]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/dax.c
tunnels: do not assume mac header is set in skb_tunnel_check_pmtu()
[mirror_ubuntu-jammy-kernel.git] / fs / dax.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * fs/dax.c - Direct Access filesystem code
4 * Copyright (c) 2013-2014 Intel Corporation
5 * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
6 * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
7 */
8
9 #include <linux/atomic.h>
10 #include <linux/blkdev.h>
11 #include <linux/buffer_head.h>
12 #include <linux/dax.h>
13 #include <linux/fs.h>
14 #include <linux/genhd.h>
15 #include <linux/highmem.h>
16 #include <linux/memcontrol.h>
17 #include <linux/mm.h>
18 #include <linux/mutex.h>
19 #include <linux/pagevec.h>
20 #include <linux/sched.h>
21 #include <linux/sched/signal.h>
22 #include <linux/uio.h>
23 #include <linux/vmstat.h>
24 #include <linux/pfn_t.h>
25 #include <linux/sizes.h>
26 #include <linux/mmu_notifier.h>
27 #include <linux/iomap.h>
28 #include <asm/pgalloc.h>
29
30 #define CREATE_TRACE_POINTS
31 #include <trace/events/fs_dax.h>
32
33 static inline unsigned int pe_order(enum page_entry_size pe_size)
34 {
35 if (pe_size == PE_SIZE_PTE)
36 return PAGE_SHIFT - PAGE_SHIFT;
37 if (pe_size == PE_SIZE_PMD)
38 return PMD_SHIFT - PAGE_SHIFT;
39 if (pe_size == PE_SIZE_PUD)
40 return PUD_SHIFT - PAGE_SHIFT;
41 return ~0;
42 }
43
44 /* We choose 4096 entries - same as per-zone page wait tables */
45 #define DAX_WAIT_TABLE_BITS 12
46 #define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
47
48 /* The 'colour' (ie low bits) within a PMD of a page offset. */
49 #define PG_PMD_COLOUR ((PMD_SIZE >> PAGE_SHIFT) - 1)
50 #define PG_PMD_NR (PMD_SIZE >> PAGE_SHIFT)
51
52 /* The order of a PMD entry */
53 #define PMD_ORDER (PMD_SHIFT - PAGE_SHIFT)
54
55 static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES];
56
57 static int __init init_dax_wait_table(void)
58 {
59 int i;
60
61 for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++)
62 init_waitqueue_head(wait_table + i);
63 return 0;
64 }
65 fs_initcall(init_dax_wait_table);
66
67 /*
68 * DAX pagecache entries use XArray value entries so they can't be mistaken
69 * for pages. We use one bit for locking, one bit for the entry size (PMD)
70 * and two more to tell us if the entry is a zero page or an empty entry that
71 * is just used for locking. In total four special bits.
72 *
73 * If the PMD bit isn't set the entry has size PAGE_SIZE, and if the ZERO_PAGE
74 * and EMPTY bits aren't set the entry is a normal DAX entry with a filesystem
75 * block allocation.
76 */
77 #define DAX_SHIFT (4)
78 #define DAX_LOCKED (1UL << 0)
79 #define DAX_PMD (1UL << 1)
80 #define DAX_ZERO_PAGE (1UL << 2)
81 #define DAX_EMPTY (1UL << 3)
82
83 static unsigned long dax_to_pfn(void *entry)
84 {
85 return xa_to_value(entry) >> DAX_SHIFT;
86 }
87
88 static void *dax_make_entry(pfn_t pfn, unsigned long flags)
89 {
90 return xa_mk_value(flags | (pfn_t_to_pfn(pfn) << DAX_SHIFT));
91 }
92
93 static bool dax_is_locked(void *entry)
94 {
95 return xa_to_value(entry) & DAX_LOCKED;
96 }
97
98 static unsigned int dax_entry_order(void *entry)
99 {
100 if (xa_to_value(entry) & DAX_PMD)
101 return PMD_ORDER;
102 return 0;
103 }
104
105 static unsigned long dax_is_pmd_entry(void *entry)
106 {
107 return xa_to_value(entry) & DAX_PMD;
108 }
109
110 static bool dax_is_pte_entry(void *entry)
111 {
112 return !(xa_to_value(entry) & DAX_PMD);
113 }
114
115 static int dax_is_zero_entry(void *entry)
116 {
117 return xa_to_value(entry) & DAX_ZERO_PAGE;
118 }
119
120 static int dax_is_empty_entry(void *entry)
121 {
122 return xa_to_value(entry) & DAX_EMPTY;
123 }
124
125 /*
126 * true if the entry that was found is of a smaller order than the entry
127 * we were looking for
128 */
129 static bool dax_is_conflict(void *entry)
130 {
131 return entry == XA_RETRY_ENTRY;
132 }
133
134 /*
135 * DAX page cache entry locking
136 */
137 struct exceptional_entry_key {
138 struct xarray *xa;
139 pgoff_t entry_start;
140 };
141
142 struct wait_exceptional_entry_queue {
143 wait_queue_entry_t wait;
144 struct exceptional_entry_key key;
145 };
146
147 /**
148 * enum dax_wake_mode: waitqueue wakeup behaviour
149 * @WAKE_ALL: wake all waiters in the waitqueue
150 * @WAKE_NEXT: wake only the first waiter in the waitqueue
151 */
152 enum dax_wake_mode {
153 WAKE_ALL,
154 WAKE_NEXT,
155 };
156
157 static wait_queue_head_t *dax_entry_waitqueue(struct xa_state *xas,
158 void *entry, struct exceptional_entry_key *key)
159 {
160 unsigned long hash;
161 unsigned long index = xas->xa_index;
162
163 /*
164 * If 'entry' is a PMD, align the 'index' that we use for the wait
165 * queue to the start of that PMD. This ensures that all offsets in
166 * the range covered by the PMD map to the same bit lock.
167 */
168 if (dax_is_pmd_entry(entry))
169 index &= ~PG_PMD_COLOUR;
170 key->xa = xas->xa;
171 key->entry_start = index;
172
173 hash = hash_long((unsigned long)xas->xa ^ index, DAX_WAIT_TABLE_BITS);
174 return wait_table + hash;
175 }
176
177 static int wake_exceptional_entry_func(wait_queue_entry_t *wait,
178 unsigned int mode, int sync, void *keyp)
179 {
180 struct exceptional_entry_key *key = keyp;
181 struct wait_exceptional_entry_queue *ewait =
182 container_of(wait, struct wait_exceptional_entry_queue, wait);
183
184 if (key->xa != ewait->key.xa ||
185 key->entry_start != ewait->key.entry_start)
186 return 0;
187 return autoremove_wake_function(wait, mode, sync, NULL);
188 }
189
190 /*
191 * @entry may no longer be the entry at the index in the mapping.
192 * The important information it's conveying is whether the entry at
193 * this index used to be a PMD entry.
194 */
195 static void dax_wake_entry(struct xa_state *xas, void *entry,
196 enum dax_wake_mode mode)
197 {
198 struct exceptional_entry_key key;
199 wait_queue_head_t *wq;
200
201 wq = dax_entry_waitqueue(xas, entry, &key);
202
203 /*
204 * Checking for locked entry and prepare_to_wait_exclusive() happens
205 * under the i_pages lock, ditto for entry handling in our callers.
206 * So at this point all tasks that could have seen our entry locked
207 * must be in the waitqueue and the following check will see them.
208 */
209 if (waitqueue_active(wq))
210 __wake_up(wq, TASK_NORMAL, mode == WAKE_ALL ? 0 : 1, &key);
211 }
212
213 /*
214 * Look up entry in page cache, wait for it to become unlocked if it
215 * is a DAX entry and return it. The caller must subsequently call
216 * put_unlocked_entry() if it did not lock the entry or dax_unlock_entry()
217 * if it did. The entry returned may have a larger order than @order.
218 * If @order is larger than the order of the entry found in i_pages, this
219 * function returns a dax_is_conflict entry.
220 *
221 * Must be called with the i_pages lock held.
222 */
223 static void *get_unlocked_entry(struct xa_state *xas, unsigned int order)
224 {
225 void *entry;
226 struct wait_exceptional_entry_queue ewait;
227 wait_queue_head_t *wq;
228
229 init_wait(&ewait.wait);
230 ewait.wait.func = wake_exceptional_entry_func;
231
232 for (;;) {
233 entry = xas_find_conflict(xas);
234 if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
235 return entry;
236 if (dax_entry_order(entry) < order)
237 return XA_RETRY_ENTRY;
238 if (!dax_is_locked(entry))
239 return entry;
240
241 wq = dax_entry_waitqueue(xas, entry, &ewait.key);
242 prepare_to_wait_exclusive(wq, &ewait.wait,
243 TASK_UNINTERRUPTIBLE);
244 xas_unlock_irq(xas);
245 xas_reset(xas);
246 schedule();
247 finish_wait(wq, &ewait.wait);
248 xas_lock_irq(xas);
249 }
250 }
251
252 /*
253 * The only thing keeping the address space around is the i_pages lock
254 * (it's cycled in clear_inode() after removing the entries from i_pages)
255 * After we call xas_unlock_irq(), we cannot touch xas->xa.
256 */
257 static void wait_entry_unlocked(struct xa_state *xas, void *entry)
258 {
259 struct wait_exceptional_entry_queue ewait;
260 wait_queue_head_t *wq;
261
262 init_wait(&ewait.wait);
263 ewait.wait.func = wake_exceptional_entry_func;
264
265 wq = dax_entry_waitqueue(xas, entry, &ewait.key);
266 /*
267 * Unlike get_unlocked_entry() there is no guarantee that this
268 * path ever successfully retrieves an unlocked entry before an
269 * inode dies. Perform a non-exclusive wait in case this path
270 * never successfully performs its own wake up.
271 */
272 prepare_to_wait(wq, &ewait.wait, TASK_UNINTERRUPTIBLE);
273 xas_unlock_irq(xas);
274 schedule();
275 finish_wait(wq, &ewait.wait);
276 }
277
278 static void put_unlocked_entry(struct xa_state *xas, void *entry,
279 enum dax_wake_mode mode)
280 {
281 if (entry && !dax_is_conflict(entry))
282 dax_wake_entry(xas, entry, mode);
283 }
284
285 /*
286 * We used the xa_state to get the entry, but then we locked the entry and
287 * dropped the xa_lock, so we know the xa_state is stale and must be reset
288 * before use.
289 */
290 static void dax_unlock_entry(struct xa_state *xas, void *entry)
291 {
292 void *old;
293
294 BUG_ON(dax_is_locked(entry));
295 xas_reset(xas);
296 xas_lock_irq(xas);
297 old = xas_store(xas, entry);
298 xas_unlock_irq(xas);
299 BUG_ON(!dax_is_locked(old));
300 dax_wake_entry(xas, entry, WAKE_NEXT);
301 }
302
303 /*
304 * Return: The entry stored at this location before it was locked.
305 */
306 static void *dax_lock_entry(struct xa_state *xas, void *entry)
307 {
308 unsigned long v = xa_to_value(entry);
309 return xas_store(xas, xa_mk_value(v | DAX_LOCKED));
310 }
311
312 static unsigned long dax_entry_size(void *entry)
313 {
314 if (dax_is_zero_entry(entry))
315 return 0;
316 else if (dax_is_empty_entry(entry))
317 return 0;
318 else if (dax_is_pmd_entry(entry))
319 return PMD_SIZE;
320 else
321 return PAGE_SIZE;
322 }
323
324 static unsigned long dax_end_pfn(void *entry)
325 {
326 return dax_to_pfn(entry) + dax_entry_size(entry) / PAGE_SIZE;
327 }
328
329 /*
330 * Iterate through all mapped pfns represented by an entry, i.e. skip
331 * 'empty' and 'zero' entries.
332 */
333 #define for_each_mapped_pfn(entry, pfn) \
334 for (pfn = dax_to_pfn(entry); \
335 pfn < dax_end_pfn(entry); pfn++)
336
337 /*
338 * TODO: for reflink+dax we need a way to associate a single page with
339 * multiple address_space instances at different linear_page_index()
340 * offsets.
341 */
342 static void dax_associate_entry(void *entry, struct address_space *mapping,
343 struct vm_area_struct *vma, unsigned long address)
344 {
345 unsigned long size = dax_entry_size(entry), pfn, index;
346 int i = 0;
347
348 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
349 return;
350
351 index = linear_page_index(vma, address & ~(size - 1));
352 for_each_mapped_pfn(entry, pfn) {
353 struct page *page = pfn_to_page(pfn);
354
355 WARN_ON_ONCE(page->mapping);
356 page->mapping = mapping;
357 page->index = index + i++;
358 }
359 }
360
361 static void dax_disassociate_entry(void *entry, struct address_space *mapping,
362 bool trunc)
363 {
364 unsigned long pfn;
365
366 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
367 return;
368
369 for_each_mapped_pfn(entry, pfn) {
370 struct page *page = pfn_to_page(pfn);
371
372 WARN_ON_ONCE(trunc && page_ref_count(page) > 1);
373 WARN_ON_ONCE(page->mapping && page->mapping != mapping);
374 page->mapping = NULL;
375 page->index = 0;
376 }
377 }
378
379 static struct page *dax_busy_page(void *entry)
380 {
381 unsigned long pfn;
382
383 for_each_mapped_pfn(entry, pfn) {
384 struct page *page = pfn_to_page(pfn);
385
386 if (page_ref_count(page) > 1)
387 return page;
388 }
389 return NULL;
390 }
391
392 /*
393 * dax_lock_mapping_entry - Lock the DAX entry corresponding to a page
394 * @page: The page whose entry we want to lock
395 *
396 * Context: Process context.
397 * Return: A cookie to pass to dax_unlock_page() or 0 if the entry could
398 * not be locked.
399 */
400 dax_entry_t dax_lock_page(struct page *page)
401 {
402 XA_STATE(xas, NULL, 0);
403 void *entry;
404
405 /* Ensure page->mapping isn't freed while we look at it */
406 rcu_read_lock();
407 for (;;) {
408 struct address_space *mapping = READ_ONCE(page->mapping);
409
410 entry = NULL;
411 if (!mapping || !dax_mapping(mapping))
412 break;
413
414 /*
415 * In the device-dax case there's no need to lock, a
416 * struct dev_pagemap pin is sufficient to keep the
417 * inode alive, and we assume we have dev_pagemap pin
418 * otherwise we would not have a valid pfn_to_page()
419 * translation.
420 */
421 entry = (void *)~0UL;
422 if (S_ISCHR(mapping->host->i_mode))
423 break;
424
425 xas.xa = &mapping->i_pages;
426 xas_lock_irq(&xas);
427 if (mapping != page->mapping) {
428 xas_unlock_irq(&xas);
429 continue;
430 }
431 xas_set(&xas, page->index);
432 entry = xas_load(&xas);
433 if (dax_is_locked(entry)) {
434 rcu_read_unlock();
435 wait_entry_unlocked(&xas, entry);
436 rcu_read_lock();
437 continue;
438 }
439 dax_lock_entry(&xas, entry);
440 xas_unlock_irq(&xas);
441 break;
442 }
443 rcu_read_unlock();
444 return (dax_entry_t)entry;
445 }
446
447 void dax_unlock_page(struct page *page, dax_entry_t cookie)
448 {
449 struct address_space *mapping = page->mapping;
450 XA_STATE(xas, &mapping->i_pages, page->index);
451
452 if (S_ISCHR(mapping->host->i_mode))
453 return;
454
455 dax_unlock_entry(&xas, (void *)cookie);
456 }
457
458 /*
459 * Find page cache entry at given index. If it is a DAX entry, return it
460 * with the entry locked. If the page cache doesn't contain an entry at
461 * that index, add a locked empty entry.
462 *
463 * When requesting an entry with size DAX_PMD, grab_mapping_entry() will
464 * either return that locked entry or will return VM_FAULT_FALLBACK.
465 * This will happen if there are any PTE entries within the PMD range
466 * that we are requesting.
467 *
468 * We always favor PTE entries over PMD entries. There isn't a flow where we
469 * evict PTE entries in order to 'upgrade' them to a PMD entry. A PMD
470 * insertion will fail if it finds any PTE entries already in the tree, and a
471 * PTE insertion will cause an existing PMD entry to be unmapped and
472 * downgraded to PTE entries. This happens for both PMD zero pages as
473 * well as PMD empty entries.
474 *
475 * The exception to this downgrade path is for PMD entries that have
476 * real storage backing them. We will leave these real PMD entries in
477 * the tree, and PTE writes will simply dirty the entire PMD entry.
478 *
479 * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
480 * persistent memory the benefit is doubtful. We can add that later if we can
481 * show it helps.
482 *
483 * On error, this function does not return an ERR_PTR. Instead it returns
484 * a VM_FAULT code, encoded as an xarray internal entry. The ERR_PTR values
485 * overlap with xarray value entries.
486 */
487 static void *grab_mapping_entry(struct xa_state *xas,
488 struct address_space *mapping, unsigned int order)
489 {
490 unsigned long index = xas->xa_index;
491 bool pmd_downgrade; /* splitting PMD entry into PTE entries? */
492 void *entry;
493
494 retry:
495 pmd_downgrade = false;
496 xas_lock_irq(xas);
497 entry = get_unlocked_entry(xas, order);
498
499 if (entry) {
500 if (dax_is_conflict(entry))
501 goto fallback;
502 if (!xa_is_value(entry)) {
503 xas_set_err(xas, -EIO);
504 goto out_unlock;
505 }
506
507 if (order == 0) {
508 if (dax_is_pmd_entry(entry) &&
509 (dax_is_zero_entry(entry) ||
510 dax_is_empty_entry(entry))) {
511 pmd_downgrade = true;
512 }
513 }
514 }
515
516 if (pmd_downgrade) {
517 /*
518 * Make sure 'entry' remains valid while we drop
519 * the i_pages lock.
520 */
521 dax_lock_entry(xas, entry);
522
523 /*
524 * Besides huge zero pages the only other thing that gets
525 * downgraded are empty entries which don't need to be
526 * unmapped.
527 */
528 if (dax_is_zero_entry(entry)) {
529 xas_unlock_irq(xas);
530 unmap_mapping_pages(mapping,
531 xas->xa_index & ~PG_PMD_COLOUR,
532 PG_PMD_NR, false);
533 xas_reset(xas);
534 xas_lock_irq(xas);
535 }
536
537 dax_disassociate_entry(entry, mapping, false);
538 xas_store(xas, NULL); /* undo the PMD join */
539 dax_wake_entry(xas, entry, WAKE_ALL);
540 mapping->nrpages -= PG_PMD_NR;
541 entry = NULL;
542 xas_set(xas, index);
543 }
544
545 if (entry) {
546 dax_lock_entry(xas, entry);
547 } else {
548 unsigned long flags = DAX_EMPTY;
549
550 if (order > 0)
551 flags |= DAX_PMD;
552 entry = dax_make_entry(pfn_to_pfn_t(0), flags);
553 dax_lock_entry(xas, entry);
554 if (xas_error(xas))
555 goto out_unlock;
556 mapping->nrpages += 1UL << order;
557 }
558
559 out_unlock:
560 xas_unlock_irq(xas);
561 if (xas_nomem(xas, mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM))
562 goto retry;
563 if (xas->xa_node == XA_ERROR(-ENOMEM))
564 return xa_mk_internal(VM_FAULT_OOM);
565 if (xas_error(xas))
566 return xa_mk_internal(VM_FAULT_SIGBUS);
567 return entry;
568 fallback:
569 xas_unlock_irq(xas);
570 return xa_mk_internal(VM_FAULT_FALLBACK);
571 }
572
573 /**
574 * dax_layout_busy_page_range - find first pinned page in @mapping
575 * @mapping: address space to scan for a page with ref count > 1
576 * @start: Starting offset. Page containing 'start' is included.
577 * @end: End offset. Page containing 'end' is included. If 'end' is LLONG_MAX,
578 * pages from 'start' till the end of file are included.
579 *
580 * DAX requires ZONE_DEVICE mapped pages. These pages are never
581 * 'onlined' to the page allocator so they are considered idle when
582 * page->count == 1. A filesystem uses this interface to determine if
583 * any page in the mapping is busy, i.e. for DMA, or other
584 * get_user_pages() usages.
585 *
586 * It is expected that the filesystem is holding locks to block the
587 * establishment of new mappings in this address_space. I.e. it expects
588 * to be able to run unmap_mapping_range() and subsequently not race
589 * mapping_mapped() becoming true.
590 */
591 struct page *dax_layout_busy_page_range(struct address_space *mapping,
592 loff_t start, loff_t end)
593 {
594 void *entry;
595 unsigned int scanned = 0;
596 struct page *page = NULL;
597 pgoff_t start_idx = start >> PAGE_SHIFT;
598 pgoff_t end_idx;
599 XA_STATE(xas, &mapping->i_pages, start_idx);
600
601 /*
602 * In the 'limited' case get_user_pages() for dax is disabled.
603 */
604 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
605 return NULL;
606
607 if (!dax_mapping(mapping) || !mapping_mapped(mapping))
608 return NULL;
609
610 /* If end == LLONG_MAX, all pages from start to till end of file */
611 if (end == LLONG_MAX)
612 end_idx = ULONG_MAX;
613 else
614 end_idx = end >> PAGE_SHIFT;
615 /*
616 * If we race get_user_pages_fast() here either we'll see the
617 * elevated page count in the iteration and wait, or
618 * get_user_pages_fast() will see that the page it took a reference
619 * against is no longer mapped in the page tables and bail to the
620 * get_user_pages() slow path. The slow path is protected by
621 * pte_lock() and pmd_lock(). New references are not taken without
622 * holding those locks, and unmap_mapping_pages() will not zero the
623 * pte or pmd without holding the respective lock, so we are
624 * guaranteed to either see new references or prevent new
625 * references from being established.
626 */
627 unmap_mapping_pages(mapping, start_idx, end_idx - start_idx + 1, 0);
628
629 xas_lock_irq(&xas);
630 xas_for_each(&xas, entry, end_idx) {
631 if (WARN_ON_ONCE(!xa_is_value(entry)))
632 continue;
633 if (unlikely(dax_is_locked(entry)))
634 entry = get_unlocked_entry(&xas, 0);
635 if (entry)
636 page = dax_busy_page(entry);
637 put_unlocked_entry(&xas, entry, WAKE_NEXT);
638 if (page)
639 break;
640 if (++scanned % XA_CHECK_SCHED)
641 continue;
642
643 xas_pause(&xas);
644 xas_unlock_irq(&xas);
645 cond_resched();
646 xas_lock_irq(&xas);
647 }
648 xas_unlock_irq(&xas);
649 return page;
650 }
651 EXPORT_SYMBOL_GPL(dax_layout_busy_page_range);
652
653 struct page *dax_layout_busy_page(struct address_space *mapping)
654 {
655 return dax_layout_busy_page_range(mapping, 0, LLONG_MAX);
656 }
657 EXPORT_SYMBOL_GPL(dax_layout_busy_page);
658
659 static int __dax_invalidate_entry(struct address_space *mapping,
660 pgoff_t index, bool trunc)
661 {
662 XA_STATE(xas, &mapping->i_pages, index);
663 int ret = 0;
664 void *entry;
665
666 xas_lock_irq(&xas);
667 entry = get_unlocked_entry(&xas, 0);
668 if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
669 goto out;
670 if (!trunc &&
671 (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY) ||
672 xas_get_mark(&xas, PAGECACHE_TAG_TOWRITE)))
673 goto out;
674 dax_disassociate_entry(entry, mapping, trunc);
675 xas_store(&xas, NULL);
676 mapping->nrpages -= 1UL << dax_entry_order(entry);
677 ret = 1;
678 out:
679 put_unlocked_entry(&xas, entry, WAKE_ALL);
680 xas_unlock_irq(&xas);
681 return ret;
682 }
683
684 /*
685 * Delete DAX entry at @index from @mapping. Wait for it
686 * to be unlocked before deleting it.
687 */
688 int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index)
689 {
690 int ret = __dax_invalidate_entry(mapping, index, true);
691
692 /*
693 * This gets called from truncate / punch_hole path. As such, the caller
694 * must hold locks protecting against concurrent modifications of the
695 * page cache (usually fs-private i_mmap_sem for writing). Since the
696 * caller has seen a DAX entry for this index, we better find it
697 * at that index as well...
698 */
699 WARN_ON_ONCE(!ret);
700 return ret;
701 }
702
703 /*
704 * Invalidate DAX entry if it is clean.
705 */
706 int dax_invalidate_mapping_entry_sync(struct address_space *mapping,
707 pgoff_t index)
708 {
709 return __dax_invalidate_entry(mapping, index, false);
710 }
711
712 static int copy_cow_page_dax(struct block_device *bdev, struct dax_device *dax_dev,
713 sector_t sector, struct page *to, unsigned long vaddr)
714 {
715 void *vto, *kaddr;
716 pgoff_t pgoff;
717 long rc;
718 int id;
719
720 rc = bdev_dax_pgoff(bdev, sector, PAGE_SIZE, &pgoff);
721 if (rc)
722 return rc;
723
724 id = dax_read_lock();
725 rc = dax_direct_access(dax_dev, pgoff, 1, &kaddr, NULL);
726 if (rc < 0) {
727 dax_read_unlock(id);
728 return rc;
729 }
730 vto = kmap_atomic(to);
731 copy_user_page(vto, (void __force *)kaddr, vaddr, to);
732 kunmap_atomic(vto);
733 dax_read_unlock(id);
734 return 0;
735 }
736
737 /*
738 * By this point grab_mapping_entry() has ensured that we have a locked entry
739 * of the appropriate size so we don't have to worry about downgrading PMDs to
740 * PTEs. If we happen to be trying to insert a PTE and there is a PMD
741 * already in the tree, we will skip the insertion and just dirty the PMD as
742 * appropriate.
743 */
744 static void *dax_insert_entry(struct xa_state *xas,
745 struct address_space *mapping, struct vm_fault *vmf,
746 void *entry, pfn_t pfn, unsigned long flags, bool dirty)
747 {
748 void *new_entry = dax_make_entry(pfn, flags);
749
750 if (dirty)
751 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
752
753 if (dax_is_zero_entry(entry) && !(flags & DAX_ZERO_PAGE)) {
754 unsigned long index = xas->xa_index;
755 /* we are replacing a zero page with block mapping */
756 if (dax_is_pmd_entry(entry))
757 unmap_mapping_pages(mapping, index & ~PG_PMD_COLOUR,
758 PG_PMD_NR, false);
759 else /* pte entry */
760 unmap_mapping_pages(mapping, index, 1, false);
761 }
762
763 xas_reset(xas);
764 xas_lock_irq(xas);
765 if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
766 void *old;
767
768 dax_disassociate_entry(entry, mapping, false);
769 dax_associate_entry(new_entry, mapping, vmf->vma, vmf->address);
770 /*
771 * Only swap our new entry into the page cache if the current
772 * entry is a zero page or an empty entry. If a normal PTE or
773 * PMD entry is already in the cache, we leave it alone. This
774 * means that if we are trying to insert a PTE and the
775 * existing entry is a PMD, we will just leave the PMD in the
776 * tree and dirty it if necessary.
777 */
778 old = dax_lock_entry(xas, new_entry);
779 WARN_ON_ONCE(old != xa_mk_value(xa_to_value(entry) |
780 DAX_LOCKED));
781 entry = new_entry;
782 } else {
783 xas_load(xas); /* Walk the xa_state */
784 }
785
786 if (dirty)
787 xas_set_mark(xas, PAGECACHE_TAG_DIRTY);
788
789 xas_unlock_irq(xas);
790 return entry;
791 }
792
793 static inline
794 unsigned long pgoff_address(pgoff_t pgoff, struct vm_area_struct *vma)
795 {
796 unsigned long address;
797
798 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
799 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
800 return address;
801 }
802
803 /* Walk all mappings of a given index of a file and writeprotect them */
804 static void dax_entry_mkclean(struct address_space *mapping, pgoff_t index,
805 unsigned long pfn)
806 {
807 struct vm_area_struct *vma;
808 pte_t pte, *ptep = NULL;
809 pmd_t *pmdp = NULL;
810 spinlock_t *ptl;
811
812 i_mmap_lock_read(mapping);
813 vma_interval_tree_foreach(vma, &mapping->i_mmap, index, index) {
814 struct mmu_notifier_range range;
815 unsigned long address;
816
817 cond_resched();
818
819 if (!(vma->vm_flags & VM_SHARED))
820 continue;
821
822 address = pgoff_address(index, vma);
823
824 /*
825 * follow_invalidate_pte() will use the range to call
826 * mmu_notifier_invalidate_range_start() on our behalf before
827 * taking any lock.
828 */
829 if (follow_invalidate_pte(vma->vm_mm, address, &range, &ptep,
830 &pmdp, &ptl))
831 continue;
832
833 /*
834 * No need to call mmu_notifier_invalidate_range() as we are
835 * downgrading page table protection not changing it to point
836 * to a new page.
837 *
838 * See Documentation/vm/mmu_notifier.rst
839 */
840 if (pmdp) {
841 #ifdef CONFIG_FS_DAX_PMD
842 pmd_t pmd;
843
844 if (pfn != pmd_pfn(*pmdp))
845 goto unlock_pmd;
846 if (!pmd_dirty(*pmdp) && !pmd_write(*pmdp))
847 goto unlock_pmd;
848
849 flush_cache_range(vma, address,
850 address + HPAGE_PMD_SIZE);
851 pmd = pmdp_invalidate(vma, address, pmdp);
852 pmd = pmd_wrprotect(pmd);
853 pmd = pmd_mkclean(pmd);
854 set_pmd_at(vma->vm_mm, address, pmdp, pmd);
855 unlock_pmd:
856 #endif
857 spin_unlock(ptl);
858 } else {
859 if (pfn != pte_pfn(*ptep))
860 goto unlock_pte;
861 if (!pte_dirty(*ptep) && !pte_write(*ptep))
862 goto unlock_pte;
863
864 flush_cache_page(vma, address, pfn);
865 pte = ptep_clear_flush(vma, address, ptep);
866 pte = pte_wrprotect(pte);
867 pte = pte_mkclean(pte);
868 set_pte_at(vma->vm_mm, address, ptep, pte);
869 unlock_pte:
870 pte_unmap_unlock(ptep, ptl);
871 }
872
873 mmu_notifier_invalidate_range_end(&range);
874 }
875 i_mmap_unlock_read(mapping);
876 }
877
878 static int dax_writeback_one(struct xa_state *xas, struct dax_device *dax_dev,
879 struct address_space *mapping, void *entry)
880 {
881 unsigned long pfn, index, count;
882 long ret = 0;
883
884 /*
885 * A page got tagged dirty in DAX mapping? Something is seriously
886 * wrong.
887 */
888 if (WARN_ON(!xa_is_value(entry)))
889 return -EIO;
890
891 if (unlikely(dax_is_locked(entry))) {
892 void *old_entry = entry;
893
894 entry = get_unlocked_entry(xas, 0);
895
896 /* Entry got punched out / reallocated? */
897 if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
898 goto put_unlocked;
899 /*
900 * Entry got reallocated elsewhere? No need to writeback.
901 * We have to compare pfns as we must not bail out due to
902 * difference in lockbit or entry type.
903 */
904 if (dax_to_pfn(old_entry) != dax_to_pfn(entry))
905 goto put_unlocked;
906 if (WARN_ON_ONCE(dax_is_empty_entry(entry) ||
907 dax_is_zero_entry(entry))) {
908 ret = -EIO;
909 goto put_unlocked;
910 }
911
912 /* Another fsync thread may have already done this entry */
913 if (!xas_get_mark(xas, PAGECACHE_TAG_TOWRITE))
914 goto put_unlocked;
915 }
916
917 /* Lock the entry to serialize with page faults */
918 dax_lock_entry(xas, entry);
919
920 /*
921 * We can clear the tag now but we have to be careful so that concurrent
922 * dax_writeback_one() calls for the same index cannot finish before we
923 * actually flush the caches. This is achieved as the calls will look
924 * at the entry only under the i_pages lock and once they do that
925 * they will see the entry locked and wait for it to unlock.
926 */
927 xas_clear_mark(xas, PAGECACHE_TAG_TOWRITE);
928 xas_unlock_irq(xas);
929
930 /*
931 * If dax_writeback_mapping_range() was given a wbc->range_start
932 * in the middle of a PMD, the 'index' we use needs to be
933 * aligned to the start of the PMD.
934 * This allows us to flush for PMD_SIZE and not have to worry about
935 * partial PMD writebacks.
936 */
937 pfn = dax_to_pfn(entry);
938 count = 1UL << dax_entry_order(entry);
939 index = xas->xa_index & ~(count - 1);
940
941 dax_entry_mkclean(mapping, index, pfn);
942 dax_flush(dax_dev, page_address(pfn_to_page(pfn)), count * PAGE_SIZE);
943 /*
944 * After we have flushed the cache, we can clear the dirty tag. There
945 * cannot be new dirty data in the pfn after the flush has completed as
946 * the pfn mappings are writeprotected and fault waits for mapping
947 * entry lock.
948 */
949 xas_reset(xas);
950 xas_lock_irq(xas);
951 xas_store(xas, entry);
952 xas_clear_mark(xas, PAGECACHE_TAG_DIRTY);
953 dax_wake_entry(xas, entry, WAKE_NEXT);
954
955 trace_dax_writeback_one(mapping->host, index, count);
956 return ret;
957
958 put_unlocked:
959 put_unlocked_entry(xas, entry, WAKE_NEXT);
960 return ret;
961 }
962
963 /*
964 * Flush the mapping to the persistent domain within the byte range of [start,
965 * end]. This is required by data integrity operations to ensure file data is
966 * on persistent storage prior to completion of the operation.
967 */
968 int dax_writeback_mapping_range(struct address_space *mapping,
969 struct dax_device *dax_dev, struct writeback_control *wbc)
970 {
971 XA_STATE(xas, &mapping->i_pages, wbc->range_start >> PAGE_SHIFT);
972 struct inode *inode = mapping->host;
973 pgoff_t end_index = wbc->range_end >> PAGE_SHIFT;
974 void *entry;
975 int ret = 0;
976 unsigned int scanned = 0;
977
978 if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
979 return -EIO;
980
981 if (mapping_empty(mapping) || wbc->sync_mode != WB_SYNC_ALL)
982 return 0;
983
984 trace_dax_writeback_range(inode, xas.xa_index, end_index);
985
986 tag_pages_for_writeback(mapping, xas.xa_index, end_index);
987
988 xas_lock_irq(&xas);
989 xas_for_each_marked(&xas, entry, end_index, PAGECACHE_TAG_TOWRITE) {
990 ret = dax_writeback_one(&xas, dax_dev, mapping, entry);
991 if (ret < 0) {
992 mapping_set_error(mapping, ret);
993 break;
994 }
995 if (++scanned % XA_CHECK_SCHED)
996 continue;
997
998 xas_pause(&xas);
999 xas_unlock_irq(&xas);
1000 cond_resched();
1001 xas_lock_irq(&xas);
1002 }
1003 xas_unlock_irq(&xas);
1004 trace_dax_writeback_range_done(inode, xas.xa_index, end_index);
1005 return ret;
1006 }
1007 EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
1008
1009 static sector_t dax_iomap_sector(const struct iomap *iomap, loff_t pos)
1010 {
1011 return (iomap->addr + (pos & PAGE_MASK) - iomap->offset) >> 9;
1012 }
1013
1014 static int dax_iomap_pfn(const struct iomap *iomap, loff_t pos, size_t size,
1015 pfn_t *pfnp)
1016 {
1017 const sector_t sector = dax_iomap_sector(iomap, pos);
1018 pgoff_t pgoff;
1019 int id, rc;
1020 long length;
1021
1022 rc = bdev_dax_pgoff(iomap->bdev, sector, size, &pgoff);
1023 if (rc)
1024 return rc;
1025 id = dax_read_lock();
1026 length = dax_direct_access(iomap->dax_dev, pgoff, PHYS_PFN(size),
1027 NULL, pfnp);
1028 if (length < 0) {
1029 rc = length;
1030 goto out;
1031 }
1032 rc = -EINVAL;
1033 if (PFN_PHYS(length) < size)
1034 goto out;
1035 if (pfn_t_to_pfn(*pfnp) & (PHYS_PFN(size)-1))
1036 goto out;
1037 /* For larger pages we need devmap */
1038 if (length > 1 && !pfn_t_devmap(*pfnp))
1039 goto out;
1040 rc = 0;
1041 out:
1042 dax_read_unlock(id);
1043 return rc;
1044 }
1045
1046 /*
1047 * The user has performed a load from a hole in the file. Allocating a new
1048 * page in the file would cause excessive storage usage for workloads with
1049 * sparse files. Instead we insert a read-only mapping of the 4k zero page.
1050 * If this page is ever written to we will re-fault and change the mapping to
1051 * point to real DAX storage instead.
1052 */
1053 static vm_fault_t dax_load_hole(struct xa_state *xas,
1054 struct address_space *mapping, void **entry,
1055 struct vm_fault *vmf)
1056 {
1057 struct inode *inode = mapping->host;
1058 unsigned long vaddr = vmf->address;
1059 pfn_t pfn = pfn_to_pfn_t(my_zero_pfn(vaddr));
1060 vm_fault_t ret;
1061
1062 *entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn,
1063 DAX_ZERO_PAGE, false);
1064
1065 ret = vmf_insert_mixed(vmf->vma, vaddr, pfn);
1066 trace_dax_load_hole(inode, vmf, ret);
1067 return ret;
1068 }
1069
1070 #ifdef CONFIG_FS_DAX_PMD
1071 static vm_fault_t dax_pmd_load_hole(struct xa_state *xas, struct vm_fault *vmf,
1072 const struct iomap *iomap, void **entry)
1073 {
1074 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1075 unsigned long pmd_addr = vmf->address & PMD_MASK;
1076 struct vm_area_struct *vma = vmf->vma;
1077 struct inode *inode = mapping->host;
1078 pgtable_t pgtable = NULL;
1079 struct page *zero_page;
1080 spinlock_t *ptl;
1081 pmd_t pmd_entry;
1082 pfn_t pfn;
1083
1084 zero_page = mm_get_huge_zero_page(vmf->vma->vm_mm);
1085
1086 if (unlikely(!zero_page))
1087 goto fallback;
1088
1089 pfn = page_to_pfn_t(zero_page);
1090 *entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn,
1091 DAX_PMD | DAX_ZERO_PAGE, false);
1092
1093 if (arch_needs_pgtable_deposit()) {
1094 pgtable = pte_alloc_one(vma->vm_mm);
1095 if (!pgtable)
1096 return VM_FAULT_OOM;
1097 }
1098
1099 ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1100 if (!pmd_none(*(vmf->pmd))) {
1101 spin_unlock(ptl);
1102 goto fallback;
1103 }
1104
1105 if (pgtable) {
1106 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
1107 mm_inc_nr_ptes(vma->vm_mm);
1108 }
1109 pmd_entry = mk_pmd(zero_page, vmf->vma->vm_page_prot);
1110 pmd_entry = pmd_mkhuge(pmd_entry);
1111 set_pmd_at(vmf->vma->vm_mm, pmd_addr, vmf->pmd, pmd_entry);
1112 spin_unlock(ptl);
1113 trace_dax_pmd_load_hole(inode, vmf, zero_page, *entry);
1114 return VM_FAULT_NOPAGE;
1115
1116 fallback:
1117 if (pgtable)
1118 pte_free(vma->vm_mm, pgtable);
1119 trace_dax_pmd_load_hole_fallback(inode, vmf, zero_page, *entry);
1120 return VM_FAULT_FALLBACK;
1121 }
1122 #else
1123 static vm_fault_t dax_pmd_load_hole(struct xa_state *xas, struct vm_fault *vmf,
1124 const struct iomap *iomap, void **entry)
1125 {
1126 return VM_FAULT_FALLBACK;
1127 }
1128 #endif /* CONFIG_FS_DAX_PMD */
1129
1130 s64 dax_iomap_zero(loff_t pos, u64 length, struct iomap *iomap)
1131 {
1132 sector_t sector = iomap_sector(iomap, pos & PAGE_MASK);
1133 pgoff_t pgoff;
1134 long rc, id;
1135 void *kaddr;
1136 bool page_aligned = false;
1137 unsigned offset = offset_in_page(pos);
1138 unsigned size = min_t(u64, PAGE_SIZE - offset, length);
1139
1140 if (IS_ALIGNED(sector << SECTOR_SHIFT, PAGE_SIZE) &&
1141 (size == PAGE_SIZE))
1142 page_aligned = true;
1143
1144 rc = bdev_dax_pgoff(iomap->bdev, sector, PAGE_SIZE, &pgoff);
1145 if (rc)
1146 return rc;
1147
1148 id = dax_read_lock();
1149
1150 if (page_aligned)
1151 rc = dax_zero_page_range(iomap->dax_dev, pgoff, 1);
1152 else
1153 rc = dax_direct_access(iomap->dax_dev, pgoff, 1, &kaddr, NULL);
1154 if (rc < 0) {
1155 dax_read_unlock(id);
1156 return rc;
1157 }
1158
1159 if (!page_aligned) {
1160 memset(kaddr + offset, 0, size);
1161 dax_flush(iomap->dax_dev, kaddr + offset, size);
1162 }
1163 dax_read_unlock(id);
1164 return size;
1165 }
1166
1167 static loff_t dax_iomap_iter(const struct iomap_iter *iomi,
1168 struct iov_iter *iter)
1169 {
1170 const struct iomap *iomap = &iomi->iomap;
1171 loff_t length = iomap_length(iomi);
1172 loff_t pos = iomi->pos;
1173 struct block_device *bdev = iomap->bdev;
1174 struct dax_device *dax_dev = iomap->dax_dev;
1175 loff_t end = pos + length, done = 0;
1176 ssize_t ret = 0;
1177 size_t xfer;
1178 int id;
1179
1180 if (iov_iter_rw(iter) == READ) {
1181 end = min(end, i_size_read(iomi->inode));
1182 if (pos >= end)
1183 return 0;
1184
1185 if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
1186 return iov_iter_zero(min(length, end - pos), iter);
1187 }
1188
1189 if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED))
1190 return -EIO;
1191
1192 /*
1193 * Write can allocate block for an area which has a hole page mapped
1194 * into page tables. We have to tear down these mappings so that data
1195 * written by write(2) is visible in mmap.
1196 */
1197 if (iomap->flags & IOMAP_F_NEW) {
1198 invalidate_inode_pages2_range(iomi->inode->i_mapping,
1199 pos >> PAGE_SHIFT,
1200 (end - 1) >> PAGE_SHIFT);
1201 }
1202
1203 id = dax_read_lock();
1204 while (pos < end) {
1205 unsigned offset = pos & (PAGE_SIZE - 1);
1206 const size_t size = ALIGN(length + offset, PAGE_SIZE);
1207 const sector_t sector = dax_iomap_sector(iomap, pos);
1208 ssize_t map_len;
1209 pgoff_t pgoff;
1210 void *kaddr;
1211
1212 if (fatal_signal_pending(current)) {
1213 ret = -EINTR;
1214 break;
1215 }
1216
1217 ret = bdev_dax_pgoff(bdev, sector, size, &pgoff);
1218 if (ret)
1219 break;
1220
1221 map_len = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size),
1222 &kaddr, NULL);
1223 if (map_len < 0) {
1224 ret = map_len;
1225 break;
1226 }
1227
1228 map_len = PFN_PHYS(map_len);
1229 kaddr += offset;
1230 map_len -= offset;
1231 if (map_len > end - pos)
1232 map_len = end - pos;
1233
1234 /*
1235 * The userspace address for the memory copy has already been
1236 * validated via access_ok() in either vfs_read() or
1237 * vfs_write(), depending on which operation we are doing.
1238 */
1239 if (iov_iter_rw(iter) == WRITE)
1240 xfer = dax_copy_from_iter(dax_dev, pgoff, kaddr,
1241 map_len, iter);
1242 else
1243 xfer = dax_copy_to_iter(dax_dev, pgoff, kaddr,
1244 map_len, iter);
1245
1246 pos += xfer;
1247 length -= xfer;
1248 done += xfer;
1249
1250 if (xfer == 0)
1251 ret = -EFAULT;
1252 if (xfer < map_len)
1253 break;
1254 }
1255 dax_read_unlock(id);
1256
1257 return done ? done : ret;
1258 }
1259
1260 /**
1261 * dax_iomap_rw - Perform I/O to a DAX file
1262 * @iocb: The control block for this I/O
1263 * @iter: The addresses to do I/O from or to
1264 * @ops: iomap ops passed from the file system
1265 *
1266 * This function performs read and write operations to directly mapped
1267 * persistent memory. The callers needs to take care of read/write exclusion
1268 * and evicting any page cache pages in the region under I/O.
1269 */
1270 ssize_t
1271 dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter,
1272 const struct iomap_ops *ops)
1273 {
1274 struct iomap_iter iomi = {
1275 .inode = iocb->ki_filp->f_mapping->host,
1276 .pos = iocb->ki_pos,
1277 .len = iov_iter_count(iter),
1278 };
1279 loff_t done = 0;
1280 int ret;
1281
1282 if (iov_iter_rw(iter) == WRITE) {
1283 lockdep_assert_held_write(&iomi.inode->i_rwsem);
1284 iomi.flags |= IOMAP_WRITE;
1285 } else {
1286 lockdep_assert_held(&iomi.inode->i_rwsem);
1287 }
1288
1289 if (iocb->ki_flags & IOCB_NOWAIT)
1290 iomi.flags |= IOMAP_NOWAIT;
1291
1292 while ((ret = iomap_iter(&iomi, ops)) > 0)
1293 iomi.processed = dax_iomap_iter(&iomi, iter);
1294
1295 done = iomi.pos - iocb->ki_pos;
1296 iocb->ki_pos = iomi.pos;
1297 return done ? done : ret;
1298 }
1299 EXPORT_SYMBOL_GPL(dax_iomap_rw);
1300
1301 static vm_fault_t dax_fault_return(int error)
1302 {
1303 if (error == 0)
1304 return VM_FAULT_NOPAGE;
1305 return vmf_error(error);
1306 }
1307
1308 /*
1309 * MAP_SYNC on a dax mapping guarantees dirty metadata is
1310 * flushed on write-faults (non-cow), but not read-faults.
1311 */
1312 static bool dax_fault_is_synchronous(unsigned long flags,
1313 struct vm_area_struct *vma, const struct iomap *iomap)
1314 {
1315 return (flags & IOMAP_WRITE) && (vma->vm_flags & VM_SYNC)
1316 && (iomap->flags & IOMAP_F_DIRTY);
1317 }
1318
1319 /*
1320 * When handling a synchronous page fault and the inode need a fsync, we can
1321 * insert the PTE/PMD into page tables only after that fsync happened. Skip
1322 * insertion for now and return the pfn so that caller can insert it after the
1323 * fsync is done.
1324 */
1325 static vm_fault_t dax_fault_synchronous_pfnp(pfn_t *pfnp, pfn_t pfn)
1326 {
1327 if (WARN_ON_ONCE(!pfnp))
1328 return VM_FAULT_SIGBUS;
1329 *pfnp = pfn;
1330 return VM_FAULT_NEEDDSYNC;
1331 }
1332
1333 static vm_fault_t dax_fault_cow_page(struct vm_fault *vmf,
1334 const struct iomap_iter *iter)
1335 {
1336 sector_t sector = dax_iomap_sector(&iter->iomap, iter->pos);
1337 unsigned long vaddr = vmf->address;
1338 vm_fault_t ret;
1339 int error = 0;
1340
1341 switch (iter->iomap.type) {
1342 case IOMAP_HOLE:
1343 case IOMAP_UNWRITTEN:
1344 clear_user_highpage(vmf->cow_page, vaddr);
1345 break;
1346 case IOMAP_MAPPED:
1347 error = copy_cow_page_dax(iter->iomap.bdev, iter->iomap.dax_dev,
1348 sector, vmf->cow_page, vaddr);
1349 break;
1350 default:
1351 WARN_ON_ONCE(1);
1352 error = -EIO;
1353 break;
1354 }
1355
1356 if (error)
1357 return dax_fault_return(error);
1358
1359 __SetPageUptodate(vmf->cow_page);
1360 ret = finish_fault(vmf);
1361 if (!ret)
1362 return VM_FAULT_DONE_COW;
1363 return ret;
1364 }
1365
1366 /**
1367 * dax_fault_iter - Common actor to handle pfn insertion in PTE/PMD fault.
1368 * @vmf: vm fault instance
1369 * @iter: iomap iter
1370 * @pfnp: pfn to be returned
1371 * @xas: the dax mapping tree of a file
1372 * @entry: an unlocked dax entry to be inserted
1373 * @pmd: distinguish whether it is a pmd fault
1374 */
1375 static vm_fault_t dax_fault_iter(struct vm_fault *vmf,
1376 const struct iomap_iter *iter, pfn_t *pfnp,
1377 struct xa_state *xas, void **entry, bool pmd)
1378 {
1379 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1380 const struct iomap *iomap = &iter->iomap;
1381 size_t size = pmd ? PMD_SIZE : PAGE_SIZE;
1382 loff_t pos = (loff_t)xas->xa_index << PAGE_SHIFT;
1383 bool write = vmf->flags & FAULT_FLAG_WRITE;
1384 bool sync = dax_fault_is_synchronous(iter->flags, vmf->vma, iomap);
1385 unsigned long entry_flags = pmd ? DAX_PMD : 0;
1386 int err = 0;
1387 pfn_t pfn;
1388
1389 if (!pmd && vmf->cow_page)
1390 return dax_fault_cow_page(vmf, iter);
1391
1392 /* if we are reading UNWRITTEN and HOLE, return a hole. */
1393 if (!write &&
1394 (iomap->type == IOMAP_UNWRITTEN || iomap->type == IOMAP_HOLE)) {
1395 if (!pmd)
1396 return dax_load_hole(xas, mapping, entry, vmf);
1397 return dax_pmd_load_hole(xas, vmf, iomap, entry);
1398 }
1399
1400 if (iomap->type != IOMAP_MAPPED) {
1401 WARN_ON_ONCE(1);
1402 return pmd ? VM_FAULT_FALLBACK : VM_FAULT_SIGBUS;
1403 }
1404
1405 err = dax_iomap_pfn(&iter->iomap, pos, size, &pfn);
1406 if (err)
1407 return pmd ? VM_FAULT_FALLBACK : dax_fault_return(err);
1408
1409 *entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn, entry_flags,
1410 write && !sync);
1411
1412 if (sync)
1413 return dax_fault_synchronous_pfnp(pfnp, pfn);
1414
1415 /* insert PMD pfn */
1416 if (pmd)
1417 return vmf_insert_pfn_pmd(vmf, pfn, write);
1418
1419 /* insert PTE pfn */
1420 if (write)
1421 return vmf_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn);
1422 return vmf_insert_mixed(vmf->vma, vmf->address, pfn);
1423 }
1424
1425 static vm_fault_t dax_iomap_pte_fault(struct vm_fault *vmf, pfn_t *pfnp,
1426 int *iomap_errp, const struct iomap_ops *ops)
1427 {
1428 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1429 XA_STATE(xas, &mapping->i_pages, vmf->pgoff);
1430 struct iomap_iter iter = {
1431 .inode = mapping->host,
1432 .pos = (loff_t)vmf->pgoff << PAGE_SHIFT,
1433 .len = PAGE_SIZE,
1434 .flags = IOMAP_FAULT,
1435 };
1436 vm_fault_t ret = 0;
1437 void *entry;
1438 int error;
1439
1440 trace_dax_pte_fault(iter.inode, vmf, ret);
1441 /*
1442 * Check whether offset isn't beyond end of file now. Caller is supposed
1443 * to hold locks serializing us with truncate / punch hole so this is
1444 * a reliable test.
1445 */
1446 if (iter.pos >= i_size_read(iter.inode)) {
1447 ret = VM_FAULT_SIGBUS;
1448 goto out;
1449 }
1450
1451 if ((vmf->flags & FAULT_FLAG_WRITE) && !vmf->cow_page)
1452 iter.flags |= IOMAP_WRITE;
1453
1454 entry = grab_mapping_entry(&xas, mapping, 0);
1455 if (xa_is_internal(entry)) {
1456 ret = xa_to_internal(entry);
1457 goto out;
1458 }
1459
1460 /*
1461 * It is possible, particularly with mixed reads & writes to private
1462 * mappings, that we have raced with a PMD fault that overlaps with
1463 * the PTE we need to set up. If so just return and the fault will be
1464 * retried.
1465 */
1466 if (pmd_trans_huge(*vmf->pmd) || pmd_devmap(*vmf->pmd)) {
1467 ret = VM_FAULT_NOPAGE;
1468 goto unlock_entry;
1469 }
1470
1471 while ((error = iomap_iter(&iter, ops)) > 0) {
1472 if (WARN_ON_ONCE(iomap_length(&iter) < PAGE_SIZE)) {
1473 iter.processed = -EIO; /* fs corruption? */
1474 continue;
1475 }
1476
1477 ret = dax_fault_iter(vmf, &iter, pfnp, &xas, &entry, false);
1478 if (ret != VM_FAULT_SIGBUS &&
1479 (iter.iomap.flags & IOMAP_F_NEW)) {
1480 count_vm_event(PGMAJFAULT);
1481 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
1482 ret |= VM_FAULT_MAJOR;
1483 }
1484
1485 if (!(ret & VM_FAULT_ERROR))
1486 iter.processed = PAGE_SIZE;
1487 }
1488
1489 if (iomap_errp)
1490 *iomap_errp = error;
1491 if (!ret && error)
1492 ret = dax_fault_return(error);
1493
1494 unlock_entry:
1495 dax_unlock_entry(&xas, entry);
1496 out:
1497 trace_dax_pte_fault_done(iter.inode, vmf, ret);
1498 return ret;
1499 }
1500
1501 #ifdef CONFIG_FS_DAX_PMD
1502 static bool dax_fault_check_fallback(struct vm_fault *vmf, struct xa_state *xas,
1503 pgoff_t max_pgoff)
1504 {
1505 unsigned long pmd_addr = vmf->address & PMD_MASK;
1506 bool write = vmf->flags & FAULT_FLAG_WRITE;
1507
1508 /*
1509 * Make sure that the faulting address's PMD offset (color) matches
1510 * the PMD offset from the start of the file. This is necessary so
1511 * that a PMD range in the page table overlaps exactly with a PMD
1512 * range in the page cache.
1513 */
1514 if ((vmf->pgoff & PG_PMD_COLOUR) !=
1515 ((vmf->address >> PAGE_SHIFT) & PG_PMD_COLOUR))
1516 return true;
1517
1518 /* Fall back to PTEs if we're going to COW */
1519 if (write && !(vmf->vma->vm_flags & VM_SHARED))
1520 return true;
1521
1522 /* If the PMD would extend outside the VMA */
1523 if (pmd_addr < vmf->vma->vm_start)
1524 return true;
1525 if ((pmd_addr + PMD_SIZE) > vmf->vma->vm_end)
1526 return true;
1527
1528 /* If the PMD would extend beyond the file size */
1529 if ((xas->xa_index | PG_PMD_COLOUR) >= max_pgoff)
1530 return true;
1531
1532 return false;
1533 }
1534
1535 static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1536 const struct iomap_ops *ops)
1537 {
1538 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1539 XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, PMD_ORDER);
1540 struct iomap_iter iter = {
1541 .inode = mapping->host,
1542 .len = PMD_SIZE,
1543 .flags = IOMAP_FAULT,
1544 };
1545 vm_fault_t ret = VM_FAULT_FALLBACK;
1546 pgoff_t max_pgoff;
1547 void *entry;
1548 int error;
1549
1550 if (vmf->flags & FAULT_FLAG_WRITE)
1551 iter.flags |= IOMAP_WRITE;
1552
1553 /*
1554 * Check whether offset isn't beyond end of file now. Caller is
1555 * supposed to hold locks serializing us with truncate / punch hole so
1556 * this is a reliable test.
1557 */
1558 max_pgoff = DIV_ROUND_UP(i_size_read(iter.inode), PAGE_SIZE);
1559
1560 trace_dax_pmd_fault(iter.inode, vmf, max_pgoff, 0);
1561
1562 if (xas.xa_index >= max_pgoff) {
1563 ret = VM_FAULT_SIGBUS;
1564 goto out;
1565 }
1566
1567 if (dax_fault_check_fallback(vmf, &xas, max_pgoff))
1568 goto fallback;
1569
1570 /*
1571 * grab_mapping_entry() will make sure we get an empty PMD entry,
1572 * a zero PMD entry or a DAX PMD. If it can't (because a PTE
1573 * entry is already in the array, for instance), it will return
1574 * VM_FAULT_FALLBACK.
1575 */
1576 entry = grab_mapping_entry(&xas, mapping, PMD_ORDER);
1577 if (xa_is_internal(entry)) {
1578 ret = xa_to_internal(entry);
1579 goto fallback;
1580 }
1581
1582 /*
1583 * It is possible, particularly with mixed reads & writes to private
1584 * mappings, that we have raced with a PTE fault that overlaps with
1585 * the PMD we need to set up. If so just return and the fault will be
1586 * retried.
1587 */
1588 if (!pmd_none(*vmf->pmd) && !pmd_trans_huge(*vmf->pmd) &&
1589 !pmd_devmap(*vmf->pmd)) {
1590 ret = 0;
1591 goto unlock_entry;
1592 }
1593
1594 iter.pos = (loff_t)xas.xa_index << PAGE_SHIFT;
1595 while ((error = iomap_iter(&iter, ops)) > 0) {
1596 if (iomap_length(&iter) < PMD_SIZE)
1597 continue; /* actually breaks out of the loop */
1598
1599 ret = dax_fault_iter(vmf, &iter, pfnp, &xas, &entry, true);
1600 if (ret != VM_FAULT_FALLBACK)
1601 iter.processed = PMD_SIZE;
1602 }
1603
1604 unlock_entry:
1605 dax_unlock_entry(&xas, entry);
1606 fallback:
1607 if (ret == VM_FAULT_FALLBACK) {
1608 split_huge_pmd(vmf->vma, vmf->pmd, vmf->address);
1609 count_vm_event(THP_FAULT_FALLBACK);
1610 }
1611 out:
1612 trace_dax_pmd_fault_done(iter.inode, vmf, max_pgoff, ret);
1613 return ret;
1614 }
1615 #else
1616 static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1617 const struct iomap_ops *ops)
1618 {
1619 return VM_FAULT_FALLBACK;
1620 }
1621 #endif /* CONFIG_FS_DAX_PMD */
1622
1623 /**
1624 * dax_iomap_fault - handle a page fault on a DAX file
1625 * @vmf: The description of the fault
1626 * @pe_size: Size of the page to fault in
1627 * @pfnp: PFN to insert for synchronous faults if fsync is required
1628 * @iomap_errp: Storage for detailed error code in case of error
1629 * @ops: Iomap ops passed from the file system
1630 *
1631 * When a page fault occurs, filesystems may call this helper in
1632 * their fault handler for DAX files. dax_iomap_fault() assumes the caller
1633 * has done all the necessary locking for page fault to proceed
1634 * successfully.
1635 */
1636 vm_fault_t dax_iomap_fault(struct vm_fault *vmf, enum page_entry_size pe_size,
1637 pfn_t *pfnp, int *iomap_errp, const struct iomap_ops *ops)
1638 {
1639 switch (pe_size) {
1640 case PE_SIZE_PTE:
1641 return dax_iomap_pte_fault(vmf, pfnp, iomap_errp, ops);
1642 case PE_SIZE_PMD:
1643 return dax_iomap_pmd_fault(vmf, pfnp, ops);
1644 default:
1645 return VM_FAULT_FALLBACK;
1646 }
1647 }
1648 EXPORT_SYMBOL_GPL(dax_iomap_fault);
1649
1650 /*
1651 * dax_insert_pfn_mkwrite - insert PTE or PMD entry into page tables
1652 * @vmf: The description of the fault
1653 * @pfn: PFN to insert
1654 * @order: Order of entry to insert.
1655 *
1656 * This function inserts a writeable PTE or PMD entry into the page tables
1657 * for an mmaped DAX file. It also marks the page cache entry as dirty.
1658 */
1659 static vm_fault_t
1660 dax_insert_pfn_mkwrite(struct vm_fault *vmf, pfn_t pfn, unsigned int order)
1661 {
1662 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1663 XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, order);
1664 void *entry;
1665 vm_fault_t ret;
1666
1667 xas_lock_irq(&xas);
1668 entry = get_unlocked_entry(&xas, order);
1669 /* Did we race with someone splitting entry or so? */
1670 if (!entry || dax_is_conflict(entry) ||
1671 (order == 0 && !dax_is_pte_entry(entry))) {
1672 put_unlocked_entry(&xas, entry, WAKE_NEXT);
1673 xas_unlock_irq(&xas);
1674 trace_dax_insert_pfn_mkwrite_no_entry(mapping->host, vmf,
1675 VM_FAULT_NOPAGE);
1676 return VM_FAULT_NOPAGE;
1677 }
1678 xas_set_mark(&xas, PAGECACHE_TAG_DIRTY);
1679 dax_lock_entry(&xas, entry);
1680 xas_unlock_irq(&xas);
1681 if (order == 0)
1682 ret = vmf_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn);
1683 #ifdef CONFIG_FS_DAX_PMD
1684 else if (order == PMD_ORDER)
1685 ret = vmf_insert_pfn_pmd(vmf, pfn, FAULT_FLAG_WRITE);
1686 #endif
1687 else
1688 ret = VM_FAULT_FALLBACK;
1689 dax_unlock_entry(&xas, entry);
1690 trace_dax_insert_pfn_mkwrite(mapping->host, vmf, ret);
1691 return ret;
1692 }
1693
1694 /**
1695 * dax_finish_sync_fault - finish synchronous page fault
1696 * @vmf: The description of the fault
1697 * @pe_size: Size of entry to be inserted
1698 * @pfn: PFN to insert
1699 *
1700 * This function ensures that the file range touched by the page fault is
1701 * stored persistently on the media and handles inserting of appropriate page
1702 * table entry.
1703 */
1704 vm_fault_t dax_finish_sync_fault(struct vm_fault *vmf,
1705 enum page_entry_size pe_size, pfn_t pfn)
1706 {
1707 int err;
1708 loff_t start = ((loff_t)vmf->pgoff) << PAGE_SHIFT;
1709 unsigned int order = pe_order(pe_size);
1710 size_t len = PAGE_SIZE << order;
1711
1712 err = vfs_fsync_range(vmf->vma->vm_file, start, start + len - 1, 1);
1713 if (err)
1714 return VM_FAULT_SIGBUS;
1715 return dax_insert_pfn_mkwrite(vmf, pfn, order);
1716 }
1717 EXPORT_SYMBOL_GPL(dax_finish_sync_fault);