]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/dcache.c
reset: hisilicon: fix potential NULL pointer dereference
[mirror_ubuntu-bionic-kernel.git] / fs / dcache.c
1 /*
2 * fs/dcache.c
3 *
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
8
9 /*
10 * Notes on the allocation strategy:
11 *
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
15 */
16
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/export.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <linux/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/rculist_bl.h>
38 #include <linux/prefetch.h>
39 #include <linux/ratelimit.h>
40 #include <linux/list_lru.h>
41 #include <linux/kasan.h>
42
43 #include "internal.h"
44 #include "mount.h"
45
46 /*
47 * Usage:
48 * dcache->d_inode->i_lock protects:
49 * - i_dentry, d_u.d_alias, d_inode of aliases
50 * dcache_hash_bucket lock protects:
51 * - the dcache hash table
52 * s_anon bl list spinlock protects:
53 * - the s_anon list (see __d_drop)
54 * dentry->d_sb->s_dentry_lru_lock protects:
55 * - the dcache lru lists and counters
56 * d_lock protects:
57 * - d_flags
58 * - d_name
59 * - d_lru
60 * - d_count
61 * - d_unhashed()
62 * - d_parent and d_subdirs
63 * - childrens' d_child and d_parent
64 * - d_u.d_alias, d_inode
65 *
66 * Ordering:
67 * dentry->d_inode->i_lock
68 * dentry->d_lock
69 * dentry->d_sb->s_dentry_lru_lock
70 * dcache_hash_bucket lock
71 * s_anon lock
72 *
73 * If there is an ancestor relationship:
74 * dentry->d_parent->...->d_parent->d_lock
75 * ...
76 * dentry->d_parent->d_lock
77 * dentry->d_lock
78 *
79 * If no ancestor relationship:
80 * if (dentry1 < dentry2)
81 * dentry1->d_lock
82 * dentry2->d_lock
83 */
84 int sysctl_vfs_cache_pressure __read_mostly = 100;
85 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
86
87 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
88
89 EXPORT_SYMBOL(rename_lock);
90
91 static struct kmem_cache *dentry_cache __read_mostly;
92
93 const struct qstr empty_name = QSTR_INIT("", 0);
94 EXPORT_SYMBOL(empty_name);
95 const struct qstr slash_name = QSTR_INIT("/", 1);
96 EXPORT_SYMBOL(slash_name);
97
98 /*
99 * This is the single most critical data structure when it comes
100 * to the dcache: the hashtable for lookups. Somebody should try
101 * to make this good - I've just made it work.
102 *
103 * This hash-function tries to avoid losing too many bits of hash
104 * information, yet avoid using a prime hash-size or similar.
105 */
106
107 static unsigned int d_hash_mask __read_mostly;
108 static unsigned int d_hash_shift __read_mostly;
109
110 static struct hlist_bl_head *dentry_hashtable __read_mostly;
111
112 static inline struct hlist_bl_head *d_hash(unsigned int hash)
113 {
114 return dentry_hashtable + (hash >> (32 - d_hash_shift));
115 }
116
117 #define IN_LOOKUP_SHIFT 10
118 static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT];
119
120 static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent,
121 unsigned int hash)
122 {
123 hash += (unsigned long) parent / L1_CACHE_BYTES;
124 return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT);
125 }
126
127
128 /* Statistics gathering. */
129 struct dentry_stat_t dentry_stat = {
130 .age_limit = 45,
131 };
132
133 static DEFINE_PER_CPU(long, nr_dentry);
134 static DEFINE_PER_CPU(long, nr_dentry_unused);
135
136 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
137
138 /*
139 * Here we resort to our own counters instead of using generic per-cpu counters
140 * for consistency with what the vfs inode code does. We are expected to harvest
141 * better code and performance by having our own specialized counters.
142 *
143 * Please note that the loop is done over all possible CPUs, not over all online
144 * CPUs. The reason for this is that we don't want to play games with CPUs going
145 * on and off. If one of them goes off, we will just keep their counters.
146 *
147 * glommer: See cffbc8a for details, and if you ever intend to change this,
148 * please update all vfs counters to match.
149 */
150 static long get_nr_dentry(void)
151 {
152 int i;
153 long sum = 0;
154 for_each_possible_cpu(i)
155 sum += per_cpu(nr_dentry, i);
156 return sum < 0 ? 0 : sum;
157 }
158
159 static long get_nr_dentry_unused(void)
160 {
161 int i;
162 long sum = 0;
163 for_each_possible_cpu(i)
164 sum += per_cpu(nr_dentry_unused, i);
165 return sum < 0 ? 0 : sum;
166 }
167
168 int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer,
169 size_t *lenp, loff_t *ppos)
170 {
171 dentry_stat.nr_dentry = get_nr_dentry();
172 dentry_stat.nr_unused = get_nr_dentry_unused();
173 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
174 }
175 #endif
176
177 /*
178 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
179 * The strings are both count bytes long, and count is non-zero.
180 */
181 #ifdef CONFIG_DCACHE_WORD_ACCESS
182
183 #include <asm/word-at-a-time.h>
184 /*
185 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
186 * aligned allocation for this particular component. We don't
187 * strictly need the load_unaligned_zeropad() safety, but it
188 * doesn't hurt either.
189 *
190 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
191 * need the careful unaligned handling.
192 */
193 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
194 {
195 unsigned long a,b,mask;
196
197 for (;;) {
198 a = *(unsigned long *)cs;
199 b = load_unaligned_zeropad(ct);
200 if (tcount < sizeof(unsigned long))
201 break;
202 if (unlikely(a != b))
203 return 1;
204 cs += sizeof(unsigned long);
205 ct += sizeof(unsigned long);
206 tcount -= sizeof(unsigned long);
207 if (!tcount)
208 return 0;
209 }
210 mask = bytemask_from_count(tcount);
211 return unlikely(!!((a ^ b) & mask));
212 }
213
214 #else
215
216 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
217 {
218 do {
219 if (*cs != *ct)
220 return 1;
221 cs++;
222 ct++;
223 tcount--;
224 } while (tcount);
225 return 0;
226 }
227
228 #endif
229
230 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
231 {
232 /*
233 * Be careful about RCU walk racing with rename:
234 * use 'READ_ONCE' to fetch the name pointer.
235 *
236 * NOTE! Even if a rename will mean that the length
237 * was not loaded atomically, we don't care. The
238 * RCU walk will check the sequence count eventually,
239 * and catch it. And we won't overrun the buffer,
240 * because we're reading the name pointer atomically,
241 * and a dentry name is guaranteed to be properly
242 * terminated with a NUL byte.
243 *
244 * End result: even if 'len' is wrong, we'll exit
245 * early because the data cannot match (there can
246 * be no NUL in the ct/tcount data)
247 */
248 const unsigned char *cs = READ_ONCE(dentry->d_name.name);
249
250 return dentry_string_cmp(cs, ct, tcount);
251 }
252
253 struct external_name {
254 union {
255 atomic_t count;
256 struct rcu_head head;
257 } u;
258 unsigned char name[];
259 };
260
261 static inline struct external_name *external_name(struct dentry *dentry)
262 {
263 return container_of(dentry->d_name.name, struct external_name, name[0]);
264 }
265
266 static void __d_free(struct rcu_head *head)
267 {
268 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
269
270 kmem_cache_free(dentry_cache, dentry);
271 }
272
273 static void __d_free_external_name(struct rcu_head *head)
274 {
275 struct external_name *name = container_of(head, struct external_name,
276 u.head);
277
278 mod_node_page_state(page_pgdat(virt_to_page(name)),
279 NR_INDIRECTLY_RECLAIMABLE_BYTES,
280 -ksize(name));
281
282 kfree(name);
283 }
284
285 static void __d_free_external(struct rcu_head *head)
286 {
287 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
288
289 __d_free_external_name(&external_name(dentry)->u.head);
290
291 kmem_cache_free(dentry_cache, dentry);
292 }
293
294 static inline int dname_external(const struct dentry *dentry)
295 {
296 return dentry->d_name.name != dentry->d_iname;
297 }
298
299 void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry)
300 {
301 spin_lock(&dentry->d_lock);
302 if (unlikely(dname_external(dentry))) {
303 struct external_name *p = external_name(dentry);
304 atomic_inc(&p->u.count);
305 spin_unlock(&dentry->d_lock);
306 name->name = p->name;
307 } else {
308 memcpy(name->inline_name, dentry->d_iname,
309 dentry->d_name.len + 1);
310 spin_unlock(&dentry->d_lock);
311 name->name = name->inline_name;
312 }
313 }
314 EXPORT_SYMBOL(take_dentry_name_snapshot);
315
316 void release_dentry_name_snapshot(struct name_snapshot *name)
317 {
318 if (unlikely(name->name != name->inline_name)) {
319 struct external_name *p;
320 p = container_of(name->name, struct external_name, name[0]);
321 if (unlikely(atomic_dec_and_test(&p->u.count)))
322 call_rcu(&p->u.head, __d_free_external_name);
323 }
324 }
325 EXPORT_SYMBOL(release_dentry_name_snapshot);
326
327 static inline void __d_set_inode_and_type(struct dentry *dentry,
328 struct inode *inode,
329 unsigned type_flags)
330 {
331 unsigned flags;
332
333 dentry->d_inode = inode;
334 flags = READ_ONCE(dentry->d_flags);
335 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
336 flags |= type_flags;
337 WRITE_ONCE(dentry->d_flags, flags);
338 }
339
340 static inline void __d_clear_type_and_inode(struct dentry *dentry)
341 {
342 unsigned flags = READ_ONCE(dentry->d_flags);
343
344 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
345 WRITE_ONCE(dentry->d_flags, flags);
346 dentry->d_inode = NULL;
347 }
348
349 static void dentry_free(struct dentry *dentry)
350 {
351 WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
352 if (unlikely(dname_external(dentry))) {
353 struct external_name *p = external_name(dentry);
354 if (likely(atomic_dec_and_test(&p->u.count))) {
355 call_rcu(&dentry->d_u.d_rcu, __d_free_external);
356 return;
357 }
358 }
359 /* if dentry was never visible to RCU, immediate free is OK */
360 if (!(dentry->d_flags & DCACHE_RCUACCESS))
361 __d_free(&dentry->d_u.d_rcu);
362 else
363 call_rcu(&dentry->d_u.d_rcu, __d_free);
364 }
365
366 /*
367 * Release the dentry's inode, using the filesystem
368 * d_iput() operation if defined.
369 */
370 static void dentry_unlink_inode(struct dentry * dentry)
371 __releases(dentry->d_lock)
372 __releases(dentry->d_inode->i_lock)
373 {
374 struct inode *inode = dentry->d_inode;
375
376 raw_write_seqcount_begin(&dentry->d_seq);
377 __d_clear_type_and_inode(dentry);
378 hlist_del_init(&dentry->d_u.d_alias);
379 raw_write_seqcount_end(&dentry->d_seq);
380 spin_unlock(&dentry->d_lock);
381 spin_unlock(&inode->i_lock);
382 if (!inode->i_nlink)
383 fsnotify_inoderemove(inode);
384 if (dentry->d_op && dentry->d_op->d_iput)
385 dentry->d_op->d_iput(dentry, inode);
386 else
387 iput(inode);
388 }
389
390 /*
391 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
392 * is in use - which includes both the "real" per-superblock
393 * LRU list _and_ the DCACHE_SHRINK_LIST use.
394 *
395 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
396 * on the shrink list (ie not on the superblock LRU list).
397 *
398 * The per-cpu "nr_dentry_unused" counters are updated with
399 * the DCACHE_LRU_LIST bit.
400 *
401 * These helper functions make sure we always follow the
402 * rules. d_lock must be held by the caller.
403 */
404 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
405 static void d_lru_add(struct dentry *dentry)
406 {
407 D_FLAG_VERIFY(dentry, 0);
408 dentry->d_flags |= DCACHE_LRU_LIST;
409 this_cpu_inc(nr_dentry_unused);
410 WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
411 }
412
413 static void d_lru_del(struct dentry *dentry)
414 {
415 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
416 dentry->d_flags &= ~DCACHE_LRU_LIST;
417 this_cpu_dec(nr_dentry_unused);
418 WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
419 }
420
421 static void d_shrink_del(struct dentry *dentry)
422 {
423 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
424 list_del_init(&dentry->d_lru);
425 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
426 this_cpu_dec(nr_dentry_unused);
427 }
428
429 static void d_shrink_add(struct dentry *dentry, struct list_head *list)
430 {
431 D_FLAG_VERIFY(dentry, 0);
432 list_add(&dentry->d_lru, list);
433 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
434 this_cpu_inc(nr_dentry_unused);
435 }
436
437 /*
438 * These can only be called under the global LRU lock, ie during the
439 * callback for freeing the LRU list. "isolate" removes it from the
440 * LRU lists entirely, while shrink_move moves it to the indicated
441 * private list.
442 */
443 static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
444 {
445 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
446 dentry->d_flags &= ~DCACHE_LRU_LIST;
447 this_cpu_dec(nr_dentry_unused);
448 list_lru_isolate(lru, &dentry->d_lru);
449 }
450
451 static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
452 struct list_head *list)
453 {
454 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
455 dentry->d_flags |= DCACHE_SHRINK_LIST;
456 list_lru_isolate_move(lru, &dentry->d_lru, list);
457 }
458
459 /*
460 * dentry_lru_(add|del)_list) must be called with d_lock held.
461 */
462 static void dentry_lru_add(struct dentry *dentry)
463 {
464 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
465 d_lru_add(dentry);
466 else if (unlikely(!(dentry->d_flags & DCACHE_REFERENCED)))
467 dentry->d_flags |= DCACHE_REFERENCED;
468 }
469
470 /**
471 * d_drop - drop a dentry
472 * @dentry: dentry to drop
473 *
474 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
475 * be found through a VFS lookup any more. Note that this is different from
476 * deleting the dentry - d_delete will try to mark the dentry negative if
477 * possible, giving a successful _negative_ lookup, while d_drop will
478 * just make the cache lookup fail.
479 *
480 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
481 * reason (NFS timeouts or autofs deletes).
482 *
483 * __d_drop requires dentry->d_lock
484 * ___d_drop doesn't mark dentry as "unhashed"
485 * (dentry->d_hash.pprev will be LIST_POISON2, not NULL).
486 */
487 static void ___d_drop(struct dentry *dentry)
488 {
489 if (!d_unhashed(dentry)) {
490 struct hlist_bl_head *b;
491 /*
492 * Hashed dentries are normally on the dentry hashtable,
493 * with the exception of those newly allocated by
494 * d_obtain_alias, which are always IS_ROOT:
495 */
496 if (unlikely(IS_ROOT(dentry)))
497 b = &dentry->d_sb->s_anon;
498 else
499 b = d_hash(dentry->d_name.hash);
500
501 hlist_bl_lock(b);
502 __hlist_bl_del(&dentry->d_hash);
503 hlist_bl_unlock(b);
504 /* After this call, in-progress rcu-walk path lookup will fail. */
505 write_seqcount_invalidate(&dentry->d_seq);
506 }
507 }
508
509 void __d_drop(struct dentry *dentry)
510 {
511 ___d_drop(dentry);
512 dentry->d_hash.pprev = NULL;
513 }
514 EXPORT_SYMBOL(__d_drop);
515
516 void d_drop(struct dentry *dentry)
517 {
518 spin_lock(&dentry->d_lock);
519 __d_drop(dentry);
520 spin_unlock(&dentry->d_lock);
521 }
522 EXPORT_SYMBOL(d_drop);
523
524 static inline void dentry_unlist(struct dentry *dentry, struct dentry *parent)
525 {
526 struct dentry *next;
527 /*
528 * Inform d_walk() and shrink_dentry_list() that we are no longer
529 * attached to the dentry tree
530 */
531 dentry->d_flags |= DCACHE_DENTRY_KILLED;
532 if (unlikely(list_empty(&dentry->d_child)))
533 return;
534 __list_del_entry(&dentry->d_child);
535 /*
536 * Cursors can move around the list of children. While we'd been
537 * a normal list member, it didn't matter - ->d_child.next would've
538 * been updated. However, from now on it won't be and for the
539 * things like d_walk() it might end up with a nasty surprise.
540 * Normally d_walk() doesn't care about cursors moving around -
541 * ->d_lock on parent prevents that and since a cursor has no children
542 * of its own, we get through it without ever unlocking the parent.
543 * There is one exception, though - if we ascend from a child that
544 * gets killed as soon as we unlock it, the next sibling is found
545 * using the value left in its ->d_child.next. And if _that_
546 * pointed to a cursor, and cursor got moved (e.g. by lseek())
547 * before d_walk() regains parent->d_lock, we'll end up skipping
548 * everything the cursor had been moved past.
549 *
550 * Solution: make sure that the pointer left behind in ->d_child.next
551 * points to something that won't be moving around. I.e. skip the
552 * cursors.
553 */
554 while (dentry->d_child.next != &parent->d_subdirs) {
555 next = list_entry(dentry->d_child.next, struct dentry, d_child);
556 if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR)))
557 break;
558 dentry->d_child.next = next->d_child.next;
559 }
560 }
561
562 static void __dentry_kill(struct dentry *dentry)
563 {
564 struct dentry *parent = NULL;
565 bool can_free = true;
566 if (!IS_ROOT(dentry))
567 parent = dentry->d_parent;
568
569 /*
570 * The dentry is now unrecoverably dead to the world.
571 */
572 lockref_mark_dead(&dentry->d_lockref);
573
574 /*
575 * inform the fs via d_prune that this dentry is about to be
576 * unhashed and destroyed.
577 */
578 if (dentry->d_flags & DCACHE_OP_PRUNE)
579 dentry->d_op->d_prune(dentry);
580
581 if (dentry->d_flags & DCACHE_LRU_LIST) {
582 if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
583 d_lru_del(dentry);
584 }
585 /* if it was on the hash then remove it */
586 __d_drop(dentry);
587 dentry_unlist(dentry, parent);
588 if (parent)
589 spin_unlock(&parent->d_lock);
590 if (dentry->d_inode)
591 dentry_unlink_inode(dentry);
592 else
593 spin_unlock(&dentry->d_lock);
594 this_cpu_dec(nr_dentry);
595 if (dentry->d_op && dentry->d_op->d_release)
596 dentry->d_op->d_release(dentry);
597
598 spin_lock(&dentry->d_lock);
599 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
600 dentry->d_flags |= DCACHE_MAY_FREE;
601 can_free = false;
602 }
603 spin_unlock(&dentry->d_lock);
604 if (likely(can_free))
605 dentry_free(dentry);
606 }
607
608 /*
609 * Finish off a dentry we've decided to kill.
610 * dentry->d_lock must be held, returns with it unlocked.
611 * If ref is non-zero, then decrement the refcount too.
612 * Returns dentry requiring refcount drop, or NULL if we're done.
613 */
614 static struct dentry *dentry_kill(struct dentry *dentry)
615 __releases(dentry->d_lock)
616 {
617 struct inode *inode = dentry->d_inode;
618 struct dentry *parent = NULL;
619
620 if (inode && unlikely(!spin_trylock(&inode->i_lock)))
621 goto failed;
622
623 if (!IS_ROOT(dentry)) {
624 parent = dentry->d_parent;
625 if (unlikely(!spin_trylock(&parent->d_lock))) {
626 if (inode)
627 spin_unlock(&inode->i_lock);
628 goto failed;
629 }
630 }
631
632 __dentry_kill(dentry);
633 return parent;
634
635 failed:
636 spin_unlock(&dentry->d_lock);
637 return dentry; /* try again with same dentry */
638 }
639
640 static inline struct dentry *lock_parent(struct dentry *dentry)
641 {
642 struct dentry *parent = dentry->d_parent;
643 if (IS_ROOT(dentry))
644 return NULL;
645 if (unlikely(dentry->d_lockref.count < 0))
646 return NULL;
647 if (likely(spin_trylock(&parent->d_lock)))
648 return parent;
649 rcu_read_lock();
650 spin_unlock(&dentry->d_lock);
651 again:
652 parent = READ_ONCE(dentry->d_parent);
653 spin_lock(&parent->d_lock);
654 /*
655 * We can't blindly lock dentry until we are sure
656 * that we won't violate the locking order.
657 * Any changes of dentry->d_parent must have
658 * been done with parent->d_lock held, so
659 * spin_lock() above is enough of a barrier
660 * for checking if it's still our child.
661 */
662 if (unlikely(parent != dentry->d_parent)) {
663 spin_unlock(&parent->d_lock);
664 goto again;
665 }
666 if (parent != dentry) {
667 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
668 if (unlikely(dentry->d_lockref.count < 0)) {
669 spin_unlock(&parent->d_lock);
670 parent = NULL;
671 }
672 } else {
673 parent = NULL;
674 }
675 rcu_read_unlock();
676 return parent;
677 }
678
679 /*
680 * Try to do a lockless dput(), and return whether that was successful.
681 *
682 * If unsuccessful, we return false, having already taken the dentry lock.
683 *
684 * The caller needs to hold the RCU read lock, so that the dentry is
685 * guaranteed to stay around even if the refcount goes down to zero!
686 */
687 static inline bool fast_dput(struct dentry *dentry)
688 {
689 int ret;
690 unsigned int d_flags;
691
692 /*
693 * If we have a d_op->d_delete() operation, we sould not
694 * let the dentry count go to zero, so use "put_or_lock".
695 */
696 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE))
697 return lockref_put_or_lock(&dentry->d_lockref);
698
699 /*
700 * .. otherwise, we can try to just decrement the
701 * lockref optimistically.
702 */
703 ret = lockref_put_return(&dentry->d_lockref);
704
705 /*
706 * If the lockref_put_return() failed due to the lock being held
707 * by somebody else, the fast path has failed. We will need to
708 * get the lock, and then check the count again.
709 */
710 if (unlikely(ret < 0)) {
711 spin_lock(&dentry->d_lock);
712 if (dentry->d_lockref.count > 1) {
713 dentry->d_lockref.count--;
714 spin_unlock(&dentry->d_lock);
715 return 1;
716 }
717 return 0;
718 }
719
720 /*
721 * If we weren't the last ref, we're done.
722 */
723 if (ret)
724 return 1;
725
726 /*
727 * Careful, careful. The reference count went down
728 * to zero, but we don't hold the dentry lock, so
729 * somebody else could get it again, and do another
730 * dput(), and we need to not race with that.
731 *
732 * However, there is a very special and common case
733 * where we don't care, because there is nothing to
734 * do: the dentry is still hashed, it does not have
735 * a 'delete' op, and it's referenced and already on
736 * the LRU list.
737 *
738 * NOTE! Since we aren't locked, these values are
739 * not "stable". However, it is sufficient that at
740 * some point after we dropped the reference the
741 * dentry was hashed and the flags had the proper
742 * value. Other dentry users may have re-gotten
743 * a reference to the dentry and change that, but
744 * our work is done - we can leave the dentry
745 * around with a zero refcount.
746 */
747 smp_rmb();
748 d_flags = READ_ONCE(dentry->d_flags);
749 d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST | DCACHE_DISCONNECTED;
750
751 /* Nothing to do? Dropping the reference was all we needed? */
752 if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry))
753 return 1;
754
755 /*
756 * Not the fast normal case? Get the lock. We've already decremented
757 * the refcount, but we'll need to re-check the situation after
758 * getting the lock.
759 */
760 spin_lock(&dentry->d_lock);
761
762 /*
763 * Did somebody else grab a reference to it in the meantime, and
764 * we're no longer the last user after all? Alternatively, somebody
765 * else could have killed it and marked it dead. Either way, we
766 * don't need to do anything else.
767 */
768 if (dentry->d_lockref.count) {
769 spin_unlock(&dentry->d_lock);
770 return 1;
771 }
772
773 /*
774 * Re-get the reference we optimistically dropped. We hold the
775 * lock, and we just tested that it was zero, so we can just
776 * set it to 1.
777 */
778 dentry->d_lockref.count = 1;
779 return 0;
780 }
781
782
783 /*
784 * This is dput
785 *
786 * This is complicated by the fact that we do not want to put
787 * dentries that are no longer on any hash chain on the unused
788 * list: we'd much rather just get rid of them immediately.
789 *
790 * However, that implies that we have to traverse the dentry
791 * tree upwards to the parents which might _also_ now be
792 * scheduled for deletion (it may have been only waiting for
793 * its last child to go away).
794 *
795 * This tail recursion is done by hand as we don't want to depend
796 * on the compiler to always get this right (gcc generally doesn't).
797 * Real recursion would eat up our stack space.
798 */
799
800 /*
801 * dput - release a dentry
802 * @dentry: dentry to release
803 *
804 * Release a dentry. This will drop the usage count and if appropriate
805 * call the dentry unlink method as well as removing it from the queues and
806 * releasing its resources. If the parent dentries were scheduled for release
807 * they too may now get deleted.
808 */
809 void dput(struct dentry *dentry)
810 {
811 if (unlikely(!dentry))
812 return;
813
814 repeat:
815 might_sleep();
816
817 rcu_read_lock();
818 if (likely(fast_dput(dentry))) {
819 rcu_read_unlock();
820 return;
821 }
822
823 /* Slow case: now with the dentry lock held */
824 rcu_read_unlock();
825
826 WARN_ON(d_in_lookup(dentry));
827
828 /* Unreachable? Get rid of it */
829 if (unlikely(d_unhashed(dentry)))
830 goto kill_it;
831
832 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
833 goto kill_it;
834
835 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
836 if (dentry->d_op->d_delete(dentry))
837 goto kill_it;
838 }
839
840 dentry_lru_add(dentry);
841
842 dentry->d_lockref.count--;
843 spin_unlock(&dentry->d_lock);
844 return;
845
846 kill_it:
847 dentry = dentry_kill(dentry);
848 if (dentry) {
849 cond_resched();
850 goto repeat;
851 }
852 }
853 EXPORT_SYMBOL(dput);
854
855
856 /* This must be called with d_lock held */
857 static inline void __dget_dlock(struct dentry *dentry)
858 {
859 dentry->d_lockref.count++;
860 }
861
862 static inline void __dget(struct dentry *dentry)
863 {
864 lockref_get(&dentry->d_lockref);
865 }
866
867 struct dentry *dget_parent(struct dentry *dentry)
868 {
869 int gotref;
870 struct dentry *ret;
871
872 /*
873 * Do optimistic parent lookup without any
874 * locking.
875 */
876 rcu_read_lock();
877 ret = READ_ONCE(dentry->d_parent);
878 gotref = lockref_get_not_zero(&ret->d_lockref);
879 rcu_read_unlock();
880 if (likely(gotref)) {
881 if (likely(ret == READ_ONCE(dentry->d_parent)))
882 return ret;
883 dput(ret);
884 }
885
886 repeat:
887 /*
888 * Don't need rcu_dereference because we re-check it was correct under
889 * the lock.
890 */
891 rcu_read_lock();
892 ret = dentry->d_parent;
893 spin_lock(&ret->d_lock);
894 if (unlikely(ret != dentry->d_parent)) {
895 spin_unlock(&ret->d_lock);
896 rcu_read_unlock();
897 goto repeat;
898 }
899 rcu_read_unlock();
900 BUG_ON(!ret->d_lockref.count);
901 ret->d_lockref.count++;
902 spin_unlock(&ret->d_lock);
903 return ret;
904 }
905 EXPORT_SYMBOL(dget_parent);
906
907 /**
908 * d_find_alias - grab a hashed alias of inode
909 * @inode: inode in question
910 *
911 * If inode has a hashed alias, or is a directory and has any alias,
912 * acquire the reference to alias and return it. Otherwise return NULL.
913 * Notice that if inode is a directory there can be only one alias and
914 * it can be unhashed only if it has no children, or if it is the root
915 * of a filesystem, or if the directory was renamed and d_revalidate
916 * was the first vfs operation to notice.
917 *
918 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
919 * any other hashed alias over that one.
920 */
921 static struct dentry *__d_find_alias(struct inode *inode)
922 {
923 struct dentry *alias, *discon_alias;
924
925 again:
926 discon_alias = NULL;
927 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
928 spin_lock(&alias->d_lock);
929 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
930 if (IS_ROOT(alias) &&
931 (alias->d_flags & DCACHE_DISCONNECTED)) {
932 discon_alias = alias;
933 } else {
934 __dget_dlock(alias);
935 spin_unlock(&alias->d_lock);
936 return alias;
937 }
938 }
939 spin_unlock(&alias->d_lock);
940 }
941 if (discon_alias) {
942 alias = discon_alias;
943 spin_lock(&alias->d_lock);
944 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
945 __dget_dlock(alias);
946 spin_unlock(&alias->d_lock);
947 return alias;
948 }
949 spin_unlock(&alias->d_lock);
950 goto again;
951 }
952 return NULL;
953 }
954
955 struct dentry *d_find_alias(struct inode *inode)
956 {
957 struct dentry *de = NULL;
958
959 if (!hlist_empty(&inode->i_dentry)) {
960 spin_lock(&inode->i_lock);
961 de = __d_find_alias(inode);
962 spin_unlock(&inode->i_lock);
963 }
964 return de;
965 }
966 EXPORT_SYMBOL(d_find_alias);
967
968 /*
969 * Try to kill dentries associated with this inode.
970 * WARNING: you must own a reference to inode.
971 */
972 void d_prune_aliases(struct inode *inode)
973 {
974 struct dentry *dentry;
975 restart:
976 spin_lock(&inode->i_lock);
977 hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
978 spin_lock(&dentry->d_lock);
979 if (!dentry->d_lockref.count) {
980 struct dentry *parent = lock_parent(dentry);
981 if (likely(!dentry->d_lockref.count)) {
982 __dentry_kill(dentry);
983 dput(parent);
984 goto restart;
985 }
986 if (parent)
987 spin_unlock(&parent->d_lock);
988 }
989 spin_unlock(&dentry->d_lock);
990 }
991 spin_unlock(&inode->i_lock);
992 }
993 EXPORT_SYMBOL(d_prune_aliases);
994
995 static void shrink_dentry_list(struct list_head *list)
996 {
997 struct dentry *dentry, *parent;
998
999 while (!list_empty(list)) {
1000 struct inode *inode;
1001 dentry = list_entry(list->prev, struct dentry, d_lru);
1002 spin_lock(&dentry->d_lock);
1003 parent = lock_parent(dentry);
1004
1005 /*
1006 * The dispose list is isolated and dentries are not accounted
1007 * to the LRU here, so we can simply remove it from the list
1008 * here regardless of whether it is referenced or not.
1009 */
1010 d_shrink_del(dentry);
1011
1012 /*
1013 * We found an inuse dentry which was not removed from
1014 * the LRU because of laziness during lookup. Do not free it.
1015 */
1016 if (dentry->d_lockref.count > 0) {
1017 spin_unlock(&dentry->d_lock);
1018 if (parent)
1019 spin_unlock(&parent->d_lock);
1020 continue;
1021 }
1022
1023
1024 if (unlikely(dentry->d_flags & DCACHE_DENTRY_KILLED)) {
1025 bool can_free = dentry->d_flags & DCACHE_MAY_FREE;
1026 spin_unlock(&dentry->d_lock);
1027 if (parent)
1028 spin_unlock(&parent->d_lock);
1029 if (can_free)
1030 dentry_free(dentry);
1031 continue;
1032 }
1033
1034 inode = dentry->d_inode;
1035 if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
1036 d_shrink_add(dentry, list);
1037 spin_unlock(&dentry->d_lock);
1038 if (parent)
1039 spin_unlock(&parent->d_lock);
1040 continue;
1041 }
1042
1043 __dentry_kill(dentry);
1044
1045 /*
1046 * We need to prune ancestors too. This is necessary to prevent
1047 * quadratic behavior of shrink_dcache_parent(), but is also
1048 * expected to be beneficial in reducing dentry cache
1049 * fragmentation.
1050 */
1051 dentry = parent;
1052 while (dentry && !lockref_put_or_lock(&dentry->d_lockref)) {
1053 parent = lock_parent(dentry);
1054 if (dentry->d_lockref.count != 1) {
1055 dentry->d_lockref.count--;
1056 spin_unlock(&dentry->d_lock);
1057 if (parent)
1058 spin_unlock(&parent->d_lock);
1059 break;
1060 }
1061 inode = dentry->d_inode; /* can't be NULL */
1062 if (unlikely(!spin_trylock(&inode->i_lock))) {
1063 spin_unlock(&dentry->d_lock);
1064 if (parent)
1065 spin_unlock(&parent->d_lock);
1066 cpu_relax();
1067 continue;
1068 }
1069 __dentry_kill(dentry);
1070 dentry = parent;
1071 }
1072 }
1073 }
1074
1075 static enum lru_status dentry_lru_isolate(struct list_head *item,
1076 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1077 {
1078 struct list_head *freeable = arg;
1079 struct dentry *dentry = container_of(item, struct dentry, d_lru);
1080
1081
1082 /*
1083 * we are inverting the lru lock/dentry->d_lock here,
1084 * so use a trylock. If we fail to get the lock, just skip
1085 * it
1086 */
1087 if (!spin_trylock(&dentry->d_lock))
1088 return LRU_SKIP;
1089
1090 /*
1091 * Referenced dentries are still in use. If they have active
1092 * counts, just remove them from the LRU. Otherwise give them
1093 * another pass through the LRU.
1094 */
1095 if (dentry->d_lockref.count) {
1096 d_lru_isolate(lru, dentry);
1097 spin_unlock(&dentry->d_lock);
1098 return LRU_REMOVED;
1099 }
1100
1101 if (dentry->d_flags & DCACHE_REFERENCED) {
1102 dentry->d_flags &= ~DCACHE_REFERENCED;
1103 spin_unlock(&dentry->d_lock);
1104
1105 /*
1106 * The list move itself will be made by the common LRU code. At
1107 * this point, we've dropped the dentry->d_lock but keep the
1108 * lru lock. This is safe to do, since every list movement is
1109 * protected by the lru lock even if both locks are held.
1110 *
1111 * This is guaranteed by the fact that all LRU management
1112 * functions are intermediated by the LRU API calls like
1113 * list_lru_add and list_lru_del. List movement in this file
1114 * only ever occur through this functions or through callbacks
1115 * like this one, that are called from the LRU API.
1116 *
1117 * The only exceptions to this are functions like
1118 * shrink_dentry_list, and code that first checks for the
1119 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be
1120 * operating only with stack provided lists after they are
1121 * properly isolated from the main list. It is thus, always a
1122 * local access.
1123 */
1124 return LRU_ROTATE;
1125 }
1126
1127 d_lru_shrink_move(lru, dentry, freeable);
1128 spin_unlock(&dentry->d_lock);
1129
1130 return LRU_REMOVED;
1131 }
1132
1133 /**
1134 * prune_dcache_sb - shrink the dcache
1135 * @sb: superblock
1136 * @sc: shrink control, passed to list_lru_shrink_walk()
1137 *
1138 * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1139 * is done when we need more memory and called from the superblock shrinker
1140 * function.
1141 *
1142 * This function may fail to free any resources if all the dentries are in
1143 * use.
1144 */
1145 long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
1146 {
1147 LIST_HEAD(dispose);
1148 long freed;
1149
1150 freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1151 dentry_lru_isolate, &dispose);
1152 shrink_dentry_list(&dispose);
1153 return freed;
1154 }
1155
1156 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
1157 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1158 {
1159 struct list_head *freeable = arg;
1160 struct dentry *dentry = container_of(item, struct dentry, d_lru);
1161
1162 /*
1163 * we are inverting the lru lock/dentry->d_lock here,
1164 * so use a trylock. If we fail to get the lock, just skip
1165 * it
1166 */
1167 if (!spin_trylock(&dentry->d_lock))
1168 return LRU_SKIP;
1169
1170 d_lru_shrink_move(lru, dentry, freeable);
1171 spin_unlock(&dentry->d_lock);
1172
1173 return LRU_REMOVED;
1174 }
1175
1176
1177 /**
1178 * shrink_dcache_sb - shrink dcache for a superblock
1179 * @sb: superblock
1180 *
1181 * Shrink the dcache for the specified super block. This is used to free
1182 * the dcache before unmounting a file system.
1183 */
1184 void shrink_dcache_sb(struct super_block *sb)
1185 {
1186 long freed;
1187
1188 do {
1189 LIST_HEAD(dispose);
1190
1191 freed = list_lru_walk(&sb->s_dentry_lru,
1192 dentry_lru_isolate_shrink, &dispose, 1024);
1193
1194 this_cpu_sub(nr_dentry_unused, freed);
1195 shrink_dentry_list(&dispose);
1196 cond_resched();
1197 } while (list_lru_count(&sb->s_dentry_lru) > 0);
1198 }
1199 EXPORT_SYMBOL(shrink_dcache_sb);
1200
1201 /**
1202 * enum d_walk_ret - action to talke during tree walk
1203 * @D_WALK_CONTINUE: contrinue walk
1204 * @D_WALK_QUIT: quit walk
1205 * @D_WALK_NORETRY: quit when retry is needed
1206 * @D_WALK_SKIP: skip this dentry and its children
1207 */
1208 enum d_walk_ret {
1209 D_WALK_CONTINUE,
1210 D_WALK_QUIT,
1211 D_WALK_NORETRY,
1212 D_WALK_SKIP,
1213 };
1214
1215 /**
1216 * d_walk - walk the dentry tree
1217 * @parent: start of walk
1218 * @data: data passed to @enter() and @finish()
1219 * @enter: callback when first entering the dentry
1220 * @finish: callback when successfully finished the walk
1221 *
1222 * The @enter() and @finish() callbacks are called with d_lock held.
1223 */
1224 void d_walk(struct dentry *parent, void *data,
1225 enum d_walk_ret (*enter)(void *, struct dentry *),
1226 void (*finish)(void *))
1227 {
1228 struct dentry *this_parent;
1229 struct list_head *next;
1230 unsigned seq = 0;
1231 enum d_walk_ret ret;
1232 bool retry = true;
1233
1234 again:
1235 read_seqbegin_or_lock(&rename_lock, &seq);
1236 this_parent = parent;
1237 spin_lock(&this_parent->d_lock);
1238
1239 ret = enter(data, this_parent);
1240 switch (ret) {
1241 case D_WALK_CONTINUE:
1242 break;
1243 case D_WALK_QUIT:
1244 case D_WALK_SKIP:
1245 goto out_unlock;
1246 case D_WALK_NORETRY:
1247 retry = false;
1248 break;
1249 }
1250 repeat:
1251 next = this_parent->d_subdirs.next;
1252 resume:
1253 while (next != &this_parent->d_subdirs) {
1254 struct list_head *tmp = next;
1255 struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1256 next = tmp->next;
1257
1258 if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR))
1259 continue;
1260
1261 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1262
1263 ret = enter(data, dentry);
1264 switch (ret) {
1265 case D_WALK_CONTINUE:
1266 break;
1267 case D_WALK_QUIT:
1268 spin_unlock(&dentry->d_lock);
1269 goto out_unlock;
1270 case D_WALK_NORETRY:
1271 retry = false;
1272 break;
1273 case D_WALK_SKIP:
1274 spin_unlock(&dentry->d_lock);
1275 continue;
1276 }
1277
1278 if (!list_empty(&dentry->d_subdirs)) {
1279 spin_unlock(&this_parent->d_lock);
1280 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1281 this_parent = dentry;
1282 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1283 goto repeat;
1284 }
1285 spin_unlock(&dentry->d_lock);
1286 }
1287 /*
1288 * All done at this level ... ascend and resume the search.
1289 */
1290 rcu_read_lock();
1291 ascend:
1292 if (this_parent != parent) {
1293 struct dentry *child = this_parent;
1294 this_parent = child->d_parent;
1295
1296 spin_unlock(&child->d_lock);
1297 spin_lock(&this_parent->d_lock);
1298
1299 /* might go back up the wrong parent if we have had a rename. */
1300 if (need_seqretry(&rename_lock, seq))
1301 goto rename_retry;
1302 /* go into the first sibling still alive */
1303 do {
1304 next = child->d_child.next;
1305 if (next == &this_parent->d_subdirs)
1306 goto ascend;
1307 child = list_entry(next, struct dentry, d_child);
1308 } while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED));
1309 rcu_read_unlock();
1310 goto resume;
1311 }
1312 if (need_seqretry(&rename_lock, seq))
1313 goto rename_retry;
1314 rcu_read_unlock();
1315 if (finish)
1316 finish(data);
1317
1318 out_unlock:
1319 spin_unlock(&this_parent->d_lock);
1320 done_seqretry(&rename_lock, seq);
1321 return;
1322
1323 rename_retry:
1324 spin_unlock(&this_parent->d_lock);
1325 rcu_read_unlock();
1326 BUG_ON(seq & 1);
1327 if (!retry)
1328 return;
1329 seq = 1;
1330 goto again;
1331 }
1332 EXPORT_SYMBOL_GPL(d_walk);
1333
1334 struct check_mount {
1335 struct vfsmount *mnt;
1336 unsigned int mounted;
1337 };
1338
1339 static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry)
1340 {
1341 struct check_mount *info = data;
1342 struct path path = { .mnt = info->mnt, .dentry = dentry };
1343
1344 if (likely(!d_mountpoint(dentry)))
1345 return D_WALK_CONTINUE;
1346 if (__path_is_mountpoint(&path)) {
1347 info->mounted = 1;
1348 return D_WALK_QUIT;
1349 }
1350 return D_WALK_CONTINUE;
1351 }
1352
1353 /**
1354 * path_has_submounts - check for mounts over a dentry in the
1355 * current namespace.
1356 * @parent: path to check.
1357 *
1358 * Return true if the parent or its subdirectories contain
1359 * a mount point in the current namespace.
1360 */
1361 int path_has_submounts(const struct path *parent)
1362 {
1363 struct check_mount data = { .mnt = parent->mnt, .mounted = 0 };
1364
1365 read_seqlock_excl(&mount_lock);
1366 d_walk(parent->dentry, &data, path_check_mount, NULL);
1367 read_sequnlock_excl(&mount_lock);
1368
1369 return data.mounted;
1370 }
1371 EXPORT_SYMBOL(path_has_submounts);
1372
1373 /*
1374 * Called by mount code to set a mountpoint and check if the mountpoint is
1375 * reachable (e.g. NFS can unhash a directory dentry and then the complete
1376 * subtree can become unreachable).
1377 *
1378 * Only one of d_invalidate() and d_set_mounted() must succeed. For
1379 * this reason take rename_lock and d_lock on dentry and ancestors.
1380 */
1381 int d_set_mounted(struct dentry *dentry)
1382 {
1383 struct dentry *p;
1384 int ret = -ENOENT;
1385 write_seqlock(&rename_lock);
1386 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1387 /* Need exclusion wrt. d_invalidate() */
1388 spin_lock(&p->d_lock);
1389 if (unlikely(d_unhashed(p))) {
1390 spin_unlock(&p->d_lock);
1391 goto out;
1392 }
1393 spin_unlock(&p->d_lock);
1394 }
1395 spin_lock(&dentry->d_lock);
1396 if (!d_unlinked(dentry)) {
1397 ret = -EBUSY;
1398 if (!d_mountpoint(dentry)) {
1399 dentry->d_flags |= DCACHE_MOUNTED;
1400 ret = 0;
1401 }
1402 }
1403 spin_unlock(&dentry->d_lock);
1404 out:
1405 write_sequnlock(&rename_lock);
1406 return ret;
1407 }
1408
1409 /*
1410 * Search the dentry child list of the specified parent,
1411 * and move any unused dentries to the end of the unused
1412 * list for prune_dcache(). We descend to the next level
1413 * whenever the d_subdirs list is non-empty and continue
1414 * searching.
1415 *
1416 * It returns zero iff there are no unused children,
1417 * otherwise it returns the number of children moved to
1418 * the end of the unused list. This may not be the total
1419 * number of unused children, because select_parent can
1420 * drop the lock and return early due to latency
1421 * constraints.
1422 */
1423
1424 struct select_data {
1425 struct dentry *start;
1426 struct list_head dispose;
1427 int found;
1428 };
1429
1430 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1431 {
1432 struct select_data *data = _data;
1433 enum d_walk_ret ret = D_WALK_CONTINUE;
1434
1435 if (data->start == dentry)
1436 goto out;
1437
1438 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1439 data->found++;
1440 } else {
1441 if (dentry->d_flags & DCACHE_LRU_LIST)
1442 d_lru_del(dentry);
1443 if (!dentry->d_lockref.count) {
1444 d_shrink_add(dentry, &data->dispose);
1445 data->found++;
1446 }
1447 }
1448 /*
1449 * We can return to the caller if we have found some (this
1450 * ensures forward progress). We'll be coming back to find
1451 * the rest.
1452 */
1453 if (!list_empty(&data->dispose))
1454 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1455 out:
1456 return ret;
1457 }
1458
1459 /**
1460 * shrink_dcache_parent - prune dcache
1461 * @parent: parent of entries to prune
1462 *
1463 * Prune the dcache to remove unused children of the parent dentry.
1464 */
1465 void shrink_dcache_parent(struct dentry *parent)
1466 {
1467 for (;;) {
1468 struct select_data data;
1469
1470 INIT_LIST_HEAD(&data.dispose);
1471 data.start = parent;
1472 data.found = 0;
1473
1474 d_walk(parent, &data, select_collect, NULL);
1475 if (!data.found)
1476 break;
1477
1478 shrink_dentry_list(&data.dispose);
1479 cond_resched();
1480 }
1481 }
1482 EXPORT_SYMBOL(shrink_dcache_parent);
1483
1484 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
1485 {
1486 /* it has busy descendents; complain about those instead */
1487 if (!list_empty(&dentry->d_subdirs))
1488 return D_WALK_CONTINUE;
1489
1490 /* root with refcount 1 is fine */
1491 if (dentry == _data && dentry->d_lockref.count == 1)
1492 return D_WALK_CONTINUE;
1493
1494 printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1495 " still in use (%d) [unmount of %s %s]\n",
1496 dentry,
1497 dentry->d_inode ?
1498 dentry->d_inode->i_ino : 0UL,
1499 dentry,
1500 dentry->d_lockref.count,
1501 dentry->d_sb->s_type->name,
1502 dentry->d_sb->s_id);
1503 WARN_ON(1);
1504 return D_WALK_CONTINUE;
1505 }
1506
1507 static void do_one_tree(struct dentry *dentry)
1508 {
1509 shrink_dcache_parent(dentry);
1510 d_walk(dentry, dentry, umount_check, NULL);
1511 d_drop(dentry);
1512 dput(dentry);
1513 }
1514
1515 /*
1516 * destroy the dentries attached to a superblock on unmounting
1517 */
1518 void shrink_dcache_for_umount(struct super_block *sb)
1519 {
1520 struct dentry *dentry;
1521
1522 WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
1523
1524 dentry = sb->s_root;
1525 sb->s_root = NULL;
1526 do_one_tree(dentry);
1527
1528 while (!hlist_bl_empty(&sb->s_anon)) {
1529 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash));
1530 do_one_tree(dentry);
1531 }
1532 }
1533
1534 struct detach_data {
1535 struct select_data select;
1536 struct dentry *mountpoint;
1537 };
1538 static enum d_walk_ret detach_and_collect(void *_data, struct dentry *dentry)
1539 {
1540 struct detach_data *data = _data;
1541
1542 if (d_mountpoint(dentry)) {
1543 __dget_dlock(dentry);
1544 data->mountpoint = dentry;
1545 return D_WALK_QUIT;
1546 }
1547
1548 return select_collect(&data->select, dentry);
1549 }
1550
1551 static void check_and_drop(void *_data)
1552 {
1553 struct detach_data *data = _data;
1554
1555 if (!data->mountpoint && list_empty(&data->select.dispose))
1556 __d_drop(data->select.start);
1557 }
1558
1559 /**
1560 * d_invalidate - detach submounts, prune dcache, and drop
1561 * @dentry: dentry to invalidate (aka detach, prune and drop)
1562 *
1563 * no dcache lock.
1564 *
1565 * The final d_drop is done as an atomic operation relative to
1566 * rename_lock ensuring there are no races with d_set_mounted. This
1567 * ensures there are no unhashed dentries on the path to a mountpoint.
1568 */
1569 void d_invalidate(struct dentry *dentry)
1570 {
1571 /*
1572 * If it's already been dropped, return OK.
1573 */
1574 spin_lock(&dentry->d_lock);
1575 if (d_unhashed(dentry)) {
1576 spin_unlock(&dentry->d_lock);
1577 return;
1578 }
1579 spin_unlock(&dentry->d_lock);
1580
1581 /* Negative dentries can be dropped without further checks */
1582 if (!dentry->d_inode) {
1583 d_drop(dentry);
1584 return;
1585 }
1586
1587 for (;;) {
1588 struct detach_data data;
1589
1590 data.mountpoint = NULL;
1591 INIT_LIST_HEAD(&data.select.dispose);
1592 data.select.start = dentry;
1593 data.select.found = 0;
1594
1595 d_walk(dentry, &data, detach_and_collect, check_and_drop);
1596
1597 if (!list_empty(&data.select.dispose))
1598 shrink_dentry_list(&data.select.dispose);
1599 else if (!data.mountpoint)
1600 return;
1601
1602 if (data.mountpoint) {
1603 detach_mounts(data.mountpoint);
1604 dput(data.mountpoint);
1605 }
1606 cond_resched();
1607 }
1608 }
1609 EXPORT_SYMBOL(d_invalidate);
1610
1611 /**
1612 * __d_alloc - allocate a dcache entry
1613 * @sb: filesystem it will belong to
1614 * @name: qstr of the name
1615 *
1616 * Allocates a dentry. It returns %NULL if there is insufficient memory
1617 * available. On a success the dentry is returned. The name passed in is
1618 * copied and the copy passed in may be reused after this call.
1619 */
1620
1621 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1622 {
1623 struct external_name *ext = NULL;
1624 struct dentry *dentry;
1625 char *dname;
1626 int err;
1627
1628 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1629 if (!dentry)
1630 return NULL;
1631
1632 /*
1633 * We guarantee that the inline name is always NUL-terminated.
1634 * This way the memcpy() done by the name switching in rename
1635 * will still always have a NUL at the end, even if we might
1636 * be overwriting an internal NUL character
1637 */
1638 dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1639 if (unlikely(!name)) {
1640 name = &slash_name;
1641 dname = dentry->d_iname;
1642 } else if (name->len > DNAME_INLINE_LEN-1) {
1643 size_t size = offsetof(struct external_name, name[1]);
1644 ext = kmalloc(size + name->len, GFP_KERNEL_ACCOUNT);
1645 if (!ext) {
1646 kmem_cache_free(dentry_cache, dentry);
1647 return NULL;
1648 }
1649 atomic_set(&ext->u.count, 1);
1650 dname = ext->name;
1651 if (IS_ENABLED(CONFIG_DCACHE_WORD_ACCESS))
1652 kasan_unpoison_shadow(dname,
1653 round_up(name->len + 1, sizeof(unsigned long)));
1654 } else {
1655 dname = dentry->d_iname;
1656 }
1657
1658 dentry->d_name.len = name->len;
1659 dentry->d_name.hash = name->hash;
1660 memcpy(dname, name->name, name->len);
1661 dname[name->len] = 0;
1662
1663 /* Make sure we always see the terminating NUL character */
1664 smp_wmb();
1665 dentry->d_name.name = dname;
1666
1667 dentry->d_lockref.count = 1;
1668 dentry->d_flags = 0;
1669 spin_lock_init(&dentry->d_lock);
1670 seqcount_init(&dentry->d_seq);
1671 dentry->d_inode = NULL;
1672 dentry->d_parent = dentry;
1673 dentry->d_sb = sb;
1674 dentry->d_op = NULL;
1675 dentry->d_fsdata = NULL;
1676 INIT_HLIST_BL_NODE(&dentry->d_hash);
1677 INIT_LIST_HEAD(&dentry->d_lru);
1678 INIT_LIST_HEAD(&dentry->d_subdirs);
1679 INIT_HLIST_NODE(&dentry->d_u.d_alias);
1680 INIT_LIST_HEAD(&dentry->d_child);
1681 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1682
1683 if (dentry->d_op && dentry->d_op->d_init) {
1684 err = dentry->d_op->d_init(dentry);
1685 if (err) {
1686 if (dname_external(dentry))
1687 kfree(external_name(dentry));
1688 kmem_cache_free(dentry_cache, dentry);
1689 return NULL;
1690 }
1691 }
1692
1693 if (unlikely(ext)) {
1694 pg_data_t *pgdat = page_pgdat(virt_to_page(ext));
1695 mod_node_page_state(pgdat, NR_INDIRECTLY_RECLAIMABLE_BYTES,
1696 ksize(ext));
1697 }
1698
1699 this_cpu_inc(nr_dentry);
1700
1701 return dentry;
1702 }
1703
1704 /**
1705 * d_alloc - allocate a dcache entry
1706 * @parent: parent of entry to allocate
1707 * @name: qstr of the name
1708 *
1709 * Allocates a dentry. It returns %NULL if there is insufficient memory
1710 * available. On a success the dentry is returned. The name passed in is
1711 * copied and the copy passed in may be reused after this call.
1712 */
1713 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1714 {
1715 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1716 if (!dentry)
1717 return NULL;
1718 dentry->d_flags |= DCACHE_RCUACCESS;
1719 spin_lock(&parent->d_lock);
1720 /*
1721 * don't need child lock because it is not subject
1722 * to concurrency here
1723 */
1724 __dget_dlock(parent);
1725 dentry->d_parent = parent;
1726 list_add(&dentry->d_child, &parent->d_subdirs);
1727 spin_unlock(&parent->d_lock);
1728
1729 return dentry;
1730 }
1731 EXPORT_SYMBOL(d_alloc);
1732
1733 struct dentry *d_alloc_cursor(struct dentry * parent)
1734 {
1735 struct dentry *dentry = __d_alloc(parent->d_sb, NULL);
1736 if (dentry) {
1737 dentry->d_flags |= DCACHE_RCUACCESS | DCACHE_DENTRY_CURSOR;
1738 dentry->d_parent = dget(parent);
1739 }
1740 return dentry;
1741 }
1742
1743 /**
1744 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1745 * @sb: the superblock
1746 * @name: qstr of the name
1747 *
1748 * For a filesystem that just pins its dentries in memory and never
1749 * performs lookups at all, return an unhashed IS_ROOT dentry.
1750 */
1751 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1752 {
1753 return __d_alloc(sb, name);
1754 }
1755 EXPORT_SYMBOL(d_alloc_pseudo);
1756
1757 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1758 {
1759 struct qstr q;
1760
1761 q.name = name;
1762 q.hash_len = hashlen_string(parent, name);
1763 return d_alloc(parent, &q);
1764 }
1765 EXPORT_SYMBOL(d_alloc_name);
1766
1767 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1768 {
1769 WARN_ON_ONCE(dentry->d_op);
1770 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
1771 DCACHE_OP_COMPARE |
1772 DCACHE_OP_REVALIDATE |
1773 DCACHE_OP_WEAK_REVALIDATE |
1774 DCACHE_OP_DELETE |
1775 DCACHE_OP_REAL));
1776 dentry->d_op = op;
1777 if (!op)
1778 return;
1779 if (op->d_hash)
1780 dentry->d_flags |= DCACHE_OP_HASH;
1781 if (op->d_compare)
1782 dentry->d_flags |= DCACHE_OP_COMPARE;
1783 if (op->d_revalidate)
1784 dentry->d_flags |= DCACHE_OP_REVALIDATE;
1785 if (op->d_weak_revalidate)
1786 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1787 if (op->d_delete)
1788 dentry->d_flags |= DCACHE_OP_DELETE;
1789 if (op->d_prune)
1790 dentry->d_flags |= DCACHE_OP_PRUNE;
1791 if (op->d_real)
1792 dentry->d_flags |= DCACHE_OP_REAL;
1793
1794 }
1795 EXPORT_SYMBOL(d_set_d_op);
1796
1797
1798 /*
1799 * d_set_fallthru - Mark a dentry as falling through to a lower layer
1800 * @dentry - The dentry to mark
1801 *
1802 * Mark a dentry as falling through to the lower layer (as set with
1803 * d_pin_lower()). This flag may be recorded on the medium.
1804 */
1805 void d_set_fallthru(struct dentry *dentry)
1806 {
1807 spin_lock(&dentry->d_lock);
1808 dentry->d_flags |= DCACHE_FALLTHRU;
1809 spin_unlock(&dentry->d_lock);
1810 }
1811 EXPORT_SYMBOL(d_set_fallthru);
1812
1813 static unsigned d_flags_for_inode(struct inode *inode)
1814 {
1815 unsigned add_flags = DCACHE_REGULAR_TYPE;
1816
1817 if (!inode)
1818 return DCACHE_MISS_TYPE;
1819
1820 if (S_ISDIR(inode->i_mode)) {
1821 add_flags = DCACHE_DIRECTORY_TYPE;
1822 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1823 if (unlikely(!inode->i_op->lookup))
1824 add_flags = DCACHE_AUTODIR_TYPE;
1825 else
1826 inode->i_opflags |= IOP_LOOKUP;
1827 }
1828 goto type_determined;
1829 }
1830
1831 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1832 if (unlikely(inode->i_op->get_link)) {
1833 add_flags = DCACHE_SYMLINK_TYPE;
1834 goto type_determined;
1835 }
1836 inode->i_opflags |= IOP_NOFOLLOW;
1837 }
1838
1839 if (unlikely(!S_ISREG(inode->i_mode)))
1840 add_flags = DCACHE_SPECIAL_TYPE;
1841
1842 type_determined:
1843 if (unlikely(IS_AUTOMOUNT(inode)))
1844 add_flags |= DCACHE_NEED_AUTOMOUNT;
1845 return add_flags;
1846 }
1847
1848 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1849 {
1850 unsigned add_flags = d_flags_for_inode(inode);
1851 WARN_ON(d_in_lookup(dentry));
1852
1853 spin_lock(&dentry->d_lock);
1854 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
1855 raw_write_seqcount_begin(&dentry->d_seq);
1856 __d_set_inode_and_type(dentry, inode, add_flags);
1857 raw_write_seqcount_end(&dentry->d_seq);
1858 fsnotify_update_flags(dentry);
1859 spin_unlock(&dentry->d_lock);
1860 }
1861
1862 /**
1863 * d_instantiate - fill in inode information for a dentry
1864 * @entry: dentry to complete
1865 * @inode: inode to attach to this dentry
1866 *
1867 * Fill in inode information in the entry.
1868 *
1869 * This turns negative dentries into productive full members
1870 * of society.
1871 *
1872 * NOTE! This assumes that the inode count has been incremented
1873 * (or otherwise set) by the caller to indicate that it is now
1874 * in use by the dcache.
1875 */
1876
1877 void d_instantiate(struct dentry *entry, struct inode * inode)
1878 {
1879 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1880 if (inode) {
1881 security_d_instantiate(entry, inode);
1882 spin_lock(&inode->i_lock);
1883 __d_instantiate(entry, inode);
1884 spin_unlock(&inode->i_lock);
1885 }
1886 }
1887 EXPORT_SYMBOL(d_instantiate);
1888
1889 /*
1890 * This should be equivalent to d_instantiate() + unlock_new_inode(),
1891 * with lockdep-related part of unlock_new_inode() done before
1892 * anything else. Use that instead of open-coding d_instantiate()/
1893 * unlock_new_inode() combinations.
1894 */
1895 void d_instantiate_new(struct dentry *entry, struct inode *inode)
1896 {
1897 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1898 BUG_ON(!inode);
1899 lockdep_annotate_inode_mutex_key(inode);
1900 security_d_instantiate(entry, inode);
1901 spin_lock(&inode->i_lock);
1902 __d_instantiate(entry, inode);
1903 WARN_ON(!(inode->i_state & I_NEW));
1904 inode->i_state &= ~I_NEW & ~I_CREATING;
1905 smp_mb();
1906 wake_up_bit(&inode->i_state, __I_NEW);
1907 spin_unlock(&inode->i_lock);
1908 }
1909 EXPORT_SYMBOL(d_instantiate_new);
1910
1911 /**
1912 * d_instantiate_no_diralias - instantiate a non-aliased dentry
1913 * @entry: dentry to complete
1914 * @inode: inode to attach to this dentry
1915 *
1916 * Fill in inode information in the entry. If a directory alias is found, then
1917 * return an error (and drop inode). Together with d_materialise_unique() this
1918 * guarantees that a directory inode may never have more than one alias.
1919 */
1920 int d_instantiate_no_diralias(struct dentry *entry, struct inode *inode)
1921 {
1922 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1923
1924 security_d_instantiate(entry, inode);
1925 spin_lock(&inode->i_lock);
1926 if (S_ISDIR(inode->i_mode) && !hlist_empty(&inode->i_dentry)) {
1927 spin_unlock(&inode->i_lock);
1928 iput(inode);
1929 return -EBUSY;
1930 }
1931 __d_instantiate(entry, inode);
1932 spin_unlock(&inode->i_lock);
1933
1934 return 0;
1935 }
1936 EXPORT_SYMBOL(d_instantiate_no_diralias);
1937
1938 struct dentry *d_make_root(struct inode *root_inode)
1939 {
1940 struct dentry *res = NULL;
1941
1942 if (root_inode) {
1943 res = __d_alloc(root_inode->i_sb, NULL);
1944 if (res) {
1945 res->d_flags |= DCACHE_RCUACCESS;
1946 d_instantiate(res, root_inode);
1947 } else {
1948 iput(root_inode);
1949 }
1950 }
1951 return res;
1952 }
1953 EXPORT_SYMBOL(d_make_root);
1954
1955 static struct dentry * __d_find_any_alias(struct inode *inode)
1956 {
1957 struct dentry *alias;
1958
1959 if (hlist_empty(&inode->i_dentry))
1960 return NULL;
1961 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
1962 __dget(alias);
1963 return alias;
1964 }
1965
1966 /**
1967 * d_find_any_alias - find any alias for a given inode
1968 * @inode: inode to find an alias for
1969 *
1970 * If any aliases exist for the given inode, take and return a
1971 * reference for one of them. If no aliases exist, return %NULL.
1972 */
1973 struct dentry *d_find_any_alias(struct inode *inode)
1974 {
1975 struct dentry *de;
1976
1977 spin_lock(&inode->i_lock);
1978 de = __d_find_any_alias(inode);
1979 spin_unlock(&inode->i_lock);
1980 return de;
1981 }
1982 EXPORT_SYMBOL(d_find_any_alias);
1983
1984 static struct dentry *__d_obtain_alias(struct inode *inode, int disconnected)
1985 {
1986 struct dentry *tmp;
1987 struct dentry *res;
1988 unsigned add_flags;
1989
1990 if (!inode)
1991 return ERR_PTR(-ESTALE);
1992 if (IS_ERR(inode))
1993 return ERR_CAST(inode);
1994
1995 res = d_find_any_alias(inode);
1996 if (res)
1997 goto out_iput;
1998
1999 tmp = __d_alloc(inode->i_sb, NULL);
2000 if (!tmp) {
2001 res = ERR_PTR(-ENOMEM);
2002 goto out_iput;
2003 }
2004
2005 security_d_instantiate(tmp, inode);
2006 spin_lock(&inode->i_lock);
2007 res = __d_find_any_alias(inode);
2008 if (res) {
2009 spin_unlock(&inode->i_lock);
2010 dput(tmp);
2011 goto out_iput;
2012 }
2013
2014 /* attach a disconnected dentry */
2015 add_flags = d_flags_for_inode(inode);
2016
2017 if (disconnected)
2018 add_flags |= DCACHE_DISCONNECTED;
2019
2020 spin_lock(&tmp->d_lock);
2021 __d_set_inode_and_type(tmp, inode, add_flags);
2022 hlist_add_head(&tmp->d_u.d_alias, &inode->i_dentry);
2023 hlist_bl_lock(&tmp->d_sb->s_anon);
2024 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
2025 hlist_bl_unlock(&tmp->d_sb->s_anon);
2026 spin_unlock(&tmp->d_lock);
2027 spin_unlock(&inode->i_lock);
2028
2029 return tmp;
2030
2031 out_iput:
2032 iput(inode);
2033 return res;
2034 }
2035
2036 /**
2037 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
2038 * @inode: inode to allocate the dentry for
2039 *
2040 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
2041 * similar open by handle operations. The returned dentry may be anonymous,
2042 * or may have a full name (if the inode was already in the cache).
2043 *
2044 * When called on a directory inode, we must ensure that the inode only ever
2045 * has one dentry. If a dentry is found, that is returned instead of
2046 * allocating a new one.
2047 *
2048 * On successful return, the reference to the inode has been transferred
2049 * to the dentry. In case of an error the reference on the inode is released.
2050 * To make it easier to use in export operations a %NULL or IS_ERR inode may
2051 * be passed in and the error will be propagated to the return value,
2052 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
2053 */
2054 struct dentry *d_obtain_alias(struct inode *inode)
2055 {
2056 return __d_obtain_alias(inode, 1);
2057 }
2058 EXPORT_SYMBOL(d_obtain_alias);
2059
2060 /**
2061 * d_obtain_root - find or allocate a dentry for a given inode
2062 * @inode: inode to allocate the dentry for
2063 *
2064 * Obtain an IS_ROOT dentry for the root of a filesystem.
2065 *
2066 * We must ensure that directory inodes only ever have one dentry. If a
2067 * dentry is found, that is returned instead of allocating a new one.
2068 *
2069 * On successful return, the reference to the inode has been transferred
2070 * to the dentry. In case of an error the reference on the inode is
2071 * released. A %NULL or IS_ERR inode may be passed in and will be the
2072 * error will be propagate to the return value, with a %NULL @inode
2073 * replaced by ERR_PTR(-ESTALE).
2074 */
2075 struct dentry *d_obtain_root(struct inode *inode)
2076 {
2077 return __d_obtain_alias(inode, 0);
2078 }
2079 EXPORT_SYMBOL(d_obtain_root);
2080
2081 /**
2082 * d_add_ci - lookup or allocate new dentry with case-exact name
2083 * @inode: the inode case-insensitive lookup has found
2084 * @dentry: the negative dentry that was passed to the parent's lookup func
2085 * @name: the case-exact name to be associated with the returned dentry
2086 *
2087 * This is to avoid filling the dcache with case-insensitive names to the
2088 * same inode, only the actual correct case is stored in the dcache for
2089 * case-insensitive filesystems.
2090 *
2091 * For a case-insensitive lookup match and if the the case-exact dentry
2092 * already exists in in the dcache, use it and return it.
2093 *
2094 * If no entry exists with the exact case name, allocate new dentry with
2095 * the exact case, and return the spliced entry.
2096 */
2097 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
2098 struct qstr *name)
2099 {
2100 struct dentry *found, *res;
2101
2102 /*
2103 * First check if a dentry matching the name already exists,
2104 * if not go ahead and create it now.
2105 */
2106 found = d_hash_and_lookup(dentry->d_parent, name);
2107 if (found) {
2108 iput(inode);
2109 return found;
2110 }
2111 if (d_in_lookup(dentry)) {
2112 found = d_alloc_parallel(dentry->d_parent, name,
2113 dentry->d_wait);
2114 if (IS_ERR(found) || !d_in_lookup(found)) {
2115 iput(inode);
2116 return found;
2117 }
2118 } else {
2119 found = d_alloc(dentry->d_parent, name);
2120 if (!found) {
2121 iput(inode);
2122 return ERR_PTR(-ENOMEM);
2123 }
2124 }
2125 res = d_splice_alias(inode, found);
2126 if (res) {
2127 dput(found);
2128 return res;
2129 }
2130 return found;
2131 }
2132 EXPORT_SYMBOL(d_add_ci);
2133
2134
2135 static inline bool d_same_name(const struct dentry *dentry,
2136 const struct dentry *parent,
2137 const struct qstr *name)
2138 {
2139 if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) {
2140 if (dentry->d_name.len != name->len)
2141 return false;
2142 return dentry_cmp(dentry, name->name, name->len) == 0;
2143 }
2144 return parent->d_op->d_compare(dentry,
2145 dentry->d_name.len, dentry->d_name.name,
2146 name) == 0;
2147 }
2148
2149 /**
2150 * __d_lookup_rcu - search for a dentry (racy, store-free)
2151 * @parent: parent dentry
2152 * @name: qstr of name we wish to find
2153 * @seqp: returns d_seq value at the point where the dentry was found
2154 * Returns: dentry, or NULL
2155 *
2156 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2157 * resolution (store-free path walking) design described in
2158 * Documentation/filesystems/path-lookup.txt.
2159 *
2160 * This is not to be used outside core vfs.
2161 *
2162 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2163 * held, and rcu_read_lock held. The returned dentry must not be stored into
2164 * without taking d_lock and checking d_seq sequence count against @seq
2165 * returned here.
2166 *
2167 * A refcount may be taken on the found dentry with the d_rcu_to_refcount
2168 * function.
2169 *
2170 * Alternatively, __d_lookup_rcu may be called again to look up the child of
2171 * the returned dentry, so long as its parent's seqlock is checked after the
2172 * child is looked up. Thus, an interlocking stepping of sequence lock checks
2173 * is formed, giving integrity down the path walk.
2174 *
2175 * NOTE! The caller *has* to check the resulting dentry against the sequence
2176 * number we've returned before using any of the resulting dentry state!
2177 */
2178 struct dentry *__d_lookup_rcu(const struct dentry *parent,
2179 const struct qstr *name,
2180 unsigned *seqp)
2181 {
2182 u64 hashlen = name->hash_len;
2183 const unsigned char *str = name->name;
2184 struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen));
2185 struct hlist_bl_node *node;
2186 struct dentry *dentry;
2187
2188 /*
2189 * Note: There is significant duplication with __d_lookup_rcu which is
2190 * required to prevent single threaded performance regressions
2191 * especially on architectures where smp_rmb (in seqcounts) are costly.
2192 * Keep the two functions in sync.
2193 */
2194
2195 /*
2196 * The hash list is protected using RCU.
2197 *
2198 * Carefully use d_seq when comparing a candidate dentry, to avoid
2199 * races with d_move().
2200 *
2201 * It is possible that concurrent renames can mess up our list
2202 * walk here and result in missing our dentry, resulting in the
2203 * false-negative result. d_lookup() protects against concurrent
2204 * renames using rename_lock seqlock.
2205 *
2206 * See Documentation/filesystems/path-lookup.txt for more details.
2207 */
2208 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2209 unsigned seq;
2210
2211 seqretry:
2212 /*
2213 * The dentry sequence count protects us from concurrent
2214 * renames, and thus protects parent and name fields.
2215 *
2216 * The caller must perform a seqcount check in order
2217 * to do anything useful with the returned dentry.
2218 *
2219 * NOTE! We do a "raw" seqcount_begin here. That means that
2220 * we don't wait for the sequence count to stabilize if it
2221 * is in the middle of a sequence change. If we do the slow
2222 * dentry compare, we will do seqretries until it is stable,
2223 * and if we end up with a successful lookup, we actually
2224 * want to exit RCU lookup anyway.
2225 *
2226 * Note that raw_seqcount_begin still *does* smp_rmb(), so
2227 * we are still guaranteed NUL-termination of ->d_name.name.
2228 */
2229 seq = raw_seqcount_begin(&dentry->d_seq);
2230 if (dentry->d_parent != parent)
2231 continue;
2232 if (d_unhashed(dentry))
2233 continue;
2234
2235 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
2236 int tlen;
2237 const char *tname;
2238 if (dentry->d_name.hash != hashlen_hash(hashlen))
2239 continue;
2240 tlen = dentry->d_name.len;
2241 tname = dentry->d_name.name;
2242 /* we want a consistent (name,len) pair */
2243 if (read_seqcount_retry(&dentry->d_seq, seq)) {
2244 cpu_relax();
2245 goto seqretry;
2246 }
2247 if (parent->d_op->d_compare(dentry,
2248 tlen, tname, name) != 0)
2249 continue;
2250 } else {
2251 if (dentry->d_name.hash_len != hashlen)
2252 continue;
2253 if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0)
2254 continue;
2255 }
2256 *seqp = seq;
2257 return dentry;
2258 }
2259 return NULL;
2260 }
2261
2262 /**
2263 * d_lookup - search for a dentry
2264 * @parent: parent dentry
2265 * @name: qstr of name we wish to find
2266 * Returns: dentry, or NULL
2267 *
2268 * d_lookup searches the children of the parent dentry for the name in
2269 * question. If the dentry is found its reference count is incremented and the
2270 * dentry is returned. The caller must use dput to free the entry when it has
2271 * finished using it. %NULL is returned if the dentry does not exist.
2272 */
2273 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2274 {
2275 struct dentry *dentry;
2276 unsigned seq;
2277
2278 do {
2279 seq = read_seqbegin(&rename_lock);
2280 dentry = __d_lookup(parent, name);
2281 if (dentry)
2282 break;
2283 } while (read_seqretry(&rename_lock, seq));
2284 return dentry;
2285 }
2286 EXPORT_SYMBOL(d_lookup);
2287
2288 /**
2289 * __d_lookup - search for a dentry (racy)
2290 * @parent: parent dentry
2291 * @name: qstr of name we wish to find
2292 * Returns: dentry, or NULL
2293 *
2294 * __d_lookup is like d_lookup, however it may (rarely) return a
2295 * false-negative result due to unrelated rename activity.
2296 *
2297 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2298 * however it must be used carefully, eg. with a following d_lookup in
2299 * the case of failure.
2300 *
2301 * __d_lookup callers must be commented.
2302 */
2303 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2304 {
2305 unsigned int hash = name->hash;
2306 struct hlist_bl_head *b = d_hash(hash);
2307 struct hlist_bl_node *node;
2308 struct dentry *found = NULL;
2309 struct dentry *dentry;
2310
2311 /*
2312 * Note: There is significant duplication with __d_lookup_rcu which is
2313 * required to prevent single threaded performance regressions
2314 * especially on architectures where smp_rmb (in seqcounts) are costly.
2315 * Keep the two functions in sync.
2316 */
2317
2318 /*
2319 * The hash list is protected using RCU.
2320 *
2321 * Take d_lock when comparing a candidate dentry, to avoid races
2322 * with d_move().
2323 *
2324 * It is possible that concurrent renames can mess up our list
2325 * walk here and result in missing our dentry, resulting in the
2326 * false-negative result. d_lookup() protects against concurrent
2327 * renames using rename_lock seqlock.
2328 *
2329 * See Documentation/filesystems/path-lookup.txt for more details.
2330 */
2331 rcu_read_lock();
2332
2333 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2334
2335 if (dentry->d_name.hash != hash)
2336 continue;
2337
2338 spin_lock(&dentry->d_lock);
2339 if (dentry->d_parent != parent)
2340 goto next;
2341 if (d_unhashed(dentry))
2342 goto next;
2343
2344 if (!d_same_name(dentry, parent, name))
2345 goto next;
2346
2347 dentry->d_lockref.count++;
2348 found = dentry;
2349 spin_unlock(&dentry->d_lock);
2350 break;
2351 next:
2352 spin_unlock(&dentry->d_lock);
2353 }
2354 rcu_read_unlock();
2355
2356 return found;
2357 }
2358
2359 /**
2360 * d_hash_and_lookup - hash the qstr then search for a dentry
2361 * @dir: Directory to search in
2362 * @name: qstr of name we wish to find
2363 *
2364 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2365 */
2366 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2367 {
2368 /*
2369 * Check for a fs-specific hash function. Note that we must
2370 * calculate the standard hash first, as the d_op->d_hash()
2371 * routine may choose to leave the hash value unchanged.
2372 */
2373 name->hash = full_name_hash(dir, name->name, name->len);
2374 if (dir->d_flags & DCACHE_OP_HASH) {
2375 int err = dir->d_op->d_hash(dir, name);
2376 if (unlikely(err < 0))
2377 return ERR_PTR(err);
2378 }
2379 return d_lookup(dir, name);
2380 }
2381 EXPORT_SYMBOL(d_hash_and_lookup);
2382
2383 /*
2384 * When a file is deleted, we have two options:
2385 * - turn this dentry into a negative dentry
2386 * - unhash this dentry and free it.
2387 *
2388 * Usually, we want to just turn this into
2389 * a negative dentry, but if anybody else is
2390 * currently using the dentry or the inode
2391 * we can't do that and we fall back on removing
2392 * it from the hash queues and waiting for
2393 * it to be deleted later when it has no users
2394 */
2395
2396 /**
2397 * d_delete - delete a dentry
2398 * @dentry: The dentry to delete
2399 *
2400 * Turn the dentry into a negative dentry if possible, otherwise
2401 * remove it from the hash queues so it can be deleted later
2402 */
2403
2404 void d_delete(struct dentry * dentry)
2405 {
2406 struct inode *inode;
2407 int isdir = 0;
2408 /*
2409 * Are we the only user?
2410 */
2411 again:
2412 spin_lock(&dentry->d_lock);
2413 inode = dentry->d_inode;
2414 isdir = S_ISDIR(inode->i_mode);
2415 if (dentry->d_lockref.count == 1) {
2416 if (!spin_trylock(&inode->i_lock)) {
2417 spin_unlock(&dentry->d_lock);
2418 cpu_relax();
2419 goto again;
2420 }
2421 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2422 dentry_unlink_inode(dentry);
2423 fsnotify_nameremove(dentry, isdir);
2424 return;
2425 }
2426
2427 if (!d_unhashed(dentry))
2428 __d_drop(dentry);
2429
2430 spin_unlock(&dentry->d_lock);
2431
2432 fsnotify_nameremove(dentry, isdir);
2433 }
2434 EXPORT_SYMBOL(d_delete);
2435
2436 static void __d_rehash(struct dentry *entry)
2437 {
2438 struct hlist_bl_head *b = d_hash(entry->d_name.hash);
2439
2440 hlist_bl_lock(b);
2441 hlist_bl_add_head_rcu(&entry->d_hash, b);
2442 hlist_bl_unlock(b);
2443 }
2444
2445 /**
2446 * d_rehash - add an entry back to the hash
2447 * @entry: dentry to add to the hash
2448 *
2449 * Adds a dentry to the hash according to its name.
2450 */
2451
2452 void d_rehash(struct dentry * entry)
2453 {
2454 spin_lock(&entry->d_lock);
2455 __d_rehash(entry);
2456 spin_unlock(&entry->d_lock);
2457 }
2458 EXPORT_SYMBOL(d_rehash);
2459
2460 static inline unsigned start_dir_add(struct inode *dir)
2461 {
2462
2463 for (;;) {
2464 unsigned n = dir->i_dir_seq;
2465 if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n)
2466 return n;
2467 cpu_relax();
2468 }
2469 }
2470
2471 static inline void end_dir_add(struct inode *dir, unsigned n)
2472 {
2473 smp_store_release(&dir->i_dir_seq, n + 2);
2474 }
2475
2476 static void d_wait_lookup(struct dentry *dentry)
2477 {
2478 if (d_in_lookup(dentry)) {
2479 DECLARE_WAITQUEUE(wait, current);
2480 add_wait_queue(dentry->d_wait, &wait);
2481 do {
2482 set_current_state(TASK_UNINTERRUPTIBLE);
2483 spin_unlock(&dentry->d_lock);
2484 schedule();
2485 spin_lock(&dentry->d_lock);
2486 } while (d_in_lookup(dentry));
2487 }
2488 }
2489
2490 struct dentry *d_alloc_parallel(struct dentry *parent,
2491 const struct qstr *name,
2492 wait_queue_head_t *wq)
2493 {
2494 unsigned int hash = name->hash;
2495 struct hlist_bl_head *b = in_lookup_hash(parent, hash);
2496 struct hlist_bl_node *node;
2497 struct dentry *new = d_alloc(parent, name);
2498 struct dentry *dentry;
2499 unsigned seq, r_seq, d_seq;
2500
2501 if (unlikely(!new))
2502 return ERR_PTR(-ENOMEM);
2503
2504 retry:
2505 rcu_read_lock();
2506 seq = smp_load_acquire(&parent->d_inode->i_dir_seq);
2507 r_seq = read_seqbegin(&rename_lock);
2508 dentry = __d_lookup_rcu(parent, name, &d_seq);
2509 if (unlikely(dentry)) {
2510 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2511 rcu_read_unlock();
2512 goto retry;
2513 }
2514 if (read_seqcount_retry(&dentry->d_seq, d_seq)) {
2515 rcu_read_unlock();
2516 dput(dentry);
2517 goto retry;
2518 }
2519 rcu_read_unlock();
2520 dput(new);
2521 return dentry;
2522 }
2523 if (unlikely(read_seqretry(&rename_lock, r_seq))) {
2524 rcu_read_unlock();
2525 goto retry;
2526 }
2527
2528 if (unlikely(seq & 1)) {
2529 rcu_read_unlock();
2530 goto retry;
2531 }
2532
2533 hlist_bl_lock(b);
2534 if (unlikely(READ_ONCE(parent->d_inode->i_dir_seq) != seq)) {
2535 hlist_bl_unlock(b);
2536 rcu_read_unlock();
2537 goto retry;
2538 }
2539 /*
2540 * No changes for the parent since the beginning of d_lookup().
2541 * Since all removals from the chain happen with hlist_bl_lock(),
2542 * any potential in-lookup matches are going to stay here until
2543 * we unlock the chain. All fields are stable in everything
2544 * we encounter.
2545 */
2546 hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) {
2547 if (dentry->d_name.hash != hash)
2548 continue;
2549 if (dentry->d_parent != parent)
2550 continue;
2551 if (!d_same_name(dentry, parent, name))
2552 continue;
2553 hlist_bl_unlock(b);
2554 /* now we can try to grab a reference */
2555 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2556 rcu_read_unlock();
2557 goto retry;
2558 }
2559
2560 rcu_read_unlock();
2561 /*
2562 * somebody is likely to be still doing lookup for it;
2563 * wait for them to finish
2564 */
2565 spin_lock(&dentry->d_lock);
2566 d_wait_lookup(dentry);
2567 /*
2568 * it's not in-lookup anymore; in principle we should repeat
2569 * everything from dcache lookup, but it's likely to be what
2570 * d_lookup() would've found anyway. If it is, just return it;
2571 * otherwise we really have to repeat the whole thing.
2572 */
2573 if (unlikely(dentry->d_name.hash != hash))
2574 goto mismatch;
2575 if (unlikely(dentry->d_parent != parent))
2576 goto mismatch;
2577 if (unlikely(d_unhashed(dentry)))
2578 goto mismatch;
2579 if (unlikely(!d_same_name(dentry, parent, name)))
2580 goto mismatch;
2581 /* OK, it *is* a hashed match; return it */
2582 spin_unlock(&dentry->d_lock);
2583 dput(new);
2584 return dentry;
2585 }
2586 rcu_read_unlock();
2587 /* we can't take ->d_lock here; it's OK, though. */
2588 new->d_flags |= DCACHE_PAR_LOOKUP;
2589 new->d_wait = wq;
2590 hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b);
2591 hlist_bl_unlock(b);
2592 return new;
2593 mismatch:
2594 spin_unlock(&dentry->d_lock);
2595 dput(dentry);
2596 goto retry;
2597 }
2598 EXPORT_SYMBOL(d_alloc_parallel);
2599
2600 void __d_lookup_done(struct dentry *dentry)
2601 {
2602 struct hlist_bl_head *b = in_lookup_hash(dentry->d_parent,
2603 dentry->d_name.hash);
2604 hlist_bl_lock(b);
2605 dentry->d_flags &= ~DCACHE_PAR_LOOKUP;
2606 __hlist_bl_del(&dentry->d_u.d_in_lookup_hash);
2607 wake_up_all(dentry->d_wait);
2608 dentry->d_wait = NULL;
2609 hlist_bl_unlock(b);
2610 INIT_HLIST_NODE(&dentry->d_u.d_alias);
2611 INIT_LIST_HEAD(&dentry->d_lru);
2612 }
2613 EXPORT_SYMBOL(__d_lookup_done);
2614
2615 /* inode->i_lock held if inode is non-NULL */
2616
2617 static inline void __d_add(struct dentry *dentry, struct inode *inode)
2618 {
2619 struct inode *dir = NULL;
2620 unsigned n;
2621 spin_lock(&dentry->d_lock);
2622 if (unlikely(d_in_lookup(dentry))) {
2623 dir = dentry->d_parent->d_inode;
2624 n = start_dir_add(dir);
2625 __d_lookup_done(dentry);
2626 }
2627 if (inode) {
2628 unsigned add_flags = d_flags_for_inode(inode);
2629 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2630 raw_write_seqcount_begin(&dentry->d_seq);
2631 __d_set_inode_and_type(dentry, inode, add_flags);
2632 raw_write_seqcount_end(&dentry->d_seq);
2633 fsnotify_update_flags(dentry);
2634 }
2635 __d_rehash(dentry);
2636 if (dir)
2637 end_dir_add(dir, n);
2638 spin_unlock(&dentry->d_lock);
2639 if (inode)
2640 spin_unlock(&inode->i_lock);
2641 }
2642
2643 /**
2644 * d_add - add dentry to hash queues
2645 * @entry: dentry to add
2646 * @inode: The inode to attach to this dentry
2647 *
2648 * This adds the entry to the hash queues and initializes @inode.
2649 * The entry was actually filled in earlier during d_alloc().
2650 */
2651
2652 void d_add(struct dentry *entry, struct inode *inode)
2653 {
2654 if (inode) {
2655 security_d_instantiate(entry, inode);
2656 spin_lock(&inode->i_lock);
2657 }
2658 __d_add(entry, inode);
2659 }
2660 EXPORT_SYMBOL(d_add);
2661
2662 /**
2663 * d_exact_alias - find and hash an exact unhashed alias
2664 * @entry: dentry to add
2665 * @inode: The inode to go with this dentry
2666 *
2667 * If an unhashed dentry with the same name/parent and desired
2668 * inode already exists, hash and return it. Otherwise, return
2669 * NULL.
2670 *
2671 * Parent directory should be locked.
2672 */
2673 struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode)
2674 {
2675 struct dentry *alias;
2676 unsigned int hash = entry->d_name.hash;
2677
2678 spin_lock(&inode->i_lock);
2679 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
2680 /*
2681 * Don't need alias->d_lock here, because aliases with
2682 * d_parent == entry->d_parent are not subject to name or
2683 * parent changes, because the parent inode i_mutex is held.
2684 */
2685 if (alias->d_name.hash != hash)
2686 continue;
2687 if (alias->d_parent != entry->d_parent)
2688 continue;
2689 if (!d_same_name(alias, entry->d_parent, &entry->d_name))
2690 continue;
2691 spin_lock(&alias->d_lock);
2692 if (!d_unhashed(alias)) {
2693 spin_unlock(&alias->d_lock);
2694 alias = NULL;
2695 } else {
2696 __dget_dlock(alias);
2697 __d_rehash(alias);
2698 spin_unlock(&alias->d_lock);
2699 }
2700 spin_unlock(&inode->i_lock);
2701 return alias;
2702 }
2703 spin_unlock(&inode->i_lock);
2704 return NULL;
2705 }
2706 EXPORT_SYMBOL(d_exact_alias);
2707
2708 /**
2709 * dentry_update_name_case - update case insensitive dentry with a new name
2710 * @dentry: dentry to be updated
2711 * @name: new name
2712 *
2713 * Update a case insensitive dentry with new case of name.
2714 *
2715 * dentry must have been returned by d_lookup with name @name. Old and new
2716 * name lengths must match (ie. no d_compare which allows mismatched name
2717 * lengths).
2718 *
2719 * Parent inode i_mutex must be held over d_lookup and into this call (to
2720 * keep renames and concurrent inserts, and readdir(2) away).
2721 */
2722 void dentry_update_name_case(struct dentry *dentry, const struct qstr *name)
2723 {
2724 BUG_ON(!inode_is_locked(dentry->d_parent->d_inode));
2725 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2726
2727 spin_lock(&dentry->d_lock);
2728 write_seqcount_begin(&dentry->d_seq);
2729 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
2730 write_seqcount_end(&dentry->d_seq);
2731 spin_unlock(&dentry->d_lock);
2732 }
2733 EXPORT_SYMBOL(dentry_update_name_case);
2734
2735 static void swap_names(struct dentry *dentry, struct dentry *target)
2736 {
2737 if (unlikely(dname_external(target))) {
2738 if (unlikely(dname_external(dentry))) {
2739 /*
2740 * Both external: swap the pointers
2741 */
2742 swap(target->d_name.name, dentry->d_name.name);
2743 } else {
2744 /*
2745 * dentry:internal, target:external. Steal target's
2746 * storage and make target internal.
2747 */
2748 memcpy(target->d_iname, dentry->d_name.name,
2749 dentry->d_name.len + 1);
2750 dentry->d_name.name = target->d_name.name;
2751 target->d_name.name = target->d_iname;
2752 }
2753 } else {
2754 if (unlikely(dname_external(dentry))) {
2755 /*
2756 * dentry:external, target:internal. Give dentry's
2757 * storage to target and make dentry internal
2758 */
2759 memcpy(dentry->d_iname, target->d_name.name,
2760 target->d_name.len + 1);
2761 target->d_name.name = dentry->d_name.name;
2762 dentry->d_name.name = dentry->d_iname;
2763 } else {
2764 /*
2765 * Both are internal.
2766 */
2767 unsigned int i;
2768 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2769 for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2770 swap(((long *) &dentry->d_iname)[i],
2771 ((long *) &target->d_iname)[i]);
2772 }
2773 }
2774 }
2775 swap(dentry->d_name.hash_len, target->d_name.hash_len);
2776 }
2777
2778 static void copy_name(struct dentry *dentry, struct dentry *target)
2779 {
2780 struct external_name *old_name = NULL;
2781 if (unlikely(dname_external(dentry)))
2782 old_name = external_name(dentry);
2783 if (unlikely(dname_external(target))) {
2784 atomic_inc(&external_name(target)->u.count);
2785 dentry->d_name = target->d_name;
2786 } else {
2787 memcpy(dentry->d_iname, target->d_name.name,
2788 target->d_name.len + 1);
2789 dentry->d_name.name = dentry->d_iname;
2790 dentry->d_name.hash_len = target->d_name.hash_len;
2791 }
2792 if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2793 call_rcu(&old_name->u.head, __d_free_external_name);
2794 }
2795
2796 static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2797 {
2798 /*
2799 * XXXX: do we really need to take target->d_lock?
2800 */
2801 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2802 spin_lock(&target->d_parent->d_lock);
2803 else {
2804 if (d_ancestor(dentry->d_parent, target->d_parent)) {
2805 spin_lock(&dentry->d_parent->d_lock);
2806 spin_lock_nested(&target->d_parent->d_lock,
2807 DENTRY_D_LOCK_NESTED);
2808 } else {
2809 spin_lock(&target->d_parent->d_lock);
2810 spin_lock_nested(&dentry->d_parent->d_lock,
2811 DENTRY_D_LOCK_NESTED);
2812 }
2813 }
2814 if (target < dentry) {
2815 spin_lock_nested(&target->d_lock, 2);
2816 spin_lock_nested(&dentry->d_lock, 3);
2817 } else {
2818 spin_lock_nested(&dentry->d_lock, 2);
2819 spin_lock_nested(&target->d_lock, 3);
2820 }
2821 }
2822
2823 static void dentry_unlock_for_move(struct dentry *dentry, struct dentry *target)
2824 {
2825 if (target->d_parent != dentry->d_parent)
2826 spin_unlock(&dentry->d_parent->d_lock);
2827 if (target->d_parent != target)
2828 spin_unlock(&target->d_parent->d_lock);
2829 spin_unlock(&target->d_lock);
2830 spin_unlock(&dentry->d_lock);
2831 }
2832
2833 /*
2834 * When switching names, the actual string doesn't strictly have to
2835 * be preserved in the target - because we're dropping the target
2836 * anyway. As such, we can just do a simple memcpy() to copy over
2837 * the new name before we switch, unless we are going to rehash
2838 * it. Note that if we *do* unhash the target, we are not allowed
2839 * to rehash it without giving it a new name/hash key - whether
2840 * we swap or overwrite the names here, resulting name won't match
2841 * the reality in filesystem; it's only there for d_path() purposes.
2842 * Note that all of this is happening under rename_lock, so the
2843 * any hash lookup seeing it in the middle of manipulations will
2844 * be discarded anyway. So we do not care what happens to the hash
2845 * key in that case.
2846 */
2847 /*
2848 * __d_move - move a dentry
2849 * @dentry: entry to move
2850 * @target: new dentry
2851 * @exchange: exchange the two dentries
2852 *
2853 * Update the dcache to reflect the move of a file name. Negative
2854 * dcache entries should not be moved in this way. Caller must hold
2855 * rename_lock, the i_mutex of the source and target directories,
2856 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2857 */
2858 static void __d_move(struct dentry *dentry, struct dentry *target,
2859 bool exchange)
2860 {
2861 struct inode *dir = NULL;
2862 unsigned n;
2863 if (!dentry->d_inode)
2864 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2865
2866 BUG_ON(d_ancestor(dentry, target));
2867 BUG_ON(d_ancestor(target, dentry));
2868
2869 dentry_lock_for_move(dentry, target);
2870 if (unlikely(d_in_lookup(target))) {
2871 dir = target->d_parent->d_inode;
2872 n = start_dir_add(dir);
2873 __d_lookup_done(target);
2874 }
2875
2876 write_seqcount_begin(&dentry->d_seq);
2877 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
2878
2879 /* unhash both */
2880 /* ___d_drop does write_seqcount_barrier, but they're OK to nest. */
2881 ___d_drop(dentry);
2882 ___d_drop(target);
2883
2884 /* Switch the names.. */
2885 if (exchange)
2886 swap_names(dentry, target);
2887 else
2888 copy_name(dentry, target);
2889
2890 /* rehash in new place(s) */
2891 __d_rehash(dentry);
2892 if (exchange)
2893 __d_rehash(target);
2894 else
2895 target->d_hash.pprev = NULL;
2896
2897 /* ... and switch them in the tree */
2898 if (IS_ROOT(dentry)) {
2899 /* splicing a tree */
2900 dentry->d_flags |= DCACHE_RCUACCESS;
2901 dentry->d_parent = target->d_parent;
2902 target->d_parent = target;
2903 list_del_init(&target->d_child);
2904 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2905 } else {
2906 /* swapping two dentries */
2907 swap(dentry->d_parent, target->d_parent);
2908 list_move(&target->d_child, &target->d_parent->d_subdirs);
2909 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2910 if (exchange)
2911 fsnotify_update_flags(target);
2912 fsnotify_update_flags(dentry);
2913 }
2914
2915 write_seqcount_end(&target->d_seq);
2916 write_seqcount_end(&dentry->d_seq);
2917
2918 if (dir)
2919 end_dir_add(dir, n);
2920 dentry_unlock_for_move(dentry, target);
2921 }
2922
2923 /*
2924 * d_move - move a dentry
2925 * @dentry: entry to move
2926 * @target: new dentry
2927 *
2928 * Update the dcache to reflect the move of a file name. Negative
2929 * dcache entries should not be moved in this way. See the locking
2930 * requirements for __d_move.
2931 */
2932 void d_move(struct dentry *dentry, struct dentry *target)
2933 {
2934 write_seqlock(&rename_lock);
2935 __d_move(dentry, target, false);
2936 write_sequnlock(&rename_lock);
2937 }
2938 EXPORT_SYMBOL(d_move);
2939
2940 /*
2941 * d_exchange - exchange two dentries
2942 * @dentry1: first dentry
2943 * @dentry2: second dentry
2944 */
2945 void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2946 {
2947 write_seqlock(&rename_lock);
2948
2949 WARN_ON(!dentry1->d_inode);
2950 WARN_ON(!dentry2->d_inode);
2951 WARN_ON(IS_ROOT(dentry1));
2952 WARN_ON(IS_ROOT(dentry2));
2953
2954 __d_move(dentry1, dentry2, true);
2955
2956 write_sequnlock(&rename_lock);
2957 }
2958 EXPORT_SYMBOL_GPL(d_exchange);
2959
2960 /**
2961 * d_ancestor - search for an ancestor
2962 * @p1: ancestor dentry
2963 * @p2: child dentry
2964 *
2965 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2966 * an ancestor of p2, else NULL.
2967 */
2968 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2969 {
2970 struct dentry *p;
2971
2972 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2973 if (p->d_parent == p1)
2974 return p;
2975 }
2976 return NULL;
2977 }
2978
2979 /*
2980 * This helper attempts to cope with remotely renamed directories
2981 *
2982 * It assumes that the caller is already holding
2983 * dentry->d_parent->d_inode->i_mutex, and rename_lock
2984 *
2985 * Note: If ever the locking in lock_rename() changes, then please
2986 * remember to update this too...
2987 */
2988 static int __d_unalias(struct inode *inode,
2989 struct dentry *dentry, struct dentry *alias)
2990 {
2991 struct mutex *m1 = NULL;
2992 struct rw_semaphore *m2 = NULL;
2993 int ret = -ESTALE;
2994
2995 /* If alias and dentry share a parent, then no extra locks required */
2996 if (alias->d_parent == dentry->d_parent)
2997 goto out_unalias;
2998
2999 /* See lock_rename() */
3000 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
3001 goto out_err;
3002 m1 = &dentry->d_sb->s_vfs_rename_mutex;
3003 if (!inode_trylock_shared(alias->d_parent->d_inode))
3004 goto out_err;
3005 m2 = &alias->d_parent->d_inode->i_rwsem;
3006 out_unalias:
3007 __d_move(alias, dentry, false);
3008 ret = 0;
3009 out_err:
3010 if (m2)
3011 up_read(m2);
3012 if (m1)
3013 mutex_unlock(m1);
3014 return ret;
3015 }
3016
3017 /**
3018 * d_splice_alias - splice a disconnected dentry into the tree if one exists
3019 * @inode: the inode which may have a disconnected dentry
3020 * @dentry: a negative dentry which we want to point to the inode.
3021 *
3022 * If inode is a directory and has an IS_ROOT alias, then d_move that in
3023 * place of the given dentry and return it, else simply d_add the inode
3024 * to the dentry and return NULL.
3025 *
3026 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
3027 * we should error out: directories can't have multiple aliases.
3028 *
3029 * This is needed in the lookup routine of any filesystem that is exportable
3030 * (via knfsd) so that we can build dcache paths to directories effectively.
3031 *
3032 * If a dentry was found and moved, then it is returned. Otherwise NULL
3033 * is returned. This matches the expected return value of ->lookup.
3034 *
3035 * Cluster filesystems may call this function with a negative, hashed dentry.
3036 * In that case, we know that the inode will be a regular file, and also this
3037 * will only occur during atomic_open. So we need to check for the dentry
3038 * being already hashed only in the final case.
3039 */
3040 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
3041 {
3042 if (IS_ERR(inode))
3043 return ERR_CAST(inode);
3044
3045 BUG_ON(!d_unhashed(dentry));
3046
3047 if (!inode)
3048 goto out;
3049
3050 security_d_instantiate(dentry, inode);
3051 spin_lock(&inode->i_lock);
3052 if (S_ISDIR(inode->i_mode)) {
3053 struct dentry *new = __d_find_any_alias(inode);
3054 if (unlikely(new)) {
3055 /* The reference to new ensures it remains an alias */
3056 spin_unlock(&inode->i_lock);
3057 write_seqlock(&rename_lock);
3058 if (unlikely(d_ancestor(new, dentry))) {
3059 write_sequnlock(&rename_lock);
3060 dput(new);
3061 new = ERR_PTR(-ELOOP);
3062 pr_warn_ratelimited(
3063 "VFS: Lookup of '%s' in %s %s"
3064 " would have caused loop\n",
3065 dentry->d_name.name,
3066 inode->i_sb->s_type->name,
3067 inode->i_sb->s_id);
3068 } else if (!IS_ROOT(new)) {
3069 int err = __d_unalias(inode, dentry, new);
3070 write_sequnlock(&rename_lock);
3071 if (err) {
3072 dput(new);
3073 new = ERR_PTR(err);
3074 }
3075 } else {
3076 __d_move(new, dentry, false);
3077 write_sequnlock(&rename_lock);
3078 }
3079 iput(inode);
3080 return new;
3081 }
3082 }
3083 out:
3084 __d_add(dentry, inode);
3085 return NULL;
3086 }
3087 EXPORT_SYMBOL(d_splice_alias);
3088
3089 static int prepend(char **buffer, int *buflen, const char *str, int namelen)
3090 {
3091 *buflen -= namelen;
3092 if (*buflen < 0)
3093 return -ENAMETOOLONG;
3094 *buffer -= namelen;
3095 memcpy(*buffer, str, namelen);
3096 return 0;
3097 }
3098
3099 /**
3100 * prepend_name - prepend a pathname in front of current buffer pointer
3101 * @buffer: buffer pointer
3102 * @buflen: allocated length of the buffer
3103 * @name: name string and length qstr structure
3104 *
3105 * With RCU path tracing, it may race with d_move(). Use READ_ONCE() to
3106 * make sure that either the old or the new name pointer and length are
3107 * fetched. However, there may be mismatch between length and pointer.
3108 * The length cannot be trusted, we need to copy it byte-by-byte until
3109 * the length is reached or a null byte is found. It also prepends "/" at
3110 * the beginning of the name. The sequence number check at the caller will
3111 * retry it again when a d_move() does happen. So any garbage in the buffer
3112 * due to mismatched pointer and length will be discarded.
3113 *
3114 * Data dependency barrier is needed to make sure that we see that terminating
3115 * NUL. Alpha strikes again, film at 11...
3116 */
3117 static int prepend_name(char **buffer, int *buflen, const struct qstr *name)
3118 {
3119 const char *dname = READ_ONCE(name->name);
3120 u32 dlen = READ_ONCE(name->len);
3121 char *p;
3122
3123 smp_read_barrier_depends();
3124
3125 *buflen -= dlen + 1;
3126 if (*buflen < 0)
3127 return -ENAMETOOLONG;
3128 p = *buffer -= dlen + 1;
3129 *p++ = '/';
3130 while (dlen--) {
3131 char c = *dname++;
3132 if (!c)
3133 break;
3134 *p++ = c;
3135 }
3136 return 0;
3137 }
3138
3139 /**
3140 * prepend_path - Prepend path string to a buffer
3141 * @path: the dentry/vfsmount to report
3142 * @root: root vfsmnt/dentry
3143 * @buffer: pointer to the end of the buffer
3144 * @buflen: pointer to buffer length
3145 *
3146 * The function will first try to write out the pathname without taking any
3147 * lock other than the RCU read lock to make sure that dentries won't go away.
3148 * It only checks the sequence number of the global rename_lock as any change
3149 * in the dentry's d_seq will be preceded by changes in the rename_lock
3150 * sequence number. If the sequence number had been changed, it will restart
3151 * the whole pathname back-tracing sequence again by taking the rename_lock.
3152 * In this case, there is no need to take the RCU read lock as the recursive
3153 * parent pointer references will keep the dentry chain alive as long as no
3154 * rename operation is performed.
3155 */
3156 static int prepend_path(const struct path *path,
3157 const struct path *root,
3158 char **buffer, int *buflen)
3159 {
3160 struct dentry *dentry;
3161 struct vfsmount *vfsmnt;
3162 struct mount *mnt;
3163 int error = 0;
3164 unsigned seq, m_seq = 0;
3165 char *bptr;
3166 int blen;
3167
3168 rcu_read_lock();
3169 restart_mnt:
3170 read_seqbegin_or_lock(&mount_lock, &m_seq);
3171 seq = 0;
3172 rcu_read_lock();
3173 restart:
3174 bptr = *buffer;
3175 blen = *buflen;
3176 error = 0;
3177 dentry = path->dentry;
3178 vfsmnt = path->mnt;
3179 mnt = real_mount(vfsmnt);
3180 read_seqbegin_or_lock(&rename_lock, &seq);
3181 while (dentry != root->dentry || vfsmnt != root->mnt) {
3182 struct dentry * parent;
3183
3184 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
3185 struct mount *parent = READ_ONCE(mnt->mnt_parent);
3186 /* Escaped? */
3187 if (dentry != vfsmnt->mnt_root) {
3188 bptr = *buffer;
3189 blen = *buflen;
3190 error = 3;
3191 break;
3192 }
3193 /* Global root? */
3194 if (mnt != parent) {
3195 dentry = READ_ONCE(mnt->mnt_mountpoint);
3196 mnt = parent;
3197 vfsmnt = &mnt->mnt;
3198 continue;
3199 }
3200 if (!error)
3201 error = is_mounted(vfsmnt) ? 1 : 2;
3202 break;
3203 }
3204 parent = dentry->d_parent;
3205 prefetch(parent);
3206 error = prepend_name(&bptr, &blen, &dentry->d_name);
3207 if (error)
3208 break;
3209
3210 dentry = parent;
3211 }
3212 if (!(seq & 1))
3213 rcu_read_unlock();
3214 if (need_seqretry(&rename_lock, seq)) {
3215 seq = 1;
3216 goto restart;
3217 }
3218 done_seqretry(&rename_lock, seq);
3219
3220 if (!(m_seq & 1))
3221 rcu_read_unlock();
3222 if (need_seqretry(&mount_lock, m_seq)) {
3223 m_seq = 1;
3224 goto restart_mnt;
3225 }
3226 done_seqretry(&mount_lock, m_seq);
3227
3228 if (error >= 0 && bptr == *buffer) {
3229 if (--blen < 0)
3230 error = -ENAMETOOLONG;
3231 else
3232 *--bptr = '/';
3233 }
3234 *buffer = bptr;
3235 *buflen = blen;
3236 return error;
3237 }
3238
3239 /**
3240 * __d_path - return the path of a dentry
3241 * @path: the dentry/vfsmount to report
3242 * @root: root vfsmnt/dentry
3243 * @buf: buffer to return value in
3244 * @buflen: buffer length
3245 *
3246 * Convert a dentry into an ASCII path name.
3247 *
3248 * Returns a pointer into the buffer or an error code if the
3249 * path was too long.
3250 *
3251 * "buflen" should be positive.
3252 *
3253 * If the path is not reachable from the supplied root, return %NULL.
3254 */
3255 char *__d_path(const struct path *path,
3256 const struct path *root,
3257 char *buf, int buflen)
3258 {
3259 char *res = buf + buflen;
3260 int error;
3261
3262 prepend(&res, &buflen, "\0", 1);
3263 error = prepend_path(path, root, &res, &buflen);
3264
3265 if (error < 0)
3266 return ERR_PTR(error);
3267 if (error > 0)
3268 return NULL;
3269 return res;
3270 }
3271
3272 char *d_absolute_path(const struct path *path,
3273 char *buf, int buflen)
3274 {
3275 struct path root = {};
3276 char *res = buf + buflen;
3277 int error;
3278
3279 prepend(&res, &buflen, "\0", 1);
3280 error = prepend_path(path, &root, &res, &buflen);
3281
3282 if (error > 1)
3283 error = -EINVAL;
3284 if (error < 0)
3285 return ERR_PTR(error);
3286 return res;
3287 }
3288
3289 /*
3290 * same as __d_path but appends "(deleted)" for unlinked files.
3291 */
3292 static int path_with_deleted(const struct path *path,
3293 const struct path *root,
3294 char **buf, int *buflen)
3295 {
3296 prepend(buf, buflen, "\0", 1);
3297 if (d_unlinked(path->dentry)) {
3298 int error = prepend(buf, buflen, " (deleted)", 10);
3299 if (error)
3300 return error;
3301 }
3302
3303 return prepend_path(path, root, buf, buflen);
3304 }
3305
3306 static int prepend_unreachable(char **buffer, int *buflen)
3307 {
3308 return prepend(buffer, buflen, "(unreachable)", 13);
3309 }
3310
3311 static void get_fs_root_rcu(struct fs_struct *fs, struct path *root)
3312 {
3313 unsigned seq;
3314
3315 do {
3316 seq = read_seqcount_begin(&fs->seq);
3317 *root = fs->root;
3318 } while (read_seqcount_retry(&fs->seq, seq));
3319 }
3320
3321 /**
3322 * d_path - return the path of a dentry
3323 * @path: path to report
3324 * @buf: buffer to return value in
3325 * @buflen: buffer length
3326 *
3327 * Convert a dentry into an ASCII path name. If the entry has been deleted
3328 * the string " (deleted)" is appended. Note that this is ambiguous.
3329 *
3330 * Returns a pointer into the buffer or an error code if the path was
3331 * too long. Note: Callers should use the returned pointer, not the passed
3332 * in buffer, to use the name! The implementation often starts at an offset
3333 * into the buffer, and may leave 0 bytes at the start.
3334 *
3335 * "buflen" should be positive.
3336 */
3337 char *d_path(const struct path *path, char *buf, int buflen)
3338 {
3339 char *res = buf + buflen;
3340 struct path root;
3341 int error;
3342
3343 /*
3344 * We have various synthetic filesystems that never get mounted. On
3345 * these filesystems dentries are never used for lookup purposes, and
3346 * thus don't need to be hashed. They also don't need a name until a
3347 * user wants to identify the object in /proc/pid/fd/. The little hack
3348 * below allows us to generate a name for these objects on demand:
3349 *
3350 * Some pseudo inodes are mountable. When they are mounted
3351 * path->dentry == path->mnt->mnt_root. In that case don't call d_dname
3352 * and instead have d_path return the mounted path.
3353 */
3354 if (path->dentry->d_op && path->dentry->d_op->d_dname &&
3355 (!IS_ROOT(path->dentry) || path->dentry != path->mnt->mnt_root))
3356 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
3357
3358 rcu_read_lock();
3359 get_fs_root_rcu(current->fs, &root);
3360 error = path_with_deleted(path, &root, &res, &buflen);
3361 rcu_read_unlock();
3362
3363 if (error < 0)
3364 res = ERR_PTR(error);
3365 return res;
3366 }
3367 EXPORT_SYMBOL(d_path);
3368
3369 /*
3370 * Helper function for dentry_operations.d_dname() members
3371 */
3372 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
3373 const char *fmt, ...)
3374 {
3375 va_list args;
3376 char temp[64];
3377 int sz;
3378
3379 va_start(args, fmt);
3380 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
3381 va_end(args);
3382
3383 if (sz > sizeof(temp) || sz > buflen)
3384 return ERR_PTR(-ENAMETOOLONG);
3385
3386 buffer += buflen - sz;
3387 return memcpy(buffer, temp, sz);
3388 }
3389
3390 char *simple_dname(struct dentry *dentry, char *buffer, int buflen)
3391 {
3392 char *end = buffer + buflen;
3393 /* these dentries are never renamed, so d_lock is not needed */
3394 if (prepend(&end, &buflen, " (deleted)", 11) ||
3395 prepend(&end, &buflen, dentry->d_name.name, dentry->d_name.len) ||
3396 prepend(&end, &buflen, "/", 1))
3397 end = ERR_PTR(-ENAMETOOLONG);
3398 return end;
3399 }
3400 EXPORT_SYMBOL(simple_dname);
3401
3402 /*
3403 * Write full pathname from the root of the filesystem into the buffer.
3404 */
3405 static char *__dentry_path(struct dentry *d, char *buf, int buflen)
3406 {
3407 struct dentry *dentry;
3408 char *end, *retval;
3409 int len, seq = 0;
3410 int error = 0;
3411
3412 if (buflen < 2)
3413 goto Elong;
3414
3415 rcu_read_lock();
3416 restart:
3417 dentry = d;
3418 end = buf + buflen;
3419 len = buflen;
3420 prepend(&end, &len, "\0", 1);
3421 /* Get '/' right */
3422 retval = end-1;
3423 *retval = '/';
3424 read_seqbegin_or_lock(&rename_lock, &seq);
3425 while (!IS_ROOT(dentry)) {
3426 struct dentry *parent = dentry->d_parent;
3427
3428 prefetch(parent);
3429 error = prepend_name(&end, &len, &dentry->d_name);
3430 if (error)
3431 break;
3432
3433 retval = end;
3434 dentry = parent;
3435 }
3436 if (!(seq & 1))
3437 rcu_read_unlock();
3438 if (need_seqretry(&rename_lock, seq)) {
3439 seq = 1;
3440 goto restart;
3441 }
3442 done_seqretry(&rename_lock, seq);
3443 if (error)
3444 goto Elong;
3445 return retval;
3446 Elong:
3447 return ERR_PTR(-ENAMETOOLONG);
3448 }
3449
3450 char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
3451 {
3452 return __dentry_path(dentry, buf, buflen);
3453 }
3454 EXPORT_SYMBOL(dentry_path_raw);
3455
3456 char *dentry_path(struct dentry *dentry, char *buf, int buflen)
3457 {
3458 char *p = NULL;
3459 char *retval;
3460
3461 if (d_unlinked(dentry)) {
3462 p = buf + buflen;
3463 if (prepend(&p, &buflen, "//deleted", 10) != 0)
3464 goto Elong;
3465 buflen++;
3466 }
3467 retval = __dentry_path(dentry, buf, buflen);
3468 if (!IS_ERR(retval) && p)
3469 *p = '/'; /* restore '/' overriden with '\0' */
3470 return retval;
3471 Elong:
3472 return ERR_PTR(-ENAMETOOLONG);
3473 }
3474
3475 static void get_fs_root_and_pwd_rcu(struct fs_struct *fs, struct path *root,
3476 struct path *pwd)
3477 {
3478 unsigned seq;
3479
3480 do {
3481 seq = read_seqcount_begin(&fs->seq);
3482 *root = fs->root;
3483 *pwd = fs->pwd;
3484 } while (read_seqcount_retry(&fs->seq, seq));
3485 }
3486
3487 /*
3488 * NOTE! The user-level library version returns a
3489 * character pointer. The kernel system call just
3490 * returns the length of the buffer filled (which
3491 * includes the ending '\0' character), or a negative
3492 * error value. So libc would do something like
3493 *
3494 * char *getcwd(char * buf, size_t size)
3495 * {
3496 * int retval;
3497 *
3498 * retval = sys_getcwd(buf, size);
3499 * if (retval >= 0)
3500 * return buf;
3501 * errno = -retval;
3502 * return NULL;
3503 * }
3504 */
3505 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
3506 {
3507 int error;
3508 struct path pwd, root;
3509 char *page = __getname();
3510
3511 if (!page)
3512 return -ENOMEM;
3513
3514 rcu_read_lock();
3515 get_fs_root_and_pwd_rcu(current->fs, &root, &pwd);
3516
3517 error = -ENOENT;
3518 if (!d_unlinked(pwd.dentry)) {
3519 unsigned long len;
3520 char *cwd = page + PATH_MAX;
3521 int buflen = PATH_MAX;
3522
3523 prepend(&cwd, &buflen, "\0", 1);
3524 error = prepend_path(&pwd, &root, &cwd, &buflen);
3525 rcu_read_unlock();
3526
3527 if (error < 0)
3528 goto out;
3529
3530 /* Unreachable from current root */
3531 if (error > 0) {
3532 error = prepend_unreachable(&cwd, &buflen);
3533 if (error)
3534 goto out;
3535 }
3536
3537 error = -ERANGE;
3538 len = PATH_MAX + page - cwd;
3539 if (len <= size) {
3540 error = len;
3541 if (copy_to_user(buf, cwd, len))
3542 error = -EFAULT;
3543 }
3544 } else {
3545 rcu_read_unlock();
3546 }
3547
3548 out:
3549 __putname(page);
3550 return error;
3551 }
3552
3553 /*
3554 * Test whether new_dentry is a subdirectory of old_dentry.
3555 *
3556 * Trivially implemented using the dcache structure
3557 */
3558
3559 /**
3560 * is_subdir - is new dentry a subdirectory of old_dentry
3561 * @new_dentry: new dentry
3562 * @old_dentry: old dentry
3563 *
3564 * Returns true if new_dentry is a subdirectory of the parent (at any depth).
3565 * Returns false otherwise.
3566 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3567 */
3568
3569 bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
3570 {
3571 bool result;
3572 unsigned seq;
3573
3574 if (new_dentry == old_dentry)
3575 return true;
3576
3577 do {
3578 /* for restarting inner loop in case of seq retry */
3579 seq = read_seqbegin(&rename_lock);
3580 /*
3581 * Need rcu_readlock to protect against the d_parent trashing
3582 * due to d_move
3583 */
3584 rcu_read_lock();
3585 if (d_ancestor(old_dentry, new_dentry))
3586 result = true;
3587 else
3588 result = false;
3589 rcu_read_unlock();
3590 } while (read_seqretry(&rename_lock, seq));
3591
3592 return result;
3593 }
3594
3595 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
3596 {
3597 struct dentry *root = data;
3598 if (dentry != root) {
3599 if (d_unhashed(dentry) || !dentry->d_inode)
3600 return D_WALK_SKIP;
3601
3602 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3603 dentry->d_flags |= DCACHE_GENOCIDE;
3604 dentry->d_lockref.count--;
3605 }
3606 }
3607 return D_WALK_CONTINUE;
3608 }
3609
3610 void d_genocide(struct dentry *parent)
3611 {
3612 d_walk(parent, parent, d_genocide_kill, NULL);
3613 }
3614
3615 void d_tmpfile(struct dentry *dentry, struct inode *inode)
3616 {
3617 inode_dec_link_count(inode);
3618 BUG_ON(dentry->d_name.name != dentry->d_iname ||
3619 !hlist_unhashed(&dentry->d_u.d_alias) ||
3620 !d_unlinked(dentry));
3621 spin_lock(&dentry->d_parent->d_lock);
3622 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3623 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3624 (unsigned long long)inode->i_ino);
3625 spin_unlock(&dentry->d_lock);
3626 spin_unlock(&dentry->d_parent->d_lock);
3627 d_instantiate(dentry, inode);
3628 }
3629 EXPORT_SYMBOL(d_tmpfile);
3630
3631 static __initdata unsigned long dhash_entries;
3632 static int __init set_dhash_entries(char *str)
3633 {
3634 if (!str)
3635 return 0;
3636 dhash_entries = simple_strtoul(str, &str, 0);
3637 return 1;
3638 }
3639 __setup("dhash_entries=", set_dhash_entries);
3640
3641 static void __init dcache_init_early(void)
3642 {
3643 /* If hashes are distributed across NUMA nodes, defer
3644 * hash allocation until vmalloc space is available.
3645 */
3646 if (hashdist)
3647 return;
3648
3649 dentry_hashtable =
3650 alloc_large_system_hash("Dentry cache",
3651 sizeof(struct hlist_bl_head),
3652 dhash_entries,
3653 13,
3654 HASH_EARLY | HASH_ZERO,
3655 &d_hash_shift,
3656 &d_hash_mask,
3657 0,
3658 0);
3659 }
3660
3661 static void __init dcache_init(void)
3662 {
3663 /*
3664 * A constructor could be added for stable state like the lists,
3665 * but it is probably not worth it because of the cache nature
3666 * of the dcache.
3667 */
3668 dentry_cache = KMEM_CACHE(dentry,
3669 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT);
3670
3671 /* Hash may have been set up in dcache_init_early */
3672 if (!hashdist)
3673 return;
3674
3675 dentry_hashtable =
3676 alloc_large_system_hash("Dentry cache",
3677 sizeof(struct hlist_bl_head),
3678 dhash_entries,
3679 13,
3680 HASH_ZERO,
3681 &d_hash_shift,
3682 &d_hash_mask,
3683 0,
3684 0);
3685 }
3686
3687 /* SLAB cache for __getname() consumers */
3688 struct kmem_cache *names_cachep __read_mostly;
3689 EXPORT_SYMBOL(names_cachep);
3690
3691 EXPORT_SYMBOL(d_genocide);
3692
3693 void __init vfs_caches_init_early(void)
3694 {
3695 int i;
3696
3697 for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++)
3698 INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]);
3699
3700 dcache_init_early();
3701 inode_init_early();
3702 }
3703
3704 void __init vfs_caches_init(void)
3705 {
3706 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
3707 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3708
3709 dcache_init();
3710 inode_init();
3711 files_init();
3712 files_maxfiles_init();
3713 mnt_init();
3714 bdev_cache_init();
3715 chrdev_init();
3716 }