]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/dax.c
Merge tag 'trace-v4.12-2' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt...
[mirror_ubuntu-artful-kernel.git] / fs / dax.c
1 /*
2 * fs/dax.c - Direct Access filesystem code
3 * Copyright (c) 2013-2014 Intel Corporation
4 * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
5 * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
6 *
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms and conditions of the GNU General Public License,
9 * version 2, as published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * more details.
15 */
16
17 #include <linux/atomic.h>
18 #include <linux/blkdev.h>
19 #include <linux/buffer_head.h>
20 #include <linux/dax.h>
21 #include <linux/fs.h>
22 #include <linux/genhd.h>
23 #include <linux/highmem.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm.h>
26 #include <linux/mutex.h>
27 #include <linux/pagevec.h>
28 #include <linux/pmem.h>
29 #include <linux/sched.h>
30 #include <linux/sched/signal.h>
31 #include <linux/uio.h>
32 #include <linux/vmstat.h>
33 #include <linux/pfn_t.h>
34 #include <linux/sizes.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/iomap.h>
37 #include "internal.h"
38
39 #define CREATE_TRACE_POINTS
40 #include <trace/events/fs_dax.h>
41
42 /* We choose 4096 entries - same as per-zone page wait tables */
43 #define DAX_WAIT_TABLE_BITS 12
44 #define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
45
46 static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES];
47
48 static int __init init_dax_wait_table(void)
49 {
50 int i;
51
52 for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++)
53 init_waitqueue_head(wait_table + i);
54 return 0;
55 }
56 fs_initcall(init_dax_wait_table);
57
58 static int dax_is_pmd_entry(void *entry)
59 {
60 return (unsigned long)entry & RADIX_DAX_PMD;
61 }
62
63 static int dax_is_pte_entry(void *entry)
64 {
65 return !((unsigned long)entry & RADIX_DAX_PMD);
66 }
67
68 static int dax_is_zero_entry(void *entry)
69 {
70 return (unsigned long)entry & RADIX_DAX_HZP;
71 }
72
73 static int dax_is_empty_entry(void *entry)
74 {
75 return (unsigned long)entry & RADIX_DAX_EMPTY;
76 }
77
78 /*
79 * DAX radix tree locking
80 */
81 struct exceptional_entry_key {
82 struct address_space *mapping;
83 pgoff_t entry_start;
84 };
85
86 struct wait_exceptional_entry_queue {
87 wait_queue_t wait;
88 struct exceptional_entry_key key;
89 };
90
91 static wait_queue_head_t *dax_entry_waitqueue(struct address_space *mapping,
92 pgoff_t index, void *entry, struct exceptional_entry_key *key)
93 {
94 unsigned long hash;
95
96 /*
97 * If 'entry' is a PMD, align the 'index' that we use for the wait
98 * queue to the start of that PMD. This ensures that all offsets in
99 * the range covered by the PMD map to the same bit lock.
100 */
101 if (dax_is_pmd_entry(entry))
102 index &= ~((1UL << (PMD_SHIFT - PAGE_SHIFT)) - 1);
103
104 key->mapping = mapping;
105 key->entry_start = index;
106
107 hash = hash_long((unsigned long)mapping ^ index, DAX_WAIT_TABLE_BITS);
108 return wait_table + hash;
109 }
110
111 static int wake_exceptional_entry_func(wait_queue_t *wait, unsigned int mode,
112 int sync, void *keyp)
113 {
114 struct exceptional_entry_key *key = keyp;
115 struct wait_exceptional_entry_queue *ewait =
116 container_of(wait, struct wait_exceptional_entry_queue, wait);
117
118 if (key->mapping != ewait->key.mapping ||
119 key->entry_start != ewait->key.entry_start)
120 return 0;
121 return autoremove_wake_function(wait, mode, sync, NULL);
122 }
123
124 /*
125 * Check whether the given slot is locked. The function must be called with
126 * mapping->tree_lock held
127 */
128 static inline int slot_locked(struct address_space *mapping, void **slot)
129 {
130 unsigned long entry = (unsigned long)
131 radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
132 return entry & RADIX_DAX_ENTRY_LOCK;
133 }
134
135 /*
136 * Mark the given slot is locked. The function must be called with
137 * mapping->tree_lock held
138 */
139 static inline void *lock_slot(struct address_space *mapping, void **slot)
140 {
141 unsigned long entry = (unsigned long)
142 radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
143
144 entry |= RADIX_DAX_ENTRY_LOCK;
145 radix_tree_replace_slot(&mapping->page_tree, slot, (void *)entry);
146 return (void *)entry;
147 }
148
149 /*
150 * Mark the given slot is unlocked. The function must be called with
151 * mapping->tree_lock held
152 */
153 static inline void *unlock_slot(struct address_space *mapping, void **slot)
154 {
155 unsigned long entry = (unsigned long)
156 radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
157
158 entry &= ~(unsigned long)RADIX_DAX_ENTRY_LOCK;
159 radix_tree_replace_slot(&mapping->page_tree, slot, (void *)entry);
160 return (void *)entry;
161 }
162
163 /*
164 * Lookup entry in radix tree, wait for it to become unlocked if it is
165 * exceptional entry and return it. The caller must call
166 * put_unlocked_mapping_entry() when he decided not to lock the entry or
167 * put_locked_mapping_entry() when he locked the entry and now wants to
168 * unlock it.
169 *
170 * The function must be called with mapping->tree_lock held.
171 */
172 static void *get_unlocked_mapping_entry(struct address_space *mapping,
173 pgoff_t index, void ***slotp)
174 {
175 void *entry, **slot;
176 struct wait_exceptional_entry_queue ewait;
177 wait_queue_head_t *wq;
178
179 init_wait(&ewait.wait);
180 ewait.wait.func = wake_exceptional_entry_func;
181
182 for (;;) {
183 entry = __radix_tree_lookup(&mapping->page_tree, index, NULL,
184 &slot);
185 if (!entry || !radix_tree_exceptional_entry(entry) ||
186 !slot_locked(mapping, slot)) {
187 if (slotp)
188 *slotp = slot;
189 return entry;
190 }
191
192 wq = dax_entry_waitqueue(mapping, index, entry, &ewait.key);
193 prepare_to_wait_exclusive(wq, &ewait.wait,
194 TASK_UNINTERRUPTIBLE);
195 spin_unlock_irq(&mapping->tree_lock);
196 schedule();
197 finish_wait(wq, &ewait.wait);
198 spin_lock_irq(&mapping->tree_lock);
199 }
200 }
201
202 static void dax_unlock_mapping_entry(struct address_space *mapping,
203 pgoff_t index)
204 {
205 void *entry, **slot;
206
207 spin_lock_irq(&mapping->tree_lock);
208 entry = __radix_tree_lookup(&mapping->page_tree, index, NULL, &slot);
209 if (WARN_ON_ONCE(!entry || !radix_tree_exceptional_entry(entry) ||
210 !slot_locked(mapping, slot))) {
211 spin_unlock_irq(&mapping->tree_lock);
212 return;
213 }
214 unlock_slot(mapping, slot);
215 spin_unlock_irq(&mapping->tree_lock);
216 dax_wake_mapping_entry_waiter(mapping, index, entry, false);
217 }
218
219 static void put_locked_mapping_entry(struct address_space *mapping,
220 pgoff_t index, void *entry)
221 {
222 if (!radix_tree_exceptional_entry(entry)) {
223 unlock_page(entry);
224 put_page(entry);
225 } else {
226 dax_unlock_mapping_entry(mapping, index);
227 }
228 }
229
230 /*
231 * Called when we are done with radix tree entry we looked up via
232 * get_unlocked_mapping_entry() and which we didn't lock in the end.
233 */
234 static void put_unlocked_mapping_entry(struct address_space *mapping,
235 pgoff_t index, void *entry)
236 {
237 if (!radix_tree_exceptional_entry(entry))
238 return;
239
240 /* We have to wake up next waiter for the radix tree entry lock */
241 dax_wake_mapping_entry_waiter(mapping, index, entry, false);
242 }
243
244 /*
245 * Find radix tree entry at given index. If it points to a page, return with
246 * the page locked. If it points to the exceptional entry, return with the
247 * radix tree entry locked. If the radix tree doesn't contain given index,
248 * create empty exceptional entry for the index and return with it locked.
249 *
250 * When requesting an entry with size RADIX_DAX_PMD, grab_mapping_entry() will
251 * either return that locked entry or will return an error. This error will
252 * happen if there are any 4k entries (either zero pages or DAX entries)
253 * within the 2MiB range that we are requesting.
254 *
255 * We always favor 4k entries over 2MiB entries. There isn't a flow where we
256 * evict 4k entries in order to 'upgrade' them to a 2MiB entry. A 2MiB
257 * insertion will fail if it finds any 4k entries already in the tree, and a
258 * 4k insertion will cause an existing 2MiB entry to be unmapped and
259 * downgraded to 4k entries. This happens for both 2MiB huge zero pages as
260 * well as 2MiB empty entries.
261 *
262 * The exception to this downgrade path is for 2MiB DAX PMD entries that have
263 * real storage backing them. We will leave these real 2MiB DAX entries in
264 * the tree, and PTE writes will simply dirty the entire 2MiB DAX entry.
265 *
266 * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
267 * persistent memory the benefit is doubtful. We can add that later if we can
268 * show it helps.
269 */
270 static void *grab_mapping_entry(struct address_space *mapping, pgoff_t index,
271 unsigned long size_flag)
272 {
273 bool pmd_downgrade = false; /* splitting 2MiB entry into 4k entries? */
274 void *entry, **slot;
275
276 restart:
277 spin_lock_irq(&mapping->tree_lock);
278 entry = get_unlocked_mapping_entry(mapping, index, &slot);
279
280 if (entry) {
281 if (size_flag & RADIX_DAX_PMD) {
282 if (!radix_tree_exceptional_entry(entry) ||
283 dax_is_pte_entry(entry)) {
284 put_unlocked_mapping_entry(mapping, index,
285 entry);
286 entry = ERR_PTR(-EEXIST);
287 goto out_unlock;
288 }
289 } else { /* trying to grab a PTE entry */
290 if (radix_tree_exceptional_entry(entry) &&
291 dax_is_pmd_entry(entry) &&
292 (dax_is_zero_entry(entry) ||
293 dax_is_empty_entry(entry))) {
294 pmd_downgrade = true;
295 }
296 }
297 }
298
299 /* No entry for given index? Make sure radix tree is big enough. */
300 if (!entry || pmd_downgrade) {
301 int err;
302
303 if (pmd_downgrade) {
304 /*
305 * Make sure 'entry' remains valid while we drop
306 * mapping->tree_lock.
307 */
308 entry = lock_slot(mapping, slot);
309 }
310
311 spin_unlock_irq(&mapping->tree_lock);
312 /*
313 * Besides huge zero pages the only other thing that gets
314 * downgraded are empty entries which don't need to be
315 * unmapped.
316 */
317 if (pmd_downgrade && dax_is_zero_entry(entry))
318 unmap_mapping_range(mapping,
319 (index << PAGE_SHIFT) & PMD_MASK, PMD_SIZE, 0);
320
321 err = radix_tree_preload(
322 mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM);
323 if (err) {
324 if (pmd_downgrade)
325 put_locked_mapping_entry(mapping, index, entry);
326 return ERR_PTR(err);
327 }
328 spin_lock_irq(&mapping->tree_lock);
329
330 if (!entry) {
331 /*
332 * We needed to drop the page_tree lock while calling
333 * radix_tree_preload() and we didn't have an entry to
334 * lock. See if another thread inserted an entry at
335 * our index during this time.
336 */
337 entry = __radix_tree_lookup(&mapping->page_tree, index,
338 NULL, &slot);
339 if (entry) {
340 radix_tree_preload_end();
341 spin_unlock_irq(&mapping->tree_lock);
342 goto restart;
343 }
344 }
345
346 if (pmd_downgrade) {
347 radix_tree_delete(&mapping->page_tree, index);
348 mapping->nrexceptional--;
349 dax_wake_mapping_entry_waiter(mapping, index, entry,
350 true);
351 }
352
353 entry = dax_radix_locked_entry(0, size_flag | RADIX_DAX_EMPTY);
354
355 err = __radix_tree_insert(&mapping->page_tree, index,
356 dax_radix_order(entry), entry);
357 radix_tree_preload_end();
358 if (err) {
359 spin_unlock_irq(&mapping->tree_lock);
360 /*
361 * Our insertion of a DAX entry failed, most likely
362 * because we were inserting a PMD entry and it
363 * collided with a PTE sized entry at a different
364 * index in the PMD range. We haven't inserted
365 * anything into the radix tree and have no waiters to
366 * wake.
367 */
368 return ERR_PTR(err);
369 }
370 /* Good, we have inserted empty locked entry into the tree. */
371 mapping->nrexceptional++;
372 spin_unlock_irq(&mapping->tree_lock);
373 return entry;
374 }
375 /* Normal page in radix tree? */
376 if (!radix_tree_exceptional_entry(entry)) {
377 struct page *page = entry;
378
379 get_page(page);
380 spin_unlock_irq(&mapping->tree_lock);
381 lock_page(page);
382 /* Page got truncated? Retry... */
383 if (unlikely(page->mapping != mapping)) {
384 unlock_page(page);
385 put_page(page);
386 goto restart;
387 }
388 return page;
389 }
390 entry = lock_slot(mapping, slot);
391 out_unlock:
392 spin_unlock_irq(&mapping->tree_lock);
393 return entry;
394 }
395
396 /*
397 * We do not necessarily hold the mapping->tree_lock when we call this
398 * function so it is possible that 'entry' is no longer a valid item in the
399 * radix tree. This is okay because all we really need to do is to find the
400 * correct waitqueue where tasks might be waiting for that old 'entry' and
401 * wake them.
402 */
403 void dax_wake_mapping_entry_waiter(struct address_space *mapping,
404 pgoff_t index, void *entry, bool wake_all)
405 {
406 struct exceptional_entry_key key;
407 wait_queue_head_t *wq;
408
409 wq = dax_entry_waitqueue(mapping, index, entry, &key);
410
411 /*
412 * Checking for locked entry and prepare_to_wait_exclusive() happens
413 * under mapping->tree_lock, ditto for entry handling in our callers.
414 * So at this point all tasks that could have seen our entry locked
415 * must be in the waitqueue and the following check will see them.
416 */
417 if (waitqueue_active(wq))
418 __wake_up(wq, TASK_NORMAL, wake_all ? 0 : 1, &key);
419 }
420
421 static int __dax_invalidate_mapping_entry(struct address_space *mapping,
422 pgoff_t index, bool trunc)
423 {
424 int ret = 0;
425 void *entry;
426 struct radix_tree_root *page_tree = &mapping->page_tree;
427
428 spin_lock_irq(&mapping->tree_lock);
429 entry = get_unlocked_mapping_entry(mapping, index, NULL);
430 if (!entry || !radix_tree_exceptional_entry(entry))
431 goto out;
432 if (!trunc &&
433 (radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_DIRTY) ||
434 radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_TOWRITE)))
435 goto out;
436 radix_tree_delete(page_tree, index);
437 mapping->nrexceptional--;
438 ret = 1;
439 out:
440 put_unlocked_mapping_entry(mapping, index, entry);
441 spin_unlock_irq(&mapping->tree_lock);
442 return ret;
443 }
444 /*
445 * Delete exceptional DAX entry at @index from @mapping. Wait for radix tree
446 * entry to get unlocked before deleting it.
447 */
448 int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index)
449 {
450 int ret = __dax_invalidate_mapping_entry(mapping, index, true);
451
452 /*
453 * This gets called from truncate / punch_hole path. As such, the caller
454 * must hold locks protecting against concurrent modifications of the
455 * radix tree (usually fs-private i_mmap_sem for writing). Since the
456 * caller has seen exceptional entry for this index, we better find it
457 * at that index as well...
458 */
459 WARN_ON_ONCE(!ret);
460 return ret;
461 }
462
463 /*
464 * Invalidate exceptional DAX entry if easily possible. This handles DAX
465 * entries for invalidate_inode_pages() so we evict the entry only if we can
466 * do so without blocking.
467 */
468 int dax_invalidate_mapping_entry(struct address_space *mapping, pgoff_t index)
469 {
470 int ret = 0;
471 void *entry, **slot;
472 struct radix_tree_root *page_tree = &mapping->page_tree;
473
474 spin_lock_irq(&mapping->tree_lock);
475 entry = __radix_tree_lookup(page_tree, index, NULL, &slot);
476 if (!entry || !radix_tree_exceptional_entry(entry) ||
477 slot_locked(mapping, slot))
478 goto out;
479 if (radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_DIRTY) ||
480 radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_TOWRITE))
481 goto out;
482 radix_tree_delete(page_tree, index);
483 mapping->nrexceptional--;
484 ret = 1;
485 out:
486 spin_unlock_irq(&mapping->tree_lock);
487 if (ret)
488 dax_wake_mapping_entry_waiter(mapping, index, entry, true);
489 return ret;
490 }
491
492 /*
493 * Invalidate exceptional DAX entry if it is clean.
494 */
495 int dax_invalidate_mapping_entry_sync(struct address_space *mapping,
496 pgoff_t index)
497 {
498 return __dax_invalidate_mapping_entry(mapping, index, false);
499 }
500
501 /*
502 * The user has performed a load from a hole in the file. Allocating
503 * a new page in the file would cause excessive storage usage for
504 * workloads with sparse files. We allocate a page cache page instead.
505 * We'll kick it out of the page cache if it's ever written to,
506 * otherwise it will simply fall out of the page cache under memory
507 * pressure without ever having been dirtied.
508 */
509 static int dax_load_hole(struct address_space *mapping, void **entry,
510 struct vm_fault *vmf)
511 {
512 struct inode *inode = mapping->host;
513 struct page *page;
514 int ret;
515
516 /* Hole page already exists? Return it... */
517 if (!radix_tree_exceptional_entry(*entry)) {
518 page = *entry;
519 goto finish_fault;
520 }
521
522 /* This will replace locked radix tree entry with a hole page */
523 page = find_or_create_page(mapping, vmf->pgoff,
524 vmf->gfp_mask | __GFP_ZERO);
525 if (!page) {
526 ret = VM_FAULT_OOM;
527 goto out;
528 }
529
530 finish_fault:
531 vmf->page = page;
532 ret = finish_fault(vmf);
533 vmf->page = NULL;
534 *entry = page;
535 if (!ret) {
536 /* Grab reference for PTE that is now referencing the page */
537 get_page(page);
538 ret = VM_FAULT_NOPAGE;
539 }
540 out:
541 trace_dax_load_hole(inode, vmf, ret);
542 return ret;
543 }
544
545 static int copy_user_dax(struct block_device *bdev, struct dax_device *dax_dev,
546 sector_t sector, size_t size, struct page *to,
547 unsigned long vaddr)
548 {
549 void *vto, *kaddr;
550 pgoff_t pgoff;
551 pfn_t pfn;
552 long rc;
553 int id;
554
555 rc = bdev_dax_pgoff(bdev, sector, size, &pgoff);
556 if (rc)
557 return rc;
558
559 id = dax_read_lock();
560 rc = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size), &kaddr, &pfn);
561 if (rc < 0) {
562 dax_read_unlock(id);
563 return rc;
564 }
565 vto = kmap_atomic(to);
566 copy_user_page(vto, (void __force *)kaddr, vaddr, to);
567 kunmap_atomic(vto);
568 dax_read_unlock(id);
569 return 0;
570 }
571
572 /*
573 * By this point grab_mapping_entry() has ensured that we have a locked entry
574 * of the appropriate size so we don't have to worry about downgrading PMDs to
575 * PTEs. If we happen to be trying to insert a PTE and there is a PMD
576 * already in the tree, we will skip the insertion and just dirty the PMD as
577 * appropriate.
578 */
579 static void *dax_insert_mapping_entry(struct address_space *mapping,
580 struct vm_fault *vmf,
581 void *entry, sector_t sector,
582 unsigned long flags)
583 {
584 struct radix_tree_root *page_tree = &mapping->page_tree;
585 int error = 0;
586 bool hole_fill = false;
587 void *new_entry;
588 pgoff_t index = vmf->pgoff;
589
590 if (vmf->flags & FAULT_FLAG_WRITE)
591 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
592
593 /* Replacing hole page with block mapping? */
594 if (!radix_tree_exceptional_entry(entry)) {
595 hole_fill = true;
596 /*
597 * Unmap the page now before we remove it from page cache below.
598 * The page is locked so it cannot be faulted in again.
599 */
600 unmap_mapping_range(mapping, vmf->pgoff << PAGE_SHIFT,
601 PAGE_SIZE, 0);
602 error = radix_tree_preload(vmf->gfp_mask & ~__GFP_HIGHMEM);
603 if (error)
604 return ERR_PTR(error);
605 } else if (dax_is_zero_entry(entry) && !(flags & RADIX_DAX_HZP)) {
606 /* replacing huge zero page with PMD block mapping */
607 unmap_mapping_range(mapping,
608 (vmf->pgoff << PAGE_SHIFT) & PMD_MASK, PMD_SIZE, 0);
609 }
610
611 spin_lock_irq(&mapping->tree_lock);
612 new_entry = dax_radix_locked_entry(sector, flags);
613
614 if (hole_fill) {
615 __delete_from_page_cache(entry, NULL);
616 /* Drop pagecache reference */
617 put_page(entry);
618 error = __radix_tree_insert(page_tree, index,
619 dax_radix_order(new_entry), new_entry);
620 if (error) {
621 new_entry = ERR_PTR(error);
622 goto unlock;
623 }
624 mapping->nrexceptional++;
625 } else if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
626 /*
627 * Only swap our new entry into the radix tree if the current
628 * entry is a zero page or an empty entry. If a normal PTE or
629 * PMD entry is already in the tree, we leave it alone. This
630 * means that if we are trying to insert a PTE and the
631 * existing entry is a PMD, we will just leave the PMD in the
632 * tree and dirty it if necessary.
633 */
634 struct radix_tree_node *node;
635 void **slot;
636 void *ret;
637
638 ret = __radix_tree_lookup(page_tree, index, &node, &slot);
639 WARN_ON_ONCE(ret != entry);
640 __radix_tree_replace(page_tree, node, slot,
641 new_entry, NULL, NULL);
642 }
643 if (vmf->flags & FAULT_FLAG_WRITE)
644 radix_tree_tag_set(page_tree, index, PAGECACHE_TAG_DIRTY);
645 unlock:
646 spin_unlock_irq(&mapping->tree_lock);
647 if (hole_fill) {
648 radix_tree_preload_end();
649 /*
650 * We don't need hole page anymore, it has been replaced with
651 * locked radix tree entry now.
652 */
653 if (mapping->a_ops->freepage)
654 mapping->a_ops->freepage(entry);
655 unlock_page(entry);
656 put_page(entry);
657 }
658 return new_entry;
659 }
660
661 static inline unsigned long
662 pgoff_address(pgoff_t pgoff, struct vm_area_struct *vma)
663 {
664 unsigned long address;
665
666 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
667 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
668 return address;
669 }
670
671 /* Walk all mappings of a given index of a file and writeprotect them */
672 static void dax_mapping_entry_mkclean(struct address_space *mapping,
673 pgoff_t index, unsigned long pfn)
674 {
675 struct vm_area_struct *vma;
676 pte_t pte, *ptep = NULL;
677 pmd_t *pmdp = NULL;
678 spinlock_t *ptl;
679 bool changed;
680
681 i_mmap_lock_read(mapping);
682 vma_interval_tree_foreach(vma, &mapping->i_mmap, index, index) {
683 unsigned long address;
684
685 cond_resched();
686
687 if (!(vma->vm_flags & VM_SHARED))
688 continue;
689
690 address = pgoff_address(index, vma);
691 changed = false;
692 if (follow_pte_pmd(vma->vm_mm, address, &ptep, &pmdp, &ptl))
693 continue;
694
695 if (pmdp) {
696 #ifdef CONFIG_FS_DAX_PMD
697 pmd_t pmd;
698
699 if (pfn != pmd_pfn(*pmdp))
700 goto unlock_pmd;
701 if (!pmd_dirty(*pmdp) && !pmd_write(*pmdp))
702 goto unlock_pmd;
703
704 flush_cache_page(vma, address, pfn);
705 pmd = pmdp_huge_clear_flush(vma, address, pmdp);
706 pmd = pmd_wrprotect(pmd);
707 pmd = pmd_mkclean(pmd);
708 set_pmd_at(vma->vm_mm, address, pmdp, pmd);
709 changed = true;
710 unlock_pmd:
711 spin_unlock(ptl);
712 #endif
713 } else {
714 if (pfn != pte_pfn(*ptep))
715 goto unlock_pte;
716 if (!pte_dirty(*ptep) && !pte_write(*ptep))
717 goto unlock_pte;
718
719 flush_cache_page(vma, address, pfn);
720 pte = ptep_clear_flush(vma, address, ptep);
721 pte = pte_wrprotect(pte);
722 pte = pte_mkclean(pte);
723 set_pte_at(vma->vm_mm, address, ptep, pte);
724 changed = true;
725 unlock_pte:
726 pte_unmap_unlock(ptep, ptl);
727 }
728
729 if (changed)
730 mmu_notifier_invalidate_page(vma->vm_mm, address);
731 }
732 i_mmap_unlock_read(mapping);
733 }
734
735 static int dax_writeback_one(struct block_device *bdev,
736 struct dax_device *dax_dev, struct address_space *mapping,
737 pgoff_t index, void *entry)
738 {
739 struct radix_tree_root *page_tree = &mapping->page_tree;
740 void *entry2, **slot, *kaddr;
741 long ret = 0, id;
742 sector_t sector;
743 pgoff_t pgoff;
744 size_t size;
745 pfn_t pfn;
746
747 /*
748 * A page got tagged dirty in DAX mapping? Something is seriously
749 * wrong.
750 */
751 if (WARN_ON(!radix_tree_exceptional_entry(entry)))
752 return -EIO;
753
754 spin_lock_irq(&mapping->tree_lock);
755 entry2 = get_unlocked_mapping_entry(mapping, index, &slot);
756 /* Entry got punched out / reallocated? */
757 if (!entry2 || !radix_tree_exceptional_entry(entry2))
758 goto put_unlocked;
759 /*
760 * Entry got reallocated elsewhere? No need to writeback. We have to
761 * compare sectors as we must not bail out due to difference in lockbit
762 * or entry type.
763 */
764 if (dax_radix_sector(entry2) != dax_radix_sector(entry))
765 goto put_unlocked;
766 if (WARN_ON_ONCE(dax_is_empty_entry(entry) ||
767 dax_is_zero_entry(entry))) {
768 ret = -EIO;
769 goto put_unlocked;
770 }
771
772 /* Another fsync thread may have already written back this entry */
773 if (!radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_TOWRITE))
774 goto put_unlocked;
775 /* Lock the entry to serialize with page faults */
776 entry = lock_slot(mapping, slot);
777 /*
778 * We can clear the tag now but we have to be careful so that concurrent
779 * dax_writeback_one() calls for the same index cannot finish before we
780 * actually flush the caches. This is achieved as the calls will look
781 * at the entry only under tree_lock and once they do that they will
782 * see the entry locked and wait for it to unlock.
783 */
784 radix_tree_tag_clear(page_tree, index, PAGECACHE_TAG_TOWRITE);
785 spin_unlock_irq(&mapping->tree_lock);
786
787 /*
788 * Even if dax_writeback_mapping_range() was given a wbc->range_start
789 * in the middle of a PMD, the 'index' we are given will be aligned to
790 * the start index of the PMD, as will the sector we pull from
791 * 'entry'. This allows us to flush for PMD_SIZE and not have to
792 * worry about partial PMD writebacks.
793 */
794 sector = dax_radix_sector(entry);
795 size = PAGE_SIZE << dax_radix_order(entry);
796
797 id = dax_read_lock();
798 ret = bdev_dax_pgoff(bdev, sector, size, &pgoff);
799 if (ret)
800 goto dax_unlock;
801
802 /*
803 * dax_direct_access() may sleep, so cannot hold tree_lock over
804 * its invocation.
805 */
806 ret = dax_direct_access(dax_dev, pgoff, size / PAGE_SIZE, &kaddr, &pfn);
807 if (ret < 0)
808 goto dax_unlock;
809
810 if (WARN_ON_ONCE(ret < size / PAGE_SIZE)) {
811 ret = -EIO;
812 goto dax_unlock;
813 }
814
815 dax_mapping_entry_mkclean(mapping, index, pfn_t_to_pfn(pfn));
816 wb_cache_pmem(kaddr, size);
817 /*
818 * After we have flushed the cache, we can clear the dirty tag. There
819 * cannot be new dirty data in the pfn after the flush has completed as
820 * the pfn mappings are writeprotected and fault waits for mapping
821 * entry lock.
822 */
823 spin_lock_irq(&mapping->tree_lock);
824 radix_tree_tag_clear(page_tree, index, PAGECACHE_TAG_DIRTY);
825 spin_unlock_irq(&mapping->tree_lock);
826 trace_dax_writeback_one(mapping->host, index, size >> PAGE_SHIFT);
827 dax_unlock:
828 dax_read_unlock(id);
829 put_locked_mapping_entry(mapping, index, entry);
830 return ret;
831
832 put_unlocked:
833 put_unlocked_mapping_entry(mapping, index, entry2);
834 spin_unlock_irq(&mapping->tree_lock);
835 return ret;
836 }
837
838 /*
839 * Flush the mapping to the persistent domain within the byte range of [start,
840 * end]. This is required by data integrity operations to ensure file data is
841 * on persistent storage prior to completion of the operation.
842 */
843 int dax_writeback_mapping_range(struct address_space *mapping,
844 struct block_device *bdev, struct writeback_control *wbc)
845 {
846 struct inode *inode = mapping->host;
847 pgoff_t start_index, end_index;
848 pgoff_t indices[PAGEVEC_SIZE];
849 struct dax_device *dax_dev;
850 struct pagevec pvec;
851 bool done = false;
852 int i, ret = 0;
853
854 if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
855 return -EIO;
856
857 if (!mapping->nrexceptional || wbc->sync_mode != WB_SYNC_ALL)
858 return 0;
859
860 dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
861 if (!dax_dev)
862 return -EIO;
863
864 start_index = wbc->range_start >> PAGE_SHIFT;
865 end_index = wbc->range_end >> PAGE_SHIFT;
866
867 trace_dax_writeback_range(inode, start_index, end_index);
868
869 tag_pages_for_writeback(mapping, start_index, end_index);
870
871 pagevec_init(&pvec, 0);
872 while (!done) {
873 pvec.nr = find_get_entries_tag(mapping, start_index,
874 PAGECACHE_TAG_TOWRITE, PAGEVEC_SIZE,
875 pvec.pages, indices);
876
877 if (pvec.nr == 0)
878 break;
879
880 for (i = 0; i < pvec.nr; i++) {
881 if (indices[i] > end_index) {
882 done = true;
883 break;
884 }
885
886 ret = dax_writeback_one(bdev, dax_dev, mapping,
887 indices[i], pvec.pages[i]);
888 if (ret < 0)
889 goto out;
890 }
891 }
892 out:
893 put_dax(dax_dev);
894 trace_dax_writeback_range_done(inode, start_index, end_index);
895 return (ret < 0 ? ret : 0);
896 }
897 EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
898
899 static int dax_insert_mapping(struct address_space *mapping,
900 struct block_device *bdev, struct dax_device *dax_dev,
901 sector_t sector, size_t size, void **entryp,
902 struct vm_area_struct *vma, struct vm_fault *vmf)
903 {
904 unsigned long vaddr = vmf->address;
905 void *entry = *entryp;
906 void *ret, *kaddr;
907 pgoff_t pgoff;
908 int id, rc;
909 pfn_t pfn;
910
911 rc = bdev_dax_pgoff(bdev, sector, size, &pgoff);
912 if (rc)
913 return rc;
914
915 id = dax_read_lock();
916 rc = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size), &kaddr, &pfn);
917 if (rc < 0) {
918 dax_read_unlock(id);
919 return rc;
920 }
921 dax_read_unlock(id);
922
923 ret = dax_insert_mapping_entry(mapping, vmf, entry, sector, 0);
924 if (IS_ERR(ret))
925 return PTR_ERR(ret);
926 *entryp = ret;
927
928 trace_dax_insert_mapping(mapping->host, vmf, ret);
929 return vm_insert_mixed(vma, vaddr, pfn);
930 }
931
932 /**
933 * dax_pfn_mkwrite - handle first write to DAX page
934 * @vmf: The description of the fault
935 */
936 int dax_pfn_mkwrite(struct vm_fault *vmf)
937 {
938 struct file *file = vmf->vma->vm_file;
939 struct address_space *mapping = file->f_mapping;
940 struct inode *inode = mapping->host;
941 void *entry, **slot;
942 pgoff_t index = vmf->pgoff;
943
944 spin_lock_irq(&mapping->tree_lock);
945 entry = get_unlocked_mapping_entry(mapping, index, &slot);
946 if (!entry || !radix_tree_exceptional_entry(entry)) {
947 if (entry)
948 put_unlocked_mapping_entry(mapping, index, entry);
949 spin_unlock_irq(&mapping->tree_lock);
950 trace_dax_pfn_mkwrite_no_entry(inode, vmf, VM_FAULT_NOPAGE);
951 return VM_FAULT_NOPAGE;
952 }
953 radix_tree_tag_set(&mapping->page_tree, index, PAGECACHE_TAG_DIRTY);
954 entry = lock_slot(mapping, slot);
955 spin_unlock_irq(&mapping->tree_lock);
956 /*
957 * If we race with somebody updating the PTE and finish_mkwrite_fault()
958 * fails, we don't care. We need to return VM_FAULT_NOPAGE and retry
959 * the fault in either case.
960 */
961 finish_mkwrite_fault(vmf);
962 put_locked_mapping_entry(mapping, index, entry);
963 trace_dax_pfn_mkwrite(inode, vmf, VM_FAULT_NOPAGE);
964 return VM_FAULT_NOPAGE;
965 }
966 EXPORT_SYMBOL_GPL(dax_pfn_mkwrite);
967
968 static bool dax_range_is_aligned(struct block_device *bdev,
969 unsigned int offset, unsigned int length)
970 {
971 unsigned short sector_size = bdev_logical_block_size(bdev);
972
973 if (!IS_ALIGNED(offset, sector_size))
974 return false;
975 if (!IS_ALIGNED(length, sector_size))
976 return false;
977
978 return true;
979 }
980
981 int __dax_zero_page_range(struct block_device *bdev,
982 struct dax_device *dax_dev, sector_t sector,
983 unsigned int offset, unsigned int size)
984 {
985 if (dax_range_is_aligned(bdev, offset, size)) {
986 sector_t start_sector = sector + (offset >> 9);
987
988 return blkdev_issue_zeroout(bdev, start_sector,
989 size >> 9, GFP_NOFS, 0);
990 } else {
991 pgoff_t pgoff;
992 long rc, id;
993 void *kaddr;
994 pfn_t pfn;
995
996 rc = bdev_dax_pgoff(bdev, sector, size, &pgoff);
997 if (rc)
998 return rc;
999
1000 id = dax_read_lock();
1001 rc = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size), &kaddr,
1002 &pfn);
1003 if (rc < 0) {
1004 dax_read_unlock(id);
1005 return rc;
1006 }
1007 clear_pmem(kaddr + offset, size);
1008 dax_read_unlock(id);
1009 }
1010 return 0;
1011 }
1012 EXPORT_SYMBOL_GPL(__dax_zero_page_range);
1013
1014 static sector_t dax_iomap_sector(struct iomap *iomap, loff_t pos)
1015 {
1016 return iomap->blkno + (((pos & PAGE_MASK) - iomap->offset) >> 9);
1017 }
1018
1019 static loff_t
1020 dax_iomap_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
1021 struct iomap *iomap)
1022 {
1023 struct block_device *bdev = iomap->bdev;
1024 struct dax_device *dax_dev = iomap->dax_dev;
1025 struct iov_iter *iter = data;
1026 loff_t end = pos + length, done = 0;
1027 ssize_t ret = 0;
1028 int id;
1029
1030 if (iov_iter_rw(iter) == READ) {
1031 end = min(end, i_size_read(inode));
1032 if (pos >= end)
1033 return 0;
1034
1035 if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
1036 return iov_iter_zero(min(length, end - pos), iter);
1037 }
1038
1039 if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED))
1040 return -EIO;
1041
1042 /*
1043 * Write can allocate block for an area which has a hole page mapped
1044 * into page tables. We have to tear down these mappings so that data
1045 * written by write(2) is visible in mmap.
1046 */
1047 if ((iomap->flags & IOMAP_F_NEW) && inode->i_mapping->nrpages) {
1048 invalidate_inode_pages2_range(inode->i_mapping,
1049 pos >> PAGE_SHIFT,
1050 (end - 1) >> PAGE_SHIFT);
1051 }
1052
1053 id = dax_read_lock();
1054 while (pos < end) {
1055 unsigned offset = pos & (PAGE_SIZE - 1);
1056 const size_t size = ALIGN(length + offset, PAGE_SIZE);
1057 const sector_t sector = dax_iomap_sector(iomap, pos);
1058 ssize_t map_len;
1059 pgoff_t pgoff;
1060 void *kaddr;
1061 pfn_t pfn;
1062
1063 if (fatal_signal_pending(current)) {
1064 ret = -EINTR;
1065 break;
1066 }
1067
1068 ret = bdev_dax_pgoff(bdev, sector, size, &pgoff);
1069 if (ret)
1070 break;
1071
1072 map_len = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size),
1073 &kaddr, &pfn);
1074 if (map_len < 0) {
1075 ret = map_len;
1076 break;
1077 }
1078
1079 map_len = PFN_PHYS(map_len);
1080 kaddr += offset;
1081 map_len -= offset;
1082 if (map_len > end - pos)
1083 map_len = end - pos;
1084
1085 if (iov_iter_rw(iter) == WRITE)
1086 map_len = copy_from_iter_pmem(kaddr, map_len, iter);
1087 else
1088 map_len = copy_to_iter(kaddr, map_len, iter);
1089 if (map_len <= 0) {
1090 ret = map_len ? map_len : -EFAULT;
1091 break;
1092 }
1093
1094 pos += map_len;
1095 length -= map_len;
1096 done += map_len;
1097 }
1098 dax_read_unlock(id);
1099
1100 return done ? done : ret;
1101 }
1102
1103 /**
1104 * dax_iomap_rw - Perform I/O to a DAX file
1105 * @iocb: The control block for this I/O
1106 * @iter: The addresses to do I/O from or to
1107 * @ops: iomap ops passed from the file system
1108 *
1109 * This function performs read and write operations to directly mapped
1110 * persistent memory. The callers needs to take care of read/write exclusion
1111 * and evicting any page cache pages in the region under I/O.
1112 */
1113 ssize_t
1114 dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter,
1115 const struct iomap_ops *ops)
1116 {
1117 struct address_space *mapping = iocb->ki_filp->f_mapping;
1118 struct inode *inode = mapping->host;
1119 loff_t pos = iocb->ki_pos, ret = 0, done = 0;
1120 unsigned flags = 0;
1121
1122 if (iov_iter_rw(iter) == WRITE) {
1123 lockdep_assert_held_exclusive(&inode->i_rwsem);
1124 flags |= IOMAP_WRITE;
1125 } else {
1126 lockdep_assert_held(&inode->i_rwsem);
1127 }
1128
1129 while (iov_iter_count(iter)) {
1130 ret = iomap_apply(inode, pos, iov_iter_count(iter), flags, ops,
1131 iter, dax_iomap_actor);
1132 if (ret <= 0)
1133 break;
1134 pos += ret;
1135 done += ret;
1136 }
1137
1138 iocb->ki_pos += done;
1139 return done ? done : ret;
1140 }
1141 EXPORT_SYMBOL_GPL(dax_iomap_rw);
1142
1143 static int dax_fault_return(int error)
1144 {
1145 if (error == 0)
1146 return VM_FAULT_NOPAGE;
1147 if (error == -ENOMEM)
1148 return VM_FAULT_OOM;
1149 return VM_FAULT_SIGBUS;
1150 }
1151
1152 static int dax_iomap_pte_fault(struct vm_fault *vmf,
1153 const struct iomap_ops *ops)
1154 {
1155 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1156 struct inode *inode = mapping->host;
1157 unsigned long vaddr = vmf->address;
1158 loff_t pos = (loff_t)vmf->pgoff << PAGE_SHIFT;
1159 sector_t sector;
1160 struct iomap iomap = { 0 };
1161 unsigned flags = IOMAP_FAULT;
1162 int error, major = 0;
1163 int vmf_ret = 0;
1164 void *entry;
1165
1166 trace_dax_pte_fault(inode, vmf, vmf_ret);
1167 /*
1168 * Check whether offset isn't beyond end of file now. Caller is supposed
1169 * to hold locks serializing us with truncate / punch hole so this is
1170 * a reliable test.
1171 */
1172 if (pos >= i_size_read(inode)) {
1173 vmf_ret = VM_FAULT_SIGBUS;
1174 goto out;
1175 }
1176
1177 if ((vmf->flags & FAULT_FLAG_WRITE) && !vmf->cow_page)
1178 flags |= IOMAP_WRITE;
1179
1180 /*
1181 * Note that we don't bother to use iomap_apply here: DAX required
1182 * the file system block size to be equal the page size, which means
1183 * that we never have to deal with more than a single extent here.
1184 */
1185 error = ops->iomap_begin(inode, pos, PAGE_SIZE, flags, &iomap);
1186 if (error) {
1187 vmf_ret = dax_fault_return(error);
1188 goto out;
1189 }
1190 if (WARN_ON_ONCE(iomap.offset + iomap.length < pos + PAGE_SIZE)) {
1191 vmf_ret = dax_fault_return(-EIO); /* fs corruption? */
1192 goto finish_iomap;
1193 }
1194
1195 entry = grab_mapping_entry(mapping, vmf->pgoff, 0);
1196 if (IS_ERR(entry)) {
1197 vmf_ret = dax_fault_return(PTR_ERR(entry));
1198 goto finish_iomap;
1199 }
1200
1201 sector = dax_iomap_sector(&iomap, pos);
1202
1203 if (vmf->cow_page) {
1204 switch (iomap.type) {
1205 case IOMAP_HOLE:
1206 case IOMAP_UNWRITTEN:
1207 clear_user_highpage(vmf->cow_page, vaddr);
1208 break;
1209 case IOMAP_MAPPED:
1210 error = copy_user_dax(iomap.bdev, iomap.dax_dev,
1211 sector, PAGE_SIZE, vmf->cow_page, vaddr);
1212 break;
1213 default:
1214 WARN_ON_ONCE(1);
1215 error = -EIO;
1216 break;
1217 }
1218
1219 if (error)
1220 goto error_unlock_entry;
1221
1222 __SetPageUptodate(vmf->cow_page);
1223 vmf_ret = finish_fault(vmf);
1224 if (!vmf_ret)
1225 vmf_ret = VM_FAULT_DONE_COW;
1226 goto unlock_entry;
1227 }
1228
1229 switch (iomap.type) {
1230 case IOMAP_MAPPED:
1231 if (iomap.flags & IOMAP_F_NEW) {
1232 count_vm_event(PGMAJFAULT);
1233 mem_cgroup_count_vm_event(vmf->vma->vm_mm, PGMAJFAULT);
1234 major = VM_FAULT_MAJOR;
1235 }
1236 error = dax_insert_mapping(mapping, iomap.bdev, iomap.dax_dev,
1237 sector, PAGE_SIZE, &entry, vmf->vma, vmf);
1238 /* -EBUSY is fine, somebody else faulted on the same PTE */
1239 if (error == -EBUSY)
1240 error = 0;
1241 break;
1242 case IOMAP_UNWRITTEN:
1243 case IOMAP_HOLE:
1244 if (!(vmf->flags & FAULT_FLAG_WRITE)) {
1245 vmf_ret = dax_load_hole(mapping, &entry, vmf);
1246 goto unlock_entry;
1247 }
1248 /*FALLTHRU*/
1249 default:
1250 WARN_ON_ONCE(1);
1251 error = -EIO;
1252 break;
1253 }
1254
1255 error_unlock_entry:
1256 vmf_ret = dax_fault_return(error) | major;
1257 unlock_entry:
1258 put_locked_mapping_entry(mapping, vmf->pgoff, entry);
1259 finish_iomap:
1260 if (ops->iomap_end) {
1261 int copied = PAGE_SIZE;
1262
1263 if (vmf_ret & VM_FAULT_ERROR)
1264 copied = 0;
1265 /*
1266 * The fault is done by now and there's no way back (other
1267 * thread may be already happily using PTE we have installed).
1268 * Just ignore error from ->iomap_end since we cannot do much
1269 * with it.
1270 */
1271 ops->iomap_end(inode, pos, PAGE_SIZE, copied, flags, &iomap);
1272 }
1273 out:
1274 trace_dax_pte_fault_done(inode, vmf, vmf_ret);
1275 return vmf_ret;
1276 }
1277
1278 #ifdef CONFIG_FS_DAX_PMD
1279 /*
1280 * The 'colour' (ie low bits) within a PMD of a page offset. This comes up
1281 * more often than one might expect in the below functions.
1282 */
1283 #define PG_PMD_COLOUR ((PMD_SIZE >> PAGE_SHIFT) - 1)
1284
1285 static int dax_pmd_insert_mapping(struct vm_fault *vmf, struct iomap *iomap,
1286 loff_t pos, void **entryp)
1287 {
1288 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1289 const sector_t sector = dax_iomap_sector(iomap, pos);
1290 struct dax_device *dax_dev = iomap->dax_dev;
1291 struct block_device *bdev = iomap->bdev;
1292 struct inode *inode = mapping->host;
1293 const size_t size = PMD_SIZE;
1294 void *ret = NULL, *kaddr;
1295 long length = 0;
1296 pgoff_t pgoff;
1297 pfn_t pfn;
1298 int id;
1299
1300 if (bdev_dax_pgoff(bdev, sector, size, &pgoff) != 0)
1301 goto fallback;
1302
1303 id = dax_read_lock();
1304 length = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size), &kaddr, &pfn);
1305 if (length < 0)
1306 goto unlock_fallback;
1307 length = PFN_PHYS(length);
1308
1309 if (length < size)
1310 goto unlock_fallback;
1311 if (pfn_t_to_pfn(pfn) & PG_PMD_COLOUR)
1312 goto unlock_fallback;
1313 if (!pfn_t_devmap(pfn))
1314 goto unlock_fallback;
1315 dax_read_unlock(id);
1316
1317 ret = dax_insert_mapping_entry(mapping, vmf, *entryp, sector,
1318 RADIX_DAX_PMD);
1319 if (IS_ERR(ret))
1320 goto fallback;
1321 *entryp = ret;
1322
1323 trace_dax_pmd_insert_mapping(inode, vmf, length, pfn, ret);
1324 return vmf_insert_pfn_pmd(vmf->vma, vmf->address, vmf->pmd,
1325 pfn, vmf->flags & FAULT_FLAG_WRITE);
1326
1327 unlock_fallback:
1328 dax_read_unlock(id);
1329 fallback:
1330 trace_dax_pmd_insert_mapping_fallback(inode, vmf, length, pfn, ret);
1331 return VM_FAULT_FALLBACK;
1332 }
1333
1334 static int dax_pmd_load_hole(struct vm_fault *vmf, struct iomap *iomap,
1335 void **entryp)
1336 {
1337 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1338 unsigned long pmd_addr = vmf->address & PMD_MASK;
1339 struct inode *inode = mapping->host;
1340 struct page *zero_page;
1341 void *ret = NULL;
1342 spinlock_t *ptl;
1343 pmd_t pmd_entry;
1344
1345 zero_page = mm_get_huge_zero_page(vmf->vma->vm_mm);
1346
1347 if (unlikely(!zero_page))
1348 goto fallback;
1349
1350 ret = dax_insert_mapping_entry(mapping, vmf, *entryp, 0,
1351 RADIX_DAX_PMD | RADIX_DAX_HZP);
1352 if (IS_ERR(ret))
1353 goto fallback;
1354 *entryp = ret;
1355
1356 ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1357 if (!pmd_none(*(vmf->pmd))) {
1358 spin_unlock(ptl);
1359 goto fallback;
1360 }
1361
1362 pmd_entry = mk_pmd(zero_page, vmf->vma->vm_page_prot);
1363 pmd_entry = pmd_mkhuge(pmd_entry);
1364 set_pmd_at(vmf->vma->vm_mm, pmd_addr, vmf->pmd, pmd_entry);
1365 spin_unlock(ptl);
1366 trace_dax_pmd_load_hole(inode, vmf, zero_page, ret);
1367 return VM_FAULT_NOPAGE;
1368
1369 fallback:
1370 trace_dax_pmd_load_hole_fallback(inode, vmf, zero_page, ret);
1371 return VM_FAULT_FALLBACK;
1372 }
1373
1374 static int dax_iomap_pmd_fault(struct vm_fault *vmf,
1375 const struct iomap_ops *ops)
1376 {
1377 struct vm_area_struct *vma = vmf->vma;
1378 struct address_space *mapping = vma->vm_file->f_mapping;
1379 unsigned long pmd_addr = vmf->address & PMD_MASK;
1380 bool write = vmf->flags & FAULT_FLAG_WRITE;
1381 unsigned int iomap_flags = (write ? IOMAP_WRITE : 0) | IOMAP_FAULT;
1382 struct inode *inode = mapping->host;
1383 int result = VM_FAULT_FALLBACK;
1384 struct iomap iomap = { 0 };
1385 pgoff_t max_pgoff, pgoff;
1386 void *entry;
1387 loff_t pos;
1388 int error;
1389
1390 /*
1391 * Check whether offset isn't beyond end of file now. Caller is
1392 * supposed to hold locks serializing us with truncate / punch hole so
1393 * this is a reliable test.
1394 */
1395 pgoff = linear_page_index(vma, pmd_addr);
1396 max_pgoff = (i_size_read(inode) - 1) >> PAGE_SHIFT;
1397
1398 trace_dax_pmd_fault(inode, vmf, max_pgoff, 0);
1399
1400 /* Fall back to PTEs if we're going to COW */
1401 if (write && !(vma->vm_flags & VM_SHARED))
1402 goto fallback;
1403
1404 /* If the PMD would extend outside the VMA */
1405 if (pmd_addr < vma->vm_start)
1406 goto fallback;
1407 if ((pmd_addr + PMD_SIZE) > vma->vm_end)
1408 goto fallback;
1409
1410 if (pgoff > max_pgoff) {
1411 result = VM_FAULT_SIGBUS;
1412 goto out;
1413 }
1414
1415 /* If the PMD would extend beyond the file size */
1416 if ((pgoff | PG_PMD_COLOUR) > max_pgoff)
1417 goto fallback;
1418
1419 /*
1420 * Note that we don't use iomap_apply here. We aren't doing I/O, only
1421 * setting up a mapping, so really we're using iomap_begin() as a way
1422 * to look up our filesystem block.
1423 */
1424 pos = (loff_t)pgoff << PAGE_SHIFT;
1425 error = ops->iomap_begin(inode, pos, PMD_SIZE, iomap_flags, &iomap);
1426 if (error)
1427 goto fallback;
1428
1429 if (iomap.offset + iomap.length < pos + PMD_SIZE)
1430 goto finish_iomap;
1431
1432 /*
1433 * grab_mapping_entry() will make sure we get a 2M empty entry, a DAX
1434 * PMD or a HZP entry. If it can't (because a 4k page is already in
1435 * the tree, for instance), it will return -EEXIST and we just fall
1436 * back to 4k entries.
1437 */
1438 entry = grab_mapping_entry(mapping, pgoff, RADIX_DAX_PMD);
1439 if (IS_ERR(entry))
1440 goto finish_iomap;
1441
1442 switch (iomap.type) {
1443 case IOMAP_MAPPED:
1444 result = dax_pmd_insert_mapping(vmf, &iomap, pos, &entry);
1445 break;
1446 case IOMAP_UNWRITTEN:
1447 case IOMAP_HOLE:
1448 if (WARN_ON_ONCE(write))
1449 goto unlock_entry;
1450 result = dax_pmd_load_hole(vmf, &iomap, &entry);
1451 break;
1452 default:
1453 WARN_ON_ONCE(1);
1454 break;
1455 }
1456
1457 unlock_entry:
1458 put_locked_mapping_entry(mapping, pgoff, entry);
1459 finish_iomap:
1460 if (ops->iomap_end) {
1461 int copied = PMD_SIZE;
1462
1463 if (result == VM_FAULT_FALLBACK)
1464 copied = 0;
1465 /*
1466 * The fault is done by now and there's no way back (other
1467 * thread may be already happily using PMD we have installed).
1468 * Just ignore error from ->iomap_end since we cannot do much
1469 * with it.
1470 */
1471 ops->iomap_end(inode, pos, PMD_SIZE, copied, iomap_flags,
1472 &iomap);
1473 }
1474 fallback:
1475 if (result == VM_FAULT_FALLBACK) {
1476 split_huge_pmd(vma, vmf->pmd, vmf->address);
1477 count_vm_event(THP_FAULT_FALLBACK);
1478 }
1479 out:
1480 trace_dax_pmd_fault_done(inode, vmf, max_pgoff, result);
1481 return result;
1482 }
1483 #else
1484 static int dax_iomap_pmd_fault(struct vm_fault *vmf,
1485 const struct iomap_ops *ops)
1486 {
1487 return VM_FAULT_FALLBACK;
1488 }
1489 #endif /* CONFIG_FS_DAX_PMD */
1490
1491 /**
1492 * dax_iomap_fault - handle a page fault on a DAX file
1493 * @vmf: The description of the fault
1494 * @ops: iomap ops passed from the file system
1495 *
1496 * When a page fault occurs, filesystems may call this helper in
1497 * their fault handler for DAX files. dax_iomap_fault() assumes the caller
1498 * has done all the necessary locking for page fault to proceed
1499 * successfully.
1500 */
1501 int dax_iomap_fault(struct vm_fault *vmf, enum page_entry_size pe_size,
1502 const struct iomap_ops *ops)
1503 {
1504 switch (pe_size) {
1505 case PE_SIZE_PTE:
1506 return dax_iomap_pte_fault(vmf, ops);
1507 case PE_SIZE_PMD:
1508 return dax_iomap_pmd_fault(vmf, ops);
1509 default:
1510 return VM_FAULT_FALLBACK;
1511 }
1512 }
1513 EXPORT_SYMBOL_GPL(dax_iomap_fault);