]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/dax.c
btrfs: minimal conversion to errseq_t writeback error reporting on fsync
[mirror_ubuntu-artful-kernel.git] / fs / dax.c
1 /*
2 * fs/dax.c - Direct Access filesystem code
3 * Copyright (c) 2013-2014 Intel Corporation
4 * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
5 * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
6 *
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms and conditions of the GNU General Public License,
9 * version 2, as published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * more details.
15 */
16
17 #include <linux/atomic.h>
18 #include <linux/blkdev.h>
19 #include <linux/buffer_head.h>
20 #include <linux/dax.h>
21 #include <linux/fs.h>
22 #include <linux/genhd.h>
23 #include <linux/highmem.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm.h>
26 #include <linux/mutex.h>
27 #include <linux/pagevec.h>
28 #include <linux/pmem.h>
29 #include <linux/sched.h>
30 #include <linux/sched/signal.h>
31 #include <linux/uio.h>
32 #include <linux/vmstat.h>
33 #include <linux/pfn_t.h>
34 #include <linux/sizes.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/iomap.h>
37 #include "internal.h"
38
39 #define CREATE_TRACE_POINTS
40 #include <trace/events/fs_dax.h>
41
42 /* We choose 4096 entries - same as per-zone page wait tables */
43 #define DAX_WAIT_TABLE_BITS 12
44 #define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
45
46 static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES];
47
48 static int __init init_dax_wait_table(void)
49 {
50 int i;
51
52 for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++)
53 init_waitqueue_head(wait_table + i);
54 return 0;
55 }
56 fs_initcall(init_dax_wait_table);
57
58 static int dax_is_pmd_entry(void *entry)
59 {
60 return (unsigned long)entry & RADIX_DAX_PMD;
61 }
62
63 static int dax_is_pte_entry(void *entry)
64 {
65 return !((unsigned long)entry & RADIX_DAX_PMD);
66 }
67
68 static int dax_is_zero_entry(void *entry)
69 {
70 return (unsigned long)entry & RADIX_DAX_HZP;
71 }
72
73 static int dax_is_empty_entry(void *entry)
74 {
75 return (unsigned long)entry & RADIX_DAX_EMPTY;
76 }
77
78 /*
79 * DAX radix tree locking
80 */
81 struct exceptional_entry_key {
82 struct address_space *mapping;
83 pgoff_t entry_start;
84 };
85
86 struct wait_exceptional_entry_queue {
87 wait_queue_t wait;
88 struct exceptional_entry_key key;
89 };
90
91 static wait_queue_head_t *dax_entry_waitqueue(struct address_space *mapping,
92 pgoff_t index, void *entry, struct exceptional_entry_key *key)
93 {
94 unsigned long hash;
95
96 /*
97 * If 'entry' is a PMD, align the 'index' that we use for the wait
98 * queue to the start of that PMD. This ensures that all offsets in
99 * the range covered by the PMD map to the same bit lock.
100 */
101 if (dax_is_pmd_entry(entry))
102 index &= ~((1UL << (PMD_SHIFT - PAGE_SHIFT)) - 1);
103
104 key->mapping = mapping;
105 key->entry_start = index;
106
107 hash = hash_long((unsigned long)mapping ^ index, DAX_WAIT_TABLE_BITS);
108 return wait_table + hash;
109 }
110
111 static int wake_exceptional_entry_func(wait_queue_t *wait, unsigned int mode,
112 int sync, void *keyp)
113 {
114 struct exceptional_entry_key *key = keyp;
115 struct wait_exceptional_entry_queue *ewait =
116 container_of(wait, struct wait_exceptional_entry_queue, wait);
117
118 if (key->mapping != ewait->key.mapping ||
119 key->entry_start != ewait->key.entry_start)
120 return 0;
121 return autoremove_wake_function(wait, mode, sync, NULL);
122 }
123
124 /*
125 * Check whether the given slot is locked. The function must be called with
126 * mapping->tree_lock held
127 */
128 static inline int slot_locked(struct address_space *mapping, void **slot)
129 {
130 unsigned long entry = (unsigned long)
131 radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
132 return entry & RADIX_DAX_ENTRY_LOCK;
133 }
134
135 /*
136 * Mark the given slot is locked. The function must be called with
137 * mapping->tree_lock held
138 */
139 static inline void *lock_slot(struct address_space *mapping, void **slot)
140 {
141 unsigned long entry = (unsigned long)
142 radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
143
144 entry |= RADIX_DAX_ENTRY_LOCK;
145 radix_tree_replace_slot(&mapping->page_tree, slot, (void *)entry);
146 return (void *)entry;
147 }
148
149 /*
150 * Mark the given slot is unlocked. The function must be called with
151 * mapping->tree_lock held
152 */
153 static inline void *unlock_slot(struct address_space *mapping, void **slot)
154 {
155 unsigned long entry = (unsigned long)
156 radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
157
158 entry &= ~(unsigned long)RADIX_DAX_ENTRY_LOCK;
159 radix_tree_replace_slot(&mapping->page_tree, slot, (void *)entry);
160 return (void *)entry;
161 }
162
163 /*
164 * Lookup entry in radix tree, wait for it to become unlocked if it is
165 * exceptional entry and return it. The caller must call
166 * put_unlocked_mapping_entry() when he decided not to lock the entry or
167 * put_locked_mapping_entry() when he locked the entry and now wants to
168 * unlock it.
169 *
170 * The function must be called with mapping->tree_lock held.
171 */
172 static void *get_unlocked_mapping_entry(struct address_space *mapping,
173 pgoff_t index, void ***slotp)
174 {
175 void *entry, **slot;
176 struct wait_exceptional_entry_queue ewait;
177 wait_queue_head_t *wq;
178
179 init_wait(&ewait.wait);
180 ewait.wait.func = wake_exceptional_entry_func;
181
182 for (;;) {
183 entry = __radix_tree_lookup(&mapping->page_tree, index, NULL,
184 &slot);
185 if (!entry || !radix_tree_exceptional_entry(entry) ||
186 !slot_locked(mapping, slot)) {
187 if (slotp)
188 *slotp = slot;
189 return entry;
190 }
191
192 wq = dax_entry_waitqueue(mapping, index, entry, &ewait.key);
193 prepare_to_wait_exclusive(wq, &ewait.wait,
194 TASK_UNINTERRUPTIBLE);
195 spin_unlock_irq(&mapping->tree_lock);
196 schedule();
197 finish_wait(wq, &ewait.wait);
198 spin_lock_irq(&mapping->tree_lock);
199 }
200 }
201
202 static void dax_unlock_mapping_entry(struct address_space *mapping,
203 pgoff_t index)
204 {
205 void *entry, **slot;
206
207 spin_lock_irq(&mapping->tree_lock);
208 entry = __radix_tree_lookup(&mapping->page_tree, index, NULL, &slot);
209 if (WARN_ON_ONCE(!entry || !radix_tree_exceptional_entry(entry) ||
210 !slot_locked(mapping, slot))) {
211 spin_unlock_irq(&mapping->tree_lock);
212 return;
213 }
214 unlock_slot(mapping, slot);
215 spin_unlock_irq(&mapping->tree_lock);
216 dax_wake_mapping_entry_waiter(mapping, index, entry, false);
217 }
218
219 static void put_locked_mapping_entry(struct address_space *mapping,
220 pgoff_t index, void *entry)
221 {
222 if (!radix_tree_exceptional_entry(entry)) {
223 unlock_page(entry);
224 put_page(entry);
225 } else {
226 dax_unlock_mapping_entry(mapping, index);
227 }
228 }
229
230 /*
231 * Called when we are done with radix tree entry we looked up via
232 * get_unlocked_mapping_entry() and which we didn't lock in the end.
233 */
234 static void put_unlocked_mapping_entry(struct address_space *mapping,
235 pgoff_t index, void *entry)
236 {
237 if (!radix_tree_exceptional_entry(entry))
238 return;
239
240 /* We have to wake up next waiter for the radix tree entry lock */
241 dax_wake_mapping_entry_waiter(mapping, index, entry, false);
242 }
243
244 /*
245 * Find radix tree entry at given index. If it points to a page, return with
246 * the page locked. If it points to the exceptional entry, return with the
247 * radix tree entry locked. If the radix tree doesn't contain given index,
248 * create empty exceptional entry for the index and return with it locked.
249 *
250 * When requesting an entry with size RADIX_DAX_PMD, grab_mapping_entry() will
251 * either return that locked entry or will return an error. This error will
252 * happen if there are any 4k entries (either zero pages or DAX entries)
253 * within the 2MiB range that we are requesting.
254 *
255 * We always favor 4k entries over 2MiB entries. There isn't a flow where we
256 * evict 4k entries in order to 'upgrade' them to a 2MiB entry. A 2MiB
257 * insertion will fail if it finds any 4k entries already in the tree, and a
258 * 4k insertion will cause an existing 2MiB entry to be unmapped and
259 * downgraded to 4k entries. This happens for both 2MiB huge zero pages as
260 * well as 2MiB empty entries.
261 *
262 * The exception to this downgrade path is for 2MiB DAX PMD entries that have
263 * real storage backing them. We will leave these real 2MiB DAX entries in
264 * the tree, and PTE writes will simply dirty the entire 2MiB DAX entry.
265 *
266 * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
267 * persistent memory the benefit is doubtful. We can add that later if we can
268 * show it helps.
269 */
270 static void *grab_mapping_entry(struct address_space *mapping, pgoff_t index,
271 unsigned long size_flag)
272 {
273 bool pmd_downgrade = false; /* splitting 2MiB entry into 4k entries? */
274 void *entry, **slot;
275
276 restart:
277 spin_lock_irq(&mapping->tree_lock);
278 entry = get_unlocked_mapping_entry(mapping, index, &slot);
279
280 if (entry) {
281 if (size_flag & RADIX_DAX_PMD) {
282 if (!radix_tree_exceptional_entry(entry) ||
283 dax_is_pte_entry(entry)) {
284 put_unlocked_mapping_entry(mapping, index,
285 entry);
286 entry = ERR_PTR(-EEXIST);
287 goto out_unlock;
288 }
289 } else { /* trying to grab a PTE entry */
290 if (radix_tree_exceptional_entry(entry) &&
291 dax_is_pmd_entry(entry) &&
292 (dax_is_zero_entry(entry) ||
293 dax_is_empty_entry(entry))) {
294 pmd_downgrade = true;
295 }
296 }
297 }
298
299 /* No entry for given index? Make sure radix tree is big enough. */
300 if (!entry || pmd_downgrade) {
301 int err;
302
303 if (pmd_downgrade) {
304 /*
305 * Make sure 'entry' remains valid while we drop
306 * mapping->tree_lock.
307 */
308 entry = lock_slot(mapping, slot);
309 }
310
311 spin_unlock_irq(&mapping->tree_lock);
312 /*
313 * Besides huge zero pages the only other thing that gets
314 * downgraded are empty entries which don't need to be
315 * unmapped.
316 */
317 if (pmd_downgrade && dax_is_zero_entry(entry))
318 unmap_mapping_range(mapping,
319 (index << PAGE_SHIFT) & PMD_MASK, PMD_SIZE, 0);
320
321 err = radix_tree_preload(
322 mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM);
323 if (err) {
324 if (pmd_downgrade)
325 put_locked_mapping_entry(mapping, index, entry);
326 return ERR_PTR(err);
327 }
328 spin_lock_irq(&mapping->tree_lock);
329
330 if (!entry) {
331 /*
332 * We needed to drop the page_tree lock while calling
333 * radix_tree_preload() and we didn't have an entry to
334 * lock. See if another thread inserted an entry at
335 * our index during this time.
336 */
337 entry = __radix_tree_lookup(&mapping->page_tree, index,
338 NULL, &slot);
339 if (entry) {
340 radix_tree_preload_end();
341 spin_unlock_irq(&mapping->tree_lock);
342 goto restart;
343 }
344 }
345
346 if (pmd_downgrade) {
347 radix_tree_delete(&mapping->page_tree, index);
348 mapping->nrexceptional--;
349 dax_wake_mapping_entry_waiter(mapping, index, entry,
350 true);
351 }
352
353 entry = dax_radix_locked_entry(0, size_flag | RADIX_DAX_EMPTY);
354
355 err = __radix_tree_insert(&mapping->page_tree, index,
356 dax_radix_order(entry), entry);
357 radix_tree_preload_end();
358 if (err) {
359 spin_unlock_irq(&mapping->tree_lock);
360 /*
361 * Our insertion of a DAX entry failed, most likely
362 * because we were inserting a PMD entry and it
363 * collided with a PTE sized entry at a different
364 * index in the PMD range. We haven't inserted
365 * anything into the radix tree and have no waiters to
366 * wake.
367 */
368 return ERR_PTR(err);
369 }
370 /* Good, we have inserted empty locked entry into the tree. */
371 mapping->nrexceptional++;
372 spin_unlock_irq(&mapping->tree_lock);
373 return entry;
374 }
375 /* Normal page in radix tree? */
376 if (!radix_tree_exceptional_entry(entry)) {
377 struct page *page = entry;
378
379 get_page(page);
380 spin_unlock_irq(&mapping->tree_lock);
381 lock_page(page);
382 /* Page got truncated? Retry... */
383 if (unlikely(page->mapping != mapping)) {
384 unlock_page(page);
385 put_page(page);
386 goto restart;
387 }
388 return page;
389 }
390 entry = lock_slot(mapping, slot);
391 out_unlock:
392 spin_unlock_irq(&mapping->tree_lock);
393 return entry;
394 }
395
396 /*
397 * We do not necessarily hold the mapping->tree_lock when we call this
398 * function so it is possible that 'entry' is no longer a valid item in the
399 * radix tree. This is okay because all we really need to do is to find the
400 * correct waitqueue where tasks might be waiting for that old 'entry' and
401 * wake them.
402 */
403 void dax_wake_mapping_entry_waiter(struct address_space *mapping,
404 pgoff_t index, void *entry, bool wake_all)
405 {
406 struct exceptional_entry_key key;
407 wait_queue_head_t *wq;
408
409 wq = dax_entry_waitqueue(mapping, index, entry, &key);
410
411 /*
412 * Checking for locked entry and prepare_to_wait_exclusive() happens
413 * under mapping->tree_lock, ditto for entry handling in our callers.
414 * So at this point all tasks that could have seen our entry locked
415 * must be in the waitqueue and the following check will see them.
416 */
417 if (waitqueue_active(wq))
418 __wake_up(wq, TASK_NORMAL, wake_all ? 0 : 1, &key);
419 }
420
421 static int __dax_invalidate_mapping_entry(struct address_space *mapping,
422 pgoff_t index, bool trunc)
423 {
424 int ret = 0;
425 void *entry;
426 struct radix_tree_root *page_tree = &mapping->page_tree;
427
428 spin_lock_irq(&mapping->tree_lock);
429 entry = get_unlocked_mapping_entry(mapping, index, NULL);
430 if (!entry || !radix_tree_exceptional_entry(entry))
431 goto out;
432 if (!trunc &&
433 (radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_DIRTY) ||
434 radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_TOWRITE)))
435 goto out;
436 radix_tree_delete(page_tree, index);
437 mapping->nrexceptional--;
438 ret = 1;
439 out:
440 put_unlocked_mapping_entry(mapping, index, entry);
441 spin_unlock_irq(&mapping->tree_lock);
442 return ret;
443 }
444 /*
445 * Delete exceptional DAX entry at @index from @mapping. Wait for radix tree
446 * entry to get unlocked before deleting it.
447 */
448 int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index)
449 {
450 int ret = __dax_invalidate_mapping_entry(mapping, index, true);
451
452 /*
453 * This gets called from truncate / punch_hole path. As such, the caller
454 * must hold locks protecting against concurrent modifications of the
455 * radix tree (usually fs-private i_mmap_sem for writing). Since the
456 * caller has seen exceptional entry for this index, we better find it
457 * at that index as well...
458 */
459 WARN_ON_ONCE(!ret);
460 return ret;
461 }
462
463 /*
464 * Invalidate exceptional DAX entry if it is clean.
465 */
466 int dax_invalidate_mapping_entry_sync(struct address_space *mapping,
467 pgoff_t index)
468 {
469 return __dax_invalidate_mapping_entry(mapping, index, false);
470 }
471
472 /*
473 * The user has performed a load from a hole in the file. Allocating
474 * a new page in the file would cause excessive storage usage for
475 * workloads with sparse files. We allocate a page cache page instead.
476 * We'll kick it out of the page cache if it's ever written to,
477 * otherwise it will simply fall out of the page cache under memory
478 * pressure without ever having been dirtied.
479 */
480 static int dax_load_hole(struct address_space *mapping, void **entry,
481 struct vm_fault *vmf)
482 {
483 struct inode *inode = mapping->host;
484 struct page *page;
485 int ret;
486
487 /* Hole page already exists? Return it... */
488 if (!radix_tree_exceptional_entry(*entry)) {
489 page = *entry;
490 goto finish_fault;
491 }
492
493 /* This will replace locked radix tree entry with a hole page */
494 page = find_or_create_page(mapping, vmf->pgoff,
495 vmf->gfp_mask | __GFP_ZERO);
496 if (!page) {
497 ret = VM_FAULT_OOM;
498 goto out;
499 }
500
501 finish_fault:
502 vmf->page = page;
503 ret = finish_fault(vmf);
504 vmf->page = NULL;
505 *entry = page;
506 if (!ret) {
507 /* Grab reference for PTE that is now referencing the page */
508 get_page(page);
509 ret = VM_FAULT_NOPAGE;
510 }
511 out:
512 trace_dax_load_hole(inode, vmf, ret);
513 return ret;
514 }
515
516 static int copy_user_dax(struct block_device *bdev, struct dax_device *dax_dev,
517 sector_t sector, size_t size, struct page *to,
518 unsigned long vaddr)
519 {
520 void *vto, *kaddr;
521 pgoff_t pgoff;
522 pfn_t pfn;
523 long rc;
524 int id;
525
526 rc = bdev_dax_pgoff(bdev, sector, size, &pgoff);
527 if (rc)
528 return rc;
529
530 id = dax_read_lock();
531 rc = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size), &kaddr, &pfn);
532 if (rc < 0) {
533 dax_read_unlock(id);
534 return rc;
535 }
536 vto = kmap_atomic(to);
537 copy_user_page(vto, (void __force *)kaddr, vaddr, to);
538 kunmap_atomic(vto);
539 dax_read_unlock(id);
540 return 0;
541 }
542
543 /*
544 * By this point grab_mapping_entry() has ensured that we have a locked entry
545 * of the appropriate size so we don't have to worry about downgrading PMDs to
546 * PTEs. If we happen to be trying to insert a PTE and there is a PMD
547 * already in the tree, we will skip the insertion and just dirty the PMD as
548 * appropriate.
549 */
550 static void *dax_insert_mapping_entry(struct address_space *mapping,
551 struct vm_fault *vmf,
552 void *entry, sector_t sector,
553 unsigned long flags)
554 {
555 struct radix_tree_root *page_tree = &mapping->page_tree;
556 int error = 0;
557 bool hole_fill = false;
558 void *new_entry;
559 pgoff_t index = vmf->pgoff;
560
561 if (vmf->flags & FAULT_FLAG_WRITE)
562 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
563
564 /* Replacing hole page with block mapping? */
565 if (!radix_tree_exceptional_entry(entry)) {
566 hole_fill = true;
567 /*
568 * Unmap the page now before we remove it from page cache below.
569 * The page is locked so it cannot be faulted in again.
570 */
571 unmap_mapping_range(mapping, vmf->pgoff << PAGE_SHIFT,
572 PAGE_SIZE, 0);
573 error = radix_tree_preload(vmf->gfp_mask & ~__GFP_HIGHMEM);
574 if (error)
575 return ERR_PTR(error);
576 } else if (dax_is_zero_entry(entry) && !(flags & RADIX_DAX_HZP)) {
577 /* replacing huge zero page with PMD block mapping */
578 unmap_mapping_range(mapping,
579 (vmf->pgoff << PAGE_SHIFT) & PMD_MASK, PMD_SIZE, 0);
580 }
581
582 spin_lock_irq(&mapping->tree_lock);
583 new_entry = dax_radix_locked_entry(sector, flags);
584
585 if (hole_fill) {
586 __delete_from_page_cache(entry, NULL);
587 /* Drop pagecache reference */
588 put_page(entry);
589 error = __radix_tree_insert(page_tree, index,
590 dax_radix_order(new_entry), new_entry);
591 if (error) {
592 new_entry = ERR_PTR(error);
593 goto unlock;
594 }
595 mapping->nrexceptional++;
596 } else if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
597 /*
598 * Only swap our new entry into the radix tree if the current
599 * entry is a zero page or an empty entry. If a normal PTE or
600 * PMD entry is already in the tree, we leave it alone. This
601 * means that if we are trying to insert a PTE and the
602 * existing entry is a PMD, we will just leave the PMD in the
603 * tree and dirty it if necessary.
604 */
605 struct radix_tree_node *node;
606 void **slot;
607 void *ret;
608
609 ret = __radix_tree_lookup(page_tree, index, &node, &slot);
610 WARN_ON_ONCE(ret != entry);
611 __radix_tree_replace(page_tree, node, slot,
612 new_entry, NULL, NULL);
613 }
614 if (vmf->flags & FAULT_FLAG_WRITE)
615 radix_tree_tag_set(page_tree, index, PAGECACHE_TAG_DIRTY);
616 unlock:
617 spin_unlock_irq(&mapping->tree_lock);
618 if (hole_fill) {
619 radix_tree_preload_end();
620 /*
621 * We don't need hole page anymore, it has been replaced with
622 * locked radix tree entry now.
623 */
624 if (mapping->a_ops->freepage)
625 mapping->a_ops->freepage(entry);
626 unlock_page(entry);
627 put_page(entry);
628 }
629 return new_entry;
630 }
631
632 static inline unsigned long
633 pgoff_address(pgoff_t pgoff, struct vm_area_struct *vma)
634 {
635 unsigned long address;
636
637 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
638 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
639 return address;
640 }
641
642 /* Walk all mappings of a given index of a file and writeprotect them */
643 static void dax_mapping_entry_mkclean(struct address_space *mapping,
644 pgoff_t index, unsigned long pfn)
645 {
646 struct vm_area_struct *vma;
647 pte_t pte, *ptep = NULL;
648 pmd_t *pmdp = NULL;
649 spinlock_t *ptl;
650 bool changed;
651
652 i_mmap_lock_read(mapping);
653 vma_interval_tree_foreach(vma, &mapping->i_mmap, index, index) {
654 unsigned long address;
655
656 cond_resched();
657
658 if (!(vma->vm_flags & VM_SHARED))
659 continue;
660
661 address = pgoff_address(index, vma);
662 changed = false;
663 if (follow_pte_pmd(vma->vm_mm, address, &ptep, &pmdp, &ptl))
664 continue;
665
666 if (pmdp) {
667 #ifdef CONFIG_FS_DAX_PMD
668 pmd_t pmd;
669
670 if (pfn != pmd_pfn(*pmdp))
671 goto unlock_pmd;
672 if (!pmd_dirty(*pmdp) && !pmd_write(*pmdp))
673 goto unlock_pmd;
674
675 flush_cache_page(vma, address, pfn);
676 pmd = pmdp_huge_clear_flush(vma, address, pmdp);
677 pmd = pmd_wrprotect(pmd);
678 pmd = pmd_mkclean(pmd);
679 set_pmd_at(vma->vm_mm, address, pmdp, pmd);
680 changed = true;
681 unlock_pmd:
682 spin_unlock(ptl);
683 #endif
684 } else {
685 if (pfn != pte_pfn(*ptep))
686 goto unlock_pte;
687 if (!pte_dirty(*ptep) && !pte_write(*ptep))
688 goto unlock_pte;
689
690 flush_cache_page(vma, address, pfn);
691 pte = ptep_clear_flush(vma, address, ptep);
692 pte = pte_wrprotect(pte);
693 pte = pte_mkclean(pte);
694 set_pte_at(vma->vm_mm, address, ptep, pte);
695 changed = true;
696 unlock_pte:
697 pte_unmap_unlock(ptep, ptl);
698 }
699
700 if (changed)
701 mmu_notifier_invalidate_page(vma->vm_mm, address);
702 }
703 i_mmap_unlock_read(mapping);
704 }
705
706 static int dax_writeback_one(struct block_device *bdev,
707 struct dax_device *dax_dev, struct address_space *mapping,
708 pgoff_t index, void *entry)
709 {
710 struct radix_tree_root *page_tree = &mapping->page_tree;
711 void *entry2, **slot, *kaddr;
712 long ret = 0, id;
713 sector_t sector;
714 pgoff_t pgoff;
715 size_t size;
716 pfn_t pfn;
717
718 /*
719 * A page got tagged dirty in DAX mapping? Something is seriously
720 * wrong.
721 */
722 if (WARN_ON(!radix_tree_exceptional_entry(entry)))
723 return -EIO;
724
725 spin_lock_irq(&mapping->tree_lock);
726 entry2 = get_unlocked_mapping_entry(mapping, index, &slot);
727 /* Entry got punched out / reallocated? */
728 if (!entry2 || !radix_tree_exceptional_entry(entry2))
729 goto put_unlocked;
730 /*
731 * Entry got reallocated elsewhere? No need to writeback. We have to
732 * compare sectors as we must not bail out due to difference in lockbit
733 * or entry type.
734 */
735 if (dax_radix_sector(entry2) != dax_radix_sector(entry))
736 goto put_unlocked;
737 if (WARN_ON_ONCE(dax_is_empty_entry(entry) ||
738 dax_is_zero_entry(entry))) {
739 ret = -EIO;
740 goto put_unlocked;
741 }
742
743 /* Another fsync thread may have already written back this entry */
744 if (!radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_TOWRITE))
745 goto put_unlocked;
746 /* Lock the entry to serialize with page faults */
747 entry = lock_slot(mapping, slot);
748 /*
749 * We can clear the tag now but we have to be careful so that concurrent
750 * dax_writeback_one() calls for the same index cannot finish before we
751 * actually flush the caches. This is achieved as the calls will look
752 * at the entry only under tree_lock and once they do that they will
753 * see the entry locked and wait for it to unlock.
754 */
755 radix_tree_tag_clear(page_tree, index, PAGECACHE_TAG_TOWRITE);
756 spin_unlock_irq(&mapping->tree_lock);
757
758 /*
759 * Even if dax_writeback_mapping_range() was given a wbc->range_start
760 * in the middle of a PMD, the 'index' we are given will be aligned to
761 * the start index of the PMD, as will the sector we pull from
762 * 'entry'. This allows us to flush for PMD_SIZE and not have to
763 * worry about partial PMD writebacks.
764 */
765 sector = dax_radix_sector(entry);
766 size = PAGE_SIZE << dax_radix_order(entry);
767
768 id = dax_read_lock();
769 ret = bdev_dax_pgoff(bdev, sector, size, &pgoff);
770 if (ret)
771 goto dax_unlock;
772
773 /*
774 * dax_direct_access() may sleep, so cannot hold tree_lock over
775 * its invocation.
776 */
777 ret = dax_direct_access(dax_dev, pgoff, size / PAGE_SIZE, &kaddr, &pfn);
778 if (ret < 0)
779 goto dax_unlock;
780
781 if (WARN_ON_ONCE(ret < size / PAGE_SIZE)) {
782 ret = -EIO;
783 goto dax_unlock;
784 }
785
786 dax_mapping_entry_mkclean(mapping, index, pfn_t_to_pfn(pfn));
787 wb_cache_pmem(kaddr, size);
788 /*
789 * After we have flushed the cache, we can clear the dirty tag. There
790 * cannot be new dirty data in the pfn after the flush has completed as
791 * the pfn mappings are writeprotected and fault waits for mapping
792 * entry lock.
793 */
794 spin_lock_irq(&mapping->tree_lock);
795 radix_tree_tag_clear(page_tree, index, PAGECACHE_TAG_DIRTY);
796 spin_unlock_irq(&mapping->tree_lock);
797 trace_dax_writeback_one(mapping->host, index, size >> PAGE_SHIFT);
798 dax_unlock:
799 dax_read_unlock(id);
800 put_locked_mapping_entry(mapping, index, entry);
801 return ret;
802
803 put_unlocked:
804 put_unlocked_mapping_entry(mapping, index, entry2);
805 spin_unlock_irq(&mapping->tree_lock);
806 return ret;
807 }
808
809 /*
810 * Flush the mapping to the persistent domain within the byte range of [start,
811 * end]. This is required by data integrity operations to ensure file data is
812 * on persistent storage prior to completion of the operation.
813 */
814 int dax_writeback_mapping_range(struct address_space *mapping,
815 struct block_device *bdev, struct writeback_control *wbc)
816 {
817 struct inode *inode = mapping->host;
818 pgoff_t start_index, end_index;
819 pgoff_t indices[PAGEVEC_SIZE];
820 struct dax_device *dax_dev;
821 struct pagevec pvec;
822 bool done = false;
823 int i, ret = 0;
824
825 if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
826 return -EIO;
827
828 if (!mapping->nrexceptional || wbc->sync_mode != WB_SYNC_ALL)
829 return 0;
830
831 dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
832 if (!dax_dev)
833 return -EIO;
834
835 start_index = wbc->range_start >> PAGE_SHIFT;
836 end_index = wbc->range_end >> PAGE_SHIFT;
837
838 trace_dax_writeback_range(inode, start_index, end_index);
839
840 tag_pages_for_writeback(mapping, start_index, end_index);
841
842 pagevec_init(&pvec, 0);
843 while (!done) {
844 pvec.nr = find_get_entries_tag(mapping, start_index,
845 PAGECACHE_TAG_TOWRITE, PAGEVEC_SIZE,
846 pvec.pages, indices);
847
848 if (pvec.nr == 0)
849 break;
850
851 for (i = 0; i < pvec.nr; i++) {
852 if (indices[i] > end_index) {
853 done = true;
854 break;
855 }
856
857 ret = dax_writeback_one(bdev, dax_dev, mapping,
858 indices[i], pvec.pages[i]);
859 if (ret < 0) {
860 mapping_set_error(mapping, ret);
861 goto out;
862 }
863 }
864 }
865 out:
866 put_dax(dax_dev);
867 trace_dax_writeback_range_done(inode, start_index, end_index);
868 return (ret < 0 ? ret : 0);
869 }
870 EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
871
872 static int dax_insert_mapping(struct address_space *mapping,
873 struct block_device *bdev, struct dax_device *dax_dev,
874 sector_t sector, size_t size, void **entryp,
875 struct vm_area_struct *vma, struct vm_fault *vmf)
876 {
877 unsigned long vaddr = vmf->address;
878 void *entry = *entryp;
879 void *ret, *kaddr;
880 pgoff_t pgoff;
881 int id, rc;
882 pfn_t pfn;
883
884 rc = bdev_dax_pgoff(bdev, sector, size, &pgoff);
885 if (rc)
886 return rc;
887
888 id = dax_read_lock();
889 rc = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size), &kaddr, &pfn);
890 if (rc < 0) {
891 dax_read_unlock(id);
892 return rc;
893 }
894 dax_read_unlock(id);
895
896 ret = dax_insert_mapping_entry(mapping, vmf, entry, sector, 0);
897 if (IS_ERR(ret))
898 return PTR_ERR(ret);
899 *entryp = ret;
900
901 trace_dax_insert_mapping(mapping->host, vmf, ret);
902 return vm_insert_mixed(vma, vaddr, pfn);
903 }
904
905 /**
906 * dax_pfn_mkwrite - handle first write to DAX page
907 * @vmf: The description of the fault
908 */
909 int dax_pfn_mkwrite(struct vm_fault *vmf)
910 {
911 struct file *file = vmf->vma->vm_file;
912 struct address_space *mapping = file->f_mapping;
913 struct inode *inode = mapping->host;
914 void *entry, **slot;
915 pgoff_t index = vmf->pgoff;
916
917 spin_lock_irq(&mapping->tree_lock);
918 entry = get_unlocked_mapping_entry(mapping, index, &slot);
919 if (!entry || !radix_tree_exceptional_entry(entry)) {
920 if (entry)
921 put_unlocked_mapping_entry(mapping, index, entry);
922 spin_unlock_irq(&mapping->tree_lock);
923 trace_dax_pfn_mkwrite_no_entry(inode, vmf, VM_FAULT_NOPAGE);
924 return VM_FAULT_NOPAGE;
925 }
926 radix_tree_tag_set(&mapping->page_tree, index, PAGECACHE_TAG_DIRTY);
927 entry = lock_slot(mapping, slot);
928 spin_unlock_irq(&mapping->tree_lock);
929 /*
930 * If we race with somebody updating the PTE and finish_mkwrite_fault()
931 * fails, we don't care. We need to return VM_FAULT_NOPAGE and retry
932 * the fault in either case.
933 */
934 finish_mkwrite_fault(vmf);
935 put_locked_mapping_entry(mapping, index, entry);
936 trace_dax_pfn_mkwrite(inode, vmf, VM_FAULT_NOPAGE);
937 return VM_FAULT_NOPAGE;
938 }
939 EXPORT_SYMBOL_GPL(dax_pfn_mkwrite);
940
941 static bool dax_range_is_aligned(struct block_device *bdev,
942 unsigned int offset, unsigned int length)
943 {
944 unsigned short sector_size = bdev_logical_block_size(bdev);
945
946 if (!IS_ALIGNED(offset, sector_size))
947 return false;
948 if (!IS_ALIGNED(length, sector_size))
949 return false;
950
951 return true;
952 }
953
954 int __dax_zero_page_range(struct block_device *bdev,
955 struct dax_device *dax_dev, sector_t sector,
956 unsigned int offset, unsigned int size)
957 {
958 if (dax_range_is_aligned(bdev, offset, size)) {
959 sector_t start_sector = sector + (offset >> 9);
960
961 return blkdev_issue_zeroout(bdev, start_sector,
962 size >> 9, GFP_NOFS, 0);
963 } else {
964 pgoff_t pgoff;
965 long rc, id;
966 void *kaddr;
967 pfn_t pfn;
968
969 rc = bdev_dax_pgoff(bdev, sector, PAGE_SIZE, &pgoff);
970 if (rc)
971 return rc;
972
973 id = dax_read_lock();
974 rc = dax_direct_access(dax_dev, pgoff, 1, &kaddr,
975 &pfn);
976 if (rc < 0) {
977 dax_read_unlock(id);
978 return rc;
979 }
980 clear_pmem(kaddr + offset, size);
981 dax_read_unlock(id);
982 }
983 return 0;
984 }
985 EXPORT_SYMBOL_GPL(__dax_zero_page_range);
986
987 static sector_t dax_iomap_sector(struct iomap *iomap, loff_t pos)
988 {
989 return iomap->blkno + (((pos & PAGE_MASK) - iomap->offset) >> 9);
990 }
991
992 static loff_t
993 dax_iomap_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
994 struct iomap *iomap)
995 {
996 struct block_device *bdev = iomap->bdev;
997 struct dax_device *dax_dev = iomap->dax_dev;
998 struct iov_iter *iter = data;
999 loff_t end = pos + length, done = 0;
1000 ssize_t ret = 0;
1001 int id;
1002
1003 if (iov_iter_rw(iter) == READ) {
1004 end = min(end, i_size_read(inode));
1005 if (pos >= end)
1006 return 0;
1007
1008 if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
1009 return iov_iter_zero(min(length, end - pos), iter);
1010 }
1011
1012 if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED))
1013 return -EIO;
1014
1015 /*
1016 * Write can allocate block for an area which has a hole page mapped
1017 * into page tables. We have to tear down these mappings so that data
1018 * written by write(2) is visible in mmap.
1019 */
1020 if (iomap->flags & IOMAP_F_NEW) {
1021 invalidate_inode_pages2_range(inode->i_mapping,
1022 pos >> PAGE_SHIFT,
1023 (end - 1) >> PAGE_SHIFT);
1024 }
1025
1026 id = dax_read_lock();
1027 while (pos < end) {
1028 unsigned offset = pos & (PAGE_SIZE - 1);
1029 const size_t size = ALIGN(length + offset, PAGE_SIZE);
1030 const sector_t sector = dax_iomap_sector(iomap, pos);
1031 ssize_t map_len;
1032 pgoff_t pgoff;
1033 void *kaddr;
1034 pfn_t pfn;
1035
1036 if (fatal_signal_pending(current)) {
1037 ret = -EINTR;
1038 break;
1039 }
1040
1041 ret = bdev_dax_pgoff(bdev, sector, size, &pgoff);
1042 if (ret)
1043 break;
1044
1045 map_len = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size),
1046 &kaddr, &pfn);
1047 if (map_len < 0) {
1048 ret = map_len;
1049 break;
1050 }
1051
1052 map_len = PFN_PHYS(map_len);
1053 kaddr += offset;
1054 map_len -= offset;
1055 if (map_len > end - pos)
1056 map_len = end - pos;
1057
1058 if (iov_iter_rw(iter) == WRITE)
1059 map_len = copy_from_iter_pmem(kaddr, map_len, iter);
1060 else
1061 map_len = copy_to_iter(kaddr, map_len, iter);
1062 if (map_len <= 0) {
1063 ret = map_len ? map_len : -EFAULT;
1064 break;
1065 }
1066
1067 pos += map_len;
1068 length -= map_len;
1069 done += map_len;
1070 }
1071 dax_read_unlock(id);
1072
1073 return done ? done : ret;
1074 }
1075
1076 /**
1077 * dax_iomap_rw - Perform I/O to a DAX file
1078 * @iocb: The control block for this I/O
1079 * @iter: The addresses to do I/O from or to
1080 * @ops: iomap ops passed from the file system
1081 *
1082 * This function performs read and write operations to directly mapped
1083 * persistent memory. The callers needs to take care of read/write exclusion
1084 * and evicting any page cache pages in the region under I/O.
1085 */
1086 ssize_t
1087 dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter,
1088 const struct iomap_ops *ops)
1089 {
1090 struct address_space *mapping = iocb->ki_filp->f_mapping;
1091 struct inode *inode = mapping->host;
1092 loff_t pos = iocb->ki_pos, ret = 0, done = 0;
1093 unsigned flags = 0;
1094
1095 if (iov_iter_rw(iter) == WRITE) {
1096 lockdep_assert_held_exclusive(&inode->i_rwsem);
1097 flags |= IOMAP_WRITE;
1098 } else {
1099 lockdep_assert_held(&inode->i_rwsem);
1100 }
1101
1102 while (iov_iter_count(iter)) {
1103 ret = iomap_apply(inode, pos, iov_iter_count(iter), flags, ops,
1104 iter, dax_iomap_actor);
1105 if (ret <= 0)
1106 break;
1107 pos += ret;
1108 done += ret;
1109 }
1110
1111 iocb->ki_pos += done;
1112 return done ? done : ret;
1113 }
1114 EXPORT_SYMBOL_GPL(dax_iomap_rw);
1115
1116 static int dax_fault_return(int error)
1117 {
1118 if (error == 0)
1119 return VM_FAULT_NOPAGE;
1120 if (error == -ENOMEM)
1121 return VM_FAULT_OOM;
1122 return VM_FAULT_SIGBUS;
1123 }
1124
1125 static int dax_iomap_pte_fault(struct vm_fault *vmf,
1126 const struct iomap_ops *ops)
1127 {
1128 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1129 struct inode *inode = mapping->host;
1130 unsigned long vaddr = vmf->address;
1131 loff_t pos = (loff_t)vmf->pgoff << PAGE_SHIFT;
1132 sector_t sector;
1133 struct iomap iomap = { 0 };
1134 unsigned flags = IOMAP_FAULT;
1135 int error, major = 0;
1136 int vmf_ret = 0;
1137 void *entry;
1138
1139 trace_dax_pte_fault(inode, vmf, vmf_ret);
1140 /*
1141 * Check whether offset isn't beyond end of file now. Caller is supposed
1142 * to hold locks serializing us with truncate / punch hole so this is
1143 * a reliable test.
1144 */
1145 if (pos >= i_size_read(inode)) {
1146 vmf_ret = VM_FAULT_SIGBUS;
1147 goto out;
1148 }
1149
1150 if ((vmf->flags & FAULT_FLAG_WRITE) && !vmf->cow_page)
1151 flags |= IOMAP_WRITE;
1152
1153 entry = grab_mapping_entry(mapping, vmf->pgoff, 0);
1154 if (IS_ERR(entry)) {
1155 vmf_ret = dax_fault_return(PTR_ERR(entry));
1156 goto out;
1157 }
1158
1159 /*
1160 * Note that we don't bother to use iomap_apply here: DAX required
1161 * the file system block size to be equal the page size, which means
1162 * that we never have to deal with more than a single extent here.
1163 */
1164 error = ops->iomap_begin(inode, pos, PAGE_SIZE, flags, &iomap);
1165 if (error) {
1166 vmf_ret = dax_fault_return(error);
1167 goto unlock_entry;
1168 }
1169 if (WARN_ON_ONCE(iomap.offset + iomap.length < pos + PAGE_SIZE)) {
1170 error = -EIO; /* fs corruption? */
1171 goto error_finish_iomap;
1172 }
1173
1174 sector = dax_iomap_sector(&iomap, pos);
1175
1176 if (vmf->cow_page) {
1177 switch (iomap.type) {
1178 case IOMAP_HOLE:
1179 case IOMAP_UNWRITTEN:
1180 clear_user_highpage(vmf->cow_page, vaddr);
1181 break;
1182 case IOMAP_MAPPED:
1183 error = copy_user_dax(iomap.bdev, iomap.dax_dev,
1184 sector, PAGE_SIZE, vmf->cow_page, vaddr);
1185 break;
1186 default:
1187 WARN_ON_ONCE(1);
1188 error = -EIO;
1189 break;
1190 }
1191
1192 if (error)
1193 goto error_finish_iomap;
1194
1195 __SetPageUptodate(vmf->cow_page);
1196 vmf_ret = finish_fault(vmf);
1197 if (!vmf_ret)
1198 vmf_ret = VM_FAULT_DONE_COW;
1199 goto finish_iomap;
1200 }
1201
1202 switch (iomap.type) {
1203 case IOMAP_MAPPED:
1204 if (iomap.flags & IOMAP_F_NEW) {
1205 count_vm_event(PGMAJFAULT);
1206 mem_cgroup_count_vm_event(vmf->vma->vm_mm, PGMAJFAULT);
1207 major = VM_FAULT_MAJOR;
1208 }
1209 error = dax_insert_mapping(mapping, iomap.bdev, iomap.dax_dev,
1210 sector, PAGE_SIZE, &entry, vmf->vma, vmf);
1211 /* -EBUSY is fine, somebody else faulted on the same PTE */
1212 if (error == -EBUSY)
1213 error = 0;
1214 break;
1215 case IOMAP_UNWRITTEN:
1216 case IOMAP_HOLE:
1217 if (!(vmf->flags & FAULT_FLAG_WRITE)) {
1218 vmf_ret = dax_load_hole(mapping, &entry, vmf);
1219 goto finish_iomap;
1220 }
1221 /*FALLTHRU*/
1222 default:
1223 WARN_ON_ONCE(1);
1224 error = -EIO;
1225 break;
1226 }
1227
1228 error_finish_iomap:
1229 vmf_ret = dax_fault_return(error) | major;
1230 finish_iomap:
1231 if (ops->iomap_end) {
1232 int copied = PAGE_SIZE;
1233
1234 if (vmf_ret & VM_FAULT_ERROR)
1235 copied = 0;
1236 /*
1237 * The fault is done by now and there's no way back (other
1238 * thread may be already happily using PTE we have installed).
1239 * Just ignore error from ->iomap_end since we cannot do much
1240 * with it.
1241 */
1242 ops->iomap_end(inode, pos, PAGE_SIZE, copied, flags, &iomap);
1243 }
1244 unlock_entry:
1245 put_locked_mapping_entry(mapping, vmf->pgoff, entry);
1246 out:
1247 trace_dax_pte_fault_done(inode, vmf, vmf_ret);
1248 return vmf_ret;
1249 }
1250
1251 #ifdef CONFIG_FS_DAX_PMD
1252 /*
1253 * The 'colour' (ie low bits) within a PMD of a page offset. This comes up
1254 * more often than one might expect in the below functions.
1255 */
1256 #define PG_PMD_COLOUR ((PMD_SIZE >> PAGE_SHIFT) - 1)
1257
1258 static int dax_pmd_insert_mapping(struct vm_fault *vmf, struct iomap *iomap,
1259 loff_t pos, void **entryp)
1260 {
1261 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1262 const sector_t sector = dax_iomap_sector(iomap, pos);
1263 struct dax_device *dax_dev = iomap->dax_dev;
1264 struct block_device *bdev = iomap->bdev;
1265 struct inode *inode = mapping->host;
1266 const size_t size = PMD_SIZE;
1267 void *ret = NULL, *kaddr;
1268 long length = 0;
1269 pgoff_t pgoff;
1270 pfn_t pfn;
1271 int id;
1272
1273 if (bdev_dax_pgoff(bdev, sector, size, &pgoff) != 0)
1274 goto fallback;
1275
1276 id = dax_read_lock();
1277 length = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size), &kaddr, &pfn);
1278 if (length < 0)
1279 goto unlock_fallback;
1280 length = PFN_PHYS(length);
1281
1282 if (length < size)
1283 goto unlock_fallback;
1284 if (pfn_t_to_pfn(pfn) & PG_PMD_COLOUR)
1285 goto unlock_fallback;
1286 if (!pfn_t_devmap(pfn))
1287 goto unlock_fallback;
1288 dax_read_unlock(id);
1289
1290 ret = dax_insert_mapping_entry(mapping, vmf, *entryp, sector,
1291 RADIX_DAX_PMD);
1292 if (IS_ERR(ret))
1293 goto fallback;
1294 *entryp = ret;
1295
1296 trace_dax_pmd_insert_mapping(inode, vmf, length, pfn, ret);
1297 return vmf_insert_pfn_pmd(vmf->vma, vmf->address, vmf->pmd,
1298 pfn, vmf->flags & FAULT_FLAG_WRITE);
1299
1300 unlock_fallback:
1301 dax_read_unlock(id);
1302 fallback:
1303 trace_dax_pmd_insert_mapping_fallback(inode, vmf, length, pfn, ret);
1304 return VM_FAULT_FALLBACK;
1305 }
1306
1307 static int dax_pmd_load_hole(struct vm_fault *vmf, struct iomap *iomap,
1308 void **entryp)
1309 {
1310 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1311 unsigned long pmd_addr = vmf->address & PMD_MASK;
1312 struct inode *inode = mapping->host;
1313 struct page *zero_page;
1314 void *ret = NULL;
1315 spinlock_t *ptl;
1316 pmd_t pmd_entry;
1317
1318 zero_page = mm_get_huge_zero_page(vmf->vma->vm_mm);
1319
1320 if (unlikely(!zero_page))
1321 goto fallback;
1322
1323 ret = dax_insert_mapping_entry(mapping, vmf, *entryp, 0,
1324 RADIX_DAX_PMD | RADIX_DAX_HZP);
1325 if (IS_ERR(ret))
1326 goto fallback;
1327 *entryp = ret;
1328
1329 ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1330 if (!pmd_none(*(vmf->pmd))) {
1331 spin_unlock(ptl);
1332 goto fallback;
1333 }
1334
1335 pmd_entry = mk_pmd(zero_page, vmf->vma->vm_page_prot);
1336 pmd_entry = pmd_mkhuge(pmd_entry);
1337 set_pmd_at(vmf->vma->vm_mm, pmd_addr, vmf->pmd, pmd_entry);
1338 spin_unlock(ptl);
1339 trace_dax_pmd_load_hole(inode, vmf, zero_page, ret);
1340 return VM_FAULT_NOPAGE;
1341
1342 fallback:
1343 trace_dax_pmd_load_hole_fallback(inode, vmf, zero_page, ret);
1344 return VM_FAULT_FALLBACK;
1345 }
1346
1347 static int dax_iomap_pmd_fault(struct vm_fault *vmf,
1348 const struct iomap_ops *ops)
1349 {
1350 struct vm_area_struct *vma = vmf->vma;
1351 struct address_space *mapping = vma->vm_file->f_mapping;
1352 unsigned long pmd_addr = vmf->address & PMD_MASK;
1353 bool write = vmf->flags & FAULT_FLAG_WRITE;
1354 unsigned int iomap_flags = (write ? IOMAP_WRITE : 0) | IOMAP_FAULT;
1355 struct inode *inode = mapping->host;
1356 int result = VM_FAULT_FALLBACK;
1357 struct iomap iomap = { 0 };
1358 pgoff_t max_pgoff, pgoff;
1359 void *entry;
1360 loff_t pos;
1361 int error;
1362
1363 /*
1364 * Check whether offset isn't beyond end of file now. Caller is
1365 * supposed to hold locks serializing us with truncate / punch hole so
1366 * this is a reliable test.
1367 */
1368 pgoff = linear_page_index(vma, pmd_addr);
1369 max_pgoff = (i_size_read(inode) - 1) >> PAGE_SHIFT;
1370
1371 trace_dax_pmd_fault(inode, vmf, max_pgoff, 0);
1372
1373 /* Fall back to PTEs if we're going to COW */
1374 if (write && !(vma->vm_flags & VM_SHARED))
1375 goto fallback;
1376
1377 /* If the PMD would extend outside the VMA */
1378 if (pmd_addr < vma->vm_start)
1379 goto fallback;
1380 if ((pmd_addr + PMD_SIZE) > vma->vm_end)
1381 goto fallback;
1382
1383 if (pgoff > max_pgoff) {
1384 result = VM_FAULT_SIGBUS;
1385 goto out;
1386 }
1387
1388 /* If the PMD would extend beyond the file size */
1389 if ((pgoff | PG_PMD_COLOUR) > max_pgoff)
1390 goto fallback;
1391
1392 /*
1393 * grab_mapping_entry() will make sure we get a 2M empty entry, a DAX
1394 * PMD or a HZP entry. If it can't (because a 4k page is already in
1395 * the tree, for instance), it will return -EEXIST and we just fall
1396 * back to 4k entries.
1397 */
1398 entry = grab_mapping_entry(mapping, pgoff, RADIX_DAX_PMD);
1399 if (IS_ERR(entry))
1400 goto fallback;
1401
1402 /*
1403 * Note that we don't use iomap_apply here. We aren't doing I/O, only
1404 * setting up a mapping, so really we're using iomap_begin() as a way
1405 * to look up our filesystem block.
1406 */
1407 pos = (loff_t)pgoff << PAGE_SHIFT;
1408 error = ops->iomap_begin(inode, pos, PMD_SIZE, iomap_flags, &iomap);
1409 if (error)
1410 goto unlock_entry;
1411
1412 if (iomap.offset + iomap.length < pos + PMD_SIZE)
1413 goto finish_iomap;
1414
1415 switch (iomap.type) {
1416 case IOMAP_MAPPED:
1417 result = dax_pmd_insert_mapping(vmf, &iomap, pos, &entry);
1418 break;
1419 case IOMAP_UNWRITTEN:
1420 case IOMAP_HOLE:
1421 if (WARN_ON_ONCE(write))
1422 break;
1423 result = dax_pmd_load_hole(vmf, &iomap, &entry);
1424 break;
1425 default:
1426 WARN_ON_ONCE(1);
1427 break;
1428 }
1429
1430 finish_iomap:
1431 if (ops->iomap_end) {
1432 int copied = PMD_SIZE;
1433
1434 if (result == VM_FAULT_FALLBACK)
1435 copied = 0;
1436 /*
1437 * The fault is done by now and there's no way back (other
1438 * thread may be already happily using PMD we have installed).
1439 * Just ignore error from ->iomap_end since we cannot do much
1440 * with it.
1441 */
1442 ops->iomap_end(inode, pos, PMD_SIZE, copied, iomap_flags,
1443 &iomap);
1444 }
1445 unlock_entry:
1446 put_locked_mapping_entry(mapping, pgoff, entry);
1447 fallback:
1448 if (result == VM_FAULT_FALLBACK) {
1449 split_huge_pmd(vma, vmf->pmd, vmf->address);
1450 count_vm_event(THP_FAULT_FALLBACK);
1451 }
1452 out:
1453 trace_dax_pmd_fault_done(inode, vmf, max_pgoff, result);
1454 return result;
1455 }
1456 #else
1457 static int dax_iomap_pmd_fault(struct vm_fault *vmf,
1458 const struct iomap_ops *ops)
1459 {
1460 return VM_FAULT_FALLBACK;
1461 }
1462 #endif /* CONFIG_FS_DAX_PMD */
1463
1464 /**
1465 * dax_iomap_fault - handle a page fault on a DAX file
1466 * @vmf: The description of the fault
1467 * @ops: iomap ops passed from the file system
1468 *
1469 * When a page fault occurs, filesystems may call this helper in
1470 * their fault handler for DAX files. dax_iomap_fault() assumes the caller
1471 * has done all the necessary locking for page fault to proceed
1472 * successfully.
1473 */
1474 int dax_iomap_fault(struct vm_fault *vmf, enum page_entry_size pe_size,
1475 const struct iomap_ops *ops)
1476 {
1477 switch (pe_size) {
1478 case PE_SIZE_PTE:
1479 return dax_iomap_pte_fault(vmf, ops);
1480 case PE_SIZE_PMD:
1481 return dax_iomap_pmd_fault(vmf, ops);
1482 default:
1483 return VM_FAULT_FALLBACK;
1484 }
1485 }
1486 EXPORT_SYMBOL_GPL(dax_iomap_fault);