2 * fs/dax.c - Direct Access filesystem code
3 * Copyright (c) 2013-2014 Intel Corporation
4 * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
5 * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms and conditions of the GNU General Public License,
9 * version 2, as published by the Free Software Foundation.
11 * This program is distributed in the hope it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
17 #include <linux/atomic.h>
18 #include <linux/blkdev.h>
19 #include <linux/buffer_head.h>
20 #include <linux/dax.h>
22 #include <linux/genhd.h>
23 #include <linux/highmem.h>
24 #include <linux/memcontrol.h>
26 #include <linux/mutex.h>
27 #include <linux/pagevec.h>
28 #include <linux/sched.h>
29 #include <linux/sched/signal.h>
30 #include <linux/uio.h>
31 #include <linux/vmstat.h>
32 #include <linux/pfn_t.h>
33 #include <linux/sizes.h>
34 #include <linux/mmu_notifier.h>
35 #include <linux/iomap.h>
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/fs_dax.h>
41 /* We choose 4096 entries - same as per-zone page wait tables */
42 #define DAX_WAIT_TABLE_BITS 12
43 #define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
45 /* The 'colour' (ie low bits) within a PMD of a page offset. */
46 #define PG_PMD_COLOUR ((PMD_SIZE >> PAGE_SHIFT) - 1)
48 static wait_queue_head_t wait_table
[DAX_WAIT_TABLE_ENTRIES
];
50 static int __init
init_dax_wait_table(void)
54 for (i
= 0; i
< DAX_WAIT_TABLE_ENTRIES
; i
++)
55 init_waitqueue_head(wait_table
+ i
);
58 fs_initcall(init_dax_wait_table
);
61 * We use lowest available bit in exceptional entry for locking, one bit for
62 * the entry size (PMD) and two more to tell us if the entry is a zero page or
63 * an empty entry that is just used for locking. In total four special bits.
65 * If the PMD bit isn't set the entry has size PAGE_SIZE, and if the ZERO_PAGE
66 * and EMPTY bits aren't set the entry is a normal DAX entry with a filesystem
69 #define RADIX_DAX_SHIFT (RADIX_TREE_EXCEPTIONAL_SHIFT + 4)
70 #define RADIX_DAX_ENTRY_LOCK (1 << RADIX_TREE_EXCEPTIONAL_SHIFT)
71 #define RADIX_DAX_PMD (1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 1))
72 #define RADIX_DAX_ZERO_PAGE (1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 2))
73 #define RADIX_DAX_EMPTY (1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 3))
75 static unsigned long dax_radix_sector(void *entry
)
77 return (unsigned long)entry
>> RADIX_DAX_SHIFT
;
80 static void *dax_radix_locked_entry(sector_t sector
, unsigned long flags
)
82 return (void *)(RADIX_TREE_EXCEPTIONAL_ENTRY
| flags
|
83 ((unsigned long)sector
<< RADIX_DAX_SHIFT
) |
84 RADIX_DAX_ENTRY_LOCK
);
87 static unsigned int dax_radix_order(void *entry
)
89 if ((unsigned long)entry
& RADIX_DAX_PMD
)
90 return PMD_SHIFT
- PAGE_SHIFT
;
94 static int dax_is_pmd_entry(void *entry
)
96 return (unsigned long)entry
& RADIX_DAX_PMD
;
99 static int dax_is_pte_entry(void *entry
)
101 return !((unsigned long)entry
& RADIX_DAX_PMD
);
104 static int dax_is_zero_entry(void *entry
)
106 return (unsigned long)entry
& RADIX_DAX_ZERO_PAGE
;
109 static int dax_is_empty_entry(void *entry
)
111 return (unsigned long)entry
& RADIX_DAX_EMPTY
;
115 * DAX radix tree locking
117 struct exceptional_entry_key
{
118 struct address_space
*mapping
;
122 struct wait_exceptional_entry_queue
{
123 wait_queue_entry_t wait
;
124 struct exceptional_entry_key key
;
127 static wait_queue_head_t
*dax_entry_waitqueue(struct address_space
*mapping
,
128 pgoff_t index
, void *entry
, struct exceptional_entry_key
*key
)
133 * If 'entry' is a PMD, align the 'index' that we use for the wait
134 * queue to the start of that PMD. This ensures that all offsets in
135 * the range covered by the PMD map to the same bit lock.
137 if (dax_is_pmd_entry(entry
))
138 index
&= ~PG_PMD_COLOUR
;
140 key
->mapping
= mapping
;
141 key
->entry_start
= index
;
143 hash
= hash_long((unsigned long)mapping
^ index
, DAX_WAIT_TABLE_BITS
);
144 return wait_table
+ hash
;
147 static int wake_exceptional_entry_func(wait_queue_entry_t
*wait
, unsigned int mode
,
148 int sync
, void *keyp
)
150 struct exceptional_entry_key
*key
= keyp
;
151 struct wait_exceptional_entry_queue
*ewait
=
152 container_of(wait
, struct wait_exceptional_entry_queue
, wait
);
154 if (key
->mapping
!= ewait
->key
.mapping
||
155 key
->entry_start
!= ewait
->key
.entry_start
)
157 return autoremove_wake_function(wait
, mode
, sync
, NULL
);
161 * We do not necessarily hold the mapping->tree_lock when we call this
162 * function so it is possible that 'entry' is no longer a valid item in the
163 * radix tree. This is okay because all we really need to do is to find the
164 * correct waitqueue where tasks might be waiting for that old 'entry' and
167 static void dax_wake_mapping_entry_waiter(struct address_space
*mapping
,
168 pgoff_t index
, void *entry
, bool wake_all
)
170 struct exceptional_entry_key key
;
171 wait_queue_head_t
*wq
;
173 wq
= dax_entry_waitqueue(mapping
, index
, entry
, &key
);
176 * Checking for locked entry and prepare_to_wait_exclusive() happens
177 * under mapping->tree_lock, ditto for entry handling in our callers.
178 * So at this point all tasks that could have seen our entry locked
179 * must be in the waitqueue and the following check will see them.
181 if (waitqueue_active(wq
))
182 __wake_up(wq
, TASK_NORMAL
, wake_all
? 0 : 1, &key
);
186 * Check whether the given slot is locked. The function must be called with
187 * mapping->tree_lock held
189 static inline int slot_locked(struct address_space
*mapping
, void **slot
)
191 unsigned long entry
= (unsigned long)
192 radix_tree_deref_slot_protected(slot
, &mapping
->tree_lock
);
193 return entry
& RADIX_DAX_ENTRY_LOCK
;
197 * Mark the given slot is locked. The function must be called with
198 * mapping->tree_lock held
200 static inline void *lock_slot(struct address_space
*mapping
, void **slot
)
202 unsigned long entry
= (unsigned long)
203 radix_tree_deref_slot_protected(slot
, &mapping
->tree_lock
);
205 entry
|= RADIX_DAX_ENTRY_LOCK
;
206 radix_tree_replace_slot(&mapping
->page_tree
, slot
, (void *)entry
);
207 return (void *)entry
;
211 * Mark the given slot is unlocked. The function must be called with
212 * mapping->tree_lock held
214 static inline void *unlock_slot(struct address_space
*mapping
, void **slot
)
216 unsigned long entry
= (unsigned long)
217 radix_tree_deref_slot_protected(slot
, &mapping
->tree_lock
);
219 entry
&= ~(unsigned long)RADIX_DAX_ENTRY_LOCK
;
220 radix_tree_replace_slot(&mapping
->page_tree
, slot
, (void *)entry
);
221 return (void *)entry
;
225 * Lookup entry in radix tree, wait for it to become unlocked if it is
226 * exceptional entry and return it. The caller must call
227 * put_unlocked_mapping_entry() when he decided not to lock the entry or
228 * put_locked_mapping_entry() when he locked the entry and now wants to
231 * The function must be called with mapping->tree_lock held.
233 static void *get_unlocked_mapping_entry(struct address_space
*mapping
,
234 pgoff_t index
, void ***slotp
)
237 struct wait_exceptional_entry_queue ewait
;
238 wait_queue_head_t
*wq
;
240 init_wait(&ewait
.wait
);
241 ewait
.wait
.func
= wake_exceptional_entry_func
;
244 entry
= __radix_tree_lookup(&mapping
->page_tree
, index
, NULL
,
247 WARN_ON_ONCE(!radix_tree_exceptional_entry(entry
)) ||
248 !slot_locked(mapping
, slot
)) {
254 wq
= dax_entry_waitqueue(mapping
, index
, entry
, &ewait
.key
);
255 prepare_to_wait_exclusive(wq
, &ewait
.wait
,
256 TASK_UNINTERRUPTIBLE
);
257 spin_unlock_irq(&mapping
->tree_lock
);
259 finish_wait(wq
, &ewait
.wait
);
260 spin_lock_irq(&mapping
->tree_lock
);
264 static void dax_unlock_mapping_entry(struct address_space
*mapping
,
269 spin_lock_irq(&mapping
->tree_lock
);
270 entry
= __radix_tree_lookup(&mapping
->page_tree
, index
, NULL
, &slot
);
271 if (WARN_ON_ONCE(!entry
|| !radix_tree_exceptional_entry(entry
) ||
272 !slot_locked(mapping
, slot
))) {
273 spin_unlock_irq(&mapping
->tree_lock
);
276 unlock_slot(mapping
, slot
);
277 spin_unlock_irq(&mapping
->tree_lock
);
278 dax_wake_mapping_entry_waiter(mapping
, index
, entry
, false);
281 static void put_locked_mapping_entry(struct address_space
*mapping
,
284 dax_unlock_mapping_entry(mapping
, index
);
288 * Called when we are done with radix tree entry we looked up via
289 * get_unlocked_mapping_entry() and which we didn't lock in the end.
291 static void put_unlocked_mapping_entry(struct address_space
*mapping
,
292 pgoff_t index
, void *entry
)
297 /* We have to wake up next waiter for the radix tree entry lock */
298 dax_wake_mapping_entry_waiter(mapping
, index
, entry
, false);
302 * Find radix tree entry at given index. If it points to an exceptional entry,
303 * return it with the radix tree entry locked. If the radix tree doesn't
304 * contain given index, create an empty exceptional entry for the index and
305 * return with it locked.
307 * When requesting an entry with size RADIX_DAX_PMD, grab_mapping_entry() will
308 * either return that locked entry or will return an error. This error will
309 * happen if there are any 4k entries within the 2MiB range that we are
312 * We always favor 4k entries over 2MiB entries. There isn't a flow where we
313 * evict 4k entries in order to 'upgrade' them to a 2MiB entry. A 2MiB
314 * insertion will fail if it finds any 4k entries already in the tree, and a
315 * 4k insertion will cause an existing 2MiB entry to be unmapped and
316 * downgraded to 4k entries. This happens for both 2MiB huge zero pages as
317 * well as 2MiB empty entries.
319 * The exception to this downgrade path is for 2MiB DAX PMD entries that have
320 * real storage backing them. We will leave these real 2MiB DAX entries in
321 * the tree, and PTE writes will simply dirty the entire 2MiB DAX entry.
323 * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
324 * persistent memory the benefit is doubtful. We can add that later if we can
327 static void *grab_mapping_entry(struct address_space
*mapping
, pgoff_t index
,
328 unsigned long size_flag
)
330 bool pmd_downgrade
= false; /* splitting 2MiB entry into 4k entries? */
334 spin_lock_irq(&mapping
->tree_lock
);
335 entry
= get_unlocked_mapping_entry(mapping
, index
, &slot
);
337 if (WARN_ON_ONCE(entry
&& !radix_tree_exceptional_entry(entry
))) {
338 entry
= ERR_PTR(-EIO
);
343 if (size_flag
& RADIX_DAX_PMD
) {
344 if (dax_is_pte_entry(entry
)) {
345 put_unlocked_mapping_entry(mapping
, index
,
347 entry
= ERR_PTR(-EEXIST
);
350 } else { /* trying to grab a PTE entry */
351 if (dax_is_pmd_entry(entry
) &&
352 (dax_is_zero_entry(entry
) ||
353 dax_is_empty_entry(entry
))) {
354 pmd_downgrade
= true;
359 /* No entry for given index? Make sure radix tree is big enough. */
360 if (!entry
|| pmd_downgrade
) {
365 * Make sure 'entry' remains valid while we drop
366 * mapping->tree_lock.
368 entry
= lock_slot(mapping
, slot
);
371 spin_unlock_irq(&mapping
->tree_lock
);
373 * Besides huge zero pages the only other thing that gets
374 * downgraded are empty entries which don't need to be
377 if (pmd_downgrade
&& dax_is_zero_entry(entry
))
378 unmap_mapping_range(mapping
,
379 (index
<< PAGE_SHIFT
) & PMD_MASK
, PMD_SIZE
, 0);
381 err
= radix_tree_preload(
382 mapping_gfp_mask(mapping
) & ~__GFP_HIGHMEM
);
385 put_locked_mapping_entry(mapping
, index
);
388 spin_lock_irq(&mapping
->tree_lock
);
392 * We needed to drop the page_tree lock while calling
393 * radix_tree_preload() and we didn't have an entry to
394 * lock. See if another thread inserted an entry at
395 * our index during this time.
397 entry
= __radix_tree_lookup(&mapping
->page_tree
, index
,
400 radix_tree_preload_end();
401 spin_unlock_irq(&mapping
->tree_lock
);
407 radix_tree_delete(&mapping
->page_tree
, index
);
408 mapping
->nrexceptional
--;
409 dax_wake_mapping_entry_waiter(mapping
, index
, entry
,
413 entry
= dax_radix_locked_entry(0, size_flag
| RADIX_DAX_EMPTY
);
415 err
= __radix_tree_insert(&mapping
->page_tree
, index
,
416 dax_radix_order(entry
), entry
);
417 radix_tree_preload_end();
419 spin_unlock_irq(&mapping
->tree_lock
);
421 * Our insertion of a DAX entry failed, most likely
422 * because we were inserting a PMD entry and it
423 * collided with a PTE sized entry at a different
424 * index in the PMD range. We haven't inserted
425 * anything into the radix tree and have no waiters to
430 /* Good, we have inserted empty locked entry into the tree. */
431 mapping
->nrexceptional
++;
432 spin_unlock_irq(&mapping
->tree_lock
);
435 entry
= lock_slot(mapping
, slot
);
437 spin_unlock_irq(&mapping
->tree_lock
);
441 static int __dax_invalidate_mapping_entry(struct address_space
*mapping
,
442 pgoff_t index
, bool trunc
)
446 struct radix_tree_root
*page_tree
= &mapping
->page_tree
;
448 spin_lock_irq(&mapping
->tree_lock
);
449 entry
= get_unlocked_mapping_entry(mapping
, index
, NULL
);
450 if (!entry
|| WARN_ON_ONCE(!radix_tree_exceptional_entry(entry
)))
453 (radix_tree_tag_get(page_tree
, index
, PAGECACHE_TAG_DIRTY
) ||
454 radix_tree_tag_get(page_tree
, index
, PAGECACHE_TAG_TOWRITE
)))
456 radix_tree_delete(page_tree
, index
);
457 mapping
->nrexceptional
--;
460 put_unlocked_mapping_entry(mapping
, index
, entry
);
461 spin_unlock_irq(&mapping
->tree_lock
);
465 * Delete exceptional DAX entry at @index from @mapping. Wait for radix tree
466 * entry to get unlocked before deleting it.
468 int dax_delete_mapping_entry(struct address_space
*mapping
, pgoff_t index
)
470 int ret
= __dax_invalidate_mapping_entry(mapping
, index
, true);
473 * This gets called from truncate / punch_hole path. As such, the caller
474 * must hold locks protecting against concurrent modifications of the
475 * radix tree (usually fs-private i_mmap_sem for writing). Since the
476 * caller has seen exceptional entry for this index, we better find it
477 * at that index as well...
484 * Invalidate exceptional DAX entry if it is clean.
486 int dax_invalidate_mapping_entry_sync(struct address_space
*mapping
,
489 return __dax_invalidate_mapping_entry(mapping
, index
, false);
492 static int copy_user_dax(struct block_device
*bdev
, struct dax_device
*dax_dev
,
493 sector_t sector
, size_t size
, struct page
*to
,
502 rc
= bdev_dax_pgoff(bdev
, sector
, size
, &pgoff
);
506 id
= dax_read_lock();
507 rc
= dax_direct_access(dax_dev
, pgoff
, PHYS_PFN(size
), &kaddr
, &pfn
);
512 vto
= kmap_atomic(to
);
513 copy_user_page(vto
, (void __force
*)kaddr
, vaddr
, to
);
520 * By this point grab_mapping_entry() has ensured that we have a locked entry
521 * of the appropriate size so we don't have to worry about downgrading PMDs to
522 * PTEs. If we happen to be trying to insert a PTE and there is a PMD
523 * already in the tree, we will skip the insertion and just dirty the PMD as
526 static void *dax_insert_mapping_entry(struct address_space
*mapping
,
527 struct vm_fault
*vmf
,
528 void *entry
, sector_t sector
,
531 struct radix_tree_root
*page_tree
= &mapping
->page_tree
;
533 pgoff_t index
= vmf
->pgoff
;
535 if (vmf
->flags
& FAULT_FLAG_WRITE
)
536 __mark_inode_dirty(mapping
->host
, I_DIRTY_PAGES
);
538 if (dax_is_zero_entry(entry
) && !(flags
& RADIX_DAX_ZERO_PAGE
)) {
539 /* we are replacing a zero page with block mapping */
540 if (dax_is_pmd_entry(entry
))
541 unmap_mapping_range(mapping
,
542 (vmf
->pgoff
<< PAGE_SHIFT
) & PMD_MASK
,
545 unmap_mapping_range(mapping
, vmf
->pgoff
<< PAGE_SHIFT
,
549 spin_lock_irq(&mapping
->tree_lock
);
550 new_entry
= dax_radix_locked_entry(sector
, flags
);
552 if (dax_is_zero_entry(entry
) || dax_is_empty_entry(entry
)) {
554 * Only swap our new entry into the radix tree if the current
555 * entry is a zero page or an empty entry. If a normal PTE or
556 * PMD entry is already in the tree, we leave it alone. This
557 * means that if we are trying to insert a PTE and the
558 * existing entry is a PMD, we will just leave the PMD in the
559 * tree and dirty it if necessary.
561 struct radix_tree_node
*node
;
565 ret
= __radix_tree_lookup(page_tree
, index
, &node
, &slot
);
566 WARN_ON_ONCE(ret
!= entry
);
567 __radix_tree_replace(page_tree
, node
, slot
,
568 new_entry
, NULL
, NULL
);
572 if (vmf
->flags
& FAULT_FLAG_WRITE
)
573 radix_tree_tag_set(page_tree
, index
, PAGECACHE_TAG_DIRTY
);
575 spin_unlock_irq(&mapping
->tree_lock
);
579 static inline unsigned long
580 pgoff_address(pgoff_t pgoff
, struct vm_area_struct
*vma
)
582 unsigned long address
;
584 address
= vma
->vm_start
+ ((pgoff
- vma
->vm_pgoff
) << PAGE_SHIFT
);
585 VM_BUG_ON_VMA(address
< vma
->vm_start
|| address
>= vma
->vm_end
, vma
);
589 /* Walk all mappings of a given index of a file and writeprotect them */
590 static void dax_mapping_entry_mkclean(struct address_space
*mapping
,
591 pgoff_t index
, unsigned long pfn
)
593 struct vm_area_struct
*vma
;
594 pte_t pte
, *ptep
= NULL
;
598 i_mmap_lock_read(mapping
);
599 vma_interval_tree_foreach(vma
, &mapping
->i_mmap
, index
, index
) {
600 unsigned long address
, start
, end
;
604 if (!(vma
->vm_flags
& VM_SHARED
))
607 address
= pgoff_address(index
, vma
);
610 * Note because we provide start/end to follow_pte_pmd it will
611 * call mmu_notifier_invalidate_range_start() on our behalf
612 * before taking any lock.
614 if (follow_pte_pmd(vma
->vm_mm
, address
, &start
, &end
, &ptep
, &pmdp
, &ptl
))
618 #ifdef CONFIG_FS_DAX_PMD
621 if (pfn
!= pmd_pfn(*pmdp
))
623 if (!pmd_dirty(*pmdp
) && !pmd_write(*pmdp
))
626 flush_cache_page(vma
, address
, pfn
);
627 pmd
= pmdp_huge_clear_flush(vma
, address
, pmdp
);
628 pmd
= pmd_wrprotect(pmd
);
629 pmd
= pmd_mkclean(pmd
);
630 set_pmd_at(vma
->vm_mm
, address
, pmdp
, pmd
);
631 mmu_notifier_invalidate_range(vma
->vm_mm
, start
, end
);
636 if (pfn
!= pte_pfn(*ptep
))
638 if (!pte_dirty(*ptep
) && !pte_write(*ptep
))
641 flush_cache_page(vma
, address
, pfn
);
642 pte
= ptep_clear_flush(vma
, address
, ptep
);
643 pte
= pte_wrprotect(pte
);
644 pte
= pte_mkclean(pte
);
645 set_pte_at(vma
->vm_mm
, address
, ptep
, pte
);
646 mmu_notifier_invalidate_range(vma
->vm_mm
, start
, end
);
648 pte_unmap_unlock(ptep
, ptl
);
651 mmu_notifier_invalidate_range_end(vma
->vm_mm
, start
, end
);
653 i_mmap_unlock_read(mapping
);
656 static int dax_writeback_one(struct block_device
*bdev
,
657 struct dax_device
*dax_dev
, struct address_space
*mapping
,
658 pgoff_t index
, void *entry
)
660 struct radix_tree_root
*page_tree
= &mapping
->page_tree
;
661 void *entry2
, **slot
, *kaddr
;
669 * A page got tagged dirty in DAX mapping? Something is seriously
672 if (WARN_ON(!radix_tree_exceptional_entry(entry
)))
675 spin_lock_irq(&mapping
->tree_lock
);
676 entry2
= get_unlocked_mapping_entry(mapping
, index
, &slot
);
677 /* Entry got punched out / reallocated? */
678 if (!entry2
|| WARN_ON_ONCE(!radix_tree_exceptional_entry(entry2
)))
681 * Entry got reallocated elsewhere? No need to writeback. We have to
682 * compare sectors as we must not bail out due to difference in lockbit
685 if (dax_radix_sector(entry2
) != dax_radix_sector(entry
))
687 if (WARN_ON_ONCE(dax_is_empty_entry(entry
) ||
688 dax_is_zero_entry(entry
))) {
693 /* Another fsync thread may have already written back this entry */
694 if (!radix_tree_tag_get(page_tree
, index
, PAGECACHE_TAG_TOWRITE
))
696 /* Lock the entry to serialize with page faults */
697 entry
= lock_slot(mapping
, slot
);
699 * We can clear the tag now but we have to be careful so that concurrent
700 * dax_writeback_one() calls for the same index cannot finish before we
701 * actually flush the caches. This is achieved as the calls will look
702 * at the entry only under tree_lock and once they do that they will
703 * see the entry locked and wait for it to unlock.
705 radix_tree_tag_clear(page_tree
, index
, PAGECACHE_TAG_TOWRITE
);
706 spin_unlock_irq(&mapping
->tree_lock
);
709 * Even if dax_writeback_mapping_range() was given a wbc->range_start
710 * in the middle of a PMD, the 'index' we are given will be aligned to
711 * the start index of the PMD, as will the sector we pull from
712 * 'entry'. This allows us to flush for PMD_SIZE and not have to
713 * worry about partial PMD writebacks.
715 sector
= dax_radix_sector(entry
);
716 size
= PAGE_SIZE
<< dax_radix_order(entry
);
718 id
= dax_read_lock();
719 ret
= bdev_dax_pgoff(bdev
, sector
, size
, &pgoff
);
724 * dax_direct_access() may sleep, so cannot hold tree_lock over
727 ret
= dax_direct_access(dax_dev
, pgoff
, size
/ PAGE_SIZE
, &kaddr
, &pfn
);
731 if (WARN_ON_ONCE(ret
< size
/ PAGE_SIZE
)) {
736 dax_mapping_entry_mkclean(mapping
, index
, pfn_t_to_pfn(pfn
));
737 dax_flush(dax_dev
, kaddr
, size
);
739 * After we have flushed the cache, we can clear the dirty tag. There
740 * cannot be new dirty data in the pfn after the flush has completed as
741 * the pfn mappings are writeprotected and fault waits for mapping
744 spin_lock_irq(&mapping
->tree_lock
);
745 radix_tree_tag_clear(page_tree
, index
, PAGECACHE_TAG_DIRTY
);
746 spin_unlock_irq(&mapping
->tree_lock
);
747 trace_dax_writeback_one(mapping
->host
, index
, size
>> PAGE_SHIFT
);
750 put_locked_mapping_entry(mapping
, index
);
754 put_unlocked_mapping_entry(mapping
, index
, entry2
);
755 spin_unlock_irq(&mapping
->tree_lock
);
760 * Flush the mapping to the persistent domain within the byte range of [start,
761 * end]. This is required by data integrity operations to ensure file data is
762 * on persistent storage prior to completion of the operation.
764 int dax_writeback_mapping_range(struct address_space
*mapping
,
765 struct block_device
*bdev
, struct writeback_control
*wbc
)
767 struct inode
*inode
= mapping
->host
;
768 pgoff_t start_index
, end_index
;
769 pgoff_t indices
[PAGEVEC_SIZE
];
770 struct dax_device
*dax_dev
;
775 if (WARN_ON_ONCE(inode
->i_blkbits
!= PAGE_SHIFT
))
778 if (!mapping
->nrexceptional
|| wbc
->sync_mode
!= WB_SYNC_ALL
)
781 dax_dev
= dax_get_by_host(bdev
->bd_disk
->disk_name
);
785 start_index
= wbc
->range_start
>> PAGE_SHIFT
;
786 end_index
= wbc
->range_end
>> PAGE_SHIFT
;
788 trace_dax_writeback_range(inode
, start_index
, end_index
);
790 tag_pages_for_writeback(mapping
, start_index
, end_index
);
792 pagevec_init(&pvec
, 0);
794 pvec
.nr
= find_get_entries_tag(mapping
, start_index
,
795 PAGECACHE_TAG_TOWRITE
, PAGEVEC_SIZE
,
796 pvec
.pages
, indices
);
801 for (i
= 0; i
< pvec
.nr
; i
++) {
802 if (indices
[i
] > end_index
) {
807 ret
= dax_writeback_one(bdev
, dax_dev
, mapping
,
808 indices
[i
], pvec
.pages
[i
]);
810 mapping_set_error(mapping
, ret
);
814 start_index
= indices
[pvec
.nr
- 1] + 1;
818 trace_dax_writeback_range_done(inode
, start_index
, end_index
);
819 return (ret
< 0 ? ret
: 0);
821 EXPORT_SYMBOL_GPL(dax_writeback_mapping_range
);
823 static int dax_insert_mapping(struct address_space
*mapping
,
824 struct block_device
*bdev
, struct dax_device
*dax_dev
,
825 sector_t sector
, size_t size
, void *entry
,
826 struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
828 unsigned long vaddr
= vmf
->address
;
834 rc
= bdev_dax_pgoff(bdev
, sector
, size
, &pgoff
);
838 id
= dax_read_lock();
839 rc
= dax_direct_access(dax_dev
, pgoff
, PHYS_PFN(size
), &kaddr
, &pfn
);
846 ret
= dax_insert_mapping_entry(mapping
, vmf
, entry
, sector
, 0);
850 trace_dax_insert_mapping(mapping
->host
, vmf
, ret
);
851 if (vmf
->flags
& FAULT_FLAG_WRITE
)
852 return vm_insert_mixed_mkwrite(vma
, vaddr
, pfn
);
854 return vm_insert_mixed(vma
, vaddr
, pfn
);
858 * The user has performed a load from a hole in the file. Allocating a new
859 * page in the file would cause excessive storage usage for workloads with
860 * sparse files. Instead we insert a read-only mapping of the 4k zero page.
861 * If this page is ever written to we will re-fault and change the mapping to
862 * point to real DAX storage instead.
864 static int dax_load_hole(struct address_space
*mapping
, void *entry
,
865 struct vm_fault
*vmf
)
867 struct inode
*inode
= mapping
->host
;
868 unsigned long vaddr
= vmf
->address
;
869 int ret
= VM_FAULT_NOPAGE
;
870 struct page
*zero_page
;
873 zero_page
= ZERO_PAGE(0);
874 if (unlikely(!zero_page
)) {
879 entry2
= dax_insert_mapping_entry(mapping
, vmf
, entry
, 0,
880 RADIX_DAX_ZERO_PAGE
);
881 if (IS_ERR(entry2
)) {
882 ret
= VM_FAULT_SIGBUS
;
886 vm_insert_mixed(vmf
->vma
, vaddr
, page_to_pfn_t(zero_page
));
888 trace_dax_load_hole(inode
, vmf
, ret
);
892 static bool dax_range_is_aligned(struct block_device
*bdev
,
893 unsigned int offset
, unsigned int length
)
895 unsigned short sector_size
= bdev_logical_block_size(bdev
);
897 if (!IS_ALIGNED(offset
, sector_size
))
899 if (!IS_ALIGNED(length
, sector_size
))
905 int __dax_zero_page_range(struct block_device
*bdev
,
906 struct dax_device
*dax_dev
, sector_t sector
,
907 unsigned int offset
, unsigned int size
)
909 if (dax_range_is_aligned(bdev
, offset
, size
)) {
910 sector_t start_sector
= sector
+ (offset
>> 9);
912 return blkdev_issue_zeroout(bdev
, start_sector
,
913 size
>> 9, GFP_NOFS
, 0);
920 rc
= bdev_dax_pgoff(bdev
, sector
, PAGE_SIZE
, &pgoff
);
924 id
= dax_read_lock();
925 rc
= dax_direct_access(dax_dev
, pgoff
, 1, &kaddr
,
931 memset(kaddr
+ offset
, 0, size
);
932 dax_flush(dax_dev
, kaddr
+ offset
, size
);
937 EXPORT_SYMBOL_GPL(__dax_zero_page_range
);
939 static sector_t
dax_iomap_sector(struct iomap
*iomap
, loff_t pos
)
941 return iomap
->blkno
+ (((pos
& PAGE_MASK
) - iomap
->offset
) >> 9);
945 dax_iomap_actor(struct inode
*inode
, loff_t pos
, loff_t length
, void *data
,
948 struct block_device
*bdev
= iomap
->bdev
;
949 struct dax_device
*dax_dev
= iomap
->dax_dev
;
950 struct iov_iter
*iter
= data
;
951 loff_t end
= pos
+ length
, done
= 0;
955 if (iov_iter_rw(iter
) == READ
) {
956 end
= min(end
, i_size_read(inode
));
960 if (iomap
->type
== IOMAP_HOLE
|| iomap
->type
== IOMAP_UNWRITTEN
)
961 return iov_iter_zero(min(length
, end
- pos
), iter
);
964 if (WARN_ON_ONCE(iomap
->type
!= IOMAP_MAPPED
))
968 * Write can allocate block for an area which has a hole page mapped
969 * into page tables. We have to tear down these mappings so that data
970 * written by write(2) is visible in mmap.
972 if (iomap
->flags
& IOMAP_F_NEW
) {
973 invalidate_inode_pages2_range(inode
->i_mapping
,
975 (end
- 1) >> PAGE_SHIFT
);
978 id
= dax_read_lock();
980 unsigned offset
= pos
& (PAGE_SIZE
- 1);
981 const size_t size
= ALIGN(length
+ offset
, PAGE_SIZE
);
982 const sector_t sector
= dax_iomap_sector(iomap
, pos
);
988 if (fatal_signal_pending(current
)) {
993 ret
= bdev_dax_pgoff(bdev
, sector
, size
, &pgoff
);
997 map_len
= dax_direct_access(dax_dev
, pgoff
, PHYS_PFN(size
),
1004 map_len
= PFN_PHYS(map_len
);
1007 if (map_len
> end
- pos
)
1008 map_len
= end
- pos
;
1011 * The userspace address for the memory copy has already been
1012 * validated via access_ok() in either vfs_read() or
1013 * vfs_write(), depending on which operation we are doing.
1015 if (iov_iter_rw(iter
) == WRITE
)
1016 map_len
= dax_copy_from_iter(dax_dev
, pgoff
, kaddr
,
1019 map_len
= copy_to_iter(kaddr
, map_len
, iter
);
1021 ret
= map_len
? map_len
: -EFAULT
;
1029 dax_read_unlock(id
);
1031 return done
? done
: ret
;
1035 * dax_iomap_rw - Perform I/O to a DAX file
1036 * @iocb: The control block for this I/O
1037 * @iter: The addresses to do I/O from or to
1038 * @ops: iomap ops passed from the file system
1040 * This function performs read and write operations to directly mapped
1041 * persistent memory. The callers needs to take care of read/write exclusion
1042 * and evicting any page cache pages in the region under I/O.
1045 dax_iomap_rw(struct kiocb
*iocb
, struct iov_iter
*iter
,
1046 const struct iomap_ops
*ops
)
1048 struct address_space
*mapping
= iocb
->ki_filp
->f_mapping
;
1049 struct inode
*inode
= mapping
->host
;
1050 loff_t pos
= iocb
->ki_pos
, ret
= 0, done
= 0;
1053 if (iov_iter_rw(iter
) == WRITE
) {
1054 lockdep_assert_held_exclusive(&inode
->i_rwsem
);
1055 flags
|= IOMAP_WRITE
;
1057 lockdep_assert_held(&inode
->i_rwsem
);
1060 while (iov_iter_count(iter
)) {
1061 ret
= iomap_apply(inode
, pos
, iov_iter_count(iter
), flags
, ops
,
1062 iter
, dax_iomap_actor
);
1069 iocb
->ki_pos
+= done
;
1070 return done
? done
: ret
;
1072 EXPORT_SYMBOL_GPL(dax_iomap_rw
);
1074 static int dax_fault_return(int error
)
1077 return VM_FAULT_NOPAGE
;
1078 if (error
== -ENOMEM
)
1079 return VM_FAULT_OOM
;
1080 return VM_FAULT_SIGBUS
;
1083 static int dax_iomap_pte_fault(struct vm_fault
*vmf
,
1084 const struct iomap_ops
*ops
)
1086 struct address_space
*mapping
= vmf
->vma
->vm_file
->f_mapping
;
1087 struct inode
*inode
= mapping
->host
;
1088 unsigned long vaddr
= vmf
->address
;
1089 loff_t pos
= (loff_t
)vmf
->pgoff
<< PAGE_SHIFT
;
1091 struct iomap iomap
= { 0 };
1092 unsigned flags
= IOMAP_FAULT
;
1093 int error
, major
= 0;
1097 trace_dax_pte_fault(inode
, vmf
, vmf_ret
);
1099 * Check whether offset isn't beyond end of file now. Caller is supposed
1100 * to hold locks serializing us with truncate / punch hole so this is
1103 if (pos
>= i_size_read(inode
)) {
1104 vmf_ret
= VM_FAULT_SIGBUS
;
1108 if ((vmf
->flags
& FAULT_FLAG_WRITE
) && !vmf
->cow_page
)
1109 flags
|= IOMAP_WRITE
;
1111 entry
= grab_mapping_entry(mapping
, vmf
->pgoff
, 0);
1112 if (IS_ERR(entry
)) {
1113 vmf_ret
= dax_fault_return(PTR_ERR(entry
));
1118 * It is possible, particularly with mixed reads & writes to private
1119 * mappings, that we have raced with a PMD fault that overlaps with
1120 * the PTE we need to set up. If so just return and the fault will be
1123 if (pmd_trans_huge(*vmf
->pmd
) || pmd_devmap(*vmf
->pmd
)) {
1124 vmf_ret
= VM_FAULT_NOPAGE
;
1129 * Note that we don't bother to use iomap_apply here: DAX required
1130 * the file system block size to be equal the page size, which means
1131 * that we never have to deal with more than a single extent here.
1133 error
= ops
->iomap_begin(inode
, pos
, PAGE_SIZE
, flags
, &iomap
);
1135 vmf_ret
= dax_fault_return(error
);
1138 if (WARN_ON_ONCE(iomap
.offset
+ iomap
.length
< pos
+ PAGE_SIZE
)) {
1139 error
= -EIO
; /* fs corruption? */
1140 goto error_finish_iomap
;
1143 sector
= dax_iomap_sector(&iomap
, pos
);
1145 if (vmf
->cow_page
) {
1146 switch (iomap
.type
) {
1148 case IOMAP_UNWRITTEN
:
1149 clear_user_highpage(vmf
->cow_page
, vaddr
);
1152 error
= copy_user_dax(iomap
.bdev
, iomap
.dax_dev
,
1153 sector
, PAGE_SIZE
, vmf
->cow_page
, vaddr
);
1162 goto error_finish_iomap
;
1164 __SetPageUptodate(vmf
->cow_page
);
1165 vmf_ret
= finish_fault(vmf
);
1167 vmf_ret
= VM_FAULT_DONE_COW
;
1171 switch (iomap
.type
) {
1173 if (iomap
.flags
& IOMAP_F_NEW
) {
1174 count_vm_event(PGMAJFAULT
);
1175 count_memcg_event_mm(vmf
->vma
->vm_mm
, PGMAJFAULT
);
1176 major
= VM_FAULT_MAJOR
;
1178 error
= dax_insert_mapping(mapping
, iomap
.bdev
, iomap
.dax_dev
,
1179 sector
, PAGE_SIZE
, entry
, vmf
->vma
, vmf
);
1180 /* -EBUSY is fine, somebody else faulted on the same PTE */
1181 if (error
== -EBUSY
)
1184 case IOMAP_UNWRITTEN
:
1186 if (!(vmf
->flags
& FAULT_FLAG_WRITE
)) {
1187 vmf_ret
= dax_load_hole(mapping
, entry
, vmf
);
1198 vmf_ret
= dax_fault_return(error
) | major
;
1200 if (ops
->iomap_end
) {
1201 int copied
= PAGE_SIZE
;
1203 if (vmf_ret
& VM_FAULT_ERROR
)
1206 * The fault is done by now and there's no way back (other
1207 * thread may be already happily using PTE we have installed).
1208 * Just ignore error from ->iomap_end since we cannot do much
1211 ops
->iomap_end(inode
, pos
, PAGE_SIZE
, copied
, flags
, &iomap
);
1214 put_locked_mapping_entry(mapping
, vmf
->pgoff
);
1216 trace_dax_pte_fault_done(inode
, vmf
, vmf_ret
);
1220 #ifdef CONFIG_FS_DAX_PMD
1221 static int dax_pmd_insert_mapping(struct vm_fault
*vmf
, struct iomap
*iomap
,
1222 loff_t pos
, void *entry
)
1224 struct address_space
*mapping
= vmf
->vma
->vm_file
->f_mapping
;
1225 const sector_t sector
= dax_iomap_sector(iomap
, pos
);
1226 struct dax_device
*dax_dev
= iomap
->dax_dev
;
1227 struct block_device
*bdev
= iomap
->bdev
;
1228 struct inode
*inode
= mapping
->host
;
1229 const size_t size
= PMD_SIZE
;
1230 void *ret
= NULL
, *kaddr
;
1236 if (bdev_dax_pgoff(bdev
, sector
, size
, &pgoff
) != 0)
1239 id
= dax_read_lock();
1240 length
= dax_direct_access(dax_dev
, pgoff
, PHYS_PFN(size
), &kaddr
, &pfn
);
1242 goto unlock_fallback
;
1243 length
= PFN_PHYS(length
);
1246 goto unlock_fallback
;
1247 if (pfn_t_to_pfn(pfn
) & PG_PMD_COLOUR
)
1248 goto unlock_fallback
;
1249 if (!pfn_t_devmap(pfn
))
1250 goto unlock_fallback
;
1251 dax_read_unlock(id
);
1253 ret
= dax_insert_mapping_entry(mapping
, vmf
, entry
, sector
,
1258 trace_dax_pmd_insert_mapping(inode
, vmf
, length
, pfn
, ret
);
1259 return vmf_insert_pfn_pmd(vmf
->vma
, vmf
->address
, vmf
->pmd
,
1260 pfn
, vmf
->flags
& FAULT_FLAG_WRITE
);
1263 dax_read_unlock(id
);
1265 trace_dax_pmd_insert_mapping_fallback(inode
, vmf
, length
, pfn
, ret
);
1266 return VM_FAULT_FALLBACK
;
1269 static int dax_pmd_load_hole(struct vm_fault
*vmf
, struct iomap
*iomap
,
1272 struct address_space
*mapping
= vmf
->vma
->vm_file
->f_mapping
;
1273 unsigned long pmd_addr
= vmf
->address
& PMD_MASK
;
1274 struct inode
*inode
= mapping
->host
;
1275 struct page
*zero_page
;
1280 zero_page
= mm_get_huge_zero_page(vmf
->vma
->vm_mm
);
1282 if (unlikely(!zero_page
))
1285 ret
= dax_insert_mapping_entry(mapping
, vmf
, entry
, 0,
1286 RADIX_DAX_PMD
| RADIX_DAX_ZERO_PAGE
);
1290 ptl
= pmd_lock(vmf
->vma
->vm_mm
, vmf
->pmd
);
1291 if (!pmd_none(*(vmf
->pmd
))) {
1296 pmd_entry
= mk_pmd(zero_page
, vmf
->vma
->vm_page_prot
);
1297 pmd_entry
= pmd_mkhuge(pmd_entry
);
1298 set_pmd_at(vmf
->vma
->vm_mm
, pmd_addr
, vmf
->pmd
, pmd_entry
);
1300 trace_dax_pmd_load_hole(inode
, vmf
, zero_page
, ret
);
1301 return VM_FAULT_NOPAGE
;
1304 trace_dax_pmd_load_hole_fallback(inode
, vmf
, zero_page
, ret
);
1305 return VM_FAULT_FALLBACK
;
1308 static int dax_iomap_pmd_fault(struct vm_fault
*vmf
,
1309 const struct iomap_ops
*ops
)
1311 struct vm_area_struct
*vma
= vmf
->vma
;
1312 struct address_space
*mapping
= vma
->vm_file
->f_mapping
;
1313 unsigned long pmd_addr
= vmf
->address
& PMD_MASK
;
1314 bool write
= vmf
->flags
& FAULT_FLAG_WRITE
;
1315 unsigned int iomap_flags
= (write
? IOMAP_WRITE
: 0) | IOMAP_FAULT
;
1316 struct inode
*inode
= mapping
->host
;
1317 int result
= VM_FAULT_FALLBACK
;
1318 struct iomap iomap
= { 0 };
1319 pgoff_t max_pgoff
, pgoff
;
1325 * Check whether offset isn't beyond end of file now. Caller is
1326 * supposed to hold locks serializing us with truncate / punch hole so
1327 * this is a reliable test.
1329 pgoff
= linear_page_index(vma
, pmd_addr
);
1330 max_pgoff
= (i_size_read(inode
) - 1) >> PAGE_SHIFT
;
1332 trace_dax_pmd_fault(inode
, vmf
, max_pgoff
, 0);
1335 * Make sure that the faulting address's PMD offset (color) matches
1336 * the PMD offset from the start of the file. This is necessary so
1337 * that a PMD range in the page table overlaps exactly with a PMD
1338 * range in the radix tree.
1340 if ((vmf
->pgoff
& PG_PMD_COLOUR
) !=
1341 ((vmf
->address
>> PAGE_SHIFT
) & PG_PMD_COLOUR
))
1344 /* Fall back to PTEs if we're going to COW */
1345 if (write
&& !(vma
->vm_flags
& VM_SHARED
))
1348 /* If the PMD would extend outside the VMA */
1349 if (pmd_addr
< vma
->vm_start
)
1351 if ((pmd_addr
+ PMD_SIZE
) > vma
->vm_end
)
1354 if (pgoff
> max_pgoff
) {
1355 result
= VM_FAULT_SIGBUS
;
1359 /* If the PMD would extend beyond the file size */
1360 if ((pgoff
| PG_PMD_COLOUR
) > max_pgoff
)
1364 * grab_mapping_entry() will make sure we get a 2MiB empty entry, a
1365 * 2MiB zero page entry or a DAX PMD. If it can't (because a 4k page
1366 * is already in the tree, for instance), it will return -EEXIST and
1367 * we just fall back to 4k entries.
1369 entry
= grab_mapping_entry(mapping
, pgoff
, RADIX_DAX_PMD
);
1374 * It is possible, particularly with mixed reads & writes to private
1375 * mappings, that we have raced with a PTE fault that overlaps with
1376 * the PMD we need to set up. If so just return and the fault will be
1379 if (!pmd_none(*vmf
->pmd
) && !pmd_trans_huge(*vmf
->pmd
) &&
1380 !pmd_devmap(*vmf
->pmd
)) {
1386 * Note that we don't use iomap_apply here. We aren't doing I/O, only
1387 * setting up a mapping, so really we're using iomap_begin() as a way
1388 * to look up our filesystem block.
1390 pos
= (loff_t
)pgoff
<< PAGE_SHIFT
;
1391 error
= ops
->iomap_begin(inode
, pos
, PMD_SIZE
, iomap_flags
, &iomap
);
1395 if (iomap
.offset
+ iomap
.length
< pos
+ PMD_SIZE
)
1398 switch (iomap
.type
) {
1400 result
= dax_pmd_insert_mapping(vmf
, &iomap
, pos
, entry
);
1402 case IOMAP_UNWRITTEN
:
1404 if (WARN_ON_ONCE(write
))
1406 result
= dax_pmd_load_hole(vmf
, &iomap
, entry
);
1414 if (ops
->iomap_end
) {
1415 int copied
= PMD_SIZE
;
1417 if (result
== VM_FAULT_FALLBACK
)
1420 * The fault is done by now and there's no way back (other
1421 * thread may be already happily using PMD we have installed).
1422 * Just ignore error from ->iomap_end since we cannot do much
1425 ops
->iomap_end(inode
, pos
, PMD_SIZE
, copied
, iomap_flags
,
1429 put_locked_mapping_entry(mapping
, pgoff
);
1431 if (result
== VM_FAULT_FALLBACK
) {
1432 split_huge_pmd(vma
, vmf
->pmd
, vmf
->address
);
1433 count_vm_event(THP_FAULT_FALLBACK
);
1436 trace_dax_pmd_fault_done(inode
, vmf
, max_pgoff
, result
);
1440 static int dax_iomap_pmd_fault(struct vm_fault
*vmf
,
1441 const struct iomap_ops
*ops
)
1443 return VM_FAULT_FALLBACK
;
1445 #endif /* CONFIG_FS_DAX_PMD */
1448 * dax_iomap_fault - handle a page fault on a DAX file
1449 * @vmf: The description of the fault
1450 * @ops: iomap ops passed from the file system
1452 * When a page fault occurs, filesystems may call this helper in
1453 * their fault handler for DAX files. dax_iomap_fault() assumes the caller
1454 * has done all the necessary locking for page fault to proceed
1457 int dax_iomap_fault(struct vm_fault
*vmf
, enum page_entry_size pe_size
,
1458 const struct iomap_ops
*ops
)
1462 return dax_iomap_pte_fault(vmf
, ops
);
1464 return dax_iomap_pmd_fault(vmf
, ops
);
1466 return VM_FAULT_FALLBACK
;
1469 EXPORT_SYMBOL_GPL(dax_iomap_fault
);