]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/dax.c
rtc: at91sam9: Remove unnecessary offset variable checks
[mirror_ubuntu-jammy-kernel.git] / fs / dax.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * fs/dax.c - Direct Access filesystem code
4 * Copyright (c) 2013-2014 Intel Corporation
5 * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
6 * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
7 */
8
9 #include <linux/atomic.h>
10 #include <linux/blkdev.h>
11 #include <linux/buffer_head.h>
12 #include <linux/dax.h>
13 #include <linux/fs.h>
14 #include <linux/genhd.h>
15 #include <linux/highmem.h>
16 #include <linux/memcontrol.h>
17 #include <linux/mm.h>
18 #include <linux/mutex.h>
19 #include <linux/pagevec.h>
20 #include <linux/sched.h>
21 #include <linux/sched/signal.h>
22 #include <linux/uio.h>
23 #include <linux/vmstat.h>
24 #include <linux/pfn_t.h>
25 #include <linux/sizes.h>
26 #include <linux/mmu_notifier.h>
27 #include <linux/iomap.h>
28 #include <asm/pgalloc.h>
29
30 #define CREATE_TRACE_POINTS
31 #include <trace/events/fs_dax.h>
32
33 static inline unsigned int pe_order(enum page_entry_size pe_size)
34 {
35 if (pe_size == PE_SIZE_PTE)
36 return PAGE_SHIFT - PAGE_SHIFT;
37 if (pe_size == PE_SIZE_PMD)
38 return PMD_SHIFT - PAGE_SHIFT;
39 if (pe_size == PE_SIZE_PUD)
40 return PUD_SHIFT - PAGE_SHIFT;
41 return ~0;
42 }
43
44 /* We choose 4096 entries - same as per-zone page wait tables */
45 #define DAX_WAIT_TABLE_BITS 12
46 #define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
47
48 /* The 'colour' (ie low bits) within a PMD of a page offset. */
49 #define PG_PMD_COLOUR ((PMD_SIZE >> PAGE_SHIFT) - 1)
50 #define PG_PMD_NR (PMD_SIZE >> PAGE_SHIFT)
51
52 /* The order of a PMD entry */
53 #define PMD_ORDER (PMD_SHIFT - PAGE_SHIFT)
54
55 static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES];
56
57 static int __init init_dax_wait_table(void)
58 {
59 int i;
60
61 for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++)
62 init_waitqueue_head(wait_table + i);
63 return 0;
64 }
65 fs_initcall(init_dax_wait_table);
66
67 /*
68 * DAX pagecache entries use XArray value entries so they can't be mistaken
69 * for pages. We use one bit for locking, one bit for the entry size (PMD)
70 * and two more to tell us if the entry is a zero page or an empty entry that
71 * is just used for locking. In total four special bits.
72 *
73 * If the PMD bit isn't set the entry has size PAGE_SIZE, and if the ZERO_PAGE
74 * and EMPTY bits aren't set the entry is a normal DAX entry with a filesystem
75 * block allocation.
76 */
77 #define DAX_SHIFT (4)
78 #define DAX_LOCKED (1UL << 0)
79 #define DAX_PMD (1UL << 1)
80 #define DAX_ZERO_PAGE (1UL << 2)
81 #define DAX_EMPTY (1UL << 3)
82
83 static unsigned long dax_to_pfn(void *entry)
84 {
85 return xa_to_value(entry) >> DAX_SHIFT;
86 }
87
88 static void *dax_make_entry(pfn_t pfn, unsigned long flags)
89 {
90 return xa_mk_value(flags | (pfn_t_to_pfn(pfn) << DAX_SHIFT));
91 }
92
93 static bool dax_is_locked(void *entry)
94 {
95 return xa_to_value(entry) & DAX_LOCKED;
96 }
97
98 static unsigned int dax_entry_order(void *entry)
99 {
100 if (xa_to_value(entry) & DAX_PMD)
101 return PMD_ORDER;
102 return 0;
103 }
104
105 static unsigned long dax_is_pmd_entry(void *entry)
106 {
107 return xa_to_value(entry) & DAX_PMD;
108 }
109
110 static bool dax_is_pte_entry(void *entry)
111 {
112 return !(xa_to_value(entry) & DAX_PMD);
113 }
114
115 static int dax_is_zero_entry(void *entry)
116 {
117 return xa_to_value(entry) & DAX_ZERO_PAGE;
118 }
119
120 static int dax_is_empty_entry(void *entry)
121 {
122 return xa_to_value(entry) & DAX_EMPTY;
123 }
124
125 /*
126 * true if the entry that was found is of a smaller order than the entry
127 * we were looking for
128 */
129 static bool dax_is_conflict(void *entry)
130 {
131 return entry == XA_RETRY_ENTRY;
132 }
133
134 /*
135 * DAX page cache entry locking
136 */
137 struct exceptional_entry_key {
138 struct xarray *xa;
139 pgoff_t entry_start;
140 };
141
142 struct wait_exceptional_entry_queue {
143 wait_queue_entry_t wait;
144 struct exceptional_entry_key key;
145 };
146
147 static wait_queue_head_t *dax_entry_waitqueue(struct xa_state *xas,
148 void *entry, struct exceptional_entry_key *key)
149 {
150 unsigned long hash;
151 unsigned long index = xas->xa_index;
152
153 /*
154 * If 'entry' is a PMD, align the 'index' that we use for the wait
155 * queue to the start of that PMD. This ensures that all offsets in
156 * the range covered by the PMD map to the same bit lock.
157 */
158 if (dax_is_pmd_entry(entry))
159 index &= ~PG_PMD_COLOUR;
160 key->xa = xas->xa;
161 key->entry_start = index;
162
163 hash = hash_long((unsigned long)xas->xa ^ index, DAX_WAIT_TABLE_BITS);
164 return wait_table + hash;
165 }
166
167 static int wake_exceptional_entry_func(wait_queue_entry_t *wait,
168 unsigned int mode, int sync, void *keyp)
169 {
170 struct exceptional_entry_key *key = keyp;
171 struct wait_exceptional_entry_queue *ewait =
172 container_of(wait, struct wait_exceptional_entry_queue, wait);
173
174 if (key->xa != ewait->key.xa ||
175 key->entry_start != ewait->key.entry_start)
176 return 0;
177 return autoremove_wake_function(wait, mode, sync, NULL);
178 }
179
180 /*
181 * @entry may no longer be the entry at the index in the mapping.
182 * The important information it's conveying is whether the entry at
183 * this index used to be a PMD entry.
184 */
185 static void dax_wake_entry(struct xa_state *xas, void *entry, bool wake_all)
186 {
187 struct exceptional_entry_key key;
188 wait_queue_head_t *wq;
189
190 wq = dax_entry_waitqueue(xas, entry, &key);
191
192 /*
193 * Checking for locked entry and prepare_to_wait_exclusive() happens
194 * under the i_pages lock, ditto for entry handling in our callers.
195 * So at this point all tasks that could have seen our entry locked
196 * must be in the waitqueue and the following check will see them.
197 */
198 if (waitqueue_active(wq))
199 __wake_up(wq, TASK_NORMAL, wake_all ? 0 : 1, &key);
200 }
201
202 /*
203 * Look up entry in page cache, wait for it to become unlocked if it
204 * is a DAX entry and return it. The caller must subsequently call
205 * put_unlocked_entry() if it did not lock the entry or dax_unlock_entry()
206 * if it did. The entry returned may have a larger order than @order.
207 * If @order is larger than the order of the entry found in i_pages, this
208 * function returns a dax_is_conflict entry.
209 *
210 * Must be called with the i_pages lock held.
211 */
212 static void *get_unlocked_entry(struct xa_state *xas, unsigned int order)
213 {
214 void *entry;
215 struct wait_exceptional_entry_queue ewait;
216 wait_queue_head_t *wq;
217
218 init_wait(&ewait.wait);
219 ewait.wait.func = wake_exceptional_entry_func;
220
221 for (;;) {
222 entry = xas_find_conflict(xas);
223 if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
224 return entry;
225 if (dax_entry_order(entry) < order)
226 return XA_RETRY_ENTRY;
227 if (!dax_is_locked(entry))
228 return entry;
229
230 wq = dax_entry_waitqueue(xas, entry, &ewait.key);
231 prepare_to_wait_exclusive(wq, &ewait.wait,
232 TASK_UNINTERRUPTIBLE);
233 xas_unlock_irq(xas);
234 xas_reset(xas);
235 schedule();
236 finish_wait(wq, &ewait.wait);
237 xas_lock_irq(xas);
238 }
239 }
240
241 /*
242 * The only thing keeping the address space around is the i_pages lock
243 * (it's cycled in clear_inode() after removing the entries from i_pages)
244 * After we call xas_unlock_irq(), we cannot touch xas->xa.
245 */
246 static void wait_entry_unlocked(struct xa_state *xas, void *entry)
247 {
248 struct wait_exceptional_entry_queue ewait;
249 wait_queue_head_t *wq;
250
251 init_wait(&ewait.wait);
252 ewait.wait.func = wake_exceptional_entry_func;
253
254 wq = dax_entry_waitqueue(xas, entry, &ewait.key);
255 /*
256 * Unlike get_unlocked_entry() there is no guarantee that this
257 * path ever successfully retrieves an unlocked entry before an
258 * inode dies. Perform a non-exclusive wait in case this path
259 * never successfully performs its own wake up.
260 */
261 prepare_to_wait(wq, &ewait.wait, TASK_UNINTERRUPTIBLE);
262 xas_unlock_irq(xas);
263 schedule();
264 finish_wait(wq, &ewait.wait);
265 }
266
267 static void put_unlocked_entry(struct xa_state *xas, void *entry)
268 {
269 /* If we were the only waiter woken, wake the next one */
270 if (entry && !dax_is_conflict(entry))
271 dax_wake_entry(xas, entry, false);
272 }
273
274 /*
275 * We used the xa_state to get the entry, but then we locked the entry and
276 * dropped the xa_lock, so we know the xa_state is stale and must be reset
277 * before use.
278 */
279 static void dax_unlock_entry(struct xa_state *xas, void *entry)
280 {
281 void *old;
282
283 BUG_ON(dax_is_locked(entry));
284 xas_reset(xas);
285 xas_lock_irq(xas);
286 old = xas_store(xas, entry);
287 xas_unlock_irq(xas);
288 BUG_ON(!dax_is_locked(old));
289 dax_wake_entry(xas, entry, false);
290 }
291
292 /*
293 * Return: The entry stored at this location before it was locked.
294 */
295 static void *dax_lock_entry(struct xa_state *xas, void *entry)
296 {
297 unsigned long v = xa_to_value(entry);
298 return xas_store(xas, xa_mk_value(v | DAX_LOCKED));
299 }
300
301 static unsigned long dax_entry_size(void *entry)
302 {
303 if (dax_is_zero_entry(entry))
304 return 0;
305 else if (dax_is_empty_entry(entry))
306 return 0;
307 else if (dax_is_pmd_entry(entry))
308 return PMD_SIZE;
309 else
310 return PAGE_SIZE;
311 }
312
313 static unsigned long dax_end_pfn(void *entry)
314 {
315 return dax_to_pfn(entry) + dax_entry_size(entry) / PAGE_SIZE;
316 }
317
318 /*
319 * Iterate through all mapped pfns represented by an entry, i.e. skip
320 * 'empty' and 'zero' entries.
321 */
322 #define for_each_mapped_pfn(entry, pfn) \
323 for (pfn = dax_to_pfn(entry); \
324 pfn < dax_end_pfn(entry); pfn++)
325
326 /*
327 * TODO: for reflink+dax we need a way to associate a single page with
328 * multiple address_space instances at different linear_page_index()
329 * offsets.
330 */
331 static void dax_associate_entry(void *entry, struct address_space *mapping,
332 struct vm_area_struct *vma, unsigned long address)
333 {
334 unsigned long size = dax_entry_size(entry), pfn, index;
335 int i = 0;
336
337 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
338 return;
339
340 index = linear_page_index(vma, address & ~(size - 1));
341 for_each_mapped_pfn(entry, pfn) {
342 struct page *page = pfn_to_page(pfn);
343
344 WARN_ON_ONCE(page->mapping);
345 page->mapping = mapping;
346 page->index = index + i++;
347 }
348 }
349
350 static void dax_disassociate_entry(void *entry, struct address_space *mapping,
351 bool trunc)
352 {
353 unsigned long pfn;
354
355 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
356 return;
357
358 for_each_mapped_pfn(entry, pfn) {
359 struct page *page = pfn_to_page(pfn);
360
361 WARN_ON_ONCE(trunc && page_ref_count(page) > 1);
362 WARN_ON_ONCE(page->mapping && page->mapping != mapping);
363 page->mapping = NULL;
364 page->index = 0;
365 }
366 }
367
368 static struct page *dax_busy_page(void *entry)
369 {
370 unsigned long pfn;
371
372 for_each_mapped_pfn(entry, pfn) {
373 struct page *page = pfn_to_page(pfn);
374
375 if (page_ref_count(page) > 1)
376 return page;
377 }
378 return NULL;
379 }
380
381 /*
382 * dax_lock_mapping_entry - Lock the DAX entry corresponding to a page
383 * @page: The page whose entry we want to lock
384 *
385 * Context: Process context.
386 * Return: A cookie to pass to dax_unlock_page() or 0 if the entry could
387 * not be locked.
388 */
389 dax_entry_t dax_lock_page(struct page *page)
390 {
391 XA_STATE(xas, NULL, 0);
392 void *entry;
393
394 /* Ensure page->mapping isn't freed while we look at it */
395 rcu_read_lock();
396 for (;;) {
397 struct address_space *mapping = READ_ONCE(page->mapping);
398
399 entry = NULL;
400 if (!mapping || !dax_mapping(mapping))
401 break;
402
403 /*
404 * In the device-dax case there's no need to lock, a
405 * struct dev_pagemap pin is sufficient to keep the
406 * inode alive, and we assume we have dev_pagemap pin
407 * otherwise we would not have a valid pfn_to_page()
408 * translation.
409 */
410 entry = (void *)~0UL;
411 if (S_ISCHR(mapping->host->i_mode))
412 break;
413
414 xas.xa = &mapping->i_pages;
415 xas_lock_irq(&xas);
416 if (mapping != page->mapping) {
417 xas_unlock_irq(&xas);
418 continue;
419 }
420 xas_set(&xas, page->index);
421 entry = xas_load(&xas);
422 if (dax_is_locked(entry)) {
423 rcu_read_unlock();
424 wait_entry_unlocked(&xas, entry);
425 rcu_read_lock();
426 continue;
427 }
428 dax_lock_entry(&xas, entry);
429 xas_unlock_irq(&xas);
430 break;
431 }
432 rcu_read_unlock();
433 return (dax_entry_t)entry;
434 }
435
436 void dax_unlock_page(struct page *page, dax_entry_t cookie)
437 {
438 struct address_space *mapping = page->mapping;
439 XA_STATE(xas, &mapping->i_pages, page->index);
440
441 if (S_ISCHR(mapping->host->i_mode))
442 return;
443
444 dax_unlock_entry(&xas, (void *)cookie);
445 }
446
447 /*
448 * Find page cache entry at given index. If it is a DAX entry, return it
449 * with the entry locked. If the page cache doesn't contain an entry at
450 * that index, add a locked empty entry.
451 *
452 * When requesting an entry with size DAX_PMD, grab_mapping_entry() will
453 * either return that locked entry or will return VM_FAULT_FALLBACK.
454 * This will happen if there are any PTE entries within the PMD range
455 * that we are requesting.
456 *
457 * We always favor PTE entries over PMD entries. There isn't a flow where we
458 * evict PTE entries in order to 'upgrade' them to a PMD entry. A PMD
459 * insertion will fail if it finds any PTE entries already in the tree, and a
460 * PTE insertion will cause an existing PMD entry to be unmapped and
461 * downgraded to PTE entries. This happens for both PMD zero pages as
462 * well as PMD empty entries.
463 *
464 * The exception to this downgrade path is for PMD entries that have
465 * real storage backing them. We will leave these real PMD entries in
466 * the tree, and PTE writes will simply dirty the entire PMD entry.
467 *
468 * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
469 * persistent memory the benefit is doubtful. We can add that later if we can
470 * show it helps.
471 *
472 * On error, this function does not return an ERR_PTR. Instead it returns
473 * a VM_FAULT code, encoded as an xarray internal entry. The ERR_PTR values
474 * overlap with xarray value entries.
475 */
476 static void *grab_mapping_entry(struct xa_state *xas,
477 struct address_space *mapping, unsigned int order)
478 {
479 unsigned long index = xas->xa_index;
480 bool pmd_downgrade = false; /* splitting PMD entry into PTE entries? */
481 void *entry;
482
483 retry:
484 xas_lock_irq(xas);
485 entry = get_unlocked_entry(xas, order);
486
487 if (entry) {
488 if (dax_is_conflict(entry))
489 goto fallback;
490 if (!xa_is_value(entry)) {
491 xas_set_err(xas, -EIO);
492 goto out_unlock;
493 }
494
495 if (order == 0) {
496 if (dax_is_pmd_entry(entry) &&
497 (dax_is_zero_entry(entry) ||
498 dax_is_empty_entry(entry))) {
499 pmd_downgrade = true;
500 }
501 }
502 }
503
504 if (pmd_downgrade) {
505 /*
506 * Make sure 'entry' remains valid while we drop
507 * the i_pages lock.
508 */
509 dax_lock_entry(xas, entry);
510
511 /*
512 * Besides huge zero pages the only other thing that gets
513 * downgraded are empty entries which don't need to be
514 * unmapped.
515 */
516 if (dax_is_zero_entry(entry)) {
517 xas_unlock_irq(xas);
518 unmap_mapping_pages(mapping,
519 xas->xa_index & ~PG_PMD_COLOUR,
520 PG_PMD_NR, false);
521 xas_reset(xas);
522 xas_lock_irq(xas);
523 }
524
525 dax_disassociate_entry(entry, mapping, false);
526 xas_store(xas, NULL); /* undo the PMD join */
527 dax_wake_entry(xas, entry, true);
528 mapping->nrpages -= PG_PMD_NR;
529 entry = NULL;
530 xas_set(xas, index);
531 }
532
533 if (entry) {
534 dax_lock_entry(xas, entry);
535 } else {
536 unsigned long flags = DAX_EMPTY;
537
538 if (order > 0)
539 flags |= DAX_PMD;
540 entry = dax_make_entry(pfn_to_pfn_t(0), flags);
541 dax_lock_entry(xas, entry);
542 if (xas_error(xas))
543 goto out_unlock;
544 mapping->nrpages += 1UL << order;
545 }
546
547 out_unlock:
548 xas_unlock_irq(xas);
549 if (xas_nomem(xas, mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM))
550 goto retry;
551 if (xas->xa_node == XA_ERROR(-ENOMEM))
552 return xa_mk_internal(VM_FAULT_OOM);
553 if (xas_error(xas))
554 return xa_mk_internal(VM_FAULT_SIGBUS);
555 return entry;
556 fallback:
557 xas_unlock_irq(xas);
558 return xa_mk_internal(VM_FAULT_FALLBACK);
559 }
560
561 /**
562 * dax_layout_busy_page_range - find first pinned page in @mapping
563 * @mapping: address space to scan for a page with ref count > 1
564 * @start: Starting offset. Page containing 'start' is included.
565 * @end: End offset. Page containing 'end' is included. If 'end' is LLONG_MAX,
566 * pages from 'start' till the end of file are included.
567 *
568 * DAX requires ZONE_DEVICE mapped pages. These pages are never
569 * 'onlined' to the page allocator so they are considered idle when
570 * page->count == 1. A filesystem uses this interface to determine if
571 * any page in the mapping is busy, i.e. for DMA, or other
572 * get_user_pages() usages.
573 *
574 * It is expected that the filesystem is holding locks to block the
575 * establishment of new mappings in this address_space. I.e. it expects
576 * to be able to run unmap_mapping_range() and subsequently not race
577 * mapping_mapped() becoming true.
578 */
579 struct page *dax_layout_busy_page_range(struct address_space *mapping,
580 loff_t start, loff_t end)
581 {
582 void *entry;
583 unsigned int scanned = 0;
584 struct page *page = NULL;
585 pgoff_t start_idx = start >> PAGE_SHIFT;
586 pgoff_t end_idx;
587 XA_STATE(xas, &mapping->i_pages, start_idx);
588
589 /*
590 * In the 'limited' case get_user_pages() for dax is disabled.
591 */
592 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
593 return NULL;
594
595 if (!dax_mapping(mapping) || !mapping_mapped(mapping))
596 return NULL;
597
598 /* If end == LLONG_MAX, all pages from start to till end of file */
599 if (end == LLONG_MAX)
600 end_idx = ULONG_MAX;
601 else
602 end_idx = end >> PAGE_SHIFT;
603 /*
604 * If we race get_user_pages_fast() here either we'll see the
605 * elevated page count in the iteration and wait, or
606 * get_user_pages_fast() will see that the page it took a reference
607 * against is no longer mapped in the page tables and bail to the
608 * get_user_pages() slow path. The slow path is protected by
609 * pte_lock() and pmd_lock(). New references are not taken without
610 * holding those locks, and unmap_mapping_pages() will not zero the
611 * pte or pmd without holding the respective lock, so we are
612 * guaranteed to either see new references or prevent new
613 * references from being established.
614 */
615 unmap_mapping_pages(mapping, start_idx, end_idx - start_idx + 1, 0);
616
617 xas_lock_irq(&xas);
618 xas_for_each(&xas, entry, end_idx) {
619 if (WARN_ON_ONCE(!xa_is_value(entry)))
620 continue;
621 if (unlikely(dax_is_locked(entry)))
622 entry = get_unlocked_entry(&xas, 0);
623 if (entry)
624 page = dax_busy_page(entry);
625 put_unlocked_entry(&xas, entry);
626 if (page)
627 break;
628 if (++scanned % XA_CHECK_SCHED)
629 continue;
630
631 xas_pause(&xas);
632 xas_unlock_irq(&xas);
633 cond_resched();
634 xas_lock_irq(&xas);
635 }
636 xas_unlock_irq(&xas);
637 return page;
638 }
639 EXPORT_SYMBOL_GPL(dax_layout_busy_page_range);
640
641 struct page *dax_layout_busy_page(struct address_space *mapping)
642 {
643 return dax_layout_busy_page_range(mapping, 0, LLONG_MAX);
644 }
645 EXPORT_SYMBOL_GPL(dax_layout_busy_page);
646
647 static int __dax_invalidate_entry(struct address_space *mapping,
648 pgoff_t index, bool trunc)
649 {
650 XA_STATE(xas, &mapping->i_pages, index);
651 int ret = 0;
652 void *entry;
653
654 xas_lock_irq(&xas);
655 entry = get_unlocked_entry(&xas, 0);
656 if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
657 goto out;
658 if (!trunc &&
659 (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY) ||
660 xas_get_mark(&xas, PAGECACHE_TAG_TOWRITE)))
661 goto out;
662 dax_disassociate_entry(entry, mapping, trunc);
663 xas_store(&xas, NULL);
664 mapping->nrpages -= 1UL << dax_entry_order(entry);
665 ret = 1;
666 out:
667 put_unlocked_entry(&xas, entry);
668 xas_unlock_irq(&xas);
669 return ret;
670 }
671
672 /*
673 * Delete DAX entry at @index from @mapping. Wait for it
674 * to be unlocked before deleting it.
675 */
676 int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index)
677 {
678 int ret = __dax_invalidate_entry(mapping, index, true);
679
680 /*
681 * This gets called from truncate / punch_hole path. As such, the caller
682 * must hold locks protecting against concurrent modifications of the
683 * page cache (usually fs-private i_mmap_sem for writing). Since the
684 * caller has seen a DAX entry for this index, we better find it
685 * at that index as well...
686 */
687 WARN_ON_ONCE(!ret);
688 return ret;
689 }
690
691 /*
692 * Invalidate DAX entry if it is clean.
693 */
694 int dax_invalidate_mapping_entry_sync(struct address_space *mapping,
695 pgoff_t index)
696 {
697 return __dax_invalidate_entry(mapping, index, false);
698 }
699
700 static int copy_cow_page_dax(struct block_device *bdev, struct dax_device *dax_dev,
701 sector_t sector, struct page *to, unsigned long vaddr)
702 {
703 void *vto, *kaddr;
704 pgoff_t pgoff;
705 long rc;
706 int id;
707
708 rc = bdev_dax_pgoff(bdev, sector, PAGE_SIZE, &pgoff);
709 if (rc)
710 return rc;
711
712 id = dax_read_lock();
713 rc = dax_direct_access(dax_dev, pgoff, PHYS_PFN(PAGE_SIZE), &kaddr, NULL);
714 if (rc < 0) {
715 dax_read_unlock(id);
716 return rc;
717 }
718 vto = kmap_atomic(to);
719 copy_user_page(vto, (void __force *)kaddr, vaddr, to);
720 kunmap_atomic(vto);
721 dax_read_unlock(id);
722 return 0;
723 }
724
725 /*
726 * By this point grab_mapping_entry() has ensured that we have a locked entry
727 * of the appropriate size so we don't have to worry about downgrading PMDs to
728 * PTEs. If we happen to be trying to insert a PTE and there is a PMD
729 * already in the tree, we will skip the insertion and just dirty the PMD as
730 * appropriate.
731 */
732 static void *dax_insert_entry(struct xa_state *xas,
733 struct address_space *mapping, struct vm_fault *vmf,
734 void *entry, pfn_t pfn, unsigned long flags, bool dirty)
735 {
736 void *new_entry = dax_make_entry(pfn, flags);
737
738 if (dirty)
739 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
740
741 if (dax_is_zero_entry(entry) && !(flags & DAX_ZERO_PAGE)) {
742 unsigned long index = xas->xa_index;
743 /* we are replacing a zero page with block mapping */
744 if (dax_is_pmd_entry(entry))
745 unmap_mapping_pages(mapping, index & ~PG_PMD_COLOUR,
746 PG_PMD_NR, false);
747 else /* pte entry */
748 unmap_mapping_pages(mapping, index, 1, false);
749 }
750
751 xas_reset(xas);
752 xas_lock_irq(xas);
753 if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
754 void *old;
755
756 dax_disassociate_entry(entry, mapping, false);
757 dax_associate_entry(new_entry, mapping, vmf->vma, vmf->address);
758 /*
759 * Only swap our new entry into the page cache if the current
760 * entry is a zero page or an empty entry. If a normal PTE or
761 * PMD entry is already in the cache, we leave it alone. This
762 * means that if we are trying to insert a PTE and the
763 * existing entry is a PMD, we will just leave the PMD in the
764 * tree and dirty it if necessary.
765 */
766 old = dax_lock_entry(xas, new_entry);
767 WARN_ON_ONCE(old != xa_mk_value(xa_to_value(entry) |
768 DAX_LOCKED));
769 entry = new_entry;
770 } else {
771 xas_load(xas); /* Walk the xa_state */
772 }
773
774 if (dirty)
775 xas_set_mark(xas, PAGECACHE_TAG_DIRTY);
776
777 xas_unlock_irq(xas);
778 return entry;
779 }
780
781 static inline
782 unsigned long pgoff_address(pgoff_t pgoff, struct vm_area_struct *vma)
783 {
784 unsigned long address;
785
786 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
787 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
788 return address;
789 }
790
791 /* Walk all mappings of a given index of a file and writeprotect them */
792 static void dax_entry_mkclean(struct address_space *mapping, pgoff_t index,
793 unsigned long pfn)
794 {
795 struct vm_area_struct *vma;
796 pte_t pte, *ptep = NULL;
797 pmd_t *pmdp = NULL;
798 spinlock_t *ptl;
799
800 i_mmap_lock_read(mapping);
801 vma_interval_tree_foreach(vma, &mapping->i_mmap, index, index) {
802 struct mmu_notifier_range range;
803 unsigned long address;
804
805 cond_resched();
806
807 if (!(vma->vm_flags & VM_SHARED))
808 continue;
809
810 address = pgoff_address(index, vma);
811
812 /*
813 * follow_invalidate_pte() will use the range to call
814 * mmu_notifier_invalidate_range_start() on our behalf before
815 * taking any lock.
816 */
817 if (follow_invalidate_pte(vma->vm_mm, address, &range, &ptep,
818 &pmdp, &ptl))
819 continue;
820
821 /*
822 * No need to call mmu_notifier_invalidate_range() as we are
823 * downgrading page table protection not changing it to point
824 * to a new page.
825 *
826 * See Documentation/vm/mmu_notifier.rst
827 */
828 if (pmdp) {
829 #ifdef CONFIG_FS_DAX_PMD
830 pmd_t pmd;
831
832 if (pfn != pmd_pfn(*pmdp))
833 goto unlock_pmd;
834 if (!pmd_dirty(*pmdp) && !pmd_write(*pmdp))
835 goto unlock_pmd;
836
837 flush_cache_page(vma, address, pfn);
838 pmd = pmdp_invalidate(vma, address, pmdp);
839 pmd = pmd_wrprotect(pmd);
840 pmd = pmd_mkclean(pmd);
841 set_pmd_at(vma->vm_mm, address, pmdp, pmd);
842 unlock_pmd:
843 #endif
844 spin_unlock(ptl);
845 } else {
846 if (pfn != pte_pfn(*ptep))
847 goto unlock_pte;
848 if (!pte_dirty(*ptep) && !pte_write(*ptep))
849 goto unlock_pte;
850
851 flush_cache_page(vma, address, pfn);
852 pte = ptep_clear_flush(vma, address, ptep);
853 pte = pte_wrprotect(pte);
854 pte = pte_mkclean(pte);
855 set_pte_at(vma->vm_mm, address, ptep, pte);
856 unlock_pte:
857 pte_unmap_unlock(ptep, ptl);
858 }
859
860 mmu_notifier_invalidate_range_end(&range);
861 }
862 i_mmap_unlock_read(mapping);
863 }
864
865 static int dax_writeback_one(struct xa_state *xas, struct dax_device *dax_dev,
866 struct address_space *mapping, void *entry)
867 {
868 unsigned long pfn, index, count;
869 long ret = 0;
870
871 /*
872 * A page got tagged dirty in DAX mapping? Something is seriously
873 * wrong.
874 */
875 if (WARN_ON(!xa_is_value(entry)))
876 return -EIO;
877
878 if (unlikely(dax_is_locked(entry))) {
879 void *old_entry = entry;
880
881 entry = get_unlocked_entry(xas, 0);
882
883 /* Entry got punched out / reallocated? */
884 if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
885 goto put_unlocked;
886 /*
887 * Entry got reallocated elsewhere? No need to writeback.
888 * We have to compare pfns as we must not bail out due to
889 * difference in lockbit or entry type.
890 */
891 if (dax_to_pfn(old_entry) != dax_to_pfn(entry))
892 goto put_unlocked;
893 if (WARN_ON_ONCE(dax_is_empty_entry(entry) ||
894 dax_is_zero_entry(entry))) {
895 ret = -EIO;
896 goto put_unlocked;
897 }
898
899 /* Another fsync thread may have already done this entry */
900 if (!xas_get_mark(xas, PAGECACHE_TAG_TOWRITE))
901 goto put_unlocked;
902 }
903
904 /* Lock the entry to serialize with page faults */
905 dax_lock_entry(xas, entry);
906
907 /*
908 * We can clear the tag now but we have to be careful so that concurrent
909 * dax_writeback_one() calls for the same index cannot finish before we
910 * actually flush the caches. This is achieved as the calls will look
911 * at the entry only under the i_pages lock and once they do that
912 * they will see the entry locked and wait for it to unlock.
913 */
914 xas_clear_mark(xas, PAGECACHE_TAG_TOWRITE);
915 xas_unlock_irq(xas);
916
917 /*
918 * If dax_writeback_mapping_range() was given a wbc->range_start
919 * in the middle of a PMD, the 'index' we use needs to be
920 * aligned to the start of the PMD.
921 * This allows us to flush for PMD_SIZE and not have to worry about
922 * partial PMD writebacks.
923 */
924 pfn = dax_to_pfn(entry);
925 count = 1UL << dax_entry_order(entry);
926 index = xas->xa_index & ~(count - 1);
927
928 dax_entry_mkclean(mapping, index, pfn);
929 dax_flush(dax_dev, page_address(pfn_to_page(pfn)), count * PAGE_SIZE);
930 /*
931 * After we have flushed the cache, we can clear the dirty tag. There
932 * cannot be new dirty data in the pfn after the flush has completed as
933 * the pfn mappings are writeprotected and fault waits for mapping
934 * entry lock.
935 */
936 xas_reset(xas);
937 xas_lock_irq(xas);
938 xas_store(xas, entry);
939 xas_clear_mark(xas, PAGECACHE_TAG_DIRTY);
940 dax_wake_entry(xas, entry, false);
941
942 trace_dax_writeback_one(mapping->host, index, count);
943 return ret;
944
945 put_unlocked:
946 put_unlocked_entry(xas, entry);
947 return ret;
948 }
949
950 /*
951 * Flush the mapping to the persistent domain within the byte range of [start,
952 * end]. This is required by data integrity operations to ensure file data is
953 * on persistent storage prior to completion of the operation.
954 */
955 int dax_writeback_mapping_range(struct address_space *mapping,
956 struct dax_device *dax_dev, struct writeback_control *wbc)
957 {
958 XA_STATE(xas, &mapping->i_pages, wbc->range_start >> PAGE_SHIFT);
959 struct inode *inode = mapping->host;
960 pgoff_t end_index = wbc->range_end >> PAGE_SHIFT;
961 void *entry;
962 int ret = 0;
963 unsigned int scanned = 0;
964
965 if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
966 return -EIO;
967
968 if (mapping_empty(mapping) || wbc->sync_mode != WB_SYNC_ALL)
969 return 0;
970
971 trace_dax_writeback_range(inode, xas.xa_index, end_index);
972
973 tag_pages_for_writeback(mapping, xas.xa_index, end_index);
974
975 xas_lock_irq(&xas);
976 xas_for_each_marked(&xas, entry, end_index, PAGECACHE_TAG_TOWRITE) {
977 ret = dax_writeback_one(&xas, dax_dev, mapping, entry);
978 if (ret < 0) {
979 mapping_set_error(mapping, ret);
980 break;
981 }
982 if (++scanned % XA_CHECK_SCHED)
983 continue;
984
985 xas_pause(&xas);
986 xas_unlock_irq(&xas);
987 cond_resched();
988 xas_lock_irq(&xas);
989 }
990 xas_unlock_irq(&xas);
991 trace_dax_writeback_range_done(inode, xas.xa_index, end_index);
992 return ret;
993 }
994 EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
995
996 static sector_t dax_iomap_sector(struct iomap *iomap, loff_t pos)
997 {
998 return (iomap->addr + (pos & PAGE_MASK) - iomap->offset) >> 9;
999 }
1000
1001 static int dax_iomap_pfn(struct iomap *iomap, loff_t pos, size_t size,
1002 pfn_t *pfnp)
1003 {
1004 const sector_t sector = dax_iomap_sector(iomap, pos);
1005 pgoff_t pgoff;
1006 int id, rc;
1007 long length;
1008
1009 rc = bdev_dax_pgoff(iomap->bdev, sector, size, &pgoff);
1010 if (rc)
1011 return rc;
1012 id = dax_read_lock();
1013 length = dax_direct_access(iomap->dax_dev, pgoff, PHYS_PFN(size),
1014 NULL, pfnp);
1015 if (length < 0) {
1016 rc = length;
1017 goto out;
1018 }
1019 rc = -EINVAL;
1020 if (PFN_PHYS(length) < size)
1021 goto out;
1022 if (pfn_t_to_pfn(*pfnp) & (PHYS_PFN(size)-1))
1023 goto out;
1024 /* For larger pages we need devmap */
1025 if (length > 1 && !pfn_t_devmap(*pfnp))
1026 goto out;
1027 rc = 0;
1028 out:
1029 dax_read_unlock(id);
1030 return rc;
1031 }
1032
1033 /*
1034 * The user has performed a load from a hole in the file. Allocating a new
1035 * page in the file would cause excessive storage usage for workloads with
1036 * sparse files. Instead we insert a read-only mapping of the 4k zero page.
1037 * If this page is ever written to we will re-fault and change the mapping to
1038 * point to real DAX storage instead.
1039 */
1040 static vm_fault_t dax_load_hole(struct xa_state *xas,
1041 struct address_space *mapping, void **entry,
1042 struct vm_fault *vmf)
1043 {
1044 struct inode *inode = mapping->host;
1045 unsigned long vaddr = vmf->address;
1046 pfn_t pfn = pfn_to_pfn_t(my_zero_pfn(vaddr));
1047 vm_fault_t ret;
1048
1049 *entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn,
1050 DAX_ZERO_PAGE, false);
1051
1052 ret = vmf_insert_mixed(vmf->vma, vaddr, pfn);
1053 trace_dax_load_hole(inode, vmf, ret);
1054 return ret;
1055 }
1056
1057 s64 dax_iomap_zero(loff_t pos, u64 length, struct iomap *iomap)
1058 {
1059 sector_t sector = iomap_sector(iomap, pos & PAGE_MASK);
1060 pgoff_t pgoff;
1061 long rc, id;
1062 void *kaddr;
1063 bool page_aligned = false;
1064 unsigned offset = offset_in_page(pos);
1065 unsigned size = min_t(u64, PAGE_SIZE - offset, length);
1066
1067 if (IS_ALIGNED(sector << SECTOR_SHIFT, PAGE_SIZE) &&
1068 (size == PAGE_SIZE))
1069 page_aligned = true;
1070
1071 rc = bdev_dax_pgoff(iomap->bdev, sector, PAGE_SIZE, &pgoff);
1072 if (rc)
1073 return rc;
1074
1075 id = dax_read_lock();
1076
1077 if (page_aligned)
1078 rc = dax_zero_page_range(iomap->dax_dev, pgoff, 1);
1079 else
1080 rc = dax_direct_access(iomap->dax_dev, pgoff, 1, &kaddr, NULL);
1081 if (rc < 0) {
1082 dax_read_unlock(id);
1083 return rc;
1084 }
1085
1086 if (!page_aligned) {
1087 memset(kaddr + offset, 0, size);
1088 dax_flush(iomap->dax_dev, kaddr + offset, size);
1089 }
1090 dax_read_unlock(id);
1091 return size;
1092 }
1093
1094 static loff_t
1095 dax_iomap_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
1096 struct iomap *iomap, struct iomap *srcmap)
1097 {
1098 struct block_device *bdev = iomap->bdev;
1099 struct dax_device *dax_dev = iomap->dax_dev;
1100 struct iov_iter *iter = data;
1101 loff_t end = pos + length, done = 0;
1102 ssize_t ret = 0;
1103 size_t xfer;
1104 int id;
1105
1106 if (iov_iter_rw(iter) == READ) {
1107 end = min(end, i_size_read(inode));
1108 if (pos >= end)
1109 return 0;
1110
1111 if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
1112 return iov_iter_zero(min(length, end - pos), iter);
1113 }
1114
1115 if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED))
1116 return -EIO;
1117
1118 /*
1119 * Write can allocate block for an area which has a hole page mapped
1120 * into page tables. We have to tear down these mappings so that data
1121 * written by write(2) is visible in mmap.
1122 */
1123 if (iomap->flags & IOMAP_F_NEW) {
1124 invalidate_inode_pages2_range(inode->i_mapping,
1125 pos >> PAGE_SHIFT,
1126 (end - 1) >> PAGE_SHIFT);
1127 }
1128
1129 id = dax_read_lock();
1130 while (pos < end) {
1131 unsigned offset = pos & (PAGE_SIZE - 1);
1132 const size_t size = ALIGN(length + offset, PAGE_SIZE);
1133 const sector_t sector = dax_iomap_sector(iomap, pos);
1134 ssize_t map_len;
1135 pgoff_t pgoff;
1136 void *kaddr;
1137
1138 if (fatal_signal_pending(current)) {
1139 ret = -EINTR;
1140 break;
1141 }
1142
1143 ret = bdev_dax_pgoff(bdev, sector, size, &pgoff);
1144 if (ret)
1145 break;
1146
1147 map_len = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size),
1148 &kaddr, NULL);
1149 if (map_len < 0) {
1150 ret = map_len;
1151 break;
1152 }
1153
1154 map_len = PFN_PHYS(map_len);
1155 kaddr += offset;
1156 map_len -= offset;
1157 if (map_len > end - pos)
1158 map_len = end - pos;
1159
1160 /*
1161 * The userspace address for the memory copy has already been
1162 * validated via access_ok() in either vfs_read() or
1163 * vfs_write(), depending on which operation we are doing.
1164 */
1165 if (iov_iter_rw(iter) == WRITE)
1166 xfer = dax_copy_from_iter(dax_dev, pgoff, kaddr,
1167 map_len, iter);
1168 else
1169 xfer = dax_copy_to_iter(dax_dev, pgoff, kaddr,
1170 map_len, iter);
1171
1172 pos += xfer;
1173 length -= xfer;
1174 done += xfer;
1175
1176 if (xfer == 0)
1177 ret = -EFAULT;
1178 if (xfer < map_len)
1179 break;
1180 }
1181 dax_read_unlock(id);
1182
1183 return done ? done : ret;
1184 }
1185
1186 /**
1187 * dax_iomap_rw - Perform I/O to a DAX file
1188 * @iocb: The control block for this I/O
1189 * @iter: The addresses to do I/O from or to
1190 * @ops: iomap ops passed from the file system
1191 *
1192 * This function performs read and write operations to directly mapped
1193 * persistent memory. The callers needs to take care of read/write exclusion
1194 * and evicting any page cache pages in the region under I/O.
1195 */
1196 ssize_t
1197 dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter,
1198 const struct iomap_ops *ops)
1199 {
1200 struct address_space *mapping = iocb->ki_filp->f_mapping;
1201 struct inode *inode = mapping->host;
1202 loff_t pos = iocb->ki_pos, ret = 0, done = 0;
1203 unsigned flags = 0;
1204
1205 if (iov_iter_rw(iter) == WRITE) {
1206 lockdep_assert_held_write(&inode->i_rwsem);
1207 flags |= IOMAP_WRITE;
1208 } else {
1209 lockdep_assert_held(&inode->i_rwsem);
1210 }
1211
1212 if (iocb->ki_flags & IOCB_NOWAIT)
1213 flags |= IOMAP_NOWAIT;
1214
1215 while (iov_iter_count(iter)) {
1216 ret = iomap_apply(inode, pos, iov_iter_count(iter), flags, ops,
1217 iter, dax_iomap_actor);
1218 if (ret <= 0)
1219 break;
1220 pos += ret;
1221 done += ret;
1222 }
1223
1224 iocb->ki_pos += done;
1225 return done ? done : ret;
1226 }
1227 EXPORT_SYMBOL_GPL(dax_iomap_rw);
1228
1229 static vm_fault_t dax_fault_return(int error)
1230 {
1231 if (error == 0)
1232 return VM_FAULT_NOPAGE;
1233 return vmf_error(error);
1234 }
1235
1236 /*
1237 * MAP_SYNC on a dax mapping guarantees dirty metadata is
1238 * flushed on write-faults (non-cow), but not read-faults.
1239 */
1240 static bool dax_fault_is_synchronous(unsigned long flags,
1241 struct vm_area_struct *vma, struct iomap *iomap)
1242 {
1243 return (flags & IOMAP_WRITE) && (vma->vm_flags & VM_SYNC)
1244 && (iomap->flags & IOMAP_F_DIRTY);
1245 }
1246
1247 static vm_fault_t dax_iomap_pte_fault(struct vm_fault *vmf, pfn_t *pfnp,
1248 int *iomap_errp, const struct iomap_ops *ops)
1249 {
1250 struct vm_area_struct *vma = vmf->vma;
1251 struct address_space *mapping = vma->vm_file->f_mapping;
1252 XA_STATE(xas, &mapping->i_pages, vmf->pgoff);
1253 struct inode *inode = mapping->host;
1254 unsigned long vaddr = vmf->address;
1255 loff_t pos = (loff_t)vmf->pgoff << PAGE_SHIFT;
1256 struct iomap iomap = { .type = IOMAP_HOLE };
1257 struct iomap srcmap = { .type = IOMAP_HOLE };
1258 unsigned flags = IOMAP_FAULT;
1259 int error, major = 0;
1260 bool write = vmf->flags & FAULT_FLAG_WRITE;
1261 bool sync;
1262 vm_fault_t ret = 0;
1263 void *entry;
1264 pfn_t pfn;
1265
1266 trace_dax_pte_fault(inode, vmf, ret);
1267 /*
1268 * Check whether offset isn't beyond end of file now. Caller is supposed
1269 * to hold locks serializing us with truncate / punch hole so this is
1270 * a reliable test.
1271 */
1272 if (pos >= i_size_read(inode)) {
1273 ret = VM_FAULT_SIGBUS;
1274 goto out;
1275 }
1276
1277 if (write && !vmf->cow_page)
1278 flags |= IOMAP_WRITE;
1279
1280 entry = grab_mapping_entry(&xas, mapping, 0);
1281 if (xa_is_internal(entry)) {
1282 ret = xa_to_internal(entry);
1283 goto out;
1284 }
1285
1286 /*
1287 * It is possible, particularly with mixed reads & writes to private
1288 * mappings, that we have raced with a PMD fault that overlaps with
1289 * the PTE we need to set up. If so just return and the fault will be
1290 * retried.
1291 */
1292 if (pmd_trans_huge(*vmf->pmd) || pmd_devmap(*vmf->pmd)) {
1293 ret = VM_FAULT_NOPAGE;
1294 goto unlock_entry;
1295 }
1296
1297 /*
1298 * Note that we don't bother to use iomap_apply here: DAX required
1299 * the file system block size to be equal the page size, which means
1300 * that we never have to deal with more than a single extent here.
1301 */
1302 error = ops->iomap_begin(inode, pos, PAGE_SIZE, flags, &iomap, &srcmap);
1303 if (iomap_errp)
1304 *iomap_errp = error;
1305 if (error) {
1306 ret = dax_fault_return(error);
1307 goto unlock_entry;
1308 }
1309 if (WARN_ON_ONCE(iomap.offset + iomap.length < pos + PAGE_SIZE)) {
1310 error = -EIO; /* fs corruption? */
1311 goto error_finish_iomap;
1312 }
1313
1314 if (vmf->cow_page) {
1315 sector_t sector = dax_iomap_sector(&iomap, pos);
1316
1317 switch (iomap.type) {
1318 case IOMAP_HOLE:
1319 case IOMAP_UNWRITTEN:
1320 clear_user_highpage(vmf->cow_page, vaddr);
1321 break;
1322 case IOMAP_MAPPED:
1323 error = copy_cow_page_dax(iomap.bdev, iomap.dax_dev,
1324 sector, vmf->cow_page, vaddr);
1325 break;
1326 default:
1327 WARN_ON_ONCE(1);
1328 error = -EIO;
1329 break;
1330 }
1331
1332 if (error)
1333 goto error_finish_iomap;
1334
1335 __SetPageUptodate(vmf->cow_page);
1336 ret = finish_fault(vmf);
1337 if (!ret)
1338 ret = VM_FAULT_DONE_COW;
1339 goto finish_iomap;
1340 }
1341
1342 sync = dax_fault_is_synchronous(flags, vma, &iomap);
1343
1344 switch (iomap.type) {
1345 case IOMAP_MAPPED:
1346 if (iomap.flags & IOMAP_F_NEW) {
1347 count_vm_event(PGMAJFAULT);
1348 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
1349 major = VM_FAULT_MAJOR;
1350 }
1351 error = dax_iomap_pfn(&iomap, pos, PAGE_SIZE, &pfn);
1352 if (error < 0)
1353 goto error_finish_iomap;
1354
1355 entry = dax_insert_entry(&xas, mapping, vmf, entry, pfn,
1356 0, write && !sync);
1357
1358 /*
1359 * If we are doing synchronous page fault and inode needs fsync,
1360 * we can insert PTE into page tables only after that happens.
1361 * Skip insertion for now and return the pfn so that caller can
1362 * insert it after fsync is done.
1363 */
1364 if (sync) {
1365 if (WARN_ON_ONCE(!pfnp)) {
1366 error = -EIO;
1367 goto error_finish_iomap;
1368 }
1369 *pfnp = pfn;
1370 ret = VM_FAULT_NEEDDSYNC | major;
1371 goto finish_iomap;
1372 }
1373 trace_dax_insert_mapping(inode, vmf, entry);
1374 if (write)
1375 ret = vmf_insert_mixed_mkwrite(vma, vaddr, pfn);
1376 else
1377 ret = vmf_insert_mixed(vma, vaddr, pfn);
1378
1379 goto finish_iomap;
1380 case IOMAP_UNWRITTEN:
1381 case IOMAP_HOLE:
1382 if (!write) {
1383 ret = dax_load_hole(&xas, mapping, &entry, vmf);
1384 goto finish_iomap;
1385 }
1386 fallthrough;
1387 default:
1388 WARN_ON_ONCE(1);
1389 error = -EIO;
1390 break;
1391 }
1392
1393 error_finish_iomap:
1394 ret = dax_fault_return(error);
1395 finish_iomap:
1396 if (ops->iomap_end) {
1397 int copied = PAGE_SIZE;
1398
1399 if (ret & VM_FAULT_ERROR)
1400 copied = 0;
1401 /*
1402 * The fault is done by now and there's no way back (other
1403 * thread may be already happily using PTE we have installed).
1404 * Just ignore error from ->iomap_end since we cannot do much
1405 * with it.
1406 */
1407 ops->iomap_end(inode, pos, PAGE_SIZE, copied, flags, &iomap);
1408 }
1409 unlock_entry:
1410 dax_unlock_entry(&xas, entry);
1411 out:
1412 trace_dax_pte_fault_done(inode, vmf, ret);
1413 return ret | major;
1414 }
1415
1416 #ifdef CONFIG_FS_DAX_PMD
1417 static vm_fault_t dax_pmd_load_hole(struct xa_state *xas, struct vm_fault *vmf,
1418 struct iomap *iomap, void **entry)
1419 {
1420 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1421 unsigned long pmd_addr = vmf->address & PMD_MASK;
1422 struct vm_area_struct *vma = vmf->vma;
1423 struct inode *inode = mapping->host;
1424 pgtable_t pgtable = NULL;
1425 struct page *zero_page;
1426 spinlock_t *ptl;
1427 pmd_t pmd_entry;
1428 pfn_t pfn;
1429
1430 zero_page = mm_get_huge_zero_page(vmf->vma->vm_mm);
1431
1432 if (unlikely(!zero_page))
1433 goto fallback;
1434
1435 pfn = page_to_pfn_t(zero_page);
1436 *entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn,
1437 DAX_PMD | DAX_ZERO_PAGE, false);
1438
1439 if (arch_needs_pgtable_deposit()) {
1440 pgtable = pte_alloc_one(vma->vm_mm);
1441 if (!pgtable)
1442 return VM_FAULT_OOM;
1443 }
1444
1445 ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1446 if (!pmd_none(*(vmf->pmd))) {
1447 spin_unlock(ptl);
1448 goto fallback;
1449 }
1450
1451 if (pgtable) {
1452 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
1453 mm_inc_nr_ptes(vma->vm_mm);
1454 }
1455 pmd_entry = mk_pmd(zero_page, vmf->vma->vm_page_prot);
1456 pmd_entry = pmd_mkhuge(pmd_entry);
1457 set_pmd_at(vmf->vma->vm_mm, pmd_addr, vmf->pmd, pmd_entry);
1458 spin_unlock(ptl);
1459 trace_dax_pmd_load_hole(inode, vmf, zero_page, *entry);
1460 return VM_FAULT_NOPAGE;
1461
1462 fallback:
1463 if (pgtable)
1464 pte_free(vma->vm_mm, pgtable);
1465 trace_dax_pmd_load_hole_fallback(inode, vmf, zero_page, *entry);
1466 return VM_FAULT_FALLBACK;
1467 }
1468
1469 static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1470 const struct iomap_ops *ops)
1471 {
1472 struct vm_area_struct *vma = vmf->vma;
1473 struct address_space *mapping = vma->vm_file->f_mapping;
1474 XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, PMD_ORDER);
1475 unsigned long pmd_addr = vmf->address & PMD_MASK;
1476 bool write = vmf->flags & FAULT_FLAG_WRITE;
1477 bool sync;
1478 unsigned int iomap_flags = (write ? IOMAP_WRITE : 0) | IOMAP_FAULT;
1479 struct inode *inode = mapping->host;
1480 vm_fault_t result = VM_FAULT_FALLBACK;
1481 struct iomap iomap = { .type = IOMAP_HOLE };
1482 struct iomap srcmap = { .type = IOMAP_HOLE };
1483 pgoff_t max_pgoff;
1484 void *entry;
1485 loff_t pos;
1486 int error;
1487 pfn_t pfn;
1488
1489 /*
1490 * Check whether offset isn't beyond end of file now. Caller is
1491 * supposed to hold locks serializing us with truncate / punch hole so
1492 * this is a reliable test.
1493 */
1494 max_pgoff = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1495
1496 trace_dax_pmd_fault(inode, vmf, max_pgoff, 0);
1497
1498 /*
1499 * Make sure that the faulting address's PMD offset (color) matches
1500 * the PMD offset from the start of the file. This is necessary so
1501 * that a PMD range in the page table overlaps exactly with a PMD
1502 * range in the page cache.
1503 */
1504 if ((vmf->pgoff & PG_PMD_COLOUR) !=
1505 ((vmf->address >> PAGE_SHIFT) & PG_PMD_COLOUR))
1506 goto fallback;
1507
1508 /* Fall back to PTEs if we're going to COW */
1509 if (write && !(vma->vm_flags & VM_SHARED))
1510 goto fallback;
1511
1512 /* If the PMD would extend outside the VMA */
1513 if (pmd_addr < vma->vm_start)
1514 goto fallback;
1515 if ((pmd_addr + PMD_SIZE) > vma->vm_end)
1516 goto fallback;
1517
1518 if (xas.xa_index >= max_pgoff) {
1519 result = VM_FAULT_SIGBUS;
1520 goto out;
1521 }
1522
1523 /* If the PMD would extend beyond the file size */
1524 if ((xas.xa_index | PG_PMD_COLOUR) >= max_pgoff)
1525 goto fallback;
1526
1527 /*
1528 * grab_mapping_entry() will make sure we get an empty PMD entry,
1529 * a zero PMD entry or a DAX PMD. If it can't (because a PTE
1530 * entry is already in the array, for instance), it will return
1531 * VM_FAULT_FALLBACK.
1532 */
1533 entry = grab_mapping_entry(&xas, mapping, PMD_ORDER);
1534 if (xa_is_internal(entry)) {
1535 result = xa_to_internal(entry);
1536 goto fallback;
1537 }
1538
1539 /*
1540 * It is possible, particularly with mixed reads & writes to private
1541 * mappings, that we have raced with a PTE fault that overlaps with
1542 * the PMD we need to set up. If so just return and the fault will be
1543 * retried.
1544 */
1545 if (!pmd_none(*vmf->pmd) && !pmd_trans_huge(*vmf->pmd) &&
1546 !pmd_devmap(*vmf->pmd)) {
1547 result = 0;
1548 goto unlock_entry;
1549 }
1550
1551 /*
1552 * Note that we don't use iomap_apply here. We aren't doing I/O, only
1553 * setting up a mapping, so really we're using iomap_begin() as a way
1554 * to look up our filesystem block.
1555 */
1556 pos = (loff_t)xas.xa_index << PAGE_SHIFT;
1557 error = ops->iomap_begin(inode, pos, PMD_SIZE, iomap_flags, &iomap,
1558 &srcmap);
1559 if (error)
1560 goto unlock_entry;
1561
1562 if (iomap.offset + iomap.length < pos + PMD_SIZE)
1563 goto finish_iomap;
1564
1565 sync = dax_fault_is_synchronous(iomap_flags, vma, &iomap);
1566
1567 switch (iomap.type) {
1568 case IOMAP_MAPPED:
1569 error = dax_iomap_pfn(&iomap, pos, PMD_SIZE, &pfn);
1570 if (error < 0)
1571 goto finish_iomap;
1572
1573 entry = dax_insert_entry(&xas, mapping, vmf, entry, pfn,
1574 DAX_PMD, write && !sync);
1575
1576 /*
1577 * If we are doing synchronous page fault and inode needs fsync,
1578 * we can insert PMD into page tables only after that happens.
1579 * Skip insertion for now and return the pfn so that caller can
1580 * insert it after fsync is done.
1581 */
1582 if (sync) {
1583 if (WARN_ON_ONCE(!pfnp))
1584 goto finish_iomap;
1585 *pfnp = pfn;
1586 result = VM_FAULT_NEEDDSYNC;
1587 goto finish_iomap;
1588 }
1589
1590 trace_dax_pmd_insert_mapping(inode, vmf, PMD_SIZE, pfn, entry);
1591 result = vmf_insert_pfn_pmd(vmf, pfn, write);
1592 break;
1593 case IOMAP_UNWRITTEN:
1594 case IOMAP_HOLE:
1595 if (WARN_ON_ONCE(write))
1596 break;
1597 result = dax_pmd_load_hole(&xas, vmf, &iomap, &entry);
1598 break;
1599 default:
1600 WARN_ON_ONCE(1);
1601 break;
1602 }
1603
1604 finish_iomap:
1605 if (ops->iomap_end) {
1606 int copied = PMD_SIZE;
1607
1608 if (result == VM_FAULT_FALLBACK)
1609 copied = 0;
1610 /*
1611 * The fault is done by now and there's no way back (other
1612 * thread may be already happily using PMD we have installed).
1613 * Just ignore error from ->iomap_end since we cannot do much
1614 * with it.
1615 */
1616 ops->iomap_end(inode, pos, PMD_SIZE, copied, iomap_flags,
1617 &iomap);
1618 }
1619 unlock_entry:
1620 dax_unlock_entry(&xas, entry);
1621 fallback:
1622 if (result == VM_FAULT_FALLBACK) {
1623 split_huge_pmd(vma, vmf->pmd, vmf->address);
1624 count_vm_event(THP_FAULT_FALLBACK);
1625 }
1626 out:
1627 trace_dax_pmd_fault_done(inode, vmf, max_pgoff, result);
1628 return result;
1629 }
1630 #else
1631 static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1632 const struct iomap_ops *ops)
1633 {
1634 return VM_FAULT_FALLBACK;
1635 }
1636 #endif /* CONFIG_FS_DAX_PMD */
1637
1638 /**
1639 * dax_iomap_fault - handle a page fault on a DAX file
1640 * @vmf: The description of the fault
1641 * @pe_size: Size of the page to fault in
1642 * @pfnp: PFN to insert for synchronous faults if fsync is required
1643 * @iomap_errp: Storage for detailed error code in case of error
1644 * @ops: Iomap ops passed from the file system
1645 *
1646 * When a page fault occurs, filesystems may call this helper in
1647 * their fault handler for DAX files. dax_iomap_fault() assumes the caller
1648 * has done all the necessary locking for page fault to proceed
1649 * successfully.
1650 */
1651 vm_fault_t dax_iomap_fault(struct vm_fault *vmf, enum page_entry_size pe_size,
1652 pfn_t *pfnp, int *iomap_errp, const struct iomap_ops *ops)
1653 {
1654 switch (pe_size) {
1655 case PE_SIZE_PTE:
1656 return dax_iomap_pte_fault(vmf, pfnp, iomap_errp, ops);
1657 case PE_SIZE_PMD:
1658 return dax_iomap_pmd_fault(vmf, pfnp, ops);
1659 default:
1660 return VM_FAULT_FALLBACK;
1661 }
1662 }
1663 EXPORT_SYMBOL_GPL(dax_iomap_fault);
1664
1665 /*
1666 * dax_insert_pfn_mkwrite - insert PTE or PMD entry into page tables
1667 * @vmf: The description of the fault
1668 * @pfn: PFN to insert
1669 * @order: Order of entry to insert.
1670 *
1671 * This function inserts a writeable PTE or PMD entry into the page tables
1672 * for an mmaped DAX file. It also marks the page cache entry as dirty.
1673 */
1674 static vm_fault_t
1675 dax_insert_pfn_mkwrite(struct vm_fault *vmf, pfn_t pfn, unsigned int order)
1676 {
1677 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1678 XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, order);
1679 void *entry;
1680 vm_fault_t ret;
1681
1682 xas_lock_irq(&xas);
1683 entry = get_unlocked_entry(&xas, order);
1684 /* Did we race with someone splitting entry or so? */
1685 if (!entry || dax_is_conflict(entry) ||
1686 (order == 0 && !dax_is_pte_entry(entry))) {
1687 put_unlocked_entry(&xas, entry);
1688 xas_unlock_irq(&xas);
1689 trace_dax_insert_pfn_mkwrite_no_entry(mapping->host, vmf,
1690 VM_FAULT_NOPAGE);
1691 return VM_FAULT_NOPAGE;
1692 }
1693 xas_set_mark(&xas, PAGECACHE_TAG_DIRTY);
1694 dax_lock_entry(&xas, entry);
1695 xas_unlock_irq(&xas);
1696 if (order == 0)
1697 ret = vmf_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn);
1698 #ifdef CONFIG_FS_DAX_PMD
1699 else if (order == PMD_ORDER)
1700 ret = vmf_insert_pfn_pmd(vmf, pfn, FAULT_FLAG_WRITE);
1701 #endif
1702 else
1703 ret = VM_FAULT_FALLBACK;
1704 dax_unlock_entry(&xas, entry);
1705 trace_dax_insert_pfn_mkwrite(mapping->host, vmf, ret);
1706 return ret;
1707 }
1708
1709 /**
1710 * dax_finish_sync_fault - finish synchronous page fault
1711 * @vmf: The description of the fault
1712 * @pe_size: Size of entry to be inserted
1713 * @pfn: PFN to insert
1714 *
1715 * This function ensures that the file range touched by the page fault is
1716 * stored persistently on the media and handles inserting of appropriate page
1717 * table entry.
1718 */
1719 vm_fault_t dax_finish_sync_fault(struct vm_fault *vmf,
1720 enum page_entry_size pe_size, pfn_t pfn)
1721 {
1722 int err;
1723 loff_t start = ((loff_t)vmf->pgoff) << PAGE_SHIFT;
1724 unsigned int order = pe_order(pe_size);
1725 size_t len = PAGE_SIZE << order;
1726
1727 err = vfs_fsync_range(vmf->vma->vm_file, start, start + len - 1, 1);
1728 if (err)
1729 return VM_FAULT_SIGBUS;
1730 return dax_insert_pfn_mkwrite(vmf, pfn, order);
1731 }
1732 EXPORT_SYMBOL_GPL(dax_finish_sync_fault);