]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/dcache.c
UBUNTU: Ubuntu-snapdragon-4.4.0-1042.46
[mirror_ubuntu-artful-kernel.git] / fs / dcache.c
1 /*
2 * fs/dcache.c
3 *
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
8
9 /*
10 * Notes on the allocation strategy:
11 *
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
15 */
16
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/export.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <asm/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/rculist_bl.h>
38 #include <linux/prefetch.h>
39 #include <linux/ratelimit.h>
40 #include <linux/list_lru.h>
41 #include <linux/kasan.h>
42
43 #include "internal.h"
44 #include "mount.h"
45
46 /*
47 * Usage:
48 * dcache->d_inode->i_lock protects:
49 * - i_dentry, d_u.d_alias, d_inode of aliases
50 * dcache_hash_bucket lock protects:
51 * - the dcache hash table
52 * s_anon bl list spinlock protects:
53 * - the s_anon list (see __d_drop)
54 * dentry->d_sb->s_dentry_lru_lock protects:
55 * - the dcache lru lists and counters
56 * d_lock protects:
57 * - d_flags
58 * - d_name
59 * - d_lru
60 * - d_count
61 * - d_unhashed()
62 * - d_parent and d_subdirs
63 * - childrens' d_child and d_parent
64 * - d_u.d_alias, d_inode
65 *
66 * Ordering:
67 * dentry->d_inode->i_lock
68 * dentry->d_lock
69 * dentry->d_sb->s_dentry_lru_lock
70 * dcache_hash_bucket lock
71 * s_anon lock
72 *
73 * If there is an ancestor relationship:
74 * dentry->d_parent->...->d_parent->d_lock
75 * ...
76 * dentry->d_parent->d_lock
77 * dentry->d_lock
78 *
79 * If no ancestor relationship:
80 * if (dentry1 < dentry2)
81 * dentry1->d_lock
82 * dentry2->d_lock
83 */
84 int sysctl_vfs_cache_pressure __read_mostly = 100;
85 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
86
87 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
88
89 EXPORT_SYMBOL(rename_lock);
90
91 static struct kmem_cache *dentry_cache __read_mostly;
92
93 /*
94 * This is the single most critical data structure when it comes
95 * to the dcache: the hashtable for lookups. Somebody should try
96 * to make this good - I've just made it work.
97 *
98 * This hash-function tries to avoid losing too many bits of hash
99 * information, yet avoid using a prime hash-size or similar.
100 */
101
102 static unsigned int d_hash_mask __read_mostly;
103 static unsigned int d_hash_shift __read_mostly;
104
105 static struct hlist_bl_head *dentry_hashtable __read_mostly;
106
107 static inline struct hlist_bl_head *d_hash(const struct dentry *parent,
108 unsigned int hash)
109 {
110 hash += (unsigned long) parent / L1_CACHE_BYTES;
111 return dentry_hashtable + hash_32(hash, d_hash_shift);
112 }
113
114 /* Statistics gathering. */
115 struct dentry_stat_t dentry_stat = {
116 .age_limit = 45,
117 };
118
119 static DEFINE_PER_CPU(long, nr_dentry);
120 static DEFINE_PER_CPU(long, nr_dentry_unused);
121
122 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
123
124 /*
125 * Here we resort to our own counters instead of using generic per-cpu counters
126 * for consistency with what the vfs inode code does. We are expected to harvest
127 * better code and performance by having our own specialized counters.
128 *
129 * Please note that the loop is done over all possible CPUs, not over all online
130 * CPUs. The reason for this is that we don't want to play games with CPUs going
131 * on and off. If one of them goes off, we will just keep their counters.
132 *
133 * glommer: See cffbc8a for details, and if you ever intend to change this,
134 * please update all vfs counters to match.
135 */
136 static long get_nr_dentry(void)
137 {
138 int i;
139 long sum = 0;
140 for_each_possible_cpu(i)
141 sum += per_cpu(nr_dentry, i);
142 return sum < 0 ? 0 : sum;
143 }
144
145 static long get_nr_dentry_unused(void)
146 {
147 int i;
148 long sum = 0;
149 for_each_possible_cpu(i)
150 sum += per_cpu(nr_dentry_unused, i);
151 return sum < 0 ? 0 : sum;
152 }
153
154 int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer,
155 size_t *lenp, loff_t *ppos)
156 {
157 dentry_stat.nr_dentry = get_nr_dentry();
158 dentry_stat.nr_unused = get_nr_dentry_unused();
159 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
160 }
161 #endif
162
163 /*
164 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
165 * The strings are both count bytes long, and count is non-zero.
166 */
167 #ifdef CONFIG_DCACHE_WORD_ACCESS
168
169 #include <asm/word-at-a-time.h>
170 /*
171 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
172 * aligned allocation for this particular component. We don't
173 * strictly need the load_unaligned_zeropad() safety, but it
174 * doesn't hurt either.
175 *
176 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
177 * need the careful unaligned handling.
178 */
179 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
180 {
181 unsigned long a,b,mask;
182
183 for (;;) {
184 a = *(unsigned long *)cs;
185 b = load_unaligned_zeropad(ct);
186 if (tcount < sizeof(unsigned long))
187 break;
188 if (unlikely(a != b))
189 return 1;
190 cs += sizeof(unsigned long);
191 ct += sizeof(unsigned long);
192 tcount -= sizeof(unsigned long);
193 if (!tcount)
194 return 0;
195 }
196 mask = bytemask_from_count(tcount);
197 return unlikely(!!((a ^ b) & mask));
198 }
199
200 #else
201
202 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
203 {
204 do {
205 if (*cs != *ct)
206 return 1;
207 cs++;
208 ct++;
209 tcount--;
210 } while (tcount);
211 return 0;
212 }
213
214 #endif
215
216 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
217 {
218 const unsigned char *cs;
219 /*
220 * Be careful about RCU walk racing with rename:
221 * use ACCESS_ONCE to fetch the name pointer.
222 *
223 * NOTE! Even if a rename will mean that the length
224 * was not loaded atomically, we don't care. The
225 * RCU walk will check the sequence count eventually,
226 * and catch it. And we won't overrun the buffer,
227 * because we're reading the name pointer atomically,
228 * and a dentry name is guaranteed to be properly
229 * terminated with a NUL byte.
230 *
231 * End result: even if 'len' is wrong, we'll exit
232 * early because the data cannot match (there can
233 * be no NUL in the ct/tcount data)
234 */
235 cs = ACCESS_ONCE(dentry->d_name.name);
236 smp_read_barrier_depends();
237 return dentry_string_cmp(cs, ct, tcount);
238 }
239
240 struct external_name {
241 union {
242 atomic_t count;
243 struct rcu_head head;
244 } u;
245 unsigned char name[];
246 };
247
248 static inline struct external_name *external_name(struct dentry *dentry)
249 {
250 return container_of(dentry->d_name.name, struct external_name, name[0]);
251 }
252
253 static void __d_free(struct rcu_head *head)
254 {
255 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
256
257 kmem_cache_free(dentry_cache, dentry);
258 }
259
260 static void __d_free_external(struct rcu_head *head)
261 {
262 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
263 kfree(external_name(dentry));
264 kmem_cache_free(dentry_cache, dentry);
265 }
266
267 static inline int dname_external(const struct dentry *dentry)
268 {
269 return dentry->d_name.name != dentry->d_iname;
270 }
271
272 void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry)
273 {
274 spin_lock(&dentry->d_lock);
275 if (unlikely(dname_external(dentry))) {
276 struct external_name *p = external_name(dentry);
277 atomic_inc(&p->u.count);
278 spin_unlock(&dentry->d_lock);
279 name->name = p->name;
280 } else {
281 memcpy(name->inline_name, dentry->d_iname, DNAME_INLINE_LEN);
282 spin_unlock(&dentry->d_lock);
283 name->name = name->inline_name;
284 }
285 }
286 EXPORT_SYMBOL(take_dentry_name_snapshot);
287
288 void release_dentry_name_snapshot(struct name_snapshot *name)
289 {
290 if (unlikely(name->name != name->inline_name)) {
291 struct external_name *p;
292 p = container_of(name->name, struct external_name, name[0]);
293 if (unlikely(atomic_dec_and_test(&p->u.count)))
294 kfree_rcu(p, u.head);
295 }
296 }
297 EXPORT_SYMBOL(release_dentry_name_snapshot);
298
299 static inline void __d_set_inode_and_type(struct dentry *dentry,
300 struct inode *inode,
301 unsigned type_flags)
302 {
303 unsigned flags;
304
305 dentry->d_inode = inode;
306 flags = READ_ONCE(dentry->d_flags);
307 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
308 flags |= type_flags;
309 WRITE_ONCE(dentry->d_flags, flags);
310 }
311
312 static inline void __d_clear_type_and_inode(struct dentry *dentry)
313 {
314 unsigned flags = READ_ONCE(dentry->d_flags);
315
316 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
317 WRITE_ONCE(dentry->d_flags, flags);
318 dentry->d_inode = NULL;
319 }
320
321 static void dentry_free(struct dentry *dentry)
322 {
323 WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
324 if (unlikely(dname_external(dentry))) {
325 struct external_name *p = external_name(dentry);
326 if (likely(atomic_dec_and_test(&p->u.count))) {
327 call_rcu(&dentry->d_u.d_rcu, __d_free_external);
328 return;
329 }
330 }
331 /* if dentry was never visible to RCU, immediate free is OK */
332 if (!(dentry->d_flags & DCACHE_RCUACCESS))
333 __d_free(&dentry->d_u.d_rcu);
334 else
335 call_rcu(&dentry->d_u.d_rcu, __d_free);
336 }
337
338 /**
339 * dentry_rcuwalk_invalidate - invalidate in-progress rcu-walk lookups
340 * @dentry: the target dentry
341 * After this call, in-progress rcu-walk path lookup will fail. This
342 * should be called after unhashing, and after changing d_inode (if
343 * the dentry has not already been unhashed).
344 */
345 static inline void dentry_rcuwalk_invalidate(struct dentry *dentry)
346 {
347 lockdep_assert_held(&dentry->d_lock);
348 /* Go through am invalidation barrier */
349 write_seqcount_invalidate(&dentry->d_seq);
350 }
351
352 /*
353 * Release the dentry's inode, using the filesystem
354 * d_iput() operation if defined. Dentry has no refcount
355 * and is unhashed.
356 */
357 static void dentry_iput(struct dentry * dentry)
358 __releases(dentry->d_lock)
359 __releases(dentry->d_inode->i_lock)
360 {
361 struct inode *inode = dentry->d_inode;
362 if (inode) {
363 __d_clear_type_and_inode(dentry);
364 hlist_del_init(&dentry->d_u.d_alias);
365 spin_unlock(&dentry->d_lock);
366 spin_unlock(&inode->i_lock);
367 if (!inode->i_nlink)
368 fsnotify_inoderemove(inode);
369 if (dentry->d_op && dentry->d_op->d_iput)
370 dentry->d_op->d_iput(dentry, inode);
371 else
372 iput(inode);
373 } else {
374 spin_unlock(&dentry->d_lock);
375 }
376 }
377
378 /*
379 * Release the dentry's inode, using the filesystem
380 * d_iput() operation if defined. dentry remains in-use.
381 */
382 static void dentry_unlink_inode(struct dentry * dentry)
383 __releases(dentry->d_lock)
384 __releases(dentry->d_inode->i_lock)
385 {
386 struct inode *inode = dentry->d_inode;
387
388 raw_write_seqcount_begin(&dentry->d_seq);
389 __d_clear_type_and_inode(dentry);
390 hlist_del_init(&dentry->d_u.d_alias);
391 raw_write_seqcount_end(&dentry->d_seq);
392 spin_unlock(&dentry->d_lock);
393 spin_unlock(&inode->i_lock);
394 if (!inode->i_nlink)
395 fsnotify_inoderemove(inode);
396 if (dentry->d_op && dentry->d_op->d_iput)
397 dentry->d_op->d_iput(dentry, inode);
398 else
399 iput(inode);
400 }
401
402 /*
403 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
404 * is in use - which includes both the "real" per-superblock
405 * LRU list _and_ the DCACHE_SHRINK_LIST use.
406 *
407 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
408 * on the shrink list (ie not on the superblock LRU list).
409 *
410 * The per-cpu "nr_dentry_unused" counters are updated with
411 * the DCACHE_LRU_LIST bit.
412 *
413 * These helper functions make sure we always follow the
414 * rules. d_lock must be held by the caller.
415 */
416 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
417 static void d_lru_add(struct dentry *dentry)
418 {
419 D_FLAG_VERIFY(dentry, 0);
420 dentry->d_flags |= DCACHE_LRU_LIST;
421 this_cpu_inc(nr_dentry_unused);
422 WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
423 }
424
425 static void d_lru_del(struct dentry *dentry)
426 {
427 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
428 dentry->d_flags &= ~DCACHE_LRU_LIST;
429 this_cpu_dec(nr_dentry_unused);
430 WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
431 }
432
433 static void d_shrink_del(struct dentry *dentry)
434 {
435 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
436 list_del_init(&dentry->d_lru);
437 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
438 this_cpu_dec(nr_dentry_unused);
439 }
440
441 static void d_shrink_add(struct dentry *dentry, struct list_head *list)
442 {
443 D_FLAG_VERIFY(dentry, 0);
444 list_add(&dentry->d_lru, list);
445 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
446 this_cpu_inc(nr_dentry_unused);
447 }
448
449 /*
450 * These can only be called under the global LRU lock, ie during the
451 * callback for freeing the LRU list. "isolate" removes it from the
452 * LRU lists entirely, while shrink_move moves it to the indicated
453 * private list.
454 */
455 static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
456 {
457 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
458 dentry->d_flags &= ~DCACHE_LRU_LIST;
459 this_cpu_dec(nr_dentry_unused);
460 list_lru_isolate(lru, &dentry->d_lru);
461 }
462
463 static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
464 struct list_head *list)
465 {
466 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
467 dentry->d_flags |= DCACHE_SHRINK_LIST;
468 list_lru_isolate_move(lru, &dentry->d_lru, list);
469 }
470
471 /*
472 * dentry_lru_(add|del)_list) must be called with d_lock held.
473 */
474 static void dentry_lru_add(struct dentry *dentry)
475 {
476 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
477 d_lru_add(dentry);
478 }
479
480 /**
481 * d_drop - drop a dentry
482 * @dentry: dentry to drop
483 *
484 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
485 * be found through a VFS lookup any more. Note that this is different from
486 * deleting the dentry - d_delete will try to mark the dentry negative if
487 * possible, giving a successful _negative_ lookup, while d_drop will
488 * just make the cache lookup fail.
489 *
490 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
491 * reason (NFS timeouts or autofs deletes).
492 *
493 * __d_drop requires dentry->d_lock.
494 */
495 void __d_drop(struct dentry *dentry)
496 {
497 if (!d_unhashed(dentry)) {
498 struct hlist_bl_head *b;
499 /*
500 * Hashed dentries are normally on the dentry hashtable,
501 * with the exception of those newly allocated by
502 * d_obtain_alias, which are always IS_ROOT:
503 */
504 if (unlikely(IS_ROOT(dentry)))
505 b = &dentry->d_sb->s_anon;
506 else
507 b = d_hash(dentry->d_parent, dentry->d_name.hash);
508
509 hlist_bl_lock(b);
510 __hlist_bl_del(&dentry->d_hash);
511 dentry->d_hash.pprev = NULL;
512 hlist_bl_unlock(b);
513 dentry_rcuwalk_invalidate(dentry);
514 }
515 }
516 EXPORT_SYMBOL(__d_drop);
517
518 void d_drop(struct dentry *dentry)
519 {
520 spin_lock(&dentry->d_lock);
521 __d_drop(dentry);
522 spin_unlock(&dentry->d_lock);
523 }
524 EXPORT_SYMBOL(d_drop);
525
526 static void __dentry_kill(struct dentry *dentry)
527 {
528 struct dentry *parent = NULL;
529 bool can_free = true;
530 if (!IS_ROOT(dentry))
531 parent = dentry->d_parent;
532
533 /*
534 * The dentry is now unrecoverably dead to the world.
535 */
536 lockref_mark_dead(&dentry->d_lockref);
537
538 /*
539 * inform the fs via d_prune that this dentry is about to be
540 * unhashed and destroyed.
541 */
542 if (dentry->d_flags & DCACHE_OP_PRUNE)
543 dentry->d_op->d_prune(dentry);
544
545 if (dentry->d_flags & DCACHE_LRU_LIST) {
546 if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
547 d_lru_del(dentry);
548 }
549 /* if it was on the hash then remove it */
550 __d_drop(dentry);
551 __list_del_entry(&dentry->d_child);
552 /*
553 * Inform d_walk() that we are no longer attached to the
554 * dentry tree
555 */
556 dentry->d_flags |= DCACHE_DENTRY_KILLED;
557 if (parent)
558 spin_unlock(&parent->d_lock);
559 dentry_iput(dentry);
560 /*
561 * dentry_iput drops the locks, at which point nobody (except
562 * transient RCU lookups) can reach this dentry.
563 */
564 BUG_ON(dentry->d_lockref.count > 0);
565 this_cpu_dec(nr_dentry);
566 if (dentry->d_op && dentry->d_op->d_release)
567 dentry->d_op->d_release(dentry);
568
569 spin_lock(&dentry->d_lock);
570 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
571 dentry->d_flags |= DCACHE_MAY_FREE;
572 can_free = false;
573 }
574 spin_unlock(&dentry->d_lock);
575 if (likely(can_free))
576 dentry_free(dentry);
577 }
578
579 /*
580 * Finish off a dentry we've decided to kill.
581 * dentry->d_lock must be held, returns with it unlocked.
582 * If ref is non-zero, then decrement the refcount too.
583 * Returns dentry requiring refcount drop, or NULL if we're done.
584 */
585 static struct dentry *dentry_kill(struct dentry *dentry)
586 __releases(dentry->d_lock)
587 {
588 struct inode *inode = dentry->d_inode;
589 struct dentry *parent = NULL;
590
591 if (inode && unlikely(!spin_trylock(&inode->i_lock)))
592 goto failed;
593
594 if (!IS_ROOT(dentry)) {
595 parent = dentry->d_parent;
596 if (unlikely(!spin_trylock(&parent->d_lock))) {
597 if (inode)
598 spin_unlock(&inode->i_lock);
599 goto failed;
600 }
601 }
602
603 __dentry_kill(dentry);
604 return parent;
605
606 failed:
607 spin_unlock(&dentry->d_lock);
608 return dentry; /* try again with same dentry */
609 }
610
611 static inline struct dentry *lock_parent(struct dentry *dentry)
612 {
613 struct dentry *parent = dentry->d_parent;
614 if (IS_ROOT(dentry))
615 return NULL;
616 if (unlikely(dentry->d_lockref.count < 0))
617 return NULL;
618 if (likely(spin_trylock(&parent->d_lock)))
619 return parent;
620 rcu_read_lock();
621 spin_unlock(&dentry->d_lock);
622 again:
623 parent = ACCESS_ONCE(dentry->d_parent);
624 spin_lock(&parent->d_lock);
625 /*
626 * We can't blindly lock dentry until we are sure
627 * that we won't violate the locking order.
628 * Any changes of dentry->d_parent must have
629 * been done with parent->d_lock held, so
630 * spin_lock() above is enough of a barrier
631 * for checking if it's still our child.
632 */
633 if (unlikely(parent != dentry->d_parent)) {
634 spin_unlock(&parent->d_lock);
635 goto again;
636 }
637 rcu_read_unlock();
638 if (parent != dentry)
639 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
640 else
641 parent = NULL;
642 return parent;
643 }
644
645 /*
646 * Try to do a lockless dput(), and return whether that was successful.
647 *
648 * If unsuccessful, we return false, having already taken the dentry lock.
649 *
650 * The caller needs to hold the RCU read lock, so that the dentry is
651 * guaranteed to stay around even if the refcount goes down to zero!
652 */
653 static inline bool fast_dput(struct dentry *dentry)
654 {
655 int ret;
656 unsigned int d_flags;
657
658 /*
659 * If we have a d_op->d_delete() operation, we sould not
660 * let the dentry count go to zero, so use "put_or_lock".
661 */
662 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE))
663 return lockref_put_or_lock(&dentry->d_lockref);
664
665 /*
666 * .. otherwise, we can try to just decrement the
667 * lockref optimistically.
668 */
669 ret = lockref_put_return(&dentry->d_lockref);
670
671 /*
672 * If the lockref_put_return() failed due to the lock being held
673 * by somebody else, the fast path has failed. We will need to
674 * get the lock, and then check the count again.
675 */
676 if (unlikely(ret < 0)) {
677 spin_lock(&dentry->d_lock);
678 if (dentry->d_lockref.count > 1) {
679 dentry->d_lockref.count--;
680 spin_unlock(&dentry->d_lock);
681 return 1;
682 }
683 return 0;
684 }
685
686 /*
687 * If we weren't the last ref, we're done.
688 */
689 if (ret)
690 return 1;
691
692 /*
693 * Careful, careful. The reference count went down
694 * to zero, but we don't hold the dentry lock, so
695 * somebody else could get it again, and do another
696 * dput(), and we need to not race with that.
697 *
698 * However, there is a very special and common case
699 * where we don't care, because there is nothing to
700 * do: the dentry is still hashed, it does not have
701 * a 'delete' op, and it's referenced and already on
702 * the LRU list.
703 *
704 * NOTE! Since we aren't locked, these values are
705 * not "stable". However, it is sufficient that at
706 * some point after we dropped the reference the
707 * dentry was hashed and the flags had the proper
708 * value. Other dentry users may have re-gotten
709 * a reference to the dentry and change that, but
710 * our work is done - we can leave the dentry
711 * around with a zero refcount.
712 */
713 smp_rmb();
714 d_flags = ACCESS_ONCE(dentry->d_flags);
715 d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST | DCACHE_DISCONNECTED;
716
717 /* Nothing to do? Dropping the reference was all we needed? */
718 if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry))
719 return 1;
720
721 /*
722 * Not the fast normal case? Get the lock. We've already decremented
723 * the refcount, but we'll need to re-check the situation after
724 * getting the lock.
725 */
726 spin_lock(&dentry->d_lock);
727
728 /*
729 * Did somebody else grab a reference to it in the meantime, and
730 * we're no longer the last user after all? Alternatively, somebody
731 * else could have killed it and marked it dead. Either way, we
732 * don't need to do anything else.
733 */
734 if (dentry->d_lockref.count) {
735 spin_unlock(&dentry->d_lock);
736 return 1;
737 }
738
739 /*
740 * Re-get the reference we optimistically dropped. We hold the
741 * lock, and we just tested that it was zero, so we can just
742 * set it to 1.
743 */
744 dentry->d_lockref.count = 1;
745 return 0;
746 }
747
748
749 /*
750 * This is dput
751 *
752 * This is complicated by the fact that we do not want to put
753 * dentries that are no longer on any hash chain on the unused
754 * list: we'd much rather just get rid of them immediately.
755 *
756 * However, that implies that we have to traverse the dentry
757 * tree upwards to the parents which might _also_ now be
758 * scheduled for deletion (it may have been only waiting for
759 * its last child to go away).
760 *
761 * This tail recursion is done by hand as we don't want to depend
762 * on the compiler to always get this right (gcc generally doesn't).
763 * Real recursion would eat up our stack space.
764 */
765
766 /*
767 * dput - release a dentry
768 * @dentry: dentry to release
769 *
770 * Release a dentry. This will drop the usage count and if appropriate
771 * call the dentry unlink method as well as removing it from the queues and
772 * releasing its resources. If the parent dentries were scheduled for release
773 * they too may now get deleted.
774 */
775 void dput(struct dentry *dentry)
776 {
777 if (unlikely(!dentry))
778 return;
779
780 repeat:
781 might_sleep();
782
783 rcu_read_lock();
784 if (likely(fast_dput(dentry))) {
785 rcu_read_unlock();
786 return;
787 }
788
789 /* Slow case: now with the dentry lock held */
790 rcu_read_unlock();
791
792 /* Unreachable? Get rid of it */
793 if (unlikely(d_unhashed(dentry)))
794 goto kill_it;
795
796 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
797 goto kill_it;
798
799 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
800 if (dentry->d_op->d_delete(dentry))
801 goto kill_it;
802 }
803
804 if (!(dentry->d_flags & DCACHE_REFERENCED))
805 dentry->d_flags |= DCACHE_REFERENCED;
806 dentry_lru_add(dentry);
807
808 dentry->d_lockref.count--;
809 spin_unlock(&dentry->d_lock);
810 return;
811
812 kill_it:
813 dentry = dentry_kill(dentry);
814 if (dentry) {
815 cond_resched();
816 goto repeat;
817 }
818 }
819 EXPORT_SYMBOL(dput);
820
821
822 /* This must be called with d_lock held */
823 static inline void __dget_dlock(struct dentry *dentry)
824 {
825 dentry->d_lockref.count++;
826 }
827
828 static inline void __dget(struct dentry *dentry)
829 {
830 lockref_get(&dentry->d_lockref);
831 }
832
833 struct dentry *dget_parent(struct dentry *dentry)
834 {
835 int gotref;
836 struct dentry *ret;
837
838 /*
839 * Do optimistic parent lookup without any
840 * locking.
841 */
842 rcu_read_lock();
843 ret = ACCESS_ONCE(dentry->d_parent);
844 gotref = lockref_get_not_zero(&ret->d_lockref);
845 rcu_read_unlock();
846 if (likely(gotref)) {
847 if (likely(ret == ACCESS_ONCE(dentry->d_parent)))
848 return ret;
849 dput(ret);
850 }
851
852 repeat:
853 /*
854 * Don't need rcu_dereference because we re-check it was correct under
855 * the lock.
856 */
857 rcu_read_lock();
858 ret = dentry->d_parent;
859 spin_lock(&ret->d_lock);
860 if (unlikely(ret != dentry->d_parent)) {
861 spin_unlock(&ret->d_lock);
862 rcu_read_unlock();
863 goto repeat;
864 }
865 rcu_read_unlock();
866 BUG_ON(!ret->d_lockref.count);
867 ret->d_lockref.count++;
868 spin_unlock(&ret->d_lock);
869 return ret;
870 }
871 EXPORT_SYMBOL(dget_parent);
872
873 /**
874 * d_find_alias - grab a hashed alias of inode
875 * @inode: inode in question
876 *
877 * If inode has a hashed alias, or is a directory and has any alias,
878 * acquire the reference to alias and return it. Otherwise return NULL.
879 * Notice that if inode is a directory there can be only one alias and
880 * it can be unhashed only if it has no children, or if it is the root
881 * of a filesystem, or if the directory was renamed and d_revalidate
882 * was the first vfs operation to notice.
883 *
884 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
885 * any other hashed alias over that one.
886 */
887 static struct dentry *__d_find_alias(struct inode *inode)
888 {
889 struct dentry *alias, *discon_alias;
890
891 again:
892 discon_alias = NULL;
893 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
894 spin_lock(&alias->d_lock);
895 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
896 if (IS_ROOT(alias) &&
897 (alias->d_flags & DCACHE_DISCONNECTED)) {
898 discon_alias = alias;
899 } else {
900 __dget_dlock(alias);
901 spin_unlock(&alias->d_lock);
902 return alias;
903 }
904 }
905 spin_unlock(&alias->d_lock);
906 }
907 if (discon_alias) {
908 alias = discon_alias;
909 spin_lock(&alias->d_lock);
910 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
911 __dget_dlock(alias);
912 spin_unlock(&alias->d_lock);
913 return alias;
914 }
915 spin_unlock(&alias->d_lock);
916 goto again;
917 }
918 return NULL;
919 }
920
921 struct dentry *d_find_alias(struct inode *inode)
922 {
923 struct dentry *de = NULL;
924
925 if (!hlist_empty(&inode->i_dentry)) {
926 spin_lock(&inode->i_lock);
927 de = __d_find_alias(inode);
928 spin_unlock(&inode->i_lock);
929 }
930 return de;
931 }
932 EXPORT_SYMBOL(d_find_alias);
933
934 /*
935 * Try to kill dentries associated with this inode.
936 * WARNING: you must own a reference to inode.
937 */
938 void d_prune_aliases(struct inode *inode)
939 {
940 struct dentry *dentry;
941 restart:
942 spin_lock(&inode->i_lock);
943 hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
944 spin_lock(&dentry->d_lock);
945 if (!dentry->d_lockref.count) {
946 struct dentry *parent = lock_parent(dentry);
947 if (likely(!dentry->d_lockref.count)) {
948 __dentry_kill(dentry);
949 dput(parent);
950 goto restart;
951 }
952 if (parent)
953 spin_unlock(&parent->d_lock);
954 }
955 spin_unlock(&dentry->d_lock);
956 }
957 spin_unlock(&inode->i_lock);
958 }
959 EXPORT_SYMBOL(d_prune_aliases);
960
961 static void shrink_dentry_list(struct list_head *list)
962 {
963 struct dentry *dentry, *parent;
964
965 while (!list_empty(list)) {
966 struct inode *inode;
967 dentry = list_entry(list->prev, struct dentry, d_lru);
968 spin_lock(&dentry->d_lock);
969 parent = lock_parent(dentry);
970
971 /*
972 * The dispose list is isolated and dentries are not accounted
973 * to the LRU here, so we can simply remove it from the list
974 * here regardless of whether it is referenced or not.
975 */
976 d_shrink_del(dentry);
977
978 /*
979 * We found an inuse dentry which was not removed from
980 * the LRU because of laziness during lookup. Do not free it.
981 */
982 if (dentry->d_lockref.count > 0) {
983 spin_unlock(&dentry->d_lock);
984 if (parent)
985 spin_unlock(&parent->d_lock);
986 continue;
987 }
988
989
990 if (unlikely(dentry->d_flags & DCACHE_DENTRY_KILLED)) {
991 bool can_free = dentry->d_flags & DCACHE_MAY_FREE;
992 spin_unlock(&dentry->d_lock);
993 if (parent)
994 spin_unlock(&parent->d_lock);
995 if (can_free)
996 dentry_free(dentry);
997 continue;
998 }
999
1000 inode = dentry->d_inode;
1001 if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
1002 d_shrink_add(dentry, list);
1003 spin_unlock(&dentry->d_lock);
1004 if (parent)
1005 spin_unlock(&parent->d_lock);
1006 continue;
1007 }
1008
1009 __dentry_kill(dentry);
1010
1011 /*
1012 * We need to prune ancestors too. This is necessary to prevent
1013 * quadratic behavior of shrink_dcache_parent(), but is also
1014 * expected to be beneficial in reducing dentry cache
1015 * fragmentation.
1016 */
1017 dentry = parent;
1018 while (dentry && !lockref_put_or_lock(&dentry->d_lockref)) {
1019 parent = lock_parent(dentry);
1020 if (dentry->d_lockref.count != 1) {
1021 dentry->d_lockref.count--;
1022 spin_unlock(&dentry->d_lock);
1023 if (parent)
1024 spin_unlock(&parent->d_lock);
1025 break;
1026 }
1027 inode = dentry->d_inode; /* can't be NULL */
1028 if (unlikely(!spin_trylock(&inode->i_lock))) {
1029 spin_unlock(&dentry->d_lock);
1030 if (parent)
1031 spin_unlock(&parent->d_lock);
1032 cpu_relax();
1033 continue;
1034 }
1035 __dentry_kill(dentry);
1036 dentry = parent;
1037 }
1038 }
1039 }
1040
1041 static enum lru_status dentry_lru_isolate(struct list_head *item,
1042 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1043 {
1044 struct list_head *freeable = arg;
1045 struct dentry *dentry = container_of(item, struct dentry, d_lru);
1046
1047
1048 /*
1049 * we are inverting the lru lock/dentry->d_lock here,
1050 * so use a trylock. If we fail to get the lock, just skip
1051 * it
1052 */
1053 if (!spin_trylock(&dentry->d_lock))
1054 return LRU_SKIP;
1055
1056 /*
1057 * Referenced dentries are still in use. If they have active
1058 * counts, just remove them from the LRU. Otherwise give them
1059 * another pass through the LRU.
1060 */
1061 if (dentry->d_lockref.count) {
1062 d_lru_isolate(lru, dentry);
1063 spin_unlock(&dentry->d_lock);
1064 return LRU_REMOVED;
1065 }
1066
1067 if (dentry->d_flags & DCACHE_REFERENCED) {
1068 dentry->d_flags &= ~DCACHE_REFERENCED;
1069 spin_unlock(&dentry->d_lock);
1070
1071 /*
1072 * The list move itself will be made by the common LRU code. At
1073 * this point, we've dropped the dentry->d_lock but keep the
1074 * lru lock. This is safe to do, since every list movement is
1075 * protected by the lru lock even if both locks are held.
1076 *
1077 * This is guaranteed by the fact that all LRU management
1078 * functions are intermediated by the LRU API calls like
1079 * list_lru_add and list_lru_del. List movement in this file
1080 * only ever occur through this functions or through callbacks
1081 * like this one, that are called from the LRU API.
1082 *
1083 * The only exceptions to this are functions like
1084 * shrink_dentry_list, and code that first checks for the
1085 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be
1086 * operating only with stack provided lists after they are
1087 * properly isolated from the main list. It is thus, always a
1088 * local access.
1089 */
1090 return LRU_ROTATE;
1091 }
1092
1093 d_lru_shrink_move(lru, dentry, freeable);
1094 spin_unlock(&dentry->d_lock);
1095
1096 return LRU_REMOVED;
1097 }
1098
1099 /**
1100 * prune_dcache_sb - shrink the dcache
1101 * @sb: superblock
1102 * @sc: shrink control, passed to list_lru_shrink_walk()
1103 *
1104 * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1105 * is done when we need more memory and called from the superblock shrinker
1106 * function.
1107 *
1108 * This function may fail to free any resources if all the dentries are in
1109 * use.
1110 */
1111 long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
1112 {
1113 LIST_HEAD(dispose);
1114 long freed;
1115
1116 freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1117 dentry_lru_isolate, &dispose);
1118 shrink_dentry_list(&dispose);
1119 return freed;
1120 }
1121
1122 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
1123 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1124 {
1125 struct list_head *freeable = arg;
1126 struct dentry *dentry = container_of(item, struct dentry, d_lru);
1127
1128 /*
1129 * we are inverting the lru lock/dentry->d_lock here,
1130 * so use a trylock. If we fail to get the lock, just skip
1131 * it
1132 */
1133 if (!spin_trylock(&dentry->d_lock))
1134 return LRU_SKIP;
1135
1136 d_lru_shrink_move(lru, dentry, freeable);
1137 spin_unlock(&dentry->d_lock);
1138
1139 return LRU_REMOVED;
1140 }
1141
1142
1143 /**
1144 * shrink_dcache_sb - shrink dcache for a superblock
1145 * @sb: superblock
1146 *
1147 * Shrink the dcache for the specified super block. This is used to free
1148 * the dcache before unmounting a file system.
1149 */
1150 void shrink_dcache_sb(struct super_block *sb)
1151 {
1152 long freed;
1153
1154 do {
1155 LIST_HEAD(dispose);
1156
1157 freed = list_lru_walk(&sb->s_dentry_lru,
1158 dentry_lru_isolate_shrink, &dispose, 1024);
1159
1160 this_cpu_sub(nr_dentry_unused, freed);
1161 shrink_dentry_list(&dispose);
1162 cond_resched();
1163 } while (list_lru_count(&sb->s_dentry_lru) > 0);
1164 }
1165 EXPORT_SYMBOL(shrink_dcache_sb);
1166
1167 /**
1168 * enum d_walk_ret - action to talke during tree walk
1169 * @D_WALK_CONTINUE: contrinue walk
1170 * @D_WALK_QUIT: quit walk
1171 * @D_WALK_NORETRY: quit when retry is needed
1172 * @D_WALK_SKIP: skip this dentry and its children
1173 */
1174 enum d_walk_ret {
1175 D_WALK_CONTINUE,
1176 D_WALK_QUIT,
1177 D_WALK_NORETRY,
1178 D_WALK_SKIP,
1179 };
1180
1181 /**
1182 * d_walk - walk the dentry tree
1183 * @parent: start of walk
1184 * @data: data passed to @enter() and @finish()
1185 * @enter: callback when first entering the dentry
1186 * @finish: callback when successfully finished the walk
1187 *
1188 * The @enter() and @finish() callbacks are called with d_lock held.
1189 */
1190 void d_walk(struct dentry *parent, void *data,
1191 enum d_walk_ret (*enter)(void *, struct dentry *),
1192 void (*finish)(void *))
1193 {
1194 struct dentry *this_parent;
1195 struct list_head *next;
1196 unsigned seq = 0;
1197 enum d_walk_ret ret;
1198 bool retry = true;
1199
1200 again:
1201 read_seqbegin_or_lock(&rename_lock, &seq);
1202 this_parent = parent;
1203 spin_lock(&this_parent->d_lock);
1204
1205 ret = enter(data, this_parent);
1206 switch (ret) {
1207 case D_WALK_CONTINUE:
1208 break;
1209 case D_WALK_QUIT:
1210 case D_WALK_SKIP:
1211 goto out_unlock;
1212 case D_WALK_NORETRY:
1213 retry = false;
1214 break;
1215 }
1216 repeat:
1217 next = this_parent->d_subdirs.next;
1218 resume:
1219 while (next != &this_parent->d_subdirs) {
1220 struct list_head *tmp = next;
1221 struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1222 next = tmp->next;
1223
1224 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1225
1226 ret = enter(data, dentry);
1227 switch (ret) {
1228 case D_WALK_CONTINUE:
1229 break;
1230 case D_WALK_QUIT:
1231 spin_unlock(&dentry->d_lock);
1232 goto out_unlock;
1233 case D_WALK_NORETRY:
1234 retry = false;
1235 break;
1236 case D_WALK_SKIP:
1237 spin_unlock(&dentry->d_lock);
1238 continue;
1239 }
1240
1241 if (!list_empty(&dentry->d_subdirs)) {
1242 spin_unlock(&this_parent->d_lock);
1243 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1244 this_parent = dentry;
1245 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1246 goto repeat;
1247 }
1248 spin_unlock(&dentry->d_lock);
1249 }
1250 /*
1251 * All done at this level ... ascend and resume the search.
1252 */
1253 rcu_read_lock();
1254 ascend:
1255 if (this_parent != parent) {
1256 struct dentry *child = this_parent;
1257 this_parent = child->d_parent;
1258
1259 spin_unlock(&child->d_lock);
1260 spin_lock(&this_parent->d_lock);
1261
1262 /* might go back up the wrong parent if we have had a rename. */
1263 if (need_seqretry(&rename_lock, seq))
1264 goto rename_retry;
1265 /* go into the first sibling still alive */
1266 do {
1267 next = child->d_child.next;
1268 if (next == &this_parent->d_subdirs)
1269 goto ascend;
1270 child = list_entry(next, struct dentry, d_child);
1271 } while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED));
1272 rcu_read_unlock();
1273 goto resume;
1274 }
1275 if (need_seqretry(&rename_lock, seq))
1276 goto rename_retry;
1277 rcu_read_unlock();
1278 if (finish)
1279 finish(data);
1280
1281 out_unlock:
1282 spin_unlock(&this_parent->d_lock);
1283 done_seqretry(&rename_lock, seq);
1284 return;
1285
1286 rename_retry:
1287 spin_unlock(&this_parent->d_lock);
1288 rcu_read_unlock();
1289 BUG_ON(seq & 1);
1290 if (!retry)
1291 return;
1292 seq = 1;
1293 goto again;
1294 }
1295 EXPORT_SYMBOL(d_walk);
1296
1297 /*
1298 * Search for at least 1 mount point in the dentry's subdirs.
1299 * We descend to the next level whenever the d_subdirs
1300 * list is non-empty and continue searching.
1301 */
1302
1303 static enum d_walk_ret check_mount(void *data, struct dentry *dentry)
1304 {
1305 int *ret = data;
1306 if (d_mountpoint(dentry)) {
1307 *ret = 1;
1308 return D_WALK_QUIT;
1309 }
1310 return D_WALK_CONTINUE;
1311 }
1312
1313 /**
1314 * have_submounts - check for mounts over a dentry
1315 * @parent: dentry to check.
1316 *
1317 * Return true if the parent or its subdirectories contain
1318 * a mount point
1319 */
1320 int have_submounts(struct dentry *parent)
1321 {
1322 int ret = 0;
1323
1324 d_walk(parent, &ret, check_mount, NULL);
1325
1326 return ret;
1327 }
1328 EXPORT_SYMBOL(have_submounts);
1329
1330 /*
1331 * Called by mount code to set a mountpoint and check if the mountpoint is
1332 * reachable (e.g. NFS can unhash a directory dentry and then the complete
1333 * subtree can become unreachable).
1334 *
1335 * Only one of d_invalidate() and d_set_mounted() must succeed. For
1336 * this reason take rename_lock and d_lock on dentry and ancestors.
1337 */
1338 int d_set_mounted(struct dentry *dentry)
1339 {
1340 struct dentry *p;
1341 int ret = -ENOENT;
1342 write_seqlock(&rename_lock);
1343 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1344 /* Need exclusion wrt. d_invalidate() */
1345 spin_lock(&p->d_lock);
1346 if (unlikely(d_unhashed(p))) {
1347 spin_unlock(&p->d_lock);
1348 goto out;
1349 }
1350 spin_unlock(&p->d_lock);
1351 }
1352 spin_lock(&dentry->d_lock);
1353 if (!d_unlinked(dentry)) {
1354 ret = -EBUSY;
1355 if (!d_mountpoint(dentry)) {
1356 dentry->d_flags |= DCACHE_MOUNTED;
1357 ret = 0;
1358 }
1359 }
1360 spin_unlock(&dentry->d_lock);
1361 out:
1362 write_sequnlock(&rename_lock);
1363 return ret;
1364 }
1365
1366 /*
1367 * Search the dentry child list of the specified parent,
1368 * and move any unused dentries to the end of the unused
1369 * list for prune_dcache(). We descend to the next level
1370 * whenever the d_subdirs list is non-empty and continue
1371 * searching.
1372 *
1373 * It returns zero iff there are no unused children,
1374 * otherwise it returns the number of children moved to
1375 * the end of the unused list. This may not be the total
1376 * number of unused children, because select_parent can
1377 * drop the lock and return early due to latency
1378 * constraints.
1379 */
1380
1381 struct select_data {
1382 struct dentry *start;
1383 struct list_head dispose;
1384 int found;
1385 };
1386
1387 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1388 {
1389 struct select_data *data = _data;
1390 enum d_walk_ret ret = D_WALK_CONTINUE;
1391
1392 if (data->start == dentry)
1393 goto out;
1394
1395 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1396 data->found++;
1397 } else {
1398 if (dentry->d_flags & DCACHE_LRU_LIST)
1399 d_lru_del(dentry);
1400 if (!dentry->d_lockref.count) {
1401 d_shrink_add(dentry, &data->dispose);
1402 data->found++;
1403 }
1404 }
1405 /*
1406 * We can return to the caller if we have found some (this
1407 * ensures forward progress). We'll be coming back to find
1408 * the rest.
1409 */
1410 if (!list_empty(&data->dispose))
1411 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1412 out:
1413 return ret;
1414 }
1415
1416 /**
1417 * shrink_dcache_parent - prune dcache
1418 * @parent: parent of entries to prune
1419 *
1420 * Prune the dcache to remove unused children of the parent dentry.
1421 */
1422 void shrink_dcache_parent(struct dentry *parent)
1423 {
1424 for (;;) {
1425 struct select_data data;
1426
1427 INIT_LIST_HEAD(&data.dispose);
1428 data.start = parent;
1429 data.found = 0;
1430
1431 d_walk(parent, &data, select_collect, NULL);
1432 if (!data.found)
1433 break;
1434
1435 shrink_dentry_list(&data.dispose);
1436 cond_resched();
1437 }
1438 }
1439 EXPORT_SYMBOL(shrink_dcache_parent);
1440
1441 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
1442 {
1443 /* it has busy descendents; complain about those instead */
1444 if (!list_empty(&dentry->d_subdirs))
1445 return D_WALK_CONTINUE;
1446
1447 /* root with refcount 1 is fine */
1448 if (dentry == _data && dentry->d_lockref.count == 1)
1449 return D_WALK_CONTINUE;
1450
1451 printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1452 " still in use (%d) [unmount of %s %s]\n",
1453 dentry,
1454 dentry->d_inode ?
1455 dentry->d_inode->i_ino : 0UL,
1456 dentry,
1457 dentry->d_lockref.count,
1458 dentry->d_sb->s_type->name,
1459 dentry->d_sb->s_id);
1460 WARN_ON(1);
1461 return D_WALK_CONTINUE;
1462 }
1463
1464 static void do_one_tree(struct dentry *dentry)
1465 {
1466 shrink_dcache_parent(dentry);
1467 d_walk(dentry, dentry, umount_check, NULL);
1468 d_drop(dentry);
1469 dput(dentry);
1470 }
1471
1472 /*
1473 * destroy the dentries attached to a superblock on unmounting
1474 */
1475 void shrink_dcache_for_umount(struct super_block *sb)
1476 {
1477 struct dentry *dentry;
1478
1479 WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
1480
1481 dentry = sb->s_root;
1482 sb->s_root = NULL;
1483 do_one_tree(dentry);
1484
1485 while (!hlist_bl_empty(&sb->s_anon)) {
1486 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash));
1487 do_one_tree(dentry);
1488 }
1489 }
1490
1491 struct detach_data {
1492 struct select_data select;
1493 struct dentry *mountpoint;
1494 };
1495 static enum d_walk_ret detach_and_collect(void *_data, struct dentry *dentry)
1496 {
1497 struct detach_data *data = _data;
1498
1499 if (d_mountpoint(dentry)) {
1500 __dget_dlock(dentry);
1501 data->mountpoint = dentry;
1502 return D_WALK_QUIT;
1503 }
1504
1505 return select_collect(&data->select, dentry);
1506 }
1507
1508 static void check_and_drop(void *_data)
1509 {
1510 struct detach_data *data = _data;
1511
1512 if (!data->mountpoint && !data->select.found)
1513 __d_drop(data->select.start);
1514 }
1515
1516 /**
1517 * d_invalidate - detach submounts, prune dcache, and drop
1518 * @dentry: dentry to invalidate (aka detach, prune and drop)
1519 *
1520 * no dcache lock.
1521 *
1522 * The final d_drop is done as an atomic operation relative to
1523 * rename_lock ensuring there are no races with d_set_mounted. This
1524 * ensures there are no unhashed dentries on the path to a mountpoint.
1525 */
1526 void d_invalidate(struct dentry *dentry)
1527 {
1528 /*
1529 * If it's already been dropped, return OK.
1530 */
1531 spin_lock(&dentry->d_lock);
1532 if (d_unhashed(dentry)) {
1533 spin_unlock(&dentry->d_lock);
1534 return;
1535 }
1536 spin_unlock(&dentry->d_lock);
1537
1538 /* Negative dentries can be dropped without further checks */
1539 if (!dentry->d_inode) {
1540 d_drop(dentry);
1541 return;
1542 }
1543
1544 for (;;) {
1545 struct detach_data data;
1546
1547 data.mountpoint = NULL;
1548 INIT_LIST_HEAD(&data.select.dispose);
1549 data.select.start = dentry;
1550 data.select.found = 0;
1551
1552 d_walk(dentry, &data, detach_and_collect, check_and_drop);
1553
1554 if (data.select.found)
1555 shrink_dentry_list(&data.select.dispose);
1556
1557 if (data.mountpoint) {
1558 detach_mounts(data.mountpoint);
1559 dput(data.mountpoint);
1560 }
1561
1562 if (!data.mountpoint && !data.select.found)
1563 break;
1564
1565 cond_resched();
1566 }
1567 }
1568 EXPORT_SYMBOL(d_invalidate);
1569
1570 /**
1571 * __d_alloc - allocate a dcache entry
1572 * @sb: filesystem it will belong to
1573 * @name: qstr of the name
1574 *
1575 * Allocates a dentry. It returns %NULL if there is insufficient memory
1576 * available. On a success the dentry is returned. The name passed in is
1577 * copied and the copy passed in may be reused after this call.
1578 */
1579
1580 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1581 {
1582 struct dentry *dentry;
1583 char *dname;
1584
1585 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1586 if (!dentry)
1587 return NULL;
1588
1589 /*
1590 * We guarantee that the inline name is always NUL-terminated.
1591 * This way the memcpy() done by the name switching in rename
1592 * will still always have a NUL at the end, even if we might
1593 * be overwriting an internal NUL character
1594 */
1595 dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1596 if (name->len > DNAME_INLINE_LEN-1) {
1597 size_t size = offsetof(struct external_name, name[1]);
1598 struct external_name *p = kmalloc(size + name->len, GFP_KERNEL);
1599 if (!p) {
1600 kmem_cache_free(dentry_cache, dentry);
1601 return NULL;
1602 }
1603 atomic_set(&p->u.count, 1);
1604 dname = p->name;
1605 if (IS_ENABLED(CONFIG_DCACHE_WORD_ACCESS))
1606 kasan_unpoison_shadow(dname,
1607 round_up(name->len + 1, sizeof(unsigned long)));
1608 } else {
1609 dname = dentry->d_iname;
1610 }
1611
1612 dentry->d_name.len = name->len;
1613 dentry->d_name.hash = name->hash;
1614 memcpy(dname, name->name, name->len);
1615 dname[name->len] = 0;
1616
1617 /* Make sure we always see the terminating NUL character */
1618 smp_wmb();
1619 dentry->d_name.name = dname;
1620
1621 dentry->d_lockref.count = 1;
1622 dentry->d_flags = 0;
1623 spin_lock_init(&dentry->d_lock);
1624 seqcount_init(&dentry->d_seq);
1625 dentry->d_inode = NULL;
1626 dentry->d_parent = dentry;
1627 dentry->d_sb = sb;
1628 dentry->d_op = NULL;
1629 dentry->d_fsdata = NULL;
1630 INIT_HLIST_BL_NODE(&dentry->d_hash);
1631 INIT_LIST_HEAD(&dentry->d_lru);
1632 INIT_LIST_HEAD(&dentry->d_subdirs);
1633 INIT_HLIST_NODE(&dentry->d_u.d_alias);
1634 INIT_LIST_HEAD(&dentry->d_child);
1635 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1636
1637 this_cpu_inc(nr_dentry);
1638
1639 return dentry;
1640 }
1641
1642 /**
1643 * d_alloc - allocate a dcache entry
1644 * @parent: parent of entry to allocate
1645 * @name: qstr of the name
1646 *
1647 * Allocates a dentry. It returns %NULL if there is insufficient memory
1648 * available. On a success the dentry is returned. The name passed in is
1649 * copied and the copy passed in may be reused after this call.
1650 */
1651 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1652 {
1653 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1654 if (!dentry)
1655 return NULL;
1656 dentry->d_flags |= DCACHE_RCUACCESS;
1657 spin_lock(&parent->d_lock);
1658 /*
1659 * don't need child lock because it is not subject
1660 * to concurrency here
1661 */
1662 __dget_dlock(parent);
1663 dentry->d_parent = parent;
1664 list_add(&dentry->d_child, &parent->d_subdirs);
1665 spin_unlock(&parent->d_lock);
1666
1667 return dentry;
1668 }
1669 EXPORT_SYMBOL(d_alloc);
1670
1671 /**
1672 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1673 * @sb: the superblock
1674 * @name: qstr of the name
1675 *
1676 * For a filesystem that just pins its dentries in memory and never
1677 * performs lookups at all, return an unhashed IS_ROOT dentry.
1678 */
1679 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1680 {
1681 return __d_alloc(sb, name);
1682 }
1683 EXPORT_SYMBOL(d_alloc_pseudo);
1684
1685 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1686 {
1687 struct qstr q;
1688
1689 q.name = name;
1690 q.len = strlen(name);
1691 q.hash = full_name_hash(q.name, q.len);
1692 return d_alloc(parent, &q);
1693 }
1694 EXPORT_SYMBOL(d_alloc_name);
1695
1696 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1697 {
1698 WARN_ON_ONCE(dentry->d_op);
1699 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
1700 DCACHE_OP_COMPARE |
1701 DCACHE_OP_REVALIDATE |
1702 DCACHE_OP_WEAK_REVALIDATE |
1703 DCACHE_OP_DELETE |
1704 DCACHE_OP_SELECT_INODE |
1705 DCACHE_OP_REAL));
1706 dentry->d_op = op;
1707 if (!op)
1708 return;
1709 if (op->d_hash)
1710 dentry->d_flags |= DCACHE_OP_HASH;
1711 if (op->d_compare)
1712 dentry->d_flags |= DCACHE_OP_COMPARE;
1713 if (op->d_revalidate)
1714 dentry->d_flags |= DCACHE_OP_REVALIDATE;
1715 if (op->d_weak_revalidate)
1716 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1717 if (op->d_delete)
1718 dentry->d_flags |= DCACHE_OP_DELETE;
1719 if (op->d_prune)
1720 dentry->d_flags |= DCACHE_OP_PRUNE;
1721 if (op->d_select_inode)
1722 dentry->d_flags |= DCACHE_OP_SELECT_INODE;
1723 if (op->d_real)
1724 dentry->d_flags |= DCACHE_OP_REAL;
1725
1726 }
1727 EXPORT_SYMBOL(d_set_d_op);
1728
1729
1730 /*
1731 * d_set_fallthru - Mark a dentry as falling through to a lower layer
1732 * @dentry - The dentry to mark
1733 *
1734 * Mark a dentry as falling through to the lower layer (as set with
1735 * d_pin_lower()). This flag may be recorded on the medium.
1736 */
1737 void d_set_fallthru(struct dentry *dentry)
1738 {
1739 spin_lock(&dentry->d_lock);
1740 dentry->d_flags |= DCACHE_FALLTHRU;
1741 spin_unlock(&dentry->d_lock);
1742 }
1743 EXPORT_SYMBOL(d_set_fallthru);
1744
1745 static unsigned d_flags_for_inode(struct inode *inode)
1746 {
1747 unsigned add_flags = DCACHE_REGULAR_TYPE;
1748
1749 if (!inode)
1750 return DCACHE_MISS_TYPE;
1751
1752 if (S_ISDIR(inode->i_mode)) {
1753 add_flags = DCACHE_DIRECTORY_TYPE;
1754 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1755 if (unlikely(!inode->i_op->lookup))
1756 add_flags = DCACHE_AUTODIR_TYPE;
1757 else
1758 inode->i_opflags |= IOP_LOOKUP;
1759 }
1760 goto type_determined;
1761 }
1762
1763 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1764 if (unlikely(inode->i_op->follow_link)) {
1765 add_flags = DCACHE_SYMLINK_TYPE;
1766 goto type_determined;
1767 }
1768 inode->i_opflags |= IOP_NOFOLLOW;
1769 }
1770
1771 if (unlikely(!S_ISREG(inode->i_mode)))
1772 add_flags = DCACHE_SPECIAL_TYPE;
1773
1774 type_determined:
1775 if (unlikely(IS_AUTOMOUNT(inode)))
1776 add_flags |= DCACHE_NEED_AUTOMOUNT;
1777 return add_flags;
1778 }
1779
1780 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1781 {
1782 unsigned add_flags = d_flags_for_inode(inode);
1783
1784 spin_lock(&dentry->d_lock);
1785 if (inode)
1786 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
1787 raw_write_seqcount_begin(&dentry->d_seq);
1788 __d_set_inode_and_type(dentry, inode, add_flags);
1789 raw_write_seqcount_end(&dentry->d_seq);
1790 spin_unlock(&dentry->d_lock);
1791 fsnotify_d_instantiate(dentry, inode);
1792 }
1793
1794 /**
1795 * d_instantiate - fill in inode information for a dentry
1796 * @entry: dentry to complete
1797 * @inode: inode to attach to this dentry
1798 *
1799 * Fill in inode information in the entry.
1800 *
1801 * This turns negative dentries into productive full members
1802 * of society.
1803 *
1804 * NOTE! This assumes that the inode count has been incremented
1805 * (or otherwise set) by the caller to indicate that it is now
1806 * in use by the dcache.
1807 */
1808
1809 void d_instantiate(struct dentry *entry, struct inode * inode)
1810 {
1811 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1812 if (inode)
1813 spin_lock(&inode->i_lock);
1814 __d_instantiate(entry, inode);
1815 if (inode)
1816 spin_unlock(&inode->i_lock);
1817 security_d_instantiate(entry, inode);
1818 }
1819 EXPORT_SYMBOL(d_instantiate);
1820
1821 /**
1822 * d_instantiate_unique - instantiate a non-aliased dentry
1823 * @entry: dentry to instantiate
1824 * @inode: inode to attach to this dentry
1825 *
1826 * Fill in inode information in the entry. On success, it returns NULL.
1827 * If an unhashed alias of "entry" already exists, then we return the
1828 * aliased dentry instead and drop one reference to inode.
1829 *
1830 * Note that in order to avoid conflicts with rename() etc, the caller
1831 * had better be holding the parent directory semaphore.
1832 *
1833 * This also assumes that the inode count has been incremented
1834 * (or otherwise set) by the caller to indicate that it is now
1835 * in use by the dcache.
1836 */
1837 static struct dentry *__d_instantiate_unique(struct dentry *entry,
1838 struct inode *inode)
1839 {
1840 struct dentry *alias;
1841 int len = entry->d_name.len;
1842 const char *name = entry->d_name.name;
1843 unsigned int hash = entry->d_name.hash;
1844
1845 if (!inode) {
1846 __d_instantiate(entry, NULL);
1847 return NULL;
1848 }
1849
1850 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
1851 /*
1852 * Don't need alias->d_lock here, because aliases with
1853 * d_parent == entry->d_parent are not subject to name or
1854 * parent changes, because the parent inode i_mutex is held.
1855 */
1856 if (alias->d_name.hash != hash)
1857 continue;
1858 if (alias->d_parent != entry->d_parent)
1859 continue;
1860 if (alias->d_name.len != len)
1861 continue;
1862 if (dentry_cmp(alias, name, len))
1863 continue;
1864 __dget(alias);
1865 return alias;
1866 }
1867
1868 __d_instantiate(entry, inode);
1869 return NULL;
1870 }
1871
1872 struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1873 {
1874 struct dentry *result;
1875
1876 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1877
1878 if (inode)
1879 spin_lock(&inode->i_lock);
1880 result = __d_instantiate_unique(entry, inode);
1881 if (inode)
1882 spin_unlock(&inode->i_lock);
1883
1884 if (!result) {
1885 security_d_instantiate(entry, inode);
1886 return NULL;
1887 }
1888
1889 BUG_ON(!d_unhashed(result));
1890 iput(inode);
1891 return result;
1892 }
1893
1894 EXPORT_SYMBOL(d_instantiate_unique);
1895
1896 /**
1897 * d_instantiate_no_diralias - instantiate a non-aliased dentry
1898 * @entry: dentry to complete
1899 * @inode: inode to attach to this dentry
1900 *
1901 * Fill in inode information in the entry. If a directory alias is found, then
1902 * return an error (and drop inode). Together with d_materialise_unique() this
1903 * guarantees that a directory inode may never have more than one alias.
1904 */
1905 int d_instantiate_no_diralias(struct dentry *entry, struct inode *inode)
1906 {
1907 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1908
1909 spin_lock(&inode->i_lock);
1910 if (S_ISDIR(inode->i_mode) && !hlist_empty(&inode->i_dentry)) {
1911 spin_unlock(&inode->i_lock);
1912 iput(inode);
1913 return -EBUSY;
1914 }
1915 __d_instantiate(entry, inode);
1916 spin_unlock(&inode->i_lock);
1917 security_d_instantiate(entry, inode);
1918
1919 return 0;
1920 }
1921 EXPORT_SYMBOL(d_instantiate_no_diralias);
1922
1923 struct dentry *d_make_root(struct inode *root_inode)
1924 {
1925 struct dentry *res = NULL;
1926
1927 if (root_inode) {
1928 static const struct qstr name = QSTR_INIT("/", 1);
1929
1930 res = __d_alloc(root_inode->i_sb, &name);
1931 if (res)
1932 d_instantiate(res, root_inode);
1933 else
1934 iput(root_inode);
1935 }
1936 return res;
1937 }
1938 EXPORT_SYMBOL(d_make_root);
1939
1940 static struct dentry * __d_find_any_alias(struct inode *inode)
1941 {
1942 struct dentry *alias;
1943
1944 if (hlist_empty(&inode->i_dentry))
1945 return NULL;
1946 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
1947 __dget(alias);
1948 return alias;
1949 }
1950
1951 /**
1952 * d_find_any_alias - find any alias for a given inode
1953 * @inode: inode to find an alias for
1954 *
1955 * If any aliases exist for the given inode, take and return a
1956 * reference for one of them. If no aliases exist, return %NULL.
1957 */
1958 struct dentry *d_find_any_alias(struct inode *inode)
1959 {
1960 struct dentry *de;
1961
1962 spin_lock(&inode->i_lock);
1963 de = __d_find_any_alias(inode);
1964 spin_unlock(&inode->i_lock);
1965 return de;
1966 }
1967 EXPORT_SYMBOL(d_find_any_alias);
1968
1969 static struct dentry *__d_obtain_alias(struct inode *inode, int disconnected)
1970 {
1971 static const struct qstr anonstring = QSTR_INIT("/", 1);
1972 struct dentry *tmp;
1973 struct dentry *res;
1974 unsigned add_flags;
1975
1976 if (!inode)
1977 return ERR_PTR(-ESTALE);
1978 if (IS_ERR(inode))
1979 return ERR_CAST(inode);
1980
1981 res = d_find_any_alias(inode);
1982 if (res)
1983 goto out_iput;
1984
1985 tmp = __d_alloc(inode->i_sb, &anonstring);
1986 if (!tmp) {
1987 res = ERR_PTR(-ENOMEM);
1988 goto out_iput;
1989 }
1990
1991 spin_lock(&inode->i_lock);
1992 res = __d_find_any_alias(inode);
1993 if (res) {
1994 spin_unlock(&inode->i_lock);
1995 dput(tmp);
1996 goto out_iput;
1997 }
1998
1999 /* attach a disconnected dentry */
2000 add_flags = d_flags_for_inode(inode);
2001
2002 if (disconnected)
2003 add_flags |= DCACHE_DISCONNECTED;
2004
2005 spin_lock(&tmp->d_lock);
2006 __d_set_inode_and_type(tmp, inode, add_flags);
2007 hlist_add_head(&tmp->d_u.d_alias, &inode->i_dentry);
2008 hlist_bl_lock(&tmp->d_sb->s_anon);
2009 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
2010 hlist_bl_unlock(&tmp->d_sb->s_anon);
2011 spin_unlock(&tmp->d_lock);
2012 spin_unlock(&inode->i_lock);
2013 security_d_instantiate(tmp, inode);
2014
2015 return tmp;
2016
2017 out_iput:
2018 if (res && !IS_ERR(res))
2019 security_d_instantiate(res, inode);
2020 iput(inode);
2021 return res;
2022 }
2023
2024 /**
2025 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
2026 * @inode: inode to allocate the dentry for
2027 *
2028 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
2029 * similar open by handle operations. The returned dentry may be anonymous,
2030 * or may have a full name (if the inode was already in the cache).
2031 *
2032 * When called on a directory inode, we must ensure that the inode only ever
2033 * has one dentry. If a dentry is found, that is returned instead of
2034 * allocating a new one.
2035 *
2036 * On successful return, the reference to the inode has been transferred
2037 * to the dentry. In case of an error the reference on the inode is released.
2038 * To make it easier to use in export operations a %NULL or IS_ERR inode may
2039 * be passed in and the error will be propagated to the return value,
2040 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
2041 */
2042 struct dentry *d_obtain_alias(struct inode *inode)
2043 {
2044 return __d_obtain_alias(inode, 1);
2045 }
2046 EXPORT_SYMBOL(d_obtain_alias);
2047
2048 /**
2049 * d_obtain_root - find or allocate a dentry for a given inode
2050 * @inode: inode to allocate the dentry for
2051 *
2052 * Obtain an IS_ROOT dentry for the root of a filesystem.
2053 *
2054 * We must ensure that directory inodes only ever have one dentry. If a
2055 * dentry is found, that is returned instead of allocating a new one.
2056 *
2057 * On successful return, the reference to the inode has been transferred
2058 * to the dentry. In case of an error the reference on the inode is
2059 * released. A %NULL or IS_ERR inode may be passed in and will be the
2060 * error will be propagate to the return value, with a %NULL @inode
2061 * replaced by ERR_PTR(-ESTALE).
2062 */
2063 struct dentry *d_obtain_root(struct inode *inode)
2064 {
2065 return __d_obtain_alias(inode, 0);
2066 }
2067 EXPORT_SYMBOL(d_obtain_root);
2068
2069 /**
2070 * d_add_ci - lookup or allocate new dentry with case-exact name
2071 * @inode: the inode case-insensitive lookup has found
2072 * @dentry: the negative dentry that was passed to the parent's lookup func
2073 * @name: the case-exact name to be associated with the returned dentry
2074 *
2075 * This is to avoid filling the dcache with case-insensitive names to the
2076 * same inode, only the actual correct case is stored in the dcache for
2077 * case-insensitive filesystems.
2078 *
2079 * For a case-insensitive lookup match and if the the case-exact dentry
2080 * already exists in in the dcache, use it and return it.
2081 *
2082 * If no entry exists with the exact case name, allocate new dentry with
2083 * the exact case, and return the spliced entry.
2084 */
2085 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
2086 struct qstr *name)
2087 {
2088 struct dentry *found;
2089 struct dentry *new;
2090
2091 /*
2092 * First check if a dentry matching the name already exists,
2093 * if not go ahead and create it now.
2094 */
2095 found = d_hash_and_lookup(dentry->d_parent, name);
2096 if (!found) {
2097 new = d_alloc(dentry->d_parent, name);
2098 if (!new) {
2099 found = ERR_PTR(-ENOMEM);
2100 } else {
2101 found = d_splice_alias(inode, new);
2102 if (found) {
2103 dput(new);
2104 return found;
2105 }
2106 return new;
2107 }
2108 }
2109 iput(inode);
2110 return found;
2111 }
2112 EXPORT_SYMBOL(d_add_ci);
2113
2114 /*
2115 * Do the slow-case of the dentry name compare.
2116 *
2117 * Unlike the dentry_cmp() function, we need to atomically
2118 * load the name and length information, so that the
2119 * filesystem can rely on them, and can use the 'name' and
2120 * 'len' information without worrying about walking off the
2121 * end of memory etc.
2122 *
2123 * Thus the read_seqcount_retry() and the "duplicate" info
2124 * in arguments (the low-level filesystem should not look
2125 * at the dentry inode or name contents directly, since
2126 * rename can change them while we're in RCU mode).
2127 */
2128 enum slow_d_compare {
2129 D_COMP_OK,
2130 D_COMP_NOMATCH,
2131 D_COMP_SEQRETRY,
2132 };
2133
2134 static noinline enum slow_d_compare slow_dentry_cmp(
2135 const struct dentry *parent,
2136 struct dentry *dentry,
2137 unsigned int seq,
2138 const struct qstr *name)
2139 {
2140 int tlen = dentry->d_name.len;
2141 const char *tname = dentry->d_name.name;
2142
2143 if (read_seqcount_retry(&dentry->d_seq, seq)) {
2144 cpu_relax();
2145 return D_COMP_SEQRETRY;
2146 }
2147 if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
2148 return D_COMP_NOMATCH;
2149 return D_COMP_OK;
2150 }
2151
2152 /**
2153 * __d_lookup_rcu - search for a dentry (racy, store-free)
2154 * @parent: parent dentry
2155 * @name: qstr of name we wish to find
2156 * @seqp: returns d_seq value at the point where the dentry was found
2157 * Returns: dentry, or NULL
2158 *
2159 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2160 * resolution (store-free path walking) design described in
2161 * Documentation/filesystems/path-lookup.txt.
2162 *
2163 * This is not to be used outside core vfs.
2164 *
2165 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2166 * held, and rcu_read_lock held. The returned dentry must not be stored into
2167 * without taking d_lock and checking d_seq sequence count against @seq
2168 * returned here.
2169 *
2170 * A refcount may be taken on the found dentry with the d_rcu_to_refcount
2171 * function.
2172 *
2173 * Alternatively, __d_lookup_rcu may be called again to look up the child of
2174 * the returned dentry, so long as its parent's seqlock is checked after the
2175 * child is looked up. Thus, an interlocking stepping of sequence lock checks
2176 * is formed, giving integrity down the path walk.
2177 *
2178 * NOTE! The caller *has* to check the resulting dentry against the sequence
2179 * number we've returned before using any of the resulting dentry state!
2180 */
2181 struct dentry *__d_lookup_rcu(const struct dentry *parent,
2182 const struct qstr *name,
2183 unsigned *seqp)
2184 {
2185 u64 hashlen = name->hash_len;
2186 const unsigned char *str = name->name;
2187 struct hlist_bl_head *b = d_hash(parent, hashlen_hash(hashlen));
2188 struct hlist_bl_node *node;
2189 struct dentry *dentry;
2190
2191 /*
2192 * Note: There is significant duplication with __d_lookup_rcu which is
2193 * required to prevent single threaded performance regressions
2194 * especially on architectures where smp_rmb (in seqcounts) are costly.
2195 * Keep the two functions in sync.
2196 */
2197
2198 /*
2199 * The hash list is protected using RCU.
2200 *
2201 * Carefully use d_seq when comparing a candidate dentry, to avoid
2202 * races with d_move().
2203 *
2204 * It is possible that concurrent renames can mess up our list
2205 * walk here and result in missing our dentry, resulting in the
2206 * false-negative result. d_lookup() protects against concurrent
2207 * renames using rename_lock seqlock.
2208 *
2209 * See Documentation/filesystems/path-lookup.txt for more details.
2210 */
2211 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2212 unsigned seq;
2213
2214 seqretry:
2215 /*
2216 * The dentry sequence count protects us from concurrent
2217 * renames, and thus protects parent and name fields.
2218 *
2219 * The caller must perform a seqcount check in order
2220 * to do anything useful with the returned dentry.
2221 *
2222 * NOTE! We do a "raw" seqcount_begin here. That means that
2223 * we don't wait for the sequence count to stabilize if it
2224 * is in the middle of a sequence change. If we do the slow
2225 * dentry compare, we will do seqretries until it is stable,
2226 * and if we end up with a successful lookup, we actually
2227 * want to exit RCU lookup anyway.
2228 */
2229 seq = raw_seqcount_begin(&dentry->d_seq);
2230 if (dentry->d_parent != parent)
2231 continue;
2232 if (d_unhashed(dentry))
2233 continue;
2234
2235 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
2236 if (dentry->d_name.hash != hashlen_hash(hashlen))
2237 continue;
2238 *seqp = seq;
2239 switch (slow_dentry_cmp(parent, dentry, seq, name)) {
2240 case D_COMP_OK:
2241 return dentry;
2242 case D_COMP_NOMATCH:
2243 continue;
2244 default:
2245 goto seqretry;
2246 }
2247 }
2248
2249 if (dentry->d_name.hash_len != hashlen)
2250 continue;
2251 *seqp = seq;
2252 if (!dentry_cmp(dentry, str, hashlen_len(hashlen)))
2253 return dentry;
2254 }
2255 return NULL;
2256 }
2257
2258 /**
2259 * d_lookup - search for a dentry
2260 * @parent: parent dentry
2261 * @name: qstr of name we wish to find
2262 * Returns: dentry, or NULL
2263 *
2264 * d_lookup searches the children of the parent dentry for the name in
2265 * question. If the dentry is found its reference count is incremented and the
2266 * dentry is returned. The caller must use dput to free the entry when it has
2267 * finished using it. %NULL is returned if the dentry does not exist.
2268 */
2269 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2270 {
2271 struct dentry *dentry;
2272 unsigned seq;
2273
2274 do {
2275 seq = read_seqbegin(&rename_lock);
2276 dentry = __d_lookup(parent, name);
2277 if (dentry)
2278 break;
2279 } while (read_seqretry(&rename_lock, seq));
2280 return dentry;
2281 }
2282 EXPORT_SYMBOL(d_lookup);
2283
2284 /**
2285 * __d_lookup - search for a dentry (racy)
2286 * @parent: parent dentry
2287 * @name: qstr of name we wish to find
2288 * Returns: dentry, or NULL
2289 *
2290 * __d_lookup is like d_lookup, however it may (rarely) return a
2291 * false-negative result due to unrelated rename activity.
2292 *
2293 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2294 * however it must be used carefully, eg. with a following d_lookup in
2295 * the case of failure.
2296 *
2297 * __d_lookup callers must be commented.
2298 */
2299 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2300 {
2301 unsigned int len = name->len;
2302 unsigned int hash = name->hash;
2303 const unsigned char *str = name->name;
2304 struct hlist_bl_head *b = d_hash(parent, hash);
2305 struct hlist_bl_node *node;
2306 struct dentry *found = NULL;
2307 struct dentry *dentry;
2308
2309 /*
2310 * Note: There is significant duplication with __d_lookup_rcu which is
2311 * required to prevent single threaded performance regressions
2312 * especially on architectures where smp_rmb (in seqcounts) are costly.
2313 * Keep the two functions in sync.
2314 */
2315
2316 /*
2317 * The hash list is protected using RCU.
2318 *
2319 * Take d_lock when comparing a candidate dentry, to avoid races
2320 * with d_move().
2321 *
2322 * It is possible that concurrent renames can mess up our list
2323 * walk here and result in missing our dentry, resulting in the
2324 * false-negative result. d_lookup() protects against concurrent
2325 * renames using rename_lock seqlock.
2326 *
2327 * See Documentation/filesystems/path-lookup.txt for more details.
2328 */
2329 rcu_read_lock();
2330
2331 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2332
2333 if (dentry->d_name.hash != hash)
2334 continue;
2335
2336 spin_lock(&dentry->d_lock);
2337 if (dentry->d_parent != parent)
2338 goto next;
2339 if (d_unhashed(dentry))
2340 goto next;
2341
2342 /*
2343 * It is safe to compare names since d_move() cannot
2344 * change the qstr (protected by d_lock).
2345 */
2346 if (parent->d_flags & DCACHE_OP_COMPARE) {
2347 int tlen = dentry->d_name.len;
2348 const char *tname = dentry->d_name.name;
2349 if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
2350 goto next;
2351 } else {
2352 if (dentry->d_name.len != len)
2353 goto next;
2354 if (dentry_cmp(dentry, str, len))
2355 goto next;
2356 }
2357
2358 dentry->d_lockref.count++;
2359 found = dentry;
2360 spin_unlock(&dentry->d_lock);
2361 break;
2362 next:
2363 spin_unlock(&dentry->d_lock);
2364 }
2365 rcu_read_unlock();
2366
2367 return found;
2368 }
2369
2370 /**
2371 * d_hash_and_lookup - hash the qstr then search for a dentry
2372 * @dir: Directory to search in
2373 * @name: qstr of name we wish to find
2374 *
2375 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2376 */
2377 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2378 {
2379 /*
2380 * Check for a fs-specific hash function. Note that we must
2381 * calculate the standard hash first, as the d_op->d_hash()
2382 * routine may choose to leave the hash value unchanged.
2383 */
2384 name->hash = full_name_hash(name->name, name->len);
2385 if (dir->d_flags & DCACHE_OP_HASH) {
2386 int err = dir->d_op->d_hash(dir, name);
2387 if (unlikely(err < 0))
2388 return ERR_PTR(err);
2389 }
2390 return d_lookup(dir, name);
2391 }
2392 EXPORT_SYMBOL(d_hash_and_lookup);
2393
2394 /*
2395 * When a file is deleted, we have two options:
2396 * - turn this dentry into a negative dentry
2397 * - unhash this dentry and free it.
2398 *
2399 * Usually, we want to just turn this into
2400 * a negative dentry, but if anybody else is
2401 * currently using the dentry or the inode
2402 * we can't do that and we fall back on removing
2403 * it from the hash queues and waiting for
2404 * it to be deleted later when it has no users
2405 */
2406
2407 /**
2408 * d_delete - delete a dentry
2409 * @dentry: The dentry to delete
2410 *
2411 * Turn the dentry into a negative dentry if possible, otherwise
2412 * remove it from the hash queues so it can be deleted later
2413 */
2414
2415 void d_delete(struct dentry * dentry)
2416 {
2417 struct inode *inode;
2418 int isdir = 0;
2419 /*
2420 * Are we the only user?
2421 */
2422 again:
2423 spin_lock(&dentry->d_lock);
2424 inode = dentry->d_inode;
2425 isdir = S_ISDIR(inode->i_mode);
2426 if (dentry->d_lockref.count == 1) {
2427 if (!spin_trylock(&inode->i_lock)) {
2428 spin_unlock(&dentry->d_lock);
2429 cpu_relax();
2430 goto again;
2431 }
2432 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2433 dentry_unlink_inode(dentry);
2434 fsnotify_nameremove(dentry, isdir);
2435 return;
2436 }
2437
2438 if (!d_unhashed(dentry))
2439 __d_drop(dentry);
2440
2441 spin_unlock(&dentry->d_lock);
2442
2443 fsnotify_nameremove(dentry, isdir);
2444 }
2445 EXPORT_SYMBOL(d_delete);
2446
2447 static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b)
2448 {
2449 BUG_ON(!d_unhashed(entry));
2450 hlist_bl_lock(b);
2451 hlist_bl_add_head_rcu(&entry->d_hash, b);
2452 hlist_bl_unlock(b);
2453 }
2454
2455 static void _d_rehash(struct dentry * entry)
2456 {
2457 __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
2458 }
2459
2460 /**
2461 * d_rehash - add an entry back to the hash
2462 * @entry: dentry to add to the hash
2463 *
2464 * Adds a dentry to the hash according to its name.
2465 */
2466
2467 void d_rehash(struct dentry * entry)
2468 {
2469 spin_lock(&entry->d_lock);
2470 _d_rehash(entry);
2471 spin_unlock(&entry->d_lock);
2472 }
2473 EXPORT_SYMBOL(d_rehash);
2474
2475 /**
2476 * dentry_update_name_case - update case insensitive dentry with a new name
2477 * @dentry: dentry to be updated
2478 * @name: new name
2479 *
2480 * Update a case insensitive dentry with new case of name.
2481 *
2482 * dentry must have been returned by d_lookup with name @name. Old and new
2483 * name lengths must match (ie. no d_compare which allows mismatched name
2484 * lengths).
2485 *
2486 * Parent inode i_mutex must be held over d_lookup and into this call (to
2487 * keep renames and concurrent inserts, and readdir(2) away).
2488 */
2489 void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
2490 {
2491 BUG_ON(!mutex_is_locked(&dentry->d_parent->d_inode->i_mutex));
2492 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2493
2494 spin_lock(&dentry->d_lock);
2495 write_seqcount_begin(&dentry->d_seq);
2496 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
2497 write_seqcount_end(&dentry->d_seq);
2498 spin_unlock(&dentry->d_lock);
2499 }
2500 EXPORT_SYMBOL(dentry_update_name_case);
2501
2502 static void swap_names(struct dentry *dentry, struct dentry *target)
2503 {
2504 if (unlikely(dname_external(target))) {
2505 if (unlikely(dname_external(dentry))) {
2506 /*
2507 * Both external: swap the pointers
2508 */
2509 swap(target->d_name.name, dentry->d_name.name);
2510 } else {
2511 /*
2512 * dentry:internal, target:external. Steal target's
2513 * storage and make target internal.
2514 */
2515 memcpy(target->d_iname, dentry->d_name.name,
2516 dentry->d_name.len + 1);
2517 dentry->d_name.name = target->d_name.name;
2518 target->d_name.name = target->d_iname;
2519 }
2520 } else {
2521 if (unlikely(dname_external(dentry))) {
2522 /*
2523 * dentry:external, target:internal. Give dentry's
2524 * storage to target and make dentry internal
2525 */
2526 memcpy(dentry->d_iname, target->d_name.name,
2527 target->d_name.len + 1);
2528 target->d_name.name = dentry->d_name.name;
2529 dentry->d_name.name = dentry->d_iname;
2530 } else {
2531 /*
2532 * Both are internal.
2533 */
2534 unsigned int i;
2535 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2536 kmemcheck_mark_initialized(dentry->d_iname, DNAME_INLINE_LEN);
2537 kmemcheck_mark_initialized(target->d_iname, DNAME_INLINE_LEN);
2538 for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2539 swap(((long *) &dentry->d_iname)[i],
2540 ((long *) &target->d_iname)[i]);
2541 }
2542 }
2543 }
2544 swap(dentry->d_name.hash_len, target->d_name.hash_len);
2545 }
2546
2547 static void copy_name(struct dentry *dentry, struct dentry *target)
2548 {
2549 struct external_name *old_name = NULL;
2550 if (unlikely(dname_external(dentry)))
2551 old_name = external_name(dentry);
2552 if (unlikely(dname_external(target))) {
2553 atomic_inc(&external_name(target)->u.count);
2554 dentry->d_name = target->d_name;
2555 } else {
2556 memcpy(dentry->d_iname, target->d_name.name,
2557 target->d_name.len + 1);
2558 dentry->d_name.name = dentry->d_iname;
2559 dentry->d_name.hash_len = target->d_name.hash_len;
2560 }
2561 if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2562 kfree_rcu(old_name, u.head);
2563 }
2564
2565 static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2566 {
2567 /*
2568 * XXXX: do we really need to take target->d_lock?
2569 */
2570 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2571 spin_lock(&target->d_parent->d_lock);
2572 else {
2573 if (d_ancestor(dentry->d_parent, target->d_parent)) {
2574 spin_lock(&dentry->d_parent->d_lock);
2575 spin_lock_nested(&target->d_parent->d_lock,
2576 DENTRY_D_LOCK_NESTED);
2577 } else {
2578 spin_lock(&target->d_parent->d_lock);
2579 spin_lock_nested(&dentry->d_parent->d_lock,
2580 DENTRY_D_LOCK_NESTED);
2581 }
2582 }
2583 if (target < dentry) {
2584 spin_lock_nested(&target->d_lock, 2);
2585 spin_lock_nested(&dentry->d_lock, 3);
2586 } else {
2587 spin_lock_nested(&dentry->d_lock, 2);
2588 spin_lock_nested(&target->d_lock, 3);
2589 }
2590 }
2591
2592 static void dentry_unlock_for_move(struct dentry *dentry, struct dentry *target)
2593 {
2594 if (target->d_parent != dentry->d_parent)
2595 spin_unlock(&dentry->d_parent->d_lock);
2596 if (target->d_parent != target)
2597 spin_unlock(&target->d_parent->d_lock);
2598 spin_unlock(&target->d_lock);
2599 spin_unlock(&dentry->d_lock);
2600 }
2601
2602 /*
2603 * When switching names, the actual string doesn't strictly have to
2604 * be preserved in the target - because we're dropping the target
2605 * anyway. As such, we can just do a simple memcpy() to copy over
2606 * the new name before we switch, unless we are going to rehash
2607 * it. Note that if we *do* unhash the target, we are not allowed
2608 * to rehash it without giving it a new name/hash key - whether
2609 * we swap or overwrite the names here, resulting name won't match
2610 * the reality in filesystem; it's only there for d_path() purposes.
2611 * Note that all of this is happening under rename_lock, so the
2612 * any hash lookup seeing it in the middle of manipulations will
2613 * be discarded anyway. So we do not care what happens to the hash
2614 * key in that case.
2615 */
2616 /*
2617 * __d_move - move a dentry
2618 * @dentry: entry to move
2619 * @target: new dentry
2620 * @exchange: exchange the two dentries
2621 *
2622 * Update the dcache to reflect the move of a file name. Negative
2623 * dcache entries should not be moved in this way. Caller must hold
2624 * rename_lock, the i_mutex of the source and target directories,
2625 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2626 */
2627 static void __d_move(struct dentry *dentry, struct dentry *target,
2628 bool exchange)
2629 {
2630 if (!dentry->d_inode)
2631 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2632
2633 BUG_ON(d_ancestor(dentry, target));
2634 BUG_ON(d_ancestor(target, dentry));
2635
2636 dentry_lock_for_move(dentry, target);
2637
2638 write_seqcount_begin(&dentry->d_seq);
2639 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
2640
2641 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2642
2643 /*
2644 * Move the dentry to the target hash queue. Don't bother checking
2645 * for the same hash queue because of how unlikely it is.
2646 */
2647 __d_drop(dentry);
2648 __d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
2649
2650 /*
2651 * Unhash the target (d_delete() is not usable here). If exchanging
2652 * the two dentries, then rehash onto the other's hash queue.
2653 */
2654 __d_drop(target);
2655 if (exchange) {
2656 __d_rehash(target,
2657 d_hash(dentry->d_parent, dentry->d_name.hash));
2658 }
2659
2660 /* Switch the names.. */
2661 if (exchange)
2662 swap_names(dentry, target);
2663 else
2664 copy_name(dentry, target);
2665
2666 /* ... and switch them in the tree */
2667 if (IS_ROOT(dentry)) {
2668 /* splicing a tree */
2669 dentry->d_flags |= DCACHE_RCUACCESS;
2670 dentry->d_parent = target->d_parent;
2671 target->d_parent = target;
2672 list_del_init(&target->d_child);
2673 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2674 } else {
2675 /* swapping two dentries */
2676 swap(dentry->d_parent, target->d_parent);
2677 list_move(&target->d_child, &target->d_parent->d_subdirs);
2678 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2679 if (exchange)
2680 fsnotify_d_move(target);
2681 fsnotify_d_move(dentry);
2682 }
2683
2684 write_seqcount_end(&target->d_seq);
2685 write_seqcount_end(&dentry->d_seq);
2686
2687 dentry_unlock_for_move(dentry, target);
2688 }
2689
2690 /*
2691 * d_move - move a dentry
2692 * @dentry: entry to move
2693 * @target: new dentry
2694 *
2695 * Update the dcache to reflect the move of a file name. Negative
2696 * dcache entries should not be moved in this way. See the locking
2697 * requirements for __d_move.
2698 */
2699 void d_move(struct dentry *dentry, struct dentry *target)
2700 {
2701 write_seqlock(&rename_lock);
2702 __d_move(dentry, target, false);
2703 write_sequnlock(&rename_lock);
2704 }
2705 EXPORT_SYMBOL(d_move);
2706
2707 /*
2708 * d_exchange - exchange two dentries
2709 * @dentry1: first dentry
2710 * @dentry2: second dentry
2711 */
2712 void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2713 {
2714 write_seqlock(&rename_lock);
2715
2716 WARN_ON(!dentry1->d_inode);
2717 WARN_ON(!dentry2->d_inode);
2718 WARN_ON(IS_ROOT(dentry1));
2719 WARN_ON(IS_ROOT(dentry2));
2720
2721 __d_move(dentry1, dentry2, true);
2722
2723 write_sequnlock(&rename_lock);
2724 }
2725
2726 /**
2727 * d_ancestor - search for an ancestor
2728 * @p1: ancestor dentry
2729 * @p2: child dentry
2730 *
2731 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2732 * an ancestor of p2, else NULL.
2733 */
2734 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2735 {
2736 struct dentry *p;
2737
2738 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2739 if (p->d_parent == p1)
2740 return p;
2741 }
2742 return NULL;
2743 }
2744
2745 /*
2746 * This helper attempts to cope with remotely renamed directories
2747 *
2748 * It assumes that the caller is already holding
2749 * dentry->d_parent->d_inode->i_mutex, and rename_lock
2750 *
2751 * Note: If ever the locking in lock_rename() changes, then please
2752 * remember to update this too...
2753 */
2754 static int __d_unalias(struct inode *inode,
2755 struct dentry *dentry, struct dentry *alias)
2756 {
2757 struct mutex *m1 = NULL, *m2 = NULL;
2758 int ret = -ESTALE;
2759
2760 /* If alias and dentry share a parent, then no extra locks required */
2761 if (alias->d_parent == dentry->d_parent)
2762 goto out_unalias;
2763
2764 /* See lock_rename() */
2765 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2766 goto out_err;
2767 m1 = &dentry->d_sb->s_vfs_rename_mutex;
2768 if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
2769 goto out_err;
2770 m2 = &alias->d_parent->d_inode->i_mutex;
2771 out_unalias:
2772 __d_move(alias, dentry, false);
2773 ret = 0;
2774 out_err:
2775 if (m2)
2776 mutex_unlock(m2);
2777 if (m1)
2778 mutex_unlock(m1);
2779 return ret;
2780 }
2781
2782 /**
2783 * d_splice_alias - splice a disconnected dentry into the tree if one exists
2784 * @inode: the inode which may have a disconnected dentry
2785 * @dentry: a negative dentry which we want to point to the inode.
2786 *
2787 * If inode is a directory and has an IS_ROOT alias, then d_move that in
2788 * place of the given dentry and return it, else simply d_add the inode
2789 * to the dentry and return NULL.
2790 *
2791 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
2792 * we should error out: directories can't have multiple aliases.
2793 *
2794 * This is needed in the lookup routine of any filesystem that is exportable
2795 * (via knfsd) so that we can build dcache paths to directories effectively.
2796 *
2797 * If a dentry was found and moved, then it is returned. Otherwise NULL
2798 * is returned. This matches the expected return value of ->lookup.
2799 *
2800 * Cluster filesystems may call this function with a negative, hashed dentry.
2801 * In that case, we know that the inode will be a regular file, and also this
2802 * will only occur during atomic_open. So we need to check for the dentry
2803 * being already hashed only in the final case.
2804 */
2805 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
2806 {
2807 if (IS_ERR(inode))
2808 return ERR_CAST(inode);
2809
2810 BUG_ON(!d_unhashed(dentry));
2811
2812 if (!inode) {
2813 __d_instantiate(dentry, NULL);
2814 goto out;
2815 }
2816 spin_lock(&inode->i_lock);
2817 if (S_ISDIR(inode->i_mode)) {
2818 struct dentry *new = __d_find_any_alias(inode);
2819 if (unlikely(new)) {
2820 /* The reference to new ensures it remains an alias */
2821 spin_unlock(&inode->i_lock);
2822 write_seqlock(&rename_lock);
2823 if (unlikely(d_ancestor(new, dentry))) {
2824 write_sequnlock(&rename_lock);
2825 dput(new);
2826 new = ERR_PTR(-ELOOP);
2827 pr_warn_ratelimited(
2828 "VFS: Lookup of '%s' in %s %s"
2829 " would have caused loop\n",
2830 dentry->d_name.name,
2831 inode->i_sb->s_type->name,
2832 inode->i_sb->s_id);
2833 } else if (!IS_ROOT(new)) {
2834 int err = __d_unalias(inode, dentry, new);
2835 write_sequnlock(&rename_lock);
2836 if (err) {
2837 dput(new);
2838 new = ERR_PTR(err);
2839 }
2840 } else {
2841 __d_move(new, dentry, false);
2842 write_sequnlock(&rename_lock);
2843 security_d_instantiate(new, inode);
2844 }
2845 iput(inode);
2846 return new;
2847 }
2848 }
2849 /* already taking inode->i_lock, so d_add() by hand */
2850 __d_instantiate(dentry, inode);
2851 spin_unlock(&inode->i_lock);
2852 out:
2853 security_d_instantiate(dentry, inode);
2854 d_rehash(dentry);
2855 return NULL;
2856 }
2857 EXPORT_SYMBOL(d_splice_alias);
2858
2859 static int prepend(char **buffer, int *buflen, const char *str, int namelen)
2860 {
2861 *buflen -= namelen;
2862 if (*buflen < 0)
2863 return -ENAMETOOLONG;
2864 *buffer -= namelen;
2865 memcpy(*buffer, str, namelen);
2866 return 0;
2867 }
2868
2869 /**
2870 * prepend_name - prepend a pathname in front of current buffer pointer
2871 * @buffer: buffer pointer
2872 * @buflen: allocated length of the buffer
2873 * @name: name string and length qstr structure
2874 *
2875 * With RCU path tracing, it may race with d_move(). Use ACCESS_ONCE() to
2876 * make sure that either the old or the new name pointer and length are
2877 * fetched. However, there may be mismatch between length and pointer.
2878 * The length cannot be trusted, we need to copy it byte-by-byte until
2879 * the length is reached or a null byte is found. It also prepends "/" at
2880 * the beginning of the name. The sequence number check at the caller will
2881 * retry it again when a d_move() does happen. So any garbage in the buffer
2882 * due to mismatched pointer and length will be discarded.
2883 *
2884 * Data dependency barrier is needed to make sure that we see that terminating
2885 * NUL. Alpha strikes again, film at 11...
2886 */
2887 static int prepend_name(char **buffer, int *buflen, struct qstr *name)
2888 {
2889 const char *dname = ACCESS_ONCE(name->name);
2890 u32 dlen = ACCESS_ONCE(name->len);
2891 char *p;
2892
2893 smp_read_barrier_depends();
2894
2895 *buflen -= dlen + 1;
2896 if (*buflen < 0)
2897 return -ENAMETOOLONG;
2898 p = *buffer -= dlen + 1;
2899 *p++ = '/';
2900 while (dlen--) {
2901 char c = *dname++;
2902 if (!c)
2903 break;
2904 *p++ = c;
2905 }
2906 return 0;
2907 }
2908
2909 /**
2910 * prepend_path - Prepend path string to a buffer
2911 * @path: the dentry/vfsmount to report
2912 * @root: root vfsmnt/dentry
2913 * @buffer: pointer to the end of the buffer
2914 * @buflen: pointer to buffer length
2915 *
2916 * The function will first try to write out the pathname without taking any
2917 * lock other than the RCU read lock to make sure that dentries won't go away.
2918 * It only checks the sequence number of the global rename_lock as any change
2919 * in the dentry's d_seq will be preceded by changes in the rename_lock
2920 * sequence number. If the sequence number had been changed, it will restart
2921 * the whole pathname back-tracing sequence again by taking the rename_lock.
2922 * In this case, there is no need to take the RCU read lock as the recursive
2923 * parent pointer references will keep the dentry chain alive as long as no
2924 * rename operation is performed.
2925 */
2926 static int prepend_path(const struct path *path,
2927 const struct path *root,
2928 char **buffer, int *buflen)
2929 {
2930 struct dentry *dentry;
2931 struct vfsmount *vfsmnt;
2932 struct mount *mnt;
2933 int error = 0;
2934 unsigned seq, m_seq = 0;
2935 char *bptr;
2936 int blen;
2937
2938 rcu_read_lock();
2939 restart_mnt:
2940 read_seqbegin_or_lock(&mount_lock, &m_seq);
2941 seq = 0;
2942 rcu_read_lock();
2943 restart:
2944 bptr = *buffer;
2945 blen = *buflen;
2946 error = 0;
2947 dentry = path->dentry;
2948 vfsmnt = path->mnt;
2949 mnt = real_mount(vfsmnt);
2950 read_seqbegin_or_lock(&rename_lock, &seq);
2951 while (dentry != root->dentry || vfsmnt != root->mnt) {
2952 struct dentry * parent;
2953
2954 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
2955 struct mount *parent = ACCESS_ONCE(mnt->mnt_parent);
2956 /* Escaped? */
2957 if (dentry != vfsmnt->mnt_root) {
2958 bptr = *buffer;
2959 blen = *buflen;
2960 error = 3;
2961 break;
2962 }
2963 /* Global root? */
2964 if (mnt != parent) {
2965 dentry = ACCESS_ONCE(mnt->mnt_mountpoint);
2966 mnt = parent;
2967 vfsmnt = &mnt->mnt;
2968 continue;
2969 }
2970 if (!error)
2971 error = is_mounted(vfsmnt) ? 1 : 2;
2972 break;
2973 }
2974 parent = dentry->d_parent;
2975 prefetch(parent);
2976 error = prepend_name(&bptr, &blen, &dentry->d_name);
2977 if (error)
2978 break;
2979
2980 dentry = parent;
2981 }
2982 if (!(seq & 1))
2983 rcu_read_unlock();
2984 if (need_seqretry(&rename_lock, seq)) {
2985 seq = 1;
2986 goto restart;
2987 }
2988 done_seqretry(&rename_lock, seq);
2989
2990 if (!(m_seq & 1))
2991 rcu_read_unlock();
2992 if (need_seqretry(&mount_lock, m_seq)) {
2993 m_seq = 1;
2994 goto restart_mnt;
2995 }
2996 done_seqretry(&mount_lock, m_seq);
2997
2998 if (error >= 0 && bptr == *buffer) {
2999 if (--blen < 0)
3000 error = -ENAMETOOLONG;
3001 else
3002 *--bptr = '/';
3003 }
3004 *buffer = bptr;
3005 *buflen = blen;
3006 return error;
3007 }
3008
3009 /**
3010 * __d_path - return the path of a dentry
3011 * @path: the dentry/vfsmount to report
3012 * @root: root vfsmnt/dentry
3013 * @buf: buffer to return value in
3014 * @buflen: buffer length
3015 *
3016 * Convert a dentry into an ASCII path name.
3017 *
3018 * Returns a pointer into the buffer or an error code if the
3019 * path was too long.
3020 *
3021 * "buflen" should be positive.
3022 *
3023 * If the path is not reachable from the supplied root, return %NULL.
3024 */
3025 char *__d_path(const struct path *path,
3026 const struct path *root,
3027 char *buf, int buflen)
3028 {
3029 char *res = buf + buflen;
3030 int error;
3031
3032 prepend(&res, &buflen, "\0", 1);
3033 error = prepend_path(path, root, &res, &buflen);
3034
3035 if (error < 0)
3036 return ERR_PTR(error);
3037 if (error > 0)
3038 return NULL;
3039 return res;
3040 }
3041
3042 char *d_absolute_path(const struct path *path,
3043 char *buf, int buflen)
3044 {
3045 struct path root = {};
3046 char *res = buf + buflen;
3047 int error;
3048
3049 prepend(&res, &buflen, "\0", 1);
3050 error = prepend_path(path, &root, &res, &buflen);
3051
3052 if (error > 1)
3053 error = -EINVAL;
3054 if (error < 0)
3055 return ERR_PTR(error);
3056 return res;
3057 }
3058
3059 /*
3060 * same as __d_path but appends "(deleted)" for unlinked files.
3061 */
3062 static int path_with_deleted(const struct path *path,
3063 const struct path *root,
3064 char **buf, int *buflen)
3065 {
3066 prepend(buf, buflen, "\0", 1);
3067 if (d_unlinked(path->dentry)) {
3068 int error = prepend(buf, buflen, " (deleted)", 10);
3069 if (error)
3070 return error;
3071 }
3072
3073 return prepend_path(path, root, buf, buflen);
3074 }
3075
3076 static int prepend_unreachable(char **buffer, int *buflen)
3077 {
3078 return prepend(buffer, buflen, "(unreachable)", 13);
3079 }
3080
3081 static void get_fs_root_rcu(struct fs_struct *fs, struct path *root)
3082 {
3083 unsigned seq;
3084
3085 do {
3086 seq = read_seqcount_begin(&fs->seq);
3087 *root = fs->root;
3088 } while (read_seqcount_retry(&fs->seq, seq));
3089 }
3090
3091 /**
3092 * d_path - return the path of a dentry
3093 * @path: path to report
3094 * @buf: buffer to return value in
3095 * @buflen: buffer length
3096 *
3097 * Convert a dentry into an ASCII path name. If the entry has been deleted
3098 * the string " (deleted)" is appended. Note that this is ambiguous.
3099 *
3100 * Returns a pointer into the buffer or an error code if the path was
3101 * too long. Note: Callers should use the returned pointer, not the passed
3102 * in buffer, to use the name! The implementation often starts at an offset
3103 * into the buffer, and may leave 0 bytes at the start.
3104 *
3105 * "buflen" should be positive.
3106 */
3107 char *d_path(const struct path *path, char *buf, int buflen)
3108 {
3109 char *res = buf + buflen;
3110 struct path root;
3111 int error;
3112
3113 /*
3114 * We have various synthetic filesystems that never get mounted. On
3115 * these filesystems dentries are never used for lookup purposes, and
3116 * thus don't need to be hashed. They also don't need a name until a
3117 * user wants to identify the object in /proc/pid/fd/. The little hack
3118 * below allows us to generate a name for these objects on demand:
3119 *
3120 * Some pseudo inodes are mountable. When they are mounted
3121 * path->dentry == path->mnt->mnt_root. In that case don't call d_dname
3122 * and instead have d_path return the mounted path.
3123 */
3124 if (path->dentry->d_op && path->dentry->d_op->d_dname &&
3125 (!IS_ROOT(path->dentry) || path->dentry != path->mnt->mnt_root))
3126 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
3127
3128 rcu_read_lock();
3129 get_fs_root_rcu(current->fs, &root);
3130 error = path_with_deleted(path, &root, &res, &buflen);
3131 rcu_read_unlock();
3132
3133 if (error < 0)
3134 res = ERR_PTR(error);
3135 return res;
3136 }
3137 EXPORT_SYMBOL(d_path);
3138
3139 /*
3140 * Helper function for dentry_operations.d_dname() members
3141 */
3142 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
3143 const char *fmt, ...)
3144 {
3145 va_list args;
3146 char temp[64];
3147 int sz;
3148
3149 va_start(args, fmt);
3150 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
3151 va_end(args);
3152
3153 if (sz > sizeof(temp) || sz > buflen)
3154 return ERR_PTR(-ENAMETOOLONG);
3155
3156 buffer += buflen - sz;
3157 return memcpy(buffer, temp, sz);
3158 }
3159
3160 char *simple_dname(struct dentry *dentry, char *buffer, int buflen)
3161 {
3162 char *end = buffer + buflen;
3163 /* these dentries are never renamed, so d_lock is not needed */
3164 if (prepend(&end, &buflen, " (deleted)", 11) ||
3165 prepend(&end, &buflen, dentry->d_name.name, dentry->d_name.len) ||
3166 prepend(&end, &buflen, "/", 1))
3167 end = ERR_PTR(-ENAMETOOLONG);
3168 return end;
3169 }
3170 EXPORT_SYMBOL(simple_dname);
3171
3172 /*
3173 * Write full pathname from the root of the filesystem into the buffer.
3174 */
3175 static char *__dentry_path(struct dentry *d, char *buf, int buflen)
3176 {
3177 struct dentry *dentry;
3178 char *end, *retval;
3179 int len, seq = 0;
3180 int error = 0;
3181
3182 if (buflen < 2)
3183 goto Elong;
3184
3185 rcu_read_lock();
3186 restart:
3187 dentry = d;
3188 end = buf + buflen;
3189 len = buflen;
3190 prepend(&end, &len, "\0", 1);
3191 /* Get '/' right */
3192 retval = end-1;
3193 *retval = '/';
3194 read_seqbegin_or_lock(&rename_lock, &seq);
3195 while (!IS_ROOT(dentry)) {
3196 struct dentry *parent = dentry->d_parent;
3197
3198 prefetch(parent);
3199 error = prepend_name(&end, &len, &dentry->d_name);
3200 if (error)
3201 break;
3202
3203 retval = end;
3204 dentry = parent;
3205 }
3206 if (!(seq & 1))
3207 rcu_read_unlock();
3208 if (need_seqretry(&rename_lock, seq)) {
3209 seq = 1;
3210 goto restart;
3211 }
3212 done_seqretry(&rename_lock, seq);
3213 if (error)
3214 goto Elong;
3215 return retval;
3216 Elong:
3217 return ERR_PTR(-ENAMETOOLONG);
3218 }
3219
3220 char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
3221 {
3222 return __dentry_path(dentry, buf, buflen);
3223 }
3224 EXPORT_SYMBOL(dentry_path_raw);
3225
3226 char *dentry_path(struct dentry *dentry, char *buf, int buflen)
3227 {
3228 char *p = NULL;
3229 char *retval;
3230
3231 if (d_unlinked(dentry)) {
3232 p = buf + buflen;
3233 if (prepend(&p, &buflen, "//deleted", 10) != 0)
3234 goto Elong;
3235 buflen++;
3236 }
3237 retval = __dentry_path(dentry, buf, buflen);
3238 if (!IS_ERR(retval) && p)
3239 *p = '/'; /* restore '/' overriden with '\0' */
3240 return retval;
3241 Elong:
3242 return ERR_PTR(-ENAMETOOLONG);
3243 }
3244
3245 static void get_fs_root_and_pwd_rcu(struct fs_struct *fs, struct path *root,
3246 struct path *pwd)
3247 {
3248 unsigned seq;
3249
3250 do {
3251 seq = read_seqcount_begin(&fs->seq);
3252 *root = fs->root;
3253 *pwd = fs->pwd;
3254 } while (read_seqcount_retry(&fs->seq, seq));
3255 }
3256
3257 /*
3258 * NOTE! The user-level library version returns a
3259 * character pointer. The kernel system call just
3260 * returns the length of the buffer filled (which
3261 * includes the ending '\0' character), or a negative
3262 * error value. So libc would do something like
3263 *
3264 * char *getcwd(char * buf, size_t size)
3265 * {
3266 * int retval;
3267 *
3268 * retval = sys_getcwd(buf, size);
3269 * if (retval >= 0)
3270 * return buf;
3271 * errno = -retval;
3272 * return NULL;
3273 * }
3274 */
3275 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
3276 {
3277 int error;
3278 struct path pwd, root;
3279 char *page = __getname();
3280
3281 if (!page)
3282 return -ENOMEM;
3283
3284 rcu_read_lock();
3285 get_fs_root_and_pwd_rcu(current->fs, &root, &pwd);
3286
3287 error = -ENOENT;
3288 if (!d_unlinked(pwd.dentry)) {
3289 unsigned long len;
3290 char *cwd = page + PATH_MAX;
3291 int buflen = PATH_MAX;
3292
3293 prepend(&cwd, &buflen, "\0", 1);
3294 error = prepend_path(&pwd, &root, &cwd, &buflen);
3295 rcu_read_unlock();
3296
3297 if (error < 0)
3298 goto out;
3299
3300 /* Unreachable from current root */
3301 if (error > 0) {
3302 error = prepend_unreachable(&cwd, &buflen);
3303 if (error)
3304 goto out;
3305 }
3306
3307 error = -ERANGE;
3308 len = PATH_MAX + page - cwd;
3309 if (len <= size) {
3310 error = len;
3311 if (copy_to_user(buf, cwd, len))
3312 error = -EFAULT;
3313 }
3314 } else {
3315 rcu_read_unlock();
3316 }
3317
3318 out:
3319 __putname(page);
3320 return error;
3321 }
3322
3323 /*
3324 * Test whether new_dentry is a subdirectory of old_dentry.
3325 *
3326 * Trivially implemented using the dcache structure
3327 */
3328
3329 /**
3330 * is_subdir - is new dentry a subdirectory of old_dentry
3331 * @new_dentry: new dentry
3332 * @old_dentry: old dentry
3333 *
3334 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
3335 * Returns 0 otherwise.
3336 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3337 */
3338
3339 int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
3340 {
3341 int result;
3342 unsigned seq;
3343
3344 if (new_dentry == old_dentry)
3345 return 1;
3346
3347 do {
3348 /* for restarting inner loop in case of seq retry */
3349 seq = read_seqbegin(&rename_lock);
3350 /*
3351 * Need rcu_readlock to protect against the d_parent trashing
3352 * due to d_move
3353 */
3354 rcu_read_lock();
3355 if (d_ancestor(old_dentry, new_dentry))
3356 result = 1;
3357 else
3358 result = 0;
3359 rcu_read_unlock();
3360 } while (read_seqretry(&rename_lock, seq));
3361
3362 return result;
3363 }
3364
3365 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
3366 {
3367 struct dentry *root = data;
3368 if (dentry != root) {
3369 if (d_unhashed(dentry) || !dentry->d_inode)
3370 return D_WALK_SKIP;
3371
3372 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3373 dentry->d_flags |= DCACHE_GENOCIDE;
3374 dentry->d_lockref.count--;
3375 }
3376 }
3377 return D_WALK_CONTINUE;
3378 }
3379
3380 void d_genocide(struct dentry *parent)
3381 {
3382 d_walk(parent, parent, d_genocide_kill, NULL);
3383 }
3384
3385 void d_tmpfile(struct dentry *dentry, struct inode *inode)
3386 {
3387 inode_dec_link_count(inode);
3388 BUG_ON(dentry->d_name.name != dentry->d_iname ||
3389 !hlist_unhashed(&dentry->d_u.d_alias) ||
3390 !d_unlinked(dentry));
3391 spin_lock(&dentry->d_parent->d_lock);
3392 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3393 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3394 (unsigned long long)inode->i_ino);
3395 spin_unlock(&dentry->d_lock);
3396 spin_unlock(&dentry->d_parent->d_lock);
3397 d_instantiate(dentry, inode);
3398 }
3399 EXPORT_SYMBOL(d_tmpfile);
3400
3401 static __initdata unsigned long dhash_entries;
3402 static int __init set_dhash_entries(char *str)
3403 {
3404 if (!str)
3405 return 0;
3406 dhash_entries = simple_strtoul(str, &str, 0);
3407 return 1;
3408 }
3409 __setup("dhash_entries=", set_dhash_entries);
3410
3411 static void __init dcache_init_early(void)
3412 {
3413 unsigned int loop;
3414
3415 /* If hashes are distributed across NUMA nodes, defer
3416 * hash allocation until vmalloc space is available.
3417 */
3418 if (hashdist)
3419 return;
3420
3421 dentry_hashtable =
3422 alloc_large_system_hash("Dentry cache",
3423 sizeof(struct hlist_bl_head),
3424 dhash_entries,
3425 13,
3426 HASH_EARLY,
3427 &d_hash_shift,
3428 &d_hash_mask,
3429 0,
3430 0);
3431
3432 for (loop = 0; loop < (1U << d_hash_shift); loop++)
3433 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3434 }
3435
3436 static void __init dcache_init(void)
3437 {
3438 unsigned int loop;
3439
3440 /*
3441 * A constructor could be added for stable state like the lists,
3442 * but it is probably not worth it because of the cache nature
3443 * of the dcache.
3444 */
3445 dentry_cache = KMEM_CACHE(dentry,
3446 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
3447
3448 /* Hash may have been set up in dcache_init_early */
3449 if (!hashdist)
3450 return;
3451
3452 dentry_hashtable =
3453 alloc_large_system_hash("Dentry cache",
3454 sizeof(struct hlist_bl_head),
3455 dhash_entries,
3456 13,
3457 0,
3458 &d_hash_shift,
3459 &d_hash_mask,
3460 0,
3461 0);
3462
3463 for (loop = 0; loop < (1U << d_hash_shift); loop++)
3464 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3465 }
3466
3467 /* SLAB cache for __getname() consumers */
3468 struct kmem_cache *names_cachep __read_mostly;
3469 EXPORT_SYMBOL(names_cachep);
3470
3471 EXPORT_SYMBOL(d_genocide);
3472
3473 void __init vfs_caches_init_early(void)
3474 {
3475 dcache_init_early();
3476 inode_init_early();
3477 }
3478
3479 void __init vfs_caches_init(void)
3480 {
3481 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
3482 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3483
3484 dcache_init();
3485 inode_init();
3486 files_init();
3487 files_maxfiles_init();
3488 mnt_init();
3489 bdev_cache_init();
3490 chrdev_init();
3491 }