dax_wait_table(void)
58 {
59 int i;
60
61 for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++)
62 init_waitqueue_head(wait_table + i);
63 return 0;
64 }
65 fs_initcall(init_dax_wait_table);
66
67 /*
68 * DAX pagecache entries use XArray value entries so they can't be mistaken
69 * for pages. We use one bit for locking, one bit for the entry size (PMD)
70 * and two more to tell us if the entry is a zero page or an empty entry that
71 * is just used for locking. In total four special bits.
72 *
73 * If the PMD bit isn't set the entry has size PAGE_SIZE, and if the ZERO_PAGE
74 * and EMPTY bits aren't set the entry is a normal DAX entry with a filesystem
75 * block allocation.
76 */
77 #define DAX_SHIFT (4)
78 #define DAX_LOCKED (1UL << 0)
79 #define DAX_PMD (1UL << 1)
80 #define DAX_ZERO_PAGE (1UL << 2)
81 #define DAX_EMPTY (1UL << 3)
82
83 static unsigned long dax_to_pfn(void *entry)
84 {
85 return xa_to_value(entry) >> DAX_SHIFT;
86 }
87
88 static void *dax_make_entry(pfn_t pfn, unsigned long flags)
89 {
90 return xa_mk_value(flags | (pfn_t_to_pfn(pfn) << DAX_SHIFT));
91 }
92
93 static bool dax_is_locked(void *entry)
94 {
95 return xa_to_value(entry) & DAX_LOCKED;
96 }
97
98 static unsigned int dax_entry_order(void *entry)
99 {
100 if (xa_to_value(entry) & DAX_PMD)
101 return PMD_ORDER;
102 return 0;
103 }
104
105 static unsigned long dax_is_pmd_entry(void *entry)
106 {
107 return xa_to_value(entry) & DAX_PMD;
108 }
109
110 static bool dax_is_pte_entry(void *entry)
111 {
112 return !(xa_to_value(entry) & DAX_PMD);
113 }
114
115 static int dax_is_zero_entry(void *entry)
116 {
117 return xa_to_value(entry) & DAX_ZERO_PAGE;
118 }
119
120 static int dax_is_empty_entry(void *entry)
121 {
122 return xa_to_value(entry) & DAX_EMPTY;
123 }
124
125 /*
126 * true if the entry that was found is of a smaller order than the entry
127 * we were looking for
128 */
129 static bool dax_is_conflict(void *entry)
130 {
131 return entry == XA_RETRY_ENTRY;
132 }
133
134 /*
135 * DAX page cache entry locking
136 */
137 struct exceptional_entry_key {
138 struct xarray *xa;
139 pgoff_t entry_start;
140 };
141
142 struct wait_exceptional_entry_queue {
143 wait_queue_entry_t wait;
144 struct exceptional_entry_key key;
145 };
146
147 static wait_queue_head_t *dax_entry_waitqueue(struct xa_state *xas,
148 void *entry, struct exceptional_entry_key *key)
149 {
150 unsigned long hash;
151 unsigned long index = xas->xa_index;
152
153 /*
154 * If 'entry' is a PMD, align the 'index' that we use for the wait
155 * queue to the start of that PMD. This ensures that all offsets in
156 * the range covered by the PMD map to the same bit lock.
157 */
158 if (dax_is_pmd_entry(entry))
159 index &= ~PG_PMD_COLOUR;
160 key->xa = xas->xa;
161 key->entry_start = index;
162
163 hash = hash_long((unsigned long)xas->xa ^ index, DAX_WAIT_TABLE_BITS);
164 return wait_table + hash;
165 }
166
167 static int wake_exceptional_entry_func(wait_queue_entry_t *wait,
168 unsigned int mode, int sync, void *keyp)
169 {
170 struct exceptional_entry_key *key = keyp;
171 struct wait_exceptional_entry_queue *ewait =
172 container_of(wait, struct wait_exceptional_entry_queue, wait);
173
174 if (key->xa != ewait->key.xa ||
175 key->entry_start != ewait->key.entry_start)
176 return 0;
177 return autoremove_wake_function(wait, mode, sync, NULL);
178 }
179
180 /*
181 * @entry may no longer be the entry at the index in the mapping.
182 * The important information it's conveying is whether the entry at
183 * this index used to be a PMD entry.
184 */
185 static void dax_wake_entry(struct xa_state *xas, void *entry, bool wake_all)
186 {
187 struct exceptional_entry_key key;
188 wait_queue_head_t *wq;
189
190 wq = dax_entry_waitqueue(xas, entry, &key);
191
192 /*
193 * Checking for locked entry and prepare_to_wait_exclusive() happens
194 * under the i_pages lock, ditto for entry handling in our callers.
195 * So at this point all tasks that could have seen our entry locked
196 * must be in the waitqueue and the following check will see them.
197 */
198 if (waitqueue_active(wq))
199 __wake_up(wq, TASK_NORMAL, wake_all ? 0 : 1, &key);
200 }
201
202 /*
203 * Look up entry in page cache, wait for it to become unlocked if it
204 * is a DAX entry and return it. The caller must subsequently call
205 * put_unlocked_entry() if it did not lock the entry or dax_unlock_entry()
206 * if it did. The entry returned may have a larger order than @order.
207 * If @order is larger than the order of the entry found in i_pages, this
208 * function returns a dax_is_conflict entry.
209 *
210 * Must be called with the i_pages lock held.
211 */
212 static void *get_unlocked_entry(struct xa_state *xas, unsigned int order)
213 {
214 void *entry;
215 struct wait_exceptional_entry_queue ewait;
216 wait_queue_head_t *wq;
217
218 init_wait(&ewait.wait);
219 ewait.wait.func = wake_exceptional_entry_func;
220
221 for (;;) {
222 entry = xas_find_conflict(xas);
223 if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
224 return entry;
225 if (dax_entry_order(entry) < order)
226 return XA_RETRY_ENTRY;
227 if (!dax_is_locked(entry))
228 return entry;
229
230 wq = dax_entry_waitqueue(xas, entry, &ewait.key);
231 prepare_to_wait_exclusive(wq, &ewait.wait,
232 TASK_UNINTERRUPTIBLE);
233 xas_unlock_irq(xas);
234 xas_reset(xas);
235 schedule();
236 finish_wait(wq, &ewait.wait);
237 xas_lock_irq(xas);
238 }
239 }
240
241 /*
242 * The only thing keeping the address space around is the i_pages lock
243 * (it's cycled in clear_inode() after removing the entries from i_pages)
244 * After we call xas_unlock_irq(), we cannot touch xas->xa.
245 */
246 static void wait_entry_unlocked(struct xa_state *xas, void *entry)
247 {
248 struct wait_exceptional_entry_queue ewait;
249 wait_queue_head_t *wq;
250
251 init_wait(&ewait.wait);
252 ewait.wait.func = wake_exceptional_entry_func;
253
254 wq = dax_entry_waitqueue(xas, entry, &ewait.key);
255 /*
256 * Unlike get_unlocked_entry() there is no guarantee that this
257 * path ever successfully retrieves an unlocked entry before an
258 * inode dies. Perform a non-exclusive wait in case this path
259 * never successfully performs its own wake up.
260 */
261 prepare_to_wait(wq, &ewait.wait, TASK_UNINTERRUPTIBLE);
262 xas_unlock_irq(xas);
263 schedule();
264 finish_wait(wq, &ewait.wait);
265 }
266
267 static void put_unlocked_entry(struct xa_state *xas, void *entry)
268 {
269 /* If we were the only waiter woken, wake the next one */
270 if (entry && !dax_is_conflict(entry))
271 dax_wake_entry(xas, entry, false);
272 }
273
274 /*
275 * We used the xa_state to get the entry, but then we locked the entry and
276 * dropped the xa_lock, so we know the xa_state is stale and must be reset
277 * before use.
278 */
279 static void dax_unlock_entry(struct xa_state *xas, void *entry)
280 {
281 void *old;
282
283 BUG_ON(dax_is_locked(entry));
284 xas_reset(xas);
285 xas_lock_irq(xas);
286 old = xas_store(xas, entry);
287 xas_unlock_irq(xas);
288 BUG_ON(!dax_is_locked(old));
289 dax_wake_entry(xas, entry, false);
290 }
291
292 /*
293 * Return: The entry stored at this location before it was locked.
294 */
295 static void *dax_lock_entry(struct xa_state *xas, void *entry)
296 {
297 unsigned long v = xa_to_value(entry);
298 return xas_store(xas, xa_mk_value(v | DAX_LOCKED));
299 }
300
301 static unsigned long dax_entry_size(void *entry)
302 {
303 if (dax_is_zero_entry(entry))
304 return 0;
305 else if (dax_is_empty_entry(entry))
306 return 0;
307 else if (dax_is_pmd_entry(entry))
308 return PMD_SIZE;
309 else
310 return PAGE_SIZE;
311 }
312
313 static unsigned long dax_end_pfn(void *entry)
314 {
315 return dax_to_pfn(entry) + dax_entry_size(entry) / PAGE_SIZE;
316 }
317
318 /*
319 * Iterate through all mapped pfns represented by an entry, i.e. skip
320 * 'empty' and 'zero' entries.
321 */
322 #define for_each_mapped_pfn(entry, pfn) \
323 for (pfn = dax_to_pfn(entry); \
324 pfn < dax_end_pfn(entry); pfn++)
325
326 /*
327 * TODO: for reflink+dax we need a way to associate a single page with
328 * multiple address_space instances at different linear_page_index()
329 * offsets.
330 */
331 static void dax_associate_entry(void *entry, struct address_space *mapping,
332 struct vm_area_struct *vma, unsigned long address)
333 {
334 unsigned long size = dax_entry_size(entry), pfn, index;
335 int i = 0;
336
337 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
338 return;
339
340 index = linear_page_index(vma, address & ~(size - 1));
341 for_each_mapped_pfn(entry, pfn) {
342 struct page *page = pfn_to_page(pfn);
343
344 WARN_ON_ONCE(page->mapping);
345 page->mapping = mapping;
346 page->index = index + i++;
347 }
348 }
349
350 static void dax_disassociate_entry(void *entry, struct address_space *mapping,
351 bool trunc)
352 {
353 unsigned long pfn;
354
355 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
356 return;
357
358 for_each_mapped_pfn(entry, pfn) {
359 struct page *page = pfn_to_page(pfn);
360
361 WARN_ON_ONCE(trunc && page_ref_count(page) > 1);
362 WARN_ON_ONCE(page->mapping && page->mapping != mapping);
363 page->mapping = NULL;
364 page->index = 0;
365 }
366 }
367
368 static struct page *dax_busy_page(void *entry)
369 {
370 unsigned long pfn;
371
372 for_each_mapped_pfn(entry, pfn) {
373 struct page *page = pfn_to_page(pfn);
374
375 if (page_ref_count(page) > 1)
376 return page;
377 }
378 return NULL;
379 }
380
381 /*
382 * dax_lock_mapping_entry - Lock the DAX entry corresponding to a page
383 * @page: The page whose entry we want to lock
384 *
385 * Context: Process context.
386 * Return: A cookie to pass to dax_unlock_page() or 0 if the entry could
387 * not be locked.
388 */
389 dax_entry_t dax_lock_page(struct page *page)
390 {
391 XA_STATE(xas, NULL, 0);
392 void *entry;
393
394 /* Ensure page->mapping isn't freed while we look at it */
395 rcu_read_lock();
396 for (;;) {
397 struct address_space *mapping = READ_ONCE(page->mapping);
398
399 entry = NULL;
400 if (!mapping || !dax_mapping(mapping))
401 break;
402
403 /*
404 * In the device-dax case there's no need to lock, a
405 * struct dev_pagemap pin is sufficient to keep the
406 * inode alive, and we assume we have dev_pagemap pin
407 * otherwise we would not have a valid pfn_to_page()
408 * translation.
409 */
410 entry = (void *)~0UL;
411 if (S_ISCHR(mapping->host->i_mode))
412 break;
413
414 xas.xa = &mapping->i_pages;
415 xas_lock_irq(&xas);
416 if (mapping != page->mapping) {
417 xas_unlock_irq(&xas);
418 continue;
419 }
420 xas_set(&xas, page->index);
421 entry = xas_load(&xas);
422 if (dax_is_locked(entry)) {
423 rcu_read_unlock();
424 wait_entry_unlocked(&xas, entry);
425 rcu_read_lock();
426 continue;
427 }
428 dax_lock_entry(&xas, entry);
429 xas_unlock_irq(&xas);
430 break;
431 }
432 rcu_read_unlock();
433 return (dax_entry_t)entry;
434 }
435
436 void dax_unlock_page(struct page *page, dax_entry_t cookie)
437 {
438 struct address_space *mapping = page->mapping;
439 XA_STATE(xas, &mapping->i_pages, page->index);
440
441 if (S_ISCHR(mapping->host->i_mode))
442 return;
443
444 dax_unlock_entry(&xas, (void *)cookie);
445 }
446
447 /*
448 * Find page cache entry at given index. If it is a DAX entry, return it
449 * with the entry locked. If the page cache doesn't contain an entry at
450 * that index, add a locked empty entry.
451 *
452 * When requesting an entry with size DAX_PMD, grab_mapping_entry() will
453 * either return that locked entry or will return VM_FAULT_FALLBACK.
454 * This will happen if there are any PTE entries within the PMD range
455 * that we are requesting.
456 *
457 * We always favor PTE entries over PMD entries. There isn't a flow where we
458 * evict PTE entries in order to 'upgrade' them to a PMD entry. A PMD
459 * insertion will fail if it finds any PTE entries already in the tree, and a
460 * PTE insertion will cause an existing PMD entry to be unmapped and
461 * downgraded to PTE entries. This happens for both PMD zero pages as
462 * well as PMD empty entries.
463 *
464 * The exception to this downgrade path is for PMD entries that have
465 * real storage backing them. We will leave these real PMD entries in
466 * the tree, and PTE writes will simply dirty the entire PMD entry.
467 *
468 * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
469 * persistent memory the benefit is doubtful. We can add that later if we can
470 * show it helps.
471 *
472 * On error, this function does not return an ERR_PTR. Instead it returns
473 * a VM_FAULT code, encoded as an xarray internal entry. The ERR_PTR values
474 * overlap with xarray value entries.
475 */
476 static void *grab_mapping_entry(struct xa_state *xas,
477 struct address_space *mapping, unsigned int order)
478 {
479 unsigned long index = xas->xa_index;
480 bool pmd_downgrade; /* splitting PMD entry into PTE entries? */
481 void *entry;
482
483 retry:
484 pmd_downgrade = false;
485 xas_lock_irq(xas);
486 entry = get_unlocked_entry(xas, order);
487
488 if (entry) {
489 if (dax_is_conflict(entry))
490 goto fallback;
491 if (!xa_is_value(entry)) {
492 xas_set_err(xas, EIO);
493 goto out_unlock;
494 }
495
496 if (order == 0) {
497 if (dax_is_pmd_entry(entry) &&
498 (dax_is_zero_entry(entry) ||
499 dax_is_empty_entry(entry))) {
500 pmd_downgrade = true;
501 }
502 }
503 }
504
505 if (pmd_downgrade) {
506 /*
507 * Make sure 'entry' remains valid while we drop
508 * the i_pages lock.
509 */
510 dax_lock_entry(xas, entry);
511
512 /*
513 * Besides huge zero pages the only other thing that gets
514 * downgraded are empty entries which don't need to be
515 * unmapped.
516 */
517 if (dax_is_zero_entry(entry)) {
518 xas_unlock_irq(xas);
519 unmap_mapping_pages(mapping,
520 xas->xa_index & ~PG_PMD_COLOUR,
521 PG_PMD_NR, false);
522 xas_reset(xas);
523 xas_lock_irq(xas);
524 }
525
526 dax_disassociate_entry(entry, mapping, false);
527 xas_store(xas, NULL); /* undo the PMD join */
528 dax_wake_entry(xas, entry, true);
529 mapping->nrexceptional--;
530 entry = NULL;
531 xas_set(xas, index);
532 }
533
534 if (entry) {
535 dax_lock_entry(xas, entry);
536 } else {
537 unsigned long flags = DAX_EMPTY;
538
539 if (order > 0)
540 flags |= DAX_PMD;
541 entry = dax_make_entry(pfn_to_pfn_t(0), flags);
542 dax_lock_entry(xas, entry);
543 if (xas_error(xas))
544 goto out_unlock;
545 mapping->nrexceptional++;
546 }
547
548 out_unlock:
549 xas_unlock_irq(xas);
550 if (xas_nomem(xas, mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM))
551 goto retry;
552 if (xas->xa_node == XA_ERROR(-ENOMEM))
553 return xa_mk_internal(VM_FAULT_OOM);
554 if (xas_error(xas))
555 return xa_mk_internal(VM_FAULT_SIGBUS);
556 return entry;
557 fallback:
558 xas_unlock_irq(xas);
559 return xa_mk_internal(VM_FAULT_FALLBACK);
560 }
561
562 /**
563 * dax_layout_busy_page - find first pinned page in @mapping
564 * @mapping: address space to scan for a page with ref count > 1
565 *
566 * DAX requires ZONE_DEVICE mapped pages. These pages are never
567 * 'onlined' to the page allocator so they are considered idle when
568 * page->count == 1. A filesystem uses this interface to determine if
569 * any page in the mapping is busy, i.e. for DMA, or other
570 * get_user_pages() usages.
571 *
572 * It is expected that the filesystem is holding locks to block the
573 * establishment of new mappings in this address_space. I.e. it expects
574 * to be able to run unmap_mapping_range() and subsequently not race
575 * mapping_mapped() becoming true.
576 */
577 struct page *dax_layout_busy_page(struct address_space *mapping)
578 {
579 XA_STATE(xas, &mapping->i_pages, 0);
580 void *entry;
581 unsigned int scanned = 0;
582 struct page *page = NULL;
583
584 /*
585 * In the 'limited' case get_user_pages() for dax is disabled.
586 */
587 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
588 return NULL;
589
590 if (!dax_mapping(mapping) || !mapping_mapped(mapping))
591 return NULL;
592
593 /*
594 * If we race get_user_pages_fast() here either we'll see the
595 * elevated page count in the iteration and wait, or
596 * get_user_pages_fast() will see that the page it took a reference
597 * against is no longer mapped in the page tables and bail to the
598 * get_user_pages() slow path. The slow path is protected by
599 * pte_lock() and pmd_lock(). New references are not taken without
600 * holding those locks, and unmap_mapping_range() will not zero the
601 * pte or pmd without holding the respective lock, so we are
602 * guaranteed to either see new references or prevent new
603 * references from being established.
604 */
605 unmap_mapping_range(mapping, 0, 0, 0);
606
607 xas_lock_irq(&xas);
608 xas_for_each(&xas, entry, ULONG_MAX) {
609 if (WARN_ON_ONCE(!xa_is_value(entry)))
610 continue;
611 if (unlikely(dax_is_locked(entry)))
612 entry = get_unlocked_entry(&xas, 0);
613 if (entry)
614 page = dax_busy_page(entry);
615 put_unlocked_entry(&xas, entry);
616 if (page)
617 break;
618 if (++scanned % XA_CHECK_SCHED)
619 continue;
620
621 xas_pause(&xas);
622 xas_unlock_irq(&xas);
623 cond_resched();
624 xas_lock_irq(&xas);
625 }
626 xas_unlock_irq(&xas);
627 return page;
628 }
629 EXPORT_SYMBOL_GPL(dax_layout_busy_page);
630
631 static int __dax_invalidate_entry(struct address_space *mapping,
632 pgoff_t index, bool trunc)
633 {
634 XA_STATE(xas, &mapping->i_pages, index);
635 int ret = 0;
636 void *entry;
637
638 xas_lock_irq(&xas);
639 entry = get_unlocked_entry(&xas, 0);
640 if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
641 goto out;
642 if (!trunc &&
643 (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY) ||
644 xas_get_mark(&xas, PAGECACHE_TAG_TOWRITE)))
645 goto out;
646 dax_disassociate_entry(entry, mapping, trunc);
647 xas_store(&xas, NULL);
648 mapping->nrexceptional--;
649 ret = 1;
650 out:
651 put_unlocked_entry(&xas, entry);
652 xas_unlock_irq(&xas);
653 return ret;
654 }
655
656 /*
657 * Delete DAX entry at @index from @mapping. Wait for it
658 * to be unlocked before deleting it.
659 */
660 int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index)
661 {
662 int ret = __dax_invalidate_entry(mapping, index, true);
663
664 /*
665 * This gets called from truncate / punch_hole path. As such, the caller
666 * must hold locks protecting against concurrent modifications of the
667 * page cache (usually fs-private i_mmap_sem for writing). Since the
668 * caller has seen a DAX entry for this index, we better find it
669 * at that index as well...
670 */
671 WARN_ON_ONCE(!ret);
672 return ret;
673 }
674
675 /*
676 * Invalidate DAX entry if it is clean.
677 */
678 int dax_invalidate_mapping_entry_sync(struct address_space *mapping,
679 pgoff_t index)
680 {
681 return __dax_invalidate_entry(mapping, index, false);
682 }
683
684 static int copy_user_dax(struct block_device *bdev, struct dax_device *dax_dev,
685 sector_t sector, size_t size, struct page *to,
686 unsigned long vaddr)
687 {
688 void *vto, *kaddr;
689 pgoff_t pgoff;
690 long rc;
691 int id;
692
693 rc = bdev_dax_pgoff(bdev, sector, size, &pgoff);
694 if (rc)
695 return rc;
696
697 id = dax_read_lock();
698 rc = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size), &kaddr, NULL);
699 if (rc < 0) {
700 dax_read_unlock(id);
701 return rc;
702 }
703 vto = kmap_atomic(to);
704 copy_user_page(vto, (void __force *)kaddr, vaddr, to);
705 kunmap_atomic(vto);
706 dax_read_unlock(id);
707 return 0;
708 }
709
710 /*
711 * By this point grab_mapping_entry() has ensured that we have a locked entry
712 * of the appropriate size so we don't have to worry about downgrading PMDs to
713 * PTEs. If we happen to be trying to insert a PTE and there is a PMD
714 * already in the tree, we will skip the insertion and just dirty the PMD as
715 * appropriate.
716 */
717 static void *dax_insert_entry(struct xa_state *xas,
718 struct address_space *mapping, struct vm_fault *vmf,
719 void *entry, pfn_t pfn, unsigned long flags, bool dirty)
720 {
721 void *new_entry = dax_make_entry(pfn, flags);
722
723 if (dirty)
724 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
725
726 if (dax_is_zero_entry(entry) && !(flags & DAX_ZERO_PAGE)) {
727 unsigned long index = xas->xa_index;
728 /* we are replacing a zero page with block mapping */
729 if (dax_is_pmd_entry(entry))
730 unmap_mapping_pages(mapping, index & ~PG_PMD_COLOUR,
731 PG_PMD_NR, false);
732 else /* pte entry */
733 unmap_mapping_pages(mapping, index, 1, false);
734 }
735
736 xas_reset(xas);
737 xas_lock_irq(xas);
738 if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
739 void *old;
740
741 dax_disassociate_entry(entry, mapping, false);
742 dax_associate_entry(new_entry, mapping, vmf->vma, vmf->address);
743 /*
744 * Only swap our new entry into the page cache if the current
745 * entry is a zero page or an empty entry. If a normal PTE or
746 * PMD entry is already in the cache, we leave it alone. This
747 * means that if we are trying to insert a PTE and the
748 * existing entry is a PMD, we will just leave the PMD in the
749 * tree and dirty it if necessary.
750 */
751 old = dax_lock_entry(xas, new_entry);
752 WARN_ON_ONCE(old != xa_mk_value(xa_to_value(entry) |
753 DAX_LOCKED));
754 entry = new_entry;
755 } else {
756 xas_load(xas); /* Walk the xa_state */
757 }
758
759 if (dirty)
760 xas_set_mark(xas, PAGECACHE_TAG_DIRTY);
761
762 xas_unlock_irq(xas);
763 return entry;
764 }
765
766 static inline
767 unsigned long pgoff_address(pgoff_t pgoff, struct vm_area_struct *vma)
768 {
769 unsigned long address;
770
771 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
772 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
773 return address;
774 }
775
776 /* Walk all mappings of a given index of a file and writeprotect them */
777 static void dax_entry_mkclean(struct address_space *mapping, pgoff_t index,
778 unsigned long pfn)
779 {
780 struct vm_area_struct *vma;
781 pte_t pte, *ptep = NULL;
782 pmd_t *pmdp = NULL;
783 spinlock_t *ptl;
784
785 i_mmap_lock_read(mapping);
786 vma_interval_tree_foreach(vma, &mapping->i_mmap, index, index) {
787 struct mmu_notifier_range range;
788 unsigned long address;
789
790 cond_resched();
791
792 if (!(vma->vm_flags & VM_SHARED))
793 continue;
794
795 address = pgoff_address(index, vma);
796
797 /*
798 * follow_invalidate_pte() will use the range to call
799 * mmu_notifier_invalidate_range_start() on our behalf before
800 * taking any lock.
801 */
802 if (follow_invalidate_pte(vma->vm_mm, address, &range, &ptep,
803 &pmdp, &ptl))
804 continue;
805
806 /*
807 * No need to call mmu_notifier_invalidate_range() as we are
808 * downgrading page table protection not changing it to point
809 * to a new page.
810 *
811 * See Documentation/vm/mmu_notifier.rst
812 */
813 if (pmdp) {
814 #ifdef CONFIG_FS_DAX_PMD
815 pmd_t pmd;
816
817 if (pfn != pmd_pfn(*pmdp))
818 goto unlock_pmd;
819 if (!pmd_dirty(*pmdp) && !pmd_write(*pmdp))
820 goto unlock_pmd;
821
822 flush_cache_page(vma, address, pfn);
823 pmd = pmdp_invalidate(vma, address, pmdp);
824 pmd = pmd_wrprotect(pmd);
825 pmd = pmd_mkclean(pmd);
826 set_pmd_at(vma->vm_mm, address, pmdp, pmd);
827 unlock_pmd:
828 #endif
829 spin_unlock(ptl);
830 } else {
831 if (pfn != pte_pfn(*ptep))
832 goto unlock_pte;
833 if (!pte_dirty(*ptep) && !pte_write(*ptep))
834 goto unlock_pte;
835
836 flush_cache_page(vma, address, pfn);
837 pte = ptep_clear_flush(vma, address, ptep);
838 pte = pte_wrprotect(pte);
839 pte = pte_mkclean(pte);
840 set_pte_at(vma->vm_mm, address, ptep, pte);
841 unlock_pte:
842 pte_unmap_unlock(ptep, ptl);
843 }
844
845 mmu_notifier_invalidate_range_end(&range);
846 }
847 i_mmap_unlock_read(mapping);
848 }
849
850 static int dax_writeback_one(struct xa_state *xas, struct dax_device *dax_dev,
851 struct address_space *mapping, void *entry)
852 {
853 unsigned long pfn, index, count;
854 long ret = 0;
855
856 /*
857 * A page got tagged dirty in DAX mapping? Something is seriously
858 * wrong.
859 */
860 if (WARN_ON(!xa_is_value(entry)))
861 return -EIO;
862
863 if (unlikely(dax_is_locked(entry))) {
864 void *old_entry = entry;
865
866 entry = get_unlocked_entry(xas, 0);
867
868 /* Entry got punched out / reallocated? */
869 if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
870 goto put_unlocked;
871 /*
872 * Entry got reallocated elsewhere? No need to writeback.
873 * We have to compare pfns as we must not bail out due to
874 * difference in lockbit or entry type.
875 */
876 if (dax_to_pfn(old_entry) != dax_to_pfn(entry))
877 goto put_unlocked;
878 if (WARN_ON_ONCE(dax_is_empty_entry(entry) ||
879 dax_is_zero_entry(entry))) {
880 ret = -EIO;
881 goto put_unlocked;
882 }
883
884 /* Another fsync thread may have already done this entry */
885 if (!xas_get_mark(xas, PAGECACHE_TAG_TOWRITE))
886 goto put_unlocked;
887 }
888
889 /* Lock the entry to serialize with page faults */
890 dax_lock_entry(xas, entry);
891
892 /*
893 * We can clear the tag now but we have to be careful so that concurrent
894 * dax_writeback_one() calls for the same index cannot finish before we
895 * actually flush the caches. This is achieved as the calls will look
896 * at the entry only under the i_pages lock and once they do that
897 * they will see the entry locked and wait for it to unlock.
898 */
899 xas_clear_mark(xas, PAGECACHE_TAG_TOWRITE);
900 xas_unlock_irq(xas);
901
902 /*
903 * If dax_writeback_mapping_range() was given a wbc->range_start
904 * in the middle of a PMD, the 'index' we use needs to be
905 * aligned to the start of the PMD.
906 * This allows us to flush for PMD_SIZE and not have to worry about
907 * partial PMD writebacks.
908 */
909 pfn = dax_to_pfn(entry);
910 count = 1UL << dax_entry_order(entry);
911 index = xas->xa_index & ~(count - 1);
912
913 dax_entry_mkclean(mapping, index, pfn);
914 dax_flush(dax_dev, page_address(pfn_to_page(pfn)), count * PAGE_SIZE);
915 /*
916 * After we have flushed the cache, we can clear the dirty tag. There
917 * cannot be new dirty data in the pfn after the flush has completed as
918 * the pfn mappings are writeprotected and fault waits for mapping
919 * entry lock.
920 */
921 xas_reset(xas);
922 xas_lock_irq(xas);
923 xas_store(xas, entry);
924 xas_clear_mark(xas, PAGECACHE_TAG_DIRTY);
925 dax_wake_entry(xas, entry, false);
926
927 trace_dax_writeback_one(mapping->host, index, count);
928 return ret;
929
930 put_unlocked:
931 put_unlocked_entry(xas, entry);
932 return ret;
933 }
934
935 /*
936 * Flush the mapping to the persistent domain within the byte range of [start,
937 * end]. This is required by data integrity operations to ensure file data is
938 * on persistent storage prior to completion of the operation.
939 */
940 int dax_writeback_mapping_range(struct address_space *mapping,
941 struct block_device *bdev, struct writeback_control *wbc)
942 {
943 XA_STATE(xas, &mapping->i_pages, wbc->range_start >> PAGE_SHIFT);
944 struct inode *inode = mapping->host;
945 pgoff_t end_index = wbc->range_end >> PAGE_SHIFT;
946 struct dax_device *dax_dev;
947 void *entry;
948 int ret = 0;
949 unsigned int scanned = 0;
950
951 if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
952 return -EIO;
953
954 if (!mapping->nrexceptional || wbc->sync_mode != WB_SYNC_ALL)
955 return 0;
956
957 dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
958 if (!dax_dev)
959 return -EIO;
960
961 trace_dax_writeback_range(inode, xas.xa_index, end_index);
962
963 tag_pages_for_writeback(mapping, xas.xa_index, end_index);
964
965 xas_lock_irq(&xas);
966 xas_for_each_marked(&xas, entry, end_index, PAGECACHE_TAG_TOWRITE) {
967 ret = dax_writeback_one(&xas, dax_dev, mapping, entry);
968 if (ret < 0) {
969 mapping_set_error(mapping, ret);
970 break;
971 }
972 if (++scanned % XA_CHECK_SCHED)
973 continue;
974
975 xas_pause(&xas);
976 xas_unlock_irq(&xas);
977 cond_resched();
978 xas_lock_irq(&xas);
979 }
980 xas_unlock_irq(&xas);
981 put_dax(dax_dev);
982 trace_dax_writeback_range_done(inode, xas.xa_index, end_index);
983 return ret;
984 }
985 EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
986
987 static sector_t dax_iomap_sector(struct iomap *iomap, loff_t pos)
988 {
989 return (iomap->addr + (pos & PAGE_MASK) - iomap->offset) >> 9;
990 }
991
992 static int dax_iomap_pfn(struct iomap *iomap, loff_t pos, size_t size,
993 pfn_t *pfnp)
994 {
995 const sector_t sector = dax_iomap_sector(iomap, pos);
996 pgoff_t pgoff;
997 int id, rc;
998 long length;
999
1000 rc = bdev_dax_pgoff(iomap->bdev, sector, size, &pgoff);
1001 if (rc)
1002 return rc;
1003 id = dax_read_lock();
1004 length = dax_direct_access(iomap->dax_dev, pgoff, PHYS_PFN(size),
1005 NULL, pfnp);
1006 if (length < 0) {
1007 rc = length;
1008 goto out;
1009 }
1010 rc = -EINVAL;
1011 if (PFN_PHYS(length) < size)
1012 goto out;
1013 if (pfn_t_to_pfn(*pfnp) & (PHYS_PFN(size)-1))
1014 goto out;
1015 /* For larger pages we need devmap */
1016 if (length > 1 && !pfn_t_devmap(*pfnp))
1017 goto out;
1018 rc = 0;
1019 out:
1020 dax_read_unlock(id);
1021 return rc;
1022 }
1023
1024 /*
1025 * The user has performed a load from a hole in the file. Allocating a new
1026 * page in the file would cause excessive storage usage for workloads with
1027 * sparse files. Instead we insert a read-only mapping of the 4k zero page.
1028 * If this page is ever written to we will re-fault and change the mapping to
1029 * point to real DAX storage instead.
1030 */
1031 static vm_fault_t dax_load_hole(struct xa_state *xas,
1032 struct address_space *mapping, void **entry,
1033 struct vm_fault *vmf)
1034 {
1035 struct inode *inode = mapping->host;
1036 unsigned long vaddr = vmf->address;
1037 pfn_t pfn = pfn_to_pfn_t(my_zero_pfn(vaddr));
1038 vm_fault_t ret;
1039
1040 *entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn,
1041 DAX_ZERO_PAGE, false);
1042
1043 ret = vmf_insert_mixed(vmf->vma, vaddr, pfn);
1044 trace_dax_load_hole(inode, vmf, ret);
1045 return ret;
1046 }
1047
1048 static bool dax_range_is_aligned(struct block_device *bdev,
1049 unsigned int offset, unsigned int length)
1050 {
1051 unsigned short sector_size = bdev_logical_block_size(bdev);
1052
1053 if (!IS_ALIGNED(offset, sector_size))
1054 return false;
1055 if (!IS_ALIGNED(length, sector_size))
1056 return false;
1057
1058 return true;
1059 }
1060
1061 int __dax_zero_page_range(struct block_device *bdev,
1062 struct dax_device *dax_dev, sector_t sector,
1063 unsigned int offset, unsigned int size)
1064 {
1065 if (dax_range_is_aligned(bdev, offset, size)) {
1066 sector_t start_sector = sector + (offset >> 9);
1067
1068 return blkdev_issue_zeroout(bdev, start_sector,
1069 size >> 9, GFP_NOFS, 0);
1070 } else {
1071 pgoff_t pgoff;
1072 long rc, id;
1073 void *kaddr;
1074
1075 rc = bdev_dax_pgoff(bdev, sector, PAGE_SIZE, &pgoff);
1076 if (rc)
1077 return rc;
1078
1079 id = dax_read_lock();
1080 rc = dax_direct_access(dax_dev, pgoff, 1, &kaddr, NULL);
1081 if (rc < 0) {
1082 dax_read_unlock(id);
1083 return rc;
1084 }
1085 memset(kaddr + offset, 0, size);
1086 dax_flush(dax_dev, kaddr + offset, size);
1087 dax_read_unlock(id);
1088 }
1089 return 0;
1090 }
1091 EXPORT_SYMBOL_GPL(__dax_zero_page_range);
1092
1093 static loff_t
1094 dax_iomap_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
1095 struct iomap *iomap)
1096 {
1097 struct block_device *bdev = iomap->bdev;
1098 struct dax_device *dax_dev = iomap->dax_dev;
1099 struct iov_iter *iter = data;
1100 loff_t end = pos + length, done = 0;
1101 ssize_t ret = 0;
1102 size_t xfer;
1103 int id;
1104
1105 if (iov_iter_rw(iter) == READ) {
1106 end = min(end, i_size_read(inode));
1107 if (pos >= end)
1108 return 0;
1109
1110 if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
1111 return iov_iter_zero(min(length, end - pos), iter);
1112 }
1113
1114 if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED))
1115 return -EIO;
1116
1117 /*
1118 * Write can allocate block for an area which has a hole page mapped
1119 * into page tables. We have to tear down these mappings so that data
1120 * written by write(2) is visible in mmap.
1121 */
1122 if (iomap->flags & IOMAP_F_NEW) {
1123 invalidate_inode_pages2_range(inode->i_mapping,
1124 pos >> PAGE_SHIFT,
1125 (end - 1) >> PAGE_SHIFT);
1126 }
1127
1128 id = dax_read_lock();
1129 while (pos < end) {
1130 unsigned offset = pos & (PAGE_SIZE - 1);
1131 const size_t size = ALIGN(length + offset, PAGE_SIZE);
1132 const sector_t sector = dax_iomap_sector(iomap, pos);
1133 ssize_t map_len;
1134 pgoff_t pgoff;
1135 void *kaddr;
1136
1137 if (fatal_signal_pending(current)) {
1138 ret = -EINTR;
1139 break;
1140 }
1141
1142 ret = bdev_dax_pgoff(bdev, sector, size, &pgoff);
1143 if (ret)
1144 break;
1145
1146 map_len = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size),
1147 &kaddr, NULL);
1148 if (map_len < 0) {
1149 ret = map_len;
1150 break;
1151 }
1152
1153 map_len = PFN_PHYS(map_len);
1154 kaddr += offset;
1155 map_len -= offset;
1156 if (map_len > end - pos)
1157 map_len = end - pos;
1158
1159 /*
1160 * The userspace address for the memory copy has already been
1161 * validated via access_ok() in either vfs_read() or
1162 * vfs_write(), depending on which operation we are doing.
1163 */
1164 if (iov_iter_rw(iter) == WRITE)
1165 xfer = dax_copy_from_iter(dax_dev, pgoff, kaddr,
1166 map_len, iter);
1167 else
1168 xfer = dax_copy_to_iter(dax_dev, pgoff, kaddr,
1169 map_len, iter);
1170
1171 pos += xfer;
1172 length -= xfer;
1173 done += xfer;
1174
1175 if (xfer == 0)
1176 ret = -EFAULT;
1177 if (xfer < map_len)
1178 break;
1179 }
1180 dax_read_unlock(id);
1181
1182 return done ? done : ret;
1183 }
1184
1185 /**
1186 * dax_iomap_rw - Perform I/O to a DAX file
1187 * @iocb: The control block for this I/O
1188 * @iter: The addresses to do I/O from or to
1189 * @ops: iomap ops passed from the file system
1190 *
1191 * This function performs read and write operations to directly mapped
1192 * persistent memory. The callers needs to take care of read/write exclusion
1193 * and evicting any page cache pages in the region under I/O.
1194 */
1195 ssize_t
1196 dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter,
1197 const struct iomap_ops *ops)
1198 {
1199 struct address_space *mapping = iocb->ki_filp->f_mapping;
1200 struct inode *inode = mapping->host;
1201 loff_t pos = iocb->ki_pos, ret = 0, done = 0;
1202 unsigned flags = 0;
1203
1204 if (iov_iter_rw(iter) == WRITE) {
1205 lockdep_assert_held_write(&inode->i_rwsem);
1206 flags |= IOMAP_WRITE;
1207 } else {
1208 lockdep_assert_held(&inode->i_rwsem);
1209 }
1210
1211 if (iocb->ki_flags & IOCB_NOWAIT)
1212 flags |= IOMAP_NOWAIT;
1213
1214 while (iov_iter_count(iter)) {
1215 ret = iomap_apply(inode, pos, iov_iter_count(iter), flags, ops,
1216 iter, dax_iomap_actor);
1217 if (ret <= 0)
1218 break;
1219 pos += ret;
1220 done += ret;
1221 }
1222
1223 iocb->ki_pos += done;
1224 return done ? done : ret;
1225 }
1226 EXPORT_SYMBOL_GPL(dax_iomap_rw);
1227
1228 static vm_fault_t dax_fault_return(int error)
1229 {
1230 if (error == 0)
1231 return VM_FAULT_NOPAGE;
1232 return vmf_error(error);
1233 }
1234
1235 /*
1236 * MAP_SYNC on a dax mapping guarantees dirty metadata is
1237 * flushed on write-faults (non-cow), but not read-faults.
1238 */
1239 static bool dax_fault_is_synchronous(unsigned long flags,
1240 struct vm_area_struct *vma, struct iomap *iomap)
1241 {
1242 return (flags & IOMAP_WRITE) && (vma->vm_flags & VM_SYNC)
1243 && (iomap->flags & IOMAP_F_DIRTY);
1244 }
1245
1246 static vm_fault_t dax_iomap_pte_fault(struct vm_fault *vmf, pfn_t *pfnp,
1247 int *iomap_errp, const struct iomap_ops *ops)
1248 {
1249 struct vm_area_struct *vma = vmf->vma;
1250 struct address_space *mapping = vma->vm_file->f_mapping;
1251 XA_STATE(xas, &mapping->i_pages, vmf->pgoff);
1252 struct inode *inode = mapping->host;
1253 unsigned long vaddr = vmf->address;
1254 loff_t pos = (loff_t)vmf->pgoff << PAGE_SHIFT;
1255 struct iomap iomap = { 0 };
1256 unsigned flags = IOMAP_FAULT;
1257 int error, major = 0;
1258 bool write = vmf->flags & FAULT_FLAG_WRITE;
1259 bool sync;
1260 vm_fault_t ret = 0;
1261 void *entry;
1262 pfn_t pfn;
1263
1264 trace_dax_pte_fault(inode, vmf, ret);
1265 /*
1266 * Check whether offset isn't beyond end of file now. Caller is supposed
1267 * to hold locks serializing us with truncate / punch hole so this is
1268 * a reliable test.
1269 */
1270 if (pos >= i_size_read(inode)) {
1271 ret = VM_FAULT_SIGBUS;
1272 goto out;
1273 }
1274
1275 if (write && !vmf->cow_page)
1276 flags |= IOMAP_WRITE;
1277
1278 entry = grab_mapping_entry(&xas, mapping, 0);
1279 if (xa_is_internal(entry)) {
1280 ret = xa_to_internal(entry);
1281 goto out;
1282 }
1283
1284 /*
1285 * It is possible, particularly with mixed reads & writes to private
1286 * mappings, that we have raced with a PMD fault that overlaps with
1287 * the PTE we need to set up. If so just return and the fault will be
1288 * retried.
1289 */
1290 if (pmd_trans_huge(*vmf->pmd) || pmd_devmap(*vmf->pmd)) {
1291 ret = VM_FAULT_NOPAGE;
1292 goto unlock_entry;
1293 }
1294
1295 /*
1296 * Note that we don't bother to use iomap_apply here: DAX required
1297 * the file system block size to be equal the page size, which means
1298 * that we never have to deal with more than a single extent here.
1299 */
1300 error = ops->iomap_begin(inode, pos, PAGE_SIZE, flags, &iomap);
1301 if (iomap_errp)
1302 *iomap_errp = error;
1303 if (error) {
1304 ret = dax_fault_return(error);
1305 goto unlock_entry;
1306 }
1307 if (WARN_ON_ONCE(iomap.offset + iomap.length < pos + PAGE_SIZE)) {
1308 error = -EIO; /* fs corruption? */
1309 goto error_finish_iomap;
1310 }
1311
1312 if (vmf->cow_page) {
1313 sector_t sector = dax_iomap_sector(&iomap, pos);
1314
1315 switch (iomap.type) {
1316 case IOMAP_HOLE:
1317 case IOMAP_UNWRITTEN:
1318 clear_user_highpage(vmf->cow_page, vaddr);
1319 break;
1320 case IOMAP_MAPPED:
1321 error = copy_user_dax(iomap.bdev, iomap.dax_dev,
1322 sector, PAGE_SIZE, vmf->cow_page, vaddr);
1323 break;
1324 default:
1325 WARN_ON_ONCE(1);
1326 error = -EIO;
1327 break;
1328 }
1329
1330 if (error)
1331 goto error_finish_iomap;
1332
1333 __SetPageUptodate(vmf->cow_page);
1334 ret = finish_fault(vmf);
1335 if (!ret)
1336 ret = VM_FAULT_DONE_COW;
1337 goto finish_iomap;
1338 }
1339
1340 sync = dax_fault_is_synchronous(flags, vma, &iomap);
1341
1342 switch (iomap.type) {
1343 case IOMAP_MAPPED:
1344 if (iomap.flags & IOMAP_F_NEW) {
1345 count_vm_event(PGMAJFAULT);
1346 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
1347 major = VM_FAULT_MAJOR;
1348 }
1349 error = dax_iomap_pfn(&iomap, pos, PAGE_SIZE, &pfn);
1350 if (error < 0)
1351 goto error_finish_iomap;
1352
1353 entry = dax_insert_entry(&xas, mapping, vmf, entry, pfn,
1354 0, write && !sync);
1355
1356 /*
1357 * If we are doing synchronous page fault and inode needs fsync,
1358 * we can insert PTE into page tables only after that happens.
1359 * Skip insertion for now and return the pfn so that caller can
1360 * insert it after fsync is done.
1361 */
1362 if (sync) {
1363 if (WARN_ON_ONCE(!pfnp)) {
1364 error = -EIO;
1365 goto error_finish_iomap;
1366 }
1367 *pfnp = pfn;
1368 ret = VM_FAULT_NEEDDSYNC | major;
1369 goto finish_iomap;
1370 }
1371 trace_dax_insert_mapping(inode, vmf, entry);
1372 if (write)
1373 ret = vmf_insert_mixed_mkwrite(vma, vaddr, pfn);
1374 else
1375 ret = vmf_insert_mixed(vma, vaddr, pfn);
1376
1377 goto finish_iomap;
1378 case IOMAP_UNWRITTEN:
1379 case IOMAP_HOLE:
1380 if (!write) {
1381 ret = dax_load_hole(&xas, mapping, &entry, vmf);
1382 goto finish_iomap;
1383 }
1384 /*FALLTHRU*/
1385 default:
1386 WARN_ON_ONCE(1);
1387 error = -EIO;
1388 break;
1389 }
1390
1391 error_finish_iomap:
1392 ret = dax_fault_return(error);
1393 finish_iomap:
1394 if (ops->iomap_end) {
1395 int copied = PAGE_SIZE;
1396
1397 if (ret & VM_FAULT_ERROR)
1398 copied = 0;
1399 /*
1400 * The fault is done by now and there's no way back (other
1401 * thread may be already happily using PTE we have installed).
1402 * Just ignore error from ->iomap_end since we cannot do much
1403 * with it.
1404 */
1405 ops->iomap_end(inode, pos, PAGE_SIZE, copied, flags, &iomap);
1406 }
1407 unlock_entry:
1408 dax_unlock_entry(&xas, entry);
1409 out:
1410 trace_dax_pte_fault_done(inode, vmf, ret);
1411 return ret | major;
1412 }
1413
1414 #ifdef CONFIG_FS_DAX_PMD
1415 static vm_fault_t dax_pmd_load_hole(struct xa_state *xas, struct vm_fault *vmf,
1416 struct iomap *iomap, void **entry)
1417 {
1418 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1419 unsigned long pmd_addr = vmf->address & PMD_MASK;
1420 struct vm_area_struct *vma = vmf->vma;
1421 struct inode *inode = mapping->host;
1422 pgtable_t pgtable = NULL;
1423 struct page *zero_page;
1424 spinlock_t *ptl;
1425 pmd_t pmd_entry;
1426 pfn_t pfn;
1427
1428 zero_page = mm_get_huge_zero_page(vmf->vma->vm_mm);
1429
1430 if (unlikely(!zero_page))
1431 goto fallback;
1432
1433 pfn = page_to_pfn_t(zero_page);
1434 *entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn,
1435 DAX_PMD | DAX_ZERO_PAGE, false);
1436
1437 if (arch_needs_pgtable_deposit()) {
1438 pgtable = pte_alloc_one(vma->vm_mm);
1439 if (!pgtable)
1440 return VM_FAULT_OOM;
1441 }
1442
1443 ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1444 if (!pmd_none(*(vmf->pmd))) {
1445 spin_unlock(ptl);
1446 goto fallback;
1447 }
1448
1449 if (pgtable) {
1450 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
1451 mm_inc_nr_ptes(vma->vm_mm);
1452 }
1453 pmd_entry = mk_pmd(zero_page, vmf->vma->vm_page_prot);
1454 pmd_entry = pmd_mkhuge(pmd_entry);
1455 set_pmd_at(vmf->vma->vm_mm, pmd_addr, vmf->pmd, pmd_entry);
1456 spin_unlock(ptl);
1457 trace_dax_pmd_load_hole(inode, vmf, zero_page, *entry);
1458 return VM_FAULT_NOPAGE;
1459
1460 fallback:
1461 if (pgtable)
1462 pte_free(vma->vm_mm, pgtable);
1463 trace_dax_pmd_load_hole_fallback(inode, vmf, zero_page, *entry);
1464 return VM_FAULT_FALLBACK;
1465 }
1466
1467 static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1468 const struct iomap_ops *ops)
1469 {
1470 struct vm_area_struct *vma = vmf->vma;
1471 struct address_space *mapping = vma->vm_file->f_mapping;
1472 XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, PMD_ORDER);
1473 unsigned long pmd_addr = vmf->address & PMD_MASK;
1474 bool write = vmf->flags & FAULT_FLAG_WRITE;
1475 bool sync;
1476 unsigned int iomap_flags = (write ? IOMAP_WRITE : 0) | IOMAP_FAULT;
1477 struct inode *inode = mapping->host;
1478 vm_fault_t result = VM_FAULT_FALLBACK;
1479 struct iomap iomap = { 0 };
1480 pgoff_t max_pgoff;
1481 void *entry;
1482 loff_t pos;
1483 int error;
1484 pfn_t pfn;
1485
1486 /*
1487 * Check whether offset isn't beyond end of file now. Caller is
1488 * supposed to hold locks serializing us with truncate / punch hole so
1489 * this is a reliable test.
1490 */
1491 max_pgoff = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1492
1493 trace_dax_pmd_fault(inode, vmf, max_pgoff, 0);
1494
1495 /*
1496 * Make sure that the faulting address's PMD offset (color) matches
1497 * the PMD offset from the start of the file. This is necessary so
1498 * that a PMD range in the page table overlaps exactly with a PMD
1499 * range in the page cache.
1500 */
1501 if ((vmf->pgoff & PG_PMD_COLOUR) !=
1502 ((vmf->address >> PAGE_SHIFT) & PG_PMD_COLOUR))
1503 goto fallback;
1504
1505 /* Fall back to PTEs if we're going to COW */
1506 if (write && !(vma->vm_flags & VM_SHARED))
1507 goto fallback;
1508
1509 /* If the PMD would extend outside the VMA */
1510 if (pmd_addr < vma->vm_start)
1511 goto fallback;
1512 if ((pmd_addr + PMD_SIZE) > vma->vm_end)
1513 goto fallback;
1514
1515 if (xas.xa_index >= max_pgoff) {
1516 result = VM_FAULT_SIGBUS;
1517 goto out;
1518 }
1519
1520 /* If the PMD would extend beyond the file size */
1521 if ((xas.xa_index | PG_PMD_COLOUR) >= max_pgoff)
1522 goto fallback;
1523
1524 /*
1525 * grab_mapping_entry() will make sure we get an empty PMD entry,
1526 * a zero PMD entry or a DAX PMD. If it can't (because a PTE
1527 * entry is already in the array, for instance), it will return
1528 * VM_FAULT_FALLBACK.
1529 */
1530 entry = grab_mapping_entry(&xas, mapping, PMD_ORDER);
1531 if (xa_is_internal(entry)) {
1532 result = xa_to_internal(entry);
1533 goto fallback;
1534 }
1535
1536 /*
1537 * It is possible, particularly with mixed reads & writes to private
1538 * mappings, that we have raced with a PTE fault that overlaps with
1539 * the PMD we need to set up. If so just return and the fault will be
1540 * retried.
1541 */
1542 if (!pmd_none(*vmf->pmd) && !pmd_trans_huge(*vmf->pmd) &&
1543 !pmd_devmap(*vmf->pmd)) {
1544 result = 0;
1545 goto unlock_entry;
1546 }
1547
1548 /*
1549 * Note that we don't use iomap_apply here. We aren't doing I/O, only
1550 * setting up a mapping, so really we're using iomap_begin() as a way
1551 * to look up our filesystem block.
1552 */
1553 pos = (loff_t)xas.xa_index << PAGE_SHIFT;
1554 error = ops->iomap_begin(inode, pos, PMD_SIZE, iomap_flags, &iomap);
1555 if (error)
1556 goto unlock_entry;
1557
1558 if (iomap.offset + iomap.length < pos + PMD_SIZE)
1559 goto finish_iomap;
1560
1561 sync = dax_fault_is_synchronous(iomap_flags, vma, &iomap);
1562
1563 switch (iomap.type) {
1564 case IOMAP_MAPPED:
1565 error = dax_iomap_pfn(&iomap, pos, PMD_SIZE, &pfn);
1566 if (error < 0)
1567 goto finish_iomap;
1568
1569 entry = dax_insert_entry(&xas, mapping, vmf, entry, pfn,
1570 DAX_PMD, write && !sync);
1571
1572 /*
1573 * If we are doing synchronous page fault and inode needs fsync,
1574 * we can insert PMD into page tables only after that happens.
1575 * Skip insertion for now and return the pfn so that caller can
1576 * insert it after fsync is done.
1577 */
1578 if (sync) {
1579 if (WARN_ON_ONCE(!pfnp))
1580 goto finish_iomap;
1581 *pfnp = pfn;
1582 result = VM_FAULT_NEEDDSYNC;
1583 goto finish_iomap;
1584 }
1585
1586 trace_dax_pmd_insert_mapping(inode, vmf, PMD_SIZE, pfn, entry);
1587 result = vmf_insert_pfn_pmd(vmf, pfn, write);
1588 break;
1589 case IOMAP_UNWRITTEN:
1590 case IOMAP_HOLE:
1591 if (WARN_ON_ONCE(write))
1592 break;
1593 result = dax_pmd_load_hole(&xas, vmf, &iomap, &entry);
1594 break;
1595 default:
1596 WARN_ON_ONCE(1);
1597 break;
1598 }
1599
1600 finish_iomap:
1601 if (ops->iomap_end) {
1602 int copied = PMD_SIZE;
1603
1604 if (result == VM_FAULT_FALLBACK)
1605 copied = 0;
1606 /*
1607 * The fault is done by now and there's no way back (other
1608 * thread may be already happily using PMD we have installed).
1609 * Just ignore error from ->iomap_end since we cannot do much
1610 * with it.
1611 */
1612 ops->iomap_end(inode, pos, PMD_SIZE, copied, iomap_flags,
1613 &iomap);
1614 }
1615 unlock_entry:
1616 dax_unlock_entry(&xas, entry);
1617 fallback:
1618 if (result == VM_FAULT_FALLBACK) {
1619 split_huge_pmd(vma, vmf->pmd, vmf->address);
1620 count_vm_event(THP_FAULT_FALLBACK);
1621 }
1622 out:
1623 trace_dax_pmd_fault_done(inode, vmf, max_pgoff, result);
1624 return result;
1625 }
1626 #else
1627 static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1628 const struct iomap_ops *ops)
1629 {
1630 return VM_FAULT_FALLBACK;
1631 }
1632 #endif /* CONFIG_FS_DAX_PMD */
1633
1634 /**
1635 * dax_iomap_fault - handle a page fault on a DAX file
1636 * @vmf: The description of the fault
1637 * @pe_size: Size of the page to fault in
1638 * @pfnp: PFN to insert for synchronous faults if fsync is required
1639 * @iomap_errp: Storage for detailed error code in case of error
1640 * @ops: Iomap ops passed from the file system
1641 *
1642 * When a page fault occurs, filesystems may call this helper in
1643 * their fault handler for DAX files. dax_iomap_fault() assumes the caller
1644 * has done all the necessary locking for page fault to proceed
1645 * successfully.
1646 */
1647 vm_fault_t dax_iomap_fault(struct vm_fault *vmf, enum page_entry_size pe_size,
1648 pfn_t *pfnp, int *iomap_errp, const struct iomap_ops *ops)
1649 {
1650 switch (pe_size) {
1651 case PE_SIZE_PTE:
1652 return dax_iomap_pte_fault(vmf, pfnp, iomap_errp, ops);
1653 case PE_SIZE_PMD:
1654 return dax_iomap_pmd_fault(vmf, pfnp, ops);
1655 default:
1656 return VM_FAULT_FALLBACK;
1657 }
1658 }
1659 EXPORT_SYMBOL_GPL(dax_iomap_fault);
1660
1661 /*
1662 * dax_insert_pfn_mkwrite - insert PTE or PMD entry into page tables
1663 * @vmf: The description of the fault
1664 * @pfn: PFN to insert
1665 * @order: Order of entry to insert.
1666 *
1667 * This function inserts a writeable PTE or PMD entry into the page tables
1668 * for an mmaped DAX file. It also marks the page cache entry as dirty.
1669 */
1670 static vm_fault_t
1671 dax_insert_pfn_mkwrite(struct vm_fault *vmf, pfn_t pfn, unsigned int order)
1672 {
1673 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1674 XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, order);
1675 void *entry;
1676 vm_fault_t ret;
1677
1678 xas_lock_irq(&xas);
1679 entry = get_unlocked_entry(&xas, order);
1680 /* Did we race with someone splitting entry or so? */
1681 if (!entry || dax_is_conflict(entry) ||
1682 (order == 0 && !dax_is_pte_entry(entry))) {
1683 put_unlocked_entry(&xas, entry);
1684 xas_unlock_irq(&xas);
1685 trace_dax_insert_pfn_mkwrite_no_entry(mapping->host, vmf,
1686 VM_FAULT_NOPAGE);
1687 return VM_FAULT_NOPAGE;
1688 }
1689 xas_set_mark(&xas, PAGECACHE_TAG_DIRTY);
1690 dax_lock_entry(&xas, entry);
1691 xas_unlock_irq(&xas);
1692 if (order == 0)
1693 ret = vmf_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn);
1694 #ifdef CONFIG_FS_DAX_PMD
1695 else if (order == PMD_ORDER)
1696 ret = vmf_insert_pfn_pmd(vmf, pfn, FAULT_FLAG_WRITE);
1697 #endif
1698 else
1699 ret = VM_FAULT_FALLBACK;
1700 dax_unlock_entry(&xas, entry);
1701 trace_dax_insert_pfn_mkwrite(mapping->host, vmf, ret);
1702 return ret;
1703 }
1704
1705 /**
1706 * dax_finish_sync_fault - finish synchronous page fault
1707 * @vmf: The description of the fault
1708 * @pe_size: Size of entry to be inserted
1709 * @pfn: PFN to insert
1710 *
1711 * This function ensures that the file range touched by the page fault is
1712 * stored persistently on the media and handles inserting of appropriate page
1713 * table entry.
1714 */
1715 vm_fault_t dax_finish_sync_fault(struct vm_fault *vmf,
1716 enum page_entry_size pe_size, pfn_t pfn)
1717 {
1718 int err;
1719 loff_t start = ((loff_t)vmf->pgoff) << PAGE_SHIFT;
1720 unsigned int order = pe_order(pe_size);
1721 size_t len = PAGE_SIZE << order;
1722
1723 err = vfs_fsync_range(vmf->vma->vm_file, start, start + len - 1, 1);
1724 if (err)
1725 return VM_FAULT_SIGBUS;
1726 return dax_insert_pfn_mkwrite(vmf, pfn, order);
1727 }
1728 EXPORT_SYMBOL_GPL(dax_finish_sync_fault);