]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/dcache.c
x86/speculation/l1tf: Protect PAE swap entries against L1TF
[mirror_ubuntu-bionic-kernel.git] / fs / dcache.c
1 /*
2 * fs/dcache.c
3 *
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
8
9 /*
10 * Notes on the allocation strategy:
11 *
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
15 */
16
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/export.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <linux/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/rculist_bl.h>
38 #include <linux/prefetch.h>
39 #include <linux/ratelimit.h>
40 #include <linux/list_lru.h>
41 #include <linux/kasan.h>
42
43 #include "internal.h"
44 #include "mount.h"
45
46 /*
47 * Usage:
48 * dcache->d_inode->i_lock protects:
49 * - i_dentry, d_u.d_alias, d_inode of aliases
50 * dcache_hash_bucket lock protects:
51 * - the dcache hash table
52 * s_anon bl list spinlock protects:
53 * - the s_anon list (see __d_drop)
54 * dentry->d_sb->s_dentry_lru_lock protects:
55 * - the dcache lru lists and counters
56 * d_lock protects:
57 * - d_flags
58 * - d_name
59 * - d_lru
60 * - d_count
61 * - d_unhashed()
62 * - d_parent and d_subdirs
63 * - childrens' d_child and d_parent
64 * - d_u.d_alias, d_inode
65 *
66 * Ordering:
67 * dentry->d_inode->i_lock
68 * dentry->d_lock
69 * dentry->d_sb->s_dentry_lru_lock
70 * dcache_hash_bucket lock
71 * s_anon lock
72 *
73 * If there is an ancestor relationship:
74 * dentry->d_parent->...->d_parent->d_lock
75 * ...
76 * dentry->d_parent->d_lock
77 * dentry->d_lock
78 *
79 * If no ancestor relationship:
80 * if (dentry1 < dentry2)
81 * dentry1->d_lock
82 * dentry2->d_lock
83 */
84 int sysctl_vfs_cache_pressure __read_mostly = 100;
85 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
86
87 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
88
89 EXPORT_SYMBOL(rename_lock);
90
91 static struct kmem_cache *dentry_cache __read_mostly;
92
93 const struct qstr empty_name = QSTR_INIT("", 0);
94 EXPORT_SYMBOL(empty_name);
95 const struct qstr slash_name = QSTR_INIT("/", 1);
96 EXPORT_SYMBOL(slash_name);
97
98 /*
99 * This is the single most critical data structure when it comes
100 * to the dcache: the hashtable for lookups. Somebody should try
101 * to make this good - I've just made it work.
102 *
103 * This hash-function tries to avoid losing too many bits of hash
104 * information, yet avoid using a prime hash-size or similar.
105 */
106
107 static unsigned int d_hash_mask __read_mostly;
108 static unsigned int d_hash_shift __read_mostly;
109
110 static struct hlist_bl_head *dentry_hashtable __read_mostly;
111
112 static inline struct hlist_bl_head *d_hash(unsigned int hash)
113 {
114 return dentry_hashtable + (hash >> (32 - d_hash_shift));
115 }
116
117 #define IN_LOOKUP_SHIFT 10
118 static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT];
119
120 static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent,
121 unsigned int hash)
122 {
123 hash += (unsigned long) parent / L1_CACHE_BYTES;
124 return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT);
125 }
126
127
128 /* Statistics gathering. */
129 struct dentry_stat_t dentry_stat = {
130 .age_limit = 45,
131 };
132
133 static DEFINE_PER_CPU(long, nr_dentry);
134 static DEFINE_PER_CPU(long, nr_dentry_unused);
135
136 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
137
138 /*
139 * Here we resort to our own counters instead of using generic per-cpu counters
140 * for consistency with what the vfs inode code does. We are expected to harvest
141 * better code and performance by having our own specialized counters.
142 *
143 * Please note that the loop is done over all possible CPUs, not over all online
144 * CPUs. The reason for this is that we don't want to play games with CPUs going
145 * on and off. If one of them goes off, we will just keep their counters.
146 *
147 * glommer: See cffbc8a for details, and if you ever intend to change this,
148 * please update all vfs counters to match.
149 */
150 static long get_nr_dentry(void)
151 {
152 int i;
153 long sum = 0;
154 for_each_possible_cpu(i)
155 sum += per_cpu(nr_dentry, i);
156 return sum < 0 ? 0 : sum;
157 }
158
159 static long get_nr_dentry_unused(void)
160 {
161 int i;
162 long sum = 0;
163 for_each_possible_cpu(i)
164 sum += per_cpu(nr_dentry_unused, i);
165 return sum < 0 ? 0 : sum;
166 }
167
168 int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer,
169 size_t *lenp, loff_t *ppos)
170 {
171 dentry_stat.nr_dentry = get_nr_dentry();
172 dentry_stat.nr_unused = get_nr_dentry_unused();
173 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
174 }
175 #endif
176
177 /*
178 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
179 * The strings are both count bytes long, and count is non-zero.
180 */
181 #ifdef CONFIG_DCACHE_WORD_ACCESS
182
183 #include <asm/word-at-a-time.h>
184 /*
185 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
186 * aligned allocation for this particular component. We don't
187 * strictly need the load_unaligned_zeropad() safety, but it
188 * doesn't hurt either.
189 *
190 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
191 * need the careful unaligned handling.
192 */
193 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
194 {
195 unsigned long a,b,mask;
196
197 for (;;) {
198 a = *(unsigned long *)cs;
199 b = load_unaligned_zeropad(ct);
200 if (tcount < sizeof(unsigned long))
201 break;
202 if (unlikely(a != b))
203 return 1;
204 cs += sizeof(unsigned long);
205 ct += sizeof(unsigned long);
206 tcount -= sizeof(unsigned long);
207 if (!tcount)
208 return 0;
209 }
210 mask = bytemask_from_count(tcount);
211 return unlikely(!!((a ^ b) & mask));
212 }
213
214 #else
215
216 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
217 {
218 do {
219 if (*cs != *ct)
220 return 1;
221 cs++;
222 ct++;
223 tcount--;
224 } while (tcount);
225 return 0;
226 }
227
228 #endif
229
230 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
231 {
232 /*
233 * Be careful about RCU walk racing with rename:
234 * use 'READ_ONCE' to fetch the name pointer.
235 *
236 * NOTE! Even if a rename will mean that the length
237 * was not loaded atomically, we don't care. The
238 * RCU walk will check the sequence count eventually,
239 * and catch it. And we won't overrun the buffer,
240 * because we're reading the name pointer atomically,
241 * and a dentry name is guaranteed to be properly
242 * terminated with a NUL byte.
243 *
244 * End result: even if 'len' is wrong, we'll exit
245 * early because the data cannot match (there can
246 * be no NUL in the ct/tcount data)
247 */
248 const unsigned char *cs = READ_ONCE(dentry->d_name.name);
249
250 return dentry_string_cmp(cs, ct, tcount);
251 }
252
253 struct external_name {
254 union {
255 atomic_t count;
256 struct rcu_head head;
257 } u;
258 unsigned char name[];
259 };
260
261 static inline struct external_name *external_name(struct dentry *dentry)
262 {
263 return container_of(dentry->d_name.name, struct external_name, name[0]);
264 }
265
266 static void __d_free(struct rcu_head *head)
267 {
268 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
269
270 kmem_cache_free(dentry_cache, dentry);
271 }
272
273 static void __d_free_external(struct rcu_head *head)
274 {
275 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
276 kfree(external_name(dentry));
277 kmem_cache_free(dentry_cache, dentry);
278 }
279
280 static inline int dname_external(const struct dentry *dentry)
281 {
282 return dentry->d_name.name != dentry->d_iname;
283 }
284
285 void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry)
286 {
287 spin_lock(&dentry->d_lock);
288 if (unlikely(dname_external(dentry))) {
289 struct external_name *p = external_name(dentry);
290 atomic_inc(&p->u.count);
291 spin_unlock(&dentry->d_lock);
292 name->name = p->name;
293 } else {
294 memcpy(name->inline_name, dentry->d_iname, DNAME_INLINE_LEN);
295 spin_unlock(&dentry->d_lock);
296 name->name = name->inline_name;
297 }
298 }
299 EXPORT_SYMBOL(take_dentry_name_snapshot);
300
301 void release_dentry_name_snapshot(struct name_snapshot *name)
302 {
303 if (unlikely(name->name != name->inline_name)) {
304 struct external_name *p;
305 p = container_of(name->name, struct external_name, name[0]);
306 if (unlikely(atomic_dec_and_test(&p->u.count)))
307 kfree_rcu(p, u.head);
308 }
309 }
310 EXPORT_SYMBOL(release_dentry_name_snapshot);
311
312 static inline void __d_set_inode_and_type(struct dentry *dentry,
313 struct inode *inode,
314 unsigned type_flags)
315 {
316 unsigned flags;
317
318 dentry->d_inode = inode;
319 flags = READ_ONCE(dentry->d_flags);
320 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
321 flags |= type_flags;
322 WRITE_ONCE(dentry->d_flags, flags);
323 }
324
325 static inline void __d_clear_type_and_inode(struct dentry *dentry)
326 {
327 unsigned flags = READ_ONCE(dentry->d_flags);
328
329 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
330 WRITE_ONCE(dentry->d_flags, flags);
331 dentry->d_inode = NULL;
332 }
333
334 static void dentry_free(struct dentry *dentry)
335 {
336 WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
337 if (unlikely(dname_external(dentry))) {
338 struct external_name *p = external_name(dentry);
339 if (likely(atomic_dec_and_test(&p->u.count))) {
340 call_rcu(&dentry->d_u.d_rcu, __d_free_external);
341 return;
342 }
343 }
344 /* if dentry was never visible to RCU, immediate free is OK */
345 if (!(dentry->d_flags & DCACHE_RCUACCESS))
346 __d_free(&dentry->d_u.d_rcu);
347 else
348 call_rcu(&dentry->d_u.d_rcu, __d_free);
349 }
350
351 /*
352 * Release the dentry's inode, using the filesystem
353 * d_iput() operation if defined.
354 */
355 static void dentry_unlink_inode(struct dentry * dentry)
356 __releases(dentry->d_lock)
357 __releases(dentry->d_inode->i_lock)
358 {
359 struct inode *inode = dentry->d_inode;
360 bool hashed = !d_unhashed(dentry);
361
362 if (hashed)
363 raw_write_seqcount_begin(&dentry->d_seq);
364 __d_clear_type_and_inode(dentry);
365 hlist_del_init(&dentry->d_u.d_alias);
366 if (hashed)
367 raw_write_seqcount_end(&dentry->d_seq);
368 spin_unlock(&dentry->d_lock);
369 spin_unlock(&inode->i_lock);
370 if (!inode->i_nlink)
371 fsnotify_inoderemove(inode);
372 if (dentry->d_op && dentry->d_op->d_iput)
373 dentry->d_op->d_iput(dentry, inode);
374 else
375 iput(inode);
376 }
377
378 /*
379 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
380 * is in use - which includes both the "real" per-superblock
381 * LRU list _and_ the DCACHE_SHRINK_LIST use.
382 *
383 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
384 * on the shrink list (ie not on the superblock LRU list).
385 *
386 * The per-cpu "nr_dentry_unused" counters are updated with
387 * the DCACHE_LRU_LIST bit.
388 *
389 * These helper functions make sure we always follow the
390 * rules. d_lock must be held by the caller.
391 */
392 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
393 static void d_lru_add(struct dentry *dentry)
394 {
395 D_FLAG_VERIFY(dentry, 0);
396 dentry->d_flags |= DCACHE_LRU_LIST;
397 this_cpu_inc(nr_dentry_unused);
398 WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
399 }
400
401 static void d_lru_del(struct dentry *dentry)
402 {
403 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
404 dentry->d_flags &= ~DCACHE_LRU_LIST;
405 this_cpu_dec(nr_dentry_unused);
406 WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
407 }
408
409 static void d_shrink_del(struct dentry *dentry)
410 {
411 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
412 list_del_init(&dentry->d_lru);
413 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
414 this_cpu_dec(nr_dentry_unused);
415 }
416
417 static void d_shrink_add(struct dentry *dentry, struct list_head *list)
418 {
419 D_FLAG_VERIFY(dentry, 0);
420 list_add(&dentry->d_lru, list);
421 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
422 this_cpu_inc(nr_dentry_unused);
423 }
424
425 /*
426 * These can only be called under the global LRU lock, ie during the
427 * callback for freeing the LRU list. "isolate" removes it from the
428 * LRU lists entirely, while shrink_move moves it to the indicated
429 * private list.
430 */
431 static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
432 {
433 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
434 dentry->d_flags &= ~DCACHE_LRU_LIST;
435 this_cpu_dec(nr_dentry_unused);
436 list_lru_isolate(lru, &dentry->d_lru);
437 }
438
439 static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
440 struct list_head *list)
441 {
442 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
443 dentry->d_flags |= DCACHE_SHRINK_LIST;
444 list_lru_isolate_move(lru, &dentry->d_lru, list);
445 }
446
447 /*
448 * dentry_lru_(add|del)_list) must be called with d_lock held.
449 */
450 static void dentry_lru_add(struct dentry *dentry)
451 {
452 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
453 d_lru_add(dentry);
454 else if (unlikely(!(dentry->d_flags & DCACHE_REFERENCED)))
455 dentry->d_flags |= DCACHE_REFERENCED;
456 }
457
458 /**
459 * d_drop - drop a dentry
460 * @dentry: dentry to drop
461 *
462 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
463 * be found through a VFS lookup any more. Note that this is different from
464 * deleting the dentry - d_delete will try to mark the dentry negative if
465 * possible, giving a successful _negative_ lookup, while d_drop will
466 * just make the cache lookup fail.
467 *
468 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
469 * reason (NFS timeouts or autofs deletes).
470 *
471 * __d_drop requires dentry->d_lock
472 * ___d_drop doesn't mark dentry as "unhashed"
473 * (dentry->d_hash.pprev will be LIST_POISON2, not NULL).
474 */
475 static void ___d_drop(struct dentry *dentry)
476 {
477 if (!d_unhashed(dentry)) {
478 struct hlist_bl_head *b;
479 /*
480 * Hashed dentries are normally on the dentry hashtable,
481 * with the exception of those newly allocated by
482 * d_obtain_alias, which are always IS_ROOT:
483 */
484 if (unlikely(IS_ROOT(dentry)))
485 b = &dentry->d_sb->s_anon;
486 else
487 b = d_hash(dentry->d_name.hash);
488
489 hlist_bl_lock(b);
490 __hlist_bl_del(&dentry->d_hash);
491 hlist_bl_unlock(b);
492 /* After this call, in-progress rcu-walk path lookup will fail. */
493 write_seqcount_invalidate(&dentry->d_seq);
494 }
495 }
496
497 void __d_drop(struct dentry *dentry)
498 {
499 ___d_drop(dentry);
500 dentry->d_hash.pprev = NULL;
501 }
502 EXPORT_SYMBOL(__d_drop);
503
504 void d_drop(struct dentry *dentry)
505 {
506 spin_lock(&dentry->d_lock);
507 __d_drop(dentry);
508 spin_unlock(&dentry->d_lock);
509 }
510 EXPORT_SYMBOL(d_drop);
511
512 static inline void dentry_unlist(struct dentry *dentry, struct dentry *parent)
513 {
514 struct dentry *next;
515 /*
516 * Inform d_walk() and shrink_dentry_list() that we are no longer
517 * attached to the dentry tree
518 */
519 dentry->d_flags |= DCACHE_DENTRY_KILLED;
520 if (unlikely(list_empty(&dentry->d_child)))
521 return;
522 __list_del_entry(&dentry->d_child);
523 /*
524 * Cursors can move around the list of children. While we'd been
525 * a normal list member, it didn't matter - ->d_child.next would've
526 * been updated. However, from now on it won't be and for the
527 * things like d_walk() it might end up with a nasty surprise.
528 * Normally d_walk() doesn't care about cursors moving around -
529 * ->d_lock on parent prevents that and since a cursor has no children
530 * of its own, we get through it without ever unlocking the parent.
531 * There is one exception, though - if we ascend from a child that
532 * gets killed as soon as we unlock it, the next sibling is found
533 * using the value left in its ->d_child.next. And if _that_
534 * pointed to a cursor, and cursor got moved (e.g. by lseek())
535 * before d_walk() regains parent->d_lock, we'll end up skipping
536 * everything the cursor had been moved past.
537 *
538 * Solution: make sure that the pointer left behind in ->d_child.next
539 * points to something that won't be moving around. I.e. skip the
540 * cursors.
541 */
542 while (dentry->d_child.next != &parent->d_subdirs) {
543 next = list_entry(dentry->d_child.next, struct dentry, d_child);
544 if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR)))
545 break;
546 dentry->d_child.next = next->d_child.next;
547 }
548 }
549
550 static void __dentry_kill(struct dentry *dentry)
551 {
552 struct dentry *parent = NULL;
553 bool can_free = true;
554 if (!IS_ROOT(dentry))
555 parent = dentry->d_parent;
556
557 /*
558 * The dentry is now unrecoverably dead to the world.
559 */
560 lockref_mark_dead(&dentry->d_lockref);
561
562 /*
563 * inform the fs via d_prune that this dentry is about to be
564 * unhashed and destroyed.
565 */
566 if (dentry->d_flags & DCACHE_OP_PRUNE)
567 dentry->d_op->d_prune(dentry);
568
569 if (dentry->d_flags & DCACHE_LRU_LIST) {
570 if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
571 d_lru_del(dentry);
572 }
573 /* if it was on the hash then remove it */
574 __d_drop(dentry);
575 dentry_unlist(dentry, parent);
576 if (parent)
577 spin_unlock(&parent->d_lock);
578 if (dentry->d_inode)
579 dentry_unlink_inode(dentry);
580 else
581 spin_unlock(&dentry->d_lock);
582 this_cpu_dec(nr_dentry);
583 if (dentry->d_op && dentry->d_op->d_release)
584 dentry->d_op->d_release(dentry);
585
586 spin_lock(&dentry->d_lock);
587 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
588 dentry->d_flags |= DCACHE_MAY_FREE;
589 can_free = false;
590 }
591 spin_unlock(&dentry->d_lock);
592 if (likely(can_free))
593 dentry_free(dentry);
594 }
595
596 /*
597 * Finish off a dentry we've decided to kill.
598 * dentry->d_lock must be held, returns with it unlocked.
599 * If ref is non-zero, then decrement the refcount too.
600 * Returns dentry requiring refcount drop, or NULL if we're done.
601 */
602 static struct dentry *dentry_kill(struct dentry *dentry)
603 __releases(dentry->d_lock)
604 {
605 struct inode *inode = dentry->d_inode;
606 struct dentry *parent = NULL;
607
608 if (inode && unlikely(!spin_trylock(&inode->i_lock)))
609 goto failed;
610
611 if (!IS_ROOT(dentry)) {
612 parent = dentry->d_parent;
613 if (unlikely(!spin_trylock(&parent->d_lock))) {
614 if (inode)
615 spin_unlock(&inode->i_lock);
616 goto failed;
617 }
618 }
619
620 __dentry_kill(dentry);
621 return parent;
622
623 failed:
624 spin_unlock(&dentry->d_lock);
625 return dentry; /* try again with same dentry */
626 }
627
628 static inline struct dentry *lock_parent(struct dentry *dentry)
629 {
630 struct dentry *parent = dentry->d_parent;
631 if (IS_ROOT(dentry))
632 return NULL;
633 if (unlikely(dentry->d_lockref.count < 0))
634 return NULL;
635 if (likely(spin_trylock(&parent->d_lock)))
636 return parent;
637 rcu_read_lock();
638 spin_unlock(&dentry->d_lock);
639 again:
640 parent = READ_ONCE(dentry->d_parent);
641 spin_lock(&parent->d_lock);
642 /*
643 * We can't blindly lock dentry until we are sure
644 * that we won't violate the locking order.
645 * Any changes of dentry->d_parent must have
646 * been done with parent->d_lock held, so
647 * spin_lock() above is enough of a barrier
648 * for checking if it's still our child.
649 */
650 if (unlikely(parent != dentry->d_parent)) {
651 spin_unlock(&parent->d_lock);
652 goto again;
653 }
654 if (parent != dentry) {
655 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
656 if (unlikely(dentry->d_lockref.count < 0)) {
657 spin_unlock(&parent->d_lock);
658 parent = NULL;
659 }
660 } else {
661 parent = NULL;
662 }
663 rcu_read_unlock();
664 return parent;
665 }
666
667 /*
668 * Try to do a lockless dput(), and return whether that was successful.
669 *
670 * If unsuccessful, we return false, having already taken the dentry lock.
671 *
672 * The caller needs to hold the RCU read lock, so that the dentry is
673 * guaranteed to stay around even if the refcount goes down to zero!
674 */
675 static inline bool fast_dput(struct dentry *dentry)
676 {
677 int ret;
678 unsigned int d_flags;
679
680 /*
681 * If we have a d_op->d_delete() operation, we sould not
682 * let the dentry count go to zero, so use "put_or_lock".
683 */
684 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE))
685 return lockref_put_or_lock(&dentry->d_lockref);
686
687 /*
688 * .. otherwise, we can try to just decrement the
689 * lockref optimistically.
690 */
691 ret = lockref_put_return(&dentry->d_lockref);
692
693 /*
694 * If the lockref_put_return() failed due to the lock being held
695 * by somebody else, the fast path has failed. We will need to
696 * get the lock, and then check the count again.
697 */
698 if (unlikely(ret < 0)) {
699 spin_lock(&dentry->d_lock);
700 if (dentry->d_lockref.count > 1) {
701 dentry->d_lockref.count--;
702 spin_unlock(&dentry->d_lock);
703 return 1;
704 }
705 return 0;
706 }
707
708 /*
709 * If we weren't the last ref, we're done.
710 */
711 if (ret)
712 return 1;
713
714 /*
715 * Careful, careful. The reference count went down
716 * to zero, but we don't hold the dentry lock, so
717 * somebody else could get it again, and do another
718 * dput(), and we need to not race with that.
719 *
720 * However, there is a very special and common case
721 * where we don't care, because there is nothing to
722 * do: the dentry is still hashed, it does not have
723 * a 'delete' op, and it's referenced and already on
724 * the LRU list.
725 *
726 * NOTE! Since we aren't locked, these values are
727 * not "stable". However, it is sufficient that at
728 * some point after we dropped the reference the
729 * dentry was hashed and the flags had the proper
730 * value. Other dentry users may have re-gotten
731 * a reference to the dentry and change that, but
732 * our work is done - we can leave the dentry
733 * around with a zero refcount.
734 */
735 smp_rmb();
736 d_flags = READ_ONCE(dentry->d_flags);
737 d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST | DCACHE_DISCONNECTED;
738
739 /* Nothing to do? Dropping the reference was all we needed? */
740 if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry))
741 return 1;
742
743 /*
744 * Not the fast normal case? Get the lock. We've already decremented
745 * the refcount, but we'll need to re-check the situation after
746 * getting the lock.
747 */
748 spin_lock(&dentry->d_lock);
749
750 /*
751 * Did somebody else grab a reference to it in the meantime, and
752 * we're no longer the last user after all? Alternatively, somebody
753 * else could have killed it and marked it dead. Either way, we
754 * don't need to do anything else.
755 */
756 if (dentry->d_lockref.count) {
757 spin_unlock(&dentry->d_lock);
758 return 1;
759 }
760
761 /*
762 * Re-get the reference we optimistically dropped. We hold the
763 * lock, and we just tested that it was zero, so we can just
764 * set it to 1.
765 */
766 dentry->d_lockref.count = 1;
767 return 0;
768 }
769
770
771 /*
772 * This is dput
773 *
774 * This is complicated by the fact that we do not want to put
775 * dentries that are no longer on any hash chain on the unused
776 * list: we'd much rather just get rid of them immediately.
777 *
778 * However, that implies that we have to traverse the dentry
779 * tree upwards to the parents which might _also_ now be
780 * scheduled for deletion (it may have been only waiting for
781 * its last child to go away).
782 *
783 * This tail recursion is done by hand as we don't want to depend
784 * on the compiler to always get this right (gcc generally doesn't).
785 * Real recursion would eat up our stack space.
786 */
787
788 /*
789 * dput - release a dentry
790 * @dentry: dentry to release
791 *
792 * Release a dentry. This will drop the usage count and if appropriate
793 * call the dentry unlink method as well as removing it from the queues and
794 * releasing its resources. If the parent dentries were scheduled for release
795 * they too may now get deleted.
796 */
797 void dput(struct dentry *dentry)
798 {
799 if (unlikely(!dentry))
800 return;
801
802 repeat:
803 might_sleep();
804
805 rcu_read_lock();
806 if (likely(fast_dput(dentry))) {
807 rcu_read_unlock();
808 return;
809 }
810
811 /* Slow case: now with the dentry lock held */
812 rcu_read_unlock();
813
814 WARN_ON(d_in_lookup(dentry));
815
816 /* Unreachable? Get rid of it */
817 if (unlikely(d_unhashed(dentry)))
818 goto kill_it;
819
820 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
821 goto kill_it;
822
823 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
824 if (dentry->d_op->d_delete(dentry))
825 goto kill_it;
826 }
827
828 dentry_lru_add(dentry);
829
830 dentry->d_lockref.count--;
831 spin_unlock(&dentry->d_lock);
832 return;
833
834 kill_it:
835 dentry = dentry_kill(dentry);
836 if (dentry) {
837 cond_resched();
838 goto repeat;
839 }
840 }
841 EXPORT_SYMBOL(dput);
842
843
844 /* This must be called with d_lock held */
845 static inline void __dget_dlock(struct dentry *dentry)
846 {
847 dentry->d_lockref.count++;
848 }
849
850 static inline void __dget(struct dentry *dentry)
851 {
852 lockref_get(&dentry->d_lockref);
853 }
854
855 struct dentry *dget_parent(struct dentry *dentry)
856 {
857 int gotref;
858 struct dentry *ret;
859
860 /*
861 * Do optimistic parent lookup without any
862 * locking.
863 */
864 rcu_read_lock();
865 ret = READ_ONCE(dentry->d_parent);
866 gotref = lockref_get_not_zero(&ret->d_lockref);
867 rcu_read_unlock();
868 if (likely(gotref)) {
869 if (likely(ret == READ_ONCE(dentry->d_parent)))
870 return ret;
871 dput(ret);
872 }
873
874 repeat:
875 /*
876 * Don't need rcu_dereference because we re-check it was correct under
877 * the lock.
878 */
879 rcu_read_lock();
880 ret = dentry->d_parent;
881 spin_lock(&ret->d_lock);
882 if (unlikely(ret != dentry->d_parent)) {
883 spin_unlock(&ret->d_lock);
884 rcu_read_unlock();
885 goto repeat;
886 }
887 rcu_read_unlock();
888 BUG_ON(!ret->d_lockref.count);
889 ret->d_lockref.count++;
890 spin_unlock(&ret->d_lock);
891 return ret;
892 }
893 EXPORT_SYMBOL(dget_parent);
894
895 /**
896 * d_find_alias - grab a hashed alias of inode
897 * @inode: inode in question
898 *
899 * If inode has a hashed alias, or is a directory and has any alias,
900 * acquire the reference to alias and return it. Otherwise return NULL.
901 * Notice that if inode is a directory there can be only one alias and
902 * it can be unhashed only if it has no children, or if it is the root
903 * of a filesystem, or if the directory was renamed and d_revalidate
904 * was the first vfs operation to notice.
905 *
906 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
907 * any other hashed alias over that one.
908 */
909 static struct dentry *__d_find_alias(struct inode *inode)
910 {
911 struct dentry *alias, *discon_alias;
912
913 again:
914 discon_alias = NULL;
915 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
916 spin_lock(&alias->d_lock);
917 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
918 if (IS_ROOT(alias) &&
919 (alias->d_flags & DCACHE_DISCONNECTED)) {
920 discon_alias = alias;
921 } else {
922 __dget_dlock(alias);
923 spin_unlock(&alias->d_lock);
924 return alias;
925 }
926 }
927 spin_unlock(&alias->d_lock);
928 }
929 if (discon_alias) {
930 alias = discon_alias;
931 spin_lock(&alias->d_lock);
932 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
933 __dget_dlock(alias);
934 spin_unlock(&alias->d_lock);
935 return alias;
936 }
937 spin_unlock(&alias->d_lock);
938 goto again;
939 }
940 return NULL;
941 }
942
943 struct dentry *d_find_alias(struct inode *inode)
944 {
945 struct dentry *de = NULL;
946
947 if (!hlist_empty(&inode->i_dentry)) {
948 spin_lock(&inode->i_lock);
949 de = __d_find_alias(inode);
950 spin_unlock(&inode->i_lock);
951 }
952 return de;
953 }
954 EXPORT_SYMBOL(d_find_alias);
955
956 /*
957 * Try to kill dentries associated with this inode.
958 * WARNING: you must own a reference to inode.
959 */
960 void d_prune_aliases(struct inode *inode)
961 {
962 struct dentry *dentry;
963 restart:
964 spin_lock(&inode->i_lock);
965 hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
966 spin_lock(&dentry->d_lock);
967 if (!dentry->d_lockref.count) {
968 struct dentry *parent = lock_parent(dentry);
969 if (likely(!dentry->d_lockref.count)) {
970 __dentry_kill(dentry);
971 dput(parent);
972 goto restart;
973 }
974 if (parent)
975 spin_unlock(&parent->d_lock);
976 }
977 spin_unlock(&dentry->d_lock);
978 }
979 spin_unlock(&inode->i_lock);
980 }
981 EXPORT_SYMBOL(d_prune_aliases);
982
983 static void shrink_dentry_list(struct list_head *list)
984 {
985 struct dentry *dentry, *parent;
986
987 while (!list_empty(list)) {
988 struct inode *inode;
989 dentry = list_entry(list->prev, struct dentry, d_lru);
990 spin_lock(&dentry->d_lock);
991 parent = lock_parent(dentry);
992
993 /*
994 * The dispose list is isolated and dentries are not accounted
995 * to the LRU here, so we can simply remove it from the list
996 * here regardless of whether it is referenced or not.
997 */
998 d_shrink_del(dentry);
999
1000 /*
1001 * We found an inuse dentry which was not removed from
1002 * the LRU because of laziness during lookup. Do not free it.
1003 */
1004 if (dentry->d_lockref.count > 0) {
1005 spin_unlock(&dentry->d_lock);
1006 if (parent)
1007 spin_unlock(&parent->d_lock);
1008 continue;
1009 }
1010
1011
1012 if (unlikely(dentry->d_flags & DCACHE_DENTRY_KILLED)) {
1013 bool can_free = dentry->d_flags & DCACHE_MAY_FREE;
1014 spin_unlock(&dentry->d_lock);
1015 if (parent)
1016 spin_unlock(&parent->d_lock);
1017 if (can_free)
1018 dentry_free(dentry);
1019 continue;
1020 }
1021
1022 inode = dentry->d_inode;
1023 if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
1024 d_shrink_add(dentry, list);
1025 spin_unlock(&dentry->d_lock);
1026 if (parent)
1027 spin_unlock(&parent->d_lock);
1028 continue;
1029 }
1030
1031 __dentry_kill(dentry);
1032
1033 /*
1034 * We need to prune ancestors too. This is necessary to prevent
1035 * quadratic behavior of shrink_dcache_parent(), but is also
1036 * expected to be beneficial in reducing dentry cache
1037 * fragmentation.
1038 */
1039 dentry = parent;
1040 while (dentry && !lockref_put_or_lock(&dentry->d_lockref)) {
1041 parent = lock_parent(dentry);
1042 if (dentry->d_lockref.count != 1) {
1043 dentry->d_lockref.count--;
1044 spin_unlock(&dentry->d_lock);
1045 if (parent)
1046 spin_unlock(&parent->d_lock);
1047 break;
1048 }
1049 inode = dentry->d_inode; /* can't be NULL */
1050 if (unlikely(!spin_trylock(&inode->i_lock))) {
1051 spin_unlock(&dentry->d_lock);
1052 if (parent)
1053 spin_unlock(&parent->d_lock);
1054 cpu_relax();
1055 continue;
1056 }
1057 __dentry_kill(dentry);
1058 dentry = parent;
1059 }
1060 }
1061 }
1062
1063 static enum lru_status dentry_lru_isolate(struct list_head *item,
1064 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1065 {
1066 struct list_head *freeable = arg;
1067 struct dentry *dentry = container_of(item, struct dentry, d_lru);
1068
1069
1070 /*
1071 * we are inverting the lru lock/dentry->d_lock here,
1072 * so use a trylock. If we fail to get the lock, just skip
1073 * it
1074 */
1075 if (!spin_trylock(&dentry->d_lock))
1076 return LRU_SKIP;
1077
1078 /*
1079 * Referenced dentries are still in use. If they have active
1080 * counts, just remove them from the LRU. Otherwise give them
1081 * another pass through the LRU.
1082 */
1083 if (dentry->d_lockref.count) {
1084 d_lru_isolate(lru, dentry);
1085 spin_unlock(&dentry->d_lock);
1086 return LRU_REMOVED;
1087 }
1088
1089 if (dentry->d_flags & DCACHE_REFERENCED) {
1090 dentry->d_flags &= ~DCACHE_REFERENCED;
1091 spin_unlock(&dentry->d_lock);
1092
1093 /*
1094 * The list move itself will be made by the common LRU code. At
1095 * this point, we've dropped the dentry->d_lock but keep the
1096 * lru lock. This is safe to do, since every list movement is
1097 * protected by the lru lock even if both locks are held.
1098 *
1099 * This is guaranteed by the fact that all LRU management
1100 * functions are intermediated by the LRU API calls like
1101 * list_lru_add and list_lru_del. List movement in this file
1102 * only ever occur through this functions or through callbacks
1103 * like this one, that are called from the LRU API.
1104 *
1105 * The only exceptions to this are functions like
1106 * shrink_dentry_list, and code that first checks for the
1107 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be
1108 * operating only with stack provided lists after they are
1109 * properly isolated from the main list. It is thus, always a
1110 * local access.
1111 */
1112 return LRU_ROTATE;
1113 }
1114
1115 d_lru_shrink_move(lru, dentry, freeable);
1116 spin_unlock(&dentry->d_lock);
1117
1118 return LRU_REMOVED;
1119 }
1120
1121 /**
1122 * prune_dcache_sb - shrink the dcache
1123 * @sb: superblock
1124 * @sc: shrink control, passed to list_lru_shrink_walk()
1125 *
1126 * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1127 * is done when we need more memory and called from the superblock shrinker
1128 * function.
1129 *
1130 * This function may fail to free any resources if all the dentries are in
1131 * use.
1132 */
1133 long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
1134 {
1135 LIST_HEAD(dispose);
1136 long freed;
1137
1138 freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1139 dentry_lru_isolate, &dispose);
1140 shrink_dentry_list(&dispose);
1141 return freed;
1142 }
1143
1144 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
1145 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1146 {
1147 struct list_head *freeable = arg;
1148 struct dentry *dentry = container_of(item, struct dentry, d_lru);
1149
1150 /*
1151 * we are inverting the lru lock/dentry->d_lock here,
1152 * so use a trylock. If we fail to get the lock, just skip
1153 * it
1154 */
1155 if (!spin_trylock(&dentry->d_lock))
1156 return LRU_SKIP;
1157
1158 d_lru_shrink_move(lru, dentry, freeable);
1159 spin_unlock(&dentry->d_lock);
1160
1161 return LRU_REMOVED;
1162 }
1163
1164
1165 /**
1166 * shrink_dcache_sb - shrink dcache for a superblock
1167 * @sb: superblock
1168 *
1169 * Shrink the dcache for the specified super block. This is used to free
1170 * the dcache before unmounting a file system.
1171 */
1172 void shrink_dcache_sb(struct super_block *sb)
1173 {
1174 long freed;
1175
1176 do {
1177 LIST_HEAD(dispose);
1178
1179 freed = list_lru_walk(&sb->s_dentry_lru,
1180 dentry_lru_isolate_shrink, &dispose, 1024);
1181
1182 this_cpu_sub(nr_dentry_unused, freed);
1183 shrink_dentry_list(&dispose);
1184 cond_resched();
1185 } while (list_lru_count(&sb->s_dentry_lru) > 0);
1186 }
1187 EXPORT_SYMBOL(shrink_dcache_sb);
1188
1189 /**
1190 * enum d_walk_ret - action to talke during tree walk
1191 * @D_WALK_CONTINUE: contrinue walk
1192 * @D_WALK_QUIT: quit walk
1193 * @D_WALK_NORETRY: quit when retry is needed
1194 * @D_WALK_SKIP: skip this dentry and its children
1195 */
1196 enum d_walk_ret {
1197 D_WALK_CONTINUE,
1198 D_WALK_QUIT,
1199 D_WALK_NORETRY,
1200 D_WALK_SKIP,
1201 };
1202
1203 /**
1204 * d_walk - walk the dentry tree
1205 * @parent: start of walk
1206 * @data: data passed to @enter() and @finish()
1207 * @enter: callback when first entering the dentry
1208 * @finish: callback when successfully finished the walk
1209 *
1210 * The @enter() and @finish() callbacks are called with d_lock held.
1211 */
1212 void d_walk(struct dentry *parent, void *data,
1213 enum d_walk_ret (*enter)(void *, struct dentry *),
1214 void (*finish)(void *))
1215 {
1216 struct dentry *this_parent;
1217 struct list_head *next;
1218 unsigned seq = 0;
1219 enum d_walk_ret ret;
1220 bool retry = true;
1221
1222 again:
1223 read_seqbegin_or_lock(&rename_lock, &seq);
1224 this_parent = parent;
1225 spin_lock(&this_parent->d_lock);
1226
1227 ret = enter(data, this_parent);
1228 switch (ret) {
1229 case D_WALK_CONTINUE:
1230 break;
1231 case D_WALK_QUIT:
1232 case D_WALK_SKIP:
1233 goto out_unlock;
1234 case D_WALK_NORETRY:
1235 retry = false;
1236 break;
1237 }
1238 repeat:
1239 next = this_parent->d_subdirs.next;
1240 resume:
1241 while (next != &this_parent->d_subdirs) {
1242 struct list_head *tmp = next;
1243 struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1244 next = tmp->next;
1245
1246 if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR))
1247 continue;
1248
1249 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1250
1251 ret = enter(data, dentry);
1252 switch (ret) {
1253 case D_WALK_CONTINUE:
1254 break;
1255 case D_WALK_QUIT:
1256 spin_unlock(&dentry->d_lock);
1257 goto out_unlock;
1258 case D_WALK_NORETRY:
1259 retry = false;
1260 break;
1261 case D_WALK_SKIP:
1262 spin_unlock(&dentry->d_lock);
1263 continue;
1264 }
1265
1266 if (!list_empty(&dentry->d_subdirs)) {
1267 spin_unlock(&this_parent->d_lock);
1268 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1269 this_parent = dentry;
1270 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1271 goto repeat;
1272 }
1273 spin_unlock(&dentry->d_lock);
1274 }
1275 /*
1276 * All done at this level ... ascend and resume the search.
1277 */
1278 rcu_read_lock();
1279 ascend:
1280 if (this_parent != parent) {
1281 struct dentry *child = this_parent;
1282 this_parent = child->d_parent;
1283
1284 spin_unlock(&child->d_lock);
1285 spin_lock(&this_parent->d_lock);
1286
1287 /* might go back up the wrong parent if we have had a rename. */
1288 if (need_seqretry(&rename_lock, seq))
1289 goto rename_retry;
1290 /* go into the first sibling still alive */
1291 do {
1292 next = child->d_child.next;
1293 if (next == &this_parent->d_subdirs)
1294 goto ascend;
1295 child = list_entry(next, struct dentry, d_child);
1296 } while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED));
1297 rcu_read_unlock();
1298 goto resume;
1299 }
1300 if (need_seqretry(&rename_lock, seq))
1301 goto rename_retry;
1302 rcu_read_unlock();
1303 if (finish)
1304 finish(data);
1305
1306 out_unlock:
1307 spin_unlock(&this_parent->d_lock);
1308 done_seqretry(&rename_lock, seq);
1309 return;
1310
1311 rename_retry:
1312 spin_unlock(&this_parent->d_lock);
1313 rcu_read_unlock();
1314 BUG_ON(seq & 1);
1315 if (!retry)
1316 return;
1317 seq = 1;
1318 goto again;
1319 }
1320 EXPORT_SYMBOL_GPL(d_walk);
1321
1322 struct check_mount {
1323 struct vfsmount *mnt;
1324 unsigned int mounted;
1325 };
1326
1327 static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry)
1328 {
1329 struct check_mount *info = data;
1330 struct path path = { .mnt = info->mnt, .dentry = dentry };
1331
1332 if (likely(!d_mountpoint(dentry)))
1333 return D_WALK_CONTINUE;
1334 if (__path_is_mountpoint(&path)) {
1335 info->mounted = 1;
1336 return D_WALK_QUIT;
1337 }
1338 return D_WALK_CONTINUE;
1339 }
1340
1341 /**
1342 * path_has_submounts - check for mounts over a dentry in the
1343 * current namespace.
1344 * @parent: path to check.
1345 *
1346 * Return true if the parent or its subdirectories contain
1347 * a mount point in the current namespace.
1348 */
1349 int path_has_submounts(const struct path *parent)
1350 {
1351 struct check_mount data = { .mnt = parent->mnt, .mounted = 0 };
1352
1353 read_seqlock_excl(&mount_lock);
1354 d_walk(parent->dentry, &data, path_check_mount, NULL);
1355 read_sequnlock_excl(&mount_lock);
1356
1357 return data.mounted;
1358 }
1359 EXPORT_SYMBOL(path_has_submounts);
1360
1361 /*
1362 * Called by mount code to set a mountpoint and check if the mountpoint is
1363 * reachable (e.g. NFS can unhash a directory dentry and then the complete
1364 * subtree can become unreachable).
1365 *
1366 * Only one of d_invalidate() and d_set_mounted() must succeed. For
1367 * this reason take rename_lock and d_lock on dentry and ancestors.
1368 */
1369 int d_set_mounted(struct dentry *dentry)
1370 {
1371 struct dentry *p;
1372 int ret = -ENOENT;
1373 write_seqlock(&rename_lock);
1374 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1375 /* Need exclusion wrt. d_invalidate() */
1376 spin_lock(&p->d_lock);
1377 if (unlikely(d_unhashed(p))) {
1378 spin_unlock(&p->d_lock);
1379 goto out;
1380 }
1381 spin_unlock(&p->d_lock);
1382 }
1383 spin_lock(&dentry->d_lock);
1384 if (!d_unlinked(dentry)) {
1385 ret = -EBUSY;
1386 if (!d_mountpoint(dentry)) {
1387 dentry->d_flags |= DCACHE_MOUNTED;
1388 ret = 0;
1389 }
1390 }
1391 spin_unlock(&dentry->d_lock);
1392 out:
1393 write_sequnlock(&rename_lock);
1394 return ret;
1395 }
1396
1397 /*
1398 * Search the dentry child list of the specified parent,
1399 * and move any unused dentries to the end of the unused
1400 * list for prune_dcache(). We descend to the next level
1401 * whenever the d_subdirs list is non-empty and continue
1402 * searching.
1403 *
1404 * It returns zero iff there are no unused children,
1405 * otherwise it returns the number of children moved to
1406 * the end of the unused list. This may not be the total
1407 * number of unused children, because select_parent can
1408 * drop the lock and return early due to latency
1409 * constraints.
1410 */
1411
1412 struct select_data {
1413 struct dentry *start;
1414 struct list_head dispose;
1415 int found;
1416 };
1417
1418 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1419 {
1420 struct select_data *data = _data;
1421 enum d_walk_ret ret = D_WALK_CONTINUE;
1422
1423 if (data->start == dentry)
1424 goto out;
1425
1426 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1427 data->found++;
1428 } else {
1429 if (dentry->d_flags & DCACHE_LRU_LIST)
1430 d_lru_del(dentry);
1431 if (!dentry->d_lockref.count) {
1432 d_shrink_add(dentry, &data->dispose);
1433 data->found++;
1434 }
1435 }
1436 /*
1437 * We can return to the caller if we have found some (this
1438 * ensures forward progress). We'll be coming back to find
1439 * the rest.
1440 */
1441 if (!list_empty(&data->dispose))
1442 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1443 out:
1444 return ret;
1445 }
1446
1447 /**
1448 * shrink_dcache_parent - prune dcache
1449 * @parent: parent of entries to prune
1450 *
1451 * Prune the dcache to remove unused children of the parent dentry.
1452 */
1453 void shrink_dcache_parent(struct dentry *parent)
1454 {
1455 for (;;) {
1456 struct select_data data;
1457
1458 INIT_LIST_HEAD(&data.dispose);
1459 data.start = parent;
1460 data.found = 0;
1461
1462 d_walk(parent, &data, select_collect, NULL);
1463 if (!data.found)
1464 break;
1465
1466 shrink_dentry_list(&data.dispose);
1467 cond_resched();
1468 }
1469 }
1470 EXPORT_SYMBOL(shrink_dcache_parent);
1471
1472 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
1473 {
1474 /* it has busy descendents; complain about those instead */
1475 if (!list_empty(&dentry->d_subdirs))
1476 return D_WALK_CONTINUE;
1477
1478 /* root with refcount 1 is fine */
1479 if (dentry == _data && dentry->d_lockref.count == 1)
1480 return D_WALK_CONTINUE;
1481
1482 printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1483 " still in use (%d) [unmount of %s %s]\n",
1484 dentry,
1485 dentry->d_inode ?
1486 dentry->d_inode->i_ino : 0UL,
1487 dentry,
1488 dentry->d_lockref.count,
1489 dentry->d_sb->s_type->name,
1490 dentry->d_sb->s_id);
1491 WARN_ON(1);
1492 return D_WALK_CONTINUE;
1493 }
1494
1495 static void do_one_tree(struct dentry *dentry)
1496 {
1497 shrink_dcache_parent(dentry);
1498 d_walk(dentry, dentry, umount_check, NULL);
1499 d_drop(dentry);
1500 dput(dentry);
1501 }
1502
1503 /*
1504 * destroy the dentries attached to a superblock on unmounting
1505 */
1506 void shrink_dcache_for_umount(struct super_block *sb)
1507 {
1508 struct dentry *dentry;
1509
1510 WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
1511
1512 dentry = sb->s_root;
1513 sb->s_root = NULL;
1514 do_one_tree(dentry);
1515
1516 while (!hlist_bl_empty(&sb->s_anon)) {
1517 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash));
1518 do_one_tree(dentry);
1519 }
1520 }
1521
1522 struct detach_data {
1523 struct select_data select;
1524 struct dentry *mountpoint;
1525 };
1526 static enum d_walk_ret detach_and_collect(void *_data, struct dentry *dentry)
1527 {
1528 struct detach_data *data = _data;
1529
1530 if (d_mountpoint(dentry)) {
1531 __dget_dlock(dentry);
1532 data->mountpoint = dentry;
1533 return D_WALK_QUIT;
1534 }
1535
1536 return select_collect(&data->select, dentry);
1537 }
1538
1539 static void check_and_drop(void *_data)
1540 {
1541 struct detach_data *data = _data;
1542
1543 if (!data->mountpoint && list_empty(&data->select.dispose))
1544 __d_drop(data->select.start);
1545 }
1546
1547 /**
1548 * d_invalidate - detach submounts, prune dcache, and drop
1549 * @dentry: dentry to invalidate (aka detach, prune and drop)
1550 *
1551 * no dcache lock.
1552 *
1553 * The final d_drop is done as an atomic operation relative to
1554 * rename_lock ensuring there are no races with d_set_mounted. This
1555 * ensures there are no unhashed dentries on the path to a mountpoint.
1556 */
1557 void d_invalidate(struct dentry *dentry)
1558 {
1559 /*
1560 * If it's already been dropped, return OK.
1561 */
1562 spin_lock(&dentry->d_lock);
1563 if (d_unhashed(dentry)) {
1564 spin_unlock(&dentry->d_lock);
1565 return;
1566 }
1567 spin_unlock(&dentry->d_lock);
1568
1569 /* Negative dentries can be dropped without further checks */
1570 if (!dentry->d_inode) {
1571 d_drop(dentry);
1572 return;
1573 }
1574
1575 for (;;) {
1576 struct detach_data data;
1577
1578 data.mountpoint = NULL;
1579 INIT_LIST_HEAD(&data.select.dispose);
1580 data.select.start = dentry;
1581 data.select.found = 0;
1582
1583 d_walk(dentry, &data, detach_and_collect, check_and_drop);
1584
1585 if (!list_empty(&data.select.dispose))
1586 shrink_dentry_list(&data.select.dispose);
1587 else if (!data.mountpoint)
1588 return;
1589
1590 if (data.mountpoint) {
1591 detach_mounts(data.mountpoint);
1592 dput(data.mountpoint);
1593 }
1594 cond_resched();
1595 }
1596 }
1597 EXPORT_SYMBOL(d_invalidate);
1598
1599 /**
1600 * __d_alloc - allocate a dcache entry
1601 * @sb: filesystem it will belong to
1602 * @name: qstr of the name
1603 *
1604 * Allocates a dentry. It returns %NULL if there is insufficient memory
1605 * available. On a success the dentry is returned. The name passed in is
1606 * copied and the copy passed in may be reused after this call.
1607 */
1608
1609 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1610 {
1611 struct dentry *dentry;
1612 char *dname;
1613 int err;
1614
1615 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1616 if (!dentry)
1617 return NULL;
1618
1619 /*
1620 * We guarantee that the inline name is always NUL-terminated.
1621 * This way the memcpy() done by the name switching in rename
1622 * will still always have a NUL at the end, even if we might
1623 * be overwriting an internal NUL character
1624 */
1625 dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1626 if (unlikely(!name)) {
1627 name = &slash_name;
1628 dname = dentry->d_iname;
1629 } else if (name->len > DNAME_INLINE_LEN-1) {
1630 size_t size = offsetof(struct external_name, name[1]);
1631 struct external_name *p = kmalloc(size + name->len,
1632 GFP_KERNEL_ACCOUNT);
1633 if (!p) {
1634 kmem_cache_free(dentry_cache, dentry);
1635 return NULL;
1636 }
1637 atomic_set(&p->u.count, 1);
1638 dname = p->name;
1639 if (IS_ENABLED(CONFIG_DCACHE_WORD_ACCESS))
1640 kasan_unpoison_shadow(dname,
1641 round_up(name->len + 1, sizeof(unsigned long)));
1642 } else {
1643 dname = dentry->d_iname;
1644 }
1645
1646 dentry->d_name.len = name->len;
1647 dentry->d_name.hash = name->hash;
1648 memcpy(dname, name->name, name->len);
1649 dname[name->len] = 0;
1650
1651 /* Make sure we always see the terminating NUL character */
1652 smp_wmb();
1653 dentry->d_name.name = dname;
1654
1655 dentry->d_lockref.count = 1;
1656 dentry->d_flags = 0;
1657 spin_lock_init(&dentry->d_lock);
1658 seqcount_init(&dentry->d_seq);
1659 dentry->d_inode = NULL;
1660 dentry->d_parent = dentry;
1661 dentry->d_sb = sb;
1662 dentry->d_op = NULL;
1663 dentry->d_fsdata = NULL;
1664 INIT_HLIST_BL_NODE(&dentry->d_hash);
1665 INIT_LIST_HEAD(&dentry->d_lru);
1666 INIT_LIST_HEAD(&dentry->d_subdirs);
1667 INIT_HLIST_NODE(&dentry->d_u.d_alias);
1668 INIT_LIST_HEAD(&dentry->d_child);
1669 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1670
1671 if (dentry->d_op && dentry->d_op->d_init) {
1672 err = dentry->d_op->d_init(dentry);
1673 if (err) {
1674 if (dname_external(dentry))
1675 kfree(external_name(dentry));
1676 kmem_cache_free(dentry_cache, dentry);
1677 return NULL;
1678 }
1679 }
1680
1681 this_cpu_inc(nr_dentry);
1682
1683 return dentry;
1684 }
1685
1686 /**
1687 * d_alloc - allocate a dcache entry
1688 * @parent: parent of entry to allocate
1689 * @name: qstr of the name
1690 *
1691 * Allocates a dentry. It returns %NULL if there is insufficient memory
1692 * available. On a success the dentry is returned. The name passed in is
1693 * copied and the copy passed in may be reused after this call.
1694 */
1695 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1696 {
1697 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1698 if (!dentry)
1699 return NULL;
1700 dentry->d_flags |= DCACHE_RCUACCESS;
1701 spin_lock(&parent->d_lock);
1702 /*
1703 * don't need child lock because it is not subject
1704 * to concurrency here
1705 */
1706 __dget_dlock(parent);
1707 dentry->d_parent = parent;
1708 list_add(&dentry->d_child, &parent->d_subdirs);
1709 spin_unlock(&parent->d_lock);
1710
1711 return dentry;
1712 }
1713 EXPORT_SYMBOL(d_alloc);
1714
1715 struct dentry *d_alloc_cursor(struct dentry * parent)
1716 {
1717 struct dentry *dentry = __d_alloc(parent->d_sb, NULL);
1718 if (dentry) {
1719 dentry->d_flags |= DCACHE_RCUACCESS | DCACHE_DENTRY_CURSOR;
1720 dentry->d_parent = dget(parent);
1721 }
1722 return dentry;
1723 }
1724
1725 /**
1726 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1727 * @sb: the superblock
1728 * @name: qstr of the name
1729 *
1730 * For a filesystem that just pins its dentries in memory and never
1731 * performs lookups at all, return an unhashed IS_ROOT dentry.
1732 */
1733 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1734 {
1735 return __d_alloc(sb, name);
1736 }
1737 EXPORT_SYMBOL(d_alloc_pseudo);
1738
1739 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1740 {
1741 struct qstr q;
1742
1743 q.name = name;
1744 q.hash_len = hashlen_string(parent, name);
1745 return d_alloc(parent, &q);
1746 }
1747 EXPORT_SYMBOL(d_alloc_name);
1748
1749 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1750 {
1751 WARN_ON_ONCE(dentry->d_op);
1752 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
1753 DCACHE_OP_COMPARE |
1754 DCACHE_OP_REVALIDATE |
1755 DCACHE_OP_WEAK_REVALIDATE |
1756 DCACHE_OP_DELETE |
1757 DCACHE_OP_REAL));
1758 dentry->d_op = op;
1759 if (!op)
1760 return;
1761 if (op->d_hash)
1762 dentry->d_flags |= DCACHE_OP_HASH;
1763 if (op->d_compare)
1764 dentry->d_flags |= DCACHE_OP_COMPARE;
1765 if (op->d_revalidate)
1766 dentry->d_flags |= DCACHE_OP_REVALIDATE;
1767 if (op->d_weak_revalidate)
1768 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1769 if (op->d_delete)
1770 dentry->d_flags |= DCACHE_OP_DELETE;
1771 if (op->d_prune)
1772 dentry->d_flags |= DCACHE_OP_PRUNE;
1773 if (op->d_real)
1774 dentry->d_flags |= DCACHE_OP_REAL;
1775
1776 }
1777 EXPORT_SYMBOL(d_set_d_op);
1778
1779
1780 /*
1781 * d_set_fallthru - Mark a dentry as falling through to a lower layer
1782 * @dentry - The dentry to mark
1783 *
1784 * Mark a dentry as falling through to the lower layer (as set with
1785 * d_pin_lower()). This flag may be recorded on the medium.
1786 */
1787 void d_set_fallthru(struct dentry *dentry)
1788 {
1789 spin_lock(&dentry->d_lock);
1790 dentry->d_flags |= DCACHE_FALLTHRU;
1791 spin_unlock(&dentry->d_lock);
1792 }
1793 EXPORT_SYMBOL(d_set_fallthru);
1794
1795 static unsigned d_flags_for_inode(struct inode *inode)
1796 {
1797 unsigned add_flags = DCACHE_REGULAR_TYPE;
1798
1799 if (!inode)
1800 return DCACHE_MISS_TYPE;
1801
1802 if (S_ISDIR(inode->i_mode)) {
1803 add_flags = DCACHE_DIRECTORY_TYPE;
1804 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1805 if (unlikely(!inode->i_op->lookup))
1806 add_flags = DCACHE_AUTODIR_TYPE;
1807 else
1808 inode->i_opflags |= IOP_LOOKUP;
1809 }
1810 goto type_determined;
1811 }
1812
1813 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1814 if (unlikely(inode->i_op->get_link)) {
1815 add_flags = DCACHE_SYMLINK_TYPE;
1816 goto type_determined;
1817 }
1818 inode->i_opflags |= IOP_NOFOLLOW;
1819 }
1820
1821 if (unlikely(!S_ISREG(inode->i_mode)))
1822 add_flags = DCACHE_SPECIAL_TYPE;
1823
1824 type_determined:
1825 if (unlikely(IS_AUTOMOUNT(inode)))
1826 add_flags |= DCACHE_NEED_AUTOMOUNT;
1827 return add_flags;
1828 }
1829
1830 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1831 {
1832 unsigned add_flags = d_flags_for_inode(inode);
1833 WARN_ON(d_in_lookup(dentry));
1834
1835 spin_lock(&dentry->d_lock);
1836 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
1837 raw_write_seqcount_begin(&dentry->d_seq);
1838 __d_set_inode_and_type(dentry, inode, add_flags);
1839 raw_write_seqcount_end(&dentry->d_seq);
1840 fsnotify_update_flags(dentry);
1841 spin_unlock(&dentry->d_lock);
1842 }
1843
1844 /**
1845 * d_instantiate - fill in inode information for a dentry
1846 * @entry: dentry to complete
1847 * @inode: inode to attach to this dentry
1848 *
1849 * Fill in inode information in the entry.
1850 *
1851 * This turns negative dentries into productive full members
1852 * of society.
1853 *
1854 * NOTE! This assumes that the inode count has been incremented
1855 * (or otherwise set) by the caller to indicate that it is now
1856 * in use by the dcache.
1857 */
1858
1859 void d_instantiate(struct dentry *entry, struct inode * inode)
1860 {
1861 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1862 if (inode) {
1863 security_d_instantiate(entry, inode);
1864 spin_lock(&inode->i_lock);
1865 __d_instantiate(entry, inode);
1866 spin_unlock(&inode->i_lock);
1867 }
1868 }
1869 EXPORT_SYMBOL(d_instantiate);
1870
1871 /**
1872 * d_instantiate_no_diralias - instantiate a non-aliased dentry
1873 * @entry: dentry to complete
1874 * @inode: inode to attach to this dentry
1875 *
1876 * Fill in inode information in the entry. If a directory alias is found, then
1877 * return an error (and drop inode). Together with d_materialise_unique() this
1878 * guarantees that a directory inode may never have more than one alias.
1879 */
1880 int d_instantiate_no_diralias(struct dentry *entry, struct inode *inode)
1881 {
1882 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1883
1884 security_d_instantiate(entry, inode);
1885 spin_lock(&inode->i_lock);
1886 if (S_ISDIR(inode->i_mode) && !hlist_empty(&inode->i_dentry)) {
1887 spin_unlock(&inode->i_lock);
1888 iput(inode);
1889 return -EBUSY;
1890 }
1891 __d_instantiate(entry, inode);
1892 spin_unlock(&inode->i_lock);
1893
1894 return 0;
1895 }
1896 EXPORT_SYMBOL(d_instantiate_no_diralias);
1897
1898 struct dentry *d_make_root(struct inode *root_inode)
1899 {
1900 struct dentry *res = NULL;
1901
1902 if (root_inode) {
1903 res = __d_alloc(root_inode->i_sb, NULL);
1904 if (res)
1905 d_instantiate(res, root_inode);
1906 else
1907 iput(root_inode);
1908 }
1909 return res;
1910 }
1911 EXPORT_SYMBOL(d_make_root);
1912
1913 static struct dentry * __d_find_any_alias(struct inode *inode)
1914 {
1915 struct dentry *alias;
1916
1917 if (hlist_empty(&inode->i_dentry))
1918 return NULL;
1919 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
1920 __dget(alias);
1921 return alias;
1922 }
1923
1924 /**
1925 * d_find_any_alias - find any alias for a given inode
1926 * @inode: inode to find an alias for
1927 *
1928 * If any aliases exist for the given inode, take and return a
1929 * reference for one of them. If no aliases exist, return %NULL.
1930 */
1931 struct dentry *d_find_any_alias(struct inode *inode)
1932 {
1933 struct dentry *de;
1934
1935 spin_lock(&inode->i_lock);
1936 de = __d_find_any_alias(inode);
1937 spin_unlock(&inode->i_lock);
1938 return de;
1939 }
1940 EXPORT_SYMBOL(d_find_any_alias);
1941
1942 static struct dentry *__d_obtain_alias(struct inode *inode, int disconnected)
1943 {
1944 struct dentry *tmp;
1945 struct dentry *res;
1946 unsigned add_flags;
1947
1948 if (!inode)
1949 return ERR_PTR(-ESTALE);
1950 if (IS_ERR(inode))
1951 return ERR_CAST(inode);
1952
1953 res = d_find_any_alias(inode);
1954 if (res)
1955 goto out_iput;
1956
1957 tmp = __d_alloc(inode->i_sb, NULL);
1958 if (!tmp) {
1959 res = ERR_PTR(-ENOMEM);
1960 goto out_iput;
1961 }
1962
1963 security_d_instantiate(tmp, inode);
1964 spin_lock(&inode->i_lock);
1965 res = __d_find_any_alias(inode);
1966 if (res) {
1967 spin_unlock(&inode->i_lock);
1968 dput(tmp);
1969 goto out_iput;
1970 }
1971
1972 /* attach a disconnected dentry */
1973 add_flags = d_flags_for_inode(inode);
1974
1975 if (disconnected)
1976 add_flags |= DCACHE_DISCONNECTED;
1977
1978 spin_lock(&tmp->d_lock);
1979 __d_set_inode_and_type(tmp, inode, add_flags);
1980 hlist_add_head(&tmp->d_u.d_alias, &inode->i_dentry);
1981 hlist_bl_lock(&tmp->d_sb->s_anon);
1982 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1983 hlist_bl_unlock(&tmp->d_sb->s_anon);
1984 spin_unlock(&tmp->d_lock);
1985 spin_unlock(&inode->i_lock);
1986
1987 return tmp;
1988
1989 out_iput:
1990 iput(inode);
1991 return res;
1992 }
1993
1994 /**
1995 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
1996 * @inode: inode to allocate the dentry for
1997 *
1998 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1999 * similar open by handle operations. The returned dentry may be anonymous,
2000 * or may have a full name (if the inode was already in the cache).
2001 *
2002 * When called on a directory inode, we must ensure that the inode only ever
2003 * has one dentry. If a dentry is found, that is returned instead of
2004 * allocating a new one.
2005 *
2006 * On successful return, the reference to the inode has been transferred
2007 * to the dentry. In case of an error the reference on the inode is released.
2008 * To make it easier to use in export operations a %NULL or IS_ERR inode may
2009 * be passed in and the error will be propagated to the return value,
2010 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
2011 */
2012 struct dentry *d_obtain_alias(struct inode *inode)
2013 {
2014 return __d_obtain_alias(inode, 1);
2015 }
2016 EXPORT_SYMBOL(d_obtain_alias);
2017
2018 /**
2019 * d_obtain_root - find or allocate a dentry for a given inode
2020 * @inode: inode to allocate the dentry for
2021 *
2022 * Obtain an IS_ROOT dentry for the root of a filesystem.
2023 *
2024 * We must ensure that directory inodes only ever have one dentry. If a
2025 * dentry is found, that is returned instead of allocating a new one.
2026 *
2027 * On successful return, the reference to the inode has been transferred
2028 * to the dentry. In case of an error the reference on the inode is
2029 * released. A %NULL or IS_ERR inode may be passed in and will be the
2030 * error will be propagate to the return value, with a %NULL @inode
2031 * replaced by ERR_PTR(-ESTALE).
2032 */
2033 struct dentry *d_obtain_root(struct inode *inode)
2034 {
2035 return __d_obtain_alias(inode, 0);
2036 }
2037 EXPORT_SYMBOL(d_obtain_root);
2038
2039 /**
2040 * d_add_ci - lookup or allocate new dentry with case-exact name
2041 * @inode: the inode case-insensitive lookup has found
2042 * @dentry: the negative dentry that was passed to the parent's lookup func
2043 * @name: the case-exact name to be associated with the returned dentry
2044 *
2045 * This is to avoid filling the dcache with case-insensitive names to the
2046 * same inode, only the actual correct case is stored in the dcache for
2047 * case-insensitive filesystems.
2048 *
2049 * For a case-insensitive lookup match and if the the case-exact dentry
2050 * already exists in in the dcache, use it and return it.
2051 *
2052 * If no entry exists with the exact case name, allocate new dentry with
2053 * the exact case, and return the spliced entry.
2054 */
2055 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
2056 struct qstr *name)
2057 {
2058 struct dentry *found, *res;
2059
2060 /*
2061 * First check if a dentry matching the name already exists,
2062 * if not go ahead and create it now.
2063 */
2064 found = d_hash_and_lookup(dentry->d_parent, name);
2065 if (found) {
2066 iput(inode);
2067 return found;
2068 }
2069 if (d_in_lookup(dentry)) {
2070 found = d_alloc_parallel(dentry->d_parent, name,
2071 dentry->d_wait);
2072 if (IS_ERR(found) || !d_in_lookup(found)) {
2073 iput(inode);
2074 return found;
2075 }
2076 } else {
2077 found = d_alloc(dentry->d_parent, name);
2078 if (!found) {
2079 iput(inode);
2080 return ERR_PTR(-ENOMEM);
2081 }
2082 }
2083 res = d_splice_alias(inode, found);
2084 if (res) {
2085 dput(found);
2086 return res;
2087 }
2088 return found;
2089 }
2090 EXPORT_SYMBOL(d_add_ci);
2091
2092
2093 static inline bool d_same_name(const struct dentry *dentry,
2094 const struct dentry *parent,
2095 const struct qstr *name)
2096 {
2097 if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) {
2098 if (dentry->d_name.len != name->len)
2099 return false;
2100 return dentry_cmp(dentry, name->name, name->len) == 0;
2101 }
2102 return parent->d_op->d_compare(dentry,
2103 dentry->d_name.len, dentry->d_name.name,
2104 name) == 0;
2105 }
2106
2107 /**
2108 * __d_lookup_rcu - search for a dentry (racy, store-free)
2109 * @parent: parent dentry
2110 * @name: qstr of name we wish to find
2111 * @seqp: returns d_seq value at the point where the dentry was found
2112 * Returns: dentry, or NULL
2113 *
2114 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2115 * resolution (store-free path walking) design described in
2116 * Documentation/filesystems/path-lookup.txt.
2117 *
2118 * This is not to be used outside core vfs.
2119 *
2120 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2121 * held, and rcu_read_lock held. The returned dentry must not be stored into
2122 * without taking d_lock and checking d_seq sequence count against @seq
2123 * returned here.
2124 *
2125 * A refcount may be taken on the found dentry with the d_rcu_to_refcount
2126 * function.
2127 *
2128 * Alternatively, __d_lookup_rcu may be called again to look up the child of
2129 * the returned dentry, so long as its parent's seqlock is checked after the
2130 * child is looked up. Thus, an interlocking stepping of sequence lock checks
2131 * is formed, giving integrity down the path walk.
2132 *
2133 * NOTE! The caller *has* to check the resulting dentry against the sequence
2134 * number we've returned before using any of the resulting dentry state!
2135 */
2136 struct dentry *__d_lookup_rcu(const struct dentry *parent,
2137 const struct qstr *name,
2138 unsigned *seqp)
2139 {
2140 u64 hashlen = name->hash_len;
2141 const unsigned char *str = name->name;
2142 struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen));
2143 struct hlist_bl_node *node;
2144 struct dentry *dentry;
2145
2146 /*
2147 * Note: There is significant duplication with __d_lookup_rcu which is
2148 * required to prevent single threaded performance regressions
2149 * especially on architectures where smp_rmb (in seqcounts) are costly.
2150 * Keep the two functions in sync.
2151 */
2152
2153 /*
2154 * The hash list is protected using RCU.
2155 *
2156 * Carefully use d_seq when comparing a candidate dentry, to avoid
2157 * races with d_move().
2158 *
2159 * It is possible that concurrent renames can mess up our list
2160 * walk here and result in missing our dentry, resulting in the
2161 * false-negative result. d_lookup() protects against concurrent
2162 * renames using rename_lock seqlock.
2163 *
2164 * See Documentation/filesystems/path-lookup.txt for more details.
2165 */
2166 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2167 unsigned seq;
2168
2169 seqretry:
2170 /*
2171 * The dentry sequence count protects us from concurrent
2172 * renames, and thus protects parent and name fields.
2173 *
2174 * The caller must perform a seqcount check in order
2175 * to do anything useful with the returned dentry.
2176 *
2177 * NOTE! We do a "raw" seqcount_begin here. That means that
2178 * we don't wait for the sequence count to stabilize if it
2179 * is in the middle of a sequence change. If we do the slow
2180 * dentry compare, we will do seqretries until it is stable,
2181 * and if we end up with a successful lookup, we actually
2182 * want to exit RCU lookup anyway.
2183 *
2184 * Note that raw_seqcount_begin still *does* smp_rmb(), so
2185 * we are still guaranteed NUL-termination of ->d_name.name.
2186 */
2187 seq = raw_seqcount_begin(&dentry->d_seq);
2188 if (dentry->d_parent != parent)
2189 continue;
2190 if (d_unhashed(dentry))
2191 continue;
2192
2193 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
2194 int tlen;
2195 const char *tname;
2196 if (dentry->d_name.hash != hashlen_hash(hashlen))
2197 continue;
2198 tlen = dentry->d_name.len;
2199 tname = dentry->d_name.name;
2200 /* we want a consistent (name,len) pair */
2201 if (read_seqcount_retry(&dentry->d_seq, seq)) {
2202 cpu_relax();
2203 goto seqretry;
2204 }
2205 if (parent->d_op->d_compare(dentry,
2206 tlen, tname, name) != 0)
2207 continue;
2208 } else {
2209 if (dentry->d_name.hash_len != hashlen)
2210 continue;
2211 if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0)
2212 continue;
2213 }
2214 *seqp = seq;
2215 return dentry;
2216 }
2217 return NULL;
2218 }
2219
2220 /**
2221 * d_lookup - search for a dentry
2222 * @parent: parent dentry
2223 * @name: qstr of name we wish to find
2224 * Returns: dentry, or NULL
2225 *
2226 * d_lookup searches the children of the parent dentry for the name in
2227 * question. If the dentry is found its reference count is incremented and the
2228 * dentry is returned. The caller must use dput to free the entry when it has
2229 * finished using it. %NULL is returned if the dentry does not exist.
2230 */
2231 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2232 {
2233 struct dentry *dentry;
2234 unsigned seq;
2235
2236 do {
2237 seq = read_seqbegin(&rename_lock);
2238 dentry = __d_lookup(parent, name);
2239 if (dentry)
2240 break;
2241 } while (read_seqretry(&rename_lock, seq));
2242 return dentry;
2243 }
2244 EXPORT_SYMBOL(d_lookup);
2245
2246 /**
2247 * __d_lookup - search for a dentry (racy)
2248 * @parent: parent dentry
2249 * @name: qstr of name we wish to find
2250 * Returns: dentry, or NULL
2251 *
2252 * __d_lookup is like d_lookup, however it may (rarely) return a
2253 * false-negative result due to unrelated rename activity.
2254 *
2255 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2256 * however it must be used carefully, eg. with a following d_lookup in
2257 * the case of failure.
2258 *
2259 * __d_lookup callers must be commented.
2260 */
2261 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2262 {
2263 unsigned int hash = name->hash;
2264 struct hlist_bl_head *b = d_hash(hash);
2265 struct hlist_bl_node *node;
2266 struct dentry *found = NULL;
2267 struct dentry *dentry;
2268
2269 /*
2270 * Note: There is significant duplication with __d_lookup_rcu which is
2271 * required to prevent single threaded performance regressions
2272 * especially on architectures where smp_rmb (in seqcounts) are costly.
2273 * Keep the two functions in sync.
2274 */
2275
2276 /*
2277 * The hash list is protected using RCU.
2278 *
2279 * Take d_lock when comparing a candidate dentry, to avoid races
2280 * with d_move().
2281 *
2282 * It is possible that concurrent renames can mess up our list
2283 * walk here and result in missing our dentry, resulting in the
2284 * false-negative result. d_lookup() protects against concurrent
2285 * renames using rename_lock seqlock.
2286 *
2287 * See Documentation/filesystems/path-lookup.txt for more details.
2288 */
2289 rcu_read_lock();
2290
2291 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2292
2293 if (dentry->d_name.hash != hash)
2294 continue;
2295
2296 spin_lock(&dentry->d_lock);
2297 if (dentry->d_parent != parent)
2298 goto next;
2299 if (d_unhashed(dentry))
2300 goto next;
2301
2302 if (!d_same_name(dentry, parent, name))
2303 goto next;
2304
2305 dentry->d_lockref.count++;
2306 found = dentry;
2307 spin_unlock(&dentry->d_lock);
2308 break;
2309 next:
2310 spin_unlock(&dentry->d_lock);
2311 }
2312 rcu_read_unlock();
2313
2314 return found;
2315 }
2316
2317 /**
2318 * d_hash_and_lookup - hash the qstr then search for a dentry
2319 * @dir: Directory to search in
2320 * @name: qstr of name we wish to find
2321 *
2322 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2323 */
2324 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2325 {
2326 /*
2327 * Check for a fs-specific hash function. Note that we must
2328 * calculate the standard hash first, as the d_op->d_hash()
2329 * routine may choose to leave the hash value unchanged.
2330 */
2331 name->hash = full_name_hash(dir, name->name, name->len);
2332 if (dir->d_flags & DCACHE_OP_HASH) {
2333 int err = dir->d_op->d_hash(dir, name);
2334 if (unlikely(err < 0))
2335 return ERR_PTR(err);
2336 }
2337 return d_lookup(dir, name);
2338 }
2339 EXPORT_SYMBOL(d_hash_and_lookup);
2340
2341 /*
2342 * When a file is deleted, we have two options:
2343 * - turn this dentry into a negative dentry
2344 * - unhash this dentry and free it.
2345 *
2346 * Usually, we want to just turn this into
2347 * a negative dentry, but if anybody else is
2348 * currently using the dentry or the inode
2349 * we can't do that and we fall back on removing
2350 * it from the hash queues and waiting for
2351 * it to be deleted later when it has no users
2352 */
2353
2354 /**
2355 * d_delete - delete a dentry
2356 * @dentry: The dentry to delete
2357 *
2358 * Turn the dentry into a negative dentry if possible, otherwise
2359 * remove it from the hash queues so it can be deleted later
2360 */
2361
2362 void d_delete(struct dentry * dentry)
2363 {
2364 struct inode *inode;
2365 int isdir = 0;
2366 /*
2367 * Are we the only user?
2368 */
2369 again:
2370 spin_lock(&dentry->d_lock);
2371 inode = dentry->d_inode;
2372 isdir = S_ISDIR(inode->i_mode);
2373 if (dentry->d_lockref.count == 1) {
2374 if (!spin_trylock(&inode->i_lock)) {
2375 spin_unlock(&dentry->d_lock);
2376 cpu_relax();
2377 goto again;
2378 }
2379 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2380 dentry_unlink_inode(dentry);
2381 fsnotify_nameremove(dentry, isdir);
2382 return;
2383 }
2384
2385 if (!d_unhashed(dentry))
2386 __d_drop(dentry);
2387
2388 spin_unlock(&dentry->d_lock);
2389
2390 fsnotify_nameremove(dentry, isdir);
2391 }
2392 EXPORT_SYMBOL(d_delete);
2393
2394 static void __d_rehash(struct dentry *entry)
2395 {
2396 struct hlist_bl_head *b = d_hash(entry->d_name.hash);
2397
2398 hlist_bl_lock(b);
2399 hlist_bl_add_head_rcu(&entry->d_hash, b);
2400 hlist_bl_unlock(b);
2401 }
2402
2403 /**
2404 * d_rehash - add an entry back to the hash
2405 * @entry: dentry to add to the hash
2406 *
2407 * Adds a dentry to the hash according to its name.
2408 */
2409
2410 void d_rehash(struct dentry * entry)
2411 {
2412 spin_lock(&entry->d_lock);
2413 __d_rehash(entry);
2414 spin_unlock(&entry->d_lock);
2415 }
2416 EXPORT_SYMBOL(d_rehash);
2417
2418 static inline unsigned start_dir_add(struct inode *dir)
2419 {
2420
2421 for (;;) {
2422 unsigned n = dir->i_dir_seq;
2423 if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n)
2424 return n;
2425 cpu_relax();
2426 }
2427 }
2428
2429 static inline void end_dir_add(struct inode *dir, unsigned n)
2430 {
2431 smp_store_release(&dir->i_dir_seq, n + 2);
2432 }
2433
2434 static void d_wait_lookup(struct dentry *dentry)
2435 {
2436 if (d_in_lookup(dentry)) {
2437 DECLARE_WAITQUEUE(wait, current);
2438 add_wait_queue(dentry->d_wait, &wait);
2439 do {
2440 set_current_state(TASK_UNINTERRUPTIBLE);
2441 spin_unlock(&dentry->d_lock);
2442 schedule();
2443 spin_lock(&dentry->d_lock);
2444 } while (d_in_lookup(dentry));
2445 }
2446 }
2447
2448 struct dentry *d_alloc_parallel(struct dentry *parent,
2449 const struct qstr *name,
2450 wait_queue_head_t *wq)
2451 {
2452 unsigned int hash = name->hash;
2453 struct hlist_bl_head *b = in_lookup_hash(parent, hash);
2454 struct hlist_bl_node *node;
2455 struct dentry *new = d_alloc(parent, name);
2456 struct dentry *dentry;
2457 unsigned seq, r_seq, d_seq;
2458
2459 if (unlikely(!new))
2460 return ERR_PTR(-ENOMEM);
2461
2462 retry:
2463 rcu_read_lock();
2464 seq = smp_load_acquire(&parent->d_inode->i_dir_seq) & ~1;
2465 r_seq = read_seqbegin(&rename_lock);
2466 dentry = __d_lookup_rcu(parent, name, &d_seq);
2467 if (unlikely(dentry)) {
2468 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2469 rcu_read_unlock();
2470 goto retry;
2471 }
2472 if (read_seqcount_retry(&dentry->d_seq, d_seq)) {
2473 rcu_read_unlock();
2474 dput(dentry);
2475 goto retry;
2476 }
2477 rcu_read_unlock();
2478 dput(new);
2479 return dentry;
2480 }
2481 if (unlikely(read_seqretry(&rename_lock, r_seq))) {
2482 rcu_read_unlock();
2483 goto retry;
2484 }
2485 hlist_bl_lock(b);
2486 if (unlikely(parent->d_inode->i_dir_seq != seq)) {
2487 hlist_bl_unlock(b);
2488 rcu_read_unlock();
2489 goto retry;
2490 }
2491 /*
2492 * No changes for the parent since the beginning of d_lookup().
2493 * Since all removals from the chain happen with hlist_bl_lock(),
2494 * any potential in-lookup matches are going to stay here until
2495 * we unlock the chain. All fields are stable in everything
2496 * we encounter.
2497 */
2498 hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) {
2499 if (dentry->d_name.hash != hash)
2500 continue;
2501 if (dentry->d_parent != parent)
2502 continue;
2503 if (!d_same_name(dentry, parent, name))
2504 continue;
2505 hlist_bl_unlock(b);
2506 /* now we can try to grab a reference */
2507 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2508 rcu_read_unlock();
2509 goto retry;
2510 }
2511
2512 rcu_read_unlock();
2513 /*
2514 * somebody is likely to be still doing lookup for it;
2515 * wait for them to finish
2516 */
2517 spin_lock(&dentry->d_lock);
2518 d_wait_lookup(dentry);
2519 /*
2520 * it's not in-lookup anymore; in principle we should repeat
2521 * everything from dcache lookup, but it's likely to be what
2522 * d_lookup() would've found anyway. If it is, just return it;
2523 * otherwise we really have to repeat the whole thing.
2524 */
2525 if (unlikely(dentry->d_name.hash != hash))
2526 goto mismatch;
2527 if (unlikely(dentry->d_parent != parent))
2528 goto mismatch;
2529 if (unlikely(d_unhashed(dentry)))
2530 goto mismatch;
2531 if (unlikely(!d_same_name(dentry, parent, name)))
2532 goto mismatch;
2533 /* OK, it *is* a hashed match; return it */
2534 spin_unlock(&dentry->d_lock);
2535 dput(new);
2536 return dentry;
2537 }
2538 rcu_read_unlock();
2539 /* we can't take ->d_lock here; it's OK, though. */
2540 new->d_flags |= DCACHE_PAR_LOOKUP;
2541 new->d_wait = wq;
2542 hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b);
2543 hlist_bl_unlock(b);
2544 return new;
2545 mismatch:
2546 spin_unlock(&dentry->d_lock);
2547 dput(dentry);
2548 goto retry;
2549 }
2550 EXPORT_SYMBOL(d_alloc_parallel);
2551
2552 void __d_lookup_done(struct dentry *dentry)
2553 {
2554 struct hlist_bl_head *b = in_lookup_hash(dentry->d_parent,
2555 dentry->d_name.hash);
2556 hlist_bl_lock(b);
2557 dentry->d_flags &= ~DCACHE_PAR_LOOKUP;
2558 __hlist_bl_del(&dentry->d_u.d_in_lookup_hash);
2559 wake_up_all(dentry->d_wait);
2560 dentry->d_wait = NULL;
2561 hlist_bl_unlock(b);
2562 INIT_HLIST_NODE(&dentry->d_u.d_alias);
2563 INIT_LIST_HEAD(&dentry->d_lru);
2564 }
2565 EXPORT_SYMBOL(__d_lookup_done);
2566
2567 /* inode->i_lock held if inode is non-NULL */
2568
2569 static inline void __d_add(struct dentry *dentry, struct inode *inode)
2570 {
2571 struct inode *dir = NULL;
2572 unsigned n;
2573 spin_lock(&dentry->d_lock);
2574 if (unlikely(d_in_lookup(dentry))) {
2575 dir = dentry->d_parent->d_inode;
2576 n = start_dir_add(dir);
2577 __d_lookup_done(dentry);
2578 }
2579 if (inode) {
2580 unsigned add_flags = d_flags_for_inode(inode);
2581 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2582 raw_write_seqcount_begin(&dentry->d_seq);
2583 __d_set_inode_and_type(dentry, inode, add_flags);
2584 raw_write_seqcount_end(&dentry->d_seq);
2585 fsnotify_update_flags(dentry);
2586 }
2587 __d_rehash(dentry);
2588 if (dir)
2589 end_dir_add(dir, n);
2590 spin_unlock(&dentry->d_lock);
2591 if (inode)
2592 spin_unlock(&inode->i_lock);
2593 }
2594
2595 /**
2596 * d_add - add dentry to hash queues
2597 * @entry: dentry to add
2598 * @inode: The inode to attach to this dentry
2599 *
2600 * This adds the entry to the hash queues and initializes @inode.
2601 * The entry was actually filled in earlier during d_alloc().
2602 */
2603
2604 void d_add(struct dentry *entry, struct inode *inode)
2605 {
2606 if (inode) {
2607 security_d_instantiate(entry, inode);
2608 spin_lock(&inode->i_lock);
2609 }
2610 __d_add(entry, inode);
2611 }
2612 EXPORT_SYMBOL(d_add);
2613
2614 /**
2615 * d_exact_alias - find and hash an exact unhashed alias
2616 * @entry: dentry to add
2617 * @inode: The inode to go with this dentry
2618 *
2619 * If an unhashed dentry with the same name/parent and desired
2620 * inode already exists, hash and return it. Otherwise, return
2621 * NULL.
2622 *
2623 * Parent directory should be locked.
2624 */
2625 struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode)
2626 {
2627 struct dentry *alias;
2628 unsigned int hash = entry->d_name.hash;
2629
2630 spin_lock(&inode->i_lock);
2631 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
2632 /*
2633 * Don't need alias->d_lock here, because aliases with
2634 * d_parent == entry->d_parent are not subject to name or
2635 * parent changes, because the parent inode i_mutex is held.
2636 */
2637 if (alias->d_name.hash != hash)
2638 continue;
2639 if (alias->d_parent != entry->d_parent)
2640 continue;
2641 if (!d_same_name(alias, entry->d_parent, &entry->d_name))
2642 continue;
2643 spin_lock(&alias->d_lock);
2644 if (!d_unhashed(alias)) {
2645 spin_unlock(&alias->d_lock);
2646 alias = NULL;
2647 } else {
2648 __dget_dlock(alias);
2649 __d_rehash(alias);
2650 spin_unlock(&alias->d_lock);
2651 }
2652 spin_unlock(&inode->i_lock);
2653 return alias;
2654 }
2655 spin_unlock(&inode->i_lock);
2656 return NULL;
2657 }
2658 EXPORT_SYMBOL(d_exact_alias);
2659
2660 /**
2661 * dentry_update_name_case - update case insensitive dentry with a new name
2662 * @dentry: dentry to be updated
2663 * @name: new name
2664 *
2665 * Update a case insensitive dentry with new case of name.
2666 *
2667 * dentry must have been returned by d_lookup with name @name. Old and new
2668 * name lengths must match (ie. no d_compare which allows mismatched name
2669 * lengths).
2670 *
2671 * Parent inode i_mutex must be held over d_lookup and into this call (to
2672 * keep renames and concurrent inserts, and readdir(2) away).
2673 */
2674 void dentry_update_name_case(struct dentry *dentry, const struct qstr *name)
2675 {
2676 BUG_ON(!inode_is_locked(dentry->d_parent->d_inode));
2677 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2678
2679 spin_lock(&dentry->d_lock);
2680 write_seqcount_begin(&dentry->d_seq);
2681 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
2682 write_seqcount_end(&dentry->d_seq);
2683 spin_unlock(&dentry->d_lock);
2684 }
2685 EXPORT_SYMBOL(dentry_update_name_case);
2686
2687 static void swap_names(struct dentry *dentry, struct dentry *target)
2688 {
2689 if (unlikely(dname_external(target))) {
2690 if (unlikely(dname_external(dentry))) {
2691 /*
2692 * Both external: swap the pointers
2693 */
2694 swap(target->d_name.name, dentry->d_name.name);
2695 } else {
2696 /*
2697 * dentry:internal, target:external. Steal target's
2698 * storage and make target internal.
2699 */
2700 memcpy(target->d_iname, dentry->d_name.name,
2701 dentry->d_name.len + 1);
2702 dentry->d_name.name = target->d_name.name;
2703 target->d_name.name = target->d_iname;
2704 }
2705 } else {
2706 if (unlikely(dname_external(dentry))) {
2707 /*
2708 * dentry:external, target:internal. Give dentry's
2709 * storage to target and make dentry internal
2710 */
2711 memcpy(dentry->d_iname, target->d_name.name,
2712 target->d_name.len + 1);
2713 target->d_name.name = dentry->d_name.name;
2714 dentry->d_name.name = dentry->d_iname;
2715 } else {
2716 /*
2717 * Both are internal.
2718 */
2719 unsigned int i;
2720 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2721 for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2722 swap(((long *) &dentry->d_iname)[i],
2723 ((long *) &target->d_iname)[i]);
2724 }
2725 }
2726 }
2727 swap(dentry->d_name.hash_len, target->d_name.hash_len);
2728 }
2729
2730 static void copy_name(struct dentry *dentry, struct dentry *target)
2731 {
2732 struct external_name *old_name = NULL;
2733 if (unlikely(dname_external(dentry)))
2734 old_name = external_name(dentry);
2735 if (unlikely(dname_external(target))) {
2736 atomic_inc(&external_name(target)->u.count);
2737 dentry->d_name = target->d_name;
2738 } else {
2739 memcpy(dentry->d_iname, target->d_name.name,
2740 target->d_name.len + 1);
2741 dentry->d_name.name = dentry->d_iname;
2742 dentry->d_name.hash_len = target->d_name.hash_len;
2743 }
2744 if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2745 kfree_rcu(old_name, u.head);
2746 }
2747
2748 static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2749 {
2750 /*
2751 * XXXX: do we really need to take target->d_lock?
2752 */
2753 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2754 spin_lock(&target->d_parent->d_lock);
2755 else {
2756 if (d_ancestor(dentry->d_parent, target->d_parent)) {
2757 spin_lock(&dentry->d_parent->d_lock);
2758 spin_lock_nested(&target->d_parent->d_lock,
2759 DENTRY_D_LOCK_NESTED);
2760 } else {
2761 spin_lock(&target->d_parent->d_lock);
2762 spin_lock_nested(&dentry->d_parent->d_lock,
2763 DENTRY_D_LOCK_NESTED);
2764 }
2765 }
2766 if (target < dentry) {
2767 spin_lock_nested(&target->d_lock, 2);
2768 spin_lock_nested(&dentry->d_lock, 3);
2769 } else {
2770 spin_lock_nested(&dentry->d_lock, 2);
2771 spin_lock_nested(&target->d_lock, 3);
2772 }
2773 }
2774
2775 static void dentry_unlock_for_move(struct dentry *dentry, struct dentry *target)
2776 {
2777 if (target->d_parent != dentry->d_parent)
2778 spin_unlock(&dentry->d_parent->d_lock);
2779 if (target->d_parent != target)
2780 spin_unlock(&target->d_parent->d_lock);
2781 spin_unlock(&target->d_lock);
2782 spin_unlock(&dentry->d_lock);
2783 }
2784
2785 /*
2786 * When switching names, the actual string doesn't strictly have to
2787 * be preserved in the target - because we're dropping the target
2788 * anyway. As such, we can just do a simple memcpy() to copy over
2789 * the new name before we switch, unless we are going to rehash
2790 * it. Note that if we *do* unhash the target, we are not allowed
2791 * to rehash it without giving it a new name/hash key - whether
2792 * we swap or overwrite the names here, resulting name won't match
2793 * the reality in filesystem; it's only there for d_path() purposes.
2794 * Note that all of this is happening under rename_lock, so the
2795 * any hash lookup seeing it in the middle of manipulations will
2796 * be discarded anyway. So we do not care what happens to the hash
2797 * key in that case.
2798 */
2799 /*
2800 * __d_move - move a dentry
2801 * @dentry: entry to move
2802 * @target: new dentry
2803 * @exchange: exchange the two dentries
2804 *
2805 * Update the dcache to reflect the move of a file name. Negative
2806 * dcache entries should not be moved in this way. Caller must hold
2807 * rename_lock, the i_mutex of the source and target directories,
2808 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2809 */
2810 static void __d_move(struct dentry *dentry, struct dentry *target,
2811 bool exchange)
2812 {
2813 struct inode *dir = NULL;
2814 unsigned n;
2815 if (!dentry->d_inode)
2816 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2817
2818 BUG_ON(d_ancestor(dentry, target));
2819 BUG_ON(d_ancestor(target, dentry));
2820
2821 dentry_lock_for_move(dentry, target);
2822 if (unlikely(d_in_lookup(target))) {
2823 dir = target->d_parent->d_inode;
2824 n = start_dir_add(dir);
2825 __d_lookup_done(target);
2826 }
2827
2828 write_seqcount_begin(&dentry->d_seq);
2829 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
2830
2831 /* unhash both */
2832 /* ___d_drop does write_seqcount_barrier, but they're OK to nest. */
2833 ___d_drop(dentry);
2834 ___d_drop(target);
2835
2836 /* Switch the names.. */
2837 if (exchange)
2838 swap_names(dentry, target);
2839 else
2840 copy_name(dentry, target);
2841
2842 /* rehash in new place(s) */
2843 __d_rehash(dentry);
2844 if (exchange)
2845 __d_rehash(target);
2846 else
2847 target->d_hash.pprev = NULL;
2848
2849 /* ... and switch them in the tree */
2850 if (IS_ROOT(dentry)) {
2851 /* splicing a tree */
2852 dentry->d_flags |= DCACHE_RCUACCESS;
2853 dentry->d_parent = target->d_parent;
2854 target->d_parent = target;
2855 list_del_init(&target->d_child);
2856 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2857 } else {
2858 /* swapping two dentries */
2859 swap(dentry->d_parent, target->d_parent);
2860 list_move(&target->d_child, &target->d_parent->d_subdirs);
2861 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2862 if (exchange)
2863 fsnotify_update_flags(target);
2864 fsnotify_update_flags(dentry);
2865 }
2866
2867 write_seqcount_end(&target->d_seq);
2868 write_seqcount_end(&dentry->d_seq);
2869
2870 if (dir)
2871 end_dir_add(dir, n);
2872 dentry_unlock_for_move(dentry, target);
2873 }
2874
2875 /*
2876 * d_move - move a dentry
2877 * @dentry: entry to move
2878 * @target: new dentry
2879 *
2880 * Update the dcache to reflect the move of a file name. Negative
2881 * dcache entries should not be moved in this way. See the locking
2882 * requirements for __d_move.
2883 */
2884 void d_move(struct dentry *dentry, struct dentry *target)
2885 {
2886 write_seqlock(&rename_lock);
2887 __d_move(dentry, target, false);
2888 write_sequnlock(&rename_lock);
2889 }
2890 EXPORT_SYMBOL(d_move);
2891
2892 /*
2893 * d_exchange - exchange two dentries
2894 * @dentry1: first dentry
2895 * @dentry2: second dentry
2896 */
2897 void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2898 {
2899 write_seqlock(&rename_lock);
2900
2901 WARN_ON(!dentry1->d_inode);
2902 WARN_ON(!dentry2->d_inode);
2903 WARN_ON(IS_ROOT(dentry1));
2904 WARN_ON(IS_ROOT(dentry2));
2905
2906 __d_move(dentry1, dentry2, true);
2907
2908 write_sequnlock(&rename_lock);
2909 }
2910 EXPORT_SYMBOL_GPL(d_exchange);
2911
2912 /**
2913 * d_ancestor - search for an ancestor
2914 * @p1: ancestor dentry
2915 * @p2: child dentry
2916 *
2917 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2918 * an ancestor of p2, else NULL.
2919 */
2920 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2921 {
2922 struct dentry *p;
2923
2924 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2925 if (p->d_parent == p1)
2926 return p;
2927 }
2928 return NULL;
2929 }
2930
2931 /*
2932 * This helper attempts to cope with remotely renamed directories
2933 *
2934 * It assumes that the caller is already holding
2935 * dentry->d_parent->d_inode->i_mutex, and rename_lock
2936 *
2937 * Note: If ever the locking in lock_rename() changes, then please
2938 * remember to update this too...
2939 */
2940 static int __d_unalias(struct inode *inode,
2941 struct dentry *dentry, struct dentry *alias)
2942 {
2943 struct mutex *m1 = NULL;
2944 struct rw_semaphore *m2 = NULL;
2945 int ret = -ESTALE;
2946
2947 /* If alias and dentry share a parent, then no extra locks required */
2948 if (alias->d_parent == dentry->d_parent)
2949 goto out_unalias;
2950
2951 /* See lock_rename() */
2952 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2953 goto out_err;
2954 m1 = &dentry->d_sb->s_vfs_rename_mutex;
2955 if (!inode_trylock_shared(alias->d_parent->d_inode))
2956 goto out_err;
2957 m2 = &alias->d_parent->d_inode->i_rwsem;
2958 out_unalias:
2959 __d_move(alias, dentry, false);
2960 ret = 0;
2961 out_err:
2962 if (m2)
2963 up_read(m2);
2964 if (m1)
2965 mutex_unlock(m1);
2966 return ret;
2967 }
2968
2969 /**
2970 * d_splice_alias - splice a disconnected dentry into the tree if one exists
2971 * @inode: the inode which may have a disconnected dentry
2972 * @dentry: a negative dentry which we want to point to the inode.
2973 *
2974 * If inode is a directory and has an IS_ROOT alias, then d_move that in
2975 * place of the given dentry and return it, else simply d_add the inode
2976 * to the dentry and return NULL.
2977 *
2978 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
2979 * we should error out: directories can't have multiple aliases.
2980 *
2981 * This is needed in the lookup routine of any filesystem that is exportable
2982 * (via knfsd) so that we can build dcache paths to directories effectively.
2983 *
2984 * If a dentry was found and moved, then it is returned. Otherwise NULL
2985 * is returned. This matches the expected return value of ->lookup.
2986 *
2987 * Cluster filesystems may call this function with a negative, hashed dentry.
2988 * In that case, we know that the inode will be a regular file, and also this
2989 * will only occur during atomic_open. So we need to check for the dentry
2990 * being already hashed only in the final case.
2991 */
2992 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
2993 {
2994 if (IS_ERR(inode))
2995 return ERR_CAST(inode);
2996
2997 BUG_ON(!d_unhashed(dentry));
2998
2999 if (!inode)
3000 goto out;
3001
3002 security_d_instantiate(dentry, inode);
3003 spin_lock(&inode->i_lock);
3004 if (S_ISDIR(inode->i_mode)) {
3005 struct dentry *new = __d_find_any_alias(inode);
3006 if (unlikely(new)) {
3007 /* The reference to new ensures it remains an alias */
3008 spin_unlock(&inode->i_lock);
3009 write_seqlock(&rename_lock);
3010 if (unlikely(d_ancestor(new, dentry))) {
3011 write_sequnlock(&rename_lock);
3012 dput(new);
3013 new = ERR_PTR(-ELOOP);
3014 pr_warn_ratelimited(
3015 "VFS: Lookup of '%s' in %s %s"
3016 " would have caused loop\n",
3017 dentry->d_name.name,
3018 inode->i_sb->s_type->name,
3019 inode->i_sb->s_id);
3020 } else if (!IS_ROOT(new)) {
3021 int err = __d_unalias(inode, dentry, new);
3022 write_sequnlock(&rename_lock);
3023 if (err) {
3024 dput(new);
3025 new = ERR_PTR(err);
3026 }
3027 } else {
3028 __d_move(new, dentry, false);
3029 write_sequnlock(&rename_lock);
3030 }
3031 iput(inode);
3032 return new;
3033 }
3034 }
3035 out:
3036 __d_add(dentry, inode);
3037 return NULL;
3038 }
3039 EXPORT_SYMBOL(d_splice_alias);
3040
3041 static int prepend(char **buffer, int *buflen, const char *str, int namelen)
3042 {
3043 *buflen -= namelen;
3044 if (*buflen < 0)
3045 return -ENAMETOOLONG;
3046 *buffer -= namelen;
3047 memcpy(*buffer, str, namelen);
3048 return 0;
3049 }
3050
3051 /**
3052 * prepend_name - prepend a pathname in front of current buffer pointer
3053 * @buffer: buffer pointer
3054 * @buflen: allocated length of the buffer
3055 * @name: name string and length qstr structure
3056 *
3057 * With RCU path tracing, it may race with d_move(). Use READ_ONCE() to
3058 * make sure that either the old or the new name pointer and length are
3059 * fetched. However, there may be mismatch between length and pointer.
3060 * The length cannot be trusted, we need to copy it byte-by-byte until
3061 * the length is reached or a null byte is found. It also prepends "/" at
3062 * the beginning of the name. The sequence number check at the caller will
3063 * retry it again when a d_move() does happen. So any garbage in the buffer
3064 * due to mismatched pointer and length will be discarded.
3065 *
3066 * Data dependency barrier is needed to make sure that we see that terminating
3067 * NUL. Alpha strikes again, film at 11...
3068 */
3069 static int prepend_name(char **buffer, int *buflen, const struct qstr *name)
3070 {
3071 const char *dname = READ_ONCE(name->name);
3072 u32 dlen = READ_ONCE(name->len);
3073 char *p;
3074
3075 smp_read_barrier_depends();
3076
3077 *buflen -= dlen + 1;
3078 if (*buflen < 0)
3079 return -ENAMETOOLONG;
3080 p = *buffer -= dlen + 1;
3081 *p++ = '/';
3082 while (dlen--) {
3083 char c = *dname++;
3084 if (!c)
3085 break;
3086 *p++ = c;
3087 }
3088 return 0;
3089 }
3090
3091 /**
3092 * prepend_path - Prepend path string to a buffer
3093 * @path: the dentry/vfsmount to report
3094 * @root: root vfsmnt/dentry
3095 * @buffer: pointer to the end of the buffer
3096 * @buflen: pointer to buffer length
3097 *
3098 * The function will first try to write out the pathname without taking any
3099 * lock other than the RCU read lock to make sure that dentries won't go away.
3100 * It only checks the sequence number of the global rename_lock as any change
3101 * in the dentry's d_seq will be preceded by changes in the rename_lock
3102 * sequence number. If the sequence number had been changed, it will restart
3103 * the whole pathname back-tracing sequence again by taking the rename_lock.
3104 * In this case, there is no need to take the RCU read lock as the recursive
3105 * parent pointer references will keep the dentry chain alive as long as no
3106 * rename operation is performed.
3107 */
3108 static int prepend_path(const struct path *path,
3109 const struct path *root,
3110 char **buffer, int *buflen)
3111 {
3112 struct dentry *dentry;
3113 struct vfsmount *vfsmnt;
3114 struct mount *mnt;
3115 int error = 0;
3116 unsigned seq, m_seq = 0;
3117 char *bptr;
3118 int blen;
3119
3120 rcu_read_lock();
3121 restart_mnt:
3122 read_seqbegin_or_lock(&mount_lock, &m_seq);
3123 seq = 0;
3124 rcu_read_lock();
3125 restart:
3126 bptr = *buffer;
3127 blen = *buflen;
3128 error = 0;
3129 dentry = path->dentry;
3130 vfsmnt = path->mnt;
3131 mnt = real_mount(vfsmnt);
3132 read_seqbegin_or_lock(&rename_lock, &seq);
3133 while (dentry != root->dentry || vfsmnt != root->mnt) {
3134 struct dentry * parent;
3135
3136 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
3137 struct mount *parent = READ_ONCE(mnt->mnt_parent);
3138 /* Escaped? */
3139 if (dentry != vfsmnt->mnt_root) {
3140 bptr = *buffer;
3141 blen = *buflen;
3142 error = 3;
3143 break;
3144 }
3145 /* Global root? */
3146 if (mnt != parent) {
3147 dentry = READ_ONCE(mnt->mnt_mountpoint);
3148 mnt = parent;
3149 vfsmnt = &mnt->mnt;
3150 continue;
3151 }
3152 if (!error)
3153 error = is_mounted(vfsmnt) ? 1 : 2;
3154 break;
3155 }
3156 parent = dentry->d_parent;
3157 prefetch(parent);
3158 error = prepend_name(&bptr, &blen, &dentry->d_name);
3159 if (error)
3160 break;
3161
3162 dentry = parent;
3163 }
3164 if (!(seq & 1))
3165 rcu_read_unlock();
3166 if (need_seqretry(&rename_lock, seq)) {
3167 seq = 1;
3168 goto restart;
3169 }
3170 done_seqretry(&rename_lock, seq);
3171
3172 if (!(m_seq & 1))
3173 rcu_read_unlock();
3174 if (need_seqretry(&mount_lock, m_seq)) {
3175 m_seq = 1;
3176 goto restart_mnt;
3177 }
3178 done_seqretry(&mount_lock, m_seq);
3179
3180 if (error >= 0 && bptr == *buffer) {
3181 if (--blen < 0)
3182 error = -ENAMETOOLONG;
3183 else
3184 *--bptr = '/';
3185 }
3186 *buffer = bptr;
3187 *buflen = blen;
3188 return error;
3189 }
3190
3191 /**
3192 * __d_path - return the path of a dentry
3193 * @path: the dentry/vfsmount to report
3194 * @root: root vfsmnt/dentry
3195 * @buf: buffer to return value in
3196 * @buflen: buffer length
3197 *
3198 * Convert a dentry into an ASCII path name.
3199 *
3200 * Returns a pointer into the buffer or an error code if the
3201 * path was too long.
3202 *
3203 * "buflen" should be positive.
3204 *
3205 * If the path is not reachable from the supplied root, return %NULL.
3206 */
3207 char *__d_path(const struct path *path,
3208 const struct path *root,
3209 char *buf, int buflen)
3210 {
3211 char *res = buf + buflen;
3212 int error;
3213
3214 prepend(&res, &buflen, "\0", 1);
3215 error = prepend_path(path, root, &res, &buflen);
3216
3217 if (error < 0)
3218 return ERR_PTR(error);
3219 if (error > 0)
3220 return NULL;
3221 return res;
3222 }
3223
3224 char *d_absolute_path(const struct path *path,
3225 char *buf, int buflen)
3226 {
3227 struct path root = {};
3228 char *res = buf + buflen;
3229 int error;
3230
3231 prepend(&res, &buflen, "\0", 1);
3232 error = prepend_path(path, &root, &res, &buflen);
3233
3234 if (error > 1)
3235 error = -EINVAL;
3236 if (error < 0)
3237 return ERR_PTR(error);
3238 return res;
3239 }
3240
3241 /*
3242 * same as __d_path but appends "(deleted)" for unlinked files.
3243 */
3244 static int path_with_deleted(const struct path *path,
3245 const struct path *root,
3246 char **buf, int *buflen)
3247 {
3248 prepend(buf, buflen, "\0", 1);
3249 if (d_unlinked(path->dentry)) {
3250 int error = prepend(buf, buflen, " (deleted)", 10);
3251 if (error)
3252 return error;
3253 }
3254
3255 return prepend_path(path, root, buf, buflen);
3256 }
3257
3258 static int prepend_unreachable(char **buffer, int *buflen)
3259 {
3260 return prepend(buffer, buflen, "(unreachable)", 13);
3261 }
3262
3263 static void get_fs_root_rcu(struct fs_struct *fs, struct path *root)
3264 {
3265 unsigned seq;
3266
3267 do {
3268 seq = read_seqcount_begin(&fs->seq);
3269 *root = fs->root;
3270 } while (read_seqcount_retry(&fs->seq, seq));
3271 }
3272
3273 /**
3274 * d_path - return the path of a dentry
3275 * @path: path to report
3276 * @buf: buffer to return value in
3277 * @buflen: buffer length
3278 *
3279 * Convert a dentry into an ASCII path name. If the entry has been deleted
3280 * the string " (deleted)" is appended. Note that this is ambiguous.
3281 *
3282 * Returns a pointer into the buffer or an error code if the path was
3283 * too long. Note: Callers should use the returned pointer, not the passed
3284 * in buffer, to use the name! The implementation often starts at an offset
3285 * into the buffer, and may leave 0 bytes at the start.
3286 *
3287 * "buflen" should be positive.
3288 */
3289 char *d_path(const struct path *path, char *buf, int buflen)
3290 {
3291 char *res = buf + buflen;
3292 struct path root;
3293 int error;
3294
3295 /*
3296 * We have various synthetic filesystems that never get mounted. On
3297 * these filesystems dentries are never used for lookup purposes, and
3298 * thus don't need to be hashed. They also don't need a name until a
3299 * user wants to identify the object in /proc/pid/fd/. The little hack
3300 * below allows us to generate a name for these objects on demand:
3301 *
3302 * Some pseudo inodes are mountable. When they are mounted
3303 * path->dentry == path->mnt->mnt_root. In that case don't call d_dname
3304 * and instead have d_path return the mounted path.
3305 */
3306 if (path->dentry->d_op && path->dentry->d_op->d_dname &&
3307 (!IS_ROOT(path->dentry) || path->dentry != path->mnt->mnt_root))
3308 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
3309
3310 rcu_read_lock();
3311 get_fs_root_rcu(current->fs, &root);
3312 error = path_with_deleted(path, &root, &res, &buflen);
3313 rcu_read_unlock();
3314
3315 if (error < 0)
3316 res = ERR_PTR(error);
3317 return res;
3318 }
3319 EXPORT_SYMBOL(d_path);
3320
3321 /*
3322 * Helper function for dentry_operations.d_dname() members
3323 */
3324 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
3325 const char *fmt, ...)
3326 {
3327 va_list args;
3328 char temp[64];
3329 int sz;
3330
3331 va_start(args, fmt);
3332 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
3333 va_end(args);
3334
3335 if (sz > sizeof(temp) || sz > buflen)
3336 return ERR_PTR(-ENAMETOOLONG);
3337
3338 buffer += buflen - sz;
3339 return memcpy(buffer, temp, sz);
3340 }
3341
3342 char *simple_dname(struct dentry *dentry, char *buffer, int buflen)
3343 {
3344 char *end = buffer + buflen;
3345 /* these dentries are never renamed, so d_lock is not needed */
3346 if (prepend(&end, &buflen, " (deleted)", 11) ||
3347 prepend(&end, &buflen, dentry->d_name.name, dentry->d_name.len) ||
3348 prepend(&end, &buflen, "/", 1))
3349 end = ERR_PTR(-ENAMETOOLONG);
3350 return end;
3351 }
3352 EXPORT_SYMBOL(simple_dname);
3353
3354 /*
3355 * Write full pathname from the root of the filesystem into the buffer.
3356 */
3357 static char *__dentry_path(struct dentry *d, char *buf, int buflen)
3358 {
3359 struct dentry *dentry;
3360 char *end, *retval;
3361 int len, seq = 0;
3362 int error = 0;
3363
3364 if (buflen < 2)
3365 goto Elong;
3366
3367 rcu_read_lock();
3368 restart:
3369 dentry = d;
3370 end = buf + buflen;
3371 len = buflen;
3372 prepend(&end, &len, "\0", 1);
3373 /* Get '/' right */
3374 retval = end-1;
3375 *retval = '/';
3376 read_seqbegin_or_lock(&rename_lock, &seq);
3377 while (!IS_ROOT(dentry)) {
3378 struct dentry *parent = dentry->d_parent;
3379
3380 prefetch(parent);
3381 error = prepend_name(&end, &len, &dentry->d_name);
3382 if (error)
3383 break;
3384
3385 retval = end;
3386 dentry = parent;
3387 }
3388 if (!(seq & 1))
3389 rcu_read_unlock();
3390 if (need_seqretry(&rename_lock, seq)) {
3391 seq = 1;
3392 goto restart;
3393 }
3394 done_seqretry(&rename_lock, seq);
3395 if (error)
3396 goto Elong;
3397 return retval;
3398 Elong:
3399 return ERR_PTR(-ENAMETOOLONG);
3400 }
3401
3402 char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
3403 {
3404 return __dentry_path(dentry, buf, buflen);
3405 }
3406 EXPORT_SYMBOL(dentry_path_raw);
3407
3408 char *dentry_path(struct dentry *dentry, char *buf, int buflen)
3409 {
3410 char *p = NULL;
3411 char *retval;
3412
3413 if (d_unlinked(dentry)) {
3414 p = buf + buflen;
3415 if (prepend(&p, &buflen, "//deleted", 10) != 0)
3416 goto Elong;
3417 buflen++;
3418 }
3419 retval = __dentry_path(dentry, buf, buflen);
3420 if (!IS_ERR(retval) && p)
3421 *p = '/'; /* restore '/' overriden with '\0' */
3422 return retval;
3423 Elong:
3424 return ERR_PTR(-ENAMETOOLONG);
3425 }
3426
3427 static void get_fs_root_and_pwd_rcu(struct fs_struct *fs, struct path *root,
3428 struct path *pwd)
3429 {
3430 unsigned seq;
3431
3432 do {
3433 seq = read_seqcount_begin(&fs->seq);
3434 *root = fs->root;
3435 *pwd = fs->pwd;
3436 } while (read_seqcount_retry(&fs->seq, seq));
3437 }
3438
3439 /*
3440 * NOTE! The user-level library version returns a
3441 * character pointer. The kernel system call just
3442 * returns the length of the buffer filled (which
3443 * includes the ending '\0' character), or a negative
3444 * error value. So libc would do something like
3445 *
3446 * char *getcwd(char * buf, size_t size)
3447 * {
3448 * int retval;
3449 *
3450 * retval = sys_getcwd(buf, size);
3451 * if (retval >= 0)
3452 * return buf;
3453 * errno = -retval;
3454 * return NULL;
3455 * }
3456 */
3457 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
3458 {
3459 int error;
3460 struct path pwd, root;
3461 char *page = __getname();
3462
3463 if (!page)
3464 return -ENOMEM;
3465
3466 rcu_read_lock();
3467 get_fs_root_and_pwd_rcu(current->fs, &root, &pwd);
3468
3469 error = -ENOENT;
3470 if (!d_unlinked(pwd.dentry)) {
3471 unsigned long len;
3472 char *cwd = page + PATH_MAX;
3473 int buflen = PATH_MAX;
3474
3475 prepend(&cwd, &buflen, "\0", 1);
3476 error = prepend_path(&pwd, &root, &cwd, &buflen);
3477 rcu_read_unlock();
3478
3479 if (error < 0)
3480 goto out;
3481
3482 /* Unreachable from current root */
3483 if (error > 0) {
3484 error = prepend_unreachable(&cwd, &buflen);
3485 if (error)
3486 goto out;
3487 }
3488
3489 error = -ERANGE;
3490 len = PATH_MAX + page - cwd;
3491 if (len <= size) {
3492 error = len;
3493 if (copy_to_user(buf, cwd, len))
3494 error = -EFAULT;
3495 }
3496 } else {
3497 rcu_read_unlock();
3498 }
3499
3500 out:
3501 __putname(page);
3502 return error;
3503 }
3504
3505 /*
3506 * Test whether new_dentry is a subdirectory of old_dentry.
3507 *
3508 * Trivially implemented using the dcache structure
3509 */
3510
3511 /**
3512 * is_subdir - is new dentry a subdirectory of old_dentry
3513 * @new_dentry: new dentry
3514 * @old_dentry: old dentry
3515 *
3516 * Returns true if new_dentry is a subdirectory of the parent (at any depth).
3517 * Returns false otherwise.
3518 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3519 */
3520
3521 bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
3522 {
3523 bool result;
3524 unsigned seq;
3525
3526 if (new_dentry == old_dentry)
3527 return true;
3528
3529 do {
3530 /* for restarting inner loop in case of seq retry */
3531 seq = read_seqbegin(&rename_lock);
3532 /*
3533 * Need rcu_readlock to protect against the d_parent trashing
3534 * due to d_move
3535 */
3536 rcu_read_lock();
3537 if (d_ancestor(old_dentry, new_dentry))
3538 result = true;
3539 else
3540 result = false;
3541 rcu_read_unlock();
3542 } while (read_seqretry(&rename_lock, seq));
3543
3544 return result;
3545 }
3546
3547 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
3548 {
3549 struct dentry *root = data;
3550 if (dentry != root) {
3551 if (d_unhashed(dentry) || !dentry->d_inode)
3552 return D_WALK_SKIP;
3553
3554 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3555 dentry->d_flags |= DCACHE_GENOCIDE;
3556 dentry->d_lockref.count--;
3557 }
3558 }
3559 return D_WALK_CONTINUE;
3560 }
3561
3562 void d_genocide(struct dentry *parent)
3563 {
3564 d_walk(parent, parent, d_genocide_kill, NULL);
3565 }
3566
3567 void d_tmpfile(struct dentry *dentry, struct inode *inode)
3568 {
3569 inode_dec_link_count(inode);
3570 BUG_ON(dentry->d_name.name != dentry->d_iname ||
3571 !hlist_unhashed(&dentry->d_u.d_alias) ||
3572 !d_unlinked(dentry));
3573 spin_lock(&dentry->d_parent->d_lock);
3574 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3575 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3576 (unsigned long long)inode->i_ino);
3577 spin_unlock(&dentry->d_lock);
3578 spin_unlock(&dentry->d_parent->d_lock);
3579 d_instantiate(dentry, inode);
3580 }
3581 EXPORT_SYMBOL(d_tmpfile);
3582
3583 static __initdata unsigned long dhash_entries;
3584 static int __init set_dhash_entries(char *str)
3585 {
3586 if (!str)
3587 return 0;
3588 dhash_entries = simple_strtoul(str, &str, 0);
3589 return 1;
3590 }
3591 __setup("dhash_entries=", set_dhash_entries);
3592
3593 static void __init dcache_init_early(void)
3594 {
3595 /* If hashes are distributed across NUMA nodes, defer
3596 * hash allocation until vmalloc space is available.
3597 */
3598 if (hashdist)
3599 return;
3600
3601 dentry_hashtable =
3602 alloc_large_system_hash("Dentry cache",
3603 sizeof(struct hlist_bl_head),
3604 dhash_entries,
3605 13,
3606 HASH_EARLY | HASH_ZERO,
3607 &d_hash_shift,
3608 &d_hash_mask,
3609 0,
3610 0);
3611 }
3612
3613 static void __init dcache_init(void)
3614 {
3615 /*
3616 * A constructor could be added for stable state like the lists,
3617 * but it is probably not worth it because of the cache nature
3618 * of the dcache.
3619 */
3620 dentry_cache = KMEM_CACHE(dentry,
3621 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT);
3622
3623 /* Hash may have been set up in dcache_init_early */
3624 if (!hashdist)
3625 return;
3626
3627 dentry_hashtable =
3628 alloc_large_system_hash("Dentry cache",
3629 sizeof(struct hlist_bl_head),
3630 dhash_entries,
3631 13,
3632 HASH_ZERO,
3633 &d_hash_shift,
3634 &d_hash_mask,
3635 0,
3636 0);
3637 }
3638
3639 /* SLAB cache for __getname() consumers */
3640 struct kmem_cache *names_cachep __read_mostly;
3641 EXPORT_SYMBOL(names_cachep);
3642
3643 EXPORT_SYMBOL(d_genocide);
3644
3645 void __init vfs_caches_init_early(void)
3646 {
3647 int i;
3648
3649 for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++)
3650 INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]);
3651
3652 dcache_init_early();
3653 inode_init_early();
3654 }
3655
3656 void __init vfs_caches_init(void)
3657 {
3658 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
3659 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3660
3661 dcache_init();
3662 inode_init();
3663 files_init();
3664 files_maxfiles_init();
3665 mnt_init();
3666 bdev_cache_init();
3667 chrdev_init();
3668 }