]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - fs/dax.c
Merge tag 'for-linus-20180830' of git://git.kernel.dk/linux-block
[mirror_ubuntu-hirsute-kernel.git] / fs / dax.c
1 /*
2 * fs/dax.c - Direct Access filesystem code
3 * Copyright (c) 2013-2014 Intel Corporation
4 * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
5 * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
6 *
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms and conditions of the GNU General Public License,
9 * version 2, as published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * more details.
15 */
16
17 #include <linux/atomic.h>
18 #include <linux/blkdev.h>
19 #include <linux/buffer_head.h>
20 #include <linux/dax.h>
21 #include <linux/fs.h>
22 #include <linux/genhd.h>
23 #include <linux/highmem.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm.h>
26 #include <linux/mutex.h>
27 #include <linux/pagevec.h>
28 #include <linux/sched.h>
29 #include <linux/sched/signal.h>
30 #include <linux/uio.h>
31 #include <linux/vmstat.h>
32 #include <linux/pfn_t.h>
33 #include <linux/sizes.h>
34 #include <linux/mmu_notifier.h>
35 #include <linux/iomap.h>
36 #include "internal.h"
37
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/fs_dax.h>
40
41 /* We choose 4096 entries - same as per-zone page wait tables */
42 #define DAX_WAIT_TABLE_BITS 12
43 #define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
44
45 /* The 'colour' (ie low bits) within a PMD of a page offset. */
46 #define PG_PMD_COLOUR ((PMD_SIZE >> PAGE_SHIFT) - 1)
47 #define PG_PMD_NR (PMD_SIZE >> PAGE_SHIFT)
48
49 static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES];
50
51 static int __init init_dax_wait_table(void)
52 {
53 int i;
54
55 for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++)
56 init_waitqueue_head(wait_table + i);
57 return 0;
58 }
59 fs_initcall(init_dax_wait_table);
60
61 /*
62 * We use lowest available bit in exceptional entry for locking, one bit for
63 * the entry size (PMD) and two more to tell us if the entry is a zero page or
64 * an empty entry that is just used for locking. In total four special bits.
65 *
66 * If the PMD bit isn't set the entry has size PAGE_SIZE, and if the ZERO_PAGE
67 * and EMPTY bits aren't set the entry is a normal DAX entry with a filesystem
68 * block allocation.
69 */
70 #define RADIX_DAX_SHIFT (RADIX_TREE_EXCEPTIONAL_SHIFT + 4)
71 #define RADIX_DAX_ENTRY_LOCK (1 << RADIX_TREE_EXCEPTIONAL_SHIFT)
72 #define RADIX_DAX_PMD (1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 1))
73 #define RADIX_DAX_ZERO_PAGE (1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 2))
74 #define RADIX_DAX_EMPTY (1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 3))
75
76 static unsigned long dax_radix_pfn(void *entry)
77 {
78 return (unsigned long)entry >> RADIX_DAX_SHIFT;
79 }
80
81 static void *dax_radix_locked_entry(unsigned long pfn, unsigned long flags)
82 {
83 return (void *)(RADIX_TREE_EXCEPTIONAL_ENTRY | flags |
84 (pfn << RADIX_DAX_SHIFT) | RADIX_DAX_ENTRY_LOCK);
85 }
86
87 static unsigned int dax_radix_order(void *entry)
88 {
89 if ((unsigned long)entry & RADIX_DAX_PMD)
90 return PMD_SHIFT - PAGE_SHIFT;
91 return 0;
92 }
93
94 static int dax_is_pmd_entry(void *entry)
95 {
96 return (unsigned long)entry & RADIX_DAX_PMD;
97 }
98
99 static int dax_is_pte_entry(void *entry)
100 {
101 return !((unsigned long)entry & RADIX_DAX_PMD);
102 }
103
104 static int dax_is_zero_entry(void *entry)
105 {
106 return (unsigned long)entry & RADIX_DAX_ZERO_PAGE;
107 }
108
109 static int dax_is_empty_entry(void *entry)
110 {
111 return (unsigned long)entry & RADIX_DAX_EMPTY;
112 }
113
114 /*
115 * DAX radix tree locking
116 */
117 struct exceptional_entry_key {
118 struct address_space *mapping;
119 pgoff_t entry_start;
120 };
121
122 struct wait_exceptional_entry_queue {
123 wait_queue_entry_t wait;
124 struct exceptional_entry_key key;
125 };
126
127 static wait_queue_head_t *dax_entry_waitqueue(struct address_space *mapping,
128 pgoff_t index, void *entry, struct exceptional_entry_key *key)
129 {
130 unsigned long hash;
131
132 /*
133 * If 'entry' is a PMD, align the 'index' that we use for the wait
134 * queue to the start of that PMD. This ensures that all offsets in
135 * the range covered by the PMD map to the same bit lock.
136 */
137 if (dax_is_pmd_entry(entry))
138 index &= ~PG_PMD_COLOUR;
139
140 key->mapping = mapping;
141 key->entry_start = index;
142
143 hash = hash_long((unsigned long)mapping ^ index, DAX_WAIT_TABLE_BITS);
144 return wait_table + hash;
145 }
146
147 static int wake_exceptional_entry_func(wait_queue_entry_t *wait, unsigned int mode,
148 int sync, void *keyp)
149 {
150 struct exceptional_entry_key *key = keyp;
151 struct wait_exceptional_entry_queue *ewait =
152 container_of(wait, struct wait_exceptional_entry_queue, wait);
153
154 if (key->mapping != ewait->key.mapping ||
155 key->entry_start != ewait->key.entry_start)
156 return 0;
157 return autoremove_wake_function(wait, mode, sync, NULL);
158 }
159
160 /*
161 * @entry may no longer be the entry at the index in the mapping.
162 * The important information it's conveying is whether the entry at
163 * this index used to be a PMD entry.
164 */
165 static void dax_wake_mapping_entry_waiter(struct address_space *mapping,
166 pgoff_t index, void *entry, bool wake_all)
167 {
168 struct exceptional_entry_key key;
169 wait_queue_head_t *wq;
170
171 wq = dax_entry_waitqueue(mapping, index, entry, &key);
172
173 /*
174 * Checking for locked entry and prepare_to_wait_exclusive() happens
175 * under the i_pages lock, ditto for entry handling in our callers.
176 * So at this point all tasks that could have seen our entry locked
177 * must be in the waitqueue and the following check will see them.
178 */
179 if (waitqueue_active(wq))
180 __wake_up(wq, TASK_NORMAL, wake_all ? 0 : 1, &key);
181 }
182
183 /*
184 * Check whether the given slot is locked. Must be called with the i_pages
185 * lock held.
186 */
187 static inline int slot_locked(struct address_space *mapping, void **slot)
188 {
189 unsigned long entry = (unsigned long)
190 radix_tree_deref_slot_protected(slot, &mapping->i_pages.xa_lock);
191 return entry & RADIX_DAX_ENTRY_LOCK;
192 }
193
194 /*
195 * Mark the given slot as locked. Must be called with the i_pages lock held.
196 */
197 static inline void *lock_slot(struct address_space *mapping, void **slot)
198 {
199 unsigned long entry = (unsigned long)
200 radix_tree_deref_slot_protected(slot, &mapping->i_pages.xa_lock);
201
202 entry |= RADIX_DAX_ENTRY_LOCK;
203 radix_tree_replace_slot(&mapping->i_pages, slot, (void *)entry);
204 return (void *)entry;
205 }
206
207 /*
208 * Mark the given slot as unlocked. Must be called with the i_pages lock held.
209 */
210 static inline void *unlock_slot(struct address_space *mapping, void **slot)
211 {
212 unsigned long entry = (unsigned long)
213 radix_tree_deref_slot_protected(slot, &mapping->i_pages.xa_lock);
214
215 entry &= ~(unsigned long)RADIX_DAX_ENTRY_LOCK;
216 radix_tree_replace_slot(&mapping->i_pages, slot, (void *)entry);
217 return (void *)entry;
218 }
219
220 /*
221 * Lookup entry in radix tree, wait for it to become unlocked if it is
222 * exceptional entry and return it. The caller must call
223 * put_unlocked_mapping_entry() when he decided not to lock the entry or
224 * put_locked_mapping_entry() when he locked the entry and now wants to
225 * unlock it.
226 *
227 * Must be called with the i_pages lock held.
228 */
229 static void *__get_unlocked_mapping_entry(struct address_space *mapping,
230 pgoff_t index, void ***slotp, bool (*wait_fn)(void))
231 {
232 void *entry, **slot;
233 struct wait_exceptional_entry_queue ewait;
234 wait_queue_head_t *wq;
235
236 init_wait(&ewait.wait);
237 ewait.wait.func = wake_exceptional_entry_func;
238
239 for (;;) {
240 bool revalidate;
241
242 entry = __radix_tree_lookup(&mapping->i_pages, index, NULL,
243 &slot);
244 if (!entry ||
245 WARN_ON_ONCE(!radix_tree_exceptional_entry(entry)) ||
246 !slot_locked(mapping, slot)) {
247 if (slotp)
248 *slotp = slot;
249 return entry;
250 }
251
252 wq = dax_entry_waitqueue(mapping, index, entry, &ewait.key);
253 prepare_to_wait_exclusive(wq, &ewait.wait,
254 TASK_UNINTERRUPTIBLE);
255 xa_unlock_irq(&mapping->i_pages);
256 revalidate = wait_fn();
257 finish_wait(wq, &ewait.wait);
258 xa_lock_irq(&mapping->i_pages);
259 if (revalidate)
260 return ERR_PTR(-EAGAIN);
261 }
262 }
263
264 static bool entry_wait(void)
265 {
266 schedule();
267 /*
268 * Never return an ERR_PTR() from
269 * __get_unlocked_mapping_entry(), just keep looping.
270 */
271 return false;
272 }
273
274 static void *get_unlocked_mapping_entry(struct address_space *mapping,
275 pgoff_t index, void ***slotp)
276 {
277 return __get_unlocked_mapping_entry(mapping, index, slotp, entry_wait);
278 }
279
280 static void unlock_mapping_entry(struct address_space *mapping, pgoff_t index)
281 {
282 void *entry, **slot;
283
284 xa_lock_irq(&mapping->i_pages);
285 entry = __radix_tree_lookup(&mapping->i_pages, index, NULL, &slot);
286 if (WARN_ON_ONCE(!entry || !radix_tree_exceptional_entry(entry) ||
287 !slot_locked(mapping, slot))) {
288 xa_unlock_irq(&mapping->i_pages);
289 return;
290 }
291 unlock_slot(mapping, slot);
292 xa_unlock_irq(&mapping->i_pages);
293 dax_wake_mapping_entry_waiter(mapping, index, entry, false);
294 }
295
296 static void put_locked_mapping_entry(struct address_space *mapping,
297 pgoff_t index)
298 {
299 unlock_mapping_entry(mapping, index);
300 }
301
302 /*
303 * Called when we are done with radix tree entry we looked up via
304 * get_unlocked_mapping_entry() and which we didn't lock in the end.
305 */
306 static void put_unlocked_mapping_entry(struct address_space *mapping,
307 pgoff_t index, void *entry)
308 {
309 if (!entry)
310 return;
311
312 /* We have to wake up next waiter for the radix tree entry lock */
313 dax_wake_mapping_entry_waiter(mapping, index, entry, false);
314 }
315
316 static unsigned long dax_entry_size(void *entry)
317 {
318 if (dax_is_zero_entry(entry))
319 return 0;
320 else if (dax_is_empty_entry(entry))
321 return 0;
322 else if (dax_is_pmd_entry(entry))
323 return PMD_SIZE;
324 else
325 return PAGE_SIZE;
326 }
327
328 static unsigned long dax_radix_end_pfn(void *entry)
329 {
330 return dax_radix_pfn(entry) + dax_entry_size(entry) / PAGE_SIZE;
331 }
332
333 /*
334 * Iterate through all mapped pfns represented by an entry, i.e. skip
335 * 'empty' and 'zero' entries.
336 */
337 #define for_each_mapped_pfn(entry, pfn) \
338 for (pfn = dax_radix_pfn(entry); \
339 pfn < dax_radix_end_pfn(entry); pfn++)
340
341 /*
342 * TODO: for reflink+dax we need a way to associate a single page with
343 * multiple address_space instances at different linear_page_index()
344 * offsets.
345 */
346 static void dax_associate_entry(void *entry, struct address_space *mapping,
347 struct vm_area_struct *vma, unsigned long address)
348 {
349 unsigned long size = dax_entry_size(entry), pfn, index;
350 int i = 0;
351
352 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
353 return;
354
355 index = linear_page_index(vma, address & ~(size - 1));
356 for_each_mapped_pfn(entry, pfn) {
357 struct page *page = pfn_to_page(pfn);
358
359 WARN_ON_ONCE(page->mapping);
360 page->mapping = mapping;
361 page->index = index + i++;
362 }
363 }
364
365 static void dax_disassociate_entry(void *entry, struct address_space *mapping,
366 bool trunc)
367 {
368 unsigned long pfn;
369
370 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
371 return;
372
373 for_each_mapped_pfn(entry, pfn) {
374 struct page *page = pfn_to_page(pfn);
375
376 WARN_ON_ONCE(trunc && page_ref_count(page) > 1);
377 WARN_ON_ONCE(page->mapping && page->mapping != mapping);
378 page->mapping = NULL;
379 page->index = 0;
380 }
381 }
382
383 static struct page *dax_busy_page(void *entry)
384 {
385 unsigned long pfn;
386
387 for_each_mapped_pfn(entry, pfn) {
388 struct page *page = pfn_to_page(pfn);
389
390 if (page_ref_count(page) > 1)
391 return page;
392 }
393 return NULL;
394 }
395
396 static bool entry_wait_revalidate(void)
397 {
398 rcu_read_unlock();
399 schedule();
400 rcu_read_lock();
401
402 /*
403 * Tell __get_unlocked_mapping_entry() to take a break, we need
404 * to revalidate page->mapping after dropping locks
405 */
406 return true;
407 }
408
409 bool dax_lock_mapping_entry(struct page *page)
410 {
411 pgoff_t index;
412 struct inode *inode;
413 bool did_lock = false;
414 void *entry = NULL, **slot;
415 struct address_space *mapping;
416
417 rcu_read_lock();
418 for (;;) {
419 mapping = READ_ONCE(page->mapping);
420
421 if (!dax_mapping(mapping))
422 break;
423
424 /*
425 * In the device-dax case there's no need to lock, a
426 * struct dev_pagemap pin is sufficient to keep the
427 * inode alive, and we assume we have dev_pagemap pin
428 * otherwise we would not have a valid pfn_to_page()
429 * translation.
430 */
431 inode = mapping->host;
432 if (S_ISCHR(inode->i_mode)) {
433 did_lock = true;
434 break;
435 }
436
437 xa_lock_irq(&mapping->i_pages);
438 if (mapping != page->mapping) {
439 xa_unlock_irq(&mapping->i_pages);
440 continue;
441 }
442 index = page->index;
443
444 entry = __get_unlocked_mapping_entry(mapping, index, &slot,
445 entry_wait_revalidate);
446 if (!entry) {
447 xa_unlock_irq(&mapping->i_pages);
448 break;
449 } else if (IS_ERR(entry)) {
450 WARN_ON_ONCE(PTR_ERR(entry) != -EAGAIN);
451 continue;
452 }
453 lock_slot(mapping, slot);
454 did_lock = true;
455 xa_unlock_irq(&mapping->i_pages);
456 break;
457 }
458 rcu_read_unlock();
459
460 return did_lock;
461 }
462
463 void dax_unlock_mapping_entry(struct page *page)
464 {
465 struct address_space *mapping = page->mapping;
466 struct inode *inode = mapping->host;
467
468 if (S_ISCHR(inode->i_mode))
469 return;
470
471 unlock_mapping_entry(mapping, page->index);
472 }
473
474 /*
475 * Find radix tree entry at given index. If it points to an exceptional entry,
476 * return it with the radix tree entry locked. If the radix tree doesn't
477 * contain given index, create an empty exceptional entry for the index and
478 * return with it locked.
479 *
480 * When requesting an entry with size RADIX_DAX_PMD, grab_mapping_entry() will
481 * either return that locked entry or will return an error. This error will
482 * happen if there are any 4k entries within the 2MiB range that we are
483 * requesting.
484 *
485 * We always favor 4k entries over 2MiB entries. There isn't a flow where we
486 * evict 4k entries in order to 'upgrade' them to a 2MiB entry. A 2MiB
487 * insertion will fail if it finds any 4k entries already in the tree, and a
488 * 4k insertion will cause an existing 2MiB entry to be unmapped and
489 * downgraded to 4k entries. This happens for both 2MiB huge zero pages as
490 * well as 2MiB empty entries.
491 *
492 * The exception to this downgrade path is for 2MiB DAX PMD entries that have
493 * real storage backing them. We will leave these real 2MiB DAX entries in
494 * the tree, and PTE writes will simply dirty the entire 2MiB DAX entry.
495 *
496 * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
497 * persistent memory the benefit is doubtful. We can add that later if we can
498 * show it helps.
499 */
500 static void *grab_mapping_entry(struct address_space *mapping, pgoff_t index,
501 unsigned long size_flag)
502 {
503 bool pmd_downgrade = false; /* splitting 2MiB entry into 4k entries? */
504 void *entry, **slot;
505
506 restart:
507 xa_lock_irq(&mapping->i_pages);
508 entry = get_unlocked_mapping_entry(mapping, index, &slot);
509
510 if (WARN_ON_ONCE(entry && !radix_tree_exceptional_entry(entry))) {
511 entry = ERR_PTR(-EIO);
512 goto out_unlock;
513 }
514
515 if (entry) {
516 if (size_flag & RADIX_DAX_PMD) {
517 if (dax_is_pte_entry(entry)) {
518 put_unlocked_mapping_entry(mapping, index,
519 entry);
520 entry = ERR_PTR(-EEXIST);
521 goto out_unlock;
522 }
523 } else { /* trying to grab a PTE entry */
524 if (dax_is_pmd_entry(entry) &&
525 (dax_is_zero_entry(entry) ||
526 dax_is_empty_entry(entry))) {
527 pmd_downgrade = true;
528 }
529 }
530 }
531
532 /* No entry for given index? Make sure radix tree is big enough. */
533 if (!entry || pmd_downgrade) {
534 int err;
535
536 if (pmd_downgrade) {
537 /*
538 * Make sure 'entry' remains valid while we drop
539 * the i_pages lock.
540 */
541 entry = lock_slot(mapping, slot);
542 }
543
544 xa_unlock_irq(&mapping->i_pages);
545 /*
546 * Besides huge zero pages the only other thing that gets
547 * downgraded are empty entries which don't need to be
548 * unmapped.
549 */
550 if (pmd_downgrade && dax_is_zero_entry(entry))
551 unmap_mapping_pages(mapping, index & ~PG_PMD_COLOUR,
552 PG_PMD_NR, false);
553
554 err = radix_tree_preload(
555 mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM);
556 if (err) {
557 if (pmd_downgrade)
558 put_locked_mapping_entry(mapping, index);
559 return ERR_PTR(err);
560 }
561 xa_lock_irq(&mapping->i_pages);
562
563 if (!entry) {
564 /*
565 * We needed to drop the i_pages lock while calling
566 * radix_tree_preload() and we didn't have an entry to
567 * lock. See if another thread inserted an entry at
568 * our index during this time.
569 */
570 entry = __radix_tree_lookup(&mapping->i_pages, index,
571 NULL, &slot);
572 if (entry) {
573 radix_tree_preload_end();
574 xa_unlock_irq(&mapping->i_pages);
575 goto restart;
576 }
577 }
578
579 if (pmd_downgrade) {
580 dax_disassociate_entry(entry, mapping, false);
581 radix_tree_delete(&mapping->i_pages, index);
582 mapping->nrexceptional--;
583 dax_wake_mapping_entry_waiter(mapping, index, entry,
584 true);
585 }
586
587 entry = dax_radix_locked_entry(0, size_flag | RADIX_DAX_EMPTY);
588
589 err = __radix_tree_insert(&mapping->i_pages, index,
590 dax_radix_order(entry), entry);
591 radix_tree_preload_end();
592 if (err) {
593 xa_unlock_irq(&mapping->i_pages);
594 /*
595 * Our insertion of a DAX entry failed, most likely
596 * because we were inserting a PMD entry and it
597 * collided with a PTE sized entry at a different
598 * index in the PMD range. We haven't inserted
599 * anything into the radix tree and have no waiters to
600 * wake.
601 */
602 return ERR_PTR(err);
603 }
604 /* Good, we have inserted empty locked entry into the tree. */
605 mapping->nrexceptional++;
606 xa_unlock_irq(&mapping->i_pages);
607 return entry;
608 }
609 entry = lock_slot(mapping, slot);
610 out_unlock:
611 xa_unlock_irq(&mapping->i_pages);
612 return entry;
613 }
614
615 /**
616 * dax_layout_busy_page - find first pinned page in @mapping
617 * @mapping: address space to scan for a page with ref count > 1
618 *
619 * DAX requires ZONE_DEVICE mapped pages. These pages are never
620 * 'onlined' to the page allocator so they are considered idle when
621 * page->count == 1. A filesystem uses this interface to determine if
622 * any page in the mapping is busy, i.e. for DMA, or other
623 * get_user_pages() usages.
624 *
625 * It is expected that the filesystem is holding locks to block the
626 * establishment of new mappings in this address_space. I.e. it expects
627 * to be able to run unmap_mapping_range() and subsequently not race
628 * mapping_mapped() becoming true.
629 */
630 struct page *dax_layout_busy_page(struct address_space *mapping)
631 {
632 pgoff_t indices[PAGEVEC_SIZE];
633 struct page *page = NULL;
634 struct pagevec pvec;
635 pgoff_t index, end;
636 unsigned i;
637
638 /*
639 * In the 'limited' case get_user_pages() for dax is disabled.
640 */
641 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
642 return NULL;
643
644 if (!dax_mapping(mapping) || !mapping_mapped(mapping))
645 return NULL;
646
647 pagevec_init(&pvec);
648 index = 0;
649 end = -1;
650
651 /*
652 * If we race get_user_pages_fast() here either we'll see the
653 * elevated page count in the pagevec_lookup and wait, or
654 * get_user_pages_fast() will see that the page it took a reference
655 * against is no longer mapped in the page tables and bail to the
656 * get_user_pages() slow path. The slow path is protected by
657 * pte_lock() and pmd_lock(). New references are not taken without
658 * holding those locks, and unmap_mapping_range() will not zero the
659 * pte or pmd without holding the respective lock, so we are
660 * guaranteed to either see new references or prevent new
661 * references from being established.
662 */
663 unmap_mapping_range(mapping, 0, 0, 1);
664
665 while (index < end && pagevec_lookup_entries(&pvec, mapping, index,
666 min(end - index, (pgoff_t)PAGEVEC_SIZE),
667 indices)) {
668 for (i = 0; i < pagevec_count(&pvec); i++) {
669 struct page *pvec_ent = pvec.pages[i];
670 void *entry;
671
672 index = indices[i];
673 if (index >= end)
674 break;
675
676 if (WARN_ON_ONCE(
677 !radix_tree_exceptional_entry(pvec_ent)))
678 continue;
679
680 xa_lock_irq(&mapping->i_pages);
681 entry = get_unlocked_mapping_entry(mapping, index, NULL);
682 if (entry)
683 page = dax_busy_page(entry);
684 put_unlocked_mapping_entry(mapping, index, entry);
685 xa_unlock_irq(&mapping->i_pages);
686 if (page)
687 break;
688 }
689
690 /*
691 * We don't expect normal struct page entries to exist in our
692 * tree, but we keep these pagevec calls so that this code is
693 * consistent with the common pattern for handling pagevecs
694 * throughout the kernel.
695 */
696 pagevec_remove_exceptionals(&pvec);
697 pagevec_release(&pvec);
698 index++;
699
700 if (page)
701 break;
702 }
703 return page;
704 }
705 EXPORT_SYMBOL_GPL(dax_layout_busy_page);
706
707 static int __dax_invalidate_mapping_entry(struct address_space *mapping,
708 pgoff_t index, bool trunc)
709 {
710 int ret = 0;
711 void *entry;
712 struct radix_tree_root *pages = &mapping->i_pages;
713
714 xa_lock_irq(pages);
715 entry = get_unlocked_mapping_entry(mapping, index, NULL);
716 if (!entry || WARN_ON_ONCE(!radix_tree_exceptional_entry(entry)))
717 goto out;
718 if (!trunc &&
719 (radix_tree_tag_get(pages, index, PAGECACHE_TAG_DIRTY) ||
720 radix_tree_tag_get(pages, index, PAGECACHE_TAG_TOWRITE)))
721 goto out;
722 dax_disassociate_entry(entry, mapping, trunc);
723 radix_tree_delete(pages, index);
724 mapping->nrexceptional--;
725 ret = 1;
726 out:
727 put_unlocked_mapping_entry(mapping, index, entry);
728 xa_unlock_irq(pages);
729 return ret;
730 }
731 /*
732 * Delete exceptional DAX entry at @index from @mapping. Wait for radix tree
733 * entry to get unlocked before deleting it.
734 */
735 int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index)
736 {
737 int ret = __dax_invalidate_mapping_entry(mapping, index, true);
738
739 /*
740 * This gets called from truncate / punch_hole path. As such, the caller
741 * must hold locks protecting against concurrent modifications of the
742 * radix tree (usually fs-private i_mmap_sem for writing). Since the
743 * caller has seen exceptional entry for this index, we better find it
744 * at that index as well...
745 */
746 WARN_ON_ONCE(!ret);
747 return ret;
748 }
749
750 /*
751 * Invalidate exceptional DAX entry if it is clean.
752 */
753 int dax_invalidate_mapping_entry_sync(struct address_space *mapping,
754 pgoff_t index)
755 {
756 return __dax_invalidate_mapping_entry(mapping, index, false);
757 }
758
759 static int copy_user_dax(struct block_device *bdev, struct dax_device *dax_dev,
760 sector_t sector, size_t size, struct page *to,
761 unsigned long vaddr)
762 {
763 void *vto, *kaddr;
764 pgoff_t pgoff;
765 long rc;
766 int id;
767
768 rc = bdev_dax_pgoff(bdev, sector, size, &pgoff);
769 if (rc)
770 return rc;
771
772 id = dax_read_lock();
773 rc = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size), &kaddr, NULL);
774 if (rc < 0) {
775 dax_read_unlock(id);
776 return rc;
777 }
778 vto = kmap_atomic(to);
779 copy_user_page(vto, (void __force *)kaddr, vaddr, to);
780 kunmap_atomic(vto);
781 dax_read_unlock(id);
782 return 0;
783 }
784
785 /*
786 * By this point grab_mapping_entry() has ensured that we have a locked entry
787 * of the appropriate size so we don't have to worry about downgrading PMDs to
788 * PTEs. If we happen to be trying to insert a PTE and there is a PMD
789 * already in the tree, we will skip the insertion and just dirty the PMD as
790 * appropriate.
791 */
792 static void *dax_insert_mapping_entry(struct address_space *mapping,
793 struct vm_fault *vmf,
794 void *entry, pfn_t pfn_t,
795 unsigned long flags, bool dirty)
796 {
797 struct radix_tree_root *pages = &mapping->i_pages;
798 unsigned long pfn = pfn_t_to_pfn(pfn_t);
799 pgoff_t index = vmf->pgoff;
800 void *new_entry;
801
802 if (dirty)
803 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
804
805 if (dax_is_zero_entry(entry) && !(flags & RADIX_DAX_ZERO_PAGE)) {
806 /* we are replacing a zero page with block mapping */
807 if (dax_is_pmd_entry(entry))
808 unmap_mapping_pages(mapping, index & ~PG_PMD_COLOUR,
809 PG_PMD_NR, false);
810 else /* pte entry */
811 unmap_mapping_pages(mapping, vmf->pgoff, 1, false);
812 }
813
814 xa_lock_irq(pages);
815 new_entry = dax_radix_locked_entry(pfn, flags);
816 if (dax_entry_size(entry) != dax_entry_size(new_entry)) {
817 dax_disassociate_entry(entry, mapping, false);
818 dax_associate_entry(new_entry, mapping, vmf->vma, vmf->address);
819 }
820
821 if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
822 /*
823 * Only swap our new entry into the radix tree if the current
824 * entry is a zero page or an empty entry. If a normal PTE or
825 * PMD entry is already in the tree, we leave it alone. This
826 * means that if we are trying to insert a PTE and the
827 * existing entry is a PMD, we will just leave the PMD in the
828 * tree and dirty it if necessary.
829 */
830 struct radix_tree_node *node;
831 void **slot;
832 void *ret;
833
834 ret = __radix_tree_lookup(pages, index, &node, &slot);
835 WARN_ON_ONCE(ret != entry);
836 __radix_tree_replace(pages, node, slot,
837 new_entry, NULL);
838 entry = new_entry;
839 }
840
841 if (dirty)
842 radix_tree_tag_set(pages, index, PAGECACHE_TAG_DIRTY);
843
844 xa_unlock_irq(pages);
845 return entry;
846 }
847
848 static inline unsigned long
849 pgoff_address(pgoff_t pgoff, struct vm_area_struct *vma)
850 {
851 unsigned long address;
852
853 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
854 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
855 return address;
856 }
857
858 /* Walk all mappings of a given index of a file and writeprotect them */
859 static void dax_mapping_entry_mkclean(struct address_space *mapping,
860 pgoff_t index, unsigned long pfn)
861 {
862 struct vm_area_struct *vma;
863 pte_t pte, *ptep = NULL;
864 pmd_t *pmdp = NULL;
865 spinlock_t *ptl;
866
867 i_mmap_lock_read(mapping);
868 vma_interval_tree_foreach(vma, &mapping->i_mmap, index, index) {
869 unsigned long address, start, end;
870
871 cond_resched();
872
873 if (!(vma->vm_flags & VM_SHARED))
874 continue;
875
876 address = pgoff_address(index, vma);
877
878 /*
879 * Note because we provide start/end to follow_pte_pmd it will
880 * call mmu_notifier_invalidate_range_start() on our behalf
881 * before taking any lock.
882 */
883 if (follow_pte_pmd(vma->vm_mm, address, &start, &end, &ptep, &pmdp, &ptl))
884 continue;
885
886 /*
887 * No need to call mmu_notifier_invalidate_range() as we are
888 * downgrading page table protection not changing it to point
889 * to a new page.
890 *
891 * See Documentation/vm/mmu_notifier.rst
892 */
893 if (pmdp) {
894 #ifdef CONFIG_FS_DAX_PMD
895 pmd_t pmd;
896
897 if (pfn != pmd_pfn(*pmdp))
898 goto unlock_pmd;
899 if (!pmd_dirty(*pmdp) && !pmd_write(*pmdp))
900 goto unlock_pmd;
901
902 flush_cache_page(vma, address, pfn);
903 pmd = pmdp_huge_clear_flush(vma, address, pmdp);
904 pmd = pmd_wrprotect(pmd);
905 pmd = pmd_mkclean(pmd);
906 set_pmd_at(vma->vm_mm, address, pmdp, pmd);
907 unlock_pmd:
908 #endif
909 spin_unlock(ptl);
910 } else {
911 if (pfn != pte_pfn(*ptep))
912 goto unlock_pte;
913 if (!pte_dirty(*ptep) && !pte_write(*ptep))
914 goto unlock_pte;
915
916 flush_cache_page(vma, address, pfn);
917 pte = ptep_clear_flush(vma, address, ptep);
918 pte = pte_wrprotect(pte);
919 pte = pte_mkclean(pte);
920 set_pte_at(vma->vm_mm, address, ptep, pte);
921 unlock_pte:
922 pte_unmap_unlock(ptep, ptl);
923 }
924
925 mmu_notifier_invalidate_range_end(vma->vm_mm, start, end);
926 }
927 i_mmap_unlock_read(mapping);
928 }
929
930 static int dax_writeback_one(struct dax_device *dax_dev,
931 struct address_space *mapping, pgoff_t index, void *entry)
932 {
933 struct radix_tree_root *pages = &mapping->i_pages;
934 void *entry2, **slot;
935 unsigned long pfn;
936 long ret = 0;
937 size_t size;
938
939 /*
940 * A page got tagged dirty in DAX mapping? Something is seriously
941 * wrong.
942 */
943 if (WARN_ON(!radix_tree_exceptional_entry(entry)))
944 return -EIO;
945
946 xa_lock_irq(pages);
947 entry2 = get_unlocked_mapping_entry(mapping, index, &slot);
948 /* Entry got punched out / reallocated? */
949 if (!entry2 || WARN_ON_ONCE(!radix_tree_exceptional_entry(entry2)))
950 goto put_unlocked;
951 /*
952 * Entry got reallocated elsewhere? No need to writeback. We have to
953 * compare pfns as we must not bail out due to difference in lockbit
954 * or entry type.
955 */
956 if (dax_radix_pfn(entry2) != dax_radix_pfn(entry))
957 goto put_unlocked;
958 if (WARN_ON_ONCE(dax_is_empty_entry(entry) ||
959 dax_is_zero_entry(entry))) {
960 ret = -EIO;
961 goto put_unlocked;
962 }
963
964 /* Another fsync thread may have already written back this entry */
965 if (!radix_tree_tag_get(pages, index, PAGECACHE_TAG_TOWRITE))
966 goto put_unlocked;
967 /* Lock the entry to serialize with page faults */
968 entry = lock_slot(mapping, slot);
969 /*
970 * We can clear the tag now but we have to be careful so that concurrent
971 * dax_writeback_one() calls for the same index cannot finish before we
972 * actually flush the caches. This is achieved as the calls will look
973 * at the entry only under the i_pages lock and once they do that
974 * they will see the entry locked and wait for it to unlock.
975 */
976 radix_tree_tag_clear(pages, index, PAGECACHE_TAG_TOWRITE);
977 xa_unlock_irq(pages);
978
979 /*
980 * Even if dax_writeback_mapping_range() was given a wbc->range_start
981 * in the middle of a PMD, the 'index' we are given will be aligned to
982 * the start index of the PMD, as will the pfn we pull from 'entry'.
983 * This allows us to flush for PMD_SIZE and not have to worry about
984 * partial PMD writebacks.
985 */
986 pfn = dax_radix_pfn(entry);
987 size = PAGE_SIZE << dax_radix_order(entry);
988
989 dax_mapping_entry_mkclean(mapping, index, pfn);
990 dax_flush(dax_dev, page_address(pfn_to_page(pfn)), size);
991 /*
992 * After we have flushed the cache, we can clear the dirty tag. There
993 * cannot be new dirty data in the pfn after the flush has completed as
994 * the pfn mappings are writeprotected and fault waits for mapping
995 * entry lock.
996 */
997 xa_lock_irq(pages);
998 radix_tree_tag_clear(pages, index, PAGECACHE_TAG_DIRTY);
999 xa_unlock_irq(pages);
1000 trace_dax_writeback_one(mapping->host, index, size >> PAGE_SHIFT);
1001 put_locked_mapping_entry(mapping, index);
1002 return ret;
1003
1004 put_unlocked:
1005 put_unlocked_mapping_entry(mapping, index, entry2);
1006 xa_unlock_irq(pages);
1007 return ret;
1008 }
1009
1010 /*
1011 * Flush the mapping to the persistent domain within the byte range of [start,
1012 * end]. This is required by data integrity operations to ensure file data is
1013 * on persistent storage prior to completion of the operation.
1014 */
1015 int dax_writeback_mapping_range(struct address_space *mapping,
1016 struct block_device *bdev, struct writeback_control *wbc)
1017 {
1018 struct inode *inode = mapping->host;
1019 pgoff_t start_index, end_index;
1020 pgoff_t indices[PAGEVEC_SIZE];
1021 struct dax_device *dax_dev;
1022 struct pagevec pvec;
1023 bool done = false;
1024 int i, ret = 0;
1025
1026 if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
1027 return -EIO;
1028
1029 if (!mapping->nrexceptional || wbc->sync_mode != WB_SYNC_ALL)
1030 return 0;
1031
1032 dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
1033 if (!dax_dev)
1034 return -EIO;
1035
1036 start_index = wbc->range_start >> PAGE_SHIFT;
1037 end_index = wbc->range_end >> PAGE_SHIFT;
1038
1039 trace_dax_writeback_range(inode, start_index, end_index);
1040
1041 tag_pages_for_writeback(mapping, start_index, end_index);
1042
1043 pagevec_init(&pvec);
1044 while (!done) {
1045 pvec.nr = find_get_entries_tag(mapping, start_index,
1046 PAGECACHE_TAG_TOWRITE, PAGEVEC_SIZE,
1047 pvec.pages, indices);
1048
1049 if (pvec.nr == 0)
1050 break;
1051
1052 for (i = 0; i < pvec.nr; i++) {
1053 if (indices[i] > end_index) {
1054 done = true;
1055 break;
1056 }
1057
1058 ret = dax_writeback_one(dax_dev, mapping, indices[i],
1059 pvec.pages[i]);
1060 if (ret < 0) {
1061 mapping_set_error(mapping, ret);
1062 goto out;
1063 }
1064 }
1065 start_index = indices[pvec.nr - 1] + 1;
1066 }
1067 out:
1068 put_dax(dax_dev);
1069 trace_dax_writeback_range_done(inode, start_index, end_index);
1070 return (ret < 0 ? ret : 0);
1071 }
1072 EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
1073
1074 static sector_t dax_iomap_sector(struct iomap *iomap, loff_t pos)
1075 {
1076 return (iomap->addr + (pos & PAGE_MASK) - iomap->offset) >> 9;
1077 }
1078
1079 static int dax_iomap_pfn(struct iomap *iomap, loff_t pos, size_t size,
1080 pfn_t *pfnp)
1081 {
1082 const sector_t sector = dax_iomap_sector(iomap, pos);
1083 pgoff_t pgoff;
1084 int id, rc;
1085 long length;
1086
1087 rc = bdev_dax_pgoff(iomap->bdev, sector, size, &pgoff);
1088 if (rc)
1089 return rc;
1090 id = dax_read_lock();
1091 length = dax_direct_access(iomap->dax_dev, pgoff, PHYS_PFN(size),
1092 NULL, pfnp);
1093 if (length < 0) {
1094 rc = length;
1095 goto out;
1096 }
1097 rc = -EINVAL;
1098 if (PFN_PHYS(length) < size)
1099 goto out;
1100 if (pfn_t_to_pfn(*pfnp) & (PHYS_PFN(size)-1))
1101 goto out;
1102 /* For larger pages we need devmap */
1103 if (length > 1 && !pfn_t_devmap(*pfnp))
1104 goto out;
1105 rc = 0;
1106 out:
1107 dax_read_unlock(id);
1108 return rc;
1109 }
1110
1111 /*
1112 * The user has performed a load from a hole in the file. Allocating a new
1113 * page in the file would cause excessive storage usage for workloads with
1114 * sparse files. Instead we insert a read-only mapping of the 4k zero page.
1115 * If this page is ever written to we will re-fault and change the mapping to
1116 * point to real DAX storage instead.
1117 */
1118 static vm_fault_t dax_load_hole(struct address_space *mapping, void *entry,
1119 struct vm_fault *vmf)
1120 {
1121 struct inode *inode = mapping->host;
1122 unsigned long vaddr = vmf->address;
1123 vm_fault_t ret = VM_FAULT_NOPAGE;
1124 struct page *zero_page;
1125 pfn_t pfn;
1126
1127 zero_page = ZERO_PAGE(0);
1128 if (unlikely(!zero_page)) {
1129 ret = VM_FAULT_OOM;
1130 goto out;
1131 }
1132
1133 pfn = page_to_pfn_t(zero_page);
1134 dax_insert_mapping_entry(mapping, vmf, entry, pfn, RADIX_DAX_ZERO_PAGE,
1135 false);
1136 ret = vmf_insert_mixed(vmf->vma, vaddr, pfn);
1137 out:
1138 trace_dax_load_hole(inode, vmf, ret);
1139 return ret;
1140 }
1141
1142 static bool dax_range_is_aligned(struct block_device *bdev,
1143 unsigned int offset, unsigned int length)
1144 {
1145 unsigned short sector_size = bdev_logical_block_size(bdev);
1146
1147 if (!IS_ALIGNED(offset, sector_size))
1148 return false;
1149 if (!IS_ALIGNED(length, sector_size))
1150 return false;
1151
1152 return true;
1153 }
1154
1155 int __dax_zero_page_range(struct block_device *bdev,
1156 struct dax_device *dax_dev, sector_t sector,
1157 unsigned int offset, unsigned int size)
1158 {
1159 if (dax_range_is_aligned(bdev, offset, size)) {
1160 sector_t start_sector = sector + (offset >> 9);
1161
1162 return blkdev_issue_zeroout(bdev, start_sector,
1163 size >> 9, GFP_NOFS, 0);
1164 } else {
1165 pgoff_t pgoff;
1166 long rc, id;
1167 void *kaddr;
1168
1169 rc = bdev_dax_pgoff(bdev, sector, PAGE_SIZE, &pgoff);
1170 if (rc)
1171 return rc;
1172
1173 id = dax_read_lock();
1174 rc = dax_direct_access(dax_dev, pgoff, 1, &kaddr, NULL);
1175 if (rc < 0) {
1176 dax_read_unlock(id);
1177 return rc;
1178 }
1179 memset(kaddr + offset, 0, size);
1180 dax_flush(dax_dev, kaddr + offset, size);
1181 dax_read_unlock(id);
1182 }
1183 return 0;
1184 }
1185 EXPORT_SYMBOL_GPL(__dax_zero_page_range);
1186
1187 static loff_t
1188 dax_iomap_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
1189 struct iomap *iomap)
1190 {
1191 struct block_device *bdev = iomap->bdev;
1192 struct dax_device *dax_dev = iomap->dax_dev;
1193 struct iov_iter *iter = data;
1194 loff_t end = pos + length, done = 0;
1195 ssize_t ret = 0;
1196 size_t xfer;
1197 int id;
1198
1199 if (iov_iter_rw(iter) == READ) {
1200 end = min(end, i_size_read(inode));
1201 if (pos >= end)
1202 return 0;
1203
1204 if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
1205 return iov_iter_zero(min(length, end - pos), iter);
1206 }
1207
1208 if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED))
1209 return -EIO;
1210
1211 /*
1212 * Write can allocate block for an area which has a hole page mapped
1213 * into page tables. We have to tear down these mappings so that data
1214 * written by write(2) is visible in mmap.
1215 */
1216 if (iomap->flags & IOMAP_F_NEW) {
1217 invalidate_inode_pages2_range(inode->i_mapping,
1218 pos >> PAGE_SHIFT,
1219 (end - 1) >> PAGE_SHIFT);
1220 }
1221
1222 id = dax_read_lock();
1223 while (pos < end) {
1224 unsigned offset = pos & (PAGE_SIZE - 1);
1225 const size_t size = ALIGN(length + offset, PAGE_SIZE);
1226 const sector_t sector = dax_iomap_sector(iomap, pos);
1227 ssize_t map_len;
1228 pgoff_t pgoff;
1229 void *kaddr;
1230
1231 if (fatal_signal_pending(current)) {
1232 ret = -EINTR;
1233 break;
1234 }
1235
1236 ret = bdev_dax_pgoff(bdev, sector, size, &pgoff);
1237 if (ret)
1238 break;
1239
1240 map_len = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size),
1241 &kaddr, NULL);
1242 if (map_len < 0) {
1243 ret = map_len;
1244 break;
1245 }
1246
1247 map_len = PFN_PHYS(map_len);
1248 kaddr += offset;
1249 map_len -= offset;
1250 if (map_len > end - pos)
1251 map_len = end - pos;
1252
1253 /*
1254 * The userspace address for the memory copy has already been
1255 * validated via access_ok() in either vfs_read() or
1256 * vfs_write(), depending on which operation we are doing.
1257 */
1258 if (iov_iter_rw(iter) == WRITE)
1259 xfer = dax_copy_from_iter(dax_dev, pgoff, kaddr,
1260 map_len, iter);
1261 else
1262 xfer = dax_copy_to_iter(dax_dev, pgoff, kaddr,
1263 map_len, iter);
1264
1265 pos += xfer;
1266 length -= xfer;
1267 done += xfer;
1268
1269 if (xfer == 0)
1270 ret = -EFAULT;
1271 if (xfer < map_len)
1272 break;
1273 }
1274 dax_read_unlock(id);
1275
1276 return done ? done : ret;
1277 }
1278
1279 /**
1280 * dax_iomap_rw - Perform I/O to a DAX file
1281 * @iocb: The control block for this I/O
1282 * @iter: The addresses to do I/O from or to
1283 * @ops: iomap ops passed from the file system
1284 *
1285 * This function performs read and write operations to directly mapped
1286 * persistent memory. The callers needs to take care of read/write exclusion
1287 * and evicting any page cache pages in the region under I/O.
1288 */
1289 ssize_t
1290 dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter,
1291 const struct iomap_ops *ops)
1292 {
1293 struct address_space *mapping = iocb->ki_filp->f_mapping;
1294 struct inode *inode = mapping->host;
1295 loff_t pos = iocb->ki_pos, ret = 0, done = 0;
1296 unsigned flags = 0;
1297
1298 if (iov_iter_rw(iter) == WRITE) {
1299 lockdep_assert_held_exclusive(&inode->i_rwsem);
1300 flags |= IOMAP_WRITE;
1301 } else {
1302 lockdep_assert_held(&inode->i_rwsem);
1303 }
1304
1305 while (iov_iter_count(iter)) {
1306 ret = iomap_apply(inode, pos, iov_iter_count(iter), flags, ops,
1307 iter, dax_iomap_actor);
1308 if (ret <= 0)
1309 break;
1310 pos += ret;
1311 done += ret;
1312 }
1313
1314 iocb->ki_pos += done;
1315 return done ? done : ret;
1316 }
1317 EXPORT_SYMBOL_GPL(dax_iomap_rw);
1318
1319 static vm_fault_t dax_fault_return(int error)
1320 {
1321 if (error == 0)
1322 return VM_FAULT_NOPAGE;
1323 if (error == -ENOMEM)
1324 return VM_FAULT_OOM;
1325 return VM_FAULT_SIGBUS;
1326 }
1327
1328 /*
1329 * MAP_SYNC on a dax mapping guarantees dirty metadata is
1330 * flushed on write-faults (non-cow), but not read-faults.
1331 */
1332 static bool dax_fault_is_synchronous(unsigned long flags,
1333 struct vm_area_struct *vma, struct iomap *iomap)
1334 {
1335 return (flags & IOMAP_WRITE) && (vma->vm_flags & VM_SYNC)
1336 && (iomap->flags & IOMAP_F_DIRTY);
1337 }
1338
1339 static vm_fault_t dax_iomap_pte_fault(struct vm_fault *vmf, pfn_t *pfnp,
1340 int *iomap_errp, const struct iomap_ops *ops)
1341 {
1342 struct vm_area_struct *vma = vmf->vma;
1343 struct address_space *mapping = vma->vm_file->f_mapping;
1344 struct inode *inode = mapping->host;
1345 unsigned long vaddr = vmf->address;
1346 loff_t pos = (loff_t)vmf->pgoff << PAGE_SHIFT;
1347 struct iomap iomap = { 0 };
1348 unsigned flags = IOMAP_FAULT;
1349 int error, major = 0;
1350 bool write = vmf->flags & FAULT_FLAG_WRITE;
1351 bool sync;
1352 vm_fault_t ret = 0;
1353 void *entry;
1354 pfn_t pfn;
1355
1356 trace_dax_pte_fault(inode, vmf, ret);
1357 /*
1358 * Check whether offset isn't beyond end of file now. Caller is supposed
1359 * to hold locks serializing us with truncate / punch hole so this is
1360 * a reliable test.
1361 */
1362 if (pos >= i_size_read(inode)) {
1363 ret = VM_FAULT_SIGBUS;
1364 goto out;
1365 }
1366
1367 if (write && !vmf->cow_page)
1368 flags |= IOMAP_WRITE;
1369
1370 entry = grab_mapping_entry(mapping, vmf->pgoff, 0);
1371 if (IS_ERR(entry)) {
1372 ret = dax_fault_return(PTR_ERR(entry));
1373 goto out;
1374 }
1375
1376 /*
1377 * It is possible, particularly with mixed reads & writes to private
1378 * mappings, that we have raced with a PMD fault that overlaps with
1379 * the PTE we need to set up. If so just return and the fault will be
1380 * retried.
1381 */
1382 if (pmd_trans_huge(*vmf->pmd) || pmd_devmap(*vmf->pmd)) {
1383 ret = VM_FAULT_NOPAGE;
1384 goto unlock_entry;
1385 }
1386
1387 /*
1388 * Note that we don't bother to use iomap_apply here: DAX required
1389 * the file system block size to be equal the page size, which means
1390 * that we never have to deal with more than a single extent here.
1391 */
1392 error = ops->iomap_begin(inode, pos, PAGE_SIZE, flags, &iomap);
1393 if (iomap_errp)
1394 *iomap_errp = error;
1395 if (error) {
1396 ret = dax_fault_return(error);
1397 goto unlock_entry;
1398 }
1399 if (WARN_ON_ONCE(iomap.offset + iomap.length < pos + PAGE_SIZE)) {
1400 error = -EIO; /* fs corruption? */
1401 goto error_finish_iomap;
1402 }
1403
1404 if (vmf->cow_page) {
1405 sector_t sector = dax_iomap_sector(&iomap, pos);
1406
1407 switch (iomap.type) {
1408 case IOMAP_HOLE:
1409 case IOMAP_UNWRITTEN:
1410 clear_user_highpage(vmf->cow_page, vaddr);
1411 break;
1412 case IOMAP_MAPPED:
1413 error = copy_user_dax(iomap.bdev, iomap.dax_dev,
1414 sector, PAGE_SIZE, vmf->cow_page, vaddr);
1415 break;
1416 default:
1417 WARN_ON_ONCE(1);
1418 error = -EIO;
1419 break;
1420 }
1421
1422 if (error)
1423 goto error_finish_iomap;
1424
1425 __SetPageUptodate(vmf->cow_page);
1426 ret = finish_fault(vmf);
1427 if (!ret)
1428 ret = VM_FAULT_DONE_COW;
1429 goto finish_iomap;
1430 }
1431
1432 sync = dax_fault_is_synchronous(flags, vma, &iomap);
1433
1434 switch (iomap.type) {
1435 case IOMAP_MAPPED:
1436 if (iomap.flags & IOMAP_F_NEW) {
1437 count_vm_event(PGMAJFAULT);
1438 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
1439 major = VM_FAULT_MAJOR;
1440 }
1441 error = dax_iomap_pfn(&iomap, pos, PAGE_SIZE, &pfn);
1442 if (error < 0)
1443 goto error_finish_iomap;
1444
1445 entry = dax_insert_mapping_entry(mapping, vmf, entry, pfn,
1446 0, write && !sync);
1447
1448 /*
1449 * If we are doing synchronous page fault and inode needs fsync,
1450 * we can insert PTE into page tables only after that happens.
1451 * Skip insertion for now and return the pfn so that caller can
1452 * insert it after fsync is done.
1453 */
1454 if (sync) {
1455 if (WARN_ON_ONCE(!pfnp)) {
1456 error = -EIO;
1457 goto error_finish_iomap;
1458 }
1459 *pfnp = pfn;
1460 ret = VM_FAULT_NEEDDSYNC | major;
1461 goto finish_iomap;
1462 }
1463 trace_dax_insert_mapping(inode, vmf, entry);
1464 if (write)
1465 ret = vmf_insert_mixed_mkwrite(vma, vaddr, pfn);
1466 else
1467 ret = vmf_insert_mixed(vma, vaddr, pfn);
1468
1469 goto finish_iomap;
1470 case IOMAP_UNWRITTEN:
1471 case IOMAP_HOLE:
1472 if (!write) {
1473 ret = dax_load_hole(mapping, entry, vmf);
1474 goto finish_iomap;
1475 }
1476 /*FALLTHRU*/
1477 default:
1478 WARN_ON_ONCE(1);
1479 error = -EIO;
1480 break;
1481 }
1482
1483 error_finish_iomap:
1484 ret = dax_fault_return(error);
1485 finish_iomap:
1486 if (ops->iomap_end) {
1487 int copied = PAGE_SIZE;
1488
1489 if (ret & VM_FAULT_ERROR)
1490 copied = 0;
1491 /*
1492 * The fault is done by now and there's no way back (other
1493 * thread may be already happily using PTE we have installed).
1494 * Just ignore error from ->iomap_end since we cannot do much
1495 * with it.
1496 */
1497 ops->iomap_end(inode, pos, PAGE_SIZE, copied, flags, &iomap);
1498 }
1499 unlock_entry:
1500 put_locked_mapping_entry(mapping, vmf->pgoff);
1501 out:
1502 trace_dax_pte_fault_done(inode, vmf, ret);
1503 return ret | major;
1504 }
1505
1506 #ifdef CONFIG_FS_DAX_PMD
1507 static vm_fault_t dax_pmd_load_hole(struct vm_fault *vmf, struct iomap *iomap,
1508 void *entry)
1509 {
1510 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1511 unsigned long pmd_addr = vmf->address & PMD_MASK;
1512 struct inode *inode = mapping->host;
1513 struct page *zero_page;
1514 void *ret = NULL;
1515 spinlock_t *ptl;
1516 pmd_t pmd_entry;
1517 pfn_t pfn;
1518
1519 zero_page = mm_get_huge_zero_page(vmf->vma->vm_mm);
1520
1521 if (unlikely(!zero_page))
1522 goto fallback;
1523
1524 pfn = page_to_pfn_t(zero_page);
1525 ret = dax_insert_mapping_entry(mapping, vmf, entry, pfn,
1526 RADIX_DAX_PMD | RADIX_DAX_ZERO_PAGE, false);
1527
1528 ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1529 if (!pmd_none(*(vmf->pmd))) {
1530 spin_unlock(ptl);
1531 goto fallback;
1532 }
1533
1534 pmd_entry = mk_pmd(zero_page, vmf->vma->vm_page_prot);
1535 pmd_entry = pmd_mkhuge(pmd_entry);
1536 set_pmd_at(vmf->vma->vm_mm, pmd_addr, vmf->pmd, pmd_entry);
1537 spin_unlock(ptl);
1538 trace_dax_pmd_load_hole(inode, vmf, zero_page, ret);
1539 return VM_FAULT_NOPAGE;
1540
1541 fallback:
1542 trace_dax_pmd_load_hole_fallback(inode, vmf, zero_page, ret);
1543 return VM_FAULT_FALLBACK;
1544 }
1545
1546 static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1547 const struct iomap_ops *ops)
1548 {
1549 struct vm_area_struct *vma = vmf->vma;
1550 struct address_space *mapping = vma->vm_file->f_mapping;
1551 unsigned long pmd_addr = vmf->address & PMD_MASK;
1552 bool write = vmf->flags & FAULT_FLAG_WRITE;
1553 bool sync;
1554 unsigned int iomap_flags = (write ? IOMAP_WRITE : 0) | IOMAP_FAULT;
1555 struct inode *inode = mapping->host;
1556 vm_fault_t result = VM_FAULT_FALLBACK;
1557 struct iomap iomap = { 0 };
1558 pgoff_t max_pgoff, pgoff;
1559 void *entry;
1560 loff_t pos;
1561 int error;
1562 pfn_t pfn;
1563
1564 /*
1565 * Check whether offset isn't beyond end of file now. Caller is
1566 * supposed to hold locks serializing us with truncate / punch hole so
1567 * this is a reliable test.
1568 */
1569 pgoff = linear_page_index(vma, pmd_addr);
1570 max_pgoff = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1571
1572 trace_dax_pmd_fault(inode, vmf, max_pgoff, 0);
1573
1574 /*
1575 * Make sure that the faulting address's PMD offset (color) matches
1576 * the PMD offset from the start of the file. This is necessary so
1577 * that a PMD range in the page table overlaps exactly with a PMD
1578 * range in the radix tree.
1579 */
1580 if ((vmf->pgoff & PG_PMD_COLOUR) !=
1581 ((vmf->address >> PAGE_SHIFT) & PG_PMD_COLOUR))
1582 goto fallback;
1583
1584 /* Fall back to PTEs if we're going to COW */
1585 if (write && !(vma->vm_flags & VM_SHARED))
1586 goto fallback;
1587
1588 /* If the PMD would extend outside the VMA */
1589 if (pmd_addr < vma->vm_start)
1590 goto fallback;
1591 if ((pmd_addr + PMD_SIZE) > vma->vm_end)
1592 goto fallback;
1593
1594 if (pgoff >= max_pgoff) {
1595 result = VM_FAULT_SIGBUS;
1596 goto out;
1597 }
1598
1599 /* If the PMD would extend beyond the file size */
1600 if ((pgoff | PG_PMD_COLOUR) >= max_pgoff)
1601 goto fallback;
1602
1603 /*
1604 * grab_mapping_entry() will make sure we get a 2MiB empty entry, a
1605 * 2MiB zero page entry or a DAX PMD. If it can't (because a 4k page
1606 * is already in the tree, for instance), it will return -EEXIST and
1607 * we just fall back to 4k entries.
1608 */
1609 entry = grab_mapping_entry(mapping, pgoff, RADIX_DAX_PMD);
1610 if (IS_ERR(entry))
1611 goto fallback;
1612
1613 /*
1614 * It is possible, particularly with mixed reads & writes to private
1615 * mappings, that we have raced with a PTE fault that overlaps with
1616 * the PMD we need to set up. If so just return and the fault will be
1617 * retried.
1618 */
1619 if (!pmd_none(*vmf->pmd) && !pmd_trans_huge(*vmf->pmd) &&
1620 !pmd_devmap(*vmf->pmd)) {
1621 result = 0;
1622 goto unlock_entry;
1623 }
1624
1625 /*
1626 * Note that we don't use iomap_apply here. We aren't doing I/O, only
1627 * setting up a mapping, so really we're using iomap_begin() as a way
1628 * to look up our filesystem block.
1629 */
1630 pos = (loff_t)pgoff << PAGE_SHIFT;
1631 error = ops->iomap_begin(inode, pos, PMD_SIZE, iomap_flags, &iomap);
1632 if (error)
1633 goto unlock_entry;
1634
1635 if (iomap.offset + iomap.length < pos + PMD_SIZE)
1636 goto finish_iomap;
1637
1638 sync = dax_fault_is_synchronous(iomap_flags, vma, &iomap);
1639
1640 switch (iomap.type) {
1641 case IOMAP_MAPPED:
1642 error = dax_iomap_pfn(&iomap, pos, PMD_SIZE, &pfn);
1643 if (error < 0)
1644 goto finish_iomap;
1645
1646 entry = dax_insert_mapping_entry(mapping, vmf, entry, pfn,
1647 RADIX_DAX_PMD, write && !sync);
1648
1649 /*
1650 * If we are doing synchronous page fault and inode needs fsync,
1651 * we can insert PMD into page tables only after that happens.
1652 * Skip insertion for now and return the pfn so that caller can
1653 * insert it after fsync is done.
1654 */
1655 if (sync) {
1656 if (WARN_ON_ONCE(!pfnp))
1657 goto finish_iomap;
1658 *pfnp = pfn;
1659 result = VM_FAULT_NEEDDSYNC;
1660 goto finish_iomap;
1661 }
1662
1663 trace_dax_pmd_insert_mapping(inode, vmf, PMD_SIZE, pfn, entry);
1664 result = vmf_insert_pfn_pmd(vma, vmf->address, vmf->pmd, pfn,
1665 write);
1666 break;
1667 case IOMAP_UNWRITTEN:
1668 case IOMAP_HOLE:
1669 if (WARN_ON_ONCE(write))
1670 break;
1671 result = dax_pmd_load_hole(vmf, &iomap, entry);
1672 break;
1673 default:
1674 WARN_ON_ONCE(1);
1675 break;
1676 }
1677
1678 finish_iomap:
1679 if (ops->iomap_end) {
1680 int copied = PMD_SIZE;
1681
1682 if (result == VM_FAULT_FALLBACK)
1683 copied = 0;
1684 /*
1685 * The fault is done by now and there's no way back (other
1686 * thread may be already happily using PMD we have installed).
1687 * Just ignore error from ->iomap_end since we cannot do much
1688 * with it.
1689 */
1690 ops->iomap_end(inode, pos, PMD_SIZE, copied, iomap_flags,
1691 &iomap);
1692 }
1693 unlock_entry:
1694 put_locked_mapping_entry(mapping, pgoff);
1695 fallback:
1696 if (result == VM_FAULT_FALLBACK) {
1697 split_huge_pmd(vma, vmf->pmd, vmf->address);
1698 count_vm_event(THP_FAULT_FALLBACK);
1699 }
1700 out:
1701 trace_dax_pmd_fault_done(inode, vmf, max_pgoff, result);
1702 return result;
1703 }
1704 #else
1705 static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1706 const struct iomap_ops *ops)
1707 {
1708 return VM_FAULT_FALLBACK;
1709 }
1710 #endif /* CONFIG_FS_DAX_PMD */
1711
1712 /**
1713 * dax_iomap_fault - handle a page fault on a DAX file
1714 * @vmf: The description of the fault
1715 * @pe_size: Size of the page to fault in
1716 * @pfnp: PFN to insert for synchronous faults if fsync is required
1717 * @iomap_errp: Storage for detailed error code in case of error
1718 * @ops: Iomap ops passed from the file system
1719 *
1720 * When a page fault occurs, filesystems may call this helper in
1721 * their fault handler for DAX files. dax_iomap_fault() assumes the caller
1722 * has done all the necessary locking for page fault to proceed
1723 * successfully.
1724 */
1725 vm_fault_t dax_iomap_fault(struct vm_fault *vmf, enum page_entry_size pe_size,
1726 pfn_t *pfnp, int *iomap_errp, const struct iomap_ops *ops)
1727 {
1728 switch (pe_size) {
1729 case PE_SIZE_PTE:
1730 return dax_iomap_pte_fault(vmf, pfnp, iomap_errp, ops);
1731 case PE_SIZE_PMD:
1732 return dax_iomap_pmd_fault(vmf, pfnp, ops);
1733 default:
1734 return VM_FAULT_FALLBACK;
1735 }
1736 }
1737 EXPORT_SYMBOL_GPL(dax_iomap_fault);
1738
1739 /**
1740 * dax_insert_pfn_mkwrite - insert PTE or PMD entry into page tables
1741 * @vmf: The description of the fault
1742 * @pe_size: Size of entry to be inserted
1743 * @pfn: PFN to insert
1744 *
1745 * This function inserts writeable PTE or PMD entry into page tables for mmaped
1746 * DAX file. It takes care of marking corresponding radix tree entry as dirty
1747 * as well.
1748 */
1749 static vm_fault_t dax_insert_pfn_mkwrite(struct vm_fault *vmf,
1750 enum page_entry_size pe_size,
1751 pfn_t pfn)
1752 {
1753 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1754 void *entry, **slot;
1755 pgoff_t index = vmf->pgoff;
1756 vm_fault_t ret;
1757
1758 xa_lock_irq(&mapping->i_pages);
1759 entry = get_unlocked_mapping_entry(mapping, index, &slot);
1760 /* Did we race with someone splitting entry or so? */
1761 if (!entry ||
1762 (pe_size == PE_SIZE_PTE && !dax_is_pte_entry(entry)) ||
1763 (pe_size == PE_SIZE_PMD && !dax_is_pmd_entry(entry))) {
1764 put_unlocked_mapping_entry(mapping, index, entry);
1765 xa_unlock_irq(&mapping->i_pages);
1766 trace_dax_insert_pfn_mkwrite_no_entry(mapping->host, vmf,
1767 VM_FAULT_NOPAGE);
1768 return VM_FAULT_NOPAGE;
1769 }
1770 radix_tree_tag_set(&mapping->i_pages, index, PAGECACHE_TAG_DIRTY);
1771 entry = lock_slot(mapping, slot);
1772 xa_unlock_irq(&mapping->i_pages);
1773 switch (pe_size) {
1774 case PE_SIZE_PTE:
1775 ret = vmf_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn);
1776 break;
1777 #ifdef CONFIG_FS_DAX_PMD
1778 case PE_SIZE_PMD:
1779 ret = vmf_insert_pfn_pmd(vmf->vma, vmf->address, vmf->pmd,
1780 pfn, true);
1781 break;
1782 #endif
1783 default:
1784 ret = VM_FAULT_FALLBACK;
1785 }
1786 put_locked_mapping_entry(mapping, index);
1787 trace_dax_insert_pfn_mkwrite(mapping->host, vmf, ret);
1788 return ret;
1789 }
1790
1791 /**
1792 * dax_finish_sync_fault - finish synchronous page fault
1793 * @vmf: The description of the fault
1794 * @pe_size: Size of entry to be inserted
1795 * @pfn: PFN to insert
1796 *
1797 * This function ensures that the file range touched by the page fault is
1798 * stored persistently on the media and handles inserting of appropriate page
1799 * table entry.
1800 */
1801 vm_fault_t dax_finish_sync_fault(struct vm_fault *vmf,
1802 enum page_entry_size pe_size, pfn_t pfn)
1803 {
1804 int err;
1805 loff_t start = ((loff_t)vmf->pgoff) << PAGE_SHIFT;
1806 size_t len = 0;
1807
1808 if (pe_size == PE_SIZE_PTE)
1809 len = PAGE_SIZE;
1810 else if (pe_size == PE_SIZE_PMD)
1811 len = PMD_SIZE;
1812 else
1813 WARN_ON_ONCE(1);
1814 err = vfs_fsync_range(vmf->vma->vm_file, start, start + len - 1, 1);
1815 if (err)
1816 return VM_FAULT_SIGBUS;
1817 return dax_insert_pfn_mkwrite(vmf, pe_size, pfn);
1818 }
1819 EXPORT_SYMBOL_GPL(dax_finish_sync_fault);