]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/dcache.c
vfs: use lockref_get_not_zero() for optimistic lockless dget_parent()
[mirror_ubuntu-artful-kernel.git] / fs / dcache.c
1 /*
2 * fs/dcache.c
3 *
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
8
9 /*
10 * Notes on the allocation strategy:
11 *
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
15 */
16
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/export.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <asm/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/rculist_bl.h>
38 #include <linux/prefetch.h>
39 #include <linux/ratelimit.h>
40 #include "internal.h"
41 #include "mount.h"
42
43 /*
44 * Usage:
45 * dcache->d_inode->i_lock protects:
46 * - i_dentry, d_alias, d_inode of aliases
47 * dcache_hash_bucket lock protects:
48 * - the dcache hash table
49 * s_anon bl list spinlock protects:
50 * - the s_anon list (see __d_drop)
51 * dcache_lru_lock protects:
52 * - the dcache lru lists and counters
53 * d_lock protects:
54 * - d_flags
55 * - d_name
56 * - d_lru
57 * - d_count
58 * - d_unhashed()
59 * - d_parent and d_subdirs
60 * - childrens' d_child and d_parent
61 * - d_alias, d_inode
62 *
63 * Ordering:
64 * dentry->d_inode->i_lock
65 * dentry->d_lock
66 * dcache_lru_lock
67 * dcache_hash_bucket lock
68 * s_anon lock
69 *
70 * If there is an ancestor relationship:
71 * dentry->d_parent->...->d_parent->d_lock
72 * ...
73 * dentry->d_parent->d_lock
74 * dentry->d_lock
75 *
76 * If no ancestor relationship:
77 * if (dentry1 < dentry2)
78 * dentry1->d_lock
79 * dentry2->d_lock
80 */
81 int sysctl_vfs_cache_pressure __read_mostly = 100;
82 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
83
84 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_lru_lock);
85 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
86
87 EXPORT_SYMBOL(rename_lock);
88
89 static struct kmem_cache *dentry_cache __read_mostly;
90
91 /*
92 * This is the single most critical data structure when it comes
93 * to the dcache: the hashtable for lookups. Somebody should try
94 * to make this good - I've just made it work.
95 *
96 * This hash-function tries to avoid losing too many bits of hash
97 * information, yet avoid using a prime hash-size or similar.
98 */
99 #define D_HASHBITS d_hash_shift
100 #define D_HASHMASK d_hash_mask
101
102 static unsigned int d_hash_mask __read_mostly;
103 static unsigned int d_hash_shift __read_mostly;
104
105 static struct hlist_bl_head *dentry_hashtable __read_mostly;
106
107 static inline struct hlist_bl_head *d_hash(const struct dentry *parent,
108 unsigned int hash)
109 {
110 hash += (unsigned long) parent / L1_CACHE_BYTES;
111 hash = hash + (hash >> D_HASHBITS);
112 return dentry_hashtable + (hash & D_HASHMASK);
113 }
114
115 /* Statistics gathering. */
116 struct dentry_stat_t dentry_stat = {
117 .age_limit = 45,
118 };
119
120 static DEFINE_PER_CPU(unsigned int, nr_dentry);
121
122 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
123 static int get_nr_dentry(void)
124 {
125 int i;
126 int sum = 0;
127 for_each_possible_cpu(i)
128 sum += per_cpu(nr_dentry, i);
129 return sum < 0 ? 0 : sum;
130 }
131
132 int proc_nr_dentry(ctl_table *table, int write, void __user *buffer,
133 size_t *lenp, loff_t *ppos)
134 {
135 dentry_stat.nr_dentry = get_nr_dentry();
136 return proc_dointvec(table, write, buffer, lenp, ppos);
137 }
138 #endif
139
140 /*
141 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
142 * The strings are both count bytes long, and count is non-zero.
143 */
144 #ifdef CONFIG_DCACHE_WORD_ACCESS
145
146 #include <asm/word-at-a-time.h>
147 /*
148 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
149 * aligned allocation for this particular component. We don't
150 * strictly need the load_unaligned_zeropad() safety, but it
151 * doesn't hurt either.
152 *
153 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
154 * need the careful unaligned handling.
155 */
156 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
157 {
158 unsigned long a,b,mask;
159
160 for (;;) {
161 a = *(unsigned long *)cs;
162 b = load_unaligned_zeropad(ct);
163 if (tcount < sizeof(unsigned long))
164 break;
165 if (unlikely(a != b))
166 return 1;
167 cs += sizeof(unsigned long);
168 ct += sizeof(unsigned long);
169 tcount -= sizeof(unsigned long);
170 if (!tcount)
171 return 0;
172 }
173 mask = ~(~0ul << tcount*8);
174 return unlikely(!!((a ^ b) & mask));
175 }
176
177 #else
178
179 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
180 {
181 do {
182 if (*cs != *ct)
183 return 1;
184 cs++;
185 ct++;
186 tcount--;
187 } while (tcount);
188 return 0;
189 }
190
191 #endif
192
193 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
194 {
195 const unsigned char *cs;
196 /*
197 * Be careful about RCU walk racing with rename:
198 * use ACCESS_ONCE to fetch the name pointer.
199 *
200 * NOTE! Even if a rename will mean that the length
201 * was not loaded atomically, we don't care. The
202 * RCU walk will check the sequence count eventually,
203 * and catch it. And we won't overrun the buffer,
204 * because we're reading the name pointer atomically,
205 * and a dentry name is guaranteed to be properly
206 * terminated with a NUL byte.
207 *
208 * End result: even if 'len' is wrong, we'll exit
209 * early because the data cannot match (there can
210 * be no NUL in the ct/tcount data)
211 */
212 cs = ACCESS_ONCE(dentry->d_name.name);
213 smp_read_barrier_depends();
214 return dentry_string_cmp(cs, ct, tcount);
215 }
216
217 static void __d_free(struct rcu_head *head)
218 {
219 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
220
221 WARN_ON(!hlist_unhashed(&dentry->d_alias));
222 if (dname_external(dentry))
223 kfree(dentry->d_name.name);
224 kmem_cache_free(dentry_cache, dentry);
225 }
226
227 /*
228 * no locks, please.
229 */
230 static void d_free(struct dentry *dentry)
231 {
232 BUG_ON(dentry->d_lockref.count);
233 this_cpu_dec(nr_dentry);
234 if (dentry->d_op && dentry->d_op->d_release)
235 dentry->d_op->d_release(dentry);
236
237 /* if dentry was never visible to RCU, immediate free is OK */
238 if (!(dentry->d_flags & DCACHE_RCUACCESS))
239 __d_free(&dentry->d_u.d_rcu);
240 else
241 call_rcu(&dentry->d_u.d_rcu, __d_free);
242 }
243
244 /**
245 * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
246 * @dentry: the target dentry
247 * After this call, in-progress rcu-walk path lookup will fail. This
248 * should be called after unhashing, and after changing d_inode (if
249 * the dentry has not already been unhashed).
250 */
251 static inline void dentry_rcuwalk_barrier(struct dentry *dentry)
252 {
253 assert_spin_locked(&dentry->d_lock);
254 /* Go through a barrier */
255 write_seqcount_barrier(&dentry->d_seq);
256 }
257
258 /*
259 * Release the dentry's inode, using the filesystem
260 * d_iput() operation if defined. Dentry has no refcount
261 * and is unhashed.
262 */
263 static void dentry_iput(struct dentry * dentry)
264 __releases(dentry->d_lock)
265 __releases(dentry->d_inode->i_lock)
266 {
267 struct inode *inode = dentry->d_inode;
268 if (inode) {
269 dentry->d_inode = NULL;
270 hlist_del_init(&dentry->d_alias);
271 spin_unlock(&dentry->d_lock);
272 spin_unlock(&inode->i_lock);
273 if (!inode->i_nlink)
274 fsnotify_inoderemove(inode);
275 if (dentry->d_op && dentry->d_op->d_iput)
276 dentry->d_op->d_iput(dentry, inode);
277 else
278 iput(inode);
279 } else {
280 spin_unlock(&dentry->d_lock);
281 }
282 }
283
284 /*
285 * Release the dentry's inode, using the filesystem
286 * d_iput() operation if defined. dentry remains in-use.
287 */
288 static void dentry_unlink_inode(struct dentry * dentry)
289 __releases(dentry->d_lock)
290 __releases(dentry->d_inode->i_lock)
291 {
292 struct inode *inode = dentry->d_inode;
293 dentry->d_inode = NULL;
294 hlist_del_init(&dentry->d_alias);
295 dentry_rcuwalk_barrier(dentry);
296 spin_unlock(&dentry->d_lock);
297 spin_unlock(&inode->i_lock);
298 if (!inode->i_nlink)
299 fsnotify_inoderemove(inode);
300 if (dentry->d_op && dentry->d_op->d_iput)
301 dentry->d_op->d_iput(dentry, inode);
302 else
303 iput(inode);
304 }
305
306 /*
307 * dentry_lru_(add|del|prune|move_tail) must be called with d_lock held.
308 */
309 static void dentry_lru_add(struct dentry *dentry)
310 {
311 if (list_empty(&dentry->d_lru)) {
312 spin_lock(&dcache_lru_lock);
313 list_add(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
314 dentry->d_sb->s_nr_dentry_unused++;
315 dentry_stat.nr_unused++;
316 spin_unlock(&dcache_lru_lock);
317 }
318 }
319
320 static void __dentry_lru_del(struct dentry *dentry)
321 {
322 list_del_init(&dentry->d_lru);
323 dentry->d_flags &= ~DCACHE_SHRINK_LIST;
324 dentry->d_sb->s_nr_dentry_unused--;
325 dentry_stat.nr_unused--;
326 }
327
328 /*
329 * Remove a dentry with references from the LRU.
330 */
331 static void dentry_lru_del(struct dentry *dentry)
332 {
333 if (!list_empty(&dentry->d_lru)) {
334 spin_lock(&dcache_lru_lock);
335 __dentry_lru_del(dentry);
336 spin_unlock(&dcache_lru_lock);
337 }
338 }
339
340 static void dentry_lru_move_list(struct dentry *dentry, struct list_head *list)
341 {
342 spin_lock(&dcache_lru_lock);
343 if (list_empty(&dentry->d_lru)) {
344 list_add_tail(&dentry->d_lru, list);
345 dentry->d_sb->s_nr_dentry_unused++;
346 dentry_stat.nr_unused++;
347 } else {
348 list_move_tail(&dentry->d_lru, list);
349 }
350 spin_unlock(&dcache_lru_lock);
351 }
352
353 /**
354 * d_kill - kill dentry and return parent
355 * @dentry: dentry to kill
356 * @parent: parent dentry
357 *
358 * The dentry must already be unhashed and removed from the LRU.
359 *
360 * If this is the root of the dentry tree, return NULL.
361 *
362 * dentry->d_lock and parent->d_lock must be held by caller, and are dropped by
363 * d_kill.
364 */
365 static struct dentry *d_kill(struct dentry *dentry, struct dentry *parent)
366 __releases(dentry->d_lock)
367 __releases(parent->d_lock)
368 __releases(dentry->d_inode->i_lock)
369 {
370 list_del(&dentry->d_u.d_child);
371 /*
372 * Inform try_to_ascend() that we are no longer attached to the
373 * dentry tree
374 */
375 dentry->d_flags |= DCACHE_DENTRY_KILLED;
376 if (parent)
377 spin_unlock(&parent->d_lock);
378 dentry_iput(dentry);
379 /*
380 * dentry_iput drops the locks, at which point nobody (except
381 * transient RCU lookups) can reach this dentry.
382 */
383 d_free(dentry);
384 return parent;
385 }
386
387 /*
388 * Unhash a dentry without inserting an RCU walk barrier or checking that
389 * dentry->d_lock is locked. The caller must take care of that, if
390 * appropriate.
391 */
392 static void __d_shrink(struct dentry *dentry)
393 {
394 if (!d_unhashed(dentry)) {
395 struct hlist_bl_head *b;
396 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
397 b = &dentry->d_sb->s_anon;
398 else
399 b = d_hash(dentry->d_parent, dentry->d_name.hash);
400
401 hlist_bl_lock(b);
402 __hlist_bl_del(&dentry->d_hash);
403 dentry->d_hash.pprev = NULL;
404 hlist_bl_unlock(b);
405 }
406 }
407
408 /**
409 * d_drop - drop a dentry
410 * @dentry: dentry to drop
411 *
412 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
413 * be found through a VFS lookup any more. Note that this is different from
414 * deleting the dentry - d_delete will try to mark the dentry negative if
415 * possible, giving a successful _negative_ lookup, while d_drop will
416 * just make the cache lookup fail.
417 *
418 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
419 * reason (NFS timeouts or autofs deletes).
420 *
421 * __d_drop requires dentry->d_lock.
422 */
423 void __d_drop(struct dentry *dentry)
424 {
425 if (!d_unhashed(dentry)) {
426 __d_shrink(dentry);
427 dentry_rcuwalk_barrier(dentry);
428 }
429 }
430 EXPORT_SYMBOL(__d_drop);
431
432 void d_drop(struct dentry *dentry)
433 {
434 spin_lock(&dentry->d_lock);
435 __d_drop(dentry);
436 spin_unlock(&dentry->d_lock);
437 }
438 EXPORT_SYMBOL(d_drop);
439
440 /*
441 * Finish off a dentry we've decided to kill.
442 * dentry->d_lock must be held, returns with it unlocked.
443 * If ref is non-zero, then decrement the refcount too.
444 * Returns dentry requiring refcount drop, or NULL if we're done.
445 */
446 static inline struct dentry *dentry_kill(struct dentry *dentry, int ref)
447 __releases(dentry->d_lock)
448 {
449 struct inode *inode;
450 struct dentry *parent;
451
452 inode = dentry->d_inode;
453 if (inode && !spin_trylock(&inode->i_lock)) {
454 relock:
455 spin_unlock(&dentry->d_lock);
456 cpu_relax();
457 return dentry; /* try again with same dentry */
458 }
459 if (IS_ROOT(dentry))
460 parent = NULL;
461 else
462 parent = dentry->d_parent;
463 if (parent && !spin_trylock(&parent->d_lock)) {
464 if (inode)
465 spin_unlock(&inode->i_lock);
466 goto relock;
467 }
468
469 if (ref)
470 dentry->d_lockref.count--;
471 /*
472 * inform the fs via d_prune that this dentry is about to be
473 * unhashed and destroyed.
474 */
475 if (dentry->d_flags & DCACHE_OP_PRUNE)
476 dentry->d_op->d_prune(dentry);
477
478 dentry_lru_del(dentry);
479 /* if it was on the hash then remove it */
480 __d_drop(dentry);
481 return d_kill(dentry, parent);
482 }
483
484 /*
485 * This is dput
486 *
487 * This is complicated by the fact that we do not want to put
488 * dentries that are no longer on any hash chain on the unused
489 * list: we'd much rather just get rid of them immediately.
490 *
491 * However, that implies that we have to traverse the dentry
492 * tree upwards to the parents which might _also_ now be
493 * scheduled for deletion (it may have been only waiting for
494 * its last child to go away).
495 *
496 * This tail recursion is done by hand as we don't want to depend
497 * on the compiler to always get this right (gcc generally doesn't).
498 * Real recursion would eat up our stack space.
499 */
500
501 /*
502 * dput - release a dentry
503 * @dentry: dentry to release
504 *
505 * Release a dentry. This will drop the usage count and if appropriate
506 * call the dentry unlink method as well as removing it from the queues and
507 * releasing its resources. If the parent dentries were scheduled for release
508 * they too may now get deleted.
509 */
510 void dput(struct dentry *dentry)
511 {
512 if (!dentry)
513 return;
514
515 repeat:
516 if (dentry->d_lockref.count == 1)
517 might_sleep();
518 if (lockref_put_or_lock(&dentry->d_lockref))
519 return;
520
521 if (dentry->d_flags & DCACHE_OP_DELETE) {
522 if (dentry->d_op->d_delete(dentry))
523 goto kill_it;
524 }
525
526 /* Unreachable? Get rid of it */
527 if (d_unhashed(dentry))
528 goto kill_it;
529
530 dentry->d_flags |= DCACHE_REFERENCED;
531 dentry_lru_add(dentry);
532
533 dentry->d_lockref.count--;
534 spin_unlock(&dentry->d_lock);
535 return;
536
537 kill_it:
538 dentry = dentry_kill(dentry, 1);
539 if (dentry)
540 goto repeat;
541 }
542 EXPORT_SYMBOL(dput);
543
544 /**
545 * d_invalidate - invalidate a dentry
546 * @dentry: dentry to invalidate
547 *
548 * Try to invalidate the dentry if it turns out to be
549 * possible. If there are other dentries that can be
550 * reached through this one we can't delete it and we
551 * return -EBUSY. On success we return 0.
552 *
553 * no dcache lock.
554 */
555
556 int d_invalidate(struct dentry * dentry)
557 {
558 /*
559 * If it's already been dropped, return OK.
560 */
561 spin_lock(&dentry->d_lock);
562 if (d_unhashed(dentry)) {
563 spin_unlock(&dentry->d_lock);
564 return 0;
565 }
566 /*
567 * Check whether to do a partial shrink_dcache
568 * to get rid of unused child entries.
569 */
570 if (!list_empty(&dentry->d_subdirs)) {
571 spin_unlock(&dentry->d_lock);
572 shrink_dcache_parent(dentry);
573 spin_lock(&dentry->d_lock);
574 }
575
576 /*
577 * Somebody else still using it?
578 *
579 * If it's a directory, we can't drop it
580 * for fear of somebody re-populating it
581 * with children (even though dropping it
582 * would make it unreachable from the root,
583 * we might still populate it if it was a
584 * working directory or similar).
585 * We also need to leave mountpoints alone,
586 * directory or not.
587 */
588 if (dentry->d_lockref.count > 1 && dentry->d_inode) {
589 if (S_ISDIR(dentry->d_inode->i_mode) || d_mountpoint(dentry)) {
590 spin_unlock(&dentry->d_lock);
591 return -EBUSY;
592 }
593 }
594
595 __d_drop(dentry);
596 spin_unlock(&dentry->d_lock);
597 return 0;
598 }
599 EXPORT_SYMBOL(d_invalidate);
600
601 /* This must be called with d_lock held */
602 static inline void __dget_dlock(struct dentry *dentry)
603 {
604 dentry->d_lockref.count++;
605 }
606
607 static inline void __dget(struct dentry *dentry)
608 {
609 lockref_get(&dentry->d_lockref);
610 }
611
612 struct dentry *dget_parent(struct dentry *dentry)
613 {
614 int gotref;
615 struct dentry *ret;
616
617 /*
618 * Do optimistic parent lookup without any
619 * locking.
620 */
621 rcu_read_lock();
622 ret = ACCESS_ONCE(dentry->d_parent);
623 gotref = lockref_get_not_zero(&ret->d_lockref);
624 rcu_read_unlock();
625 if (likely(gotref)) {
626 if (likely(ret == ACCESS_ONCE(dentry->d_parent)))
627 return ret;
628 dput(ret);
629 }
630
631 repeat:
632 /*
633 * Don't need rcu_dereference because we re-check it was correct under
634 * the lock.
635 */
636 rcu_read_lock();
637 ret = dentry->d_parent;
638 spin_lock(&ret->d_lock);
639 if (unlikely(ret != dentry->d_parent)) {
640 spin_unlock(&ret->d_lock);
641 rcu_read_unlock();
642 goto repeat;
643 }
644 rcu_read_unlock();
645 BUG_ON(!ret->d_lockref.count);
646 ret->d_lockref.count++;
647 spin_unlock(&ret->d_lock);
648 return ret;
649 }
650 EXPORT_SYMBOL(dget_parent);
651
652 /**
653 * d_find_alias - grab a hashed alias of inode
654 * @inode: inode in question
655 * @want_discon: flag, used by d_splice_alias, to request
656 * that only a DISCONNECTED alias be returned.
657 *
658 * If inode has a hashed alias, or is a directory and has any alias,
659 * acquire the reference to alias and return it. Otherwise return NULL.
660 * Notice that if inode is a directory there can be only one alias and
661 * it can be unhashed only if it has no children, or if it is the root
662 * of a filesystem.
663 *
664 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
665 * any other hashed alias over that one unless @want_discon is set,
666 * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
667 */
668 static struct dentry *__d_find_alias(struct inode *inode, int want_discon)
669 {
670 struct dentry *alias, *discon_alias;
671
672 again:
673 discon_alias = NULL;
674 hlist_for_each_entry(alias, &inode->i_dentry, d_alias) {
675 spin_lock(&alias->d_lock);
676 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
677 if (IS_ROOT(alias) &&
678 (alias->d_flags & DCACHE_DISCONNECTED)) {
679 discon_alias = alias;
680 } else if (!want_discon) {
681 __dget_dlock(alias);
682 spin_unlock(&alias->d_lock);
683 return alias;
684 }
685 }
686 spin_unlock(&alias->d_lock);
687 }
688 if (discon_alias) {
689 alias = discon_alias;
690 spin_lock(&alias->d_lock);
691 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
692 if (IS_ROOT(alias) &&
693 (alias->d_flags & DCACHE_DISCONNECTED)) {
694 __dget_dlock(alias);
695 spin_unlock(&alias->d_lock);
696 return alias;
697 }
698 }
699 spin_unlock(&alias->d_lock);
700 goto again;
701 }
702 return NULL;
703 }
704
705 struct dentry *d_find_alias(struct inode *inode)
706 {
707 struct dentry *de = NULL;
708
709 if (!hlist_empty(&inode->i_dentry)) {
710 spin_lock(&inode->i_lock);
711 de = __d_find_alias(inode, 0);
712 spin_unlock(&inode->i_lock);
713 }
714 return de;
715 }
716 EXPORT_SYMBOL(d_find_alias);
717
718 /*
719 * Try to kill dentries associated with this inode.
720 * WARNING: you must own a reference to inode.
721 */
722 void d_prune_aliases(struct inode *inode)
723 {
724 struct dentry *dentry;
725 restart:
726 spin_lock(&inode->i_lock);
727 hlist_for_each_entry(dentry, &inode->i_dentry, d_alias) {
728 spin_lock(&dentry->d_lock);
729 if (!dentry->d_lockref.count) {
730 __dget_dlock(dentry);
731 __d_drop(dentry);
732 spin_unlock(&dentry->d_lock);
733 spin_unlock(&inode->i_lock);
734 dput(dentry);
735 goto restart;
736 }
737 spin_unlock(&dentry->d_lock);
738 }
739 spin_unlock(&inode->i_lock);
740 }
741 EXPORT_SYMBOL(d_prune_aliases);
742
743 /*
744 * Try to throw away a dentry - free the inode, dput the parent.
745 * Requires dentry->d_lock is held, and dentry->d_count == 0.
746 * Releases dentry->d_lock.
747 *
748 * This may fail if locks cannot be acquired no problem, just try again.
749 */
750 static void try_prune_one_dentry(struct dentry *dentry)
751 __releases(dentry->d_lock)
752 {
753 struct dentry *parent;
754
755 parent = dentry_kill(dentry, 0);
756 /*
757 * If dentry_kill returns NULL, we have nothing more to do.
758 * if it returns the same dentry, trylocks failed. In either
759 * case, just loop again.
760 *
761 * Otherwise, we need to prune ancestors too. This is necessary
762 * to prevent quadratic behavior of shrink_dcache_parent(), but
763 * is also expected to be beneficial in reducing dentry cache
764 * fragmentation.
765 */
766 if (!parent)
767 return;
768 if (parent == dentry)
769 return;
770
771 /* Prune ancestors. */
772 dentry = parent;
773 while (dentry) {
774 if (lockref_put_or_lock(&dentry->d_lockref))
775 return;
776 dentry = dentry_kill(dentry, 1);
777 }
778 }
779
780 static void shrink_dentry_list(struct list_head *list)
781 {
782 struct dentry *dentry;
783
784 rcu_read_lock();
785 for (;;) {
786 dentry = list_entry_rcu(list->prev, struct dentry, d_lru);
787 if (&dentry->d_lru == list)
788 break; /* empty */
789 spin_lock(&dentry->d_lock);
790 if (dentry != list_entry(list->prev, struct dentry, d_lru)) {
791 spin_unlock(&dentry->d_lock);
792 continue;
793 }
794
795 /*
796 * We found an inuse dentry which was not removed from
797 * the LRU because of laziness during lookup. Do not free
798 * it - just keep it off the LRU list.
799 */
800 if (dentry->d_lockref.count) {
801 dentry_lru_del(dentry);
802 spin_unlock(&dentry->d_lock);
803 continue;
804 }
805
806 rcu_read_unlock();
807
808 try_prune_one_dentry(dentry);
809
810 rcu_read_lock();
811 }
812 rcu_read_unlock();
813 }
814
815 /**
816 * prune_dcache_sb - shrink the dcache
817 * @sb: superblock
818 * @count: number of entries to try to free
819 *
820 * Attempt to shrink the superblock dcache LRU by @count entries. This is
821 * done when we need more memory an called from the superblock shrinker
822 * function.
823 *
824 * This function may fail to free any resources if all the dentries are in
825 * use.
826 */
827 void prune_dcache_sb(struct super_block *sb, int count)
828 {
829 struct dentry *dentry;
830 LIST_HEAD(referenced);
831 LIST_HEAD(tmp);
832
833 relock:
834 spin_lock(&dcache_lru_lock);
835 while (!list_empty(&sb->s_dentry_lru)) {
836 dentry = list_entry(sb->s_dentry_lru.prev,
837 struct dentry, d_lru);
838 BUG_ON(dentry->d_sb != sb);
839
840 if (!spin_trylock(&dentry->d_lock)) {
841 spin_unlock(&dcache_lru_lock);
842 cpu_relax();
843 goto relock;
844 }
845
846 if (dentry->d_flags & DCACHE_REFERENCED) {
847 dentry->d_flags &= ~DCACHE_REFERENCED;
848 list_move(&dentry->d_lru, &referenced);
849 spin_unlock(&dentry->d_lock);
850 } else {
851 list_move_tail(&dentry->d_lru, &tmp);
852 dentry->d_flags |= DCACHE_SHRINK_LIST;
853 spin_unlock(&dentry->d_lock);
854 if (!--count)
855 break;
856 }
857 cond_resched_lock(&dcache_lru_lock);
858 }
859 if (!list_empty(&referenced))
860 list_splice(&referenced, &sb->s_dentry_lru);
861 spin_unlock(&dcache_lru_lock);
862
863 shrink_dentry_list(&tmp);
864 }
865
866 /**
867 * shrink_dcache_sb - shrink dcache for a superblock
868 * @sb: superblock
869 *
870 * Shrink the dcache for the specified super block. This is used to free
871 * the dcache before unmounting a file system.
872 */
873 void shrink_dcache_sb(struct super_block *sb)
874 {
875 LIST_HEAD(tmp);
876
877 spin_lock(&dcache_lru_lock);
878 while (!list_empty(&sb->s_dentry_lru)) {
879 list_splice_init(&sb->s_dentry_lru, &tmp);
880 spin_unlock(&dcache_lru_lock);
881 shrink_dentry_list(&tmp);
882 spin_lock(&dcache_lru_lock);
883 }
884 spin_unlock(&dcache_lru_lock);
885 }
886 EXPORT_SYMBOL(shrink_dcache_sb);
887
888 /*
889 * destroy a single subtree of dentries for unmount
890 * - see the comments on shrink_dcache_for_umount() for a description of the
891 * locking
892 */
893 static void shrink_dcache_for_umount_subtree(struct dentry *dentry)
894 {
895 struct dentry *parent;
896
897 BUG_ON(!IS_ROOT(dentry));
898
899 for (;;) {
900 /* descend to the first leaf in the current subtree */
901 while (!list_empty(&dentry->d_subdirs))
902 dentry = list_entry(dentry->d_subdirs.next,
903 struct dentry, d_u.d_child);
904
905 /* consume the dentries from this leaf up through its parents
906 * until we find one with children or run out altogether */
907 do {
908 struct inode *inode;
909
910 /*
911 * inform the fs that this dentry is about to be
912 * unhashed and destroyed.
913 */
914 if (dentry->d_flags & DCACHE_OP_PRUNE)
915 dentry->d_op->d_prune(dentry);
916
917 dentry_lru_del(dentry);
918 __d_shrink(dentry);
919
920 if (dentry->d_lockref.count != 0) {
921 printk(KERN_ERR
922 "BUG: Dentry %p{i=%lx,n=%s}"
923 " still in use (%d)"
924 " [unmount of %s %s]\n",
925 dentry,
926 dentry->d_inode ?
927 dentry->d_inode->i_ino : 0UL,
928 dentry->d_name.name,
929 dentry->d_lockref.count,
930 dentry->d_sb->s_type->name,
931 dentry->d_sb->s_id);
932 BUG();
933 }
934
935 if (IS_ROOT(dentry)) {
936 parent = NULL;
937 list_del(&dentry->d_u.d_child);
938 } else {
939 parent = dentry->d_parent;
940 parent->d_lockref.count--;
941 list_del(&dentry->d_u.d_child);
942 }
943
944 inode = dentry->d_inode;
945 if (inode) {
946 dentry->d_inode = NULL;
947 hlist_del_init(&dentry->d_alias);
948 if (dentry->d_op && dentry->d_op->d_iput)
949 dentry->d_op->d_iput(dentry, inode);
950 else
951 iput(inode);
952 }
953
954 d_free(dentry);
955
956 /* finished when we fall off the top of the tree,
957 * otherwise we ascend to the parent and move to the
958 * next sibling if there is one */
959 if (!parent)
960 return;
961 dentry = parent;
962 } while (list_empty(&dentry->d_subdirs));
963
964 dentry = list_entry(dentry->d_subdirs.next,
965 struct dentry, d_u.d_child);
966 }
967 }
968
969 /*
970 * destroy the dentries attached to a superblock on unmounting
971 * - we don't need to use dentry->d_lock because:
972 * - the superblock is detached from all mountings and open files, so the
973 * dentry trees will not be rearranged by the VFS
974 * - s_umount is write-locked, so the memory pressure shrinker will ignore
975 * any dentries belonging to this superblock that it comes across
976 * - the filesystem itself is no longer permitted to rearrange the dentries
977 * in this superblock
978 */
979 void shrink_dcache_for_umount(struct super_block *sb)
980 {
981 struct dentry *dentry;
982
983 if (down_read_trylock(&sb->s_umount))
984 BUG();
985
986 dentry = sb->s_root;
987 sb->s_root = NULL;
988 dentry->d_lockref.count--;
989 shrink_dcache_for_umount_subtree(dentry);
990
991 while (!hlist_bl_empty(&sb->s_anon)) {
992 dentry = hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash);
993 shrink_dcache_for_umount_subtree(dentry);
994 }
995 }
996
997 /*
998 * This tries to ascend one level of parenthood, but
999 * we can race with renaming, so we need to re-check
1000 * the parenthood after dropping the lock and check
1001 * that the sequence number still matches.
1002 */
1003 static struct dentry *try_to_ascend(struct dentry *old, int locked, unsigned seq)
1004 {
1005 struct dentry *new = old->d_parent;
1006
1007 rcu_read_lock();
1008 spin_unlock(&old->d_lock);
1009 spin_lock(&new->d_lock);
1010
1011 /*
1012 * might go back up the wrong parent if we have had a rename
1013 * or deletion
1014 */
1015 if (new != old->d_parent ||
1016 (old->d_flags & DCACHE_DENTRY_KILLED) ||
1017 (!locked && read_seqretry(&rename_lock, seq))) {
1018 spin_unlock(&new->d_lock);
1019 new = NULL;
1020 }
1021 rcu_read_unlock();
1022 return new;
1023 }
1024
1025
1026 /*
1027 * Search for at least 1 mount point in the dentry's subdirs.
1028 * We descend to the next level whenever the d_subdirs
1029 * list is non-empty and continue searching.
1030 */
1031
1032 /**
1033 * have_submounts - check for mounts over a dentry
1034 * @parent: dentry to check.
1035 *
1036 * Return true if the parent or its subdirectories contain
1037 * a mount point
1038 */
1039 int have_submounts(struct dentry *parent)
1040 {
1041 struct dentry *this_parent;
1042 struct list_head *next;
1043 unsigned seq;
1044 int locked = 0;
1045
1046 seq = read_seqbegin(&rename_lock);
1047 again:
1048 this_parent = parent;
1049
1050 if (d_mountpoint(parent))
1051 goto positive;
1052 spin_lock(&this_parent->d_lock);
1053 repeat:
1054 next = this_parent->d_subdirs.next;
1055 resume:
1056 while (next != &this_parent->d_subdirs) {
1057 struct list_head *tmp = next;
1058 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1059 next = tmp->next;
1060
1061 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1062 /* Have we found a mount point ? */
1063 if (d_mountpoint(dentry)) {
1064 spin_unlock(&dentry->d_lock);
1065 spin_unlock(&this_parent->d_lock);
1066 goto positive;
1067 }
1068 if (!list_empty(&dentry->d_subdirs)) {
1069 spin_unlock(&this_parent->d_lock);
1070 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1071 this_parent = dentry;
1072 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1073 goto repeat;
1074 }
1075 spin_unlock(&dentry->d_lock);
1076 }
1077 /*
1078 * All done at this level ... ascend and resume the search.
1079 */
1080 if (this_parent != parent) {
1081 struct dentry *child = this_parent;
1082 this_parent = try_to_ascend(this_parent, locked, seq);
1083 if (!this_parent)
1084 goto rename_retry;
1085 next = child->d_u.d_child.next;
1086 goto resume;
1087 }
1088 spin_unlock(&this_parent->d_lock);
1089 if (!locked && read_seqretry(&rename_lock, seq))
1090 goto rename_retry;
1091 if (locked)
1092 write_sequnlock(&rename_lock);
1093 return 0; /* No mount points found in tree */
1094 positive:
1095 if (!locked && read_seqretry(&rename_lock, seq))
1096 goto rename_retry;
1097 if (locked)
1098 write_sequnlock(&rename_lock);
1099 return 1;
1100
1101 rename_retry:
1102 if (locked)
1103 goto again;
1104 locked = 1;
1105 write_seqlock(&rename_lock);
1106 goto again;
1107 }
1108 EXPORT_SYMBOL(have_submounts);
1109
1110 /*
1111 * Search the dentry child list of the specified parent,
1112 * and move any unused dentries to the end of the unused
1113 * list for prune_dcache(). We descend to the next level
1114 * whenever the d_subdirs list is non-empty and continue
1115 * searching.
1116 *
1117 * It returns zero iff there are no unused children,
1118 * otherwise it returns the number of children moved to
1119 * the end of the unused list. This may not be the total
1120 * number of unused children, because select_parent can
1121 * drop the lock and return early due to latency
1122 * constraints.
1123 */
1124 static int select_parent(struct dentry *parent, struct list_head *dispose)
1125 {
1126 struct dentry *this_parent;
1127 struct list_head *next;
1128 unsigned seq;
1129 int found = 0;
1130 int locked = 0;
1131
1132 seq = read_seqbegin(&rename_lock);
1133 again:
1134 this_parent = parent;
1135 spin_lock(&this_parent->d_lock);
1136 repeat:
1137 next = this_parent->d_subdirs.next;
1138 resume:
1139 while (next != &this_parent->d_subdirs) {
1140 struct list_head *tmp = next;
1141 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1142 next = tmp->next;
1143
1144 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1145
1146 /*
1147 * move only zero ref count dentries to the dispose list.
1148 *
1149 * Those which are presently on the shrink list, being processed
1150 * by shrink_dentry_list(), shouldn't be moved. Otherwise the
1151 * loop in shrink_dcache_parent() might not make any progress
1152 * and loop forever.
1153 */
1154 if (dentry->d_lockref.count) {
1155 dentry_lru_del(dentry);
1156 } else if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) {
1157 dentry_lru_move_list(dentry, dispose);
1158 dentry->d_flags |= DCACHE_SHRINK_LIST;
1159 found++;
1160 }
1161 /*
1162 * We can return to the caller if we have found some (this
1163 * ensures forward progress). We'll be coming back to find
1164 * the rest.
1165 */
1166 if (found && need_resched()) {
1167 spin_unlock(&dentry->d_lock);
1168 goto out;
1169 }
1170
1171 /*
1172 * Descend a level if the d_subdirs list is non-empty.
1173 */
1174 if (!list_empty(&dentry->d_subdirs)) {
1175 spin_unlock(&this_parent->d_lock);
1176 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1177 this_parent = dentry;
1178 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1179 goto repeat;
1180 }
1181
1182 spin_unlock(&dentry->d_lock);
1183 }
1184 /*
1185 * All done at this level ... ascend and resume the search.
1186 */
1187 if (this_parent != parent) {
1188 struct dentry *child = this_parent;
1189 this_parent = try_to_ascend(this_parent, locked, seq);
1190 if (!this_parent)
1191 goto rename_retry;
1192 next = child->d_u.d_child.next;
1193 goto resume;
1194 }
1195 out:
1196 spin_unlock(&this_parent->d_lock);
1197 if (!locked && read_seqretry(&rename_lock, seq))
1198 goto rename_retry;
1199 if (locked)
1200 write_sequnlock(&rename_lock);
1201 return found;
1202
1203 rename_retry:
1204 if (found)
1205 return found;
1206 if (locked)
1207 goto again;
1208 locked = 1;
1209 write_seqlock(&rename_lock);
1210 goto again;
1211 }
1212
1213 /**
1214 * shrink_dcache_parent - prune dcache
1215 * @parent: parent of entries to prune
1216 *
1217 * Prune the dcache to remove unused children of the parent dentry.
1218 */
1219 void shrink_dcache_parent(struct dentry * parent)
1220 {
1221 LIST_HEAD(dispose);
1222 int found;
1223
1224 while ((found = select_parent(parent, &dispose)) != 0) {
1225 shrink_dentry_list(&dispose);
1226 cond_resched();
1227 }
1228 }
1229 EXPORT_SYMBOL(shrink_dcache_parent);
1230
1231 /**
1232 * __d_alloc - allocate a dcache entry
1233 * @sb: filesystem it will belong to
1234 * @name: qstr of the name
1235 *
1236 * Allocates a dentry. It returns %NULL if there is insufficient memory
1237 * available. On a success the dentry is returned. The name passed in is
1238 * copied and the copy passed in may be reused after this call.
1239 */
1240
1241 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1242 {
1243 struct dentry *dentry;
1244 char *dname;
1245
1246 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1247 if (!dentry)
1248 return NULL;
1249
1250 /*
1251 * We guarantee that the inline name is always NUL-terminated.
1252 * This way the memcpy() done by the name switching in rename
1253 * will still always have a NUL at the end, even if we might
1254 * be overwriting an internal NUL character
1255 */
1256 dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1257 if (name->len > DNAME_INLINE_LEN-1) {
1258 dname = kmalloc(name->len + 1, GFP_KERNEL);
1259 if (!dname) {
1260 kmem_cache_free(dentry_cache, dentry);
1261 return NULL;
1262 }
1263 } else {
1264 dname = dentry->d_iname;
1265 }
1266
1267 dentry->d_name.len = name->len;
1268 dentry->d_name.hash = name->hash;
1269 memcpy(dname, name->name, name->len);
1270 dname[name->len] = 0;
1271
1272 /* Make sure we always see the terminating NUL character */
1273 smp_wmb();
1274 dentry->d_name.name = dname;
1275
1276 dentry->d_lockref.count = 1;
1277 dentry->d_flags = 0;
1278 spin_lock_init(&dentry->d_lock);
1279 seqcount_init(&dentry->d_seq);
1280 dentry->d_inode = NULL;
1281 dentry->d_parent = dentry;
1282 dentry->d_sb = sb;
1283 dentry->d_op = NULL;
1284 dentry->d_fsdata = NULL;
1285 INIT_HLIST_BL_NODE(&dentry->d_hash);
1286 INIT_LIST_HEAD(&dentry->d_lru);
1287 INIT_LIST_HEAD(&dentry->d_subdirs);
1288 INIT_HLIST_NODE(&dentry->d_alias);
1289 INIT_LIST_HEAD(&dentry->d_u.d_child);
1290 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1291
1292 this_cpu_inc(nr_dentry);
1293
1294 return dentry;
1295 }
1296
1297 /**
1298 * d_alloc - allocate a dcache entry
1299 * @parent: parent of entry to allocate
1300 * @name: qstr of the name
1301 *
1302 * Allocates a dentry. It returns %NULL if there is insufficient memory
1303 * available. On a success the dentry is returned. The name passed in is
1304 * copied and the copy passed in may be reused after this call.
1305 */
1306 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1307 {
1308 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1309 if (!dentry)
1310 return NULL;
1311
1312 spin_lock(&parent->d_lock);
1313 /*
1314 * don't need child lock because it is not subject
1315 * to concurrency here
1316 */
1317 __dget_dlock(parent);
1318 dentry->d_parent = parent;
1319 list_add(&dentry->d_u.d_child, &parent->d_subdirs);
1320 spin_unlock(&parent->d_lock);
1321
1322 return dentry;
1323 }
1324 EXPORT_SYMBOL(d_alloc);
1325
1326 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1327 {
1328 struct dentry *dentry = __d_alloc(sb, name);
1329 if (dentry)
1330 dentry->d_flags |= DCACHE_DISCONNECTED;
1331 return dentry;
1332 }
1333 EXPORT_SYMBOL(d_alloc_pseudo);
1334
1335 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1336 {
1337 struct qstr q;
1338
1339 q.name = name;
1340 q.len = strlen(name);
1341 q.hash = full_name_hash(q.name, q.len);
1342 return d_alloc(parent, &q);
1343 }
1344 EXPORT_SYMBOL(d_alloc_name);
1345
1346 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1347 {
1348 WARN_ON_ONCE(dentry->d_op);
1349 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
1350 DCACHE_OP_COMPARE |
1351 DCACHE_OP_REVALIDATE |
1352 DCACHE_OP_WEAK_REVALIDATE |
1353 DCACHE_OP_DELETE ));
1354 dentry->d_op = op;
1355 if (!op)
1356 return;
1357 if (op->d_hash)
1358 dentry->d_flags |= DCACHE_OP_HASH;
1359 if (op->d_compare)
1360 dentry->d_flags |= DCACHE_OP_COMPARE;
1361 if (op->d_revalidate)
1362 dentry->d_flags |= DCACHE_OP_REVALIDATE;
1363 if (op->d_weak_revalidate)
1364 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1365 if (op->d_delete)
1366 dentry->d_flags |= DCACHE_OP_DELETE;
1367 if (op->d_prune)
1368 dentry->d_flags |= DCACHE_OP_PRUNE;
1369
1370 }
1371 EXPORT_SYMBOL(d_set_d_op);
1372
1373 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1374 {
1375 spin_lock(&dentry->d_lock);
1376 if (inode) {
1377 if (unlikely(IS_AUTOMOUNT(inode)))
1378 dentry->d_flags |= DCACHE_NEED_AUTOMOUNT;
1379 hlist_add_head(&dentry->d_alias, &inode->i_dentry);
1380 }
1381 dentry->d_inode = inode;
1382 dentry_rcuwalk_barrier(dentry);
1383 spin_unlock(&dentry->d_lock);
1384 fsnotify_d_instantiate(dentry, inode);
1385 }
1386
1387 /**
1388 * d_instantiate - fill in inode information for a dentry
1389 * @entry: dentry to complete
1390 * @inode: inode to attach to this dentry
1391 *
1392 * Fill in inode information in the entry.
1393 *
1394 * This turns negative dentries into productive full members
1395 * of society.
1396 *
1397 * NOTE! This assumes that the inode count has been incremented
1398 * (or otherwise set) by the caller to indicate that it is now
1399 * in use by the dcache.
1400 */
1401
1402 void d_instantiate(struct dentry *entry, struct inode * inode)
1403 {
1404 BUG_ON(!hlist_unhashed(&entry->d_alias));
1405 if (inode)
1406 spin_lock(&inode->i_lock);
1407 __d_instantiate(entry, inode);
1408 if (inode)
1409 spin_unlock(&inode->i_lock);
1410 security_d_instantiate(entry, inode);
1411 }
1412 EXPORT_SYMBOL(d_instantiate);
1413
1414 /**
1415 * d_instantiate_unique - instantiate a non-aliased dentry
1416 * @entry: dentry to instantiate
1417 * @inode: inode to attach to this dentry
1418 *
1419 * Fill in inode information in the entry. On success, it returns NULL.
1420 * If an unhashed alias of "entry" already exists, then we return the
1421 * aliased dentry instead and drop one reference to inode.
1422 *
1423 * Note that in order to avoid conflicts with rename() etc, the caller
1424 * had better be holding the parent directory semaphore.
1425 *
1426 * This also assumes that the inode count has been incremented
1427 * (or otherwise set) by the caller to indicate that it is now
1428 * in use by the dcache.
1429 */
1430 static struct dentry *__d_instantiate_unique(struct dentry *entry,
1431 struct inode *inode)
1432 {
1433 struct dentry *alias;
1434 int len = entry->d_name.len;
1435 const char *name = entry->d_name.name;
1436 unsigned int hash = entry->d_name.hash;
1437
1438 if (!inode) {
1439 __d_instantiate(entry, NULL);
1440 return NULL;
1441 }
1442
1443 hlist_for_each_entry(alias, &inode->i_dentry, d_alias) {
1444 /*
1445 * Don't need alias->d_lock here, because aliases with
1446 * d_parent == entry->d_parent are not subject to name or
1447 * parent changes, because the parent inode i_mutex is held.
1448 */
1449 if (alias->d_name.hash != hash)
1450 continue;
1451 if (alias->d_parent != entry->d_parent)
1452 continue;
1453 if (alias->d_name.len != len)
1454 continue;
1455 if (dentry_cmp(alias, name, len))
1456 continue;
1457 __dget(alias);
1458 return alias;
1459 }
1460
1461 __d_instantiate(entry, inode);
1462 return NULL;
1463 }
1464
1465 struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1466 {
1467 struct dentry *result;
1468
1469 BUG_ON(!hlist_unhashed(&entry->d_alias));
1470
1471 if (inode)
1472 spin_lock(&inode->i_lock);
1473 result = __d_instantiate_unique(entry, inode);
1474 if (inode)
1475 spin_unlock(&inode->i_lock);
1476
1477 if (!result) {
1478 security_d_instantiate(entry, inode);
1479 return NULL;
1480 }
1481
1482 BUG_ON(!d_unhashed(result));
1483 iput(inode);
1484 return result;
1485 }
1486
1487 EXPORT_SYMBOL(d_instantiate_unique);
1488
1489 struct dentry *d_make_root(struct inode *root_inode)
1490 {
1491 struct dentry *res = NULL;
1492
1493 if (root_inode) {
1494 static const struct qstr name = QSTR_INIT("/", 1);
1495
1496 res = __d_alloc(root_inode->i_sb, &name);
1497 if (res)
1498 d_instantiate(res, root_inode);
1499 else
1500 iput(root_inode);
1501 }
1502 return res;
1503 }
1504 EXPORT_SYMBOL(d_make_root);
1505
1506 static struct dentry * __d_find_any_alias(struct inode *inode)
1507 {
1508 struct dentry *alias;
1509
1510 if (hlist_empty(&inode->i_dentry))
1511 return NULL;
1512 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_alias);
1513 __dget(alias);
1514 return alias;
1515 }
1516
1517 /**
1518 * d_find_any_alias - find any alias for a given inode
1519 * @inode: inode to find an alias for
1520 *
1521 * If any aliases exist for the given inode, take and return a
1522 * reference for one of them. If no aliases exist, return %NULL.
1523 */
1524 struct dentry *d_find_any_alias(struct inode *inode)
1525 {
1526 struct dentry *de;
1527
1528 spin_lock(&inode->i_lock);
1529 de = __d_find_any_alias(inode);
1530 spin_unlock(&inode->i_lock);
1531 return de;
1532 }
1533 EXPORT_SYMBOL(d_find_any_alias);
1534
1535 /**
1536 * d_obtain_alias - find or allocate a dentry for a given inode
1537 * @inode: inode to allocate the dentry for
1538 *
1539 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1540 * similar open by handle operations. The returned dentry may be anonymous,
1541 * or may have a full name (if the inode was already in the cache).
1542 *
1543 * When called on a directory inode, we must ensure that the inode only ever
1544 * has one dentry. If a dentry is found, that is returned instead of
1545 * allocating a new one.
1546 *
1547 * On successful return, the reference to the inode has been transferred
1548 * to the dentry. In case of an error the reference on the inode is released.
1549 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1550 * be passed in and will be the error will be propagate to the return value,
1551 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1552 */
1553 struct dentry *d_obtain_alias(struct inode *inode)
1554 {
1555 static const struct qstr anonstring = QSTR_INIT("/", 1);
1556 struct dentry *tmp;
1557 struct dentry *res;
1558
1559 if (!inode)
1560 return ERR_PTR(-ESTALE);
1561 if (IS_ERR(inode))
1562 return ERR_CAST(inode);
1563
1564 res = d_find_any_alias(inode);
1565 if (res)
1566 goto out_iput;
1567
1568 tmp = __d_alloc(inode->i_sb, &anonstring);
1569 if (!tmp) {
1570 res = ERR_PTR(-ENOMEM);
1571 goto out_iput;
1572 }
1573
1574 spin_lock(&inode->i_lock);
1575 res = __d_find_any_alias(inode);
1576 if (res) {
1577 spin_unlock(&inode->i_lock);
1578 dput(tmp);
1579 goto out_iput;
1580 }
1581
1582 /* attach a disconnected dentry */
1583 spin_lock(&tmp->d_lock);
1584 tmp->d_inode = inode;
1585 tmp->d_flags |= DCACHE_DISCONNECTED;
1586 hlist_add_head(&tmp->d_alias, &inode->i_dentry);
1587 hlist_bl_lock(&tmp->d_sb->s_anon);
1588 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1589 hlist_bl_unlock(&tmp->d_sb->s_anon);
1590 spin_unlock(&tmp->d_lock);
1591 spin_unlock(&inode->i_lock);
1592 security_d_instantiate(tmp, inode);
1593
1594 return tmp;
1595
1596 out_iput:
1597 if (res && !IS_ERR(res))
1598 security_d_instantiate(res, inode);
1599 iput(inode);
1600 return res;
1601 }
1602 EXPORT_SYMBOL(d_obtain_alias);
1603
1604 /**
1605 * d_splice_alias - splice a disconnected dentry into the tree if one exists
1606 * @inode: the inode which may have a disconnected dentry
1607 * @dentry: a negative dentry which we want to point to the inode.
1608 *
1609 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1610 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1611 * and return it, else simply d_add the inode to the dentry and return NULL.
1612 *
1613 * This is needed in the lookup routine of any filesystem that is exportable
1614 * (via knfsd) so that we can build dcache paths to directories effectively.
1615 *
1616 * If a dentry was found and moved, then it is returned. Otherwise NULL
1617 * is returned. This matches the expected return value of ->lookup.
1618 *
1619 * Cluster filesystems may call this function with a negative, hashed dentry.
1620 * In that case, we know that the inode will be a regular file, and also this
1621 * will only occur during atomic_open. So we need to check for the dentry
1622 * being already hashed only in the final case.
1623 */
1624 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
1625 {
1626 struct dentry *new = NULL;
1627
1628 if (IS_ERR(inode))
1629 return ERR_CAST(inode);
1630
1631 if (inode && S_ISDIR(inode->i_mode)) {
1632 spin_lock(&inode->i_lock);
1633 new = __d_find_alias(inode, 1);
1634 if (new) {
1635 BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED));
1636 spin_unlock(&inode->i_lock);
1637 security_d_instantiate(new, inode);
1638 d_move(new, dentry);
1639 iput(inode);
1640 } else {
1641 /* already taking inode->i_lock, so d_add() by hand */
1642 __d_instantiate(dentry, inode);
1643 spin_unlock(&inode->i_lock);
1644 security_d_instantiate(dentry, inode);
1645 d_rehash(dentry);
1646 }
1647 } else {
1648 d_instantiate(dentry, inode);
1649 if (d_unhashed(dentry))
1650 d_rehash(dentry);
1651 }
1652 return new;
1653 }
1654 EXPORT_SYMBOL(d_splice_alias);
1655
1656 /**
1657 * d_add_ci - lookup or allocate new dentry with case-exact name
1658 * @inode: the inode case-insensitive lookup has found
1659 * @dentry: the negative dentry that was passed to the parent's lookup func
1660 * @name: the case-exact name to be associated with the returned dentry
1661 *
1662 * This is to avoid filling the dcache with case-insensitive names to the
1663 * same inode, only the actual correct case is stored in the dcache for
1664 * case-insensitive filesystems.
1665 *
1666 * For a case-insensitive lookup match and if the the case-exact dentry
1667 * already exists in in the dcache, use it and return it.
1668 *
1669 * If no entry exists with the exact case name, allocate new dentry with
1670 * the exact case, and return the spliced entry.
1671 */
1672 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
1673 struct qstr *name)
1674 {
1675 struct dentry *found;
1676 struct dentry *new;
1677
1678 /*
1679 * First check if a dentry matching the name already exists,
1680 * if not go ahead and create it now.
1681 */
1682 found = d_hash_and_lookup(dentry->d_parent, name);
1683 if (unlikely(IS_ERR(found)))
1684 goto err_out;
1685 if (!found) {
1686 new = d_alloc(dentry->d_parent, name);
1687 if (!new) {
1688 found = ERR_PTR(-ENOMEM);
1689 goto err_out;
1690 }
1691
1692 found = d_splice_alias(inode, new);
1693 if (found) {
1694 dput(new);
1695 return found;
1696 }
1697 return new;
1698 }
1699
1700 /*
1701 * If a matching dentry exists, and it's not negative use it.
1702 *
1703 * Decrement the reference count to balance the iget() done
1704 * earlier on.
1705 */
1706 if (found->d_inode) {
1707 if (unlikely(found->d_inode != inode)) {
1708 /* This can't happen because bad inodes are unhashed. */
1709 BUG_ON(!is_bad_inode(inode));
1710 BUG_ON(!is_bad_inode(found->d_inode));
1711 }
1712 iput(inode);
1713 return found;
1714 }
1715
1716 /*
1717 * Negative dentry: instantiate it unless the inode is a directory and
1718 * already has a dentry.
1719 */
1720 new = d_splice_alias(inode, found);
1721 if (new) {
1722 dput(found);
1723 found = new;
1724 }
1725 return found;
1726
1727 err_out:
1728 iput(inode);
1729 return found;
1730 }
1731 EXPORT_SYMBOL(d_add_ci);
1732
1733 /*
1734 * Do the slow-case of the dentry name compare.
1735 *
1736 * Unlike the dentry_cmp() function, we need to atomically
1737 * load the name and length information, so that the
1738 * filesystem can rely on them, and can use the 'name' and
1739 * 'len' information without worrying about walking off the
1740 * end of memory etc.
1741 *
1742 * Thus the read_seqcount_retry() and the "duplicate" info
1743 * in arguments (the low-level filesystem should not look
1744 * at the dentry inode or name contents directly, since
1745 * rename can change them while we're in RCU mode).
1746 */
1747 enum slow_d_compare {
1748 D_COMP_OK,
1749 D_COMP_NOMATCH,
1750 D_COMP_SEQRETRY,
1751 };
1752
1753 static noinline enum slow_d_compare slow_dentry_cmp(
1754 const struct dentry *parent,
1755 struct dentry *dentry,
1756 unsigned int seq,
1757 const struct qstr *name)
1758 {
1759 int tlen = dentry->d_name.len;
1760 const char *tname = dentry->d_name.name;
1761
1762 if (read_seqcount_retry(&dentry->d_seq, seq)) {
1763 cpu_relax();
1764 return D_COMP_SEQRETRY;
1765 }
1766 if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
1767 return D_COMP_NOMATCH;
1768 return D_COMP_OK;
1769 }
1770
1771 /**
1772 * __d_lookup_rcu - search for a dentry (racy, store-free)
1773 * @parent: parent dentry
1774 * @name: qstr of name we wish to find
1775 * @seqp: returns d_seq value at the point where the dentry was found
1776 * Returns: dentry, or NULL
1777 *
1778 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
1779 * resolution (store-free path walking) design described in
1780 * Documentation/filesystems/path-lookup.txt.
1781 *
1782 * This is not to be used outside core vfs.
1783 *
1784 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
1785 * held, and rcu_read_lock held. The returned dentry must not be stored into
1786 * without taking d_lock and checking d_seq sequence count against @seq
1787 * returned here.
1788 *
1789 * A refcount may be taken on the found dentry with the __d_rcu_to_refcount
1790 * function.
1791 *
1792 * Alternatively, __d_lookup_rcu may be called again to look up the child of
1793 * the returned dentry, so long as its parent's seqlock is checked after the
1794 * child is looked up. Thus, an interlocking stepping of sequence lock checks
1795 * is formed, giving integrity down the path walk.
1796 *
1797 * NOTE! The caller *has* to check the resulting dentry against the sequence
1798 * number we've returned before using any of the resulting dentry state!
1799 */
1800 struct dentry *__d_lookup_rcu(const struct dentry *parent,
1801 const struct qstr *name,
1802 unsigned *seqp)
1803 {
1804 u64 hashlen = name->hash_len;
1805 const unsigned char *str = name->name;
1806 struct hlist_bl_head *b = d_hash(parent, hashlen_hash(hashlen));
1807 struct hlist_bl_node *node;
1808 struct dentry *dentry;
1809
1810 /*
1811 * Note: There is significant duplication with __d_lookup_rcu which is
1812 * required to prevent single threaded performance regressions
1813 * especially on architectures where smp_rmb (in seqcounts) are costly.
1814 * Keep the two functions in sync.
1815 */
1816
1817 /*
1818 * The hash list is protected using RCU.
1819 *
1820 * Carefully use d_seq when comparing a candidate dentry, to avoid
1821 * races with d_move().
1822 *
1823 * It is possible that concurrent renames can mess up our list
1824 * walk here and result in missing our dentry, resulting in the
1825 * false-negative result. d_lookup() protects against concurrent
1826 * renames using rename_lock seqlock.
1827 *
1828 * See Documentation/filesystems/path-lookup.txt for more details.
1829 */
1830 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1831 unsigned seq;
1832
1833 seqretry:
1834 /*
1835 * The dentry sequence count protects us from concurrent
1836 * renames, and thus protects parent and name fields.
1837 *
1838 * The caller must perform a seqcount check in order
1839 * to do anything useful with the returned dentry.
1840 *
1841 * NOTE! We do a "raw" seqcount_begin here. That means that
1842 * we don't wait for the sequence count to stabilize if it
1843 * is in the middle of a sequence change. If we do the slow
1844 * dentry compare, we will do seqretries until it is stable,
1845 * and if we end up with a successful lookup, we actually
1846 * want to exit RCU lookup anyway.
1847 */
1848 seq = raw_seqcount_begin(&dentry->d_seq);
1849 if (dentry->d_parent != parent)
1850 continue;
1851 if (d_unhashed(dentry))
1852 continue;
1853
1854 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
1855 if (dentry->d_name.hash != hashlen_hash(hashlen))
1856 continue;
1857 *seqp = seq;
1858 switch (slow_dentry_cmp(parent, dentry, seq, name)) {
1859 case D_COMP_OK:
1860 return dentry;
1861 case D_COMP_NOMATCH:
1862 continue;
1863 default:
1864 goto seqretry;
1865 }
1866 }
1867
1868 if (dentry->d_name.hash_len != hashlen)
1869 continue;
1870 *seqp = seq;
1871 if (!dentry_cmp(dentry, str, hashlen_len(hashlen)))
1872 return dentry;
1873 }
1874 return NULL;
1875 }
1876
1877 /**
1878 * d_lookup - search for a dentry
1879 * @parent: parent dentry
1880 * @name: qstr of name we wish to find
1881 * Returns: dentry, or NULL
1882 *
1883 * d_lookup searches the children of the parent dentry for the name in
1884 * question. If the dentry is found its reference count is incremented and the
1885 * dentry is returned. The caller must use dput to free the entry when it has
1886 * finished using it. %NULL is returned if the dentry does not exist.
1887 */
1888 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
1889 {
1890 struct dentry *dentry;
1891 unsigned seq;
1892
1893 do {
1894 seq = read_seqbegin(&rename_lock);
1895 dentry = __d_lookup(parent, name);
1896 if (dentry)
1897 break;
1898 } while (read_seqretry(&rename_lock, seq));
1899 return dentry;
1900 }
1901 EXPORT_SYMBOL(d_lookup);
1902
1903 /**
1904 * __d_lookup - search for a dentry (racy)
1905 * @parent: parent dentry
1906 * @name: qstr of name we wish to find
1907 * Returns: dentry, or NULL
1908 *
1909 * __d_lookup is like d_lookup, however it may (rarely) return a
1910 * false-negative result due to unrelated rename activity.
1911 *
1912 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
1913 * however it must be used carefully, eg. with a following d_lookup in
1914 * the case of failure.
1915 *
1916 * __d_lookup callers must be commented.
1917 */
1918 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
1919 {
1920 unsigned int len = name->len;
1921 unsigned int hash = name->hash;
1922 const unsigned char *str = name->name;
1923 struct hlist_bl_head *b = d_hash(parent, hash);
1924 struct hlist_bl_node *node;
1925 struct dentry *found = NULL;
1926 struct dentry *dentry;
1927
1928 /*
1929 * Note: There is significant duplication with __d_lookup_rcu which is
1930 * required to prevent single threaded performance regressions
1931 * especially on architectures where smp_rmb (in seqcounts) are costly.
1932 * Keep the two functions in sync.
1933 */
1934
1935 /*
1936 * The hash list is protected using RCU.
1937 *
1938 * Take d_lock when comparing a candidate dentry, to avoid races
1939 * with d_move().
1940 *
1941 * It is possible that concurrent renames can mess up our list
1942 * walk here and result in missing our dentry, resulting in the
1943 * false-negative result. d_lookup() protects against concurrent
1944 * renames using rename_lock seqlock.
1945 *
1946 * See Documentation/filesystems/path-lookup.txt for more details.
1947 */
1948 rcu_read_lock();
1949
1950 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1951
1952 if (dentry->d_name.hash != hash)
1953 continue;
1954
1955 spin_lock(&dentry->d_lock);
1956 if (dentry->d_parent != parent)
1957 goto next;
1958 if (d_unhashed(dentry))
1959 goto next;
1960
1961 /*
1962 * It is safe to compare names since d_move() cannot
1963 * change the qstr (protected by d_lock).
1964 */
1965 if (parent->d_flags & DCACHE_OP_COMPARE) {
1966 int tlen = dentry->d_name.len;
1967 const char *tname = dentry->d_name.name;
1968 if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
1969 goto next;
1970 } else {
1971 if (dentry->d_name.len != len)
1972 goto next;
1973 if (dentry_cmp(dentry, str, len))
1974 goto next;
1975 }
1976
1977 dentry->d_lockref.count++;
1978 found = dentry;
1979 spin_unlock(&dentry->d_lock);
1980 break;
1981 next:
1982 spin_unlock(&dentry->d_lock);
1983 }
1984 rcu_read_unlock();
1985
1986 return found;
1987 }
1988
1989 /**
1990 * d_hash_and_lookup - hash the qstr then search for a dentry
1991 * @dir: Directory to search in
1992 * @name: qstr of name we wish to find
1993 *
1994 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
1995 */
1996 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
1997 {
1998 /*
1999 * Check for a fs-specific hash function. Note that we must
2000 * calculate the standard hash first, as the d_op->d_hash()
2001 * routine may choose to leave the hash value unchanged.
2002 */
2003 name->hash = full_name_hash(name->name, name->len);
2004 if (dir->d_flags & DCACHE_OP_HASH) {
2005 int err = dir->d_op->d_hash(dir, name);
2006 if (unlikely(err < 0))
2007 return ERR_PTR(err);
2008 }
2009 return d_lookup(dir, name);
2010 }
2011 EXPORT_SYMBOL(d_hash_and_lookup);
2012
2013 /**
2014 * d_validate - verify dentry provided from insecure source (deprecated)
2015 * @dentry: The dentry alleged to be valid child of @dparent
2016 * @dparent: The parent dentry (known to be valid)
2017 *
2018 * An insecure source has sent us a dentry, here we verify it and dget() it.
2019 * This is used by ncpfs in its readdir implementation.
2020 * Zero is returned in the dentry is invalid.
2021 *
2022 * This function is slow for big directories, and deprecated, do not use it.
2023 */
2024 int d_validate(struct dentry *dentry, struct dentry *dparent)
2025 {
2026 struct dentry *child;
2027
2028 spin_lock(&dparent->d_lock);
2029 list_for_each_entry(child, &dparent->d_subdirs, d_u.d_child) {
2030 if (dentry == child) {
2031 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
2032 __dget_dlock(dentry);
2033 spin_unlock(&dentry->d_lock);
2034 spin_unlock(&dparent->d_lock);
2035 return 1;
2036 }
2037 }
2038 spin_unlock(&dparent->d_lock);
2039
2040 return 0;
2041 }
2042 EXPORT_SYMBOL(d_validate);
2043
2044 /*
2045 * When a file is deleted, we have two options:
2046 * - turn this dentry into a negative dentry
2047 * - unhash this dentry and free it.
2048 *
2049 * Usually, we want to just turn this into
2050 * a negative dentry, but if anybody else is
2051 * currently using the dentry or the inode
2052 * we can't do that and we fall back on removing
2053 * it from the hash queues and waiting for
2054 * it to be deleted later when it has no users
2055 */
2056
2057 /**
2058 * d_delete - delete a dentry
2059 * @dentry: The dentry to delete
2060 *
2061 * Turn the dentry into a negative dentry if possible, otherwise
2062 * remove it from the hash queues so it can be deleted later
2063 */
2064
2065 void d_delete(struct dentry * dentry)
2066 {
2067 struct inode *inode;
2068 int isdir = 0;
2069 /*
2070 * Are we the only user?
2071 */
2072 again:
2073 spin_lock(&dentry->d_lock);
2074 inode = dentry->d_inode;
2075 isdir = S_ISDIR(inode->i_mode);
2076 if (dentry->d_lockref.count == 1) {
2077 if (!spin_trylock(&inode->i_lock)) {
2078 spin_unlock(&dentry->d_lock);
2079 cpu_relax();
2080 goto again;
2081 }
2082 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2083 dentry_unlink_inode(dentry);
2084 fsnotify_nameremove(dentry, isdir);
2085 return;
2086 }
2087
2088 if (!d_unhashed(dentry))
2089 __d_drop(dentry);
2090
2091 spin_unlock(&dentry->d_lock);
2092
2093 fsnotify_nameremove(dentry, isdir);
2094 }
2095 EXPORT_SYMBOL(d_delete);
2096
2097 static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b)
2098 {
2099 BUG_ON(!d_unhashed(entry));
2100 hlist_bl_lock(b);
2101 entry->d_flags |= DCACHE_RCUACCESS;
2102 hlist_bl_add_head_rcu(&entry->d_hash, b);
2103 hlist_bl_unlock(b);
2104 }
2105
2106 static void _d_rehash(struct dentry * entry)
2107 {
2108 __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
2109 }
2110
2111 /**
2112 * d_rehash - add an entry back to the hash
2113 * @entry: dentry to add to the hash
2114 *
2115 * Adds a dentry to the hash according to its name.
2116 */
2117
2118 void d_rehash(struct dentry * entry)
2119 {
2120 spin_lock(&entry->d_lock);
2121 _d_rehash(entry);
2122 spin_unlock(&entry->d_lock);
2123 }
2124 EXPORT_SYMBOL(d_rehash);
2125
2126 /**
2127 * dentry_update_name_case - update case insensitive dentry with a new name
2128 * @dentry: dentry to be updated
2129 * @name: new name
2130 *
2131 * Update a case insensitive dentry with new case of name.
2132 *
2133 * dentry must have been returned by d_lookup with name @name. Old and new
2134 * name lengths must match (ie. no d_compare which allows mismatched name
2135 * lengths).
2136 *
2137 * Parent inode i_mutex must be held over d_lookup and into this call (to
2138 * keep renames and concurrent inserts, and readdir(2) away).
2139 */
2140 void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
2141 {
2142 BUG_ON(!mutex_is_locked(&dentry->d_parent->d_inode->i_mutex));
2143 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2144
2145 spin_lock(&dentry->d_lock);
2146 write_seqcount_begin(&dentry->d_seq);
2147 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
2148 write_seqcount_end(&dentry->d_seq);
2149 spin_unlock(&dentry->d_lock);
2150 }
2151 EXPORT_SYMBOL(dentry_update_name_case);
2152
2153 static void switch_names(struct dentry *dentry, struct dentry *target)
2154 {
2155 if (dname_external(target)) {
2156 if (dname_external(dentry)) {
2157 /*
2158 * Both external: swap the pointers
2159 */
2160 swap(target->d_name.name, dentry->d_name.name);
2161 } else {
2162 /*
2163 * dentry:internal, target:external. Steal target's
2164 * storage and make target internal.
2165 */
2166 memcpy(target->d_iname, dentry->d_name.name,
2167 dentry->d_name.len + 1);
2168 dentry->d_name.name = target->d_name.name;
2169 target->d_name.name = target->d_iname;
2170 }
2171 } else {
2172 if (dname_external(dentry)) {
2173 /*
2174 * dentry:external, target:internal. Give dentry's
2175 * storage to target and make dentry internal
2176 */
2177 memcpy(dentry->d_iname, target->d_name.name,
2178 target->d_name.len + 1);
2179 target->d_name.name = dentry->d_name.name;
2180 dentry->d_name.name = dentry->d_iname;
2181 } else {
2182 /*
2183 * Both are internal. Just copy target to dentry
2184 */
2185 memcpy(dentry->d_iname, target->d_name.name,
2186 target->d_name.len + 1);
2187 dentry->d_name.len = target->d_name.len;
2188 return;
2189 }
2190 }
2191 swap(dentry->d_name.len, target->d_name.len);
2192 }
2193
2194 static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2195 {
2196 /*
2197 * XXXX: do we really need to take target->d_lock?
2198 */
2199 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2200 spin_lock(&target->d_parent->d_lock);
2201 else {
2202 if (d_ancestor(dentry->d_parent, target->d_parent)) {
2203 spin_lock(&dentry->d_parent->d_lock);
2204 spin_lock_nested(&target->d_parent->d_lock,
2205 DENTRY_D_LOCK_NESTED);
2206 } else {
2207 spin_lock(&target->d_parent->d_lock);
2208 spin_lock_nested(&dentry->d_parent->d_lock,
2209 DENTRY_D_LOCK_NESTED);
2210 }
2211 }
2212 if (target < dentry) {
2213 spin_lock_nested(&target->d_lock, 2);
2214 spin_lock_nested(&dentry->d_lock, 3);
2215 } else {
2216 spin_lock_nested(&dentry->d_lock, 2);
2217 spin_lock_nested(&target->d_lock, 3);
2218 }
2219 }
2220
2221 static void dentry_unlock_parents_for_move(struct dentry *dentry,
2222 struct dentry *target)
2223 {
2224 if (target->d_parent != dentry->d_parent)
2225 spin_unlock(&dentry->d_parent->d_lock);
2226 if (target->d_parent != target)
2227 spin_unlock(&target->d_parent->d_lock);
2228 }
2229
2230 /*
2231 * When switching names, the actual string doesn't strictly have to
2232 * be preserved in the target - because we're dropping the target
2233 * anyway. As such, we can just do a simple memcpy() to copy over
2234 * the new name before we switch.
2235 *
2236 * Note that we have to be a lot more careful about getting the hash
2237 * switched - we have to switch the hash value properly even if it
2238 * then no longer matches the actual (corrupted) string of the target.
2239 * The hash value has to match the hash queue that the dentry is on..
2240 */
2241 /*
2242 * __d_move - move a dentry
2243 * @dentry: entry to move
2244 * @target: new dentry
2245 *
2246 * Update the dcache to reflect the move of a file name. Negative
2247 * dcache entries should not be moved in this way. Caller must hold
2248 * rename_lock, the i_mutex of the source and target directories,
2249 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2250 */
2251 static void __d_move(struct dentry * dentry, struct dentry * target)
2252 {
2253 if (!dentry->d_inode)
2254 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2255
2256 BUG_ON(d_ancestor(dentry, target));
2257 BUG_ON(d_ancestor(target, dentry));
2258
2259 dentry_lock_for_move(dentry, target);
2260
2261 write_seqcount_begin(&dentry->d_seq);
2262 write_seqcount_begin(&target->d_seq);
2263
2264 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2265
2266 /*
2267 * Move the dentry to the target hash queue. Don't bother checking
2268 * for the same hash queue because of how unlikely it is.
2269 */
2270 __d_drop(dentry);
2271 __d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
2272
2273 /* Unhash the target: dput() will then get rid of it */
2274 __d_drop(target);
2275
2276 list_del(&dentry->d_u.d_child);
2277 list_del(&target->d_u.d_child);
2278
2279 /* Switch the names.. */
2280 switch_names(dentry, target);
2281 swap(dentry->d_name.hash, target->d_name.hash);
2282
2283 /* ... and switch the parents */
2284 if (IS_ROOT(dentry)) {
2285 dentry->d_parent = target->d_parent;
2286 target->d_parent = target;
2287 INIT_LIST_HEAD(&target->d_u.d_child);
2288 } else {
2289 swap(dentry->d_parent, target->d_parent);
2290
2291 /* And add them back to the (new) parent lists */
2292 list_add(&target->d_u.d_child, &target->d_parent->d_subdirs);
2293 }
2294
2295 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2296
2297 write_seqcount_end(&target->d_seq);
2298 write_seqcount_end(&dentry->d_seq);
2299
2300 dentry_unlock_parents_for_move(dentry, target);
2301 spin_unlock(&target->d_lock);
2302 fsnotify_d_move(dentry);
2303 spin_unlock(&dentry->d_lock);
2304 }
2305
2306 /*
2307 * d_move - move a dentry
2308 * @dentry: entry to move
2309 * @target: new dentry
2310 *
2311 * Update the dcache to reflect the move of a file name. Negative
2312 * dcache entries should not be moved in this way. See the locking
2313 * requirements for __d_move.
2314 */
2315 void d_move(struct dentry *dentry, struct dentry *target)
2316 {
2317 write_seqlock(&rename_lock);
2318 __d_move(dentry, target);
2319 write_sequnlock(&rename_lock);
2320 }
2321 EXPORT_SYMBOL(d_move);
2322
2323 /**
2324 * d_ancestor - search for an ancestor
2325 * @p1: ancestor dentry
2326 * @p2: child dentry
2327 *
2328 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2329 * an ancestor of p2, else NULL.
2330 */
2331 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2332 {
2333 struct dentry *p;
2334
2335 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2336 if (p->d_parent == p1)
2337 return p;
2338 }
2339 return NULL;
2340 }
2341
2342 /*
2343 * This helper attempts to cope with remotely renamed directories
2344 *
2345 * It assumes that the caller is already holding
2346 * dentry->d_parent->d_inode->i_mutex, inode->i_lock and rename_lock
2347 *
2348 * Note: If ever the locking in lock_rename() changes, then please
2349 * remember to update this too...
2350 */
2351 static struct dentry *__d_unalias(struct inode *inode,
2352 struct dentry *dentry, struct dentry *alias)
2353 {
2354 struct mutex *m1 = NULL, *m2 = NULL;
2355 struct dentry *ret = ERR_PTR(-EBUSY);
2356
2357 /* If alias and dentry share a parent, then no extra locks required */
2358 if (alias->d_parent == dentry->d_parent)
2359 goto out_unalias;
2360
2361 /* See lock_rename() */
2362 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2363 goto out_err;
2364 m1 = &dentry->d_sb->s_vfs_rename_mutex;
2365 if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
2366 goto out_err;
2367 m2 = &alias->d_parent->d_inode->i_mutex;
2368 out_unalias:
2369 if (likely(!d_mountpoint(alias))) {
2370 __d_move(alias, dentry);
2371 ret = alias;
2372 }
2373 out_err:
2374 spin_unlock(&inode->i_lock);
2375 if (m2)
2376 mutex_unlock(m2);
2377 if (m1)
2378 mutex_unlock(m1);
2379 return ret;
2380 }
2381
2382 /*
2383 * Prepare an anonymous dentry for life in the superblock's dentry tree as a
2384 * named dentry in place of the dentry to be replaced.
2385 * returns with anon->d_lock held!
2386 */
2387 static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon)
2388 {
2389 struct dentry *dparent;
2390
2391 dentry_lock_for_move(anon, dentry);
2392
2393 write_seqcount_begin(&dentry->d_seq);
2394 write_seqcount_begin(&anon->d_seq);
2395
2396 dparent = dentry->d_parent;
2397
2398 switch_names(dentry, anon);
2399 swap(dentry->d_name.hash, anon->d_name.hash);
2400
2401 dentry->d_parent = dentry;
2402 list_del_init(&dentry->d_u.d_child);
2403 anon->d_parent = dparent;
2404 list_move(&anon->d_u.d_child, &dparent->d_subdirs);
2405
2406 write_seqcount_end(&dentry->d_seq);
2407 write_seqcount_end(&anon->d_seq);
2408
2409 dentry_unlock_parents_for_move(anon, dentry);
2410 spin_unlock(&dentry->d_lock);
2411
2412 /* anon->d_lock still locked, returns locked */
2413 anon->d_flags &= ~DCACHE_DISCONNECTED;
2414 }
2415
2416 /**
2417 * d_materialise_unique - introduce an inode into the tree
2418 * @dentry: candidate dentry
2419 * @inode: inode to bind to the dentry, to which aliases may be attached
2420 *
2421 * Introduces an dentry into the tree, substituting an extant disconnected
2422 * root directory alias in its place if there is one. Caller must hold the
2423 * i_mutex of the parent directory.
2424 */
2425 struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
2426 {
2427 struct dentry *actual;
2428
2429 BUG_ON(!d_unhashed(dentry));
2430
2431 if (!inode) {
2432 actual = dentry;
2433 __d_instantiate(dentry, NULL);
2434 d_rehash(actual);
2435 goto out_nolock;
2436 }
2437
2438 spin_lock(&inode->i_lock);
2439
2440 if (S_ISDIR(inode->i_mode)) {
2441 struct dentry *alias;
2442
2443 /* Does an aliased dentry already exist? */
2444 alias = __d_find_alias(inode, 0);
2445 if (alias) {
2446 actual = alias;
2447 write_seqlock(&rename_lock);
2448
2449 if (d_ancestor(alias, dentry)) {
2450 /* Check for loops */
2451 actual = ERR_PTR(-ELOOP);
2452 spin_unlock(&inode->i_lock);
2453 } else if (IS_ROOT(alias)) {
2454 /* Is this an anonymous mountpoint that we
2455 * could splice into our tree? */
2456 __d_materialise_dentry(dentry, alias);
2457 write_sequnlock(&rename_lock);
2458 __d_drop(alias);
2459 goto found;
2460 } else {
2461 /* Nope, but we must(!) avoid directory
2462 * aliasing. This drops inode->i_lock */
2463 actual = __d_unalias(inode, dentry, alias);
2464 }
2465 write_sequnlock(&rename_lock);
2466 if (IS_ERR(actual)) {
2467 if (PTR_ERR(actual) == -ELOOP)
2468 pr_warn_ratelimited(
2469 "VFS: Lookup of '%s' in %s %s"
2470 " would have caused loop\n",
2471 dentry->d_name.name,
2472 inode->i_sb->s_type->name,
2473 inode->i_sb->s_id);
2474 dput(alias);
2475 }
2476 goto out_nolock;
2477 }
2478 }
2479
2480 /* Add a unique reference */
2481 actual = __d_instantiate_unique(dentry, inode);
2482 if (!actual)
2483 actual = dentry;
2484 else
2485 BUG_ON(!d_unhashed(actual));
2486
2487 spin_lock(&actual->d_lock);
2488 found:
2489 _d_rehash(actual);
2490 spin_unlock(&actual->d_lock);
2491 spin_unlock(&inode->i_lock);
2492 out_nolock:
2493 if (actual == dentry) {
2494 security_d_instantiate(dentry, inode);
2495 return NULL;
2496 }
2497
2498 iput(inode);
2499 return actual;
2500 }
2501 EXPORT_SYMBOL_GPL(d_materialise_unique);
2502
2503 static int prepend(char **buffer, int *buflen, const char *str, int namelen)
2504 {
2505 *buflen -= namelen;
2506 if (*buflen < 0)
2507 return -ENAMETOOLONG;
2508 *buffer -= namelen;
2509 memcpy(*buffer, str, namelen);
2510 return 0;
2511 }
2512
2513 static int prepend_name(char **buffer, int *buflen, struct qstr *name)
2514 {
2515 return prepend(buffer, buflen, name->name, name->len);
2516 }
2517
2518 /**
2519 * prepend_path - Prepend path string to a buffer
2520 * @path: the dentry/vfsmount to report
2521 * @root: root vfsmnt/dentry
2522 * @buffer: pointer to the end of the buffer
2523 * @buflen: pointer to buffer length
2524 *
2525 * Caller holds the rename_lock.
2526 */
2527 static int prepend_path(const struct path *path,
2528 const struct path *root,
2529 char **buffer, int *buflen)
2530 {
2531 struct dentry *dentry = path->dentry;
2532 struct vfsmount *vfsmnt = path->mnt;
2533 struct mount *mnt = real_mount(vfsmnt);
2534 bool slash = false;
2535 int error = 0;
2536
2537 while (dentry != root->dentry || vfsmnt != root->mnt) {
2538 struct dentry * parent;
2539
2540 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
2541 /* Global root? */
2542 if (!mnt_has_parent(mnt))
2543 goto global_root;
2544 dentry = mnt->mnt_mountpoint;
2545 mnt = mnt->mnt_parent;
2546 vfsmnt = &mnt->mnt;
2547 continue;
2548 }
2549 parent = dentry->d_parent;
2550 prefetch(parent);
2551 spin_lock(&dentry->d_lock);
2552 error = prepend_name(buffer, buflen, &dentry->d_name);
2553 spin_unlock(&dentry->d_lock);
2554 if (!error)
2555 error = prepend(buffer, buflen, "/", 1);
2556 if (error)
2557 break;
2558
2559 slash = true;
2560 dentry = parent;
2561 }
2562
2563 if (!error && !slash)
2564 error = prepend(buffer, buflen, "/", 1);
2565
2566 return error;
2567
2568 global_root:
2569 /*
2570 * Filesystems needing to implement special "root names"
2571 * should do so with ->d_dname()
2572 */
2573 if (IS_ROOT(dentry) &&
2574 (dentry->d_name.len != 1 || dentry->d_name.name[0] != '/')) {
2575 WARN(1, "Root dentry has weird name <%.*s>\n",
2576 (int) dentry->d_name.len, dentry->d_name.name);
2577 }
2578 if (!slash)
2579 error = prepend(buffer, buflen, "/", 1);
2580 if (!error)
2581 error = is_mounted(vfsmnt) ? 1 : 2;
2582 return error;
2583 }
2584
2585 /**
2586 * __d_path - return the path of a dentry
2587 * @path: the dentry/vfsmount to report
2588 * @root: root vfsmnt/dentry
2589 * @buf: buffer to return value in
2590 * @buflen: buffer length
2591 *
2592 * Convert a dentry into an ASCII path name.
2593 *
2594 * Returns a pointer into the buffer or an error code if the
2595 * path was too long.
2596 *
2597 * "buflen" should be positive.
2598 *
2599 * If the path is not reachable from the supplied root, return %NULL.
2600 */
2601 char *__d_path(const struct path *path,
2602 const struct path *root,
2603 char *buf, int buflen)
2604 {
2605 char *res = buf + buflen;
2606 int error;
2607
2608 prepend(&res, &buflen, "\0", 1);
2609 br_read_lock(&vfsmount_lock);
2610 write_seqlock(&rename_lock);
2611 error = prepend_path(path, root, &res, &buflen);
2612 write_sequnlock(&rename_lock);
2613 br_read_unlock(&vfsmount_lock);
2614
2615 if (error < 0)
2616 return ERR_PTR(error);
2617 if (error > 0)
2618 return NULL;
2619 return res;
2620 }
2621
2622 char *d_absolute_path(const struct path *path,
2623 char *buf, int buflen)
2624 {
2625 struct path root = {};
2626 char *res = buf + buflen;
2627 int error;
2628
2629 prepend(&res, &buflen, "\0", 1);
2630 br_read_lock(&vfsmount_lock);
2631 write_seqlock(&rename_lock);
2632 error = prepend_path(path, &root, &res, &buflen);
2633 write_sequnlock(&rename_lock);
2634 br_read_unlock(&vfsmount_lock);
2635
2636 if (error > 1)
2637 error = -EINVAL;
2638 if (error < 0)
2639 return ERR_PTR(error);
2640 return res;
2641 }
2642
2643 /*
2644 * same as __d_path but appends "(deleted)" for unlinked files.
2645 */
2646 static int path_with_deleted(const struct path *path,
2647 const struct path *root,
2648 char **buf, int *buflen)
2649 {
2650 prepend(buf, buflen, "\0", 1);
2651 if (d_unlinked(path->dentry)) {
2652 int error = prepend(buf, buflen, " (deleted)", 10);
2653 if (error)
2654 return error;
2655 }
2656
2657 return prepend_path(path, root, buf, buflen);
2658 }
2659
2660 static int prepend_unreachable(char **buffer, int *buflen)
2661 {
2662 return prepend(buffer, buflen, "(unreachable)", 13);
2663 }
2664
2665 /**
2666 * d_path - return the path of a dentry
2667 * @path: path to report
2668 * @buf: buffer to return value in
2669 * @buflen: buffer length
2670 *
2671 * Convert a dentry into an ASCII path name. If the entry has been deleted
2672 * the string " (deleted)" is appended. Note that this is ambiguous.
2673 *
2674 * Returns a pointer into the buffer or an error code if the path was
2675 * too long. Note: Callers should use the returned pointer, not the passed
2676 * in buffer, to use the name! The implementation often starts at an offset
2677 * into the buffer, and may leave 0 bytes at the start.
2678 *
2679 * "buflen" should be positive.
2680 */
2681 char *d_path(const struct path *path, char *buf, int buflen)
2682 {
2683 char *res = buf + buflen;
2684 struct path root;
2685 int error;
2686
2687 /*
2688 * We have various synthetic filesystems that never get mounted. On
2689 * these filesystems dentries are never used for lookup purposes, and
2690 * thus don't need to be hashed. They also don't need a name until a
2691 * user wants to identify the object in /proc/pid/fd/. The little hack
2692 * below allows us to generate a name for these objects on demand:
2693 */
2694 if (path->dentry->d_op && path->dentry->d_op->d_dname)
2695 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
2696
2697 get_fs_root(current->fs, &root);
2698 br_read_lock(&vfsmount_lock);
2699 write_seqlock(&rename_lock);
2700 error = path_with_deleted(path, &root, &res, &buflen);
2701 write_sequnlock(&rename_lock);
2702 br_read_unlock(&vfsmount_lock);
2703 if (error < 0)
2704 res = ERR_PTR(error);
2705 path_put(&root);
2706 return res;
2707 }
2708 EXPORT_SYMBOL(d_path);
2709
2710 /*
2711 * Helper function for dentry_operations.d_dname() members
2712 */
2713 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
2714 const char *fmt, ...)
2715 {
2716 va_list args;
2717 char temp[64];
2718 int sz;
2719
2720 va_start(args, fmt);
2721 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
2722 va_end(args);
2723
2724 if (sz > sizeof(temp) || sz > buflen)
2725 return ERR_PTR(-ENAMETOOLONG);
2726
2727 buffer += buflen - sz;
2728 return memcpy(buffer, temp, sz);
2729 }
2730
2731 char *simple_dname(struct dentry *dentry, char *buffer, int buflen)
2732 {
2733 char *end = buffer + buflen;
2734 /* these dentries are never renamed, so d_lock is not needed */
2735 if (prepend(&end, &buflen, " (deleted)", 11) ||
2736 prepend_name(&end, &buflen, &dentry->d_name) ||
2737 prepend(&end, &buflen, "/", 1))
2738 end = ERR_PTR(-ENAMETOOLONG);
2739 return end;
2740 }
2741
2742 /*
2743 * Write full pathname from the root of the filesystem into the buffer.
2744 */
2745 static char *__dentry_path(struct dentry *dentry, char *buf, int buflen)
2746 {
2747 char *end = buf + buflen;
2748 char *retval;
2749
2750 prepend(&end, &buflen, "\0", 1);
2751 if (buflen < 1)
2752 goto Elong;
2753 /* Get '/' right */
2754 retval = end-1;
2755 *retval = '/';
2756
2757 while (!IS_ROOT(dentry)) {
2758 struct dentry *parent = dentry->d_parent;
2759 int error;
2760
2761 prefetch(parent);
2762 spin_lock(&dentry->d_lock);
2763 error = prepend_name(&end, &buflen, &dentry->d_name);
2764 spin_unlock(&dentry->d_lock);
2765 if (error != 0 || prepend(&end, &buflen, "/", 1) != 0)
2766 goto Elong;
2767
2768 retval = end;
2769 dentry = parent;
2770 }
2771 return retval;
2772 Elong:
2773 return ERR_PTR(-ENAMETOOLONG);
2774 }
2775
2776 char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
2777 {
2778 char *retval;
2779
2780 write_seqlock(&rename_lock);
2781 retval = __dentry_path(dentry, buf, buflen);
2782 write_sequnlock(&rename_lock);
2783
2784 return retval;
2785 }
2786 EXPORT_SYMBOL(dentry_path_raw);
2787
2788 char *dentry_path(struct dentry *dentry, char *buf, int buflen)
2789 {
2790 char *p = NULL;
2791 char *retval;
2792
2793 write_seqlock(&rename_lock);
2794 if (d_unlinked(dentry)) {
2795 p = buf + buflen;
2796 if (prepend(&p, &buflen, "//deleted", 10) != 0)
2797 goto Elong;
2798 buflen++;
2799 }
2800 retval = __dentry_path(dentry, buf, buflen);
2801 write_sequnlock(&rename_lock);
2802 if (!IS_ERR(retval) && p)
2803 *p = '/'; /* restore '/' overriden with '\0' */
2804 return retval;
2805 Elong:
2806 return ERR_PTR(-ENAMETOOLONG);
2807 }
2808
2809 /*
2810 * NOTE! The user-level library version returns a
2811 * character pointer. The kernel system call just
2812 * returns the length of the buffer filled (which
2813 * includes the ending '\0' character), or a negative
2814 * error value. So libc would do something like
2815 *
2816 * char *getcwd(char * buf, size_t size)
2817 * {
2818 * int retval;
2819 *
2820 * retval = sys_getcwd(buf, size);
2821 * if (retval >= 0)
2822 * return buf;
2823 * errno = -retval;
2824 * return NULL;
2825 * }
2826 */
2827 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
2828 {
2829 int error;
2830 struct path pwd, root;
2831 char *page = (char *) __get_free_page(GFP_USER);
2832
2833 if (!page)
2834 return -ENOMEM;
2835
2836 get_fs_root_and_pwd(current->fs, &root, &pwd);
2837
2838 error = -ENOENT;
2839 br_read_lock(&vfsmount_lock);
2840 write_seqlock(&rename_lock);
2841 if (!d_unlinked(pwd.dentry)) {
2842 unsigned long len;
2843 char *cwd = page + PAGE_SIZE;
2844 int buflen = PAGE_SIZE;
2845
2846 prepend(&cwd, &buflen, "\0", 1);
2847 error = prepend_path(&pwd, &root, &cwd, &buflen);
2848 write_sequnlock(&rename_lock);
2849 br_read_unlock(&vfsmount_lock);
2850
2851 if (error < 0)
2852 goto out;
2853
2854 /* Unreachable from current root */
2855 if (error > 0) {
2856 error = prepend_unreachable(&cwd, &buflen);
2857 if (error)
2858 goto out;
2859 }
2860
2861 error = -ERANGE;
2862 len = PAGE_SIZE + page - cwd;
2863 if (len <= size) {
2864 error = len;
2865 if (copy_to_user(buf, cwd, len))
2866 error = -EFAULT;
2867 }
2868 } else {
2869 write_sequnlock(&rename_lock);
2870 br_read_unlock(&vfsmount_lock);
2871 }
2872
2873 out:
2874 path_put(&pwd);
2875 path_put(&root);
2876 free_page((unsigned long) page);
2877 return error;
2878 }
2879
2880 /*
2881 * Test whether new_dentry is a subdirectory of old_dentry.
2882 *
2883 * Trivially implemented using the dcache structure
2884 */
2885
2886 /**
2887 * is_subdir - is new dentry a subdirectory of old_dentry
2888 * @new_dentry: new dentry
2889 * @old_dentry: old dentry
2890 *
2891 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
2892 * Returns 0 otherwise.
2893 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
2894 */
2895
2896 int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
2897 {
2898 int result;
2899 unsigned seq;
2900
2901 if (new_dentry == old_dentry)
2902 return 1;
2903
2904 do {
2905 /* for restarting inner loop in case of seq retry */
2906 seq = read_seqbegin(&rename_lock);
2907 /*
2908 * Need rcu_readlock to protect against the d_parent trashing
2909 * due to d_move
2910 */
2911 rcu_read_lock();
2912 if (d_ancestor(old_dentry, new_dentry))
2913 result = 1;
2914 else
2915 result = 0;
2916 rcu_read_unlock();
2917 } while (read_seqretry(&rename_lock, seq));
2918
2919 return result;
2920 }
2921
2922 void d_genocide(struct dentry *root)
2923 {
2924 struct dentry *this_parent;
2925 struct list_head *next;
2926 unsigned seq;
2927 int locked = 0;
2928
2929 seq = read_seqbegin(&rename_lock);
2930 again:
2931 this_parent = root;
2932 spin_lock(&this_parent->d_lock);
2933 repeat:
2934 next = this_parent->d_subdirs.next;
2935 resume:
2936 while (next != &this_parent->d_subdirs) {
2937 struct list_head *tmp = next;
2938 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
2939 next = tmp->next;
2940
2941 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
2942 if (d_unhashed(dentry) || !dentry->d_inode) {
2943 spin_unlock(&dentry->d_lock);
2944 continue;
2945 }
2946 if (!list_empty(&dentry->d_subdirs)) {
2947 spin_unlock(&this_parent->d_lock);
2948 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
2949 this_parent = dentry;
2950 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
2951 goto repeat;
2952 }
2953 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
2954 dentry->d_flags |= DCACHE_GENOCIDE;
2955 dentry->d_lockref.count--;
2956 }
2957 spin_unlock(&dentry->d_lock);
2958 }
2959 if (this_parent != root) {
2960 struct dentry *child = this_parent;
2961 if (!(this_parent->d_flags & DCACHE_GENOCIDE)) {
2962 this_parent->d_flags |= DCACHE_GENOCIDE;
2963 this_parent->d_lockref.count--;
2964 }
2965 this_parent = try_to_ascend(this_parent, locked, seq);
2966 if (!this_parent)
2967 goto rename_retry;
2968 next = child->d_u.d_child.next;
2969 goto resume;
2970 }
2971 spin_unlock(&this_parent->d_lock);
2972 if (!locked && read_seqretry(&rename_lock, seq))
2973 goto rename_retry;
2974 if (locked)
2975 write_sequnlock(&rename_lock);
2976 return;
2977
2978 rename_retry:
2979 if (locked)
2980 goto again;
2981 locked = 1;
2982 write_seqlock(&rename_lock);
2983 goto again;
2984 }
2985
2986 void d_tmpfile(struct dentry *dentry, struct inode *inode)
2987 {
2988 inode_dec_link_count(inode);
2989 BUG_ON(dentry->d_name.name != dentry->d_iname ||
2990 !hlist_unhashed(&dentry->d_alias) ||
2991 !d_unlinked(dentry));
2992 spin_lock(&dentry->d_parent->d_lock);
2993 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
2994 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
2995 (unsigned long long)inode->i_ino);
2996 spin_unlock(&dentry->d_lock);
2997 spin_unlock(&dentry->d_parent->d_lock);
2998 d_instantiate(dentry, inode);
2999 }
3000 EXPORT_SYMBOL(d_tmpfile);
3001
3002 static __initdata unsigned long dhash_entries;
3003 static int __init set_dhash_entries(char *str)
3004 {
3005 if (!str)
3006 return 0;
3007 dhash_entries = simple_strtoul(str, &str, 0);
3008 return 1;
3009 }
3010 __setup("dhash_entries=", set_dhash_entries);
3011
3012 static void __init dcache_init_early(void)
3013 {
3014 unsigned int loop;
3015
3016 /* If hashes are distributed across NUMA nodes, defer
3017 * hash allocation until vmalloc space is available.
3018 */
3019 if (hashdist)
3020 return;
3021
3022 dentry_hashtable =
3023 alloc_large_system_hash("Dentry cache",
3024 sizeof(struct hlist_bl_head),
3025 dhash_entries,
3026 13,
3027 HASH_EARLY,
3028 &d_hash_shift,
3029 &d_hash_mask,
3030 0,
3031 0);
3032
3033 for (loop = 0; loop < (1U << d_hash_shift); loop++)
3034 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3035 }
3036
3037 static void __init dcache_init(void)
3038 {
3039 unsigned int loop;
3040
3041 /*
3042 * A constructor could be added for stable state like the lists,
3043 * but it is probably not worth it because of the cache nature
3044 * of the dcache.
3045 */
3046 dentry_cache = KMEM_CACHE(dentry,
3047 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
3048
3049 /* Hash may have been set up in dcache_init_early */
3050 if (!hashdist)
3051 return;
3052
3053 dentry_hashtable =
3054 alloc_large_system_hash("Dentry cache",
3055 sizeof(struct hlist_bl_head),
3056 dhash_entries,
3057 13,
3058 0,
3059 &d_hash_shift,
3060 &d_hash_mask,
3061 0,
3062 0);
3063
3064 for (loop = 0; loop < (1U << d_hash_shift); loop++)
3065 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3066 }
3067
3068 /* SLAB cache for __getname() consumers */
3069 struct kmem_cache *names_cachep __read_mostly;
3070 EXPORT_SYMBOL(names_cachep);
3071
3072 EXPORT_SYMBOL(d_genocide);
3073
3074 void __init vfs_caches_init_early(void)
3075 {
3076 dcache_init_early();
3077 inode_init_early();
3078 }
3079
3080 void __init vfs_caches_init(unsigned long mempages)
3081 {
3082 unsigned long reserve;
3083
3084 /* Base hash sizes on available memory, with a reserve equal to
3085 150% of current kernel size */
3086
3087 reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
3088 mempages -= reserve;
3089
3090 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
3091 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3092
3093 dcache_init();
3094 inode_init();
3095 files_init(mempages);
3096 mnt_init();
3097 bdev_cache_init();
3098 chrdev_init();
3099 }