]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/dax.c
Merge tag 'platform-drivers-x86-v4.15-3' of git://git.infradead.org/linux-platform...
[mirror_ubuntu-bionic-kernel.git] / fs / dax.c
1 /*
2 * fs/dax.c - Direct Access filesystem code
3 * Copyright (c) 2013-2014 Intel Corporation
4 * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
5 * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
6 *
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms and conditions of the GNU General Public License,
9 * version 2, as published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * more details.
15 */
16
17 #include <linux/atomic.h>
18 #include <linux/blkdev.h>
19 #include <linux/buffer_head.h>
20 #include <linux/dax.h>
21 #include <linux/fs.h>
22 #include <linux/genhd.h>
23 #include <linux/highmem.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm.h>
26 #include <linux/mutex.h>
27 #include <linux/pagevec.h>
28 #include <linux/sched.h>
29 #include <linux/sched/signal.h>
30 #include <linux/uio.h>
31 #include <linux/vmstat.h>
32 #include <linux/pfn_t.h>
33 #include <linux/sizes.h>
34 #include <linux/mmu_notifier.h>
35 #include <linux/iomap.h>
36 #include "internal.h"
37
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/fs_dax.h>
40
41 /* We choose 4096 entries - same as per-zone page wait tables */
42 #define DAX_WAIT_TABLE_BITS 12
43 #define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
44
45 /* The 'colour' (ie low bits) within a PMD of a page offset. */
46 #define PG_PMD_COLOUR ((PMD_SIZE >> PAGE_SHIFT) - 1)
47
48 static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES];
49
50 static int __init init_dax_wait_table(void)
51 {
52 int i;
53
54 for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++)
55 init_waitqueue_head(wait_table + i);
56 return 0;
57 }
58 fs_initcall(init_dax_wait_table);
59
60 /*
61 * We use lowest available bit in exceptional entry for locking, one bit for
62 * the entry size (PMD) and two more to tell us if the entry is a zero page or
63 * an empty entry that is just used for locking. In total four special bits.
64 *
65 * If the PMD bit isn't set the entry has size PAGE_SIZE, and if the ZERO_PAGE
66 * and EMPTY bits aren't set the entry is a normal DAX entry with a filesystem
67 * block allocation.
68 */
69 #define RADIX_DAX_SHIFT (RADIX_TREE_EXCEPTIONAL_SHIFT + 4)
70 #define RADIX_DAX_ENTRY_LOCK (1 << RADIX_TREE_EXCEPTIONAL_SHIFT)
71 #define RADIX_DAX_PMD (1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 1))
72 #define RADIX_DAX_ZERO_PAGE (1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 2))
73 #define RADIX_DAX_EMPTY (1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 3))
74
75 static unsigned long dax_radix_sector(void *entry)
76 {
77 return (unsigned long)entry >> RADIX_DAX_SHIFT;
78 }
79
80 static void *dax_radix_locked_entry(sector_t sector, unsigned long flags)
81 {
82 return (void *)(RADIX_TREE_EXCEPTIONAL_ENTRY | flags |
83 ((unsigned long)sector << RADIX_DAX_SHIFT) |
84 RADIX_DAX_ENTRY_LOCK);
85 }
86
87 static unsigned int dax_radix_order(void *entry)
88 {
89 if ((unsigned long)entry & RADIX_DAX_PMD)
90 return PMD_SHIFT - PAGE_SHIFT;
91 return 0;
92 }
93
94 static int dax_is_pmd_entry(void *entry)
95 {
96 return (unsigned long)entry & RADIX_DAX_PMD;
97 }
98
99 static int dax_is_pte_entry(void *entry)
100 {
101 return !((unsigned long)entry & RADIX_DAX_PMD);
102 }
103
104 static int dax_is_zero_entry(void *entry)
105 {
106 return (unsigned long)entry & RADIX_DAX_ZERO_PAGE;
107 }
108
109 static int dax_is_empty_entry(void *entry)
110 {
111 return (unsigned long)entry & RADIX_DAX_EMPTY;
112 }
113
114 /*
115 * DAX radix tree locking
116 */
117 struct exceptional_entry_key {
118 struct address_space *mapping;
119 pgoff_t entry_start;
120 };
121
122 struct wait_exceptional_entry_queue {
123 wait_queue_entry_t wait;
124 struct exceptional_entry_key key;
125 };
126
127 static wait_queue_head_t *dax_entry_waitqueue(struct address_space *mapping,
128 pgoff_t index, void *entry, struct exceptional_entry_key *key)
129 {
130 unsigned long hash;
131
132 /*
133 * If 'entry' is a PMD, align the 'index' that we use for the wait
134 * queue to the start of that PMD. This ensures that all offsets in
135 * the range covered by the PMD map to the same bit lock.
136 */
137 if (dax_is_pmd_entry(entry))
138 index &= ~PG_PMD_COLOUR;
139
140 key->mapping = mapping;
141 key->entry_start = index;
142
143 hash = hash_long((unsigned long)mapping ^ index, DAX_WAIT_TABLE_BITS);
144 return wait_table + hash;
145 }
146
147 static int wake_exceptional_entry_func(wait_queue_entry_t *wait, unsigned int mode,
148 int sync, void *keyp)
149 {
150 struct exceptional_entry_key *key = keyp;
151 struct wait_exceptional_entry_queue *ewait =
152 container_of(wait, struct wait_exceptional_entry_queue, wait);
153
154 if (key->mapping != ewait->key.mapping ||
155 key->entry_start != ewait->key.entry_start)
156 return 0;
157 return autoremove_wake_function(wait, mode, sync, NULL);
158 }
159
160 /*
161 * We do not necessarily hold the mapping->tree_lock when we call this
162 * function so it is possible that 'entry' is no longer a valid item in the
163 * radix tree. This is okay because all we really need to do is to find the
164 * correct waitqueue where tasks might be waiting for that old 'entry' and
165 * wake them.
166 */
167 static void dax_wake_mapping_entry_waiter(struct address_space *mapping,
168 pgoff_t index, void *entry, bool wake_all)
169 {
170 struct exceptional_entry_key key;
171 wait_queue_head_t *wq;
172
173 wq = dax_entry_waitqueue(mapping, index, entry, &key);
174
175 /*
176 * Checking for locked entry and prepare_to_wait_exclusive() happens
177 * under mapping->tree_lock, ditto for entry handling in our callers.
178 * So at this point all tasks that could have seen our entry locked
179 * must be in the waitqueue and the following check will see them.
180 */
181 if (waitqueue_active(wq))
182 __wake_up(wq, TASK_NORMAL, wake_all ? 0 : 1, &key);
183 }
184
185 /*
186 * Check whether the given slot is locked. The function must be called with
187 * mapping->tree_lock held
188 */
189 static inline int slot_locked(struct address_space *mapping, void **slot)
190 {
191 unsigned long entry = (unsigned long)
192 radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
193 return entry & RADIX_DAX_ENTRY_LOCK;
194 }
195
196 /*
197 * Mark the given slot is locked. The function must be called with
198 * mapping->tree_lock held
199 */
200 static inline void *lock_slot(struct address_space *mapping, void **slot)
201 {
202 unsigned long entry = (unsigned long)
203 radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
204
205 entry |= RADIX_DAX_ENTRY_LOCK;
206 radix_tree_replace_slot(&mapping->page_tree, slot, (void *)entry);
207 return (void *)entry;
208 }
209
210 /*
211 * Mark the given slot is unlocked. The function must be called with
212 * mapping->tree_lock held
213 */
214 static inline void *unlock_slot(struct address_space *mapping, void **slot)
215 {
216 unsigned long entry = (unsigned long)
217 radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
218
219 entry &= ~(unsigned long)RADIX_DAX_ENTRY_LOCK;
220 radix_tree_replace_slot(&mapping->page_tree, slot, (void *)entry);
221 return (void *)entry;
222 }
223
224 /*
225 * Lookup entry in radix tree, wait for it to become unlocked if it is
226 * exceptional entry and return it. The caller must call
227 * put_unlocked_mapping_entry() when he decided not to lock the entry or
228 * put_locked_mapping_entry() when he locked the entry and now wants to
229 * unlock it.
230 *
231 * The function must be called with mapping->tree_lock held.
232 */
233 static void *get_unlocked_mapping_entry(struct address_space *mapping,
234 pgoff_t index, void ***slotp)
235 {
236 void *entry, **slot;
237 struct wait_exceptional_entry_queue ewait;
238 wait_queue_head_t *wq;
239
240 init_wait(&ewait.wait);
241 ewait.wait.func = wake_exceptional_entry_func;
242
243 for (;;) {
244 entry = __radix_tree_lookup(&mapping->page_tree, index, NULL,
245 &slot);
246 if (!entry ||
247 WARN_ON_ONCE(!radix_tree_exceptional_entry(entry)) ||
248 !slot_locked(mapping, slot)) {
249 if (slotp)
250 *slotp = slot;
251 return entry;
252 }
253
254 wq = dax_entry_waitqueue(mapping, index, entry, &ewait.key);
255 prepare_to_wait_exclusive(wq, &ewait.wait,
256 TASK_UNINTERRUPTIBLE);
257 spin_unlock_irq(&mapping->tree_lock);
258 schedule();
259 finish_wait(wq, &ewait.wait);
260 spin_lock_irq(&mapping->tree_lock);
261 }
262 }
263
264 static void dax_unlock_mapping_entry(struct address_space *mapping,
265 pgoff_t index)
266 {
267 void *entry, **slot;
268
269 spin_lock_irq(&mapping->tree_lock);
270 entry = __radix_tree_lookup(&mapping->page_tree, index, NULL, &slot);
271 if (WARN_ON_ONCE(!entry || !radix_tree_exceptional_entry(entry) ||
272 !slot_locked(mapping, slot))) {
273 spin_unlock_irq(&mapping->tree_lock);
274 return;
275 }
276 unlock_slot(mapping, slot);
277 spin_unlock_irq(&mapping->tree_lock);
278 dax_wake_mapping_entry_waiter(mapping, index, entry, false);
279 }
280
281 static void put_locked_mapping_entry(struct address_space *mapping,
282 pgoff_t index)
283 {
284 dax_unlock_mapping_entry(mapping, index);
285 }
286
287 /*
288 * Called when we are done with radix tree entry we looked up via
289 * get_unlocked_mapping_entry() and which we didn't lock in the end.
290 */
291 static void put_unlocked_mapping_entry(struct address_space *mapping,
292 pgoff_t index, void *entry)
293 {
294 if (!entry)
295 return;
296
297 /* We have to wake up next waiter for the radix tree entry lock */
298 dax_wake_mapping_entry_waiter(mapping, index, entry, false);
299 }
300
301 /*
302 * Find radix tree entry at given index. If it points to an exceptional entry,
303 * return it with the radix tree entry locked. If the radix tree doesn't
304 * contain given index, create an empty exceptional entry for the index and
305 * return with it locked.
306 *
307 * When requesting an entry with size RADIX_DAX_PMD, grab_mapping_entry() will
308 * either return that locked entry or will return an error. This error will
309 * happen if there are any 4k entries within the 2MiB range that we are
310 * requesting.
311 *
312 * We always favor 4k entries over 2MiB entries. There isn't a flow where we
313 * evict 4k entries in order to 'upgrade' them to a 2MiB entry. A 2MiB
314 * insertion will fail if it finds any 4k entries already in the tree, and a
315 * 4k insertion will cause an existing 2MiB entry to be unmapped and
316 * downgraded to 4k entries. This happens for both 2MiB huge zero pages as
317 * well as 2MiB empty entries.
318 *
319 * The exception to this downgrade path is for 2MiB DAX PMD entries that have
320 * real storage backing them. We will leave these real 2MiB DAX entries in
321 * the tree, and PTE writes will simply dirty the entire 2MiB DAX entry.
322 *
323 * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
324 * persistent memory the benefit is doubtful. We can add that later if we can
325 * show it helps.
326 */
327 static void *grab_mapping_entry(struct address_space *mapping, pgoff_t index,
328 unsigned long size_flag)
329 {
330 bool pmd_downgrade = false; /* splitting 2MiB entry into 4k entries? */
331 void *entry, **slot;
332
333 restart:
334 spin_lock_irq(&mapping->tree_lock);
335 entry = get_unlocked_mapping_entry(mapping, index, &slot);
336
337 if (WARN_ON_ONCE(entry && !radix_tree_exceptional_entry(entry))) {
338 entry = ERR_PTR(-EIO);
339 goto out_unlock;
340 }
341
342 if (entry) {
343 if (size_flag & RADIX_DAX_PMD) {
344 if (dax_is_pte_entry(entry)) {
345 put_unlocked_mapping_entry(mapping, index,
346 entry);
347 entry = ERR_PTR(-EEXIST);
348 goto out_unlock;
349 }
350 } else { /* trying to grab a PTE entry */
351 if (dax_is_pmd_entry(entry) &&
352 (dax_is_zero_entry(entry) ||
353 dax_is_empty_entry(entry))) {
354 pmd_downgrade = true;
355 }
356 }
357 }
358
359 /* No entry for given index? Make sure radix tree is big enough. */
360 if (!entry || pmd_downgrade) {
361 int err;
362
363 if (pmd_downgrade) {
364 /*
365 * Make sure 'entry' remains valid while we drop
366 * mapping->tree_lock.
367 */
368 entry = lock_slot(mapping, slot);
369 }
370
371 spin_unlock_irq(&mapping->tree_lock);
372 /*
373 * Besides huge zero pages the only other thing that gets
374 * downgraded are empty entries which don't need to be
375 * unmapped.
376 */
377 if (pmd_downgrade && dax_is_zero_entry(entry))
378 unmap_mapping_range(mapping,
379 (index << PAGE_SHIFT) & PMD_MASK, PMD_SIZE, 0);
380
381 err = radix_tree_preload(
382 mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM);
383 if (err) {
384 if (pmd_downgrade)
385 put_locked_mapping_entry(mapping, index);
386 return ERR_PTR(err);
387 }
388 spin_lock_irq(&mapping->tree_lock);
389
390 if (!entry) {
391 /*
392 * We needed to drop the page_tree lock while calling
393 * radix_tree_preload() and we didn't have an entry to
394 * lock. See if another thread inserted an entry at
395 * our index during this time.
396 */
397 entry = __radix_tree_lookup(&mapping->page_tree, index,
398 NULL, &slot);
399 if (entry) {
400 radix_tree_preload_end();
401 spin_unlock_irq(&mapping->tree_lock);
402 goto restart;
403 }
404 }
405
406 if (pmd_downgrade) {
407 radix_tree_delete(&mapping->page_tree, index);
408 mapping->nrexceptional--;
409 dax_wake_mapping_entry_waiter(mapping, index, entry,
410 true);
411 }
412
413 entry = dax_radix_locked_entry(0, size_flag | RADIX_DAX_EMPTY);
414
415 err = __radix_tree_insert(&mapping->page_tree, index,
416 dax_radix_order(entry), entry);
417 radix_tree_preload_end();
418 if (err) {
419 spin_unlock_irq(&mapping->tree_lock);
420 /*
421 * Our insertion of a DAX entry failed, most likely
422 * because we were inserting a PMD entry and it
423 * collided with a PTE sized entry at a different
424 * index in the PMD range. We haven't inserted
425 * anything into the radix tree and have no waiters to
426 * wake.
427 */
428 return ERR_PTR(err);
429 }
430 /* Good, we have inserted empty locked entry into the tree. */
431 mapping->nrexceptional++;
432 spin_unlock_irq(&mapping->tree_lock);
433 return entry;
434 }
435 entry = lock_slot(mapping, slot);
436 out_unlock:
437 spin_unlock_irq(&mapping->tree_lock);
438 return entry;
439 }
440
441 static int __dax_invalidate_mapping_entry(struct address_space *mapping,
442 pgoff_t index, bool trunc)
443 {
444 int ret = 0;
445 void *entry;
446 struct radix_tree_root *page_tree = &mapping->page_tree;
447
448 spin_lock_irq(&mapping->tree_lock);
449 entry = get_unlocked_mapping_entry(mapping, index, NULL);
450 if (!entry || WARN_ON_ONCE(!radix_tree_exceptional_entry(entry)))
451 goto out;
452 if (!trunc &&
453 (radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_DIRTY) ||
454 radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_TOWRITE)))
455 goto out;
456 radix_tree_delete(page_tree, index);
457 mapping->nrexceptional--;
458 ret = 1;
459 out:
460 put_unlocked_mapping_entry(mapping, index, entry);
461 spin_unlock_irq(&mapping->tree_lock);
462 return ret;
463 }
464 /*
465 * Delete exceptional DAX entry at @index from @mapping. Wait for radix tree
466 * entry to get unlocked before deleting it.
467 */
468 int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index)
469 {
470 int ret = __dax_invalidate_mapping_entry(mapping, index, true);
471
472 /*
473 * This gets called from truncate / punch_hole path. As such, the caller
474 * must hold locks protecting against concurrent modifications of the
475 * radix tree (usually fs-private i_mmap_sem for writing). Since the
476 * caller has seen exceptional entry for this index, we better find it
477 * at that index as well...
478 */
479 WARN_ON_ONCE(!ret);
480 return ret;
481 }
482
483 /*
484 * Invalidate exceptional DAX entry if it is clean.
485 */
486 int dax_invalidate_mapping_entry_sync(struct address_space *mapping,
487 pgoff_t index)
488 {
489 return __dax_invalidate_mapping_entry(mapping, index, false);
490 }
491
492 static int copy_user_dax(struct block_device *bdev, struct dax_device *dax_dev,
493 sector_t sector, size_t size, struct page *to,
494 unsigned long vaddr)
495 {
496 void *vto, *kaddr;
497 pgoff_t pgoff;
498 pfn_t pfn;
499 long rc;
500 int id;
501
502 rc = bdev_dax_pgoff(bdev, sector, size, &pgoff);
503 if (rc)
504 return rc;
505
506 id = dax_read_lock();
507 rc = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size), &kaddr, &pfn);
508 if (rc < 0) {
509 dax_read_unlock(id);
510 return rc;
511 }
512 vto = kmap_atomic(to);
513 copy_user_page(vto, (void __force *)kaddr, vaddr, to);
514 kunmap_atomic(vto);
515 dax_read_unlock(id);
516 return 0;
517 }
518
519 /*
520 * By this point grab_mapping_entry() has ensured that we have a locked entry
521 * of the appropriate size so we don't have to worry about downgrading PMDs to
522 * PTEs. If we happen to be trying to insert a PTE and there is a PMD
523 * already in the tree, we will skip the insertion and just dirty the PMD as
524 * appropriate.
525 */
526 static void *dax_insert_mapping_entry(struct address_space *mapping,
527 struct vm_fault *vmf,
528 void *entry, sector_t sector,
529 unsigned long flags, bool dirty)
530 {
531 struct radix_tree_root *page_tree = &mapping->page_tree;
532 void *new_entry;
533 pgoff_t index = vmf->pgoff;
534
535 if (dirty)
536 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
537
538 if (dax_is_zero_entry(entry) && !(flags & RADIX_DAX_ZERO_PAGE)) {
539 /* we are replacing a zero page with block mapping */
540 if (dax_is_pmd_entry(entry))
541 unmap_mapping_range(mapping,
542 (vmf->pgoff << PAGE_SHIFT) & PMD_MASK,
543 PMD_SIZE, 0);
544 else /* pte entry */
545 unmap_mapping_range(mapping, vmf->pgoff << PAGE_SHIFT,
546 PAGE_SIZE, 0);
547 }
548
549 spin_lock_irq(&mapping->tree_lock);
550 new_entry = dax_radix_locked_entry(sector, flags);
551
552 if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
553 /*
554 * Only swap our new entry into the radix tree if the current
555 * entry is a zero page or an empty entry. If a normal PTE or
556 * PMD entry is already in the tree, we leave it alone. This
557 * means that if we are trying to insert a PTE and the
558 * existing entry is a PMD, we will just leave the PMD in the
559 * tree and dirty it if necessary.
560 */
561 struct radix_tree_node *node;
562 void **slot;
563 void *ret;
564
565 ret = __radix_tree_lookup(page_tree, index, &node, &slot);
566 WARN_ON_ONCE(ret != entry);
567 __radix_tree_replace(page_tree, node, slot,
568 new_entry, NULL);
569 entry = new_entry;
570 }
571
572 if (dirty)
573 radix_tree_tag_set(page_tree, index, PAGECACHE_TAG_DIRTY);
574
575 spin_unlock_irq(&mapping->tree_lock);
576 return entry;
577 }
578
579 static inline unsigned long
580 pgoff_address(pgoff_t pgoff, struct vm_area_struct *vma)
581 {
582 unsigned long address;
583
584 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
585 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
586 return address;
587 }
588
589 /* Walk all mappings of a given index of a file and writeprotect them */
590 static void dax_mapping_entry_mkclean(struct address_space *mapping,
591 pgoff_t index, unsigned long pfn)
592 {
593 struct vm_area_struct *vma;
594 pte_t pte, *ptep = NULL;
595 pmd_t *pmdp = NULL;
596 spinlock_t *ptl;
597
598 i_mmap_lock_read(mapping);
599 vma_interval_tree_foreach(vma, &mapping->i_mmap, index, index) {
600 unsigned long address, start, end;
601
602 cond_resched();
603
604 if (!(vma->vm_flags & VM_SHARED))
605 continue;
606
607 address = pgoff_address(index, vma);
608
609 /*
610 * Note because we provide start/end to follow_pte_pmd it will
611 * call mmu_notifier_invalidate_range_start() on our behalf
612 * before taking any lock.
613 */
614 if (follow_pte_pmd(vma->vm_mm, address, &start, &end, &ptep, &pmdp, &ptl))
615 continue;
616
617 /*
618 * No need to call mmu_notifier_invalidate_range() as we are
619 * downgrading page table protection not changing it to point
620 * to a new page.
621 *
622 * See Documentation/vm/mmu_notifier.txt
623 */
624 if (pmdp) {
625 #ifdef CONFIG_FS_DAX_PMD
626 pmd_t pmd;
627
628 if (pfn != pmd_pfn(*pmdp))
629 goto unlock_pmd;
630 if (!pmd_dirty(*pmdp)
631 && !pmd_access_permitted(*pmdp, WRITE))
632 goto unlock_pmd;
633
634 flush_cache_page(vma, address, pfn);
635 pmd = pmdp_huge_clear_flush(vma, address, pmdp);
636 pmd = pmd_wrprotect(pmd);
637 pmd = pmd_mkclean(pmd);
638 set_pmd_at(vma->vm_mm, address, pmdp, pmd);
639 unlock_pmd:
640 spin_unlock(ptl);
641 #endif
642 } else {
643 if (pfn != pte_pfn(*ptep))
644 goto unlock_pte;
645 if (!pte_dirty(*ptep) && !pte_write(*ptep))
646 goto unlock_pte;
647
648 flush_cache_page(vma, address, pfn);
649 pte = ptep_clear_flush(vma, address, ptep);
650 pte = pte_wrprotect(pte);
651 pte = pte_mkclean(pte);
652 set_pte_at(vma->vm_mm, address, ptep, pte);
653 unlock_pte:
654 pte_unmap_unlock(ptep, ptl);
655 }
656
657 mmu_notifier_invalidate_range_end(vma->vm_mm, start, end);
658 }
659 i_mmap_unlock_read(mapping);
660 }
661
662 static int dax_writeback_one(struct block_device *bdev,
663 struct dax_device *dax_dev, struct address_space *mapping,
664 pgoff_t index, void *entry)
665 {
666 struct radix_tree_root *page_tree = &mapping->page_tree;
667 void *entry2, **slot, *kaddr;
668 long ret = 0, id;
669 sector_t sector;
670 pgoff_t pgoff;
671 size_t size;
672 pfn_t pfn;
673
674 /*
675 * A page got tagged dirty in DAX mapping? Something is seriously
676 * wrong.
677 */
678 if (WARN_ON(!radix_tree_exceptional_entry(entry)))
679 return -EIO;
680
681 spin_lock_irq(&mapping->tree_lock);
682 entry2 = get_unlocked_mapping_entry(mapping, index, &slot);
683 /* Entry got punched out / reallocated? */
684 if (!entry2 || WARN_ON_ONCE(!radix_tree_exceptional_entry(entry2)))
685 goto put_unlocked;
686 /*
687 * Entry got reallocated elsewhere? No need to writeback. We have to
688 * compare sectors as we must not bail out due to difference in lockbit
689 * or entry type.
690 */
691 if (dax_radix_sector(entry2) != dax_radix_sector(entry))
692 goto put_unlocked;
693 if (WARN_ON_ONCE(dax_is_empty_entry(entry) ||
694 dax_is_zero_entry(entry))) {
695 ret = -EIO;
696 goto put_unlocked;
697 }
698
699 /* Another fsync thread may have already written back this entry */
700 if (!radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_TOWRITE))
701 goto put_unlocked;
702 /* Lock the entry to serialize with page faults */
703 entry = lock_slot(mapping, slot);
704 /*
705 * We can clear the tag now but we have to be careful so that concurrent
706 * dax_writeback_one() calls for the same index cannot finish before we
707 * actually flush the caches. This is achieved as the calls will look
708 * at the entry only under tree_lock and once they do that they will
709 * see the entry locked and wait for it to unlock.
710 */
711 radix_tree_tag_clear(page_tree, index, PAGECACHE_TAG_TOWRITE);
712 spin_unlock_irq(&mapping->tree_lock);
713
714 /*
715 * Even if dax_writeback_mapping_range() was given a wbc->range_start
716 * in the middle of a PMD, the 'index' we are given will be aligned to
717 * the start index of the PMD, as will the sector we pull from
718 * 'entry'. This allows us to flush for PMD_SIZE and not have to
719 * worry about partial PMD writebacks.
720 */
721 sector = dax_radix_sector(entry);
722 size = PAGE_SIZE << dax_radix_order(entry);
723
724 id = dax_read_lock();
725 ret = bdev_dax_pgoff(bdev, sector, size, &pgoff);
726 if (ret)
727 goto dax_unlock;
728
729 /*
730 * dax_direct_access() may sleep, so cannot hold tree_lock over
731 * its invocation.
732 */
733 ret = dax_direct_access(dax_dev, pgoff, size / PAGE_SIZE, &kaddr, &pfn);
734 if (ret < 0)
735 goto dax_unlock;
736
737 if (WARN_ON_ONCE(ret < size / PAGE_SIZE)) {
738 ret = -EIO;
739 goto dax_unlock;
740 }
741
742 dax_mapping_entry_mkclean(mapping, index, pfn_t_to_pfn(pfn));
743 dax_flush(dax_dev, kaddr, size);
744 /*
745 * After we have flushed the cache, we can clear the dirty tag. There
746 * cannot be new dirty data in the pfn after the flush has completed as
747 * the pfn mappings are writeprotected and fault waits for mapping
748 * entry lock.
749 */
750 spin_lock_irq(&mapping->tree_lock);
751 radix_tree_tag_clear(page_tree, index, PAGECACHE_TAG_DIRTY);
752 spin_unlock_irq(&mapping->tree_lock);
753 trace_dax_writeback_one(mapping->host, index, size >> PAGE_SHIFT);
754 dax_unlock:
755 dax_read_unlock(id);
756 put_locked_mapping_entry(mapping, index);
757 return ret;
758
759 put_unlocked:
760 put_unlocked_mapping_entry(mapping, index, entry2);
761 spin_unlock_irq(&mapping->tree_lock);
762 return ret;
763 }
764
765 /*
766 * Flush the mapping to the persistent domain within the byte range of [start,
767 * end]. This is required by data integrity operations to ensure file data is
768 * on persistent storage prior to completion of the operation.
769 */
770 int dax_writeback_mapping_range(struct address_space *mapping,
771 struct block_device *bdev, struct writeback_control *wbc)
772 {
773 struct inode *inode = mapping->host;
774 pgoff_t start_index, end_index;
775 pgoff_t indices[PAGEVEC_SIZE];
776 struct dax_device *dax_dev;
777 struct pagevec pvec;
778 bool done = false;
779 int i, ret = 0;
780
781 if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
782 return -EIO;
783
784 if (!mapping->nrexceptional || wbc->sync_mode != WB_SYNC_ALL)
785 return 0;
786
787 dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
788 if (!dax_dev)
789 return -EIO;
790
791 start_index = wbc->range_start >> PAGE_SHIFT;
792 end_index = wbc->range_end >> PAGE_SHIFT;
793
794 trace_dax_writeback_range(inode, start_index, end_index);
795
796 tag_pages_for_writeback(mapping, start_index, end_index);
797
798 pagevec_init(&pvec);
799 while (!done) {
800 pvec.nr = find_get_entries_tag(mapping, start_index,
801 PAGECACHE_TAG_TOWRITE, PAGEVEC_SIZE,
802 pvec.pages, indices);
803
804 if (pvec.nr == 0)
805 break;
806
807 for (i = 0; i < pvec.nr; i++) {
808 if (indices[i] > end_index) {
809 done = true;
810 break;
811 }
812
813 ret = dax_writeback_one(bdev, dax_dev, mapping,
814 indices[i], pvec.pages[i]);
815 if (ret < 0) {
816 mapping_set_error(mapping, ret);
817 goto out;
818 }
819 }
820 start_index = indices[pvec.nr - 1] + 1;
821 }
822 out:
823 put_dax(dax_dev);
824 trace_dax_writeback_range_done(inode, start_index, end_index);
825 return (ret < 0 ? ret : 0);
826 }
827 EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
828
829 static sector_t dax_iomap_sector(struct iomap *iomap, loff_t pos)
830 {
831 return (iomap->addr + (pos & PAGE_MASK) - iomap->offset) >> 9;
832 }
833
834 static int dax_iomap_pfn(struct iomap *iomap, loff_t pos, size_t size,
835 pfn_t *pfnp)
836 {
837 const sector_t sector = dax_iomap_sector(iomap, pos);
838 pgoff_t pgoff;
839 void *kaddr;
840 int id, rc;
841 long length;
842
843 rc = bdev_dax_pgoff(iomap->bdev, sector, size, &pgoff);
844 if (rc)
845 return rc;
846 id = dax_read_lock();
847 length = dax_direct_access(iomap->dax_dev, pgoff, PHYS_PFN(size),
848 &kaddr, pfnp);
849 if (length < 0) {
850 rc = length;
851 goto out;
852 }
853 rc = -EINVAL;
854 if (PFN_PHYS(length) < size)
855 goto out;
856 if (pfn_t_to_pfn(*pfnp) & (PHYS_PFN(size)-1))
857 goto out;
858 /* For larger pages we need devmap */
859 if (length > 1 && !pfn_t_devmap(*pfnp))
860 goto out;
861 rc = 0;
862 out:
863 dax_read_unlock(id);
864 return rc;
865 }
866
867 /*
868 * The user has performed a load from a hole in the file. Allocating a new
869 * page in the file would cause excessive storage usage for workloads with
870 * sparse files. Instead we insert a read-only mapping of the 4k zero page.
871 * If this page is ever written to we will re-fault and change the mapping to
872 * point to real DAX storage instead.
873 */
874 static int dax_load_hole(struct address_space *mapping, void *entry,
875 struct vm_fault *vmf)
876 {
877 struct inode *inode = mapping->host;
878 unsigned long vaddr = vmf->address;
879 int ret = VM_FAULT_NOPAGE;
880 struct page *zero_page;
881 void *entry2;
882
883 zero_page = ZERO_PAGE(0);
884 if (unlikely(!zero_page)) {
885 ret = VM_FAULT_OOM;
886 goto out;
887 }
888
889 entry2 = dax_insert_mapping_entry(mapping, vmf, entry, 0,
890 RADIX_DAX_ZERO_PAGE, false);
891 if (IS_ERR(entry2)) {
892 ret = VM_FAULT_SIGBUS;
893 goto out;
894 }
895
896 vm_insert_mixed(vmf->vma, vaddr, page_to_pfn_t(zero_page));
897 out:
898 trace_dax_load_hole(inode, vmf, ret);
899 return ret;
900 }
901
902 static bool dax_range_is_aligned(struct block_device *bdev,
903 unsigned int offset, unsigned int length)
904 {
905 unsigned short sector_size = bdev_logical_block_size(bdev);
906
907 if (!IS_ALIGNED(offset, sector_size))
908 return false;
909 if (!IS_ALIGNED(length, sector_size))
910 return false;
911
912 return true;
913 }
914
915 int __dax_zero_page_range(struct block_device *bdev,
916 struct dax_device *dax_dev, sector_t sector,
917 unsigned int offset, unsigned int size)
918 {
919 if (dax_range_is_aligned(bdev, offset, size)) {
920 sector_t start_sector = sector + (offset >> 9);
921
922 return blkdev_issue_zeroout(bdev, start_sector,
923 size >> 9, GFP_NOFS, 0);
924 } else {
925 pgoff_t pgoff;
926 long rc, id;
927 void *kaddr;
928 pfn_t pfn;
929
930 rc = bdev_dax_pgoff(bdev, sector, PAGE_SIZE, &pgoff);
931 if (rc)
932 return rc;
933
934 id = dax_read_lock();
935 rc = dax_direct_access(dax_dev, pgoff, 1, &kaddr,
936 &pfn);
937 if (rc < 0) {
938 dax_read_unlock(id);
939 return rc;
940 }
941 memset(kaddr + offset, 0, size);
942 dax_flush(dax_dev, kaddr + offset, size);
943 dax_read_unlock(id);
944 }
945 return 0;
946 }
947 EXPORT_SYMBOL_GPL(__dax_zero_page_range);
948
949 static loff_t
950 dax_iomap_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
951 struct iomap *iomap)
952 {
953 struct block_device *bdev = iomap->bdev;
954 struct dax_device *dax_dev = iomap->dax_dev;
955 struct iov_iter *iter = data;
956 loff_t end = pos + length, done = 0;
957 ssize_t ret = 0;
958 int id;
959
960 if (iov_iter_rw(iter) == READ) {
961 end = min(end, i_size_read(inode));
962 if (pos >= end)
963 return 0;
964
965 if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
966 return iov_iter_zero(min(length, end - pos), iter);
967 }
968
969 if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED))
970 return -EIO;
971
972 /*
973 * Write can allocate block for an area which has a hole page mapped
974 * into page tables. We have to tear down these mappings so that data
975 * written by write(2) is visible in mmap.
976 */
977 if (iomap->flags & IOMAP_F_NEW) {
978 invalidate_inode_pages2_range(inode->i_mapping,
979 pos >> PAGE_SHIFT,
980 (end - 1) >> PAGE_SHIFT);
981 }
982
983 id = dax_read_lock();
984 while (pos < end) {
985 unsigned offset = pos & (PAGE_SIZE - 1);
986 const size_t size = ALIGN(length + offset, PAGE_SIZE);
987 const sector_t sector = dax_iomap_sector(iomap, pos);
988 ssize_t map_len;
989 pgoff_t pgoff;
990 void *kaddr;
991 pfn_t pfn;
992
993 if (fatal_signal_pending(current)) {
994 ret = -EINTR;
995 break;
996 }
997
998 ret = bdev_dax_pgoff(bdev, sector, size, &pgoff);
999 if (ret)
1000 break;
1001
1002 map_len = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size),
1003 &kaddr, &pfn);
1004 if (map_len < 0) {
1005 ret = map_len;
1006 break;
1007 }
1008
1009 map_len = PFN_PHYS(map_len);
1010 kaddr += offset;
1011 map_len -= offset;
1012 if (map_len > end - pos)
1013 map_len = end - pos;
1014
1015 /*
1016 * The userspace address for the memory copy has already been
1017 * validated via access_ok() in either vfs_read() or
1018 * vfs_write(), depending on which operation we are doing.
1019 */
1020 if (iov_iter_rw(iter) == WRITE)
1021 map_len = dax_copy_from_iter(dax_dev, pgoff, kaddr,
1022 map_len, iter);
1023 else
1024 map_len = copy_to_iter(kaddr, map_len, iter);
1025 if (map_len <= 0) {
1026 ret = map_len ? map_len : -EFAULT;
1027 break;
1028 }
1029
1030 pos += map_len;
1031 length -= map_len;
1032 done += map_len;
1033 }
1034 dax_read_unlock(id);
1035
1036 return done ? done : ret;
1037 }
1038
1039 /**
1040 * dax_iomap_rw - Perform I/O to a DAX file
1041 * @iocb: The control block for this I/O
1042 * @iter: The addresses to do I/O from or to
1043 * @ops: iomap ops passed from the file system
1044 *
1045 * This function performs read and write operations to directly mapped
1046 * persistent memory. The callers needs to take care of read/write exclusion
1047 * and evicting any page cache pages in the region under I/O.
1048 */
1049 ssize_t
1050 dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter,
1051 const struct iomap_ops *ops)
1052 {
1053 struct address_space *mapping = iocb->ki_filp->f_mapping;
1054 struct inode *inode = mapping->host;
1055 loff_t pos = iocb->ki_pos, ret = 0, done = 0;
1056 unsigned flags = 0;
1057
1058 if (iov_iter_rw(iter) == WRITE) {
1059 lockdep_assert_held_exclusive(&inode->i_rwsem);
1060 flags |= IOMAP_WRITE;
1061 } else {
1062 lockdep_assert_held(&inode->i_rwsem);
1063 }
1064
1065 while (iov_iter_count(iter)) {
1066 ret = iomap_apply(inode, pos, iov_iter_count(iter), flags, ops,
1067 iter, dax_iomap_actor);
1068 if (ret <= 0)
1069 break;
1070 pos += ret;
1071 done += ret;
1072 }
1073
1074 iocb->ki_pos += done;
1075 return done ? done : ret;
1076 }
1077 EXPORT_SYMBOL_GPL(dax_iomap_rw);
1078
1079 static int dax_fault_return(int error)
1080 {
1081 if (error == 0)
1082 return VM_FAULT_NOPAGE;
1083 if (error == -ENOMEM)
1084 return VM_FAULT_OOM;
1085 return VM_FAULT_SIGBUS;
1086 }
1087
1088 /*
1089 * MAP_SYNC on a dax mapping guarantees dirty metadata is
1090 * flushed on write-faults (non-cow), but not read-faults.
1091 */
1092 static bool dax_fault_is_synchronous(unsigned long flags,
1093 struct vm_area_struct *vma, struct iomap *iomap)
1094 {
1095 return (flags & IOMAP_WRITE) && (vma->vm_flags & VM_SYNC)
1096 && (iomap->flags & IOMAP_F_DIRTY);
1097 }
1098
1099 static int dax_iomap_pte_fault(struct vm_fault *vmf, pfn_t *pfnp,
1100 const struct iomap_ops *ops)
1101 {
1102 struct vm_area_struct *vma = vmf->vma;
1103 struct address_space *mapping = vma->vm_file->f_mapping;
1104 struct inode *inode = mapping->host;
1105 unsigned long vaddr = vmf->address;
1106 loff_t pos = (loff_t)vmf->pgoff << PAGE_SHIFT;
1107 struct iomap iomap = { 0 };
1108 unsigned flags = IOMAP_FAULT;
1109 int error, major = 0;
1110 bool write = vmf->flags & FAULT_FLAG_WRITE;
1111 bool sync;
1112 int vmf_ret = 0;
1113 void *entry;
1114 pfn_t pfn;
1115
1116 trace_dax_pte_fault(inode, vmf, vmf_ret);
1117 /*
1118 * Check whether offset isn't beyond end of file now. Caller is supposed
1119 * to hold locks serializing us with truncate / punch hole so this is
1120 * a reliable test.
1121 */
1122 if (pos >= i_size_read(inode)) {
1123 vmf_ret = VM_FAULT_SIGBUS;
1124 goto out;
1125 }
1126
1127 if (write && !vmf->cow_page)
1128 flags |= IOMAP_WRITE;
1129
1130 entry = grab_mapping_entry(mapping, vmf->pgoff, 0);
1131 if (IS_ERR(entry)) {
1132 vmf_ret = dax_fault_return(PTR_ERR(entry));
1133 goto out;
1134 }
1135
1136 /*
1137 * It is possible, particularly with mixed reads & writes to private
1138 * mappings, that we have raced with a PMD fault that overlaps with
1139 * the PTE we need to set up. If so just return and the fault will be
1140 * retried.
1141 */
1142 if (pmd_trans_huge(*vmf->pmd) || pmd_devmap(*vmf->pmd)) {
1143 vmf_ret = VM_FAULT_NOPAGE;
1144 goto unlock_entry;
1145 }
1146
1147 /*
1148 * Note that we don't bother to use iomap_apply here: DAX required
1149 * the file system block size to be equal the page size, which means
1150 * that we never have to deal with more than a single extent here.
1151 */
1152 error = ops->iomap_begin(inode, pos, PAGE_SIZE, flags, &iomap);
1153 if (error) {
1154 vmf_ret = dax_fault_return(error);
1155 goto unlock_entry;
1156 }
1157 if (WARN_ON_ONCE(iomap.offset + iomap.length < pos + PAGE_SIZE)) {
1158 error = -EIO; /* fs corruption? */
1159 goto error_finish_iomap;
1160 }
1161
1162 if (vmf->cow_page) {
1163 sector_t sector = dax_iomap_sector(&iomap, pos);
1164
1165 switch (iomap.type) {
1166 case IOMAP_HOLE:
1167 case IOMAP_UNWRITTEN:
1168 clear_user_highpage(vmf->cow_page, vaddr);
1169 break;
1170 case IOMAP_MAPPED:
1171 error = copy_user_dax(iomap.bdev, iomap.dax_dev,
1172 sector, PAGE_SIZE, vmf->cow_page, vaddr);
1173 break;
1174 default:
1175 WARN_ON_ONCE(1);
1176 error = -EIO;
1177 break;
1178 }
1179
1180 if (error)
1181 goto error_finish_iomap;
1182
1183 __SetPageUptodate(vmf->cow_page);
1184 vmf_ret = finish_fault(vmf);
1185 if (!vmf_ret)
1186 vmf_ret = VM_FAULT_DONE_COW;
1187 goto finish_iomap;
1188 }
1189
1190 sync = dax_fault_is_synchronous(flags, vma, &iomap);
1191
1192 switch (iomap.type) {
1193 case IOMAP_MAPPED:
1194 if (iomap.flags & IOMAP_F_NEW) {
1195 count_vm_event(PGMAJFAULT);
1196 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
1197 major = VM_FAULT_MAJOR;
1198 }
1199 error = dax_iomap_pfn(&iomap, pos, PAGE_SIZE, &pfn);
1200 if (error < 0)
1201 goto error_finish_iomap;
1202
1203 entry = dax_insert_mapping_entry(mapping, vmf, entry,
1204 dax_iomap_sector(&iomap, pos),
1205 0, write && !sync);
1206 if (IS_ERR(entry)) {
1207 error = PTR_ERR(entry);
1208 goto error_finish_iomap;
1209 }
1210
1211 /*
1212 * If we are doing synchronous page fault and inode needs fsync,
1213 * we can insert PTE into page tables only after that happens.
1214 * Skip insertion for now and return the pfn so that caller can
1215 * insert it after fsync is done.
1216 */
1217 if (sync) {
1218 if (WARN_ON_ONCE(!pfnp)) {
1219 error = -EIO;
1220 goto error_finish_iomap;
1221 }
1222 *pfnp = pfn;
1223 vmf_ret = VM_FAULT_NEEDDSYNC | major;
1224 goto finish_iomap;
1225 }
1226 trace_dax_insert_mapping(inode, vmf, entry);
1227 if (write)
1228 error = vm_insert_mixed_mkwrite(vma, vaddr, pfn);
1229 else
1230 error = vm_insert_mixed(vma, vaddr, pfn);
1231
1232 /* -EBUSY is fine, somebody else faulted on the same PTE */
1233 if (error == -EBUSY)
1234 error = 0;
1235 break;
1236 case IOMAP_UNWRITTEN:
1237 case IOMAP_HOLE:
1238 if (!write) {
1239 vmf_ret = dax_load_hole(mapping, entry, vmf);
1240 goto finish_iomap;
1241 }
1242 /*FALLTHRU*/
1243 default:
1244 WARN_ON_ONCE(1);
1245 error = -EIO;
1246 break;
1247 }
1248
1249 error_finish_iomap:
1250 vmf_ret = dax_fault_return(error) | major;
1251 finish_iomap:
1252 if (ops->iomap_end) {
1253 int copied = PAGE_SIZE;
1254
1255 if (vmf_ret & VM_FAULT_ERROR)
1256 copied = 0;
1257 /*
1258 * The fault is done by now and there's no way back (other
1259 * thread may be already happily using PTE we have installed).
1260 * Just ignore error from ->iomap_end since we cannot do much
1261 * with it.
1262 */
1263 ops->iomap_end(inode, pos, PAGE_SIZE, copied, flags, &iomap);
1264 }
1265 unlock_entry:
1266 put_locked_mapping_entry(mapping, vmf->pgoff);
1267 out:
1268 trace_dax_pte_fault_done(inode, vmf, vmf_ret);
1269 return vmf_ret;
1270 }
1271
1272 #ifdef CONFIG_FS_DAX_PMD
1273 /*
1274 * The 'colour' (ie low bits) within a PMD of a page offset. This comes up
1275 * more often than one might expect in the below functions.
1276 */
1277 #define PG_PMD_COLOUR ((PMD_SIZE >> PAGE_SHIFT) - 1)
1278
1279 static int dax_pmd_load_hole(struct vm_fault *vmf, struct iomap *iomap,
1280 void *entry)
1281 {
1282 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1283 unsigned long pmd_addr = vmf->address & PMD_MASK;
1284 struct inode *inode = mapping->host;
1285 struct page *zero_page;
1286 void *ret = NULL;
1287 spinlock_t *ptl;
1288 pmd_t pmd_entry;
1289
1290 zero_page = mm_get_huge_zero_page(vmf->vma->vm_mm);
1291
1292 if (unlikely(!zero_page))
1293 goto fallback;
1294
1295 ret = dax_insert_mapping_entry(mapping, vmf, entry, 0,
1296 RADIX_DAX_PMD | RADIX_DAX_ZERO_PAGE, false);
1297 if (IS_ERR(ret))
1298 goto fallback;
1299
1300 ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1301 if (!pmd_none(*(vmf->pmd))) {
1302 spin_unlock(ptl);
1303 goto fallback;
1304 }
1305
1306 pmd_entry = mk_pmd(zero_page, vmf->vma->vm_page_prot);
1307 pmd_entry = pmd_mkhuge(pmd_entry);
1308 set_pmd_at(vmf->vma->vm_mm, pmd_addr, vmf->pmd, pmd_entry);
1309 spin_unlock(ptl);
1310 trace_dax_pmd_load_hole(inode, vmf, zero_page, ret);
1311 return VM_FAULT_NOPAGE;
1312
1313 fallback:
1314 trace_dax_pmd_load_hole_fallback(inode, vmf, zero_page, ret);
1315 return VM_FAULT_FALLBACK;
1316 }
1317
1318 static int dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1319 const struct iomap_ops *ops)
1320 {
1321 struct vm_area_struct *vma = vmf->vma;
1322 struct address_space *mapping = vma->vm_file->f_mapping;
1323 unsigned long pmd_addr = vmf->address & PMD_MASK;
1324 bool write = vmf->flags & FAULT_FLAG_WRITE;
1325 bool sync;
1326 unsigned int iomap_flags = (write ? IOMAP_WRITE : 0) | IOMAP_FAULT;
1327 struct inode *inode = mapping->host;
1328 int result = VM_FAULT_FALLBACK;
1329 struct iomap iomap = { 0 };
1330 pgoff_t max_pgoff, pgoff;
1331 void *entry;
1332 loff_t pos;
1333 int error;
1334 pfn_t pfn;
1335
1336 /*
1337 * Check whether offset isn't beyond end of file now. Caller is
1338 * supposed to hold locks serializing us with truncate / punch hole so
1339 * this is a reliable test.
1340 */
1341 pgoff = linear_page_index(vma, pmd_addr);
1342 max_pgoff = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1343
1344 trace_dax_pmd_fault(inode, vmf, max_pgoff, 0);
1345
1346 /*
1347 * Make sure that the faulting address's PMD offset (color) matches
1348 * the PMD offset from the start of the file. This is necessary so
1349 * that a PMD range in the page table overlaps exactly with a PMD
1350 * range in the radix tree.
1351 */
1352 if ((vmf->pgoff & PG_PMD_COLOUR) !=
1353 ((vmf->address >> PAGE_SHIFT) & PG_PMD_COLOUR))
1354 goto fallback;
1355
1356 /* Fall back to PTEs if we're going to COW */
1357 if (write && !(vma->vm_flags & VM_SHARED))
1358 goto fallback;
1359
1360 /* If the PMD would extend outside the VMA */
1361 if (pmd_addr < vma->vm_start)
1362 goto fallback;
1363 if ((pmd_addr + PMD_SIZE) > vma->vm_end)
1364 goto fallback;
1365
1366 if (pgoff >= max_pgoff) {
1367 result = VM_FAULT_SIGBUS;
1368 goto out;
1369 }
1370
1371 /* If the PMD would extend beyond the file size */
1372 if ((pgoff | PG_PMD_COLOUR) >= max_pgoff)
1373 goto fallback;
1374
1375 /*
1376 * grab_mapping_entry() will make sure we get a 2MiB empty entry, a
1377 * 2MiB zero page entry or a DAX PMD. If it can't (because a 4k page
1378 * is already in the tree, for instance), it will return -EEXIST and
1379 * we just fall back to 4k entries.
1380 */
1381 entry = grab_mapping_entry(mapping, pgoff, RADIX_DAX_PMD);
1382 if (IS_ERR(entry))
1383 goto fallback;
1384
1385 /*
1386 * It is possible, particularly with mixed reads & writes to private
1387 * mappings, that we have raced with a PTE fault that overlaps with
1388 * the PMD we need to set up. If so just return and the fault will be
1389 * retried.
1390 */
1391 if (!pmd_none(*vmf->pmd) && !pmd_trans_huge(*vmf->pmd) &&
1392 !pmd_devmap(*vmf->pmd)) {
1393 result = 0;
1394 goto unlock_entry;
1395 }
1396
1397 /*
1398 * Note that we don't use iomap_apply here. We aren't doing I/O, only
1399 * setting up a mapping, so really we're using iomap_begin() as a way
1400 * to look up our filesystem block.
1401 */
1402 pos = (loff_t)pgoff << PAGE_SHIFT;
1403 error = ops->iomap_begin(inode, pos, PMD_SIZE, iomap_flags, &iomap);
1404 if (error)
1405 goto unlock_entry;
1406
1407 if (iomap.offset + iomap.length < pos + PMD_SIZE)
1408 goto finish_iomap;
1409
1410 sync = dax_fault_is_synchronous(iomap_flags, vma, &iomap);
1411
1412 switch (iomap.type) {
1413 case IOMAP_MAPPED:
1414 error = dax_iomap_pfn(&iomap, pos, PMD_SIZE, &pfn);
1415 if (error < 0)
1416 goto finish_iomap;
1417
1418 entry = dax_insert_mapping_entry(mapping, vmf, entry,
1419 dax_iomap_sector(&iomap, pos),
1420 RADIX_DAX_PMD, write && !sync);
1421 if (IS_ERR(entry))
1422 goto finish_iomap;
1423
1424 /*
1425 * If we are doing synchronous page fault and inode needs fsync,
1426 * we can insert PMD into page tables only after that happens.
1427 * Skip insertion for now and return the pfn so that caller can
1428 * insert it after fsync is done.
1429 */
1430 if (sync) {
1431 if (WARN_ON_ONCE(!pfnp))
1432 goto finish_iomap;
1433 *pfnp = pfn;
1434 result = VM_FAULT_NEEDDSYNC;
1435 goto finish_iomap;
1436 }
1437
1438 trace_dax_pmd_insert_mapping(inode, vmf, PMD_SIZE, pfn, entry);
1439 result = vmf_insert_pfn_pmd(vma, vmf->address, vmf->pmd, pfn,
1440 write);
1441 break;
1442 case IOMAP_UNWRITTEN:
1443 case IOMAP_HOLE:
1444 if (WARN_ON_ONCE(write))
1445 break;
1446 result = dax_pmd_load_hole(vmf, &iomap, entry);
1447 break;
1448 default:
1449 WARN_ON_ONCE(1);
1450 break;
1451 }
1452
1453 finish_iomap:
1454 if (ops->iomap_end) {
1455 int copied = PMD_SIZE;
1456
1457 if (result == VM_FAULT_FALLBACK)
1458 copied = 0;
1459 /*
1460 * The fault is done by now and there's no way back (other
1461 * thread may be already happily using PMD we have installed).
1462 * Just ignore error from ->iomap_end since we cannot do much
1463 * with it.
1464 */
1465 ops->iomap_end(inode, pos, PMD_SIZE, copied, iomap_flags,
1466 &iomap);
1467 }
1468 unlock_entry:
1469 put_locked_mapping_entry(mapping, pgoff);
1470 fallback:
1471 if (result == VM_FAULT_FALLBACK) {
1472 split_huge_pmd(vma, vmf->pmd, vmf->address);
1473 count_vm_event(THP_FAULT_FALLBACK);
1474 }
1475 out:
1476 trace_dax_pmd_fault_done(inode, vmf, max_pgoff, result);
1477 return result;
1478 }
1479 #else
1480 static int dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1481 const struct iomap_ops *ops)
1482 {
1483 return VM_FAULT_FALLBACK;
1484 }
1485 #endif /* CONFIG_FS_DAX_PMD */
1486
1487 /**
1488 * dax_iomap_fault - handle a page fault on a DAX file
1489 * @vmf: The description of the fault
1490 * @pe_size: Size of the page to fault in
1491 * @pfnp: PFN to insert for synchronous faults if fsync is required
1492 * @ops: Iomap ops passed from the file system
1493 *
1494 * When a page fault occurs, filesystems may call this helper in
1495 * their fault handler for DAX files. dax_iomap_fault() assumes the caller
1496 * has done all the necessary locking for page fault to proceed
1497 * successfully.
1498 */
1499 int dax_iomap_fault(struct vm_fault *vmf, enum page_entry_size pe_size,
1500 pfn_t *pfnp, const struct iomap_ops *ops)
1501 {
1502 switch (pe_size) {
1503 case PE_SIZE_PTE:
1504 return dax_iomap_pte_fault(vmf, pfnp, ops);
1505 case PE_SIZE_PMD:
1506 return dax_iomap_pmd_fault(vmf, pfnp, ops);
1507 default:
1508 return VM_FAULT_FALLBACK;
1509 }
1510 }
1511 EXPORT_SYMBOL_GPL(dax_iomap_fault);
1512
1513 /**
1514 * dax_insert_pfn_mkwrite - insert PTE or PMD entry into page tables
1515 * @vmf: The description of the fault
1516 * @pe_size: Size of entry to be inserted
1517 * @pfn: PFN to insert
1518 *
1519 * This function inserts writeable PTE or PMD entry into page tables for mmaped
1520 * DAX file. It takes care of marking corresponding radix tree entry as dirty
1521 * as well.
1522 */
1523 static int dax_insert_pfn_mkwrite(struct vm_fault *vmf,
1524 enum page_entry_size pe_size,
1525 pfn_t pfn)
1526 {
1527 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1528 void *entry, **slot;
1529 pgoff_t index = vmf->pgoff;
1530 int vmf_ret, error;
1531
1532 spin_lock_irq(&mapping->tree_lock);
1533 entry = get_unlocked_mapping_entry(mapping, index, &slot);
1534 /* Did we race with someone splitting entry or so? */
1535 if (!entry ||
1536 (pe_size == PE_SIZE_PTE && !dax_is_pte_entry(entry)) ||
1537 (pe_size == PE_SIZE_PMD && !dax_is_pmd_entry(entry))) {
1538 put_unlocked_mapping_entry(mapping, index, entry);
1539 spin_unlock_irq(&mapping->tree_lock);
1540 trace_dax_insert_pfn_mkwrite_no_entry(mapping->host, vmf,
1541 VM_FAULT_NOPAGE);
1542 return VM_FAULT_NOPAGE;
1543 }
1544 radix_tree_tag_set(&mapping->page_tree, index, PAGECACHE_TAG_DIRTY);
1545 entry = lock_slot(mapping, slot);
1546 spin_unlock_irq(&mapping->tree_lock);
1547 switch (pe_size) {
1548 case PE_SIZE_PTE:
1549 error = vm_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn);
1550 vmf_ret = dax_fault_return(error);
1551 break;
1552 #ifdef CONFIG_FS_DAX_PMD
1553 case PE_SIZE_PMD:
1554 vmf_ret = vmf_insert_pfn_pmd(vmf->vma, vmf->address, vmf->pmd,
1555 pfn, true);
1556 break;
1557 #endif
1558 default:
1559 vmf_ret = VM_FAULT_FALLBACK;
1560 }
1561 put_locked_mapping_entry(mapping, index);
1562 trace_dax_insert_pfn_mkwrite(mapping->host, vmf, vmf_ret);
1563 return vmf_ret;
1564 }
1565
1566 /**
1567 * dax_finish_sync_fault - finish synchronous page fault
1568 * @vmf: The description of the fault
1569 * @pe_size: Size of entry to be inserted
1570 * @pfn: PFN to insert
1571 *
1572 * This function ensures that the file range touched by the page fault is
1573 * stored persistently on the media and handles inserting of appropriate page
1574 * table entry.
1575 */
1576 int dax_finish_sync_fault(struct vm_fault *vmf, enum page_entry_size pe_size,
1577 pfn_t pfn)
1578 {
1579 int err;
1580 loff_t start = ((loff_t)vmf->pgoff) << PAGE_SHIFT;
1581 size_t len = 0;
1582
1583 if (pe_size == PE_SIZE_PTE)
1584 len = PAGE_SIZE;
1585 else if (pe_size == PE_SIZE_PMD)
1586 len = PMD_SIZE;
1587 else
1588 WARN_ON_ONCE(1);
1589 err = vfs_fsync_range(vmf->vma->vm_file, start, start + len - 1, 1);
1590 if (err)
1591 return VM_FAULT_SIGBUS;
1592 return dax_insert_pfn_mkwrite(vmf, pe_size, pfn);
1593 }
1594 EXPORT_SYMBOL_GPL(dax_finish_sync_fault);