]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/dax.c
Revert "mtip32xx: pass BLK_MQ_F_NO_SCHED"
[mirror_ubuntu-artful-kernel.git] / fs / dax.c
1 /*
2 * fs/dax.c - Direct Access filesystem code
3 * Copyright (c) 2013-2014 Intel Corporation
4 * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
5 * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
6 *
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms and conditions of the GNU General Public License,
9 * version 2, as published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * more details.
15 */
16
17 #include <linux/atomic.h>
18 #include <linux/blkdev.h>
19 #include <linux/buffer_head.h>
20 #include <linux/dax.h>
21 #include <linux/fs.h>
22 #include <linux/genhd.h>
23 #include <linux/highmem.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm.h>
26 #include <linux/mutex.h>
27 #include <linux/pagevec.h>
28 #include <linux/pmem.h>
29 #include <linux/sched.h>
30 #include <linux/sched/signal.h>
31 #include <linux/uio.h>
32 #include <linux/vmstat.h>
33 #include <linux/pfn_t.h>
34 #include <linux/sizes.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/iomap.h>
37 #include "internal.h"
38
39 #define CREATE_TRACE_POINTS
40 #include <trace/events/fs_dax.h>
41
42 /* We choose 4096 entries - same as per-zone page wait tables */
43 #define DAX_WAIT_TABLE_BITS 12
44 #define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
45
46 static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES];
47
48 static int __init init_dax_wait_table(void)
49 {
50 int i;
51
52 for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++)
53 init_waitqueue_head(wait_table + i);
54 return 0;
55 }
56 fs_initcall(init_dax_wait_table);
57
58 static long dax_map_atomic(struct block_device *bdev, struct blk_dax_ctl *dax)
59 {
60 struct request_queue *q = bdev->bd_queue;
61 long rc = -EIO;
62
63 dax->addr = ERR_PTR(-EIO);
64 if (blk_queue_enter(q, true) != 0)
65 return rc;
66
67 rc = bdev_direct_access(bdev, dax);
68 if (rc < 0) {
69 dax->addr = ERR_PTR(rc);
70 blk_queue_exit(q);
71 return rc;
72 }
73 return rc;
74 }
75
76 static void dax_unmap_atomic(struct block_device *bdev,
77 const struct blk_dax_ctl *dax)
78 {
79 if (IS_ERR(dax->addr))
80 return;
81 blk_queue_exit(bdev->bd_queue);
82 }
83
84 static int dax_is_pmd_entry(void *entry)
85 {
86 return (unsigned long)entry & RADIX_DAX_PMD;
87 }
88
89 static int dax_is_pte_entry(void *entry)
90 {
91 return !((unsigned long)entry & RADIX_DAX_PMD);
92 }
93
94 static int dax_is_zero_entry(void *entry)
95 {
96 return (unsigned long)entry & RADIX_DAX_HZP;
97 }
98
99 static int dax_is_empty_entry(void *entry)
100 {
101 return (unsigned long)entry & RADIX_DAX_EMPTY;
102 }
103
104 struct page *read_dax_sector(struct block_device *bdev, sector_t n)
105 {
106 struct page *page = alloc_pages(GFP_KERNEL, 0);
107 struct blk_dax_ctl dax = {
108 .size = PAGE_SIZE,
109 .sector = n & ~((((int) PAGE_SIZE) / 512) - 1),
110 };
111 long rc;
112
113 if (!page)
114 return ERR_PTR(-ENOMEM);
115
116 rc = dax_map_atomic(bdev, &dax);
117 if (rc < 0)
118 return ERR_PTR(rc);
119 memcpy_from_pmem(page_address(page), dax.addr, PAGE_SIZE);
120 dax_unmap_atomic(bdev, &dax);
121 return page;
122 }
123
124 /*
125 * DAX radix tree locking
126 */
127 struct exceptional_entry_key {
128 struct address_space *mapping;
129 pgoff_t entry_start;
130 };
131
132 struct wait_exceptional_entry_queue {
133 wait_queue_t wait;
134 struct exceptional_entry_key key;
135 };
136
137 static wait_queue_head_t *dax_entry_waitqueue(struct address_space *mapping,
138 pgoff_t index, void *entry, struct exceptional_entry_key *key)
139 {
140 unsigned long hash;
141
142 /*
143 * If 'entry' is a PMD, align the 'index' that we use for the wait
144 * queue to the start of that PMD. This ensures that all offsets in
145 * the range covered by the PMD map to the same bit lock.
146 */
147 if (dax_is_pmd_entry(entry))
148 index &= ~((1UL << (PMD_SHIFT - PAGE_SHIFT)) - 1);
149
150 key->mapping = mapping;
151 key->entry_start = index;
152
153 hash = hash_long((unsigned long)mapping ^ index, DAX_WAIT_TABLE_BITS);
154 return wait_table + hash;
155 }
156
157 static int wake_exceptional_entry_func(wait_queue_t *wait, unsigned int mode,
158 int sync, void *keyp)
159 {
160 struct exceptional_entry_key *key = keyp;
161 struct wait_exceptional_entry_queue *ewait =
162 container_of(wait, struct wait_exceptional_entry_queue, wait);
163
164 if (key->mapping != ewait->key.mapping ||
165 key->entry_start != ewait->key.entry_start)
166 return 0;
167 return autoremove_wake_function(wait, mode, sync, NULL);
168 }
169
170 /*
171 * Check whether the given slot is locked. The function must be called with
172 * mapping->tree_lock held
173 */
174 static inline int slot_locked(struct address_space *mapping, void **slot)
175 {
176 unsigned long entry = (unsigned long)
177 radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
178 return entry & RADIX_DAX_ENTRY_LOCK;
179 }
180
181 /*
182 * Mark the given slot is locked. The function must be called with
183 * mapping->tree_lock held
184 */
185 static inline void *lock_slot(struct address_space *mapping, void **slot)
186 {
187 unsigned long entry = (unsigned long)
188 radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
189
190 entry |= RADIX_DAX_ENTRY_LOCK;
191 radix_tree_replace_slot(&mapping->page_tree, slot, (void *)entry);
192 return (void *)entry;
193 }
194
195 /*
196 * Mark the given slot is unlocked. The function must be called with
197 * mapping->tree_lock held
198 */
199 static inline void *unlock_slot(struct address_space *mapping, void **slot)
200 {
201 unsigned long entry = (unsigned long)
202 radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
203
204 entry &= ~(unsigned long)RADIX_DAX_ENTRY_LOCK;
205 radix_tree_replace_slot(&mapping->page_tree, slot, (void *)entry);
206 return (void *)entry;
207 }
208
209 /*
210 * Lookup entry in radix tree, wait for it to become unlocked if it is
211 * exceptional entry and return it. The caller must call
212 * put_unlocked_mapping_entry() when he decided not to lock the entry or
213 * put_locked_mapping_entry() when he locked the entry and now wants to
214 * unlock it.
215 *
216 * The function must be called with mapping->tree_lock held.
217 */
218 static void *get_unlocked_mapping_entry(struct address_space *mapping,
219 pgoff_t index, void ***slotp)
220 {
221 void *entry, **slot;
222 struct wait_exceptional_entry_queue ewait;
223 wait_queue_head_t *wq;
224
225 init_wait(&ewait.wait);
226 ewait.wait.func = wake_exceptional_entry_func;
227
228 for (;;) {
229 entry = __radix_tree_lookup(&mapping->page_tree, index, NULL,
230 &slot);
231 if (!entry || !radix_tree_exceptional_entry(entry) ||
232 !slot_locked(mapping, slot)) {
233 if (slotp)
234 *slotp = slot;
235 return entry;
236 }
237
238 wq = dax_entry_waitqueue(mapping, index, entry, &ewait.key);
239 prepare_to_wait_exclusive(wq, &ewait.wait,
240 TASK_UNINTERRUPTIBLE);
241 spin_unlock_irq(&mapping->tree_lock);
242 schedule();
243 finish_wait(wq, &ewait.wait);
244 spin_lock_irq(&mapping->tree_lock);
245 }
246 }
247
248 static void dax_unlock_mapping_entry(struct address_space *mapping,
249 pgoff_t index)
250 {
251 void *entry, **slot;
252
253 spin_lock_irq(&mapping->tree_lock);
254 entry = __radix_tree_lookup(&mapping->page_tree, index, NULL, &slot);
255 if (WARN_ON_ONCE(!entry || !radix_tree_exceptional_entry(entry) ||
256 !slot_locked(mapping, slot))) {
257 spin_unlock_irq(&mapping->tree_lock);
258 return;
259 }
260 unlock_slot(mapping, slot);
261 spin_unlock_irq(&mapping->tree_lock);
262 dax_wake_mapping_entry_waiter(mapping, index, entry, false);
263 }
264
265 static void put_locked_mapping_entry(struct address_space *mapping,
266 pgoff_t index, void *entry)
267 {
268 if (!radix_tree_exceptional_entry(entry)) {
269 unlock_page(entry);
270 put_page(entry);
271 } else {
272 dax_unlock_mapping_entry(mapping, index);
273 }
274 }
275
276 /*
277 * Called when we are done with radix tree entry we looked up via
278 * get_unlocked_mapping_entry() and which we didn't lock in the end.
279 */
280 static void put_unlocked_mapping_entry(struct address_space *mapping,
281 pgoff_t index, void *entry)
282 {
283 if (!radix_tree_exceptional_entry(entry))
284 return;
285
286 /* We have to wake up next waiter for the radix tree entry lock */
287 dax_wake_mapping_entry_waiter(mapping, index, entry, false);
288 }
289
290 /*
291 * Find radix tree entry at given index. If it points to a page, return with
292 * the page locked. If it points to the exceptional entry, return with the
293 * radix tree entry locked. If the radix tree doesn't contain given index,
294 * create empty exceptional entry for the index and return with it locked.
295 *
296 * When requesting an entry with size RADIX_DAX_PMD, grab_mapping_entry() will
297 * either return that locked entry or will return an error. This error will
298 * happen if there are any 4k entries (either zero pages or DAX entries)
299 * within the 2MiB range that we are requesting.
300 *
301 * We always favor 4k entries over 2MiB entries. There isn't a flow where we
302 * evict 4k entries in order to 'upgrade' them to a 2MiB entry. A 2MiB
303 * insertion will fail if it finds any 4k entries already in the tree, and a
304 * 4k insertion will cause an existing 2MiB entry to be unmapped and
305 * downgraded to 4k entries. This happens for both 2MiB huge zero pages as
306 * well as 2MiB empty entries.
307 *
308 * The exception to this downgrade path is for 2MiB DAX PMD entries that have
309 * real storage backing them. We will leave these real 2MiB DAX entries in
310 * the tree, and PTE writes will simply dirty the entire 2MiB DAX entry.
311 *
312 * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
313 * persistent memory the benefit is doubtful. We can add that later if we can
314 * show it helps.
315 */
316 static void *grab_mapping_entry(struct address_space *mapping, pgoff_t index,
317 unsigned long size_flag)
318 {
319 bool pmd_downgrade = false; /* splitting 2MiB entry into 4k entries? */
320 void *entry, **slot;
321
322 restart:
323 spin_lock_irq(&mapping->tree_lock);
324 entry = get_unlocked_mapping_entry(mapping, index, &slot);
325
326 if (entry) {
327 if (size_flag & RADIX_DAX_PMD) {
328 if (!radix_tree_exceptional_entry(entry) ||
329 dax_is_pte_entry(entry)) {
330 put_unlocked_mapping_entry(mapping, index,
331 entry);
332 entry = ERR_PTR(-EEXIST);
333 goto out_unlock;
334 }
335 } else { /* trying to grab a PTE entry */
336 if (radix_tree_exceptional_entry(entry) &&
337 dax_is_pmd_entry(entry) &&
338 (dax_is_zero_entry(entry) ||
339 dax_is_empty_entry(entry))) {
340 pmd_downgrade = true;
341 }
342 }
343 }
344
345 /* No entry for given index? Make sure radix tree is big enough. */
346 if (!entry || pmd_downgrade) {
347 int err;
348
349 if (pmd_downgrade) {
350 /*
351 * Make sure 'entry' remains valid while we drop
352 * mapping->tree_lock.
353 */
354 entry = lock_slot(mapping, slot);
355 }
356
357 spin_unlock_irq(&mapping->tree_lock);
358 /*
359 * Besides huge zero pages the only other thing that gets
360 * downgraded are empty entries which don't need to be
361 * unmapped.
362 */
363 if (pmd_downgrade && dax_is_zero_entry(entry))
364 unmap_mapping_range(mapping,
365 (index << PAGE_SHIFT) & PMD_MASK, PMD_SIZE, 0);
366
367 err = radix_tree_preload(
368 mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM);
369 if (err) {
370 if (pmd_downgrade)
371 put_locked_mapping_entry(mapping, index, entry);
372 return ERR_PTR(err);
373 }
374 spin_lock_irq(&mapping->tree_lock);
375
376 if (!entry) {
377 /*
378 * We needed to drop the page_tree lock while calling
379 * radix_tree_preload() and we didn't have an entry to
380 * lock. See if another thread inserted an entry at
381 * our index during this time.
382 */
383 entry = __radix_tree_lookup(&mapping->page_tree, index,
384 NULL, &slot);
385 if (entry) {
386 radix_tree_preload_end();
387 spin_unlock_irq(&mapping->tree_lock);
388 goto restart;
389 }
390 }
391
392 if (pmd_downgrade) {
393 radix_tree_delete(&mapping->page_tree, index);
394 mapping->nrexceptional--;
395 dax_wake_mapping_entry_waiter(mapping, index, entry,
396 true);
397 }
398
399 entry = dax_radix_locked_entry(0, size_flag | RADIX_DAX_EMPTY);
400
401 err = __radix_tree_insert(&mapping->page_tree, index,
402 dax_radix_order(entry), entry);
403 radix_tree_preload_end();
404 if (err) {
405 spin_unlock_irq(&mapping->tree_lock);
406 /*
407 * Our insertion of a DAX entry failed, most likely
408 * because we were inserting a PMD entry and it
409 * collided with a PTE sized entry at a different
410 * index in the PMD range. We haven't inserted
411 * anything into the radix tree and have no waiters to
412 * wake.
413 */
414 return ERR_PTR(err);
415 }
416 /* Good, we have inserted empty locked entry into the tree. */
417 mapping->nrexceptional++;
418 spin_unlock_irq(&mapping->tree_lock);
419 return entry;
420 }
421 /* Normal page in radix tree? */
422 if (!radix_tree_exceptional_entry(entry)) {
423 struct page *page = entry;
424
425 get_page(page);
426 spin_unlock_irq(&mapping->tree_lock);
427 lock_page(page);
428 /* Page got truncated? Retry... */
429 if (unlikely(page->mapping != mapping)) {
430 unlock_page(page);
431 put_page(page);
432 goto restart;
433 }
434 return page;
435 }
436 entry = lock_slot(mapping, slot);
437 out_unlock:
438 spin_unlock_irq(&mapping->tree_lock);
439 return entry;
440 }
441
442 /*
443 * We do not necessarily hold the mapping->tree_lock when we call this
444 * function so it is possible that 'entry' is no longer a valid item in the
445 * radix tree. This is okay because all we really need to do is to find the
446 * correct waitqueue where tasks might be waiting for that old 'entry' and
447 * wake them.
448 */
449 void dax_wake_mapping_entry_waiter(struct address_space *mapping,
450 pgoff_t index, void *entry, bool wake_all)
451 {
452 struct exceptional_entry_key key;
453 wait_queue_head_t *wq;
454
455 wq = dax_entry_waitqueue(mapping, index, entry, &key);
456
457 /*
458 * Checking for locked entry and prepare_to_wait_exclusive() happens
459 * under mapping->tree_lock, ditto for entry handling in our callers.
460 * So at this point all tasks that could have seen our entry locked
461 * must be in the waitqueue and the following check will see them.
462 */
463 if (waitqueue_active(wq))
464 __wake_up(wq, TASK_NORMAL, wake_all ? 0 : 1, &key);
465 }
466
467 static int __dax_invalidate_mapping_entry(struct address_space *mapping,
468 pgoff_t index, bool trunc)
469 {
470 int ret = 0;
471 void *entry;
472 struct radix_tree_root *page_tree = &mapping->page_tree;
473
474 spin_lock_irq(&mapping->tree_lock);
475 entry = get_unlocked_mapping_entry(mapping, index, NULL);
476 if (!entry || !radix_tree_exceptional_entry(entry))
477 goto out;
478 if (!trunc &&
479 (radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_DIRTY) ||
480 radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_TOWRITE)))
481 goto out;
482 radix_tree_delete(page_tree, index);
483 mapping->nrexceptional--;
484 ret = 1;
485 out:
486 put_unlocked_mapping_entry(mapping, index, entry);
487 spin_unlock_irq(&mapping->tree_lock);
488 return ret;
489 }
490 /*
491 * Delete exceptional DAX entry at @index from @mapping. Wait for radix tree
492 * entry to get unlocked before deleting it.
493 */
494 int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index)
495 {
496 int ret = __dax_invalidate_mapping_entry(mapping, index, true);
497
498 /*
499 * This gets called from truncate / punch_hole path. As such, the caller
500 * must hold locks protecting against concurrent modifications of the
501 * radix tree (usually fs-private i_mmap_sem for writing). Since the
502 * caller has seen exceptional entry for this index, we better find it
503 * at that index as well...
504 */
505 WARN_ON_ONCE(!ret);
506 return ret;
507 }
508
509 /*
510 * Invalidate exceptional DAX entry if easily possible. This handles DAX
511 * entries for invalidate_inode_pages() so we evict the entry only if we can
512 * do so without blocking.
513 */
514 int dax_invalidate_mapping_entry(struct address_space *mapping, pgoff_t index)
515 {
516 int ret = 0;
517 void *entry, **slot;
518 struct radix_tree_root *page_tree = &mapping->page_tree;
519
520 spin_lock_irq(&mapping->tree_lock);
521 entry = __radix_tree_lookup(page_tree, index, NULL, &slot);
522 if (!entry || !radix_tree_exceptional_entry(entry) ||
523 slot_locked(mapping, slot))
524 goto out;
525 if (radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_DIRTY) ||
526 radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_TOWRITE))
527 goto out;
528 radix_tree_delete(page_tree, index);
529 mapping->nrexceptional--;
530 ret = 1;
531 out:
532 spin_unlock_irq(&mapping->tree_lock);
533 if (ret)
534 dax_wake_mapping_entry_waiter(mapping, index, entry, true);
535 return ret;
536 }
537
538 /*
539 * Invalidate exceptional DAX entry if it is clean.
540 */
541 int dax_invalidate_mapping_entry_sync(struct address_space *mapping,
542 pgoff_t index)
543 {
544 return __dax_invalidate_mapping_entry(mapping, index, false);
545 }
546
547 /*
548 * The user has performed a load from a hole in the file. Allocating
549 * a new page in the file would cause excessive storage usage for
550 * workloads with sparse files. We allocate a page cache page instead.
551 * We'll kick it out of the page cache if it's ever written to,
552 * otherwise it will simply fall out of the page cache under memory
553 * pressure without ever having been dirtied.
554 */
555 static int dax_load_hole(struct address_space *mapping, void **entry,
556 struct vm_fault *vmf)
557 {
558 struct page *page;
559 int ret;
560
561 /* Hole page already exists? Return it... */
562 if (!radix_tree_exceptional_entry(*entry)) {
563 page = *entry;
564 goto out;
565 }
566
567 /* This will replace locked radix tree entry with a hole page */
568 page = find_or_create_page(mapping, vmf->pgoff,
569 vmf->gfp_mask | __GFP_ZERO);
570 if (!page)
571 return VM_FAULT_OOM;
572 out:
573 vmf->page = page;
574 ret = finish_fault(vmf);
575 vmf->page = NULL;
576 *entry = page;
577 if (!ret) {
578 /* Grab reference for PTE that is now referencing the page */
579 get_page(page);
580 return VM_FAULT_NOPAGE;
581 }
582 return ret;
583 }
584
585 static int copy_user_dax(struct block_device *bdev, sector_t sector, size_t size,
586 struct page *to, unsigned long vaddr)
587 {
588 struct blk_dax_ctl dax = {
589 .sector = sector,
590 .size = size,
591 };
592 void *vto;
593
594 if (dax_map_atomic(bdev, &dax) < 0)
595 return PTR_ERR(dax.addr);
596 vto = kmap_atomic(to);
597 copy_user_page(vto, (void __force *)dax.addr, vaddr, to);
598 kunmap_atomic(vto);
599 dax_unmap_atomic(bdev, &dax);
600 return 0;
601 }
602
603 /*
604 * By this point grab_mapping_entry() has ensured that we have a locked entry
605 * of the appropriate size so we don't have to worry about downgrading PMDs to
606 * PTEs. If we happen to be trying to insert a PTE and there is a PMD
607 * already in the tree, we will skip the insertion and just dirty the PMD as
608 * appropriate.
609 */
610 static void *dax_insert_mapping_entry(struct address_space *mapping,
611 struct vm_fault *vmf,
612 void *entry, sector_t sector,
613 unsigned long flags)
614 {
615 struct radix_tree_root *page_tree = &mapping->page_tree;
616 int error = 0;
617 bool hole_fill = false;
618 void *new_entry;
619 pgoff_t index = vmf->pgoff;
620
621 if (vmf->flags & FAULT_FLAG_WRITE)
622 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
623
624 /* Replacing hole page with block mapping? */
625 if (!radix_tree_exceptional_entry(entry)) {
626 hole_fill = true;
627 /*
628 * Unmap the page now before we remove it from page cache below.
629 * The page is locked so it cannot be faulted in again.
630 */
631 unmap_mapping_range(mapping, vmf->pgoff << PAGE_SHIFT,
632 PAGE_SIZE, 0);
633 error = radix_tree_preload(vmf->gfp_mask & ~__GFP_HIGHMEM);
634 if (error)
635 return ERR_PTR(error);
636 } else if (dax_is_zero_entry(entry) && !(flags & RADIX_DAX_HZP)) {
637 /* replacing huge zero page with PMD block mapping */
638 unmap_mapping_range(mapping,
639 (vmf->pgoff << PAGE_SHIFT) & PMD_MASK, PMD_SIZE, 0);
640 }
641
642 spin_lock_irq(&mapping->tree_lock);
643 new_entry = dax_radix_locked_entry(sector, flags);
644
645 if (hole_fill) {
646 __delete_from_page_cache(entry, NULL);
647 /* Drop pagecache reference */
648 put_page(entry);
649 error = __radix_tree_insert(page_tree, index,
650 dax_radix_order(new_entry), new_entry);
651 if (error) {
652 new_entry = ERR_PTR(error);
653 goto unlock;
654 }
655 mapping->nrexceptional++;
656 } else if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
657 /*
658 * Only swap our new entry into the radix tree if the current
659 * entry is a zero page or an empty entry. If a normal PTE or
660 * PMD entry is already in the tree, we leave it alone. This
661 * means that if we are trying to insert a PTE and the
662 * existing entry is a PMD, we will just leave the PMD in the
663 * tree and dirty it if necessary.
664 */
665 struct radix_tree_node *node;
666 void **slot;
667 void *ret;
668
669 ret = __radix_tree_lookup(page_tree, index, &node, &slot);
670 WARN_ON_ONCE(ret != entry);
671 __radix_tree_replace(page_tree, node, slot,
672 new_entry, NULL, NULL);
673 }
674 if (vmf->flags & FAULT_FLAG_WRITE)
675 radix_tree_tag_set(page_tree, index, PAGECACHE_TAG_DIRTY);
676 unlock:
677 spin_unlock_irq(&mapping->tree_lock);
678 if (hole_fill) {
679 radix_tree_preload_end();
680 /*
681 * We don't need hole page anymore, it has been replaced with
682 * locked radix tree entry now.
683 */
684 if (mapping->a_ops->freepage)
685 mapping->a_ops->freepage(entry);
686 unlock_page(entry);
687 put_page(entry);
688 }
689 return new_entry;
690 }
691
692 static inline unsigned long
693 pgoff_address(pgoff_t pgoff, struct vm_area_struct *vma)
694 {
695 unsigned long address;
696
697 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
698 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
699 return address;
700 }
701
702 /* Walk all mappings of a given index of a file and writeprotect them */
703 static void dax_mapping_entry_mkclean(struct address_space *mapping,
704 pgoff_t index, unsigned long pfn)
705 {
706 struct vm_area_struct *vma;
707 pte_t pte, *ptep = NULL;
708 pmd_t *pmdp = NULL;
709 spinlock_t *ptl;
710 bool changed;
711
712 i_mmap_lock_read(mapping);
713 vma_interval_tree_foreach(vma, &mapping->i_mmap, index, index) {
714 unsigned long address;
715
716 cond_resched();
717
718 if (!(vma->vm_flags & VM_SHARED))
719 continue;
720
721 address = pgoff_address(index, vma);
722 changed = false;
723 if (follow_pte_pmd(vma->vm_mm, address, &ptep, &pmdp, &ptl))
724 continue;
725
726 if (pmdp) {
727 #ifdef CONFIG_FS_DAX_PMD
728 pmd_t pmd;
729
730 if (pfn != pmd_pfn(*pmdp))
731 goto unlock_pmd;
732 if (!pmd_dirty(*pmdp) && !pmd_write(*pmdp))
733 goto unlock_pmd;
734
735 flush_cache_page(vma, address, pfn);
736 pmd = pmdp_huge_clear_flush(vma, address, pmdp);
737 pmd = pmd_wrprotect(pmd);
738 pmd = pmd_mkclean(pmd);
739 set_pmd_at(vma->vm_mm, address, pmdp, pmd);
740 changed = true;
741 unlock_pmd:
742 spin_unlock(ptl);
743 #endif
744 } else {
745 if (pfn != pte_pfn(*ptep))
746 goto unlock_pte;
747 if (!pte_dirty(*ptep) && !pte_write(*ptep))
748 goto unlock_pte;
749
750 flush_cache_page(vma, address, pfn);
751 pte = ptep_clear_flush(vma, address, ptep);
752 pte = pte_wrprotect(pte);
753 pte = pte_mkclean(pte);
754 set_pte_at(vma->vm_mm, address, ptep, pte);
755 changed = true;
756 unlock_pte:
757 pte_unmap_unlock(ptep, ptl);
758 }
759
760 if (changed)
761 mmu_notifier_invalidate_page(vma->vm_mm, address);
762 }
763 i_mmap_unlock_read(mapping);
764 }
765
766 static int dax_writeback_one(struct block_device *bdev,
767 struct address_space *mapping, pgoff_t index, void *entry)
768 {
769 struct radix_tree_root *page_tree = &mapping->page_tree;
770 struct blk_dax_ctl dax;
771 void *entry2, **slot;
772 int ret = 0;
773
774 /*
775 * A page got tagged dirty in DAX mapping? Something is seriously
776 * wrong.
777 */
778 if (WARN_ON(!radix_tree_exceptional_entry(entry)))
779 return -EIO;
780
781 spin_lock_irq(&mapping->tree_lock);
782 entry2 = get_unlocked_mapping_entry(mapping, index, &slot);
783 /* Entry got punched out / reallocated? */
784 if (!entry2 || !radix_tree_exceptional_entry(entry2))
785 goto put_unlocked;
786 /*
787 * Entry got reallocated elsewhere? No need to writeback. We have to
788 * compare sectors as we must not bail out due to difference in lockbit
789 * or entry type.
790 */
791 if (dax_radix_sector(entry2) != dax_radix_sector(entry))
792 goto put_unlocked;
793 if (WARN_ON_ONCE(dax_is_empty_entry(entry) ||
794 dax_is_zero_entry(entry))) {
795 ret = -EIO;
796 goto put_unlocked;
797 }
798
799 /* Another fsync thread may have already written back this entry */
800 if (!radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_TOWRITE))
801 goto put_unlocked;
802 /* Lock the entry to serialize with page faults */
803 entry = lock_slot(mapping, slot);
804 /*
805 * We can clear the tag now but we have to be careful so that concurrent
806 * dax_writeback_one() calls for the same index cannot finish before we
807 * actually flush the caches. This is achieved as the calls will look
808 * at the entry only under tree_lock and once they do that they will
809 * see the entry locked and wait for it to unlock.
810 */
811 radix_tree_tag_clear(page_tree, index, PAGECACHE_TAG_TOWRITE);
812 spin_unlock_irq(&mapping->tree_lock);
813
814 /*
815 * Even if dax_writeback_mapping_range() was given a wbc->range_start
816 * in the middle of a PMD, the 'index' we are given will be aligned to
817 * the start index of the PMD, as will the sector we pull from
818 * 'entry'. This allows us to flush for PMD_SIZE and not have to
819 * worry about partial PMD writebacks.
820 */
821 dax.sector = dax_radix_sector(entry);
822 dax.size = PAGE_SIZE << dax_radix_order(entry);
823
824 /*
825 * We cannot hold tree_lock while calling dax_map_atomic() because it
826 * eventually calls cond_resched().
827 */
828 ret = dax_map_atomic(bdev, &dax);
829 if (ret < 0) {
830 put_locked_mapping_entry(mapping, index, entry);
831 return ret;
832 }
833
834 if (WARN_ON_ONCE(ret < dax.size)) {
835 ret = -EIO;
836 goto unmap;
837 }
838
839 dax_mapping_entry_mkclean(mapping, index, pfn_t_to_pfn(dax.pfn));
840 wb_cache_pmem(dax.addr, dax.size);
841 /*
842 * After we have flushed the cache, we can clear the dirty tag. There
843 * cannot be new dirty data in the pfn after the flush has completed as
844 * the pfn mappings are writeprotected and fault waits for mapping
845 * entry lock.
846 */
847 spin_lock_irq(&mapping->tree_lock);
848 radix_tree_tag_clear(page_tree, index, PAGECACHE_TAG_DIRTY);
849 spin_unlock_irq(&mapping->tree_lock);
850 unmap:
851 dax_unmap_atomic(bdev, &dax);
852 put_locked_mapping_entry(mapping, index, entry);
853 return ret;
854
855 put_unlocked:
856 put_unlocked_mapping_entry(mapping, index, entry2);
857 spin_unlock_irq(&mapping->tree_lock);
858 return ret;
859 }
860
861 /*
862 * Flush the mapping to the persistent domain within the byte range of [start,
863 * end]. This is required by data integrity operations to ensure file data is
864 * on persistent storage prior to completion of the operation.
865 */
866 int dax_writeback_mapping_range(struct address_space *mapping,
867 struct block_device *bdev, struct writeback_control *wbc)
868 {
869 struct inode *inode = mapping->host;
870 pgoff_t start_index, end_index;
871 pgoff_t indices[PAGEVEC_SIZE];
872 struct pagevec pvec;
873 bool done = false;
874 int i, ret = 0;
875
876 if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
877 return -EIO;
878
879 if (!mapping->nrexceptional || wbc->sync_mode != WB_SYNC_ALL)
880 return 0;
881
882 start_index = wbc->range_start >> PAGE_SHIFT;
883 end_index = wbc->range_end >> PAGE_SHIFT;
884
885 tag_pages_for_writeback(mapping, start_index, end_index);
886
887 pagevec_init(&pvec, 0);
888 while (!done) {
889 pvec.nr = find_get_entries_tag(mapping, start_index,
890 PAGECACHE_TAG_TOWRITE, PAGEVEC_SIZE,
891 pvec.pages, indices);
892
893 if (pvec.nr == 0)
894 break;
895
896 for (i = 0; i < pvec.nr; i++) {
897 if (indices[i] > end_index) {
898 done = true;
899 break;
900 }
901
902 ret = dax_writeback_one(bdev, mapping, indices[i],
903 pvec.pages[i]);
904 if (ret < 0)
905 return ret;
906 }
907 }
908 return 0;
909 }
910 EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
911
912 static int dax_insert_mapping(struct address_space *mapping,
913 struct block_device *bdev, sector_t sector, size_t size,
914 void **entryp, struct vm_area_struct *vma, struct vm_fault *vmf)
915 {
916 unsigned long vaddr = vmf->address;
917 struct blk_dax_ctl dax = {
918 .sector = sector,
919 .size = size,
920 };
921 void *ret;
922 void *entry = *entryp;
923
924 if (dax_map_atomic(bdev, &dax) < 0)
925 return PTR_ERR(dax.addr);
926 dax_unmap_atomic(bdev, &dax);
927
928 ret = dax_insert_mapping_entry(mapping, vmf, entry, dax.sector, 0);
929 if (IS_ERR(ret))
930 return PTR_ERR(ret);
931 *entryp = ret;
932
933 return vm_insert_mixed(vma, vaddr, dax.pfn);
934 }
935
936 /**
937 * dax_pfn_mkwrite - handle first write to DAX page
938 * @vmf: The description of the fault
939 */
940 int dax_pfn_mkwrite(struct vm_fault *vmf)
941 {
942 struct file *file = vmf->vma->vm_file;
943 struct address_space *mapping = file->f_mapping;
944 void *entry, **slot;
945 pgoff_t index = vmf->pgoff;
946
947 spin_lock_irq(&mapping->tree_lock);
948 entry = get_unlocked_mapping_entry(mapping, index, &slot);
949 if (!entry || !radix_tree_exceptional_entry(entry)) {
950 if (entry)
951 put_unlocked_mapping_entry(mapping, index, entry);
952 spin_unlock_irq(&mapping->tree_lock);
953 return VM_FAULT_NOPAGE;
954 }
955 radix_tree_tag_set(&mapping->page_tree, index, PAGECACHE_TAG_DIRTY);
956 entry = lock_slot(mapping, slot);
957 spin_unlock_irq(&mapping->tree_lock);
958 /*
959 * If we race with somebody updating the PTE and finish_mkwrite_fault()
960 * fails, we don't care. We need to return VM_FAULT_NOPAGE and retry
961 * the fault in either case.
962 */
963 finish_mkwrite_fault(vmf);
964 put_locked_mapping_entry(mapping, index, entry);
965 return VM_FAULT_NOPAGE;
966 }
967 EXPORT_SYMBOL_GPL(dax_pfn_mkwrite);
968
969 static bool dax_range_is_aligned(struct block_device *bdev,
970 unsigned int offset, unsigned int length)
971 {
972 unsigned short sector_size = bdev_logical_block_size(bdev);
973
974 if (!IS_ALIGNED(offset, sector_size))
975 return false;
976 if (!IS_ALIGNED(length, sector_size))
977 return false;
978
979 return true;
980 }
981
982 int __dax_zero_page_range(struct block_device *bdev, sector_t sector,
983 unsigned int offset, unsigned int length)
984 {
985 struct blk_dax_ctl dax = {
986 .sector = sector,
987 .size = PAGE_SIZE,
988 };
989
990 if (dax_range_is_aligned(bdev, offset, length)) {
991 sector_t start_sector = dax.sector + (offset >> 9);
992
993 return blkdev_issue_zeroout(bdev, start_sector,
994 length >> 9, GFP_NOFS, 0);
995 } else {
996 if (dax_map_atomic(bdev, &dax) < 0)
997 return PTR_ERR(dax.addr);
998 clear_pmem(dax.addr + offset, length);
999 dax_unmap_atomic(bdev, &dax);
1000 }
1001 return 0;
1002 }
1003 EXPORT_SYMBOL_GPL(__dax_zero_page_range);
1004
1005 static sector_t dax_iomap_sector(struct iomap *iomap, loff_t pos)
1006 {
1007 return iomap->blkno + (((pos & PAGE_MASK) - iomap->offset) >> 9);
1008 }
1009
1010 static loff_t
1011 dax_iomap_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
1012 struct iomap *iomap)
1013 {
1014 struct iov_iter *iter = data;
1015 loff_t end = pos + length, done = 0;
1016 ssize_t ret = 0;
1017
1018 if (iov_iter_rw(iter) == READ) {
1019 end = min(end, i_size_read(inode));
1020 if (pos >= end)
1021 return 0;
1022
1023 if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
1024 return iov_iter_zero(min(length, end - pos), iter);
1025 }
1026
1027 if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED))
1028 return -EIO;
1029
1030 /*
1031 * Write can allocate block for an area which has a hole page mapped
1032 * into page tables. We have to tear down these mappings so that data
1033 * written by write(2) is visible in mmap.
1034 */
1035 if ((iomap->flags & IOMAP_F_NEW) && inode->i_mapping->nrpages) {
1036 invalidate_inode_pages2_range(inode->i_mapping,
1037 pos >> PAGE_SHIFT,
1038 (end - 1) >> PAGE_SHIFT);
1039 }
1040
1041 while (pos < end) {
1042 unsigned offset = pos & (PAGE_SIZE - 1);
1043 struct blk_dax_ctl dax = { 0 };
1044 ssize_t map_len;
1045
1046 if (fatal_signal_pending(current)) {
1047 ret = -EINTR;
1048 break;
1049 }
1050
1051 dax.sector = dax_iomap_sector(iomap, pos);
1052 dax.size = (length + offset + PAGE_SIZE - 1) & PAGE_MASK;
1053 map_len = dax_map_atomic(iomap->bdev, &dax);
1054 if (map_len < 0) {
1055 ret = map_len;
1056 break;
1057 }
1058
1059 dax.addr += offset;
1060 map_len -= offset;
1061 if (map_len > end - pos)
1062 map_len = end - pos;
1063
1064 if (iov_iter_rw(iter) == WRITE)
1065 map_len = copy_from_iter_pmem(dax.addr, map_len, iter);
1066 else
1067 map_len = copy_to_iter(dax.addr, map_len, iter);
1068 dax_unmap_atomic(iomap->bdev, &dax);
1069 if (map_len <= 0) {
1070 ret = map_len ? map_len : -EFAULT;
1071 break;
1072 }
1073
1074 pos += map_len;
1075 length -= map_len;
1076 done += map_len;
1077 }
1078
1079 return done ? done : ret;
1080 }
1081
1082 /**
1083 * dax_iomap_rw - Perform I/O to a DAX file
1084 * @iocb: The control block for this I/O
1085 * @iter: The addresses to do I/O from or to
1086 * @ops: iomap ops passed from the file system
1087 *
1088 * This function performs read and write operations to directly mapped
1089 * persistent memory. The callers needs to take care of read/write exclusion
1090 * and evicting any page cache pages in the region under I/O.
1091 */
1092 ssize_t
1093 dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter,
1094 const struct iomap_ops *ops)
1095 {
1096 struct address_space *mapping = iocb->ki_filp->f_mapping;
1097 struct inode *inode = mapping->host;
1098 loff_t pos = iocb->ki_pos, ret = 0, done = 0;
1099 unsigned flags = 0;
1100
1101 if (iov_iter_rw(iter) == WRITE) {
1102 lockdep_assert_held_exclusive(&inode->i_rwsem);
1103 flags |= IOMAP_WRITE;
1104 } else {
1105 lockdep_assert_held(&inode->i_rwsem);
1106 }
1107
1108 while (iov_iter_count(iter)) {
1109 ret = iomap_apply(inode, pos, iov_iter_count(iter), flags, ops,
1110 iter, dax_iomap_actor);
1111 if (ret <= 0)
1112 break;
1113 pos += ret;
1114 done += ret;
1115 }
1116
1117 iocb->ki_pos += done;
1118 return done ? done : ret;
1119 }
1120 EXPORT_SYMBOL_GPL(dax_iomap_rw);
1121
1122 static int dax_fault_return(int error)
1123 {
1124 if (error == 0)
1125 return VM_FAULT_NOPAGE;
1126 if (error == -ENOMEM)
1127 return VM_FAULT_OOM;
1128 return VM_FAULT_SIGBUS;
1129 }
1130
1131 static int dax_iomap_pte_fault(struct vm_fault *vmf,
1132 const struct iomap_ops *ops)
1133 {
1134 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1135 struct inode *inode = mapping->host;
1136 unsigned long vaddr = vmf->address;
1137 loff_t pos = (loff_t)vmf->pgoff << PAGE_SHIFT;
1138 sector_t sector;
1139 struct iomap iomap = { 0 };
1140 unsigned flags = IOMAP_FAULT;
1141 int error, major = 0;
1142 int vmf_ret = 0;
1143 void *entry;
1144
1145 /*
1146 * Check whether offset isn't beyond end of file now. Caller is supposed
1147 * to hold locks serializing us with truncate / punch hole so this is
1148 * a reliable test.
1149 */
1150 if (pos >= i_size_read(inode))
1151 return VM_FAULT_SIGBUS;
1152
1153 if ((vmf->flags & FAULT_FLAG_WRITE) && !vmf->cow_page)
1154 flags |= IOMAP_WRITE;
1155
1156 /*
1157 * Note that we don't bother to use iomap_apply here: DAX required
1158 * the file system block size to be equal the page size, which means
1159 * that we never have to deal with more than a single extent here.
1160 */
1161 error = ops->iomap_begin(inode, pos, PAGE_SIZE, flags, &iomap);
1162 if (error)
1163 return dax_fault_return(error);
1164 if (WARN_ON_ONCE(iomap.offset + iomap.length < pos + PAGE_SIZE)) {
1165 vmf_ret = dax_fault_return(-EIO); /* fs corruption? */
1166 goto finish_iomap;
1167 }
1168
1169 entry = grab_mapping_entry(mapping, vmf->pgoff, 0);
1170 if (IS_ERR(entry)) {
1171 vmf_ret = dax_fault_return(PTR_ERR(entry));
1172 goto finish_iomap;
1173 }
1174
1175 sector = dax_iomap_sector(&iomap, pos);
1176
1177 if (vmf->cow_page) {
1178 switch (iomap.type) {
1179 case IOMAP_HOLE:
1180 case IOMAP_UNWRITTEN:
1181 clear_user_highpage(vmf->cow_page, vaddr);
1182 break;
1183 case IOMAP_MAPPED:
1184 error = copy_user_dax(iomap.bdev, sector, PAGE_SIZE,
1185 vmf->cow_page, vaddr);
1186 break;
1187 default:
1188 WARN_ON_ONCE(1);
1189 error = -EIO;
1190 break;
1191 }
1192
1193 if (error)
1194 goto error_unlock_entry;
1195
1196 __SetPageUptodate(vmf->cow_page);
1197 vmf_ret = finish_fault(vmf);
1198 if (!vmf_ret)
1199 vmf_ret = VM_FAULT_DONE_COW;
1200 goto unlock_entry;
1201 }
1202
1203 switch (iomap.type) {
1204 case IOMAP_MAPPED:
1205 if (iomap.flags & IOMAP_F_NEW) {
1206 count_vm_event(PGMAJFAULT);
1207 mem_cgroup_count_vm_event(vmf->vma->vm_mm, PGMAJFAULT);
1208 major = VM_FAULT_MAJOR;
1209 }
1210 error = dax_insert_mapping(mapping, iomap.bdev, sector,
1211 PAGE_SIZE, &entry, vmf->vma, vmf);
1212 /* -EBUSY is fine, somebody else faulted on the same PTE */
1213 if (error == -EBUSY)
1214 error = 0;
1215 break;
1216 case IOMAP_UNWRITTEN:
1217 case IOMAP_HOLE:
1218 if (!(vmf->flags & FAULT_FLAG_WRITE)) {
1219 vmf_ret = dax_load_hole(mapping, &entry, vmf);
1220 goto unlock_entry;
1221 }
1222 /*FALLTHRU*/
1223 default:
1224 WARN_ON_ONCE(1);
1225 error = -EIO;
1226 break;
1227 }
1228
1229 error_unlock_entry:
1230 vmf_ret = dax_fault_return(error) | major;
1231 unlock_entry:
1232 put_locked_mapping_entry(mapping, vmf->pgoff, entry);
1233 finish_iomap:
1234 if (ops->iomap_end) {
1235 int copied = PAGE_SIZE;
1236
1237 if (vmf_ret & VM_FAULT_ERROR)
1238 copied = 0;
1239 /*
1240 * The fault is done by now and there's no way back (other
1241 * thread may be already happily using PTE we have installed).
1242 * Just ignore error from ->iomap_end since we cannot do much
1243 * with it.
1244 */
1245 ops->iomap_end(inode, pos, PAGE_SIZE, copied, flags, &iomap);
1246 }
1247 return vmf_ret;
1248 }
1249
1250 #ifdef CONFIG_FS_DAX_PMD
1251 /*
1252 * The 'colour' (ie low bits) within a PMD of a page offset. This comes up
1253 * more often than one might expect in the below functions.
1254 */
1255 #define PG_PMD_COLOUR ((PMD_SIZE >> PAGE_SHIFT) - 1)
1256
1257 static int dax_pmd_insert_mapping(struct vm_fault *vmf, struct iomap *iomap,
1258 loff_t pos, void **entryp)
1259 {
1260 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1261 struct block_device *bdev = iomap->bdev;
1262 struct inode *inode = mapping->host;
1263 struct blk_dax_ctl dax = {
1264 .sector = dax_iomap_sector(iomap, pos),
1265 .size = PMD_SIZE,
1266 };
1267 long length = dax_map_atomic(bdev, &dax);
1268 void *ret = NULL;
1269
1270 if (length < 0) /* dax_map_atomic() failed */
1271 goto fallback;
1272 if (length < PMD_SIZE)
1273 goto unmap_fallback;
1274 if (pfn_t_to_pfn(dax.pfn) & PG_PMD_COLOUR)
1275 goto unmap_fallback;
1276 if (!pfn_t_devmap(dax.pfn))
1277 goto unmap_fallback;
1278
1279 dax_unmap_atomic(bdev, &dax);
1280
1281 ret = dax_insert_mapping_entry(mapping, vmf, *entryp, dax.sector,
1282 RADIX_DAX_PMD);
1283 if (IS_ERR(ret))
1284 goto fallback;
1285 *entryp = ret;
1286
1287 trace_dax_pmd_insert_mapping(inode, vmf, length, dax.pfn, ret);
1288 return vmf_insert_pfn_pmd(vmf->vma, vmf->address, vmf->pmd,
1289 dax.pfn, vmf->flags & FAULT_FLAG_WRITE);
1290
1291 unmap_fallback:
1292 dax_unmap_atomic(bdev, &dax);
1293 fallback:
1294 trace_dax_pmd_insert_mapping_fallback(inode, vmf, length,
1295 dax.pfn, ret);
1296 return VM_FAULT_FALLBACK;
1297 }
1298
1299 static int dax_pmd_load_hole(struct vm_fault *vmf, struct iomap *iomap,
1300 void **entryp)
1301 {
1302 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1303 unsigned long pmd_addr = vmf->address & PMD_MASK;
1304 struct inode *inode = mapping->host;
1305 struct page *zero_page;
1306 void *ret = NULL;
1307 spinlock_t *ptl;
1308 pmd_t pmd_entry;
1309
1310 zero_page = mm_get_huge_zero_page(vmf->vma->vm_mm);
1311
1312 if (unlikely(!zero_page))
1313 goto fallback;
1314
1315 ret = dax_insert_mapping_entry(mapping, vmf, *entryp, 0,
1316 RADIX_DAX_PMD | RADIX_DAX_HZP);
1317 if (IS_ERR(ret))
1318 goto fallback;
1319 *entryp = ret;
1320
1321 ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1322 if (!pmd_none(*(vmf->pmd))) {
1323 spin_unlock(ptl);
1324 goto fallback;
1325 }
1326
1327 pmd_entry = mk_pmd(zero_page, vmf->vma->vm_page_prot);
1328 pmd_entry = pmd_mkhuge(pmd_entry);
1329 set_pmd_at(vmf->vma->vm_mm, pmd_addr, vmf->pmd, pmd_entry);
1330 spin_unlock(ptl);
1331 trace_dax_pmd_load_hole(inode, vmf, zero_page, ret);
1332 return VM_FAULT_NOPAGE;
1333
1334 fallback:
1335 trace_dax_pmd_load_hole_fallback(inode, vmf, zero_page, ret);
1336 return VM_FAULT_FALLBACK;
1337 }
1338
1339 static int dax_iomap_pmd_fault(struct vm_fault *vmf,
1340 const struct iomap_ops *ops)
1341 {
1342 struct vm_area_struct *vma = vmf->vma;
1343 struct address_space *mapping = vma->vm_file->f_mapping;
1344 unsigned long pmd_addr = vmf->address & PMD_MASK;
1345 bool write = vmf->flags & FAULT_FLAG_WRITE;
1346 unsigned int iomap_flags = (write ? IOMAP_WRITE : 0) | IOMAP_FAULT;
1347 struct inode *inode = mapping->host;
1348 int result = VM_FAULT_FALLBACK;
1349 struct iomap iomap = { 0 };
1350 pgoff_t max_pgoff, pgoff;
1351 void *entry;
1352 loff_t pos;
1353 int error;
1354
1355 /*
1356 * Check whether offset isn't beyond end of file now. Caller is
1357 * supposed to hold locks serializing us with truncate / punch hole so
1358 * this is a reliable test.
1359 */
1360 pgoff = linear_page_index(vma, pmd_addr);
1361 max_pgoff = (i_size_read(inode) - 1) >> PAGE_SHIFT;
1362
1363 trace_dax_pmd_fault(inode, vmf, max_pgoff, 0);
1364
1365 /* Fall back to PTEs if we're going to COW */
1366 if (write && !(vma->vm_flags & VM_SHARED))
1367 goto fallback;
1368
1369 /* If the PMD would extend outside the VMA */
1370 if (pmd_addr < vma->vm_start)
1371 goto fallback;
1372 if ((pmd_addr + PMD_SIZE) > vma->vm_end)
1373 goto fallback;
1374
1375 if (pgoff > max_pgoff) {
1376 result = VM_FAULT_SIGBUS;
1377 goto out;
1378 }
1379
1380 /* If the PMD would extend beyond the file size */
1381 if ((pgoff | PG_PMD_COLOUR) > max_pgoff)
1382 goto fallback;
1383
1384 /*
1385 * Note that we don't use iomap_apply here. We aren't doing I/O, only
1386 * setting up a mapping, so really we're using iomap_begin() as a way
1387 * to look up our filesystem block.
1388 */
1389 pos = (loff_t)pgoff << PAGE_SHIFT;
1390 error = ops->iomap_begin(inode, pos, PMD_SIZE, iomap_flags, &iomap);
1391 if (error)
1392 goto fallback;
1393
1394 if (iomap.offset + iomap.length < pos + PMD_SIZE)
1395 goto finish_iomap;
1396
1397 /*
1398 * grab_mapping_entry() will make sure we get a 2M empty entry, a DAX
1399 * PMD or a HZP entry. If it can't (because a 4k page is already in
1400 * the tree, for instance), it will return -EEXIST and we just fall
1401 * back to 4k entries.
1402 */
1403 entry = grab_mapping_entry(mapping, pgoff, RADIX_DAX_PMD);
1404 if (IS_ERR(entry))
1405 goto finish_iomap;
1406
1407 switch (iomap.type) {
1408 case IOMAP_MAPPED:
1409 result = dax_pmd_insert_mapping(vmf, &iomap, pos, &entry);
1410 break;
1411 case IOMAP_UNWRITTEN:
1412 case IOMAP_HOLE:
1413 if (WARN_ON_ONCE(write))
1414 goto unlock_entry;
1415 result = dax_pmd_load_hole(vmf, &iomap, &entry);
1416 break;
1417 default:
1418 WARN_ON_ONCE(1);
1419 break;
1420 }
1421
1422 unlock_entry:
1423 put_locked_mapping_entry(mapping, pgoff, entry);
1424 finish_iomap:
1425 if (ops->iomap_end) {
1426 int copied = PMD_SIZE;
1427
1428 if (result == VM_FAULT_FALLBACK)
1429 copied = 0;
1430 /*
1431 * The fault is done by now and there's no way back (other
1432 * thread may be already happily using PMD we have installed).
1433 * Just ignore error from ->iomap_end since we cannot do much
1434 * with it.
1435 */
1436 ops->iomap_end(inode, pos, PMD_SIZE, copied, iomap_flags,
1437 &iomap);
1438 }
1439 fallback:
1440 if (result == VM_FAULT_FALLBACK) {
1441 split_huge_pmd(vma, vmf->pmd, vmf->address);
1442 count_vm_event(THP_FAULT_FALLBACK);
1443 }
1444 out:
1445 trace_dax_pmd_fault_done(inode, vmf, max_pgoff, result);
1446 return result;
1447 }
1448 #else
1449 static int dax_iomap_pmd_fault(struct vm_fault *vmf,
1450 const struct iomap_ops *ops)
1451 {
1452 return VM_FAULT_FALLBACK;
1453 }
1454 #endif /* CONFIG_FS_DAX_PMD */
1455
1456 /**
1457 * dax_iomap_fault - handle a page fault on a DAX file
1458 * @vmf: The description of the fault
1459 * @ops: iomap ops passed from the file system
1460 *
1461 * When a page fault occurs, filesystems may call this helper in
1462 * their fault handler for DAX files. dax_iomap_fault() assumes the caller
1463 * has done all the necessary locking for page fault to proceed
1464 * successfully.
1465 */
1466 int dax_iomap_fault(struct vm_fault *vmf, enum page_entry_size pe_size,
1467 const struct iomap_ops *ops)
1468 {
1469 switch (pe_size) {
1470 case PE_SIZE_PTE:
1471 return dax_iomap_pte_fault(vmf, ops);
1472 case PE_SIZE_PMD:
1473 return dax_iomap_pmd_fault(vmf, ops);
1474 default:
1475 return VM_FAULT_FALLBACK;
1476 }
1477 }
1478 EXPORT_SYMBOL_GPL(dax_iomap_fault);