4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
10 * Notes on the allocation strategy:
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
17 #include <linux/ratelimit.h>
18 #include <linux/string.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/export.h>
27 #include <linux/security.h>
28 #include <linux/seqlock.h>
29 #include <linux/bootmem.h>
30 #include <linux/bit_spinlock.h>
31 #include <linux/rculist_bl.h>
32 #include <linux/list_lru.h>
38 * dcache->d_inode->i_lock protects:
39 * - i_dentry, d_u.d_alias, d_inode of aliases
40 * dcache_hash_bucket lock protects:
41 * - the dcache hash table
42 * s_roots bl list spinlock protects:
43 * - the s_roots list (see __d_drop)
44 * dentry->d_sb->s_dentry_lru_lock protects:
45 * - the dcache lru lists and counters
52 * - d_parent and d_subdirs
53 * - childrens' d_child and d_parent
54 * - d_u.d_alias, d_inode
57 * dentry->d_inode->i_lock
59 * dentry->d_sb->s_dentry_lru_lock
60 * dcache_hash_bucket lock
63 * If there is an ancestor relationship:
64 * dentry->d_parent->...->d_parent->d_lock
66 * dentry->d_parent->d_lock
69 * If no ancestor relationship:
70 * arbitrary, since it's serialized on rename_lock
72 int sysctl_vfs_cache_pressure __read_mostly
= 100;
73 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure
);
75 __cacheline_aligned_in_smp
DEFINE_SEQLOCK(rename_lock
);
77 EXPORT_SYMBOL(rename_lock
);
79 static struct kmem_cache
*dentry_cache __read_mostly
;
81 const struct qstr empty_name
= QSTR_INIT("", 0);
82 EXPORT_SYMBOL(empty_name
);
83 const struct qstr slash_name
= QSTR_INIT("/", 1);
84 EXPORT_SYMBOL(slash_name
);
87 * This is the single most critical data structure when it comes
88 * to the dcache: the hashtable for lookups. Somebody should try
89 * to make this good - I've just made it work.
91 * This hash-function tries to avoid losing too many bits of hash
92 * information, yet avoid using a prime hash-size or similar.
95 static unsigned int d_hash_shift __read_mostly
;
97 static struct hlist_bl_head
*dentry_hashtable __read_mostly
;
99 static inline struct hlist_bl_head
*d_hash(unsigned int hash
)
101 return dentry_hashtable
+ (hash
>> d_hash_shift
);
104 #define IN_LOOKUP_SHIFT 10
105 static struct hlist_bl_head in_lookup_hashtable
[1 << IN_LOOKUP_SHIFT
];
107 static inline struct hlist_bl_head
*in_lookup_hash(const struct dentry
*parent
,
110 hash
+= (unsigned long) parent
/ L1_CACHE_BYTES
;
111 return in_lookup_hashtable
+ hash_32(hash
, IN_LOOKUP_SHIFT
);
115 /* Statistics gathering. */
116 struct dentry_stat_t dentry_stat
= {
120 static DEFINE_PER_CPU(long, nr_dentry
);
121 static DEFINE_PER_CPU(long, nr_dentry_unused
);
123 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
126 * Here we resort to our own counters instead of using generic per-cpu counters
127 * for consistency with what the vfs inode code does. We are expected to harvest
128 * better code and performance by having our own specialized counters.
130 * Please note that the loop is done over all possible CPUs, not over all online
131 * CPUs. The reason for this is that we don't want to play games with CPUs going
132 * on and off. If one of them goes off, we will just keep their counters.
134 * glommer: See cffbc8a for details, and if you ever intend to change this,
135 * please update all vfs counters to match.
137 static long get_nr_dentry(void)
141 for_each_possible_cpu(i
)
142 sum
+= per_cpu(nr_dentry
, i
);
143 return sum
< 0 ? 0 : sum
;
146 static long get_nr_dentry_unused(void)
150 for_each_possible_cpu(i
)
151 sum
+= per_cpu(nr_dentry_unused
, i
);
152 return sum
< 0 ? 0 : sum
;
155 int proc_nr_dentry(struct ctl_table
*table
, int write
, void __user
*buffer
,
156 size_t *lenp
, loff_t
*ppos
)
158 dentry_stat
.nr_dentry
= get_nr_dentry();
159 dentry_stat
.nr_unused
= get_nr_dentry_unused();
160 return proc_doulongvec_minmax(table
, write
, buffer
, lenp
, ppos
);
165 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
166 * The strings are both count bytes long, and count is non-zero.
168 #ifdef CONFIG_DCACHE_WORD_ACCESS
170 #include <asm/word-at-a-time.h>
172 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
173 * aligned allocation for this particular component. We don't
174 * strictly need the load_unaligned_zeropad() safety, but it
175 * doesn't hurt either.
177 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
178 * need the careful unaligned handling.
180 static inline int dentry_string_cmp(const unsigned char *cs
, const unsigned char *ct
, unsigned tcount
)
182 unsigned long a
,b
,mask
;
185 a
= read_word_at_a_time(cs
);
186 b
= load_unaligned_zeropad(ct
);
187 if (tcount
< sizeof(unsigned long))
189 if (unlikely(a
!= b
))
191 cs
+= sizeof(unsigned long);
192 ct
+= sizeof(unsigned long);
193 tcount
-= sizeof(unsigned long);
197 mask
= bytemask_from_count(tcount
);
198 return unlikely(!!((a
^ b
) & mask
));
203 static inline int dentry_string_cmp(const unsigned char *cs
, const unsigned char *ct
, unsigned tcount
)
217 static inline int dentry_cmp(const struct dentry
*dentry
, const unsigned char *ct
, unsigned tcount
)
220 * Be careful about RCU walk racing with rename:
221 * use 'READ_ONCE' to fetch the name pointer.
223 * NOTE! Even if a rename will mean that the length
224 * was not loaded atomically, we don't care. The
225 * RCU walk will check the sequence count eventually,
226 * and catch it. And we won't overrun the buffer,
227 * because we're reading the name pointer atomically,
228 * and a dentry name is guaranteed to be properly
229 * terminated with a NUL byte.
231 * End result: even if 'len' is wrong, we'll exit
232 * early because the data cannot match (there can
233 * be no NUL in the ct/tcount data)
235 const unsigned char *cs
= READ_ONCE(dentry
->d_name
.name
);
237 return dentry_string_cmp(cs
, ct
, tcount
);
240 struct external_name
{
243 struct rcu_head head
;
245 unsigned char name
[];
248 static inline struct external_name
*external_name(struct dentry
*dentry
)
250 return container_of(dentry
->d_name
.name
, struct external_name
, name
[0]);
253 static void __d_free(struct rcu_head
*head
)
255 struct dentry
*dentry
= container_of(head
, struct dentry
, d_u
.d_rcu
);
257 kmem_cache_free(dentry_cache
, dentry
);
260 static void __d_free_external_name(struct rcu_head
*head
)
262 struct external_name
*name
= container_of(head
, struct external_name
,
265 mod_node_page_state(page_pgdat(virt_to_page(name
)),
266 NR_INDIRECTLY_RECLAIMABLE_BYTES
,
272 static void __d_free_external(struct rcu_head
*head
)
274 struct dentry
*dentry
= container_of(head
, struct dentry
, d_u
.d_rcu
);
276 __d_free_external_name(&external_name(dentry
)->u
.head
);
278 kmem_cache_free(dentry_cache
, dentry
);
281 static inline int dname_external(const struct dentry
*dentry
)
283 return dentry
->d_name
.name
!= dentry
->d_iname
;
286 void take_dentry_name_snapshot(struct name_snapshot
*name
, struct dentry
*dentry
)
288 spin_lock(&dentry
->d_lock
);
289 if (unlikely(dname_external(dentry
))) {
290 struct external_name
*p
= external_name(dentry
);
291 atomic_inc(&p
->u
.count
);
292 spin_unlock(&dentry
->d_lock
);
293 name
->name
= p
->name
;
295 memcpy(name
->inline_name
, dentry
->d_iname
,
296 dentry
->d_name
.len
+ 1);
297 spin_unlock(&dentry
->d_lock
);
298 name
->name
= name
->inline_name
;
301 EXPORT_SYMBOL(take_dentry_name_snapshot
);
303 void release_dentry_name_snapshot(struct name_snapshot
*name
)
305 if (unlikely(name
->name
!= name
->inline_name
)) {
306 struct external_name
*p
;
307 p
= container_of(name
->name
, struct external_name
, name
[0]);
308 if (unlikely(atomic_dec_and_test(&p
->u
.count
)))
309 call_rcu(&p
->u
.head
, __d_free_external_name
);
312 EXPORT_SYMBOL(release_dentry_name_snapshot
);
314 static inline void __d_set_inode_and_type(struct dentry
*dentry
,
320 dentry
->d_inode
= inode
;
321 flags
= READ_ONCE(dentry
->d_flags
);
322 flags
&= ~(DCACHE_ENTRY_TYPE
| DCACHE_FALLTHRU
);
324 WRITE_ONCE(dentry
->d_flags
, flags
);
327 static inline void __d_clear_type_and_inode(struct dentry
*dentry
)
329 unsigned flags
= READ_ONCE(dentry
->d_flags
);
331 flags
&= ~(DCACHE_ENTRY_TYPE
| DCACHE_FALLTHRU
);
332 WRITE_ONCE(dentry
->d_flags
, flags
);
333 dentry
->d_inode
= NULL
;
336 static void dentry_free(struct dentry
*dentry
)
338 WARN_ON(!hlist_unhashed(&dentry
->d_u
.d_alias
));
339 if (unlikely(dname_external(dentry
))) {
340 struct external_name
*p
= external_name(dentry
);
341 if (likely(atomic_dec_and_test(&p
->u
.count
))) {
342 call_rcu(&dentry
->d_u
.d_rcu
, __d_free_external
);
346 /* if dentry was never visible to RCU, immediate free is OK */
347 if (!(dentry
->d_flags
& DCACHE_RCUACCESS
))
348 __d_free(&dentry
->d_u
.d_rcu
);
350 call_rcu(&dentry
->d_u
.d_rcu
, __d_free
);
354 * Release the dentry's inode, using the filesystem
355 * d_iput() operation if defined.
357 static void dentry_unlink_inode(struct dentry
* dentry
)
358 __releases(dentry
->d_lock
)
359 __releases(dentry
->d_inode
->i_lock
)
361 struct inode
*inode
= dentry
->d_inode
;
363 raw_write_seqcount_begin(&dentry
->d_seq
);
364 __d_clear_type_and_inode(dentry
);
365 hlist_del_init(&dentry
->d_u
.d_alias
);
366 raw_write_seqcount_end(&dentry
->d_seq
);
367 spin_unlock(&dentry
->d_lock
);
368 spin_unlock(&inode
->i_lock
);
370 fsnotify_inoderemove(inode
);
371 if (dentry
->d_op
&& dentry
->d_op
->d_iput
)
372 dentry
->d_op
->d_iput(dentry
, inode
);
378 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
379 * is in use - which includes both the "real" per-superblock
380 * LRU list _and_ the DCACHE_SHRINK_LIST use.
382 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
383 * on the shrink list (ie not on the superblock LRU list).
385 * The per-cpu "nr_dentry_unused" counters are updated with
386 * the DCACHE_LRU_LIST bit.
388 * These helper functions make sure we always follow the
389 * rules. d_lock must be held by the caller.
391 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
392 static void d_lru_add(struct dentry
*dentry
)
394 D_FLAG_VERIFY(dentry
, 0);
395 dentry
->d_flags
|= DCACHE_LRU_LIST
;
396 this_cpu_inc(nr_dentry_unused
);
397 WARN_ON_ONCE(!list_lru_add(&dentry
->d_sb
->s_dentry_lru
, &dentry
->d_lru
));
400 static void d_lru_del(struct dentry
*dentry
)
402 D_FLAG_VERIFY(dentry
, DCACHE_LRU_LIST
);
403 dentry
->d_flags
&= ~DCACHE_LRU_LIST
;
404 this_cpu_dec(nr_dentry_unused
);
405 WARN_ON_ONCE(!list_lru_del(&dentry
->d_sb
->s_dentry_lru
, &dentry
->d_lru
));
408 static void d_shrink_del(struct dentry
*dentry
)
410 D_FLAG_VERIFY(dentry
, DCACHE_SHRINK_LIST
| DCACHE_LRU_LIST
);
411 list_del_init(&dentry
->d_lru
);
412 dentry
->d_flags
&= ~(DCACHE_SHRINK_LIST
| DCACHE_LRU_LIST
);
413 this_cpu_dec(nr_dentry_unused
);
416 static void d_shrink_add(struct dentry
*dentry
, struct list_head
*list
)
418 D_FLAG_VERIFY(dentry
, 0);
419 list_add(&dentry
->d_lru
, list
);
420 dentry
->d_flags
|= DCACHE_SHRINK_LIST
| DCACHE_LRU_LIST
;
421 this_cpu_inc(nr_dentry_unused
);
425 * These can only be called under the global LRU lock, ie during the
426 * callback for freeing the LRU list. "isolate" removes it from the
427 * LRU lists entirely, while shrink_move moves it to the indicated
430 static void d_lru_isolate(struct list_lru_one
*lru
, struct dentry
*dentry
)
432 D_FLAG_VERIFY(dentry
, DCACHE_LRU_LIST
);
433 dentry
->d_flags
&= ~DCACHE_LRU_LIST
;
434 this_cpu_dec(nr_dentry_unused
);
435 list_lru_isolate(lru
, &dentry
->d_lru
);
438 static void d_lru_shrink_move(struct list_lru_one
*lru
, struct dentry
*dentry
,
439 struct list_head
*list
)
441 D_FLAG_VERIFY(dentry
, DCACHE_LRU_LIST
);
442 dentry
->d_flags
|= DCACHE_SHRINK_LIST
;
443 list_lru_isolate_move(lru
, &dentry
->d_lru
, list
);
447 * d_drop - drop a dentry
448 * @dentry: dentry to drop
450 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
451 * be found through a VFS lookup any more. Note that this is different from
452 * deleting the dentry - d_delete will try to mark the dentry negative if
453 * possible, giving a successful _negative_ lookup, while d_drop will
454 * just make the cache lookup fail.
456 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
457 * reason (NFS timeouts or autofs deletes).
459 * __d_drop requires dentry->d_lock
460 * ___d_drop doesn't mark dentry as "unhashed"
461 * (dentry->d_hash.pprev will be LIST_POISON2, not NULL).
463 static void ___d_drop(struct dentry
*dentry
)
465 struct hlist_bl_head
*b
;
467 * Hashed dentries are normally on the dentry hashtable,
468 * with the exception of those newly allocated by
469 * d_obtain_root, which are always IS_ROOT:
471 if (unlikely(IS_ROOT(dentry
)))
472 b
= &dentry
->d_sb
->s_roots
;
474 b
= d_hash(dentry
->d_name
.hash
);
477 __hlist_bl_del(&dentry
->d_hash
);
481 void __d_drop(struct dentry
*dentry
)
483 if (!d_unhashed(dentry
)) {
485 dentry
->d_hash
.pprev
= NULL
;
486 write_seqcount_invalidate(&dentry
->d_seq
);
489 EXPORT_SYMBOL(__d_drop
);
491 void d_drop(struct dentry
*dentry
)
493 spin_lock(&dentry
->d_lock
);
495 spin_unlock(&dentry
->d_lock
);
497 EXPORT_SYMBOL(d_drop
);
499 static inline void dentry_unlist(struct dentry
*dentry
, struct dentry
*parent
)
503 * Inform d_walk() and shrink_dentry_list() that we are no longer
504 * attached to the dentry tree
506 dentry
->d_flags
|= DCACHE_DENTRY_KILLED
;
507 if (unlikely(list_empty(&dentry
->d_child
)))
509 __list_del_entry(&dentry
->d_child
);
511 * Cursors can move around the list of children. While we'd been
512 * a normal list member, it didn't matter - ->d_child.next would've
513 * been updated. However, from now on it won't be and for the
514 * things like d_walk() it might end up with a nasty surprise.
515 * Normally d_walk() doesn't care about cursors moving around -
516 * ->d_lock on parent prevents that and since a cursor has no children
517 * of its own, we get through it without ever unlocking the parent.
518 * There is one exception, though - if we ascend from a child that
519 * gets killed as soon as we unlock it, the next sibling is found
520 * using the value left in its ->d_child.next. And if _that_
521 * pointed to a cursor, and cursor got moved (e.g. by lseek())
522 * before d_walk() regains parent->d_lock, we'll end up skipping
523 * everything the cursor had been moved past.
525 * Solution: make sure that the pointer left behind in ->d_child.next
526 * points to something that won't be moving around. I.e. skip the
529 while (dentry
->d_child
.next
!= &parent
->d_subdirs
) {
530 next
= list_entry(dentry
->d_child
.next
, struct dentry
, d_child
);
531 if (likely(!(next
->d_flags
& DCACHE_DENTRY_CURSOR
)))
533 dentry
->d_child
.next
= next
->d_child
.next
;
537 static void __dentry_kill(struct dentry
*dentry
)
539 struct dentry
*parent
= NULL
;
540 bool can_free
= true;
541 if (!IS_ROOT(dentry
))
542 parent
= dentry
->d_parent
;
545 * The dentry is now unrecoverably dead to the world.
547 lockref_mark_dead(&dentry
->d_lockref
);
550 * inform the fs via d_prune that this dentry is about to be
551 * unhashed and destroyed.
553 if (dentry
->d_flags
& DCACHE_OP_PRUNE
)
554 dentry
->d_op
->d_prune(dentry
);
556 if (dentry
->d_flags
& DCACHE_LRU_LIST
) {
557 if (!(dentry
->d_flags
& DCACHE_SHRINK_LIST
))
560 /* if it was on the hash then remove it */
562 dentry_unlist(dentry
, parent
);
564 spin_unlock(&parent
->d_lock
);
566 dentry_unlink_inode(dentry
);
568 spin_unlock(&dentry
->d_lock
);
569 this_cpu_dec(nr_dentry
);
570 if (dentry
->d_op
&& dentry
->d_op
->d_release
)
571 dentry
->d_op
->d_release(dentry
);
573 spin_lock(&dentry
->d_lock
);
574 if (dentry
->d_flags
& DCACHE_SHRINK_LIST
) {
575 dentry
->d_flags
|= DCACHE_MAY_FREE
;
578 spin_unlock(&dentry
->d_lock
);
579 if (likely(can_free
))
584 static struct dentry
*__lock_parent(struct dentry
*dentry
)
586 struct dentry
*parent
;
588 spin_unlock(&dentry
->d_lock
);
590 parent
= READ_ONCE(dentry
->d_parent
);
591 spin_lock(&parent
->d_lock
);
593 * We can't blindly lock dentry until we are sure
594 * that we won't violate the locking order.
595 * Any changes of dentry->d_parent must have
596 * been done with parent->d_lock held, so
597 * spin_lock() above is enough of a barrier
598 * for checking if it's still our child.
600 if (unlikely(parent
!= dentry
->d_parent
)) {
601 spin_unlock(&parent
->d_lock
);
605 if (parent
!= dentry
)
606 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
612 static inline struct dentry
*lock_parent(struct dentry
*dentry
)
614 struct dentry
*parent
= dentry
->d_parent
;
617 if (likely(spin_trylock(&parent
->d_lock
)))
619 return __lock_parent(dentry
);
622 static inline bool retain_dentry(struct dentry
*dentry
)
624 WARN_ON(d_in_lookup(dentry
));
626 /* Unreachable? Get rid of it */
627 if (unlikely(d_unhashed(dentry
)))
630 if (unlikely(dentry
->d_flags
& DCACHE_DISCONNECTED
))
633 if (unlikely(dentry
->d_flags
& DCACHE_OP_DELETE
)) {
634 if (dentry
->d_op
->d_delete(dentry
))
637 /* retain; LRU fodder */
638 dentry
->d_lockref
.count
--;
639 if (unlikely(!(dentry
->d_flags
& DCACHE_LRU_LIST
)))
641 else if (unlikely(!(dentry
->d_flags
& DCACHE_REFERENCED
)))
642 dentry
->d_flags
|= DCACHE_REFERENCED
;
647 * Finish off a dentry we've decided to kill.
648 * dentry->d_lock must be held, returns with it unlocked.
649 * Returns dentry requiring refcount drop, or NULL if we're done.
651 static struct dentry
*dentry_kill(struct dentry
*dentry
)
652 __releases(dentry
->d_lock
)
654 struct inode
*inode
= dentry
->d_inode
;
655 struct dentry
*parent
= NULL
;
657 if (inode
&& unlikely(!spin_trylock(&inode
->i_lock
)))
660 if (!IS_ROOT(dentry
)) {
661 parent
= dentry
->d_parent
;
662 if (unlikely(!spin_trylock(&parent
->d_lock
))) {
663 parent
= __lock_parent(dentry
);
664 if (likely(inode
|| !dentry
->d_inode
))
666 /* negative that became positive */
668 spin_unlock(&parent
->d_lock
);
669 inode
= dentry
->d_inode
;
673 __dentry_kill(dentry
);
677 spin_unlock(&dentry
->d_lock
);
678 spin_lock(&inode
->i_lock
);
679 spin_lock(&dentry
->d_lock
);
680 parent
= lock_parent(dentry
);
682 if (unlikely(dentry
->d_lockref
.count
!= 1)) {
683 dentry
->d_lockref
.count
--;
684 } else if (likely(!retain_dentry(dentry
))) {
685 __dentry_kill(dentry
);
688 /* we are keeping it, after all */
690 spin_unlock(&inode
->i_lock
);
692 spin_unlock(&parent
->d_lock
);
693 spin_unlock(&dentry
->d_lock
);
698 * Try to do a lockless dput(), and return whether that was successful.
700 * If unsuccessful, we return false, having already taken the dentry lock.
702 * The caller needs to hold the RCU read lock, so that the dentry is
703 * guaranteed to stay around even if the refcount goes down to zero!
705 static inline bool fast_dput(struct dentry
*dentry
)
708 unsigned int d_flags
;
711 * If we have a d_op->d_delete() operation, we sould not
712 * let the dentry count go to zero, so use "put_or_lock".
714 if (unlikely(dentry
->d_flags
& DCACHE_OP_DELETE
))
715 return lockref_put_or_lock(&dentry
->d_lockref
);
718 * .. otherwise, we can try to just decrement the
719 * lockref optimistically.
721 ret
= lockref_put_return(&dentry
->d_lockref
);
724 * If the lockref_put_return() failed due to the lock being held
725 * by somebody else, the fast path has failed. We will need to
726 * get the lock, and then check the count again.
728 if (unlikely(ret
< 0)) {
729 spin_lock(&dentry
->d_lock
);
730 if (dentry
->d_lockref
.count
> 1) {
731 dentry
->d_lockref
.count
--;
732 spin_unlock(&dentry
->d_lock
);
739 * If we weren't the last ref, we're done.
745 * Careful, careful. The reference count went down
746 * to zero, but we don't hold the dentry lock, so
747 * somebody else could get it again, and do another
748 * dput(), and we need to not race with that.
750 * However, there is a very special and common case
751 * where we don't care, because there is nothing to
752 * do: the dentry is still hashed, it does not have
753 * a 'delete' op, and it's referenced and already on
756 * NOTE! Since we aren't locked, these values are
757 * not "stable". However, it is sufficient that at
758 * some point after we dropped the reference the
759 * dentry was hashed and the flags had the proper
760 * value. Other dentry users may have re-gotten
761 * a reference to the dentry and change that, but
762 * our work is done - we can leave the dentry
763 * around with a zero refcount.
766 d_flags
= READ_ONCE(dentry
->d_flags
);
767 d_flags
&= DCACHE_REFERENCED
| DCACHE_LRU_LIST
| DCACHE_DISCONNECTED
;
769 /* Nothing to do? Dropping the reference was all we needed? */
770 if (d_flags
== (DCACHE_REFERENCED
| DCACHE_LRU_LIST
) && !d_unhashed(dentry
))
774 * Not the fast normal case? Get the lock. We've already decremented
775 * the refcount, but we'll need to re-check the situation after
778 spin_lock(&dentry
->d_lock
);
781 * Did somebody else grab a reference to it in the meantime, and
782 * we're no longer the last user after all? Alternatively, somebody
783 * else could have killed it and marked it dead. Either way, we
784 * don't need to do anything else.
786 if (dentry
->d_lockref
.count
) {
787 spin_unlock(&dentry
->d_lock
);
792 * Re-get the reference we optimistically dropped. We hold the
793 * lock, and we just tested that it was zero, so we can just
796 dentry
->d_lockref
.count
= 1;
804 * This is complicated by the fact that we do not want to put
805 * dentries that are no longer on any hash chain on the unused
806 * list: we'd much rather just get rid of them immediately.
808 * However, that implies that we have to traverse the dentry
809 * tree upwards to the parents which might _also_ now be
810 * scheduled for deletion (it may have been only waiting for
811 * its last child to go away).
813 * This tail recursion is done by hand as we don't want to depend
814 * on the compiler to always get this right (gcc generally doesn't).
815 * Real recursion would eat up our stack space.
819 * dput - release a dentry
820 * @dentry: dentry to release
822 * Release a dentry. This will drop the usage count and if appropriate
823 * call the dentry unlink method as well as removing it from the queues and
824 * releasing its resources. If the parent dentries were scheduled for release
825 * they too may now get deleted.
827 void dput(struct dentry
*dentry
)
833 if (likely(fast_dput(dentry
))) {
838 /* Slow case: now with the dentry lock held */
841 if (likely(retain_dentry(dentry
))) {
842 spin_unlock(&dentry
->d_lock
);
846 dentry
= dentry_kill(dentry
);
852 /* This must be called with d_lock held */
853 static inline void __dget_dlock(struct dentry
*dentry
)
855 dentry
->d_lockref
.count
++;
858 static inline void __dget(struct dentry
*dentry
)
860 lockref_get(&dentry
->d_lockref
);
863 struct dentry
*dget_parent(struct dentry
*dentry
)
869 * Do optimistic parent lookup without any
873 ret
= READ_ONCE(dentry
->d_parent
);
874 gotref
= lockref_get_not_zero(&ret
->d_lockref
);
876 if (likely(gotref
)) {
877 if (likely(ret
== READ_ONCE(dentry
->d_parent
)))
884 * Don't need rcu_dereference because we re-check it was correct under
888 ret
= dentry
->d_parent
;
889 spin_lock(&ret
->d_lock
);
890 if (unlikely(ret
!= dentry
->d_parent
)) {
891 spin_unlock(&ret
->d_lock
);
896 BUG_ON(!ret
->d_lockref
.count
);
897 ret
->d_lockref
.count
++;
898 spin_unlock(&ret
->d_lock
);
901 EXPORT_SYMBOL(dget_parent
);
903 static struct dentry
* __d_find_any_alias(struct inode
*inode
)
905 struct dentry
*alias
;
907 if (hlist_empty(&inode
->i_dentry
))
909 alias
= hlist_entry(inode
->i_dentry
.first
, struct dentry
, d_u
.d_alias
);
915 * d_find_any_alias - find any alias for a given inode
916 * @inode: inode to find an alias for
918 * If any aliases exist for the given inode, take and return a
919 * reference for one of them. If no aliases exist, return %NULL.
921 struct dentry
*d_find_any_alias(struct inode
*inode
)
925 spin_lock(&inode
->i_lock
);
926 de
= __d_find_any_alias(inode
);
927 spin_unlock(&inode
->i_lock
);
930 EXPORT_SYMBOL(d_find_any_alias
);
933 * d_find_alias - grab a hashed alias of inode
934 * @inode: inode in question
936 * If inode has a hashed alias, or is a directory and has any alias,
937 * acquire the reference to alias and return it. Otherwise return NULL.
938 * Notice that if inode is a directory there can be only one alias and
939 * it can be unhashed only if it has no children, or if it is the root
940 * of a filesystem, or if the directory was renamed and d_revalidate
941 * was the first vfs operation to notice.
943 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
944 * any other hashed alias over that one.
946 static struct dentry
*__d_find_alias(struct inode
*inode
)
948 struct dentry
*alias
;
950 if (S_ISDIR(inode
->i_mode
))
951 return __d_find_any_alias(inode
);
953 hlist_for_each_entry(alias
, &inode
->i_dentry
, d_u
.d_alias
) {
954 spin_lock(&alias
->d_lock
);
955 if (!d_unhashed(alias
)) {
957 spin_unlock(&alias
->d_lock
);
960 spin_unlock(&alias
->d_lock
);
965 struct dentry
*d_find_alias(struct inode
*inode
)
967 struct dentry
*de
= NULL
;
969 if (!hlist_empty(&inode
->i_dentry
)) {
970 spin_lock(&inode
->i_lock
);
971 de
= __d_find_alias(inode
);
972 spin_unlock(&inode
->i_lock
);
976 EXPORT_SYMBOL(d_find_alias
);
979 * Try to kill dentries associated with this inode.
980 * WARNING: you must own a reference to inode.
982 void d_prune_aliases(struct inode
*inode
)
984 struct dentry
*dentry
;
986 spin_lock(&inode
->i_lock
);
987 hlist_for_each_entry(dentry
, &inode
->i_dentry
, d_u
.d_alias
) {
988 spin_lock(&dentry
->d_lock
);
989 if (!dentry
->d_lockref
.count
) {
990 struct dentry
*parent
= lock_parent(dentry
);
991 if (likely(!dentry
->d_lockref
.count
)) {
992 __dentry_kill(dentry
);
997 spin_unlock(&parent
->d_lock
);
999 spin_unlock(&dentry
->d_lock
);
1001 spin_unlock(&inode
->i_lock
);
1003 EXPORT_SYMBOL(d_prune_aliases
);
1006 * Lock a dentry from shrink list.
1007 * Called under rcu_read_lock() and dentry->d_lock; the former
1008 * guarantees that nothing we access will be freed under us.
1009 * Note that dentry is *not* protected from concurrent dentry_kill(),
1012 * Return false if dentry has been disrupted or grabbed, leaving
1013 * the caller to kick it off-list. Otherwise, return true and have
1014 * that dentry's inode and parent both locked.
1016 static bool shrink_lock_dentry(struct dentry
*dentry
)
1018 struct inode
*inode
;
1019 struct dentry
*parent
;
1021 if (dentry
->d_lockref
.count
)
1024 inode
= dentry
->d_inode
;
1025 if (inode
&& unlikely(!spin_trylock(&inode
->i_lock
))) {
1026 spin_unlock(&dentry
->d_lock
);
1027 spin_lock(&inode
->i_lock
);
1028 spin_lock(&dentry
->d_lock
);
1029 if (unlikely(dentry
->d_lockref
.count
))
1031 /* changed inode means that somebody had grabbed it */
1032 if (unlikely(inode
!= dentry
->d_inode
))
1036 parent
= dentry
->d_parent
;
1037 if (IS_ROOT(dentry
) || likely(spin_trylock(&parent
->d_lock
)))
1040 spin_unlock(&dentry
->d_lock
);
1041 spin_lock(&parent
->d_lock
);
1042 if (unlikely(parent
!= dentry
->d_parent
)) {
1043 spin_unlock(&parent
->d_lock
);
1044 spin_lock(&dentry
->d_lock
);
1047 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
1048 if (likely(!dentry
->d_lockref
.count
))
1050 spin_unlock(&parent
->d_lock
);
1053 spin_unlock(&inode
->i_lock
);
1057 static void shrink_dentry_list(struct list_head
*list
)
1059 while (!list_empty(list
)) {
1060 struct dentry
*dentry
, *parent
;
1062 dentry
= list_entry(list
->prev
, struct dentry
, d_lru
);
1063 spin_lock(&dentry
->d_lock
);
1065 if (!shrink_lock_dentry(dentry
)) {
1066 bool can_free
= false;
1068 d_shrink_del(dentry
);
1069 if (dentry
->d_lockref
.count
< 0)
1070 can_free
= dentry
->d_flags
& DCACHE_MAY_FREE
;
1071 spin_unlock(&dentry
->d_lock
);
1073 dentry_free(dentry
);
1077 d_shrink_del(dentry
);
1078 parent
= dentry
->d_parent
;
1079 __dentry_kill(dentry
);
1080 if (parent
== dentry
)
1083 * We need to prune ancestors too. This is necessary to prevent
1084 * quadratic behavior of shrink_dcache_parent(), but is also
1085 * expected to be beneficial in reducing dentry cache
1089 while (dentry
&& !lockref_put_or_lock(&dentry
->d_lockref
))
1090 dentry
= dentry_kill(dentry
);
1094 static enum lru_status
dentry_lru_isolate(struct list_head
*item
,
1095 struct list_lru_one
*lru
, spinlock_t
*lru_lock
, void *arg
)
1097 struct list_head
*freeable
= arg
;
1098 struct dentry
*dentry
= container_of(item
, struct dentry
, d_lru
);
1102 * we are inverting the lru lock/dentry->d_lock here,
1103 * so use a trylock. If we fail to get the lock, just skip
1106 if (!spin_trylock(&dentry
->d_lock
))
1110 * Referenced dentries are still in use. If they have active
1111 * counts, just remove them from the LRU. Otherwise give them
1112 * another pass through the LRU.
1114 if (dentry
->d_lockref
.count
) {
1115 d_lru_isolate(lru
, dentry
);
1116 spin_unlock(&dentry
->d_lock
);
1120 if (dentry
->d_flags
& DCACHE_REFERENCED
) {
1121 dentry
->d_flags
&= ~DCACHE_REFERENCED
;
1122 spin_unlock(&dentry
->d_lock
);
1125 * The list move itself will be made by the common LRU code. At
1126 * this point, we've dropped the dentry->d_lock but keep the
1127 * lru lock. This is safe to do, since every list movement is
1128 * protected by the lru lock even if both locks are held.
1130 * This is guaranteed by the fact that all LRU management
1131 * functions are intermediated by the LRU API calls like
1132 * list_lru_add and list_lru_del. List movement in this file
1133 * only ever occur through this functions or through callbacks
1134 * like this one, that are called from the LRU API.
1136 * The only exceptions to this are functions like
1137 * shrink_dentry_list, and code that first checks for the
1138 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be
1139 * operating only with stack provided lists after they are
1140 * properly isolated from the main list. It is thus, always a
1146 d_lru_shrink_move(lru
, dentry
, freeable
);
1147 spin_unlock(&dentry
->d_lock
);
1153 * prune_dcache_sb - shrink the dcache
1155 * @sc: shrink control, passed to list_lru_shrink_walk()
1157 * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1158 * is done when we need more memory and called from the superblock shrinker
1161 * This function may fail to free any resources if all the dentries are in
1164 long prune_dcache_sb(struct super_block
*sb
, struct shrink_control
*sc
)
1169 freed
= list_lru_shrink_walk(&sb
->s_dentry_lru
, sc
,
1170 dentry_lru_isolate
, &dispose
);
1171 shrink_dentry_list(&dispose
);
1175 static enum lru_status
dentry_lru_isolate_shrink(struct list_head
*item
,
1176 struct list_lru_one
*lru
, spinlock_t
*lru_lock
, void *arg
)
1178 struct list_head
*freeable
= arg
;
1179 struct dentry
*dentry
= container_of(item
, struct dentry
, d_lru
);
1182 * we are inverting the lru lock/dentry->d_lock here,
1183 * so use a trylock. If we fail to get the lock, just skip
1186 if (!spin_trylock(&dentry
->d_lock
))
1189 d_lru_shrink_move(lru
, dentry
, freeable
);
1190 spin_unlock(&dentry
->d_lock
);
1197 * shrink_dcache_sb - shrink dcache for a superblock
1200 * Shrink the dcache for the specified super block. This is used to free
1201 * the dcache before unmounting a file system.
1203 void shrink_dcache_sb(struct super_block
*sb
)
1210 freed
= list_lru_walk(&sb
->s_dentry_lru
,
1211 dentry_lru_isolate_shrink
, &dispose
, 1024);
1213 this_cpu_sub(nr_dentry_unused
, freed
);
1214 shrink_dentry_list(&dispose
);
1215 } while (list_lru_count(&sb
->s_dentry_lru
) > 0);
1217 EXPORT_SYMBOL(shrink_dcache_sb
);
1220 * enum d_walk_ret - action to talke during tree walk
1221 * @D_WALK_CONTINUE: contrinue walk
1222 * @D_WALK_QUIT: quit walk
1223 * @D_WALK_NORETRY: quit when retry is needed
1224 * @D_WALK_SKIP: skip this dentry and its children
1234 * d_walk - walk the dentry tree
1235 * @parent: start of walk
1236 * @data: data passed to @enter() and @finish()
1237 * @enter: callback when first entering the dentry
1239 * The @enter() callbacks are called with d_lock held.
1241 static void d_walk(struct dentry
*parent
, void *data
,
1242 enum d_walk_ret (*enter
)(void *, struct dentry
*))
1244 struct dentry
*this_parent
;
1245 struct list_head
*next
;
1247 enum d_walk_ret ret
;
1251 read_seqbegin_or_lock(&rename_lock
, &seq
);
1252 this_parent
= parent
;
1253 spin_lock(&this_parent
->d_lock
);
1255 ret
= enter(data
, this_parent
);
1257 case D_WALK_CONTINUE
:
1262 case D_WALK_NORETRY
:
1267 next
= this_parent
->d_subdirs
.next
;
1269 while (next
!= &this_parent
->d_subdirs
) {
1270 struct list_head
*tmp
= next
;
1271 struct dentry
*dentry
= list_entry(tmp
, struct dentry
, d_child
);
1274 if (unlikely(dentry
->d_flags
& DCACHE_DENTRY_CURSOR
))
1277 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
1279 ret
= enter(data
, dentry
);
1281 case D_WALK_CONTINUE
:
1284 spin_unlock(&dentry
->d_lock
);
1286 case D_WALK_NORETRY
:
1290 spin_unlock(&dentry
->d_lock
);
1294 if (!list_empty(&dentry
->d_subdirs
)) {
1295 spin_unlock(&this_parent
->d_lock
);
1296 spin_release(&dentry
->d_lock
.dep_map
, 1, _RET_IP_
);
1297 this_parent
= dentry
;
1298 spin_acquire(&this_parent
->d_lock
.dep_map
, 0, 1, _RET_IP_
);
1301 spin_unlock(&dentry
->d_lock
);
1304 * All done at this level ... ascend and resume the search.
1308 if (this_parent
!= parent
) {
1309 struct dentry
*child
= this_parent
;
1310 this_parent
= child
->d_parent
;
1312 spin_unlock(&child
->d_lock
);
1313 spin_lock(&this_parent
->d_lock
);
1315 /* might go back up the wrong parent if we have had a rename. */
1316 if (need_seqretry(&rename_lock
, seq
))
1318 /* go into the first sibling still alive */
1320 next
= child
->d_child
.next
;
1321 if (next
== &this_parent
->d_subdirs
)
1323 child
= list_entry(next
, struct dentry
, d_child
);
1324 } while (unlikely(child
->d_flags
& DCACHE_DENTRY_KILLED
));
1328 if (need_seqretry(&rename_lock
, seq
))
1333 spin_unlock(&this_parent
->d_lock
);
1334 done_seqretry(&rename_lock
, seq
);
1338 spin_unlock(&this_parent
->d_lock
);
1347 struct check_mount
{
1348 struct vfsmount
*mnt
;
1349 unsigned int mounted
;
1352 static enum d_walk_ret
path_check_mount(void *data
, struct dentry
*dentry
)
1354 struct check_mount
*info
= data
;
1355 struct path path
= { .mnt
= info
->mnt
, .dentry
= dentry
};
1357 if (likely(!d_mountpoint(dentry
)))
1358 return D_WALK_CONTINUE
;
1359 if (__path_is_mountpoint(&path
)) {
1363 return D_WALK_CONTINUE
;
1367 * path_has_submounts - check for mounts over a dentry in the
1368 * current namespace.
1369 * @parent: path to check.
1371 * Return true if the parent or its subdirectories contain
1372 * a mount point in the current namespace.
1374 int path_has_submounts(const struct path
*parent
)
1376 struct check_mount data
= { .mnt
= parent
->mnt
, .mounted
= 0 };
1378 read_seqlock_excl(&mount_lock
);
1379 d_walk(parent
->dentry
, &data
, path_check_mount
);
1380 read_sequnlock_excl(&mount_lock
);
1382 return data
.mounted
;
1384 EXPORT_SYMBOL(path_has_submounts
);
1387 * Called by mount code to set a mountpoint and check if the mountpoint is
1388 * reachable (e.g. NFS can unhash a directory dentry and then the complete
1389 * subtree can become unreachable).
1391 * Only one of d_invalidate() and d_set_mounted() must succeed. For
1392 * this reason take rename_lock and d_lock on dentry and ancestors.
1394 int d_set_mounted(struct dentry
*dentry
)
1398 write_seqlock(&rename_lock
);
1399 for (p
= dentry
->d_parent
; !IS_ROOT(p
); p
= p
->d_parent
) {
1400 /* Need exclusion wrt. d_invalidate() */
1401 spin_lock(&p
->d_lock
);
1402 if (unlikely(d_unhashed(p
))) {
1403 spin_unlock(&p
->d_lock
);
1406 spin_unlock(&p
->d_lock
);
1408 spin_lock(&dentry
->d_lock
);
1409 if (!d_unlinked(dentry
)) {
1411 if (!d_mountpoint(dentry
)) {
1412 dentry
->d_flags
|= DCACHE_MOUNTED
;
1416 spin_unlock(&dentry
->d_lock
);
1418 write_sequnlock(&rename_lock
);
1423 * Search the dentry child list of the specified parent,
1424 * and move any unused dentries to the end of the unused
1425 * list for prune_dcache(). We descend to the next level
1426 * whenever the d_subdirs list is non-empty and continue
1429 * It returns zero iff there are no unused children,
1430 * otherwise it returns the number of children moved to
1431 * the end of the unused list. This may not be the total
1432 * number of unused children, because select_parent can
1433 * drop the lock and return early due to latency
1437 struct select_data
{
1438 struct dentry
*start
;
1439 struct list_head dispose
;
1443 static enum d_walk_ret
select_collect(void *_data
, struct dentry
*dentry
)
1445 struct select_data
*data
= _data
;
1446 enum d_walk_ret ret
= D_WALK_CONTINUE
;
1448 if (data
->start
== dentry
)
1451 if (dentry
->d_flags
& DCACHE_SHRINK_LIST
) {
1454 if (dentry
->d_flags
& DCACHE_LRU_LIST
)
1456 if (!dentry
->d_lockref
.count
) {
1457 d_shrink_add(dentry
, &data
->dispose
);
1462 * We can return to the caller if we have found some (this
1463 * ensures forward progress). We'll be coming back to find
1466 if (!list_empty(&data
->dispose
))
1467 ret
= need_resched() ? D_WALK_QUIT
: D_WALK_NORETRY
;
1473 * shrink_dcache_parent - prune dcache
1474 * @parent: parent of entries to prune
1476 * Prune the dcache to remove unused children of the parent dentry.
1478 void shrink_dcache_parent(struct dentry
*parent
)
1481 struct select_data data
;
1483 INIT_LIST_HEAD(&data
.dispose
);
1484 data
.start
= parent
;
1487 d_walk(parent
, &data
, select_collect
);
1489 if (!list_empty(&data
.dispose
)) {
1490 shrink_dentry_list(&data
.dispose
);
1499 EXPORT_SYMBOL(shrink_dcache_parent
);
1501 static enum d_walk_ret
umount_check(void *_data
, struct dentry
*dentry
)
1503 /* it has busy descendents; complain about those instead */
1504 if (!list_empty(&dentry
->d_subdirs
))
1505 return D_WALK_CONTINUE
;
1507 /* root with refcount 1 is fine */
1508 if (dentry
== _data
&& dentry
->d_lockref
.count
== 1)
1509 return D_WALK_CONTINUE
;
1511 printk(KERN_ERR
"BUG: Dentry %p{i=%lx,n=%pd} "
1512 " still in use (%d) [unmount of %s %s]\n",
1515 dentry
->d_inode
->i_ino
: 0UL,
1517 dentry
->d_lockref
.count
,
1518 dentry
->d_sb
->s_type
->name
,
1519 dentry
->d_sb
->s_id
);
1521 return D_WALK_CONTINUE
;
1524 static void do_one_tree(struct dentry
*dentry
)
1526 shrink_dcache_parent(dentry
);
1527 d_walk(dentry
, dentry
, umount_check
);
1533 * destroy the dentries attached to a superblock on unmounting
1535 void shrink_dcache_for_umount(struct super_block
*sb
)
1537 struct dentry
*dentry
;
1539 WARN(down_read_trylock(&sb
->s_umount
), "s_umount should've been locked");
1541 dentry
= sb
->s_root
;
1543 do_one_tree(dentry
);
1545 while (!hlist_bl_empty(&sb
->s_roots
)) {
1546 dentry
= dget(hlist_bl_entry(hlist_bl_first(&sb
->s_roots
), struct dentry
, d_hash
));
1547 do_one_tree(dentry
);
1551 static enum d_walk_ret
find_submount(void *_data
, struct dentry
*dentry
)
1553 struct dentry
**victim
= _data
;
1554 if (d_mountpoint(dentry
)) {
1555 __dget_dlock(dentry
);
1559 return D_WALK_CONTINUE
;
1563 * d_invalidate - detach submounts, prune dcache, and drop
1564 * @dentry: dentry to invalidate (aka detach, prune and drop)
1566 void d_invalidate(struct dentry
*dentry
)
1568 bool had_submounts
= false;
1569 spin_lock(&dentry
->d_lock
);
1570 if (d_unhashed(dentry
)) {
1571 spin_unlock(&dentry
->d_lock
);
1575 spin_unlock(&dentry
->d_lock
);
1577 /* Negative dentries can be dropped without further checks */
1578 if (!dentry
->d_inode
)
1581 shrink_dcache_parent(dentry
);
1583 struct dentry
*victim
= NULL
;
1584 d_walk(dentry
, &victim
, find_submount
);
1587 shrink_dcache_parent(dentry
);
1590 had_submounts
= true;
1591 detach_mounts(victim
);
1595 EXPORT_SYMBOL(d_invalidate
);
1598 * __d_alloc - allocate a dcache entry
1599 * @sb: filesystem it will belong to
1600 * @name: qstr of the name
1602 * Allocates a dentry. It returns %NULL if there is insufficient memory
1603 * available. On a success the dentry is returned. The name passed in is
1604 * copied and the copy passed in may be reused after this call.
1607 struct dentry
*__d_alloc(struct super_block
*sb
, const struct qstr
*name
)
1609 struct external_name
*ext
= NULL
;
1610 struct dentry
*dentry
;
1614 dentry
= kmem_cache_alloc(dentry_cache
, GFP_KERNEL
);
1619 * We guarantee that the inline name is always NUL-terminated.
1620 * This way the memcpy() done by the name switching in rename
1621 * will still always have a NUL at the end, even if we might
1622 * be overwriting an internal NUL character
1624 dentry
->d_iname
[DNAME_INLINE_LEN
-1] = 0;
1625 if (unlikely(!name
)) {
1627 dname
= dentry
->d_iname
;
1628 } else if (name
->len
> DNAME_INLINE_LEN
-1) {
1629 size_t size
= offsetof(struct external_name
, name
[1]);
1631 ext
= kmalloc(size
+ name
->len
, GFP_KERNEL_ACCOUNT
);
1633 kmem_cache_free(dentry_cache
, dentry
);
1636 atomic_set(&ext
->u
.count
, 1);
1639 dname
= dentry
->d_iname
;
1642 dentry
->d_name
.len
= name
->len
;
1643 dentry
->d_name
.hash
= name
->hash
;
1644 memcpy(dname
, name
->name
, name
->len
);
1645 dname
[name
->len
] = 0;
1647 /* Make sure we always see the terminating NUL character */
1648 smp_store_release(&dentry
->d_name
.name
, dname
); /* ^^^ */
1650 dentry
->d_lockref
.count
= 1;
1651 dentry
->d_flags
= 0;
1652 spin_lock_init(&dentry
->d_lock
);
1653 seqcount_init(&dentry
->d_seq
);
1654 dentry
->d_inode
= NULL
;
1655 dentry
->d_parent
= dentry
;
1657 dentry
->d_op
= NULL
;
1658 dentry
->d_fsdata
= NULL
;
1659 INIT_HLIST_BL_NODE(&dentry
->d_hash
);
1660 INIT_LIST_HEAD(&dentry
->d_lru
);
1661 INIT_LIST_HEAD(&dentry
->d_subdirs
);
1662 INIT_HLIST_NODE(&dentry
->d_u
.d_alias
);
1663 INIT_LIST_HEAD(&dentry
->d_child
);
1664 d_set_d_op(dentry
, dentry
->d_sb
->s_d_op
);
1666 if (dentry
->d_op
&& dentry
->d_op
->d_init
) {
1667 err
= dentry
->d_op
->d_init(dentry
);
1669 if (dname_external(dentry
))
1670 kfree(external_name(dentry
));
1671 kmem_cache_free(dentry_cache
, dentry
);
1676 if (unlikely(ext
)) {
1677 pg_data_t
*pgdat
= page_pgdat(virt_to_page(ext
));
1678 mod_node_page_state(pgdat
, NR_INDIRECTLY_RECLAIMABLE_BYTES
,
1682 this_cpu_inc(nr_dentry
);
1688 * d_alloc - allocate a dcache entry
1689 * @parent: parent of entry to allocate
1690 * @name: qstr of the name
1692 * Allocates a dentry. It returns %NULL if there is insufficient memory
1693 * available. On a success the dentry is returned. The name passed in is
1694 * copied and the copy passed in may be reused after this call.
1696 struct dentry
*d_alloc(struct dentry
* parent
, const struct qstr
*name
)
1698 struct dentry
*dentry
= __d_alloc(parent
->d_sb
, name
);
1701 dentry
->d_flags
|= DCACHE_RCUACCESS
;
1702 spin_lock(&parent
->d_lock
);
1704 * don't need child lock because it is not subject
1705 * to concurrency here
1707 __dget_dlock(parent
);
1708 dentry
->d_parent
= parent
;
1709 list_add(&dentry
->d_child
, &parent
->d_subdirs
);
1710 spin_unlock(&parent
->d_lock
);
1714 EXPORT_SYMBOL(d_alloc
);
1716 struct dentry
*d_alloc_anon(struct super_block
*sb
)
1718 return __d_alloc(sb
, NULL
);
1720 EXPORT_SYMBOL(d_alloc_anon
);
1722 struct dentry
*d_alloc_cursor(struct dentry
* parent
)
1724 struct dentry
*dentry
= d_alloc_anon(parent
->d_sb
);
1726 dentry
->d_flags
|= DCACHE_RCUACCESS
| DCACHE_DENTRY_CURSOR
;
1727 dentry
->d_parent
= dget(parent
);
1733 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1734 * @sb: the superblock
1735 * @name: qstr of the name
1737 * For a filesystem that just pins its dentries in memory and never
1738 * performs lookups at all, return an unhashed IS_ROOT dentry.
1740 struct dentry
*d_alloc_pseudo(struct super_block
*sb
, const struct qstr
*name
)
1742 return __d_alloc(sb
, name
);
1744 EXPORT_SYMBOL(d_alloc_pseudo
);
1746 struct dentry
*d_alloc_name(struct dentry
*parent
, const char *name
)
1751 q
.hash_len
= hashlen_string(parent
, name
);
1752 return d_alloc(parent
, &q
);
1754 EXPORT_SYMBOL(d_alloc_name
);
1756 void d_set_d_op(struct dentry
*dentry
, const struct dentry_operations
*op
)
1758 WARN_ON_ONCE(dentry
->d_op
);
1759 WARN_ON_ONCE(dentry
->d_flags
& (DCACHE_OP_HASH
|
1761 DCACHE_OP_REVALIDATE
|
1762 DCACHE_OP_WEAK_REVALIDATE
|
1769 dentry
->d_flags
|= DCACHE_OP_HASH
;
1771 dentry
->d_flags
|= DCACHE_OP_COMPARE
;
1772 if (op
->d_revalidate
)
1773 dentry
->d_flags
|= DCACHE_OP_REVALIDATE
;
1774 if (op
->d_weak_revalidate
)
1775 dentry
->d_flags
|= DCACHE_OP_WEAK_REVALIDATE
;
1777 dentry
->d_flags
|= DCACHE_OP_DELETE
;
1779 dentry
->d_flags
|= DCACHE_OP_PRUNE
;
1781 dentry
->d_flags
|= DCACHE_OP_REAL
;
1784 EXPORT_SYMBOL(d_set_d_op
);
1788 * d_set_fallthru - Mark a dentry as falling through to a lower layer
1789 * @dentry - The dentry to mark
1791 * Mark a dentry as falling through to the lower layer (as set with
1792 * d_pin_lower()). This flag may be recorded on the medium.
1794 void d_set_fallthru(struct dentry
*dentry
)
1796 spin_lock(&dentry
->d_lock
);
1797 dentry
->d_flags
|= DCACHE_FALLTHRU
;
1798 spin_unlock(&dentry
->d_lock
);
1800 EXPORT_SYMBOL(d_set_fallthru
);
1802 static unsigned d_flags_for_inode(struct inode
*inode
)
1804 unsigned add_flags
= DCACHE_REGULAR_TYPE
;
1807 return DCACHE_MISS_TYPE
;
1809 if (S_ISDIR(inode
->i_mode
)) {
1810 add_flags
= DCACHE_DIRECTORY_TYPE
;
1811 if (unlikely(!(inode
->i_opflags
& IOP_LOOKUP
))) {
1812 if (unlikely(!inode
->i_op
->lookup
))
1813 add_flags
= DCACHE_AUTODIR_TYPE
;
1815 inode
->i_opflags
|= IOP_LOOKUP
;
1817 goto type_determined
;
1820 if (unlikely(!(inode
->i_opflags
& IOP_NOFOLLOW
))) {
1821 if (unlikely(inode
->i_op
->get_link
)) {
1822 add_flags
= DCACHE_SYMLINK_TYPE
;
1823 goto type_determined
;
1825 inode
->i_opflags
|= IOP_NOFOLLOW
;
1828 if (unlikely(!S_ISREG(inode
->i_mode
)))
1829 add_flags
= DCACHE_SPECIAL_TYPE
;
1832 if (unlikely(IS_AUTOMOUNT(inode
)))
1833 add_flags
|= DCACHE_NEED_AUTOMOUNT
;
1837 static void __d_instantiate(struct dentry
*dentry
, struct inode
*inode
)
1839 unsigned add_flags
= d_flags_for_inode(inode
);
1840 WARN_ON(d_in_lookup(dentry
));
1842 spin_lock(&dentry
->d_lock
);
1843 hlist_add_head(&dentry
->d_u
.d_alias
, &inode
->i_dentry
);
1844 raw_write_seqcount_begin(&dentry
->d_seq
);
1845 __d_set_inode_and_type(dentry
, inode
, add_flags
);
1846 raw_write_seqcount_end(&dentry
->d_seq
);
1847 fsnotify_update_flags(dentry
);
1848 spin_unlock(&dentry
->d_lock
);
1852 * d_instantiate - fill in inode information for a dentry
1853 * @entry: dentry to complete
1854 * @inode: inode to attach to this dentry
1856 * Fill in inode information in the entry.
1858 * This turns negative dentries into productive full members
1861 * NOTE! This assumes that the inode count has been incremented
1862 * (or otherwise set) by the caller to indicate that it is now
1863 * in use by the dcache.
1866 void d_instantiate(struct dentry
*entry
, struct inode
* inode
)
1868 BUG_ON(!hlist_unhashed(&entry
->d_u
.d_alias
));
1870 security_d_instantiate(entry
, inode
);
1871 spin_lock(&inode
->i_lock
);
1872 __d_instantiate(entry
, inode
);
1873 spin_unlock(&inode
->i_lock
);
1876 EXPORT_SYMBOL(d_instantiate
);
1879 * This should be equivalent to d_instantiate() + unlock_new_inode(),
1880 * with lockdep-related part of unlock_new_inode() done before
1881 * anything else. Use that instead of open-coding d_instantiate()/
1882 * unlock_new_inode() combinations.
1884 void d_instantiate_new(struct dentry
*entry
, struct inode
*inode
)
1886 BUG_ON(!hlist_unhashed(&entry
->d_u
.d_alias
));
1888 lockdep_annotate_inode_mutex_key(inode
);
1889 security_d_instantiate(entry
, inode
);
1890 spin_lock(&inode
->i_lock
);
1891 __d_instantiate(entry
, inode
);
1892 WARN_ON(!(inode
->i_state
& I_NEW
));
1893 inode
->i_state
&= ~I_NEW
& ~I_CREATING
;
1895 wake_up_bit(&inode
->i_state
, __I_NEW
);
1896 spin_unlock(&inode
->i_lock
);
1898 EXPORT_SYMBOL(d_instantiate_new
);
1900 struct dentry
*d_make_root(struct inode
*root_inode
)
1902 struct dentry
*res
= NULL
;
1905 res
= d_alloc_anon(root_inode
->i_sb
);
1907 res
->d_flags
|= DCACHE_RCUACCESS
;
1908 d_instantiate(res
, root_inode
);
1915 EXPORT_SYMBOL(d_make_root
);
1917 static struct dentry
*__d_instantiate_anon(struct dentry
*dentry
,
1918 struct inode
*inode
,
1924 security_d_instantiate(dentry
, inode
);
1925 spin_lock(&inode
->i_lock
);
1926 res
= __d_find_any_alias(inode
);
1928 spin_unlock(&inode
->i_lock
);
1933 /* attach a disconnected dentry */
1934 add_flags
= d_flags_for_inode(inode
);
1937 add_flags
|= DCACHE_DISCONNECTED
;
1939 spin_lock(&dentry
->d_lock
);
1940 __d_set_inode_and_type(dentry
, inode
, add_flags
);
1941 hlist_add_head(&dentry
->d_u
.d_alias
, &inode
->i_dentry
);
1942 if (!disconnected
) {
1943 hlist_bl_lock(&dentry
->d_sb
->s_roots
);
1944 hlist_bl_add_head(&dentry
->d_hash
, &dentry
->d_sb
->s_roots
);
1945 hlist_bl_unlock(&dentry
->d_sb
->s_roots
);
1947 spin_unlock(&dentry
->d_lock
);
1948 spin_unlock(&inode
->i_lock
);
1957 struct dentry
*d_instantiate_anon(struct dentry
*dentry
, struct inode
*inode
)
1959 return __d_instantiate_anon(dentry
, inode
, true);
1961 EXPORT_SYMBOL(d_instantiate_anon
);
1963 static struct dentry
*__d_obtain_alias(struct inode
*inode
, bool disconnected
)
1969 return ERR_PTR(-ESTALE
);
1971 return ERR_CAST(inode
);
1973 res
= d_find_any_alias(inode
);
1977 tmp
= d_alloc_anon(inode
->i_sb
);
1979 res
= ERR_PTR(-ENOMEM
);
1983 return __d_instantiate_anon(tmp
, inode
, disconnected
);
1991 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
1992 * @inode: inode to allocate the dentry for
1994 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1995 * similar open by handle operations. The returned dentry may be anonymous,
1996 * or may have a full name (if the inode was already in the cache).
1998 * When called on a directory inode, we must ensure that the inode only ever
1999 * has one dentry. If a dentry is found, that is returned instead of
2000 * allocating a new one.
2002 * On successful return, the reference to the inode has been transferred
2003 * to the dentry. In case of an error the reference on the inode is released.
2004 * To make it easier to use in export operations a %NULL or IS_ERR inode may
2005 * be passed in and the error will be propagated to the return value,
2006 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
2008 struct dentry
*d_obtain_alias(struct inode
*inode
)
2010 return __d_obtain_alias(inode
, true);
2012 EXPORT_SYMBOL(d_obtain_alias
);
2015 * d_obtain_root - find or allocate a dentry for a given inode
2016 * @inode: inode to allocate the dentry for
2018 * Obtain an IS_ROOT dentry for the root of a filesystem.
2020 * We must ensure that directory inodes only ever have one dentry. If a
2021 * dentry is found, that is returned instead of allocating a new one.
2023 * On successful return, the reference to the inode has been transferred
2024 * to the dentry. In case of an error the reference on the inode is
2025 * released. A %NULL or IS_ERR inode may be passed in and will be the
2026 * error will be propagate to the return value, with a %NULL @inode
2027 * replaced by ERR_PTR(-ESTALE).
2029 struct dentry
*d_obtain_root(struct inode
*inode
)
2031 return __d_obtain_alias(inode
, false);
2033 EXPORT_SYMBOL(d_obtain_root
);
2036 * d_add_ci - lookup or allocate new dentry with case-exact name
2037 * @inode: the inode case-insensitive lookup has found
2038 * @dentry: the negative dentry that was passed to the parent's lookup func
2039 * @name: the case-exact name to be associated with the returned dentry
2041 * This is to avoid filling the dcache with case-insensitive names to the
2042 * same inode, only the actual correct case is stored in the dcache for
2043 * case-insensitive filesystems.
2045 * For a case-insensitive lookup match and if the the case-exact dentry
2046 * already exists in in the dcache, use it and return it.
2048 * If no entry exists with the exact case name, allocate new dentry with
2049 * the exact case, and return the spliced entry.
2051 struct dentry
*d_add_ci(struct dentry
*dentry
, struct inode
*inode
,
2054 struct dentry
*found
, *res
;
2057 * First check if a dentry matching the name already exists,
2058 * if not go ahead and create it now.
2060 found
= d_hash_and_lookup(dentry
->d_parent
, name
);
2065 if (d_in_lookup(dentry
)) {
2066 found
= d_alloc_parallel(dentry
->d_parent
, name
,
2068 if (IS_ERR(found
) || !d_in_lookup(found
)) {
2073 found
= d_alloc(dentry
->d_parent
, name
);
2076 return ERR_PTR(-ENOMEM
);
2079 res
= d_splice_alias(inode
, found
);
2086 EXPORT_SYMBOL(d_add_ci
);
2089 static inline bool d_same_name(const struct dentry
*dentry
,
2090 const struct dentry
*parent
,
2091 const struct qstr
*name
)
2093 if (likely(!(parent
->d_flags
& DCACHE_OP_COMPARE
))) {
2094 if (dentry
->d_name
.len
!= name
->len
)
2096 return dentry_cmp(dentry
, name
->name
, name
->len
) == 0;
2098 return parent
->d_op
->d_compare(dentry
,
2099 dentry
->d_name
.len
, dentry
->d_name
.name
,
2104 * __d_lookup_rcu - search for a dentry (racy, store-free)
2105 * @parent: parent dentry
2106 * @name: qstr of name we wish to find
2107 * @seqp: returns d_seq value at the point where the dentry was found
2108 * Returns: dentry, or NULL
2110 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2111 * resolution (store-free path walking) design described in
2112 * Documentation/filesystems/path-lookup.txt.
2114 * This is not to be used outside core vfs.
2116 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2117 * held, and rcu_read_lock held. The returned dentry must not be stored into
2118 * without taking d_lock and checking d_seq sequence count against @seq
2121 * A refcount may be taken on the found dentry with the d_rcu_to_refcount
2124 * Alternatively, __d_lookup_rcu may be called again to look up the child of
2125 * the returned dentry, so long as its parent's seqlock is checked after the
2126 * child is looked up. Thus, an interlocking stepping of sequence lock checks
2127 * is formed, giving integrity down the path walk.
2129 * NOTE! The caller *has* to check the resulting dentry against the sequence
2130 * number we've returned before using any of the resulting dentry state!
2132 struct dentry
*__d_lookup_rcu(const struct dentry
*parent
,
2133 const struct qstr
*name
,
2136 u64 hashlen
= name
->hash_len
;
2137 const unsigned char *str
= name
->name
;
2138 struct hlist_bl_head
*b
= d_hash(hashlen_hash(hashlen
));
2139 struct hlist_bl_node
*node
;
2140 struct dentry
*dentry
;
2143 * Note: There is significant duplication with __d_lookup_rcu which is
2144 * required to prevent single threaded performance regressions
2145 * especially on architectures where smp_rmb (in seqcounts) are costly.
2146 * Keep the two functions in sync.
2150 * The hash list is protected using RCU.
2152 * Carefully use d_seq when comparing a candidate dentry, to avoid
2153 * races with d_move().
2155 * It is possible that concurrent renames can mess up our list
2156 * walk here and result in missing our dentry, resulting in the
2157 * false-negative result. d_lookup() protects against concurrent
2158 * renames using rename_lock seqlock.
2160 * See Documentation/filesystems/path-lookup.txt for more details.
2162 hlist_bl_for_each_entry_rcu(dentry
, node
, b
, d_hash
) {
2167 * The dentry sequence count protects us from concurrent
2168 * renames, and thus protects parent and name fields.
2170 * The caller must perform a seqcount check in order
2171 * to do anything useful with the returned dentry.
2173 * NOTE! We do a "raw" seqcount_begin here. That means that
2174 * we don't wait for the sequence count to stabilize if it
2175 * is in the middle of a sequence change. If we do the slow
2176 * dentry compare, we will do seqretries until it is stable,
2177 * and if we end up with a successful lookup, we actually
2178 * want to exit RCU lookup anyway.
2180 * Note that raw_seqcount_begin still *does* smp_rmb(), so
2181 * we are still guaranteed NUL-termination of ->d_name.name.
2183 seq
= raw_seqcount_begin(&dentry
->d_seq
);
2184 if (dentry
->d_parent
!= parent
)
2186 if (d_unhashed(dentry
))
2189 if (unlikely(parent
->d_flags
& DCACHE_OP_COMPARE
)) {
2192 if (dentry
->d_name
.hash
!= hashlen_hash(hashlen
))
2194 tlen
= dentry
->d_name
.len
;
2195 tname
= dentry
->d_name
.name
;
2196 /* we want a consistent (name,len) pair */
2197 if (read_seqcount_retry(&dentry
->d_seq
, seq
)) {
2201 if (parent
->d_op
->d_compare(dentry
,
2202 tlen
, tname
, name
) != 0)
2205 if (dentry
->d_name
.hash_len
!= hashlen
)
2207 if (dentry_cmp(dentry
, str
, hashlen_len(hashlen
)) != 0)
2217 * d_lookup - search for a dentry
2218 * @parent: parent dentry
2219 * @name: qstr of name we wish to find
2220 * Returns: dentry, or NULL
2222 * d_lookup searches the children of the parent dentry for the name in
2223 * question. If the dentry is found its reference count is incremented and the
2224 * dentry is returned. The caller must use dput to free the entry when it has
2225 * finished using it. %NULL is returned if the dentry does not exist.
2227 struct dentry
*d_lookup(const struct dentry
*parent
, const struct qstr
*name
)
2229 struct dentry
*dentry
;
2233 seq
= read_seqbegin(&rename_lock
);
2234 dentry
= __d_lookup(parent
, name
);
2237 } while (read_seqretry(&rename_lock
, seq
));
2240 EXPORT_SYMBOL(d_lookup
);
2243 * __d_lookup - search for a dentry (racy)
2244 * @parent: parent dentry
2245 * @name: qstr of name we wish to find
2246 * Returns: dentry, or NULL
2248 * __d_lookup is like d_lookup, however it may (rarely) return a
2249 * false-negative result due to unrelated rename activity.
2251 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2252 * however it must be used carefully, eg. with a following d_lookup in
2253 * the case of failure.
2255 * __d_lookup callers must be commented.
2257 struct dentry
*__d_lookup(const struct dentry
*parent
, const struct qstr
*name
)
2259 unsigned int hash
= name
->hash
;
2260 struct hlist_bl_head
*b
= d_hash(hash
);
2261 struct hlist_bl_node
*node
;
2262 struct dentry
*found
= NULL
;
2263 struct dentry
*dentry
;
2266 * Note: There is significant duplication with __d_lookup_rcu which is
2267 * required to prevent single threaded performance regressions
2268 * especially on architectures where smp_rmb (in seqcounts) are costly.
2269 * Keep the two functions in sync.
2273 * The hash list is protected using RCU.
2275 * Take d_lock when comparing a candidate dentry, to avoid races
2278 * It is possible that concurrent renames can mess up our list
2279 * walk here and result in missing our dentry, resulting in the
2280 * false-negative result. d_lookup() protects against concurrent
2281 * renames using rename_lock seqlock.
2283 * See Documentation/filesystems/path-lookup.txt for more details.
2287 hlist_bl_for_each_entry_rcu(dentry
, node
, b
, d_hash
) {
2289 if (dentry
->d_name
.hash
!= hash
)
2292 spin_lock(&dentry
->d_lock
);
2293 if (dentry
->d_parent
!= parent
)
2295 if (d_unhashed(dentry
))
2298 if (!d_same_name(dentry
, parent
, name
))
2301 dentry
->d_lockref
.count
++;
2303 spin_unlock(&dentry
->d_lock
);
2306 spin_unlock(&dentry
->d_lock
);
2314 * d_hash_and_lookup - hash the qstr then search for a dentry
2315 * @dir: Directory to search in
2316 * @name: qstr of name we wish to find
2318 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2320 struct dentry
*d_hash_and_lookup(struct dentry
*dir
, struct qstr
*name
)
2323 * Check for a fs-specific hash function. Note that we must
2324 * calculate the standard hash first, as the d_op->d_hash()
2325 * routine may choose to leave the hash value unchanged.
2327 name
->hash
= full_name_hash(dir
, name
->name
, name
->len
);
2328 if (dir
->d_flags
& DCACHE_OP_HASH
) {
2329 int err
= dir
->d_op
->d_hash(dir
, name
);
2330 if (unlikely(err
< 0))
2331 return ERR_PTR(err
);
2333 return d_lookup(dir
, name
);
2335 EXPORT_SYMBOL(d_hash_and_lookup
);
2338 * When a file is deleted, we have two options:
2339 * - turn this dentry into a negative dentry
2340 * - unhash this dentry and free it.
2342 * Usually, we want to just turn this into
2343 * a negative dentry, but if anybody else is
2344 * currently using the dentry or the inode
2345 * we can't do that and we fall back on removing
2346 * it from the hash queues and waiting for
2347 * it to be deleted later when it has no users
2351 * d_delete - delete a dentry
2352 * @dentry: The dentry to delete
2354 * Turn the dentry into a negative dentry if possible, otherwise
2355 * remove it from the hash queues so it can be deleted later
2358 void d_delete(struct dentry
* dentry
)
2360 struct inode
*inode
= dentry
->d_inode
;
2361 int isdir
= d_is_dir(dentry
);
2363 spin_lock(&inode
->i_lock
);
2364 spin_lock(&dentry
->d_lock
);
2366 * Are we the only user?
2368 if (dentry
->d_lockref
.count
== 1) {
2369 dentry
->d_flags
&= ~DCACHE_CANT_MOUNT
;
2370 dentry_unlink_inode(dentry
);
2373 spin_unlock(&dentry
->d_lock
);
2374 spin_unlock(&inode
->i_lock
);
2376 fsnotify_nameremove(dentry
, isdir
);
2378 EXPORT_SYMBOL(d_delete
);
2380 static void __d_rehash(struct dentry
*entry
)
2382 struct hlist_bl_head
*b
= d_hash(entry
->d_name
.hash
);
2385 hlist_bl_add_head_rcu(&entry
->d_hash
, b
);
2390 * d_rehash - add an entry back to the hash
2391 * @entry: dentry to add to the hash
2393 * Adds a dentry to the hash according to its name.
2396 void d_rehash(struct dentry
* entry
)
2398 spin_lock(&entry
->d_lock
);
2400 spin_unlock(&entry
->d_lock
);
2402 EXPORT_SYMBOL(d_rehash
);
2404 static inline unsigned start_dir_add(struct inode
*dir
)
2408 unsigned n
= dir
->i_dir_seq
;
2409 if (!(n
& 1) && cmpxchg(&dir
->i_dir_seq
, n
, n
+ 1) == n
)
2415 static inline void end_dir_add(struct inode
*dir
, unsigned n
)
2417 smp_store_release(&dir
->i_dir_seq
, n
+ 2);
2420 static void d_wait_lookup(struct dentry
*dentry
)
2422 if (d_in_lookup(dentry
)) {
2423 DECLARE_WAITQUEUE(wait
, current
);
2424 add_wait_queue(dentry
->d_wait
, &wait
);
2426 set_current_state(TASK_UNINTERRUPTIBLE
);
2427 spin_unlock(&dentry
->d_lock
);
2429 spin_lock(&dentry
->d_lock
);
2430 } while (d_in_lookup(dentry
));
2434 struct dentry
*d_alloc_parallel(struct dentry
*parent
,
2435 const struct qstr
*name
,
2436 wait_queue_head_t
*wq
)
2438 unsigned int hash
= name
->hash
;
2439 struct hlist_bl_head
*b
= in_lookup_hash(parent
, hash
);
2440 struct hlist_bl_node
*node
;
2441 struct dentry
*new = d_alloc(parent
, name
);
2442 struct dentry
*dentry
;
2443 unsigned seq
, r_seq
, d_seq
;
2446 return ERR_PTR(-ENOMEM
);
2450 seq
= smp_load_acquire(&parent
->d_inode
->i_dir_seq
);
2451 r_seq
= read_seqbegin(&rename_lock
);
2452 dentry
= __d_lookup_rcu(parent
, name
, &d_seq
);
2453 if (unlikely(dentry
)) {
2454 if (!lockref_get_not_dead(&dentry
->d_lockref
)) {
2458 if (read_seqcount_retry(&dentry
->d_seq
, d_seq
)) {
2467 if (unlikely(read_seqretry(&rename_lock
, r_seq
))) {
2472 if (unlikely(seq
& 1)) {
2478 if (unlikely(READ_ONCE(parent
->d_inode
->i_dir_seq
) != seq
)) {
2484 * No changes for the parent since the beginning of d_lookup().
2485 * Since all removals from the chain happen with hlist_bl_lock(),
2486 * any potential in-lookup matches are going to stay here until
2487 * we unlock the chain. All fields are stable in everything
2490 hlist_bl_for_each_entry(dentry
, node
, b
, d_u
.d_in_lookup_hash
) {
2491 if (dentry
->d_name
.hash
!= hash
)
2493 if (dentry
->d_parent
!= parent
)
2495 if (!d_same_name(dentry
, parent
, name
))
2498 /* now we can try to grab a reference */
2499 if (!lockref_get_not_dead(&dentry
->d_lockref
)) {
2506 * somebody is likely to be still doing lookup for it;
2507 * wait for them to finish
2509 spin_lock(&dentry
->d_lock
);
2510 d_wait_lookup(dentry
);
2512 * it's not in-lookup anymore; in principle we should repeat
2513 * everything from dcache lookup, but it's likely to be what
2514 * d_lookup() would've found anyway. If it is, just return it;
2515 * otherwise we really have to repeat the whole thing.
2517 if (unlikely(dentry
->d_name
.hash
!= hash
))
2519 if (unlikely(dentry
->d_parent
!= parent
))
2521 if (unlikely(d_unhashed(dentry
)))
2523 if (unlikely(!d_same_name(dentry
, parent
, name
)))
2525 /* OK, it *is* a hashed match; return it */
2526 spin_unlock(&dentry
->d_lock
);
2531 /* we can't take ->d_lock here; it's OK, though. */
2532 new->d_flags
|= DCACHE_PAR_LOOKUP
;
2534 hlist_bl_add_head_rcu(&new->d_u
.d_in_lookup_hash
, b
);
2538 spin_unlock(&dentry
->d_lock
);
2542 EXPORT_SYMBOL(d_alloc_parallel
);
2544 void __d_lookup_done(struct dentry
*dentry
)
2546 struct hlist_bl_head
*b
= in_lookup_hash(dentry
->d_parent
,
2547 dentry
->d_name
.hash
);
2549 dentry
->d_flags
&= ~DCACHE_PAR_LOOKUP
;
2550 __hlist_bl_del(&dentry
->d_u
.d_in_lookup_hash
);
2551 wake_up_all(dentry
->d_wait
);
2552 dentry
->d_wait
= NULL
;
2554 INIT_HLIST_NODE(&dentry
->d_u
.d_alias
);
2555 INIT_LIST_HEAD(&dentry
->d_lru
);
2557 EXPORT_SYMBOL(__d_lookup_done
);
2559 /* inode->i_lock held if inode is non-NULL */
2561 static inline void __d_add(struct dentry
*dentry
, struct inode
*inode
)
2563 struct inode
*dir
= NULL
;
2565 spin_lock(&dentry
->d_lock
);
2566 if (unlikely(d_in_lookup(dentry
))) {
2567 dir
= dentry
->d_parent
->d_inode
;
2568 n
= start_dir_add(dir
);
2569 __d_lookup_done(dentry
);
2572 unsigned add_flags
= d_flags_for_inode(inode
);
2573 hlist_add_head(&dentry
->d_u
.d_alias
, &inode
->i_dentry
);
2574 raw_write_seqcount_begin(&dentry
->d_seq
);
2575 __d_set_inode_and_type(dentry
, inode
, add_flags
);
2576 raw_write_seqcount_end(&dentry
->d_seq
);
2577 fsnotify_update_flags(dentry
);
2581 end_dir_add(dir
, n
);
2582 spin_unlock(&dentry
->d_lock
);
2584 spin_unlock(&inode
->i_lock
);
2588 * d_add - add dentry to hash queues
2589 * @entry: dentry to add
2590 * @inode: The inode to attach to this dentry
2592 * This adds the entry to the hash queues and initializes @inode.
2593 * The entry was actually filled in earlier during d_alloc().
2596 void d_add(struct dentry
*entry
, struct inode
*inode
)
2599 security_d_instantiate(entry
, inode
);
2600 spin_lock(&inode
->i_lock
);
2602 __d_add(entry
, inode
);
2604 EXPORT_SYMBOL(d_add
);
2607 * d_exact_alias - find and hash an exact unhashed alias
2608 * @entry: dentry to add
2609 * @inode: The inode to go with this dentry
2611 * If an unhashed dentry with the same name/parent and desired
2612 * inode already exists, hash and return it. Otherwise, return
2615 * Parent directory should be locked.
2617 struct dentry
*d_exact_alias(struct dentry
*entry
, struct inode
*inode
)
2619 struct dentry
*alias
;
2620 unsigned int hash
= entry
->d_name
.hash
;
2622 spin_lock(&inode
->i_lock
);
2623 hlist_for_each_entry(alias
, &inode
->i_dentry
, d_u
.d_alias
) {
2625 * Don't need alias->d_lock here, because aliases with
2626 * d_parent == entry->d_parent are not subject to name or
2627 * parent changes, because the parent inode i_mutex is held.
2629 if (alias
->d_name
.hash
!= hash
)
2631 if (alias
->d_parent
!= entry
->d_parent
)
2633 if (!d_same_name(alias
, entry
->d_parent
, &entry
->d_name
))
2635 spin_lock(&alias
->d_lock
);
2636 if (!d_unhashed(alias
)) {
2637 spin_unlock(&alias
->d_lock
);
2640 __dget_dlock(alias
);
2642 spin_unlock(&alias
->d_lock
);
2644 spin_unlock(&inode
->i_lock
);
2647 spin_unlock(&inode
->i_lock
);
2650 EXPORT_SYMBOL(d_exact_alias
);
2652 static void swap_names(struct dentry
*dentry
, struct dentry
*target
)
2654 if (unlikely(dname_external(target
))) {
2655 if (unlikely(dname_external(dentry
))) {
2657 * Both external: swap the pointers
2659 swap(target
->d_name
.name
, dentry
->d_name
.name
);
2662 * dentry:internal, target:external. Steal target's
2663 * storage and make target internal.
2665 memcpy(target
->d_iname
, dentry
->d_name
.name
,
2666 dentry
->d_name
.len
+ 1);
2667 dentry
->d_name
.name
= target
->d_name
.name
;
2668 target
->d_name
.name
= target
->d_iname
;
2671 if (unlikely(dname_external(dentry
))) {
2673 * dentry:external, target:internal. Give dentry's
2674 * storage to target and make dentry internal
2676 memcpy(dentry
->d_iname
, target
->d_name
.name
,
2677 target
->d_name
.len
+ 1);
2678 target
->d_name
.name
= dentry
->d_name
.name
;
2679 dentry
->d_name
.name
= dentry
->d_iname
;
2682 * Both are internal.
2685 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN
, sizeof(long)));
2686 for (i
= 0; i
< DNAME_INLINE_LEN
/ sizeof(long); i
++) {
2687 swap(((long *) &dentry
->d_iname
)[i
],
2688 ((long *) &target
->d_iname
)[i
]);
2692 swap(dentry
->d_name
.hash_len
, target
->d_name
.hash_len
);
2695 static void copy_name(struct dentry
*dentry
, struct dentry
*target
)
2697 struct external_name
*old_name
= NULL
;
2698 if (unlikely(dname_external(dentry
)))
2699 old_name
= external_name(dentry
);
2700 if (unlikely(dname_external(target
))) {
2701 atomic_inc(&external_name(target
)->u
.count
);
2702 dentry
->d_name
= target
->d_name
;
2704 memcpy(dentry
->d_iname
, target
->d_name
.name
,
2705 target
->d_name
.len
+ 1);
2706 dentry
->d_name
.name
= dentry
->d_iname
;
2707 dentry
->d_name
.hash_len
= target
->d_name
.hash_len
;
2709 if (old_name
&& likely(atomic_dec_and_test(&old_name
->u
.count
)))
2710 call_rcu(&old_name
->u
.head
, __d_free_external_name
);
2714 * __d_move - move a dentry
2715 * @dentry: entry to move
2716 * @target: new dentry
2717 * @exchange: exchange the two dentries
2719 * Update the dcache to reflect the move of a file name. Negative
2720 * dcache entries should not be moved in this way. Caller must hold
2721 * rename_lock, the i_mutex of the source and target directories,
2722 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2724 static void __d_move(struct dentry
*dentry
, struct dentry
*target
,
2727 struct dentry
*old_parent
, *p
;
2728 struct inode
*dir
= NULL
;
2731 WARN_ON(!dentry
->d_inode
);
2732 if (WARN_ON(dentry
== target
))
2735 BUG_ON(d_ancestor(target
, dentry
));
2736 old_parent
= dentry
->d_parent
;
2737 p
= d_ancestor(old_parent
, target
);
2738 if (IS_ROOT(dentry
)) {
2740 spin_lock(&target
->d_parent
->d_lock
);
2742 /* target is not a descendent of dentry->d_parent */
2743 spin_lock(&target
->d_parent
->d_lock
);
2744 spin_lock_nested(&old_parent
->d_lock
, DENTRY_D_LOCK_NESTED
);
2746 BUG_ON(p
== dentry
);
2747 spin_lock(&old_parent
->d_lock
);
2749 spin_lock_nested(&target
->d_parent
->d_lock
,
2750 DENTRY_D_LOCK_NESTED
);
2752 spin_lock_nested(&dentry
->d_lock
, 2);
2753 spin_lock_nested(&target
->d_lock
, 3);
2755 if (unlikely(d_in_lookup(target
))) {
2756 dir
= target
->d_parent
->d_inode
;
2757 n
= start_dir_add(dir
);
2758 __d_lookup_done(target
);
2761 write_seqcount_begin(&dentry
->d_seq
);
2762 write_seqcount_begin_nested(&target
->d_seq
, DENTRY_D_LOCK_NESTED
);
2765 if (!d_unhashed(dentry
))
2767 if (!d_unhashed(target
))
2770 /* ... and switch them in the tree */
2771 dentry
->d_parent
= target
->d_parent
;
2773 copy_name(dentry
, target
);
2774 target
->d_hash
.pprev
= NULL
;
2775 dentry
->d_parent
->d_lockref
.count
++;
2776 if (dentry
== old_parent
)
2777 dentry
->d_flags
|= DCACHE_RCUACCESS
;
2779 WARN_ON(!--old_parent
->d_lockref
.count
);
2781 target
->d_parent
= old_parent
;
2782 swap_names(dentry
, target
);
2783 list_move(&target
->d_child
, &target
->d_parent
->d_subdirs
);
2785 fsnotify_update_flags(target
);
2787 list_move(&dentry
->d_child
, &dentry
->d_parent
->d_subdirs
);
2789 fsnotify_update_flags(dentry
);
2791 write_seqcount_end(&target
->d_seq
);
2792 write_seqcount_end(&dentry
->d_seq
);
2795 end_dir_add(dir
, n
);
2797 if (dentry
->d_parent
!= old_parent
)
2798 spin_unlock(&dentry
->d_parent
->d_lock
);
2799 if (dentry
!= old_parent
)
2800 spin_unlock(&old_parent
->d_lock
);
2801 spin_unlock(&target
->d_lock
);
2802 spin_unlock(&dentry
->d_lock
);
2806 * d_move - move a dentry
2807 * @dentry: entry to move
2808 * @target: new dentry
2810 * Update the dcache to reflect the move of a file name. Negative
2811 * dcache entries should not be moved in this way. See the locking
2812 * requirements for __d_move.
2814 void d_move(struct dentry
*dentry
, struct dentry
*target
)
2816 write_seqlock(&rename_lock
);
2817 __d_move(dentry
, target
, false);
2818 write_sequnlock(&rename_lock
);
2820 EXPORT_SYMBOL(d_move
);
2823 * d_exchange - exchange two dentries
2824 * @dentry1: first dentry
2825 * @dentry2: second dentry
2827 void d_exchange(struct dentry
*dentry1
, struct dentry
*dentry2
)
2829 write_seqlock(&rename_lock
);
2831 WARN_ON(!dentry1
->d_inode
);
2832 WARN_ON(!dentry2
->d_inode
);
2833 WARN_ON(IS_ROOT(dentry1
));
2834 WARN_ON(IS_ROOT(dentry2
));
2836 __d_move(dentry1
, dentry2
, true);
2838 write_sequnlock(&rename_lock
);
2842 * d_ancestor - search for an ancestor
2843 * @p1: ancestor dentry
2846 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2847 * an ancestor of p2, else NULL.
2849 struct dentry
*d_ancestor(struct dentry
*p1
, struct dentry
*p2
)
2853 for (p
= p2
; !IS_ROOT(p
); p
= p
->d_parent
) {
2854 if (p
->d_parent
== p1
)
2861 * This helper attempts to cope with remotely renamed directories
2863 * It assumes that the caller is already holding
2864 * dentry->d_parent->d_inode->i_mutex, and rename_lock
2866 * Note: If ever the locking in lock_rename() changes, then please
2867 * remember to update this too...
2869 static int __d_unalias(struct inode
*inode
,
2870 struct dentry
*dentry
, struct dentry
*alias
)
2872 struct mutex
*m1
= NULL
;
2873 struct rw_semaphore
*m2
= NULL
;
2876 /* If alias and dentry share a parent, then no extra locks required */
2877 if (alias
->d_parent
== dentry
->d_parent
)
2880 /* See lock_rename() */
2881 if (!mutex_trylock(&dentry
->d_sb
->s_vfs_rename_mutex
))
2883 m1
= &dentry
->d_sb
->s_vfs_rename_mutex
;
2884 if (!inode_trylock_shared(alias
->d_parent
->d_inode
))
2886 m2
= &alias
->d_parent
->d_inode
->i_rwsem
;
2888 __d_move(alias
, dentry
, false);
2899 * d_splice_alias - splice a disconnected dentry into the tree if one exists
2900 * @inode: the inode which may have a disconnected dentry
2901 * @dentry: a negative dentry which we want to point to the inode.
2903 * If inode is a directory and has an IS_ROOT alias, then d_move that in
2904 * place of the given dentry and return it, else simply d_add the inode
2905 * to the dentry and return NULL.
2907 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
2908 * we should error out: directories can't have multiple aliases.
2910 * This is needed in the lookup routine of any filesystem that is exportable
2911 * (via knfsd) so that we can build dcache paths to directories effectively.
2913 * If a dentry was found and moved, then it is returned. Otherwise NULL
2914 * is returned. This matches the expected return value of ->lookup.
2916 * Cluster filesystems may call this function with a negative, hashed dentry.
2917 * In that case, we know that the inode will be a regular file, and also this
2918 * will only occur during atomic_open. So we need to check for the dentry
2919 * being already hashed only in the final case.
2921 struct dentry
*d_splice_alias(struct inode
*inode
, struct dentry
*dentry
)
2924 return ERR_CAST(inode
);
2926 BUG_ON(!d_unhashed(dentry
));
2931 security_d_instantiate(dentry
, inode
);
2932 spin_lock(&inode
->i_lock
);
2933 if (S_ISDIR(inode
->i_mode
)) {
2934 struct dentry
*new = __d_find_any_alias(inode
);
2935 if (unlikely(new)) {
2936 /* The reference to new ensures it remains an alias */
2937 spin_unlock(&inode
->i_lock
);
2938 write_seqlock(&rename_lock
);
2939 if (unlikely(d_ancestor(new, dentry
))) {
2940 write_sequnlock(&rename_lock
);
2942 new = ERR_PTR(-ELOOP
);
2943 pr_warn_ratelimited(
2944 "VFS: Lookup of '%s' in %s %s"
2945 " would have caused loop\n",
2946 dentry
->d_name
.name
,
2947 inode
->i_sb
->s_type
->name
,
2949 } else if (!IS_ROOT(new)) {
2950 struct dentry
*old_parent
= dget(new->d_parent
);
2951 int err
= __d_unalias(inode
, dentry
, new);
2952 write_sequnlock(&rename_lock
);
2959 __d_move(new, dentry
, false);
2960 write_sequnlock(&rename_lock
);
2967 __d_add(dentry
, inode
);
2970 EXPORT_SYMBOL(d_splice_alias
);
2973 * Test whether new_dentry is a subdirectory of old_dentry.
2975 * Trivially implemented using the dcache structure
2979 * is_subdir - is new dentry a subdirectory of old_dentry
2980 * @new_dentry: new dentry
2981 * @old_dentry: old dentry
2983 * Returns true if new_dentry is a subdirectory of the parent (at any depth).
2984 * Returns false otherwise.
2985 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
2988 bool is_subdir(struct dentry
*new_dentry
, struct dentry
*old_dentry
)
2993 if (new_dentry
== old_dentry
)
2997 /* for restarting inner loop in case of seq retry */
2998 seq
= read_seqbegin(&rename_lock
);
3000 * Need rcu_readlock to protect against the d_parent trashing
3004 if (d_ancestor(old_dentry
, new_dentry
))
3009 } while (read_seqretry(&rename_lock
, seq
));
3013 EXPORT_SYMBOL(is_subdir
);
3015 static enum d_walk_ret
d_genocide_kill(void *data
, struct dentry
*dentry
)
3017 struct dentry
*root
= data
;
3018 if (dentry
!= root
) {
3019 if (d_unhashed(dentry
) || !dentry
->d_inode
)
3022 if (!(dentry
->d_flags
& DCACHE_GENOCIDE
)) {
3023 dentry
->d_flags
|= DCACHE_GENOCIDE
;
3024 dentry
->d_lockref
.count
--;
3027 return D_WALK_CONTINUE
;
3030 void d_genocide(struct dentry
*parent
)
3032 d_walk(parent
, parent
, d_genocide_kill
);
3035 EXPORT_SYMBOL(d_genocide
);
3037 void d_tmpfile(struct dentry
*dentry
, struct inode
*inode
)
3039 inode_dec_link_count(inode
);
3040 BUG_ON(dentry
->d_name
.name
!= dentry
->d_iname
||
3041 !hlist_unhashed(&dentry
->d_u
.d_alias
) ||
3042 !d_unlinked(dentry
));
3043 spin_lock(&dentry
->d_parent
->d_lock
);
3044 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
3045 dentry
->d_name
.len
= sprintf(dentry
->d_iname
, "#%llu",
3046 (unsigned long long)inode
->i_ino
);
3047 spin_unlock(&dentry
->d_lock
);
3048 spin_unlock(&dentry
->d_parent
->d_lock
);
3049 d_instantiate(dentry
, inode
);
3051 EXPORT_SYMBOL(d_tmpfile
);
3053 static __initdata
unsigned long dhash_entries
;
3054 static int __init
set_dhash_entries(char *str
)
3058 dhash_entries
= simple_strtoul(str
, &str
, 0);
3061 __setup("dhash_entries=", set_dhash_entries
);
3063 static void __init
dcache_init_early(void)
3065 /* If hashes are distributed across NUMA nodes, defer
3066 * hash allocation until vmalloc space is available.
3072 alloc_large_system_hash("Dentry cache",
3073 sizeof(struct hlist_bl_head
),
3076 HASH_EARLY
| HASH_ZERO
,
3081 d_hash_shift
= 32 - d_hash_shift
;
3084 static void __init
dcache_init(void)
3087 * A constructor could be added for stable state like the lists,
3088 * but it is probably not worth it because of the cache nature
3091 dentry_cache
= KMEM_CACHE_USERCOPY(dentry
,
3092 SLAB_RECLAIM_ACCOUNT
|SLAB_PANIC
|SLAB_MEM_SPREAD
|SLAB_ACCOUNT
,
3095 /* Hash may have been set up in dcache_init_early */
3100 alloc_large_system_hash("Dentry cache",
3101 sizeof(struct hlist_bl_head
),
3109 d_hash_shift
= 32 - d_hash_shift
;
3112 /* SLAB cache for __getname() consumers */
3113 struct kmem_cache
*names_cachep __read_mostly
;
3114 EXPORT_SYMBOL(names_cachep
);
3116 void __init
vfs_caches_init_early(void)
3120 for (i
= 0; i
< ARRAY_SIZE(in_lookup_hashtable
); i
++)
3121 INIT_HLIST_BL_HEAD(&in_lookup_hashtable
[i
]);
3123 dcache_init_early();
3127 void __init
vfs_caches_init(void)
3129 names_cachep
= kmem_cache_create_usercopy("names_cache", PATH_MAX
, 0,
3130 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, 0, PATH_MAX
, NULL
);
3135 files_maxfiles_init();