1 // SPDX-License-Identifier: GPL-2.0-only
3 * fs/dax.c - Direct Access filesystem code
4 * Copyright (c) 2013-2014 Intel Corporation
5 * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
6 * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
9 #include <linux/atomic.h>
10 #include <linux/blkdev.h>
11 #include <linux/buffer_head.h>
12 #include <linux/dax.h>
14 #include <linux/genhd.h>
15 #include <linux/highmem.h>
16 #include <linux/memcontrol.h>
18 #include <linux/mutex.h>
19 #include <linux/pagevec.h>
20 #include <linux/sched.h>
21 #include <linux/sched/signal.h>
22 #include <linux/uio.h>
23 #include <linux/vmstat.h>
24 #include <linux/pfn_t.h>
25 #include <linux/sizes.h>
26 #include <linux/mmu_notifier.h>
27 #include <linux/iomap.h>
28 #include <asm/pgalloc.h>
30 #define CREATE_TRACE_POINTS
31 #include <trace/events/fs_dax.h>
33 static inline unsigned int pe_order(enum page_entry_size pe_size
)
35 if (pe_size
== PE_SIZE_PTE
)
36 return PAGE_SHIFT
- PAGE_SHIFT
;
37 if (pe_size
== PE_SIZE_PMD
)
38 return PMD_SHIFT
- PAGE_SHIFT
;
39 if (pe_size
== PE_SIZE_PUD
)
40 return PUD_SHIFT
- PAGE_SHIFT
;
44 /* We choose 4096 entries - same as per-zone page wait tables */
45 #define DAX_WAIT_TABLE_BITS 12
46 #define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
48 /* The 'colour' (ie low bits) within a PMD of a page offset. */
49 #define PG_PMD_COLOUR ((PMD_SIZE >> PAGE_SHIFT) - 1)
50 #define PG_PMD_NR (PMD_SIZE >> PAGE_SHIFT)
52 /* The order of a PMD entry */
53 #define PMD_ORDER (PMD_SHIFT - PAGE_SHIFT)
55 static wait_queue_head_t wait_table
[DAX_WAIT_TABLE_ENTRIES
];
57 static int __init
init_dax_wait_table(void)
61 for (i
= 0; i
< DAX_WAIT_TABLE_ENTRIES
; i
++)
62 init_waitqueue_head(wait_table
+ i
);
65 fs_initcall(init_dax_wait_table
);
68 * DAX pagecache entries use XArray value entries so they can't be mistaken
69 * for pages. We use one bit for locking, one bit for the entry size (PMD)
70 * and two more to tell us if the entry is a zero page or an empty entry that
71 * is just used for locking. In total four special bits.
73 * If the PMD bit isn't set the entry has size PAGE_SIZE, and if the ZERO_PAGE
74 * and EMPTY bits aren't set the entry is a normal DAX entry with a filesystem
78 #define DAX_LOCKED (1UL << 0)
79 #define DAX_PMD (1UL << 1)
80 #define DAX_ZERO_PAGE (1UL << 2)
81 #define DAX_EMPTY (1UL << 3)
83 static unsigned long dax_to_pfn(void *entry
)
85 return xa_to_value(entry
) >> DAX_SHIFT
;
88 static void *dax_make_entry(pfn_t pfn
, unsigned long flags
)
90 return xa_mk_value(flags
| (pfn_t_to_pfn(pfn
) << DAX_SHIFT
));
93 static bool dax_is_locked(void *entry
)
95 return xa_to_value(entry
) & DAX_LOCKED
;
98 static unsigned int dax_entry_order(void *entry
)
100 if (xa_to_value(entry
) & DAX_PMD
)
105 static unsigned long dax_is_pmd_entry(void *entry
)
107 return xa_to_value(entry
) & DAX_PMD
;
110 static bool dax_is_pte_entry(void *entry
)
112 return !(xa_to_value(entry
) & DAX_PMD
);
115 static int dax_is_zero_entry(void *entry
)
117 return xa_to_value(entry
) & DAX_ZERO_PAGE
;
120 static int dax_is_empty_entry(void *entry
)
122 return xa_to_value(entry
) & DAX_EMPTY
;
126 * true if the entry that was found is of a smaller order than the entry
127 * we were looking for
129 static bool dax_is_conflict(void *entry
)
131 return entry
== XA_RETRY_ENTRY
;
135 * DAX page cache entry locking
137 struct exceptional_entry_key
{
142 struct wait_exceptional_entry_queue
{
143 wait_queue_entry_t wait
;
144 struct exceptional_entry_key key
;
147 static wait_queue_head_t
*dax_entry_waitqueue(struct xa_state
*xas
,
148 void *entry
, struct exceptional_entry_key
*key
)
151 unsigned long index
= xas
->xa_index
;
154 * If 'entry' is a PMD, align the 'index' that we use for the wait
155 * queue to the start of that PMD. This ensures that all offsets in
156 * the range covered by the PMD map to the same bit lock.
158 if (dax_is_pmd_entry(entry
))
159 index
&= ~PG_PMD_COLOUR
;
161 key
->entry_start
= index
;
163 hash
= hash_long((unsigned long)xas
->xa
^ index
, DAX_WAIT_TABLE_BITS
);
164 return wait_table
+ hash
;
167 static int wake_exceptional_entry_func(wait_queue_entry_t
*wait
,
168 unsigned int mode
, int sync
, void *keyp
)
170 struct exceptional_entry_key
*key
= keyp
;
171 struct wait_exceptional_entry_queue
*ewait
=
172 container_of(wait
, struct wait_exceptional_entry_queue
, wait
);
174 if (key
->xa
!= ewait
->key
.xa
||
175 key
->entry_start
!= ewait
->key
.entry_start
)
177 return autoremove_wake_function(wait
, mode
, sync
, NULL
);
181 * @entry may no longer be the entry at the index in the mapping.
182 * The important information it's conveying is whether the entry at
183 * this index used to be a PMD entry.
185 static void dax_wake_entry(struct xa_state
*xas
, void *entry
, bool wake_all
)
187 struct exceptional_entry_key key
;
188 wait_queue_head_t
*wq
;
190 wq
= dax_entry_waitqueue(xas
, entry
, &key
);
193 * Checking for locked entry and prepare_to_wait_exclusive() happens
194 * under the i_pages lock, ditto for entry handling in our callers.
195 * So at this point all tasks that could have seen our entry locked
196 * must be in the waitqueue and the following check will see them.
198 if (waitqueue_active(wq
))
199 __wake_up(wq
, TASK_NORMAL
, wake_all
? 0 : 1, &key
);
203 * Look up entry in page cache, wait for it to become unlocked if it
204 * is a DAX entry and return it. The caller must subsequently call
205 * put_unlocked_entry() if it did not lock the entry or dax_unlock_entry()
206 * if it did. The entry returned may have a larger order than @order.
207 * If @order is larger than the order of the entry found in i_pages, this
208 * function returns a dax_is_conflict entry.
210 * Must be called with the i_pages lock held.
212 static void *get_unlocked_entry(struct xa_state
*xas
, unsigned int order
)
215 struct wait_exceptional_entry_queue ewait
;
216 wait_queue_head_t
*wq
;
218 init_wait(&ewait
.wait
);
219 ewait
.wait
.func
= wake_exceptional_entry_func
;
222 entry
= xas_find_conflict(xas
);
223 if (!entry
|| WARN_ON_ONCE(!xa_is_value(entry
)))
225 if (dax_entry_order(entry
) < order
)
226 return XA_RETRY_ENTRY
;
227 if (!dax_is_locked(entry
))
230 wq
= dax_entry_waitqueue(xas
, entry
, &ewait
.key
);
231 prepare_to_wait_exclusive(wq
, &ewait
.wait
,
232 TASK_UNINTERRUPTIBLE
);
236 finish_wait(wq
, &ewait
.wait
);
242 * The only thing keeping the address space around is the i_pages lock
243 * (it's cycled in clear_inode() after removing the entries from i_pages)
244 * After we call xas_unlock_irq(), we cannot touch xas->xa.
246 static void wait_entry_unlocked(struct xa_state
*xas
, void *entry
)
248 struct wait_exceptional_entry_queue ewait
;
249 wait_queue_head_t
*wq
;
251 init_wait(&ewait
.wait
);
252 ewait
.wait
.func
= wake_exceptional_entry_func
;
254 wq
= dax_entry_waitqueue(xas
, entry
, &ewait
.key
);
256 * Unlike get_unlocked_entry() there is no guarantee that this
257 * path ever successfully retrieves an unlocked entry before an
258 * inode dies. Perform a non-exclusive wait in case this path
259 * never successfully performs its own wake up.
261 prepare_to_wait(wq
, &ewait
.wait
, TASK_UNINTERRUPTIBLE
);
264 finish_wait(wq
, &ewait
.wait
);
267 static void put_unlocked_entry(struct xa_state
*xas
, void *entry
)
269 /* If we were the only waiter woken, wake the next one */
270 if (entry
&& !dax_is_conflict(entry
))
271 dax_wake_entry(xas
, entry
, false);
275 * We used the xa_state to get the entry, but then we locked the entry and
276 * dropped the xa_lock, so we know the xa_state is stale and must be reset
279 static void dax_unlock_entry(struct xa_state
*xas
, void *entry
)
283 BUG_ON(dax_is_locked(entry
));
286 old
= xas_store(xas
, entry
);
288 BUG_ON(!dax_is_locked(old
));
289 dax_wake_entry(xas
, entry
, false);
293 * Return: The entry stored at this location before it was locked.
295 static void *dax_lock_entry(struct xa_state
*xas
, void *entry
)
297 unsigned long v
= xa_to_value(entry
);
298 return xas_store(xas
, xa_mk_value(v
| DAX_LOCKED
));
301 static unsigned long dax_entry_size(void *entry
)
303 if (dax_is_zero_entry(entry
))
305 else if (dax_is_empty_entry(entry
))
307 else if (dax_is_pmd_entry(entry
))
313 static unsigned long dax_end_pfn(void *entry
)
315 return dax_to_pfn(entry
) + dax_entry_size(entry
) / PAGE_SIZE
;
319 * Iterate through all mapped pfns represented by an entry, i.e. skip
320 * 'empty' and 'zero' entries.
322 #define for_each_mapped_pfn(entry, pfn) \
323 for (pfn = dax_to_pfn(entry); \
324 pfn < dax_end_pfn(entry); pfn++)
327 * TODO: for reflink+dax we need a way to associate a single page with
328 * multiple address_space instances at different linear_page_index()
331 static void dax_associate_entry(void *entry
, struct address_space
*mapping
,
332 struct vm_area_struct
*vma
, unsigned long address
)
334 unsigned long size
= dax_entry_size(entry
), pfn
, index
;
337 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED
))
340 index
= linear_page_index(vma
, address
& ~(size
- 1));
341 for_each_mapped_pfn(entry
, pfn
) {
342 struct page
*page
= pfn_to_page(pfn
);
344 WARN_ON_ONCE(page
->mapping
);
345 page
->mapping
= mapping
;
346 page
->index
= index
+ i
++;
350 static void dax_disassociate_entry(void *entry
, struct address_space
*mapping
,
355 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED
))
358 for_each_mapped_pfn(entry
, pfn
) {
359 struct page
*page
= pfn_to_page(pfn
);
361 WARN_ON_ONCE(trunc
&& page_ref_count(page
) > 1);
362 WARN_ON_ONCE(page
->mapping
&& page
->mapping
!= mapping
);
363 page
->mapping
= NULL
;
368 static struct page
*dax_busy_page(void *entry
)
372 for_each_mapped_pfn(entry
, pfn
) {
373 struct page
*page
= pfn_to_page(pfn
);
375 if (page_ref_count(page
) > 1)
382 * dax_lock_mapping_entry - Lock the DAX entry corresponding to a page
383 * @page: The page whose entry we want to lock
385 * Context: Process context.
386 * Return: A cookie to pass to dax_unlock_page() or 0 if the entry could
389 dax_entry_t
dax_lock_page(struct page
*page
)
391 XA_STATE(xas
, NULL
, 0);
394 /* Ensure page->mapping isn't freed while we look at it */
397 struct address_space
*mapping
= READ_ONCE(page
->mapping
);
400 if (!mapping
|| !dax_mapping(mapping
))
404 * In the device-dax case there's no need to lock, a
405 * struct dev_pagemap pin is sufficient to keep the
406 * inode alive, and we assume we have dev_pagemap pin
407 * otherwise we would not have a valid pfn_to_page()
410 entry
= (void *)~0UL;
411 if (S_ISCHR(mapping
->host
->i_mode
))
414 xas
.xa
= &mapping
->i_pages
;
416 if (mapping
!= page
->mapping
) {
417 xas_unlock_irq(&xas
);
420 xas_set(&xas
, page
->index
);
421 entry
= xas_load(&xas
);
422 if (dax_is_locked(entry
)) {
424 wait_entry_unlocked(&xas
, entry
);
428 dax_lock_entry(&xas
, entry
);
429 xas_unlock_irq(&xas
);
433 return (dax_entry_t
)entry
;
436 void dax_unlock_page(struct page
*page
, dax_entry_t cookie
)
438 struct address_space
*mapping
= page
->mapping
;
439 XA_STATE(xas
, &mapping
->i_pages
, page
->index
);
441 if (S_ISCHR(mapping
->host
->i_mode
))
444 dax_unlock_entry(&xas
, (void *)cookie
);
448 * Find page cache entry at given index. If it is a DAX entry, return it
449 * with the entry locked. If the page cache doesn't contain an entry at
450 * that index, add a locked empty entry.
452 * When requesting an entry with size DAX_PMD, grab_mapping_entry() will
453 * either return that locked entry or will return VM_FAULT_FALLBACK.
454 * This will happen if there are any PTE entries within the PMD range
455 * that we are requesting.
457 * We always favor PTE entries over PMD entries. There isn't a flow where we
458 * evict PTE entries in order to 'upgrade' them to a PMD entry. A PMD
459 * insertion will fail if it finds any PTE entries already in the tree, and a
460 * PTE insertion will cause an existing PMD entry to be unmapped and
461 * downgraded to PTE entries. This happens for both PMD zero pages as
462 * well as PMD empty entries.
464 * The exception to this downgrade path is for PMD entries that have
465 * real storage backing them. We will leave these real PMD entries in
466 * the tree, and PTE writes will simply dirty the entire PMD entry.
468 * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
469 * persistent memory the benefit is doubtful. We can add that later if we can
472 * On error, this function does not return an ERR_PTR. Instead it returns
473 * a VM_FAULT code, encoded as an xarray internal entry. The ERR_PTR values
474 * overlap with xarray value entries.
476 static void *grab_mapping_entry(struct xa_state
*xas
,
477 struct address_space
*mapping
, unsigned int order
)
479 unsigned long index
= xas
->xa_index
;
480 bool pmd_downgrade
= false; /* splitting PMD entry into PTE entries? */
485 entry
= get_unlocked_entry(xas
, order
);
488 if (dax_is_conflict(entry
))
490 if (!xa_is_value(entry
)) {
491 xas_set_err(xas
, -EIO
);
496 if (dax_is_pmd_entry(entry
) &&
497 (dax_is_zero_entry(entry
) ||
498 dax_is_empty_entry(entry
))) {
499 pmd_downgrade
= true;
506 * Make sure 'entry' remains valid while we drop
509 dax_lock_entry(xas
, entry
);
512 * Besides huge zero pages the only other thing that gets
513 * downgraded are empty entries which don't need to be
516 if (dax_is_zero_entry(entry
)) {
518 unmap_mapping_pages(mapping
,
519 xas
->xa_index
& ~PG_PMD_COLOUR
,
525 dax_disassociate_entry(entry
, mapping
, false);
526 xas_store(xas
, NULL
); /* undo the PMD join */
527 dax_wake_entry(xas
, entry
, true);
528 mapping
->nrpages
-= PG_PMD_NR
;
534 dax_lock_entry(xas
, entry
);
536 unsigned long flags
= DAX_EMPTY
;
540 entry
= dax_make_entry(pfn_to_pfn_t(0), flags
);
541 dax_lock_entry(xas
, entry
);
544 mapping
->nrpages
+= 1UL << order
;
549 if (xas_nomem(xas
, mapping_gfp_mask(mapping
) & ~__GFP_HIGHMEM
))
551 if (xas
->xa_node
== XA_ERROR(-ENOMEM
))
552 return xa_mk_internal(VM_FAULT_OOM
);
554 return xa_mk_internal(VM_FAULT_SIGBUS
);
558 return xa_mk_internal(VM_FAULT_FALLBACK
);
562 * dax_layout_busy_page_range - find first pinned page in @mapping
563 * @mapping: address space to scan for a page with ref count > 1
564 * @start: Starting offset. Page containing 'start' is included.
565 * @end: End offset. Page containing 'end' is included. If 'end' is LLONG_MAX,
566 * pages from 'start' till the end of file are included.
568 * DAX requires ZONE_DEVICE mapped pages. These pages are never
569 * 'onlined' to the page allocator so they are considered idle when
570 * page->count == 1. A filesystem uses this interface to determine if
571 * any page in the mapping is busy, i.e. for DMA, or other
572 * get_user_pages() usages.
574 * It is expected that the filesystem is holding locks to block the
575 * establishment of new mappings in this address_space. I.e. it expects
576 * to be able to run unmap_mapping_range() and subsequently not race
577 * mapping_mapped() becoming true.
579 struct page
*dax_layout_busy_page_range(struct address_space
*mapping
,
580 loff_t start
, loff_t end
)
583 unsigned int scanned
= 0;
584 struct page
*page
= NULL
;
585 pgoff_t start_idx
= start
>> PAGE_SHIFT
;
587 XA_STATE(xas
, &mapping
->i_pages
, start_idx
);
590 * In the 'limited' case get_user_pages() for dax is disabled.
592 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED
))
595 if (!dax_mapping(mapping
) || !mapping_mapped(mapping
))
598 /* If end == LLONG_MAX, all pages from start to till end of file */
599 if (end
== LLONG_MAX
)
602 end_idx
= end
>> PAGE_SHIFT
;
604 * If we race get_user_pages_fast() here either we'll see the
605 * elevated page count in the iteration and wait, or
606 * get_user_pages_fast() will see that the page it took a reference
607 * against is no longer mapped in the page tables and bail to the
608 * get_user_pages() slow path. The slow path is protected by
609 * pte_lock() and pmd_lock(). New references are not taken without
610 * holding those locks, and unmap_mapping_pages() will not zero the
611 * pte or pmd without holding the respective lock, so we are
612 * guaranteed to either see new references or prevent new
613 * references from being established.
615 unmap_mapping_pages(mapping
, start_idx
, end_idx
- start_idx
+ 1, 0);
618 xas_for_each(&xas
, entry
, end_idx
) {
619 if (WARN_ON_ONCE(!xa_is_value(entry
)))
621 if (unlikely(dax_is_locked(entry
)))
622 entry
= get_unlocked_entry(&xas
, 0);
624 page
= dax_busy_page(entry
);
625 put_unlocked_entry(&xas
, entry
);
628 if (++scanned
% XA_CHECK_SCHED
)
632 xas_unlock_irq(&xas
);
636 xas_unlock_irq(&xas
);
639 EXPORT_SYMBOL_GPL(dax_layout_busy_page_range
);
641 struct page
*dax_layout_busy_page(struct address_space
*mapping
)
643 return dax_layout_busy_page_range(mapping
, 0, LLONG_MAX
);
645 EXPORT_SYMBOL_GPL(dax_layout_busy_page
);
647 static int __dax_invalidate_entry(struct address_space
*mapping
,
648 pgoff_t index
, bool trunc
)
650 XA_STATE(xas
, &mapping
->i_pages
, index
);
655 entry
= get_unlocked_entry(&xas
, 0);
656 if (!entry
|| WARN_ON_ONCE(!xa_is_value(entry
)))
659 (xas_get_mark(&xas
, PAGECACHE_TAG_DIRTY
) ||
660 xas_get_mark(&xas
, PAGECACHE_TAG_TOWRITE
)))
662 dax_disassociate_entry(entry
, mapping
, trunc
);
663 xas_store(&xas
, NULL
);
664 mapping
->nrpages
-= 1UL << dax_entry_order(entry
);
667 put_unlocked_entry(&xas
, entry
);
668 xas_unlock_irq(&xas
);
673 * Delete DAX entry at @index from @mapping. Wait for it
674 * to be unlocked before deleting it.
676 int dax_delete_mapping_entry(struct address_space
*mapping
, pgoff_t index
)
678 int ret
= __dax_invalidate_entry(mapping
, index
, true);
681 * This gets called from truncate / punch_hole path. As such, the caller
682 * must hold locks protecting against concurrent modifications of the
683 * page cache (usually fs-private i_mmap_sem for writing). Since the
684 * caller has seen a DAX entry for this index, we better find it
685 * at that index as well...
692 * Invalidate DAX entry if it is clean.
694 int dax_invalidate_mapping_entry_sync(struct address_space
*mapping
,
697 return __dax_invalidate_entry(mapping
, index
, false);
700 static int copy_cow_page_dax(struct block_device
*bdev
, struct dax_device
*dax_dev
,
701 sector_t sector
, struct page
*to
, unsigned long vaddr
)
708 rc
= bdev_dax_pgoff(bdev
, sector
, PAGE_SIZE
, &pgoff
);
712 id
= dax_read_lock();
713 rc
= dax_direct_access(dax_dev
, pgoff
, PHYS_PFN(PAGE_SIZE
), &kaddr
, NULL
);
718 vto
= kmap_atomic(to
);
719 copy_user_page(vto
, (void __force
*)kaddr
, vaddr
, to
);
726 * By this point grab_mapping_entry() has ensured that we have a locked entry
727 * of the appropriate size so we don't have to worry about downgrading PMDs to
728 * PTEs. If we happen to be trying to insert a PTE and there is a PMD
729 * already in the tree, we will skip the insertion and just dirty the PMD as
732 static void *dax_insert_entry(struct xa_state
*xas
,
733 struct address_space
*mapping
, struct vm_fault
*vmf
,
734 void *entry
, pfn_t pfn
, unsigned long flags
, bool dirty
)
736 void *new_entry
= dax_make_entry(pfn
, flags
);
739 __mark_inode_dirty(mapping
->host
, I_DIRTY_PAGES
);
741 if (dax_is_zero_entry(entry
) && !(flags
& DAX_ZERO_PAGE
)) {
742 unsigned long index
= xas
->xa_index
;
743 /* we are replacing a zero page with block mapping */
744 if (dax_is_pmd_entry(entry
))
745 unmap_mapping_pages(mapping
, index
& ~PG_PMD_COLOUR
,
748 unmap_mapping_pages(mapping
, index
, 1, false);
753 if (dax_is_zero_entry(entry
) || dax_is_empty_entry(entry
)) {
756 dax_disassociate_entry(entry
, mapping
, false);
757 dax_associate_entry(new_entry
, mapping
, vmf
->vma
, vmf
->address
);
759 * Only swap our new entry into the page cache if the current
760 * entry is a zero page or an empty entry. If a normal PTE or
761 * PMD entry is already in the cache, we leave it alone. This
762 * means that if we are trying to insert a PTE and the
763 * existing entry is a PMD, we will just leave the PMD in the
764 * tree and dirty it if necessary.
766 old
= dax_lock_entry(xas
, new_entry
);
767 WARN_ON_ONCE(old
!= xa_mk_value(xa_to_value(entry
) |
771 xas_load(xas
); /* Walk the xa_state */
775 xas_set_mark(xas
, PAGECACHE_TAG_DIRTY
);
782 unsigned long pgoff_address(pgoff_t pgoff
, struct vm_area_struct
*vma
)
784 unsigned long address
;
786 address
= vma
->vm_start
+ ((pgoff
- vma
->vm_pgoff
) << PAGE_SHIFT
);
787 VM_BUG_ON_VMA(address
< vma
->vm_start
|| address
>= vma
->vm_end
, vma
);
791 /* Walk all mappings of a given index of a file and writeprotect them */
792 static void dax_entry_mkclean(struct address_space
*mapping
, pgoff_t index
,
795 struct vm_area_struct
*vma
;
796 pte_t pte
, *ptep
= NULL
;
800 i_mmap_lock_read(mapping
);
801 vma_interval_tree_foreach(vma
, &mapping
->i_mmap
, index
, index
) {
802 struct mmu_notifier_range range
;
803 unsigned long address
;
807 if (!(vma
->vm_flags
& VM_SHARED
))
810 address
= pgoff_address(index
, vma
);
813 * follow_invalidate_pte() will use the range to call
814 * mmu_notifier_invalidate_range_start() on our behalf before
817 if (follow_invalidate_pte(vma
->vm_mm
, address
, &range
, &ptep
,
822 * No need to call mmu_notifier_invalidate_range() as we are
823 * downgrading page table protection not changing it to point
826 * See Documentation/vm/mmu_notifier.rst
829 #ifdef CONFIG_FS_DAX_PMD
832 if (pfn
!= pmd_pfn(*pmdp
))
834 if (!pmd_dirty(*pmdp
) && !pmd_write(*pmdp
))
837 flush_cache_page(vma
, address
, pfn
);
838 pmd
= pmdp_invalidate(vma
, address
, pmdp
);
839 pmd
= pmd_wrprotect(pmd
);
840 pmd
= pmd_mkclean(pmd
);
841 set_pmd_at(vma
->vm_mm
, address
, pmdp
, pmd
);
846 if (pfn
!= pte_pfn(*ptep
))
848 if (!pte_dirty(*ptep
) && !pte_write(*ptep
))
851 flush_cache_page(vma
, address
, pfn
);
852 pte
= ptep_clear_flush(vma
, address
, ptep
);
853 pte
= pte_wrprotect(pte
);
854 pte
= pte_mkclean(pte
);
855 set_pte_at(vma
->vm_mm
, address
, ptep
, pte
);
857 pte_unmap_unlock(ptep
, ptl
);
860 mmu_notifier_invalidate_range_end(&range
);
862 i_mmap_unlock_read(mapping
);
865 static int dax_writeback_one(struct xa_state
*xas
, struct dax_device
*dax_dev
,
866 struct address_space
*mapping
, void *entry
)
868 unsigned long pfn
, index
, count
;
872 * A page got tagged dirty in DAX mapping? Something is seriously
875 if (WARN_ON(!xa_is_value(entry
)))
878 if (unlikely(dax_is_locked(entry
))) {
879 void *old_entry
= entry
;
881 entry
= get_unlocked_entry(xas
, 0);
883 /* Entry got punched out / reallocated? */
884 if (!entry
|| WARN_ON_ONCE(!xa_is_value(entry
)))
887 * Entry got reallocated elsewhere? No need to writeback.
888 * We have to compare pfns as we must not bail out due to
889 * difference in lockbit or entry type.
891 if (dax_to_pfn(old_entry
) != dax_to_pfn(entry
))
893 if (WARN_ON_ONCE(dax_is_empty_entry(entry
) ||
894 dax_is_zero_entry(entry
))) {
899 /* Another fsync thread may have already done this entry */
900 if (!xas_get_mark(xas
, PAGECACHE_TAG_TOWRITE
))
904 /* Lock the entry to serialize with page faults */
905 dax_lock_entry(xas
, entry
);
908 * We can clear the tag now but we have to be careful so that concurrent
909 * dax_writeback_one() calls for the same index cannot finish before we
910 * actually flush the caches. This is achieved as the calls will look
911 * at the entry only under the i_pages lock and once they do that
912 * they will see the entry locked and wait for it to unlock.
914 xas_clear_mark(xas
, PAGECACHE_TAG_TOWRITE
);
918 * If dax_writeback_mapping_range() was given a wbc->range_start
919 * in the middle of a PMD, the 'index' we use needs to be
920 * aligned to the start of the PMD.
921 * This allows us to flush for PMD_SIZE and not have to worry about
922 * partial PMD writebacks.
924 pfn
= dax_to_pfn(entry
);
925 count
= 1UL << dax_entry_order(entry
);
926 index
= xas
->xa_index
& ~(count
- 1);
928 dax_entry_mkclean(mapping
, index
, pfn
);
929 dax_flush(dax_dev
, page_address(pfn_to_page(pfn
)), count
* PAGE_SIZE
);
931 * After we have flushed the cache, we can clear the dirty tag. There
932 * cannot be new dirty data in the pfn after the flush has completed as
933 * the pfn mappings are writeprotected and fault waits for mapping
938 xas_store(xas
, entry
);
939 xas_clear_mark(xas
, PAGECACHE_TAG_DIRTY
);
940 dax_wake_entry(xas
, entry
, false);
942 trace_dax_writeback_one(mapping
->host
, index
, count
);
946 put_unlocked_entry(xas
, entry
);
951 * Flush the mapping to the persistent domain within the byte range of [start,
952 * end]. This is required by data integrity operations to ensure file data is
953 * on persistent storage prior to completion of the operation.
955 int dax_writeback_mapping_range(struct address_space
*mapping
,
956 struct dax_device
*dax_dev
, struct writeback_control
*wbc
)
958 XA_STATE(xas
, &mapping
->i_pages
, wbc
->range_start
>> PAGE_SHIFT
);
959 struct inode
*inode
= mapping
->host
;
960 pgoff_t end_index
= wbc
->range_end
>> PAGE_SHIFT
;
963 unsigned int scanned
= 0;
965 if (WARN_ON_ONCE(inode
->i_blkbits
!= PAGE_SHIFT
))
968 if (mapping_empty(mapping
) || wbc
->sync_mode
!= WB_SYNC_ALL
)
971 trace_dax_writeback_range(inode
, xas
.xa_index
, end_index
);
973 tag_pages_for_writeback(mapping
, xas
.xa_index
, end_index
);
976 xas_for_each_marked(&xas
, entry
, end_index
, PAGECACHE_TAG_TOWRITE
) {
977 ret
= dax_writeback_one(&xas
, dax_dev
, mapping
, entry
);
979 mapping_set_error(mapping
, ret
);
982 if (++scanned
% XA_CHECK_SCHED
)
986 xas_unlock_irq(&xas
);
990 xas_unlock_irq(&xas
);
991 trace_dax_writeback_range_done(inode
, xas
.xa_index
, end_index
);
994 EXPORT_SYMBOL_GPL(dax_writeback_mapping_range
);
996 static sector_t
dax_iomap_sector(struct iomap
*iomap
, loff_t pos
)
998 return (iomap
->addr
+ (pos
& PAGE_MASK
) - iomap
->offset
) >> 9;
1001 static int dax_iomap_pfn(struct iomap
*iomap
, loff_t pos
, size_t size
,
1004 const sector_t sector
= dax_iomap_sector(iomap
, pos
);
1009 rc
= bdev_dax_pgoff(iomap
->bdev
, sector
, size
, &pgoff
);
1012 id
= dax_read_lock();
1013 length
= dax_direct_access(iomap
->dax_dev
, pgoff
, PHYS_PFN(size
),
1020 if (PFN_PHYS(length
) < size
)
1022 if (pfn_t_to_pfn(*pfnp
) & (PHYS_PFN(size
)-1))
1024 /* For larger pages we need devmap */
1025 if (length
> 1 && !pfn_t_devmap(*pfnp
))
1029 dax_read_unlock(id
);
1034 * The user has performed a load from a hole in the file. Allocating a new
1035 * page in the file would cause excessive storage usage for workloads with
1036 * sparse files. Instead we insert a read-only mapping of the 4k zero page.
1037 * If this page is ever written to we will re-fault and change the mapping to
1038 * point to real DAX storage instead.
1040 static vm_fault_t
dax_load_hole(struct xa_state
*xas
,
1041 struct address_space
*mapping
, void **entry
,
1042 struct vm_fault
*vmf
)
1044 struct inode
*inode
= mapping
->host
;
1045 unsigned long vaddr
= vmf
->address
;
1046 pfn_t pfn
= pfn_to_pfn_t(my_zero_pfn(vaddr
));
1049 *entry
= dax_insert_entry(xas
, mapping
, vmf
, *entry
, pfn
,
1050 DAX_ZERO_PAGE
, false);
1052 ret
= vmf_insert_mixed(vmf
->vma
, vaddr
, pfn
);
1053 trace_dax_load_hole(inode
, vmf
, ret
);
1057 s64
dax_iomap_zero(loff_t pos
, u64 length
, struct iomap
*iomap
)
1059 sector_t sector
= iomap_sector(iomap
, pos
& PAGE_MASK
);
1063 bool page_aligned
= false;
1064 unsigned offset
= offset_in_page(pos
);
1065 unsigned size
= min_t(u64
, PAGE_SIZE
- offset
, length
);
1067 if (IS_ALIGNED(sector
<< SECTOR_SHIFT
, PAGE_SIZE
) &&
1068 (size
== PAGE_SIZE
))
1069 page_aligned
= true;
1071 rc
= bdev_dax_pgoff(iomap
->bdev
, sector
, PAGE_SIZE
, &pgoff
);
1075 id
= dax_read_lock();
1078 rc
= dax_zero_page_range(iomap
->dax_dev
, pgoff
, 1);
1080 rc
= dax_direct_access(iomap
->dax_dev
, pgoff
, 1, &kaddr
, NULL
);
1082 dax_read_unlock(id
);
1086 if (!page_aligned
) {
1087 memset(kaddr
+ offset
, 0, size
);
1088 dax_flush(iomap
->dax_dev
, kaddr
+ offset
, size
);
1090 dax_read_unlock(id
);
1095 dax_iomap_actor(struct inode
*inode
, loff_t pos
, loff_t length
, void *data
,
1096 struct iomap
*iomap
, struct iomap
*srcmap
)
1098 struct block_device
*bdev
= iomap
->bdev
;
1099 struct dax_device
*dax_dev
= iomap
->dax_dev
;
1100 struct iov_iter
*iter
= data
;
1101 loff_t end
= pos
+ length
, done
= 0;
1106 if (iov_iter_rw(iter
) == READ
) {
1107 end
= min(end
, i_size_read(inode
));
1111 if (iomap
->type
== IOMAP_HOLE
|| iomap
->type
== IOMAP_UNWRITTEN
)
1112 return iov_iter_zero(min(length
, end
- pos
), iter
);
1115 if (WARN_ON_ONCE(iomap
->type
!= IOMAP_MAPPED
))
1119 * Write can allocate block for an area which has a hole page mapped
1120 * into page tables. We have to tear down these mappings so that data
1121 * written by write(2) is visible in mmap.
1123 if (iomap
->flags
& IOMAP_F_NEW
) {
1124 invalidate_inode_pages2_range(inode
->i_mapping
,
1126 (end
- 1) >> PAGE_SHIFT
);
1129 id
= dax_read_lock();
1131 unsigned offset
= pos
& (PAGE_SIZE
- 1);
1132 const size_t size
= ALIGN(length
+ offset
, PAGE_SIZE
);
1133 const sector_t sector
= dax_iomap_sector(iomap
, pos
);
1138 if (fatal_signal_pending(current
)) {
1143 ret
= bdev_dax_pgoff(bdev
, sector
, size
, &pgoff
);
1147 map_len
= dax_direct_access(dax_dev
, pgoff
, PHYS_PFN(size
),
1154 map_len
= PFN_PHYS(map_len
);
1157 if (map_len
> end
- pos
)
1158 map_len
= end
- pos
;
1161 * The userspace address for the memory copy has already been
1162 * validated via access_ok() in either vfs_read() or
1163 * vfs_write(), depending on which operation we are doing.
1165 if (iov_iter_rw(iter
) == WRITE
)
1166 xfer
= dax_copy_from_iter(dax_dev
, pgoff
, kaddr
,
1169 xfer
= dax_copy_to_iter(dax_dev
, pgoff
, kaddr
,
1181 dax_read_unlock(id
);
1183 return done
? done
: ret
;
1187 * dax_iomap_rw - Perform I/O to a DAX file
1188 * @iocb: The control block for this I/O
1189 * @iter: The addresses to do I/O from or to
1190 * @ops: iomap ops passed from the file system
1192 * This function performs read and write operations to directly mapped
1193 * persistent memory. The callers needs to take care of read/write exclusion
1194 * and evicting any page cache pages in the region under I/O.
1197 dax_iomap_rw(struct kiocb
*iocb
, struct iov_iter
*iter
,
1198 const struct iomap_ops
*ops
)
1200 struct address_space
*mapping
= iocb
->ki_filp
->f_mapping
;
1201 struct inode
*inode
= mapping
->host
;
1202 loff_t pos
= iocb
->ki_pos
, ret
= 0, done
= 0;
1205 if (iov_iter_rw(iter
) == WRITE
) {
1206 lockdep_assert_held_write(&inode
->i_rwsem
);
1207 flags
|= IOMAP_WRITE
;
1209 lockdep_assert_held(&inode
->i_rwsem
);
1212 if (iocb
->ki_flags
& IOCB_NOWAIT
)
1213 flags
|= IOMAP_NOWAIT
;
1215 while (iov_iter_count(iter
)) {
1216 ret
= iomap_apply(inode
, pos
, iov_iter_count(iter
), flags
, ops
,
1217 iter
, dax_iomap_actor
);
1224 iocb
->ki_pos
+= done
;
1225 return done
? done
: ret
;
1227 EXPORT_SYMBOL_GPL(dax_iomap_rw
);
1229 static vm_fault_t
dax_fault_return(int error
)
1232 return VM_FAULT_NOPAGE
;
1233 return vmf_error(error
);
1237 * MAP_SYNC on a dax mapping guarantees dirty metadata is
1238 * flushed on write-faults (non-cow), but not read-faults.
1240 static bool dax_fault_is_synchronous(unsigned long flags
,
1241 struct vm_area_struct
*vma
, struct iomap
*iomap
)
1243 return (flags
& IOMAP_WRITE
) && (vma
->vm_flags
& VM_SYNC
)
1244 && (iomap
->flags
& IOMAP_F_DIRTY
);
1247 static vm_fault_t
dax_iomap_pte_fault(struct vm_fault
*vmf
, pfn_t
*pfnp
,
1248 int *iomap_errp
, const struct iomap_ops
*ops
)
1250 struct vm_area_struct
*vma
= vmf
->vma
;
1251 struct address_space
*mapping
= vma
->vm_file
->f_mapping
;
1252 XA_STATE(xas
, &mapping
->i_pages
, vmf
->pgoff
);
1253 struct inode
*inode
= mapping
->host
;
1254 unsigned long vaddr
= vmf
->address
;
1255 loff_t pos
= (loff_t
)vmf
->pgoff
<< PAGE_SHIFT
;
1256 struct iomap iomap
= { .type
= IOMAP_HOLE
};
1257 struct iomap srcmap
= { .type
= IOMAP_HOLE
};
1258 unsigned flags
= IOMAP_FAULT
;
1259 int error
, major
= 0;
1260 bool write
= vmf
->flags
& FAULT_FLAG_WRITE
;
1266 trace_dax_pte_fault(inode
, vmf
, ret
);
1268 * Check whether offset isn't beyond end of file now. Caller is supposed
1269 * to hold locks serializing us with truncate / punch hole so this is
1272 if (pos
>= i_size_read(inode
)) {
1273 ret
= VM_FAULT_SIGBUS
;
1277 if (write
&& !vmf
->cow_page
)
1278 flags
|= IOMAP_WRITE
;
1280 entry
= grab_mapping_entry(&xas
, mapping
, 0);
1281 if (xa_is_internal(entry
)) {
1282 ret
= xa_to_internal(entry
);
1287 * It is possible, particularly with mixed reads & writes to private
1288 * mappings, that we have raced with a PMD fault that overlaps with
1289 * the PTE we need to set up. If so just return and the fault will be
1292 if (pmd_trans_huge(*vmf
->pmd
) || pmd_devmap(*vmf
->pmd
)) {
1293 ret
= VM_FAULT_NOPAGE
;
1298 * Note that we don't bother to use iomap_apply here: DAX required
1299 * the file system block size to be equal the page size, which means
1300 * that we never have to deal with more than a single extent here.
1302 error
= ops
->iomap_begin(inode
, pos
, PAGE_SIZE
, flags
, &iomap
, &srcmap
);
1304 *iomap_errp
= error
;
1306 ret
= dax_fault_return(error
);
1309 if (WARN_ON_ONCE(iomap
.offset
+ iomap
.length
< pos
+ PAGE_SIZE
)) {
1310 error
= -EIO
; /* fs corruption? */
1311 goto error_finish_iomap
;
1314 if (vmf
->cow_page
) {
1315 sector_t sector
= dax_iomap_sector(&iomap
, pos
);
1317 switch (iomap
.type
) {
1319 case IOMAP_UNWRITTEN
:
1320 clear_user_highpage(vmf
->cow_page
, vaddr
);
1323 error
= copy_cow_page_dax(iomap
.bdev
, iomap
.dax_dev
,
1324 sector
, vmf
->cow_page
, vaddr
);
1333 goto error_finish_iomap
;
1335 __SetPageUptodate(vmf
->cow_page
);
1336 ret
= finish_fault(vmf
);
1338 ret
= VM_FAULT_DONE_COW
;
1342 sync
= dax_fault_is_synchronous(flags
, vma
, &iomap
);
1344 switch (iomap
.type
) {
1346 if (iomap
.flags
& IOMAP_F_NEW
) {
1347 count_vm_event(PGMAJFAULT
);
1348 count_memcg_event_mm(vma
->vm_mm
, PGMAJFAULT
);
1349 major
= VM_FAULT_MAJOR
;
1351 error
= dax_iomap_pfn(&iomap
, pos
, PAGE_SIZE
, &pfn
);
1353 goto error_finish_iomap
;
1355 entry
= dax_insert_entry(&xas
, mapping
, vmf
, entry
, pfn
,
1359 * If we are doing synchronous page fault and inode needs fsync,
1360 * we can insert PTE into page tables only after that happens.
1361 * Skip insertion for now and return the pfn so that caller can
1362 * insert it after fsync is done.
1365 if (WARN_ON_ONCE(!pfnp
)) {
1367 goto error_finish_iomap
;
1370 ret
= VM_FAULT_NEEDDSYNC
| major
;
1373 trace_dax_insert_mapping(inode
, vmf
, entry
);
1375 ret
= vmf_insert_mixed_mkwrite(vma
, vaddr
, pfn
);
1377 ret
= vmf_insert_mixed(vma
, vaddr
, pfn
);
1380 case IOMAP_UNWRITTEN
:
1383 ret
= dax_load_hole(&xas
, mapping
, &entry
, vmf
);
1394 ret
= dax_fault_return(error
);
1396 if (ops
->iomap_end
) {
1397 int copied
= PAGE_SIZE
;
1399 if (ret
& VM_FAULT_ERROR
)
1402 * The fault is done by now and there's no way back (other
1403 * thread may be already happily using PTE we have installed).
1404 * Just ignore error from ->iomap_end since we cannot do much
1407 ops
->iomap_end(inode
, pos
, PAGE_SIZE
, copied
, flags
, &iomap
);
1410 dax_unlock_entry(&xas
, entry
);
1412 trace_dax_pte_fault_done(inode
, vmf
, ret
);
1416 #ifdef CONFIG_FS_DAX_PMD
1417 static vm_fault_t
dax_pmd_load_hole(struct xa_state
*xas
, struct vm_fault
*vmf
,
1418 struct iomap
*iomap
, void **entry
)
1420 struct address_space
*mapping
= vmf
->vma
->vm_file
->f_mapping
;
1421 unsigned long pmd_addr
= vmf
->address
& PMD_MASK
;
1422 struct vm_area_struct
*vma
= vmf
->vma
;
1423 struct inode
*inode
= mapping
->host
;
1424 pgtable_t pgtable
= NULL
;
1425 struct page
*zero_page
;
1430 zero_page
= mm_get_huge_zero_page(vmf
->vma
->vm_mm
);
1432 if (unlikely(!zero_page
))
1435 pfn
= page_to_pfn_t(zero_page
);
1436 *entry
= dax_insert_entry(xas
, mapping
, vmf
, *entry
, pfn
,
1437 DAX_PMD
| DAX_ZERO_PAGE
, false);
1439 if (arch_needs_pgtable_deposit()) {
1440 pgtable
= pte_alloc_one(vma
->vm_mm
);
1442 return VM_FAULT_OOM
;
1445 ptl
= pmd_lock(vmf
->vma
->vm_mm
, vmf
->pmd
);
1446 if (!pmd_none(*(vmf
->pmd
))) {
1452 pgtable_trans_huge_deposit(vma
->vm_mm
, vmf
->pmd
, pgtable
);
1453 mm_inc_nr_ptes(vma
->vm_mm
);
1455 pmd_entry
= mk_pmd(zero_page
, vmf
->vma
->vm_page_prot
);
1456 pmd_entry
= pmd_mkhuge(pmd_entry
);
1457 set_pmd_at(vmf
->vma
->vm_mm
, pmd_addr
, vmf
->pmd
, pmd_entry
);
1459 trace_dax_pmd_load_hole(inode
, vmf
, zero_page
, *entry
);
1460 return VM_FAULT_NOPAGE
;
1464 pte_free(vma
->vm_mm
, pgtable
);
1465 trace_dax_pmd_load_hole_fallback(inode
, vmf
, zero_page
, *entry
);
1466 return VM_FAULT_FALLBACK
;
1469 static vm_fault_t
dax_iomap_pmd_fault(struct vm_fault
*vmf
, pfn_t
*pfnp
,
1470 const struct iomap_ops
*ops
)
1472 struct vm_area_struct
*vma
= vmf
->vma
;
1473 struct address_space
*mapping
= vma
->vm_file
->f_mapping
;
1474 XA_STATE_ORDER(xas
, &mapping
->i_pages
, vmf
->pgoff
, PMD_ORDER
);
1475 unsigned long pmd_addr
= vmf
->address
& PMD_MASK
;
1476 bool write
= vmf
->flags
& FAULT_FLAG_WRITE
;
1478 unsigned int iomap_flags
= (write
? IOMAP_WRITE
: 0) | IOMAP_FAULT
;
1479 struct inode
*inode
= mapping
->host
;
1480 vm_fault_t result
= VM_FAULT_FALLBACK
;
1481 struct iomap iomap
= { .type
= IOMAP_HOLE
};
1482 struct iomap srcmap
= { .type
= IOMAP_HOLE
};
1490 * Check whether offset isn't beyond end of file now. Caller is
1491 * supposed to hold locks serializing us with truncate / punch hole so
1492 * this is a reliable test.
1494 max_pgoff
= DIV_ROUND_UP(i_size_read(inode
), PAGE_SIZE
);
1496 trace_dax_pmd_fault(inode
, vmf
, max_pgoff
, 0);
1499 * Make sure that the faulting address's PMD offset (color) matches
1500 * the PMD offset from the start of the file. This is necessary so
1501 * that a PMD range in the page table overlaps exactly with a PMD
1502 * range in the page cache.
1504 if ((vmf
->pgoff
& PG_PMD_COLOUR
) !=
1505 ((vmf
->address
>> PAGE_SHIFT
) & PG_PMD_COLOUR
))
1508 /* Fall back to PTEs if we're going to COW */
1509 if (write
&& !(vma
->vm_flags
& VM_SHARED
))
1512 /* If the PMD would extend outside the VMA */
1513 if (pmd_addr
< vma
->vm_start
)
1515 if ((pmd_addr
+ PMD_SIZE
) > vma
->vm_end
)
1518 if (xas
.xa_index
>= max_pgoff
) {
1519 result
= VM_FAULT_SIGBUS
;
1523 /* If the PMD would extend beyond the file size */
1524 if ((xas
.xa_index
| PG_PMD_COLOUR
) >= max_pgoff
)
1528 * grab_mapping_entry() will make sure we get an empty PMD entry,
1529 * a zero PMD entry or a DAX PMD. If it can't (because a PTE
1530 * entry is already in the array, for instance), it will return
1531 * VM_FAULT_FALLBACK.
1533 entry
= grab_mapping_entry(&xas
, mapping
, PMD_ORDER
);
1534 if (xa_is_internal(entry
)) {
1535 result
= xa_to_internal(entry
);
1540 * It is possible, particularly with mixed reads & writes to private
1541 * mappings, that we have raced with a PTE fault that overlaps with
1542 * the PMD we need to set up. If so just return and the fault will be
1545 if (!pmd_none(*vmf
->pmd
) && !pmd_trans_huge(*vmf
->pmd
) &&
1546 !pmd_devmap(*vmf
->pmd
)) {
1552 * Note that we don't use iomap_apply here. We aren't doing I/O, only
1553 * setting up a mapping, so really we're using iomap_begin() as a way
1554 * to look up our filesystem block.
1556 pos
= (loff_t
)xas
.xa_index
<< PAGE_SHIFT
;
1557 error
= ops
->iomap_begin(inode
, pos
, PMD_SIZE
, iomap_flags
, &iomap
,
1562 if (iomap
.offset
+ iomap
.length
< pos
+ PMD_SIZE
)
1565 sync
= dax_fault_is_synchronous(iomap_flags
, vma
, &iomap
);
1567 switch (iomap
.type
) {
1569 error
= dax_iomap_pfn(&iomap
, pos
, PMD_SIZE
, &pfn
);
1573 entry
= dax_insert_entry(&xas
, mapping
, vmf
, entry
, pfn
,
1574 DAX_PMD
, write
&& !sync
);
1577 * If we are doing synchronous page fault and inode needs fsync,
1578 * we can insert PMD into page tables only after that happens.
1579 * Skip insertion for now and return the pfn so that caller can
1580 * insert it after fsync is done.
1583 if (WARN_ON_ONCE(!pfnp
))
1586 result
= VM_FAULT_NEEDDSYNC
;
1590 trace_dax_pmd_insert_mapping(inode
, vmf
, PMD_SIZE
, pfn
, entry
);
1591 result
= vmf_insert_pfn_pmd(vmf
, pfn
, write
);
1593 case IOMAP_UNWRITTEN
:
1595 if (WARN_ON_ONCE(write
))
1597 result
= dax_pmd_load_hole(&xas
, vmf
, &iomap
, &entry
);
1605 if (ops
->iomap_end
) {
1606 int copied
= PMD_SIZE
;
1608 if (result
== VM_FAULT_FALLBACK
)
1611 * The fault is done by now and there's no way back (other
1612 * thread may be already happily using PMD we have installed).
1613 * Just ignore error from ->iomap_end since we cannot do much
1616 ops
->iomap_end(inode
, pos
, PMD_SIZE
, copied
, iomap_flags
,
1620 dax_unlock_entry(&xas
, entry
);
1622 if (result
== VM_FAULT_FALLBACK
) {
1623 split_huge_pmd(vma
, vmf
->pmd
, vmf
->address
);
1624 count_vm_event(THP_FAULT_FALLBACK
);
1627 trace_dax_pmd_fault_done(inode
, vmf
, max_pgoff
, result
);
1631 static vm_fault_t
dax_iomap_pmd_fault(struct vm_fault
*vmf
, pfn_t
*pfnp
,
1632 const struct iomap_ops
*ops
)
1634 return VM_FAULT_FALLBACK
;
1636 #endif /* CONFIG_FS_DAX_PMD */
1639 * dax_iomap_fault - handle a page fault on a DAX file
1640 * @vmf: The description of the fault
1641 * @pe_size: Size of the page to fault in
1642 * @pfnp: PFN to insert for synchronous faults if fsync is required
1643 * @iomap_errp: Storage for detailed error code in case of error
1644 * @ops: Iomap ops passed from the file system
1646 * When a page fault occurs, filesystems may call this helper in
1647 * their fault handler for DAX files. dax_iomap_fault() assumes the caller
1648 * has done all the necessary locking for page fault to proceed
1651 vm_fault_t
dax_iomap_fault(struct vm_fault
*vmf
, enum page_entry_size pe_size
,
1652 pfn_t
*pfnp
, int *iomap_errp
, const struct iomap_ops
*ops
)
1656 return dax_iomap_pte_fault(vmf
, pfnp
, iomap_errp
, ops
);
1658 return dax_iomap_pmd_fault(vmf
, pfnp
, ops
);
1660 return VM_FAULT_FALLBACK
;
1663 EXPORT_SYMBOL_GPL(dax_iomap_fault
);
1666 * dax_insert_pfn_mkwrite - insert PTE or PMD entry into page tables
1667 * @vmf: The description of the fault
1668 * @pfn: PFN to insert
1669 * @order: Order of entry to insert.
1671 * This function inserts a writeable PTE or PMD entry into the page tables
1672 * for an mmaped DAX file. It also marks the page cache entry as dirty.
1675 dax_insert_pfn_mkwrite(struct vm_fault
*vmf
, pfn_t pfn
, unsigned int order
)
1677 struct address_space
*mapping
= vmf
->vma
->vm_file
->f_mapping
;
1678 XA_STATE_ORDER(xas
, &mapping
->i_pages
, vmf
->pgoff
, order
);
1683 entry
= get_unlocked_entry(&xas
, order
);
1684 /* Did we race with someone splitting entry or so? */
1685 if (!entry
|| dax_is_conflict(entry
) ||
1686 (order
== 0 && !dax_is_pte_entry(entry
))) {
1687 put_unlocked_entry(&xas
, entry
);
1688 xas_unlock_irq(&xas
);
1689 trace_dax_insert_pfn_mkwrite_no_entry(mapping
->host
, vmf
,
1691 return VM_FAULT_NOPAGE
;
1693 xas_set_mark(&xas
, PAGECACHE_TAG_DIRTY
);
1694 dax_lock_entry(&xas
, entry
);
1695 xas_unlock_irq(&xas
);
1697 ret
= vmf_insert_mixed_mkwrite(vmf
->vma
, vmf
->address
, pfn
);
1698 #ifdef CONFIG_FS_DAX_PMD
1699 else if (order
== PMD_ORDER
)
1700 ret
= vmf_insert_pfn_pmd(vmf
, pfn
, FAULT_FLAG_WRITE
);
1703 ret
= VM_FAULT_FALLBACK
;
1704 dax_unlock_entry(&xas
, entry
);
1705 trace_dax_insert_pfn_mkwrite(mapping
->host
, vmf
, ret
);
1710 * dax_finish_sync_fault - finish synchronous page fault
1711 * @vmf: The description of the fault
1712 * @pe_size: Size of entry to be inserted
1713 * @pfn: PFN to insert
1715 * This function ensures that the file range touched by the page fault is
1716 * stored persistently on the media and handles inserting of appropriate page
1719 vm_fault_t
dax_finish_sync_fault(struct vm_fault
*vmf
,
1720 enum page_entry_size pe_size
, pfn_t pfn
)
1723 loff_t start
= ((loff_t
)vmf
->pgoff
) << PAGE_SHIFT
;
1724 unsigned int order
= pe_order(pe_size
);
1725 size_t len
= PAGE_SIZE
<< order
;
1727 err
= vfs_fsync_range(vmf
->vma
->vm_file
, start
, start
+ len
- 1, 1);
1729 return VM_FAULT_SIGBUS
;
1730 return dax_insert_pfn_mkwrite(vmf
, pfn
, order
);
1732 EXPORT_SYMBOL_GPL(dax_finish_sync_fault
);