]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - fs/dax.c
Merge branches 'fixes', 'misc' and 'spectre' into for-linus
[mirror_ubuntu-focal-kernel.git] / fs / dax.c
1 /*
2 * fs/dax.c - Direct Access filesystem code
3 * Copyright (c) 2013-2014 Intel Corporation
4 * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
5 * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
6 *
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms and conditions of the GNU General Public License,
9 * version 2, as published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * more details.
15 */
16
17 #include <linux/atomic.h>
18 #include <linux/blkdev.h>
19 #include <linux/buffer_head.h>
20 #include <linux/dax.h>
21 #include <linux/fs.h>
22 #include <linux/genhd.h>
23 #include <linux/highmem.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm.h>
26 #include <linux/mutex.h>
27 #include <linux/pagevec.h>
28 #include <linux/sched.h>
29 #include <linux/sched/signal.h>
30 #include <linux/uio.h>
31 #include <linux/vmstat.h>
32 #include <linux/pfn_t.h>
33 #include <linux/sizes.h>
34 #include <linux/mmu_notifier.h>
35 #include <linux/iomap.h>
36 #include "internal.h"
37
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/fs_dax.h>
40
41 /* We choose 4096 entries - same as per-zone page wait tables */
42 #define DAX_WAIT_TABLE_BITS 12
43 #define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
44
45 /* The 'colour' (ie low bits) within a PMD of a page offset. */
46 #define PG_PMD_COLOUR ((PMD_SIZE >> PAGE_SHIFT) - 1)
47 #define PG_PMD_NR (PMD_SIZE >> PAGE_SHIFT)
48
49 static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES];
50
51 static int __init init_dax_wait_table(void)
52 {
53 int i;
54
55 for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++)
56 init_waitqueue_head(wait_table + i);
57 return 0;
58 }
59 fs_initcall(init_dax_wait_table);
60
61 /*
62 * We use lowest available bit in exceptional entry for locking, one bit for
63 * the entry size (PMD) and two more to tell us if the entry is a zero page or
64 * an empty entry that is just used for locking. In total four special bits.
65 *
66 * If the PMD bit isn't set the entry has size PAGE_SIZE, and if the ZERO_PAGE
67 * and EMPTY bits aren't set the entry is a normal DAX entry with a filesystem
68 * block allocation.
69 */
70 #define RADIX_DAX_SHIFT (RADIX_TREE_EXCEPTIONAL_SHIFT + 4)
71 #define RADIX_DAX_ENTRY_LOCK (1 << RADIX_TREE_EXCEPTIONAL_SHIFT)
72 #define RADIX_DAX_PMD (1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 1))
73 #define RADIX_DAX_ZERO_PAGE (1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 2))
74 #define RADIX_DAX_EMPTY (1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 3))
75
76 static unsigned long dax_radix_pfn(void *entry)
77 {
78 return (unsigned long)entry >> RADIX_DAX_SHIFT;
79 }
80
81 static void *dax_radix_locked_entry(unsigned long pfn, unsigned long flags)
82 {
83 return (void *)(RADIX_TREE_EXCEPTIONAL_ENTRY | flags |
84 (pfn << RADIX_DAX_SHIFT) | RADIX_DAX_ENTRY_LOCK);
85 }
86
87 static unsigned int dax_radix_order(void *entry)
88 {
89 if ((unsigned long)entry & RADIX_DAX_PMD)
90 return PMD_SHIFT - PAGE_SHIFT;
91 return 0;
92 }
93
94 static int dax_is_pmd_entry(void *entry)
95 {
96 return (unsigned long)entry & RADIX_DAX_PMD;
97 }
98
99 static int dax_is_pte_entry(void *entry)
100 {
101 return !((unsigned long)entry & RADIX_DAX_PMD);
102 }
103
104 static int dax_is_zero_entry(void *entry)
105 {
106 return (unsigned long)entry & RADIX_DAX_ZERO_PAGE;
107 }
108
109 static int dax_is_empty_entry(void *entry)
110 {
111 return (unsigned long)entry & RADIX_DAX_EMPTY;
112 }
113
114 /*
115 * DAX radix tree locking
116 */
117 struct exceptional_entry_key {
118 struct address_space *mapping;
119 pgoff_t entry_start;
120 };
121
122 struct wait_exceptional_entry_queue {
123 wait_queue_entry_t wait;
124 struct exceptional_entry_key key;
125 };
126
127 static wait_queue_head_t *dax_entry_waitqueue(struct address_space *mapping,
128 pgoff_t index, void *entry, struct exceptional_entry_key *key)
129 {
130 unsigned long hash;
131
132 /*
133 * If 'entry' is a PMD, align the 'index' that we use for the wait
134 * queue to the start of that PMD. This ensures that all offsets in
135 * the range covered by the PMD map to the same bit lock.
136 */
137 if (dax_is_pmd_entry(entry))
138 index &= ~PG_PMD_COLOUR;
139
140 key->mapping = mapping;
141 key->entry_start = index;
142
143 hash = hash_long((unsigned long)mapping ^ index, DAX_WAIT_TABLE_BITS);
144 return wait_table + hash;
145 }
146
147 static int wake_exceptional_entry_func(wait_queue_entry_t *wait, unsigned int mode,
148 int sync, void *keyp)
149 {
150 struct exceptional_entry_key *key = keyp;
151 struct wait_exceptional_entry_queue *ewait =
152 container_of(wait, struct wait_exceptional_entry_queue, wait);
153
154 if (key->mapping != ewait->key.mapping ||
155 key->entry_start != ewait->key.entry_start)
156 return 0;
157 return autoremove_wake_function(wait, mode, sync, NULL);
158 }
159
160 /*
161 * @entry may no longer be the entry at the index in the mapping.
162 * The important information it's conveying is whether the entry at
163 * this index used to be a PMD entry.
164 */
165 static void dax_wake_mapping_entry_waiter(struct address_space *mapping,
166 pgoff_t index, void *entry, bool wake_all)
167 {
168 struct exceptional_entry_key key;
169 wait_queue_head_t *wq;
170
171 wq = dax_entry_waitqueue(mapping, index, entry, &key);
172
173 /*
174 * Checking for locked entry and prepare_to_wait_exclusive() happens
175 * under the i_pages lock, ditto for entry handling in our callers.
176 * So at this point all tasks that could have seen our entry locked
177 * must be in the waitqueue and the following check will see them.
178 */
179 if (waitqueue_active(wq))
180 __wake_up(wq, TASK_NORMAL, wake_all ? 0 : 1, &key);
181 }
182
183 /*
184 * Check whether the given slot is locked. Must be called with the i_pages
185 * lock held.
186 */
187 static inline int slot_locked(struct address_space *mapping, void **slot)
188 {
189 unsigned long entry = (unsigned long)
190 radix_tree_deref_slot_protected(slot, &mapping->i_pages.xa_lock);
191 return entry & RADIX_DAX_ENTRY_LOCK;
192 }
193
194 /*
195 * Mark the given slot as locked. Must be called with the i_pages lock held.
196 */
197 static inline void *lock_slot(struct address_space *mapping, void **slot)
198 {
199 unsigned long entry = (unsigned long)
200 radix_tree_deref_slot_protected(slot, &mapping->i_pages.xa_lock);
201
202 entry |= RADIX_DAX_ENTRY_LOCK;
203 radix_tree_replace_slot(&mapping->i_pages, slot, (void *)entry);
204 return (void *)entry;
205 }
206
207 /*
208 * Mark the given slot as unlocked. Must be called with the i_pages lock held.
209 */
210 static inline void *unlock_slot(struct address_space *mapping, void **slot)
211 {
212 unsigned long entry = (unsigned long)
213 radix_tree_deref_slot_protected(slot, &mapping->i_pages.xa_lock);
214
215 entry &= ~(unsigned long)RADIX_DAX_ENTRY_LOCK;
216 radix_tree_replace_slot(&mapping->i_pages, slot, (void *)entry);
217 return (void *)entry;
218 }
219
220 /*
221 * Lookup entry in radix tree, wait for it to become unlocked if it is
222 * exceptional entry and return it. The caller must call
223 * put_unlocked_mapping_entry() when he decided not to lock the entry or
224 * put_locked_mapping_entry() when he locked the entry and now wants to
225 * unlock it.
226 *
227 * Must be called with the i_pages lock held.
228 */
229 static void *get_unlocked_mapping_entry(struct address_space *mapping,
230 pgoff_t index, void ***slotp)
231 {
232 void *entry, **slot;
233 struct wait_exceptional_entry_queue ewait;
234 wait_queue_head_t *wq;
235
236 init_wait(&ewait.wait);
237 ewait.wait.func = wake_exceptional_entry_func;
238
239 for (;;) {
240 entry = __radix_tree_lookup(&mapping->i_pages, index, NULL,
241 &slot);
242 if (!entry ||
243 WARN_ON_ONCE(!radix_tree_exceptional_entry(entry)) ||
244 !slot_locked(mapping, slot)) {
245 if (slotp)
246 *slotp = slot;
247 return entry;
248 }
249
250 wq = dax_entry_waitqueue(mapping, index, entry, &ewait.key);
251 prepare_to_wait_exclusive(wq, &ewait.wait,
252 TASK_UNINTERRUPTIBLE);
253 xa_unlock_irq(&mapping->i_pages);
254 schedule();
255 finish_wait(wq, &ewait.wait);
256 xa_lock_irq(&mapping->i_pages);
257 }
258 }
259
260 static void dax_unlock_mapping_entry(struct address_space *mapping,
261 pgoff_t index)
262 {
263 void *entry, **slot;
264
265 xa_lock_irq(&mapping->i_pages);
266 entry = __radix_tree_lookup(&mapping->i_pages, index, NULL, &slot);
267 if (WARN_ON_ONCE(!entry || !radix_tree_exceptional_entry(entry) ||
268 !slot_locked(mapping, slot))) {
269 xa_unlock_irq(&mapping->i_pages);
270 return;
271 }
272 unlock_slot(mapping, slot);
273 xa_unlock_irq(&mapping->i_pages);
274 dax_wake_mapping_entry_waiter(mapping, index, entry, false);
275 }
276
277 static void put_locked_mapping_entry(struct address_space *mapping,
278 pgoff_t index)
279 {
280 dax_unlock_mapping_entry(mapping, index);
281 }
282
283 /*
284 * Called when we are done with radix tree entry we looked up via
285 * get_unlocked_mapping_entry() and which we didn't lock in the end.
286 */
287 static void put_unlocked_mapping_entry(struct address_space *mapping,
288 pgoff_t index, void *entry)
289 {
290 if (!entry)
291 return;
292
293 /* We have to wake up next waiter for the radix tree entry lock */
294 dax_wake_mapping_entry_waiter(mapping, index, entry, false);
295 }
296
297 static unsigned long dax_entry_size(void *entry)
298 {
299 if (dax_is_zero_entry(entry))
300 return 0;
301 else if (dax_is_empty_entry(entry))
302 return 0;
303 else if (dax_is_pmd_entry(entry))
304 return PMD_SIZE;
305 else
306 return PAGE_SIZE;
307 }
308
309 static unsigned long dax_radix_end_pfn(void *entry)
310 {
311 return dax_radix_pfn(entry) + dax_entry_size(entry) / PAGE_SIZE;
312 }
313
314 /*
315 * Iterate through all mapped pfns represented by an entry, i.e. skip
316 * 'empty' and 'zero' entries.
317 */
318 #define for_each_mapped_pfn(entry, pfn) \
319 for (pfn = dax_radix_pfn(entry); \
320 pfn < dax_radix_end_pfn(entry); pfn++)
321
322 static void dax_associate_entry(void *entry, struct address_space *mapping)
323 {
324 unsigned long pfn;
325
326 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
327 return;
328
329 for_each_mapped_pfn(entry, pfn) {
330 struct page *page = pfn_to_page(pfn);
331
332 WARN_ON_ONCE(page->mapping);
333 page->mapping = mapping;
334 }
335 }
336
337 static void dax_disassociate_entry(void *entry, struct address_space *mapping,
338 bool trunc)
339 {
340 unsigned long pfn;
341
342 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
343 return;
344
345 for_each_mapped_pfn(entry, pfn) {
346 struct page *page = pfn_to_page(pfn);
347
348 WARN_ON_ONCE(trunc && page_ref_count(page) > 1);
349 WARN_ON_ONCE(page->mapping && page->mapping != mapping);
350 page->mapping = NULL;
351 }
352 }
353
354 static struct page *dax_busy_page(void *entry)
355 {
356 unsigned long pfn;
357
358 for_each_mapped_pfn(entry, pfn) {
359 struct page *page = pfn_to_page(pfn);
360
361 if (page_ref_count(page) > 1)
362 return page;
363 }
364 return NULL;
365 }
366
367 /*
368 * Find radix tree entry at given index. If it points to an exceptional entry,
369 * return it with the radix tree entry locked. If the radix tree doesn't
370 * contain given index, create an empty exceptional entry for the index and
371 * return with it locked.
372 *
373 * When requesting an entry with size RADIX_DAX_PMD, grab_mapping_entry() will
374 * either return that locked entry or will return an error. This error will
375 * happen if there are any 4k entries within the 2MiB range that we are
376 * requesting.
377 *
378 * We always favor 4k entries over 2MiB entries. There isn't a flow where we
379 * evict 4k entries in order to 'upgrade' them to a 2MiB entry. A 2MiB
380 * insertion will fail if it finds any 4k entries already in the tree, and a
381 * 4k insertion will cause an existing 2MiB entry to be unmapped and
382 * downgraded to 4k entries. This happens for both 2MiB huge zero pages as
383 * well as 2MiB empty entries.
384 *
385 * The exception to this downgrade path is for 2MiB DAX PMD entries that have
386 * real storage backing them. We will leave these real 2MiB DAX entries in
387 * the tree, and PTE writes will simply dirty the entire 2MiB DAX entry.
388 *
389 * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
390 * persistent memory the benefit is doubtful. We can add that later if we can
391 * show it helps.
392 */
393 static void *grab_mapping_entry(struct address_space *mapping, pgoff_t index,
394 unsigned long size_flag)
395 {
396 bool pmd_downgrade = false; /* splitting 2MiB entry into 4k entries? */
397 void *entry, **slot;
398
399 restart:
400 xa_lock_irq(&mapping->i_pages);
401 entry = get_unlocked_mapping_entry(mapping, index, &slot);
402
403 if (WARN_ON_ONCE(entry && !radix_tree_exceptional_entry(entry))) {
404 entry = ERR_PTR(-EIO);
405 goto out_unlock;
406 }
407
408 if (entry) {
409 if (size_flag & RADIX_DAX_PMD) {
410 if (dax_is_pte_entry(entry)) {
411 put_unlocked_mapping_entry(mapping, index,
412 entry);
413 entry = ERR_PTR(-EEXIST);
414 goto out_unlock;
415 }
416 } else { /* trying to grab a PTE entry */
417 if (dax_is_pmd_entry(entry) &&
418 (dax_is_zero_entry(entry) ||
419 dax_is_empty_entry(entry))) {
420 pmd_downgrade = true;
421 }
422 }
423 }
424
425 /* No entry for given index? Make sure radix tree is big enough. */
426 if (!entry || pmd_downgrade) {
427 int err;
428
429 if (pmd_downgrade) {
430 /*
431 * Make sure 'entry' remains valid while we drop
432 * the i_pages lock.
433 */
434 entry = lock_slot(mapping, slot);
435 }
436
437 xa_unlock_irq(&mapping->i_pages);
438 /*
439 * Besides huge zero pages the only other thing that gets
440 * downgraded are empty entries which don't need to be
441 * unmapped.
442 */
443 if (pmd_downgrade && dax_is_zero_entry(entry))
444 unmap_mapping_pages(mapping, index & ~PG_PMD_COLOUR,
445 PG_PMD_NR, false);
446
447 err = radix_tree_preload(
448 mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM);
449 if (err) {
450 if (pmd_downgrade)
451 put_locked_mapping_entry(mapping, index);
452 return ERR_PTR(err);
453 }
454 xa_lock_irq(&mapping->i_pages);
455
456 if (!entry) {
457 /*
458 * We needed to drop the i_pages lock while calling
459 * radix_tree_preload() and we didn't have an entry to
460 * lock. See if another thread inserted an entry at
461 * our index during this time.
462 */
463 entry = __radix_tree_lookup(&mapping->i_pages, index,
464 NULL, &slot);
465 if (entry) {
466 radix_tree_preload_end();
467 xa_unlock_irq(&mapping->i_pages);
468 goto restart;
469 }
470 }
471
472 if (pmd_downgrade) {
473 dax_disassociate_entry(entry, mapping, false);
474 radix_tree_delete(&mapping->i_pages, index);
475 mapping->nrexceptional--;
476 dax_wake_mapping_entry_waiter(mapping, index, entry,
477 true);
478 }
479
480 entry = dax_radix_locked_entry(0, size_flag | RADIX_DAX_EMPTY);
481
482 err = __radix_tree_insert(&mapping->i_pages, index,
483 dax_radix_order(entry), entry);
484 radix_tree_preload_end();
485 if (err) {
486 xa_unlock_irq(&mapping->i_pages);
487 /*
488 * Our insertion of a DAX entry failed, most likely
489 * because we were inserting a PMD entry and it
490 * collided with a PTE sized entry at a different
491 * index in the PMD range. We haven't inserted
492 * anything into the radix tree and have no waiters to
493 * wake.
494 */
495 return ERR_PTR(err);
496 }
497 /* Good, we have inserted empty locked entry into the tree. */
498 mapping->nrexceptional++;
499 xa_unlock_irq(&mapping->i_pages);
500 return entry;
501 }
502 entry = lock_slot(mapping, slot);
503 out_unlock:
504 xa_unlock_irq(&mapping->i_pages);
505 return entry;
506 }
507
508 /**
509 * dax_layout_busy_page - find first pinned page in @mapping
510 * @mapping: address space to scan for a page with ref count > 1
511 *
512 * DAX requires ZONE_DEVICE mapped pages. These pages are never
513 * 'onlined' to the page allocator so they are considered idle when
514 * page->count == 1. A filesystem uses this interface to determine if
515 * any page in the mapping is busy, i.e. for DMA, or other
516 * get_user_pages() usages.
517 *
518 * It is expected that the filesystem is holding locks to block the
519 * establishment of new mappings in this address_space. I.e. it expects
520 * to be able to run unmap_mapping_range() and subsequently not race
521 * mapping_mapped() becoming true.
522 */
523 struct page *dax_layout_busy_page(struct address_space *mapping)
524 {
525 pgoff_t indices[PAGEVEC_SIZE];
526 struct page *page = NULL;
527 struct pagevec pvec;
528 pgoff_t index, end;
529 unsigned i;
530
531 /*
532 * In the 'limited' case get_user_pages() for dax is disabled.
533 */
534 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
535 return NULL;
536
537 if (!dax_mapping(mapping) || !mapping_mapped(mapping))
538 return NULL;
539
540 pagevec_init(&pvec);
541 index = 0;
542 end = -1;
543
544 /*
545 * If we race get_user_pages_fast() here either we'll see the
546 * elevated page count in the pagevec_lookup and wait, or
547 * get_user_pages_fast() will see that the page it took a reference
548 * against is no longer mapped in the page tables and bail to the
549 * get_user_pages() slow path. The slow path is protected by
550 * pte_lock() and pmd_lock(). New references are not taken without
551 * holding those locks, and unmap_mapping_range() will not zero the
552 * pte or pmd without holding the respective lock, so we are
553 * guaranteed to either see new references or prevent new
554 * references from being established.
555 */
556 unmap_mapping_range(mapping, 0, 0, 1);
557
558 while (index < end && pagevec_lookup_entries(&pvec, mapping, index,
559 min(end - index, (pgoff_t)PAGEVEC_SIZE),
560 indices)) {
561 for (i = 0; i < pagevec_count(&pvec); i++) {
562 struct page *pvec_ent = pvec.pages[i];
563 void *entry;
564
565 index = indices[i];
566 if (index >= end)
567 break;
568
569 if (!radix_tree_exceptional_entry(pvec_ent))
570 continue;
571
572 xa_lock_irq(&mapping->i_pages);
573 entry = get_unlocked_mapping_entry(mapping, index, NULL);
574 if (entry)
575 page = dax_busy_page(entry);
576 put_unlocked_mapping_entry(mapping, index, entry);
577 xa_unlock_irq(&mapping->i_pages);
578 if (page)
579 break;
580 }
581 pagevec_remove_exceptionals(&pvec);
582 pagevec_release(&pvec);
583 index++;
584
585 if (page)
586 break;
587 }
588 return page;
589 }
590 EXPORT_SYMBOL_GPL(dax_layout_busy_page);
591
592 static int __dax_invalidate_mapping_entry(struct address_space *mapping,
593 pgoff_t index, bool trunc)
594 {
595 int ret = 0;
596 void *entry;
597 struct radix_tree_root *pages = &mapping->i_pages;
598
599 xa_lock_irq(pages);
600 entry = get_unlocked_mapping_entry(mapping, index, NULL);
601 if (!entry || WARN_ON_ONCE(!radix_tree_exceptional_entry(entry)))
602 goto out;
603 if (!trunc &&
604 (radix_tree_tag_get(pages, index, PAGECACHE_TAG_DIRTY) ||
605 radix_tree_tag_get(pages, index, PAGECACHE_TAG_TOWRITE)))
606 goto out;
607 dax_disassociate_entry(entry, mapping, trunc);
608 radix_tree_delete(pages, index);
609 mapping->nrexceptional--;
610 ret = 1;
611 out:
612 put_unlocked_mapping_entry(mapping, index, entry);
613 xa_unlock_irq(pages);
614 return ret;
615 }
616 /*
617 * Delete exceptional DAX entry at @index from @mapping. Wait for radix tree
618 * entry to get unlocked before deleting it.
619 */
620 int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index)
621 {
622 int ret = __dax_invalidate_mapping_entry(mapping, index, true);
623
624 /*
625 * This gets called from truncate / punch_hole path. As such, the caller
626 * must hold locks protecting against concurrent modifications of the
627 * radix tree (usually fs-private i_mmap_sem for writing). Since the
628 * caller has seen exceptional entry for this index, we better find it
629 * at that index as well...
630 */
631 WARN_ON_ONCE(!ret);
632 return ret;
633 }
634
635 /*
636 * Invalidate exceptional DAX entry if it is clean.
637 */
638 int dax_invalidate_mapping_entry_sync(struct address_space *mapping,
639 pgoff_t index)
640 {
641 return __dax_invalidate_mapping_entry(mapping, index, false);
642 }
643
644 static int copy_user_dax(struct block_device *bdev, struct dax_device *dax_dev,
645 sector_t sector, size_t size, struct page *to,
646 unsigned long vaddr)
647 {
648 void *vto, *kaddr;
649 pgoff_t pgoff;
650 pfn_t pfn;
651 long rc;
652 int id;
653
654 rc = bdev_dax_pgoff(bdev, sector, size, &pgoff);
655 if (rc)
656 return rc;
657
658 id = dax_read_lock();
659 rc = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size), &kaddr, &pfn);
660 if (rc < 0) {
661 dax_read_unlock(id);
662 return rc;
663 }
664 vto = kmap_atomic(to);
665 copy_user_page(vto, (void __force *)kaddr, vaddr, to);
666 kunmap_atomic(vto);
667 dax_read_unlock(id);
668 return 0;
669 }
670
671 /*
672 * By this point grab_mapping_entry() has ensured that we have a locked entry
673 * of the appropriate size so we don't have to worry about downgrading PMDs to
674 * PTEs. If we happen to be trying to insert a PTE and there is a PMD
675 * already in the tree, we will skip the insertion and just dirty the PMD as
676 * appropriate.
677 */
678 static void *dax_insert_mapping_entry(struct address_space *mapping,
679 struct vm_fault *vmf,
680 void *entry, pfn_t pfn_t,
681 unsigned long flags, bool dirty)
682 {
683 struct radix_tree_root *pages = &mapping->i_pages;
684 unsigned long pfn = pfn_t_to_pfn(pfn_t);
685 pgoff_t index = vmf->pgoff;
686 void *new_entry;
687
688 if (dirty)
689 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
690
691 if (dax_is_zero_entry(entry) && !(flags & RADIX_DAX_ZERO_PAGE)) {
692 /* we are replacing a zero page with block mapping */
693 if (dax_is_pmd_entry(entry))
694 unmap_mapping_pages(mapping, index & ~PG_PMD_COLOUR,
695 PG_PMD_NR, false);
696 else /* pte entry */
697 unmap_mapping_pages(mapping, vmf->pgoff, 1, false);
698 }
699
700 xa_lock_irq(pages);
701 new_entry = dax_radix_locked_entry(pfn, flags);
702 if (dax_entry_size(entry) != dax_entry_size(new_entry)) {
703 dax_disassociate_entry(entry, mapping, false);
704 dax_associate_entry(new_entry, mapping);
705 }
706
707 if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
708 /*
709 * Only swap our new entry into the radix tree if the current
710 * entry is a zero page or an empty entry. If a normal PTE or
711 * PMD entry is already in the tree, we leave it alone. This
712 * means that if we are trying to insert a PTE and the
713 * existing entry is a PMD, we will just leave the PMD in the
714 * tree and dirty it if necessary.
715 */
716 struct radix_tree_node *node;
717 void **slot;
718 void *ret;
719
720 ret = __radix_tree_lookup(pages, index, &node, &slot);
721 WARN_ON_ONCE(ret != entry);
722 __radix_tree_replace(pages, node, slot,
723 new_entry, NULL);
724 entry = new_entry;
725 }
726
727 if (dirty)
728 radix_tree_tag_set(pages, index, PAGECACHE_TAG_DIRTY);
729
730 xa_unlock_irq(pages);
731 return entry;
732 }
733
734 static inline unsigned long
735 pgoff_address(pgoff_t pgoff, struct vm_area_struct *vma)
736 {
737 unsigned long address;
738
739 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
740 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
741 return address;
742 }
743
744 /* Walk all mappings of a given index of a file and writeprotect them */
745 static void dax_mapping_entry_mkclean(struct address_space *mapping,
746 pgoff_t index, unsigned long pfn)
747 {
748 struct vm_area_struct *vma;
749 pte_t pte, *ptep = NULL;
750 pmd_t *pmdp = NULL;
751 spinlock_t *ptl;
752
753 i_mmap_lock_read(mapping);
754 vma_interval_tree_foreach(vma, &mapping->i_mmap, index, index) {
755 unsigned long address, start, end;
756
757 cond_resched();
758
759 if (!(vma->vm_flags & VM_SHARED))
760 continue;
761
762 address = pgoff_address(index, vma);
763
764 /*
765 * Note because we provide start/end to follow_pte_pmd it will
766 * call mmu_notifier_invalidate_range_start() on our behalf
767 * before taking any lock.
768 */
769 if (follow_pte_pmd(vma->vm_mm, address, &start, &end, &ptep, &pmdp, &ptl))
770 continue;
771
772 /*
773 * No need to call mmu_notifier_invalidate_range() as we are
774 * downgrading page table protection not changing it to point
775 * to a new page.
776 *
777 * See Documentation/vm/mmu_notifier.rst
778 */
779 if (pmdp) {
780 #ifdef CONFIG_FS_DAX_PMD
781 pmd_t pmd;
782
783 if (pfn != pmd_pfn(*pmdp))
784 goto unlock_pmd;
785 if (!pmd_dirty(*pmdp) && !pmd_write(*pmdp))
786 goto unlock_pmd;
787
788 flush_cache_page(vma, address, pfn);
789 pmd = pmdp_huge_clear_flush(vma, address, pmdp);
790 pmd = pmd_wrprotect(pmd);
791 pmd = pmd_mkclean(pmd);
792 set_pmd_at(vma->vm_mm, address, pmdp, pmd);
793 unlock_pmd:
794 #endif
795 spin_unlock(ptl);
796 } else {
797 if (pfn != pte_pfn(*ptep))
798 goto unlock_pte;
799 if (!pte_dirty(*ptep) && !pte_write(*ptep))
800 goto unlock_pte;
801
802 flush_cache_page(vma, address, pfn);
803 pte = ptep_clear_flush(vma, address, ptep);
804 pte = pte_wrprotect(pte);
805 pte = pte_mkclean(pte);
806 set_pte_at(vma->vm_mm, address, ptep, pte);
807 unlock_pte:
808 pte_unmap_unlock(ptep, ptl);
809 }
810
811 mmu_notifier_invalidate_range_end(vma->vm_mm, start, end);
812 }
813 i_mmap_unlock_read(mapping);
814 }
815
816 static int dax_writeback_one(struct dax_device *dax_dev,
817 struct address_space *mapping, pgoff_t index, void *entry)
818 {
819 struct radix_tree_root *pages = &mapping->i_pages;
820 void *entry2, **slot;
821 unsigned long pfn;
822 long ret = 0;
823 size_t size;
824
825 /*
826 * A page got tagged dirty in DAX mapping? Something is seriously
827 * wrong.
828 */
829 if (WARN_ON(!radix_tree_exceptional_entry(entry)))
830 return -EIO;
831
832 xa_lock_irq(pages);
833 entry2 = get_unlocked_mapping_entry(mapping, index, &slot);
834 /* Entry got punched out / reallocated? */
835 if (!entry2 || WARN_ON_ONCE(!radix_tree_exceptional_entry(entry2)))
836 goto put_unlocked;
837 /*
838 * Entry got reallocated elsewhere? No need to writeback. We have to
839 * compare pfns as we must not bail out due to difference in lockbit
840 * or entry type.
841 */
842 if (dax_radix_pfn(entry2) != dax_radix_pfn(entry))
843 goto put_unlocked;
844 if (WARN_ON_ONCE(dax_is_empty_entry(entry) ||
845 dax_is_zero_entry(entry))) {
846 ret = -EIO;
847 goto put_unlocked;
848 }
849
850 /* Another fsync thread may have already written back this entry */
851 if (!radix_tree_tag_get(pages, index, PAGECACHE_TAG_TOWRITE))
852 goto put_unlocked;
853 /* Lock the entry to serialize with page faults */
854 entry = lock_slot(mapping, slot);
855 /*
856 * We can clear the tag now but we have to be careful so that concurrent
857 * dax_writeback_one() calls for the same index cannot finish before we
858 * actually flush the caches. This is achieved as the calls will look
859 * at the entry only under the i_pages lock and once they do that
860 * they will see the entry locked and wait for it to unlock.
861 */
862 radix_tree_tag_clear(pages, index, PAGECACHE_TAG_TOWRITE);
863 xa_unlock_irq(pages);
864
865 /*
866 * Even if dax_writeback_mapping_range() was given a wbc->range_start
867 * in the middle of a PMD, the 'index' we are given will be aligned to
868 * the start index of the PMD, as will the pfn we pull from 'entry'.
869 * This allows us to flush for PMD_SIZE and not have to worry about
870 * partial PMD writebacks.
871 */
872 pfn = dax_radix_pfn(entry);
873 size = PAGE_SIZE << dax_radix_order(entry);
874
875 dax_mapping_entry_mkclean(mapping, index, pfn);
876 dax_flush(dax_dev, page_address(pfn_to_page(pfn)), size);
877 /*
878 * After we have flushed the cache, we can clear the dirty tag. There
879 * cannot be new dirty data in the pfn after the flush has completed as
880 * the pfn mappings are writeprotected and fault waits for mapping
881 * entry lock.
882 */
883 xa_lock_irq(pages);
884 radix_tree_tag_clear(pages, index, PAGECACHE_TAG_DIRTY);
885 xa_unlock_irq(pages);
886 trace_dax_writeback_one(mapping->host, index, size >> PAGE_SHIFT);
887 put_locked_mapping_entry(mapping, index);
888 return ret;
889
890 put_unlocked:
891 put_unlocked_mapping_entry(mapping, index, entry2);
892 xa_unlock_irq(pages);
893 return ret;
894 }
895
896 /*
897 * Flush the mapping to the persistent domain within the byte range of [start,
898 * end]. This is required by data integrity operations to ensure file data is
899 * on persistent storage prior to completion of the operation.
900 */
901 int dax_writeback_mapping_range(struct address_space *mapping,
902 struct block_device *bdev, struct writeback_control *wbc)
903 {
904 struct inode *inode = mapping->host;
905 pgoff_t start_index, end_index;
906 pgoff_t indices[PAGEVEC_SIZE];
907 struct dax_device *dax_dev;
908 struct pagevec pvec;
909 bool done = false;
910 int i, ret = 0;
911
912 if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
913 return -EIO;
914
915 if (!mapping->nrexceptional || wbc->sync_mode != WB_SYNC_ALL)
916 return 0;
917
918 dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
919 if (!dax_dev)
920 return -EIO;
921
922 start_index = wbc->range_start >> PAGE_SHIFT;
923 end_index = wbc->range_end >> PAGE_SHIFT;
924
925 trace_dax_writeback_range(inode, start_index, end_index);
926
927 tag_pages_for_writeback(mapping, start_index, end_index);
928
929 pagevec_init(&pvec);
930 while (!done) {
931 pvec.nr = find_get_entries_tag(mapping, start_index,
932 PAGECACHE_TAG_TOWRITE, PAGEVEC_SIZE,
933 pvec.pages, indices);
934
935 if (pvec.nr == 0)
936 break;
937
938 for (i = 0; i < pvec.nr; i++) {
939 if (indices[i] > end_index) {
940 done = true;
941 break;
942 }
943
944 ret = dax_writeback_one(dax_dev, mapping, indices[i],
945 pvec.pages[i]);
946 if (ret < 0) {
947 mapping_set_error(mapping, ret);
948 goto out;
949 }
950 }
951 start_index = indices[pvec.nr - 1] + 1;
952 }
953 out:
954 put_dax(dax_dev);
955 trace_dax_writeback_range_done(inode, start_index, end_index);
956 return (ret < 0 ? ret : 0);
957 }
958 EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
959
960 static sector_t dax_iomap_sector(struct iomap *iomap, loff_t pos)
961 {
962 return (iomap->addr + (pos & PAGE_MASK) - iomap->offset) >> 9;
963 }
964
965 static int dax_iomap_pfn(struct iomap *iomap, loff_t pos, size_t size,
966 pfn_t *pfnp)
967 {
968 const sector_t sector = dax_iomap_sector(iomap, pos);
969 pgoff_t pgoff;
970 void *kaddr;
971 int id, rc;
972 long length;
973
974 rc = bdev_dax_pgoff(iomap->bdev, sector, size, &pgoff);
975 if (rc)
976 return rc;
977 id = dax_read_lock();
978 length = dax_direct_access(iomap->dax_dev, pgoff, PHYS_PFN(size),
979 &kaddr, pfnp);
980 if (length < 0) {
981 rc = length;
982 goto out;
983 }
984 rc = -EINVAL;
985 if (PFN_PHYS(length) < size)
986 goto out;
987 if (pfn_t_to_pfn(*pfnp) & (PHYS_PFN(size)-1))
988 goto out;
989 /* For larger pages we need devmap */
990 if (length > 1 && !pfn_t_devmap(*pfnp))
991 goto out;
992 rc = 0;
993 out:
994 dax_read_unlock(id);
995 return rc;
996 }
997
998 /*
999 * The user has performed a load from a hole in the file. Allocating a new
1000 * page in the file would cause excessive storage usage for workloads with
1001 * sparse files. Instead we insert a read-only mapping of the 4k zero page.
1002 * If this page is ever written to we will re-fault and change the mapping to
1003 * point to real DAX storage instead.
1004 */
1005 static vm_fault_t dax_load_hole(struct address_space *mapping, void *entry,
1006 struct vm_fault *vmf)
1007 {
1008 struct inode *inode = mapping->host;
1009 unsigned long vaddr = vmf->address;
1010 vm_fault_t ret = VM_FAULT_NOPAGE;
1011 struct page *zero_page;
1012 pfn_t pfn;
1013
1014 zero_page = ZERO_PAGE(0);
1015 if (unlikely(!zero_page)) {
1016 ret = VM_FAULT_OOM;
1017 goto out;
1018 }
1019
1020 pfn = page_to_pfn_t(zero_page);
1021 dax_insert_mapping_entry(mapping, vmf, entry, pfn, RADIX_DAX_ZERO_PAGE,
1022 false);
1023 ret = vmf_insert_mixed(vmf->vma, vaddr, pfn);
1024 out:
1025 trace_dax_load_hole(inode, vmf, ret);
1026 return ret;
1027 }
1028
1029 static bool dax_range_is_aligned(struct block_device *bdev,
1030 unsigned int offset, unsigned int length)
1031 {
1032 unsigned short sector_size = bdev_logical_block_size(bdev);
1033
1034 if (!IS_ALIGNED(offset, sector_size))
1035 return false;
1036 if (!IS_ALIGNED(length, sector_size))
1037 return false;
1038
1039 return true;
1040 }
1041
1042 int __dax_zero_page_range(struct block_device *bdev,
1043 struct dax_device *dax_dev, sector_t sector,
1044 unsigned int offset, unsigned int size)
1045 {
1046 if (dax_range_is_aligned(bdev, offset, size)) {
1047 sector_t start_sector = sector + (offset >> 9);
1048
1049 return blkdev_issue_zeroout(bdev, start_sector,
1050 size >> 9, GFP_NOFS, 0);
1051 } else {
1052 pgoff_t pgoff;
1053 long rc, id;
1054 void *kaddr;
1055 pfn_t pfn;
1056
1057 rc = bdev_dax_pgoff(bdev, sector, PAGE_SIZE, &pgoff);
1058 if (rc)
1059 return rc;
1060
1061 id = dax_read_lock();
1062 rc = dax_direct_access(dax_dev, pgoff, 1, &kaddr,
1063 &pfn);
1064 if (rc < 0) {
1065 dax_read_unlock(id);
1066 return rc;
1067 }
1068 memset(kaddr + offset, 0, size);
1069 dax_flush(dax_dev, kaddr + offset, size);
1070 dax_read_unlock(id);
1071 }
1072 return 0;
1073 }
1074 EXPORT_SYMBOL_GPL(__dax_zero_page_range);
1075
1076 static loff_t
1077 dax_iomap_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
1078 struct iomap *iomap)
1079 {
1080 struct block_device *bdev = iomap->bdev;
1081 struct dax_device *dax_dev = iomap->dax_dev;
1082 struct iov_iter *iter = data;
1083 loff_t end = pos + length, done = 0;
1084 ssize_t ret = 0;
1085 size_t xfer;
1086 int id;
1087
1088 if (iov_iter_rw(iter) == READ) {
1089 end = min(end, i_size_read(inode));
1090 if (pos >= end)
1091 return 0;
1092
1093 if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
1094 return iov_iter_zero(min(length, end - pos), iter);
1095 }
1096
1097 if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED))
1098 return -EIO;
1099
1100 /*
1101 * Write can allocate block for an area which has a hole page mapped
1102 * into page tables. We have to tear down these mappings so that data
1103 * written by write(2) is visible in mmap.
1104 */
1105 if (iomap->flags & IOMAP_F_NEW) {
1106 invalidate_inode_pages2_range(inode->i_mapping,
1107 pos >> PAGE_SHIFT,
1108 (end - 1) >> PAGE_SHIFT);
1109 }
1110
1111 id = dax_read_lock();
1112 while (pos < end) {
1113 unsigned offset = pos & (PAGE_SIZE - 1);
1114 const size_t size = ALIGN(length + offset, PAGE_SIZE);
1115 const sector_t sector = dax_iomap_sector(iomap, pos);
1116 ssize_t map_len;
1117 pgoff_t pgoff;
1118 void *kaddr;
1119 pfn_t pfn;
1120
1121 if (fatal_signal_pending(current)) {
1122 ret = -EINTR;
1123 break;
1124 }
1125
1126 ret = bdev_dax_pgoff(bdev, sector, size, &pgoff);
1127 if (ret)
1128 break;
1129
1130 map_len = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size),
1131 &kaddr, &pfn);
1132 if (map_len < 0) {
1133 ret = map_len;
1134 break;
1135 }
1136
1137 map_len = PFN_PHYS(map_len);
1138 kaddr += offset;
1139 map_len -= offset;
1140 if (map_len > end - pos)
1141 map_len = end - pos;
1142
1143 /*
1144 * The userspace address for the memory copy has already been
1145 * validated via access_ok() in either vfs_read() or
1146 * vfs_write(), depending on which operation we are doing.
1147 */
1148 if (iov_iter_rw(iter) == WRITE)
1149 xfer = dax_copy_from_iter(dax_dev, pgoff, kaddr,
1150 map_len, iter);
1151 else
1152 xfer = dax_copy_to_iter(dax_dev, pgoff, kaddr,
1153 map_len, iter);
1154
1155 pos += xfer;
1156 length -= xfer;
1157 done += xfer;
1158
1159 if (xfer == 0)
1160 ret = -EFAULT;
1161 if (xfer < map_len)
1162 break;
1163 }
1164 dax_read_unlock(id);
1165
1166 return done ? done : ret;
1167 }
1168
1169 /**
1170 * dax_iomap_rw - Perform I/O to a DAX file
1171 * @iocb: The control block for this I/O
1172 * @iter: The addresses to do I/O from or to
1173 * @ops: iomap ops passed from the file system
1174 *
1175 * This function performs read and write operations to directly mapped
1176 * persistent memory. The callers needs to take care of read/write exclusion
1177 * and evicting any page cache pages in the region under I/O.
1178 */
1179 ssize_t
1180 dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter,
1181 const struct iomap_ops *ops)
1182 {
1183 struct address_space *mapping = iocb->ki_filp->f_mapping;
1184 struct inode *inode = mapping->host;
1185 loff_t pos = iocb->ki_pos, ret = 0, done = 0;
1186 unsigned flags = 0;
1187
1188 if (iov_iter_rw(iter) == WRITE) {
1189 lockdep_assert_held_exclusive(&inode->i_rwsem);
1190 flags |= IOMAP_WRITE;
1191 } else {
1192 lockdep_assert_held(&inode->i_rwsem);
1193 }
1194
1195 while (iov_iter_count(iter)) {
1196 ret = iomap_apply(inode, pos, iov_iter_count(iter), flags, ops,
1197 iter, dax_iomap_actor);
1198 if (ret <= 0)
1199 break;
1200 pos += ret;
1201 done += ret;
1202 }
1203
1204 iocb->ki_pos += done;
1205 return done ? done : ret;
1206 }
1207 EXPORT_SYMBOL_GPL(dax_iomap_rw);
1208
1209 static vm_fault_t dax_fault_return(int error)
1210 {
1211 if (error == 0)
1212 return VM_FAULT_NOPAGE;
1213 if (error == -ENOMEM)
1214 return VM_FAULT_OOM;
1215 return VM_FAULT_SIGBUS;
1216 }
1217
1218 /*
1219 * MAP_SYNC on a dax mapping guarantees dirty metadata is
1220 * flushed on write-faults (non-cow), but not read-faults.
1221 */
1222 static bool dax_fault_is_synchronous(unsigned long flags,
1223 struct vm_area_struct *vma, struct iomap *iomap)
1224 {
1225 return (flags & IOMAP_WRITE) && (vma->vm_flags & VM_SYNC)
1226 && (iomap->flags & IOMAP_F_DIRTY);
1227 }
1228
1229 static vm_fault_t dax_iomap_pte_fault(struct vm_fault *vmf, pfn_t *pfnp,
1230 int *iomap_errp, const struct iomap_ops *ops)
1231 {
1232 struct vm_area_struct *vma = vmf->vma;
1233 struct address_space *mapping = vma->vm_file->f_mapping;
1234 struct inode *inode = mapping->host;
1235 unsigned long vaddr = vmf->address;
1236 loff_t pos = (loff_t)vmf->pgoff << PAGE_SHIFT;
1237 struct iomap iomap = { 0 };
1238 unsigned flags = IOMAP_FAULT;
1239 int error, major = 0;
1240 bool write = vmf->flags & FAULT_FLAG_WRITE;
1241 bool sync;
1242 vm_fault_t ret = 0;
1243 void *entry;
1244 pfn_t pfn;
1245
1246 trace_dax_pte_fault(inode, vmf, ret);
1247 /*
1248 * Check whether offset isn't beyond end of file now. Caller is supposed
1249 * to hold locks serializing us with truncate / punch hole so this is
1250 * a reliable test.
1251 */
1252 if (pos >= i_size_read(inode)) {
1253 ret = VM_FAULT_SIGBUS;
1254 goto out;
1255 }
1256
1257 if (write && !vmf->cow_page)
1258 flags |= IOMAP_WRITE;
1259
1260 entry = grab_mapping_entry(mapping, vmf->pgoff, 0);
1261 if (IS_ERR(entry)) {
1262 ret = dax_fault_return(PTR_ERR(entry));
1263 goto out;
1264 }
1265
1266 /*
1267 * It is possible, particularly with mixed reads & writes to private
1268 * mappings, that we have raced with a PMD fault that overlaps with
1269 * the PTE we need to set up. If so just return and the fault will be
1270 * retried.
1271 */
1272 if (pmd_trans_huge(*vmf->pmd) || pmd_devmap(*vmf->pmd)) {
1273 ret = VM_FAULT_NOPAGE;
1274 goto unlock_entry;
1275 }
1276
1277 /*
1278 * Note that we don't bother to use iomap_apply here: DAX required
1279 * the file system block size to be equal the page size, which means
1280 * that we never have to deal with more than a single extent here.
1281 */
1282 error = ops->iomap_begin(inode, pos, PAGE_SIZE, flags, &iomap);
1283 if (iomap_errp)
1284 *iomap_errp = error;
1285 if (error) {
1286 ret = dax_fault_return(error);
1287 goto unlock_entry;
1288 }
1289 if (WARN_ON_ONCE(iomap.offset + iomap.length < pos + PAGE_SIZE)) {
1290 error = -EIO; /* fs corruption? */
1291 goto error_finish_iomap;
1292 }
1293
1294 if (vmf->cow_page) {
1295 sector_t sector = dax_iomap_sector(&iomap, pos);
1296
1297 switch (iomap.type) {
1298 case IOMAP_HOLE:
1299 case IOMAP_UNWRITTEN:
1300 clear_user_highpage(vmf->cow_page, vaddr);
1301 break;
1302 case IOMAP_MAPPED:
1303 error = copy_user_dax(iomap.bdev, iomap.dax_dev,
1304 sector, PAGE_SIZE, vmf->cow_page, vaddr);
1305 break;
1306 default:
1307 WARN_ON_ONCE(1);
1308 error = -EIO;
1309 break;
1310 }
1311
1312 if (error)
1313 goto error_finish_iomap;
1314
1315 __SetPageUptodate(vmf->cow_page);
1316 ret = finish_fault(vmf);
1317 if (!ret)
1318 ret = VM_FAULT_DONE_COW;
1319 goto finish_iomap;
1320 }
1321
1322 sync = dax_fault_is_synchronous(flags, vma, &iomap);
1323
1324 switch (iomap.type) {
1325 case IOMAP_MAPPED:
1326 if (iomap.flags & IOMAP_F_NEW) {
1327 count_vm_event(PGMAJFAULT);
1328 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
1329 major = VM_FAULT_MAJOR;
1330 }
1331 error = dax_iomap_pfn(&iomap, pos, PAGE_SIZE, &pfn);
1332 if (error < 0)
1333 goto error_finish_iomap;
1334
1335 entry = dax_insert_mapping_entry(mapping, vmf, entry, pfn,
1336 0, write && !sync);
1337
1338 /*
1339 * If we are doing synchronous page fault and inode needs fsync,
1340 * we can insert PTE into page tables only after that happens.
1341 * Skip insertion for now and return the pfn so that caller can
1342 * insert it after fsync is done.
1343 */
1344 if (sync) {
1345 if (WARN_ON_ONCE(!pfnp)) {
1346 error = -EIO;
1347 goto error_finish_iomap;
1348 }
1349 *pfnp = pfn;
1350 ret = VM_FAULT_NEEDDSYNC | major;
1351 goto finish_iomap;
1352 }
1353 trace_dax_insert_mapping(inode, vmf, entry);
1354 if (write)
1355 ret = vmf_insert_mixed_mkwrite(vma, vaddr, pfn);
1356 else
1357 ret = vmf_insert_mixed(vma, vaddr, pfn);
1358
1359 goto finish_iomap;
1360 case IOMAP_UNWRITTEN:
1361 case IOMAP_HOLE:
1362 if (!write) {
1363 ret = dax_load_hole(mapping, entry, vmf);
1364 goto finish_iomap;
1365 }
1366 /*FALLTHRU*/
1367 default:
1368 WARN_ON_ONCE(1);
1369 error = -EIO;
1370 break;
1371 }
1372
1373 error_finish_iomap:
1374 ret = dax_fault_return(error);
1375 finish_iomap:
1376 if (ops->iomap_end) {
1377 int copied = PAGE_SIZE;
1378
1379 if (ret & VM_FAULT_ERROR)
1380 copied = 0;
1381 /*
1382 * The fault is done by now and there's no way back (other
1383 * thread may be already happily using PTE we have installed).
1384 * Just ignore error from ->iomap_end since we cannot do much
1385 * with it.
1386 */
1387 ops->iomap_end(inode, pos, PAGE_SIZE, copied, flags, &iomap);
1388 }
1389 unlock_entry:
1390 put_locked_mapping_entry(mapping, vmf->pgoff);
1391 out:
1392 trace_dax_pte_fault_done(inode, vmf, ret);
1393 return ret | major;
1394 }
1395
1396 #ifdef CONFIG_FS_DAX_PMD
1397 static vm_fault_t dax_pmd_load_hole(struct vm_fault *vmf, struct iomap *iomap,
1398 void *entry)
1399 {
1400 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1401 unsigned long pmd_addr = vmf->address & PMD_MASK;
1402 struct inode *inode = mapping->host;
1403 struct page *zero_page;
1404 void *ret = NULL;
1405 spinlock_t *ptl;
1406 pmd_t pmd_entry;
1407 pfn_t pfn;
1408
1409 zero_page = mm_get_huge_zero_page(vmf->vma->vm_mm);
1410
1411 if (unlikely(!zero_page))
1412 goto fallback;
1413
1414 pfn = page_to_pfn_t(zero_page);
1415 ret = dax_insert_mapping_entry(mapping, vmf, entry, pfn,
1416 RADIX_DAX_PMD | RADIX_DAX_ZERO_PAGE, false);
1417
1418 ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1419 if (!pmd_none(*(vmf->pmd))) {
1420 spin_unlock(ptl);
1421 goto fallback;
1422 }
1423
1424 pmd_entry = mk_pmd(zero_page, vmf->vma->vm_page_prot);
1425 pmd_entry = pmd_mkhuge(pmd_entry);
1426 set_pmd_at(vmf->vma->vm_mm, pmd_addr, vmf->pmd, pmd_entry);
1427 spin_unlock(ptl);
1428 trace_dax_pmd_load_hole(inode, vmf, zero_page, ret);
1429 return VM_FAULT_NOPAGE;
1430
1431 fallback:
1432 trace_dax_pmd_load_hole_fallback(inode, vmf, zero_page, ret);
1433 return VM_FAULT_FALLBACK;
1434 }
1435
1436 static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1437 const struct iomap_ops *ops)
1438 {
1439 struct vm_area_struct *vma = vmf->vma;
1440 struct address_space *mapping = vma->vm_file->f_mapping;
1441 unsigned long pmd_addr = vmf->address & PMD_MASK;
1442 bool write = vmf->flags & FAULT_FLAG_WRITE;
1443 bool sync;
1444 unsigned int iomap_flags = (write ? IOMAP_WRITE : 0) | IOMAP_FAULT;
1445 struct inode *inode = mapping->host;
1446 vm_fault_t result = VM_FAULT_FALLBACK;
1447 struct iomap iomap = { 0 };
1448 pgoff_t max_pgoff, pgoff;
1449 void *entry;
1450 loff_t pos;
1451 int error;
1452 pfn_t pfn;
1453
1454 /*
1455 * Check whether offset isn't beyond end of file now. Caller is
1456 * supposed to hold locks serializing us with truncate / punch hole so
1457 * this is a reliable test.
1458 */
1459 pgoff = linear_page_index(vma, pmd_addr);
1460 max_pgoff = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1461
1462 trace_dax_pmd_fault(inode, vmf, max_pgoff, 0);
1463
1464 /*
1465 * Make sure that the faulting address's PMD offset (color) matches
1466 * the PMD offset from the start of the file. This is necessary so
1467 * that a PMD range in the page table overlaps exactly with a PMD
1468 * range in the radix tree.
1469 */
1470 if ((vmf->pgoff & PG_PMD_COLOUR) !=
1471 ((vmf->address >> PAGE_SHIFT) & PG_PMD_COLOUR))
1472 goto fallback;
1473
1474 /* Fall back to PTEs if we're going to COW */
1475 if (write && !(vma->vm_flags & VM_SHARED))
1476 goto fallback;
1477
1478 /* If the PMD would extend outside the VMA */
1479 if (pmd_addr < vma->vm_start)
1480 goto fallback;
1481 if ((pmd_addr + PMD_SIZE) > vma->vm_end)
1482 goto fallback;
1483
1484 if (pgoff >= max_pgoff) {
1485 result = VM_FAULT_SIGBUS;
1486 goto out;
1487 }
1488
1489 /* If the PMD would extend beyond the file size */
1490 if ((pgoff | PG_PMD_COLOUR) >= max_pgoff)
1491 goto fallback;
1492
1493 /*
1494 * grab_mapping_entry() will make sure we get a 2MiB empty entry, a
1495 * 2MiB zero page entry or a DAX PMD. If it can't (because a 4k page
1496 * is already in the tree, for instance), it will return -EEXIST and
1497 * we just fall back to 4k entries.
1498 */
1499 entry = grab_mapping_entry(mapping, pgoff, RADIX_DAX_PMD);
1500 if (IS_ERR(entry))
1501 goto fallback;
1502
1503 /*
1504 * It is possible, particularly with mixed reads & writes to private
1505 * mappings, that we have raced with a PTE fault that overlaps with
1506 * the PMD we need to set up. If so just return and the fault will be
1507 * retried.
1508 */
1509 if (!pmd_none(*vmf->pmd) && !pmd_trans_huge(*vmf->pmd) &&
1510 !pmd_devmap(*vmf->pmd)) {
1511 result = 0;
1512 goto unlock_entry;
1513 }
1514
1515 /*
1516 * Note that we don't use iomap_apply here. We aren't doing I/O, only
1517 * setting up a mapping, so really we're using iomap_begin() as a way
1518 * to look up our filesystem block.
1519 */
1520 pos = (loff_t)pgoff << PAGE_SHIFT;
1521 error = ops->iomap_begin(inode, pos, PMD_SIZE, iomap_flags, &iomap);
1522 if (error)
1523 goto unlock_entry;
1524
1525 if (iomap.offset + iomap.length < pos + PMD_SIZE)
1526 goto finish_iomap;
1527
1528 sync = dax_fault_is_synchronous(iomap_flags, vma, &iomap);
1529
1530 switch (iomap.type) {
1531 case IOMAP_MAPPED:
1532 error = dax_iomap_pfn(&iomap, pos, PMD_SIZE, &pfn);
1533 if (error < 0)
1534 goto finish_iomap;
1535
1536 entry = dax_insert_mapping_entry(mapping, vmf, entry, pfn,
1537 RADIX_DAX_PMD, write && !sync);
1538
1539 /*
1540 * If we are doing synchronous page fault and inode needs fsync,
1541 * we can insert PMD into page tables only after that happens.
1542 * Skip insertion for now and return the pfn so that caller can
1543 * insert it after fsync is done.
1544 */
1545 if (sync) {
1546 if (WARN_ON_ONCE(!pfnp))
1547 goto finish_iomap;
1548 *pfnp = pfn;
1549 result = VM_FAULT_NEEDDSYNC;
1550 goto finish_iomap;
1551 }
1552
1553 trace_dax_pmd_insert_mapping(inode, vmf, PMD_SIZE, pfn, entry);
1554 result = vmf_insert_pfn_pmd(vma, vmf->address, vmf->pmd, pfn,
1555 write);
1556 break;
1557 case IOMAP_UNWRITTEN:
1558 case IOMAP_HOLE:
1559 if (WARN_ON_ONCE(write))
1560 break;
1561 result = dax_pmd_load_hole(vmf, &iomap, entry);
1562 break;
1563 default:
1564 WARN_ON_ONCE(1);
1565 break;
1566 }
1567
1568 finish_iomap:
1569 if (ops->iomap_end) {
1570 int copied = PMD_SIZE;
1571
1572 if (result == VM_FAULT_FALLBACK)
1573 copied = 0;
1574 /*
1575 * The fault is done by now and there's no way back (other
1576 * thread may be already happily using PMD we have installed).
1577 * Just ignore error from ->iomap_end since we cannot do much
1578 * with it.
1579 */
1580 ops->iomap_end(inode, pos, PMD_SIZE, copied, iomap_flags,
1581 &iomap);
1582 }
1583 unlock_entry:
1584 put_locked_mapping_entry(mapping, pgoff);
1585 fallback:
1586 if (result == VM_FAULT_FALLBACK) {
1587 split_huge_pmd(vma, vmf->pmd, vmf->address);
1588 count_vm_event(THP_FAULT_FALLBACK);
1589 }
1590 out:
1591 trace_dax_pmd_fault_done(inode, vmf, max_pgoff, result);
1592 return result;
1593 }
1594 #else
1595 static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1596 const struct iomap_ops *ops)
1597 {
1598 return VM_FAULT_FALLBACK;
1599 }
1600 #endif /* CONFIG_FS_DAX_PMD */
1601
1602 /**
1603 * dax_iomap_fault - handle a page fault on a DAX file
1604 * @vmf: The description of the fault
1605 * @pe_size: Size of the page to fault in
1606 * @pfnp: PFN to insert for synchronous faults if fsync is required
1607 * @iomap_errp: Storage for detailed error code in case of error
1608 * @ops: Iomap ops passed from the file system
1609 *
1610 * When a page fault occurs, filesystems may call this helper in
1611 * their fault handler for DAX files. dax_iomap_fault() assumes the caller
1612 * has done all the necessary locking for page fault to proceed
1613 * successfully.
1614 */
1615 vm_fault_t dax_iomap_fault(struct vm_fault *vmf, enum page_entry_size pe_size,
1616 pfn_t *pfnp, int *iomap_errp, const struct iomap_ops *ops)
1617 {
1618 switch (pe_size) {
1619 case PE_SIZE_PTE:
1620 return dax_iomap_pte_fault(vmf, pfnp, iomap_errp, ops);
1621 case PE_SIZE_PMD:
1622 return dax_iomap_pmd_fault(vmf, pfnp, ops);
1623 default:
1624 return VM_FAULT_FALLBACK;
1625 }
1626 }
1627 EXPORT_SYMBOL_GPL(dax_iomap_fault);
1628
1629 /**
1630 * dax_insert_pfn_mkwrite - insert PTE or PMD entry into page tables
1631 * @vmf: The description of the fault
1632 * @pe_size: Size of entry to be inserted
1633 * @pfn: PFN to insert
1634 *
1635 * This function inserts writeable PTE or PMD entry into page tables for mmaped
1636 * DAX file. It takes care of marking corresponding radix tree entry as dirty
1637 * as well.
1638 */
1639 static vm_fault_t dax_insert_pfn_mkwrite(struct vm_fault *vmf,
1640 enum page_entry_size pe_size,
1641 pfn_t pfn)
1642 {
1643 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1644 void *entry, **slot;
1645 pgoff_t index = vmf->pgoff;
1646 vm_fault_t ret;
1647
1648 xa_lock_irq(&mapping->i_pages);
1649 entry = get_unlocked_mapping_entry(mapping, index, &slot);
1650 /* Did we race with someone splitting entry or so? */
1651 if (!entry ||
1652 (pe_size == PE_SIZE_PTE && !dax_is_pte_entry(entry)) ||
1653 (pe_size == PE_SIZE_PMD && !dax_is_pmd_entry(entry))) {
1654 put_unlocked_mapping_entry(mapping, index, entry);
1655 xa_unlock_irq(&mapping->i_pages);
1656 trace_dax_insert_pfn_mkwrite_no_entry(mapping->host, vmf,
1657 VM_FAULT_NOPAGE);
1658 return VM_FAULT_NOPAGE;
1659 }
1660 radix_tree_tag_set(&mapping->i_pages, index, PAGECACHE_TAG_DIRTY);
1661 entry = lock_slot(mapping, slot);
1662 xa_unlock_irq(&mapping->i_pages);
1663 switch (pe_size) {
1664 case PE_SIZE_PTE:
1665 ret = vmf_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn);
1666 break;
1667 #ifdef CONFIG_FS_DAX_PMD
1668 case PE_SIZE_PMD:
1669 ret = vmf_insert_pfn_pmd(vmf->vma, vmf->address, vmf->pmd,
1670 pfn, true);
1671 break;
1672 #endif
1673 default:
1674 ret = VM_FAULT_FALLBACK;
1675 }
1676 put_locked_mapping_entry(mapping, index);
1677 trace_dax_insert_pfn_mkwrite(mapping->host, vmf, ret);
1678 return ret;
1679 }
1680
1681 /**
1682 * dax_finish_sync_fault - finish synchronous page fault
1683 * @vmf: The description of the fault
1684 * @pe_size: Size of entry to be inserted
1685 * @pfn: PFN to insert
1686 *
1687 * This function ensures that the file range touched by the page fault is
1688 * stored persistently on the media and handles inserting of appropriate page
1689 * table entry.
1690 */
1691 vm_fault_t dax_finish_sync_fault(struct vm_fault *vmf,
1692 enum page_entry_size pe_size, pfn_t pfn)
1693 {
1694 int err;
1695 loff_t start = ((loff_t)vmf->pgoff) << PAGE_SHIFT;
1696 size_t len = 0;
1697
1698 if (pe_size == PE_SIZE_PTE)
1699 len = PAGE_SIZE;
1700 else if (pe_size == PE_SIZE_PMD)
1701 len = PMD_SIZE;
1702 else
1703 WARN_ON_ONCE(1);
1704 err = vfs_fsync_range(vmf->vma->vm_file, start, start + len - 1, 1);
1705 if (err)
1706 return VM_FAULT_SIGBUS;
1707 return dax_insert_pfn_mkwrite(vmf, pe_size, pfn);
1708 }
1709 EXPORT_SYMBOL_GPL(dax_finish_sync_fault);