]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/dcache.c
[PATCH] new helper: d_obtain_alias
[mirror_ubuntu-jammy-kernel.git] / fs / dcache.c
1 /*
2 * fs/dcache.c
3 *
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
8
9 /*
10 * Notes on the allocation strategy:
11 *
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
15 */
16
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fdtable.h>
21 #include <linux/fs.h>
22 #include <linux/fsnotify.h>
23 #include <linux/slab.h>
24 #include <linux/init.h>
25 #include <linux/hash.h>
26 #include <linux/cache.h>
27 #include <linux/module.h>
28 #include <linux/mount.h>
29 #include <linux/file.h>
30 #include <asm/uaccess.h>
31 #include <linux/security.h>
32 #include <linux/seqlock.h>
33 #include <linux/swap.h>
34 #include <linux/bootmem.h>
35 #include "internal.h"
36
37
38 int sysctl_vfs_cache_pressure __read_mostly = 100;
39 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
40
41 __cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_lock);
42 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
43
44 EXPORT_SYMBOL(dcache_lock);
45
46 static struct kmem_cache *dentry_cache __read_mostly;
47
48 #define DNAME_INLINE_LEN (sizeof(struct dentry)-offsetof(struct dentry,d_iname))
49
50 /*
51 * This is the single most critical data structure when it comes
52 * to the dcache: the hashtable for lookups. Somebody should try
53 * to make this good - I've just made it work.
54 *
55 * This hash-function tries to avoid losing too many bits of hash
56 * information, yet avoid using a prime hash-size or similar.
57 */
58 #define D_HASHBITS d_hash_shift
59 #define D_HASHMASK d_hash_mask
60
61 static unsigned int d_hash_mask __read_mostly;
62 static unsigned int d_hash_shift __read_mostly;
63 static struct hlist_head *dentry_hashtable __read_mostly;
64
65 /* Statistics gathering. */
66 struct dentry_stat_t dentry_stat = {
67 .age_limit = 45,
68 };
69
70 static void __d_free(struct dentry *dentry)
71 {
72 if (dname_external(dentry))
73 kfree(dentry->d_name.name);
74 kmem_cache_free(dentry_cache, dentry);
75 }
76
77 static void d_callback(struct rcu_head *head)
78 {
79 struct dentry * dentry = container_of(head, struct dentry, d_u.d_rcu);
80 __d_free(dentry);
81 }
82
83 /*
84 * no dcache_lock, please. The caller must decrement dentry_stat.nr_dentry
85 * inside dcache_lock.
86 */
87 static void d_free(struct dentry *dentry)
88 {
89 if (dentry->d_op && dentry->d_op->d_release)
90 dentry->d_op->d_release(dentry);
91 /* if dentry was never inserted into hash, immediate free is OK */
92 if (hlist_unhashed(&dentry->d_hash))
93 __d_free(dentry);
94 else
95 call_rcu(&dentry->d_u.d_rcu, d_callback);
96 }
97
98 /*
99 * Release the dentry's inode, using the filesystem
100 * d_iput() operation if defined.
101 */
102 static void dentry_iput(struct dentry * dentry)
103 __releases(dentry->d_lock)
104 __releases(dcache_lock)
105 {
106 struct inode *inode = dentry->d_inode;
107 if (inode) {
108 dentry->d_inode = NULL;
109 list_del_init(&dentry->d_alias);
110 spin_unlock(&dentry->d_lock);
111 spin_unlock(&dcache_lock);
112 if (!inode->i_nlink)
113 fsnotify_inoderemove(inode);
114 if (dentry->d_op && dentry->d_op->d_iput)
115 dentry->d_op->d_iput(dentry, inode);
116 else
117 iput(inode);
118 } else {
119 spin_unlock(&dentry->d_lock);
120 spin_unlock(&dcache_lock);
121 }
122 }
123
124 /*
125 * dentry_lru_(add|add_tail|del|del_init) must be called with dcache_lock held.
126 */
127 static void dentry_lru_add(struct dentry *dentry)
128 {
129 list_add(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
130 dentry->d_sb->s_nr_dentry_unused++;
131 dentry_stat.nr_unused++;
132 }
133
134 static void dentry_lru_add_tail(struct dentry *dentry)
135 {
136 list_add_tail(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
137 dentry->d_sb->s_nr_dentry_unused++;
138 dentry_stat.nr_unused++;
139 }
140
141 static void dentry_lru_del(struct dentry *dentry)
142 {
143 if (!list_empty(&dentry->d_lru)) {
144 list_del(&dentry->d_lru);
145 dentry->d_sb->s_nr_dentry_unused--;
146 dentry_stat.nr_unused--;
147 }
148 }
149
150 static void dentry_lru_del_init(struct dentry *dentry)
151 {
152 if (likely(!list_empty(&dentry->d_lru))) {
153 list_del_init(&dentry->d_lru);
154 dentry->d_sb->s_nr_dentry_unused--;
155 dentry_stat.nr_unused--;
156 }
157 }
158
159 /**
160 * d_kill - kill dentry and return parent
161 * @dentry: dentry to kill
162 *
163 * The dentry must already be unhashed and removed from the LRU.
164 *
165 * If this is the root of the dentry tree, return NULL.
166 */
167 static struct dentry *d_kill(struct dentry *dentry)
168 __releases(dentry->d_lock)
169 __releases(dcache_lock)
170 {
171 struct dentry *parent;
172
173 list_del(&dentry->d_u.d_child);
174 dentry_stat.nr_dentry--; /* For d_free, below */
175 /*drops the locks, at that point nobody can reach this dentry */
176 dentry_iput(dentry);
177 parent = dentry->d_parent;
178 d_free(dentry);
179 return dentry == parent ? NULL : parent;
180 }
181
182 /*
183 * This is dput
184 *
185 * This is complicated by the fact that we do not want to put
186 * dentries that are no longer on any hash chain on the unused
187 * list: we'd much rather just get rid of them immediately.
188 *
189 * However, that implies that we have to traverse the dentry
190 * tree upwards to the parents which might _also_ now be
191 * scheduled for deletion (it may have been only waiting for
192 * its last child to go away).
193 *
194 * This tail recursion is done by hand as we don't want to depend
195 * on the compiler to always get this right (gcc generally doesn't).
196 * Real recursion would eat up our stack space.
197 */
198
199 /*
200 * dput - release a dentry
201 * @dentry: dentry to release
202 *
203 * Release a dentry. This will drop the usage count and if appropriate
204 * call the dentry unlink method as well as removing it from the queues and
205 * releasing its resources. If the parent dentries were scheduled for release
206 * they too may now get deleted.
207 *
208 * no dcache lock, please.
209 */
210
211 void dput(struct dentry *dentry)
212 {
213 if (!dentry)
214 return;
215
216 repeat:
217 if (atomic_read(&dentry->d_count) == 1)
218 might_sleep();
219 if (!atomic_dec_and_lock(&dentry->d_count, &dcache_lock))
220 return;
221
222 spin_lock(&dentry->d_lock);
223 if (atomic_read(&dentry->d_count)) {
224 spin_unlock(&dentry->d_lock);
225 spin_unlock(&dcache_lock);
226 return;
227 }
228
229 /*
230 * AV: ->d_delete() is _NOT_ allowed to block now.
231 */
232 if (dentry->d_op && dentry->d_op->d_delete) {
233 if (dentry->d_op->d_delete(dentry))
234 goto unhash_it;
235 }
236 /* Unreachable? Get rid of it */
237 if (d_unhashed(dentry))
238 goto kill_it;
239 if (list_empty(&dentry->d_lru)) {
240 dentry->d_flags |= DCACHE_REFERENCED;
241 dentry_lru_add(dentry);
242 }
243 spin_unlock(&dentry->d_lock);
244 spin_unlock(&dcache_lock);
245 return;
246
247 unhash_it:
248 __d_drop(dentry);
249 kill_it:
250 /* if dentry was on the d_lru list delete it from there */
251 dentry_lru_del(dentry);
252 dentry = d_kill(dentry);
253 if (dentry)
254 goto repeat;
255 }
256
257 /**
258 * d_invalidate - invalidate a dentry
259 * @dentry: dentry to invalidate
260 *
261 * Try to invalidate the dentry if it turns out to be
262 * possible. If there are other dentries that can be
263 * reached through this one we can't delete it and we
264 * return -EBUSY. On success we return 0.
265 *
266 * no dcache lock.
267 */
268
269 int d_invalidate(struct dentry * dentry)
270 {
271 /*
272 * If it's already been dropped, return OK.
273 */
274 spin_lock(&dcache_lock);
275 if (d_unhashed(dentry)) {
276 spin_unlock(&dcache_lock);
277 return 0;
278 }
279 /*
280 * Check whether to do a partial shrink_dcache
281 * to get rid of unused child entries.
282 */
283 if (!list_empty(&dentry->d_subdirs)) {
284 spin_unlock(&dcache_lock);
285 shrink_dcache_parent(dentry);
286 spin_lock(&dcache_lock);
287 }
288
289 /*
290 * Somebody else still using it?
291 *
292 * If it's a directory, we can't drop it
293 * for fear of somebody re-populating it
294 * with children (even though dropping it
295 * would make it unreachable from the root,
296 * we might still populate it if it was a
297 * working directory or similar).
298 */
299 spin_lock(&dentry->d_lock);
300 if (atomic_read(&dentry->d_count) > 1) {
301 if (dentry->d_inode && S_ISDIR(dentry->d_inode->i_mode)) {
302 spin_unlock(&dentry->d_lock);
303 spin_unlock(&dcache_lock);
304 return -EBUSY;
305 }
306 }
307
308 __d_drop(dentry);
309 spin_unlock(&dentry->d_lock);
310 spin_unlock(&dcache_lock);
311 return 0;
312 }
313
314 /* This should be called _only_ with dcache_lock held */
315
316 static inline struct dentry * __dget_locked(struct dentry *dentry)
317 {
318 atomic_inc(&dentry->d_count);
319 dentry_lru_del_init(dentry);
320 return dentry;
321 }
322
323 struct dentry * dget_locked(struct dentry *dentry)
324 {
325 return __dget_locked(dentry);
326 }
327
328 /**
329 * d_find_alias - grab a hashed alias of inode
330 * @inode: inode in question
331 * @want_discon: flag, used by d_splice_alias, to request
332 * that only a DISCONNECTED alias be returned.
333 *
334 * If inode has a hashed alias, or is a directory and has any alias,
335 * acquire the reference to alias and return it. Otherwise return NULL.
336 * Notice that if inode is a directory there can be only one alias and
337 * it can be unhashed only if it has no children, or if it is the root
338 * of a filesystem.
339 *
340 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
341 * any other hashed alias over that one unless @want_discon is set,
342 * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
343 */
344
345 static struct dentry * __d_find_alias(struct inode *inode, int want_discon)
346 {
347 struct list_head *head, *next, *tmp;
348 struct dentry *alias, *discon_alias=NULL;
349
350 head = &inode->i_dentry;
351 next = inode->i_dentry.next;
352 while (next != head) {
353 tmp = next;
354 next = tmp->next;
355 prefetch(next);
356 alias = list_entry(tmp, struct dentry, d_alias);
357 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
358 if (IS_ROOT(alias) &&
359 (alias->d_flags & DCACHE_DISCONNECTED))
360 discon_alias = alias;
361 else if (!want_discon) {
362 __dget_locked(alias);
363 return alias;
364 }
365 }
366 }
367 if (discon_alias)
368 __dget_locked(discon_alias);
369 return discon_alias;
370 }
371
372 struct dentry * d_find_alias(struct inode *inode)
373 {
374 struct dentry *de = NULL;
375
376 if (!list_empty(&inode->i_dentry)) {
377 spin_lock(&dcache_lock);
378 de = __d_find_alias(inode, 0);
379 spin_unlock(&dcache_lock);
380 }
381 return de;
382 }
383
384 /*
385 * Try to kill dentries associated with this inode.
386 * WARNING: you must own a reference to inode.
387 */
388 void d_prune_aliases(struct inode *inode)
389 {
390 struct dentry *dentry;
391 restart:
392 spin_lock(&dcache_lock);
393 list_for_each_entry(dentry, &inode->i_dentry, d_alias) {
394 spin_lock(&dentry->d_lock);
395 if (!atomic_read(&dentry->d_count)) {
396 __dget_locked(dentry);
397 __d_drop(dentry);
398 spin_unlock(&dentry->d_lock);
399 spin_unlock(&dcache_lock);
400 dput(dentry);
401 goto restart;
402 }
403 spin_unlock(&dentry->d_lock);
404 }
405 spin_unlock(&dcache_lock);
406 }
407
408 /*
409 * Throw away a dentry - free the inode, dput the parent. This requires that
410 * the LRU list has already been removed.
411 *
412 * Try to prune ancestors as well. This is necessary to prevent
413 * quadratic behavior of shrink_dcache_parent(), but is also expected
414 * to be beneficial in reducing dentry cache fragmentation.
415 */
416 static void prune_one_dentry(struct dentry * dentry)
417 __releases(dentry->d_lock)
418 __releases(dcache_lock)
419 __acquires(dcache_lock)
420 {
421 __d_drop(dentry);
422 dentry = d_kill(dentry);
423
424 /*
425 * Prune ancestors. Locking is simpler than in dput(),
426 * because dcache_lock needs to be taken anyway.
427 */
428 spin_lock(&dcache_lock);
429 while (dentry) {
430 if (!atomic_dec_and_lock(&dentry->d_count, &dentry->d_lock))
431 return;
432
433 if (dentry->d_op && dentry->d_op->d_delete)
434 dentry->d_op->d_delete(dentry);
435 dentry_lru_del_init(dentry);
436 __d_drop(dentry);
437 dentry = d_kill(dentry);
438 spin_lock(&dcache_lock);
439 }
440 }
441
442 /*
443 * Shrink the dentry LRU on a given superblock.
444 * @sb : superblock to shrink dentry LRU.
445 * @count: If count is NULL, we prune all dentries on superblock.
446 * @flags: If flags is non-zero, we need to do special processing based on
447 * which flags are set. This means we don't need to maintain multiple
448 * similar copies of this loop.
449 */
450 static void __shrink_dcache_sb(struct super_block *sb, int *count, int flags)
451 {
452 LIST_HEAD(referenced);
453 LIST_HEAD(tmp);
454 struct dentry *dentry;
455 int cnt = 0;
456
457 BUG_ON(!sb);
458 BUG_ON((flags & DCACHE_REFERENCED) && count == NULL);
459 spin_lock(&dcache_lock);
460 if (count != NULL)
461 /* called from prune_dcache() and shrink_dcache_parent() */
462 cnt = *count;
463 restart:
464 if (count == NULL)
465 list_splice_init(&sb->s_dentry_lru, &tmp);
466 else {
467 while (!list_empty(&sb->s_dentry_lru)) {
468 dentry = list_entry(sb->s_dentry_lru.prev,
469 struct dentry, d_lru);
470 BUG_ON(dentry->d_sb != sb);
471
472 spin_lock(&dentry->d_lock);
473 /*
474 * If we are honouring the DCACHE_REFERENCED flag and
475 * the dentry has this flag set, don't free it. Clear
476 * the flag and put it back on the LRU.
477 */
478 if ((flags & DCACHE_REFERENCED)
479 && (dentry->d_flags & DCACHE_REFERENCED)) {
480 dentry->d_flags &= ~DCACHE_REFERENCED;
481 list_move_tail(&dentry->d_lru, &referenced);
482 spin_unlock(&dentry->d_lock);
483 } else {
484 list_move_tail(&dentry->d_lru, &tmp);
485 spin_unlock(&dentry->d_lock);
486 cnt--;
487 if (!cnt)
488 break;
489 }
490 cond_resched_lock(&dcache_lock);
491 }
492 }
493 while (!list_empty(&tmp)) {
494 dentry = list_entry(tmp.prev, struct dentry, d_lru);
495 dentry_lru_del_init(dentry);
496 spin_lock(&dentry->d_lock);
497 /*
498 * We found an inuse dentry which was not removed from
499 * the LRU because of laziness during lookup. Do not free
500 * it - just keep it off the LRU list.
501 */
502 if (atomic_read(&dentry->d_count)) {
503 spin_unlock(&dentry->d_lock);
504 continue;
505 }
506 prune_one_dentry(dentry);
507 /* dentry->d_lock was dropped in prune_one_dentry() */
508 cond_resched_lock(&dcache_lock);
509 }
510 if (count == NULL && !list_empty(&sb->s_dentry_lru))
511 goto restart;
512 if (count != NULL)
513 *count = cnt;
514 if (!list_empty(&referenced))
515 list_splice(&referenced, &sb->s_dentry_lru);
516 spin_unlock(&dcache_lock);
517 }
518
519 /**
520 * prune_dcache - shrink the dcache
521 * @count: number of entries to try to free
522 *
523 * Shrink the dcache. This is done when we need more memory, or simply when we
524 * need to unmount something (at which point we need to unuse all dentries).
525 *
526 * This function may fail to free any resources if all the dentries are in use.
527 */
528 static void prune_dcache(int count)
529 {
530 struct super_block *sb;
531 int w_count;
532 int unused = dentry_stat.nr_unused;
533 int prune_ratio;
534 int pruned;
535
536 if (unused == 0 || count == 0)
537 return;
538 spin_lock(&dcache_lock);
539 restart:
540 if (count >= unused)
541 prune_ratio = 1;
542 else
543 prune_ratio = unused / count;
544 spin_lock(&sb_lock);
545 list_for_each_entry(sb, &super_blocks, s_list) {
546 if (sb->s_nr_dentry_unused == 0)
547 continue;
548 sb->s_count++;
549 /* Now, we reclaim unused dentrins with fairness.
550 * We reclaim them same percentage from each superblock.
551 * We calculate number of dentries to scan on this sb
552 * as follows, but the implementation is arranged to avoid
553 * overflows:
554 * number of dentries to scan on this sb =
555 * count * (number of dentries on this sb /
556 * number of dentries in the machine)
557 */
558 spin_unlock(&sb_lock);
559 if (prune_ratio != 1)
560 w_count = (sb->s_nr_dentry_unused / prune_ratio) + 1;
561 else
562 w_count = sb->s_nr_dentry_unused;
563 pruned = w_count;
564 /*
565 * We need to be sure this filesystem isn't being unmounted,
566 * otherwise we could race with generic_shutdown_super(), and
567 * end up holding a reference to an inode while the filesystem
568 * is unmounted. So we try to get s_umount, and make sure
569 * s_root isn't NULL.
570 */
571 if (down_read_trylock(&sb->s_umount)) {
572 if ((sb->s_root != NULL) &&
573 (!list_empty(&sb->s_dentry_lru))) {
574 spin_unlock(&dcache_lock);
575 __shrink_dcache_sb(sb, &w_count,
576 DCACHE_REFERENCED);
577 pruned -= w_count;
578 spin_lock(&dcache_lock);
579 }
580 up_read(&sb->s_umount);
581 }
582 spin_lock(&sb_lock);
583 count -= pruned;
584 /*
585 * restart only when sb is no longer on the list and
586 * we have more work to do.
587 */
588 if (__put_super_and_need_restart(sb) && count > 0) {
589 spin_unlock(&sb_lock);
590 goto restart;
591 }
592 }
593 spin_unlock(&sb_lock);
594 spin_unlock(&dcache_lock);
595 }
596
597 /**
598 * shrink_dcache_sb - shrink dcache for a superblock
599 * @sb: superblock
600 *
601 * Shrink the dcache for the specified super block. This
602 * is used to free the dcache before unmounting a file
603 * system
604 */
605 void shrink_dcache_sb(struct super_block * sb)
606 {
607 __shrink_dcache_sb(sb, NULL, 0);
608 }
609
610 /*
611 * destroy a single subtree of dentries for unmount
612 * - see the comments on shrink_dcache_for_umount() for a description of the
613 * locking
614 */
615 static void shrink_dcache_for_umount_subtree(struct dentry *dentry)
616 {
617 struct dentry *parent;
618 unsigned detached = 0;
619
620 BUG_ON(!IS_ROOT(dentry));
621
622 /* detach this root from the system */
623 spin_lock(&dcache_lock);
624 dentry_lru_del_init(dentry);
625 __d_drop(dentry);
626 spin_unlock(&dcache_lock);
627
628 for (;;) {
629 /* descend to the first leaf in the current subtree */
630 while (!list_empty(&dentry->d_subdirs)) {
631 struct dentry *loop;
632
633 /* this is a branch with children - detach all of them
634 * from the system in one go */
635 spin_lock(&dcache_lock);
636 list_for_each_entry(loop, &dentry->d_subdirs,
637 d_u.d_child) {
638 dentry_lru_del_init(loop);
639 __d_drop(loop);
640 cond_resched_lock(&dcache_lock);
641 }
642 spin_unlock(&dcache_lock);
643
644 /* move to the first child */
645 dentry = list_entry(dentry->d_subdirs.next,
646 struct dentry, d_u.d_child);
647 }
648
649 /* consume the dentries from this leaf up through its parents
650 * until we find one with children or run out altogether */
651 do {
652 struct inode *inode;
653
654 if (atomic_read(&dentry->d_count) != 0) {
655 printk(KERN_ERR
656 "BUG: Dentry %p{i=%lx,n=%s}"
657 " still in use (%d)"
658 " [unmount of %s %s]\n",
659 dentry,
660 dentry->d_inode ?
661 dentry->d_inode->i_ino : 0UL,
662 dentry->d_name.name,
663 atomic_read(&dentry->d_count),
664 dentry->d_sb->s_type->name,
665 dentry->d_sb->s_id);
666 BUG();
667 }
668
669 parent = dentry->d_parent;
670 if (parent == dentry)
671 parent = NULL;
672 else
673 atomic_dec(&parent->d_count);
674
675 list_del(&dentry->d_u.d_child);
676 detached++;
677
678 inode = dentry->d_inode;
679 if (inode) {
680 dentry->d_inode = NULL;
681 list_del_init(&dentry->d_alias);
682 if (dentry->d_op && dentry->d_op->d_iput)
683 dentry->d_op->d_iput(dentry, inode);
684 else
685 iput(inode);
686 }
687
688 d_free(dentry);
689
690 /* finished when we fall off the top of the tree,
691 * otherwise we ascend to the parent and move to the
692 * next sibling if there is one */
693 if (!parent)
694 goto out;
695
696 dentry = parent;
697
698 } while (list_empty(&dentry->d_subdirs));
699
700 dentry = list_entry(dentry->d_subdirs.next,
701 struct dentry, d_u.d_child);
702 }
703 out:
704 /* several dentries were freed, need to correct nr_dentry */
705 spin_lock(&dcache_lock);
706 dentry_stat.nr_dentry -= detached;
707 spin_unlock(&dcache_lock);
708 }
709
710 /*
711 * destroy the dentries attached to a superblock on unmounting
712 * - we don't need to use dentry->d_lock, and only need dcache_lock when
713 * removing the dentry from the system lists and hashes because:
714 * - the superblock is detached from all mountings and open files, so the
715 * dentry trees will not be rearranged by the VFS
716 * - s_umount is write-locked, so the memory pressure shrinker will ignore
717 * any dentries belonging to this superblock that it comes across
718 * - the filesystem itself is no longer permitted to rearrange the dentries
719 * in this superblock
720 */
721 void shrink_dcache_for_umount(struct super_block *sb)
722 {
723 struct dentry *dentry;
724
725 if (down_read_trylock(&sb->s_umount))
726 BUG();
727
728 dentry = sb->s_root;
729 sb->s_root = NULL;
730 atomic_dec(&dentry->d_count);
731 shrink_dcache_for_umount_subtree(dentry);
732
733 while (!hlist_empty(&sb->s_anon)) {
734 dentry = hlist_entry(sb->s_anon.first, struct dentry, d_hash);
735 shrink_dcache_for_umount_subtree(dentry);
736 }
737 }
738
739 /*
740 * Search for at least 1 mount point in the dentry's subdirs.
741 * We descend to the next level whenever the d_subdirs
742 * list is non-empty and continue searching.
743 */
744
745 /**
746 * have_submounts - check for mounts over a dentry
747 * @parent: dentry to check.
748 *
749 * Return true if the parent or its subdirectories contain
750 * a mount point
751 */
752
753 int have_submounts(struct dentry *parent)
754 {
755 struct dentry *this_parent = parent;
756 struct list_head *next;
757
758 spin_lock(&dcache_lock);
759 if (d_mountpoint(parent))
760 goto positive;
761 repeat:
762 next = this_parent->d_subdirs.next;
763 resume:
764 while (next != &this_parent->d_subdirs) {
765 struct list_head *tmp = next;
766 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
767 next = tmp->next;
768 /* Have we found a mount point ? */
769 if (d_mountpoint(dentry))
770 goto positive;
771 if (!list_empty(&dentry->d_subdirs)) {
772 this_parent = dentry;
773 goto repeat;
774 }
775 }
776 /*
777 * All done at this level ... ascend and resume the search.
778 */
779 if (this_parent != parent) {
780 next = this_parent->d_u.d_child.next;
781 this_parent = this_parent->d_parent;
782 goto resume;
783 }
784 spin_unlock(&dcache_lock);
785 return 0; /* No mount points found in tree */
786 positive:
787 spin_unlock(&dcache_lock);
788 return 1;
789 }
790
791 /*
792 * Search the dentry child list for the specified parent,
793 * and move any unused dentries to the end of the unused
794 * list for prune_dcache(). We descend to the next level
795 * whenever the d_subdirs list is non-empty and continue
796 * searching.
797 *
798 * It returns zero iff there are no unused children,
799 * otherwise it returns the number of children moved to
800 * the end of the unused list. This may not be the total
801 * number of unused children, because select_parent can
802 * drop the lock and return early due to latency
803 * constraints.
804 */
805 static int select_parent(struct dentry * parent)
806 {
807 struct dentry *this_parent = parent;
808 struct list_head *next;
809 int found = 0;
810
811 spin_lock(&dcache_lock);
812 repeat:
813 next = this_parent->d_subdirs.next;
814 resume:
815 while (next != &this_parent->d_subdirs) {
816 struct list_head *tmp = next;
817 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
818 next = tmp->next;
819
820 dentry_lru_del_init(dentry);
821 /*
822 * move only zero ref count dentries to the end
823 * of the unused list for prune_dcache
824 */
825 if (!atomic_read(&dentry->d_count)) {
826 dentry_lru_add_tail(dentry);
827 found++;
828 }
829
830 /*
831 * We can return to the caller if we have found some (this
832 * ensures forward progress). We'll be coming back to find
833 * the rest.
834 */
835 if (found && need_resched())
836 goto out;
837
838 /*
839 * Descend a level if the d_subdirs list is non-empty.
840 */
841 if (!list_empty(&dentry->d_subdirs)) {
842 this_parent = dentry;
843 goto repeat;
844 }
845 }
846 /*
847 * All done at this level ... ascend and resume the search.
848 */
849 if (this_parent != parent) {
850 next = this_parent->d_u.d_child.next;
851 this_parent = this_parent->d_parent;
852 goto resume;
853 }
854 out:
855 spin_unlock(&dcache_lock);
856 return found;
857 }
858
859 /**
860 * shrink_dcache_parent - prune dcache
861 * @parent: parent of entries to prune
862 *
863 * Prune the dcache to remove unused children of the parent dentry.
864 */
865
866 void shrink_dcache_parent(struct dentry * parent)
867 {
868 struct super_block *sb = parent->d_sb;
869 int found;
870
871 while ((found = select_parent(parent)) != 0)
872 __shrink_dcache_sb(sb, &found, 0);
873 }
874
875 /*
876 * Scan `nr' dentries and return the number which remain.
877 *
878 * We need to avoid reentering the filesystem if the caller is performing a
879 * GFP_NOFS allocation attempt. One example deadlock is:
880 *
881 * ext2_new_block->getblk->GFP->shrink_dcache_memory->prune_dcache->
882 * prune_one_dentry->dput->dentry_iput->iput->inode->i_sb->s_op->put_inode->
883 * ext2_discard_prealloc->ext2_free_blocks->lock_super->DEADLOCK.
884 *
885 * In this case we return -1 to tell the caller that we baled.
886 */
887 static int shrink_dcache_memory(int nr, gfp_t gfp_mask)
888 {
889 if (nr) {
890 if (!(gfp_mask & __GFP_FS))
891 return -1;
892 prune_dcache(nr);
893 }
894 return (dentry_stat.nr_unused / 100) * sysctl_vfs_cache_pressure;
895 }
896
897 static struct shrinker dcache_shrinker = {
898 .shrink = shrink_dcache_memory,
899 .seeks = DEFAULT_SEEKS,
900 };
901
902 /**
903 * d_alloc - allocate a dcache entry
904 * @parent: parent of entry to allocate
905 * @name: qstr of the name
906 *
907 * Allocates a dentry. It returns %NULL if there is insufficient memory
908 * available. On a success the dentry is returned. The name passed in is
909 * copied and the copy passed in may be reused after this call.
910 */
911
912 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
913 {
914 struct dentry *dentry;
915 char *dname;
916
917 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
918 if (!dentry)
919 return NULL;
920
921 if (name->len > DNAME_INLINE_LEN-1) {
922 dname = kmalloc(name->len + 1, GFP_KERNEL);
923 if (!dname) {
924 kmem_cache_free(dentry_cache, dentry);
925 return NULL;
926 }
927 } else {
928 dname = dentry->d_iname;
929 }
930 dentry->d_name.name = dname;
931
932 dentry->d_name.len = name->len;
933 dentry->d_name.hash = name->hash;
934 memcpy(dname, name->name, name->len);
935 dname[name->len] = 0;
936
937 atomic_set(&dentry->d_count, 1);
938 dentry->d_flags = DCACHE_UNHASHED;
939 spin_lock_init(&dentry->d_lock);
940 dentry->d_inode = NULL;
941 dentry->d_parent = NULL;
942 dentry->d_sb = NULL;
943 dentry->d_op = NULL;
944 dentry->d_fsdata = NULL;
945 dentry->d_mounted = 0;
946 #ifdef CONFIG_PROFILING
947 dentry->d_cookie = NULL;
948 #endif
949 INIT_HLIST_NODE(&dentry->d_hash);
950 INIT_LIST_HEAD(&dentry->d_lru);
951 INIT_LIST_HEAD(&dentry->d_subdirs);
952 INIT_LIST_HEAD(&dentry->d_alias);
953
954 if (parent) {
955 dentry->d_parent = dget(parent);
956 dentry->d_sb = parent->d_sb;
957 } else {
958 INIT_LIST_HEAD(&dentry->d_u.d_child);
959 }
960
961 spin_lock(&dcache_lock);
962 if (parent)
963 list_add(&dentry->d_u.d_child, &parent->d_subdirs);
964 dentry_stat.nr_dentry++;
965 spin_unlock(&dcache_lock);
966
967 return dentry;
968 }
969
970 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
971 {
972 struct qstr q;
973
974 q.name = name;
975 q.len = strlen(name);
976 q.hash = full_name_hash(q.name, q.len);
977 return d_alloc(parent, &q);
978 }
979
980 /**
981 * d_instantiate - fill in inode information for a dentry
982 * @entry: dentry to complete
983 * @inode: inode to attach to this dentry
984 *
985 * Fill in inode information in the entry.
986 *
987 * This turns negative dentries into productive full members
988 * of society.
989 *
990 * NOTE! This assumes that the inode count has been incremented
991 * (or otherwise set) by the caller to indicate that it is now
992 * in use by the dcache.
993 */
994
995 void d_instantiate(struct dentry *entry, struct inode * inode)
996 {
997 BUG_ON(!list_empty(&entry->d_alias));
998 spin_lock(&dcache_lock);
999 if (inode)
1000 list_add(&entry->d_alias, &inode->i_dentry);
1001 entry->d_inode = inode;
1002 fsnotify_d_instantiate(entry, inode);
1003 spin_unlock(&dcache_lock);
1004 security_d_instantiate(entry, inode);
1005 }
1006
1007 /**
1008 * d_instantiate_unique - instantiate a non-aliased dentry
1009 * @entry: dentry to instantiate
1010 * @inode: inode to attach to this dentry
1011 *
1012 * Fill in inode information in the entry. On success, it returns NULL.
1013 * If an unhashed alias of "entry" already exists, then we return the
1014 * aliased dentry instead and drop one reference to inode.
1015 *
1016 * Note that in order to avoid conflicts with rename() etc, the caller
1017 * had better be holding the parent directory semaphore.
1018 *
1019 * This also assumes that the inode count has been incremented
1020 * (or otherwise set) by the caller to indicate that it is now
1021 * in use by the dcache.
1022 */
1023 static struct dentry *__d_instantiate_unique(struct dentry *entry,
1024 struct inode *inode)
1025 {
1026 struct dentry *alias;
1027 int len = entry->d_name.len;
1028 const char *name = entry->d_name.name;
1029 unsigned int hash = entry->d_name.hash;
1030
1031 if (!inode) {
1032 entry->d_inode = NULL;
1033 return NULL;
1034 }
1035
1036 list_for_each_entry(alias, &inode->i_dentry, d_alias) {
1037 struct qstr *qstr = &alias->d_name;
1038
1039 if (qstr->hash != hash)
1040 continue;
1041 if (alias->d_parent != entry->d_parent)
1042 continue;
1043 if (qstr->len != len)
1044 continue;
1045 if (memcmp(qstr->name, name, len))
1046 continue;
1047 dget_locked(alias);
1048 return alias;
1049 }
1050
1051 list_add(&entry->d_alias, &inode->i_dentry);
1052 entry->d_inode = inode;
1053 fsnotify_d_instantiate(entry, inode);
1054 return NULL;
1055 }
1056
1057 struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1058 {
1059 struct dentry *result;
1060
1061 BUG_ON(!list_empty(&entry->d_alias));
1062
1063 spin_lock(&dcache_lock);
1064 result = __d_instantiate_unique(entry, inode);
1065 spin_unlock(&dcache_lock);
1066
1067 if (!result) {
1068 security_d_instantiate(entry, inode);
1069 return NULL;
1070 }
1071
1072 BUG_ON(!d_unhashed(result));
1073 iput(inode);
1074 return result;
1075 }
1076
1077 EXPORT_SYMBOL(d_instantiate_unique);
1078
1079 /**
1080 * d_alloc_root - allocate root dentry
1081 * @root_inode: inode to allocate the root for
1082 *
1083 * Allocate a root ("/") dentry for the inode given. The inode is
1084 * instantiated and returned. %NULL is returned if there is insufficient
1085 * memory or the inode passed is %NULL.
1086 */
1087
1088 struct dentry * d_alloc_root(struct inode * root_inode)
1089 {
1090 struct dentry *res = NULL;
1091
1092 if (root_inode) {
1093 static const struct qstr name = { .name = "/", .len = 1 };
1094
1095 res = d_alloc(NULL, &name);
1096 if (res) {
1097 res->d_sb = root_inode->i_sb;
1098 res->d_parent = res;
1099 d_instantiate(res, root_inode);
1100 }
1101 }
1102 return res;
1103 }
1104
1105 static inline struct hlist_head *d_hash(struct dentry *parent,
1106 unsigned long hash)
1107 {
1108 hash += ((unsigned long) parent ^ GOLDEN_RATIO_PRIME) / L1_CACHE_BYTES;
1109 hash = hash ^ ((hash ^ GOLDEN_RATIO_PRIME) >> D_HASHBITS);
1110 return dentry_hashtable + (hash & D_HASHMASK);
1111 }
1112
1113 /**
1114 * d_alloc_anon - allocate an anonymous dentry
1115 * @inode: inode to allocate the dentry for
1116 *
1117 * This is similar to d_alloc_root. It is used by filesystems when
1118 * creating a dentry for a given inode, often in the process of
1119 * mapping a filehandle to a dentry. The returned dentry may be
1120 * anonymous, or may have a full name (if the inode was already
1121 * in the cache). The file system may need to make further
1122 * efforts to connect this dentry into the dcache properly.
1123 *
1124 * When called on a directory inode, we must ensure that
1125 * the inode only ever has one dentry. If a dentry is
1126 * found, that is returned instead of allocating a new one.
1127 *
1128 * On successful return, the reference to the inode has been transferred
1129 * to the dentry. If %NULL is returned (indicating kmalloc failure),
1130 * the reference on the inode has not been released.
1131 */
1132
1133 struct dentry * d_alloc_anon(struct inode *inode)
1134 {
1135 static const struct qstr anonstring = { .name = "" };
1136 struct dentry *tmp;
1137 struct dentry *res;
1138
1139 if ((res = d_find_alias(inode))) {
1140 iput(inode);
1141 return res;
1142 }
1143
1144 tmp = d_alloc(NULL, &anonstring);
1145 if (!tmp)
1146 return NULL;
1147
1148 tmp->d_parent = tmp; /* make sure dput doesn't croak */
1149
1150 spin_lock(&dcache_lock);
1151 res = __d_find_alias(inode, 0);
1152 if (!res) {
1153 /* attach a disconnected dentry */
1154 res = tmp;
1155 tmp = NULL;
1156 spin_lock(&res->d_lock);
1157 res->d_sb = inode->i_sb;
1158 res->d_parent = res;
1159 res->d_inode = inode;
1160 res->d_flags |= DCACHE_DISCONNECTED;
1161 res->d_flags &= ~DCACHE_UNHASHED;
1162 list_add(&res->d_alias, &inode->i_dentry);
1163 hlist_add_head(&res->d_hash, &inode->i_sb->s_anon);
1164 spin_unlock(&res->d_lock);
1165
1166 inode = NULL; /* don't drop reference */
1167 }
1168 spin_unlock(&dcache_lock);
1169
1170 if (inode)
1171 iput(inode);
1172 if (tmp)
1173 dput(tmp);
1174 return res;
1175 }
1176
1177 /**
1178 * d_obtain_alias - find or allocate a dentry for a given inode
1179 * @inode: inode to allocate the dentry for
1180 *
1181 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1182 * similar open by handle operations. The returned dentry may be anonymous,
1183 * or may have a full name (if the inode was already in the cache).
1184 *
1185 * When called on a directory inode, we must ensure that the inode only ever
1186 * has one dentry. If a dentry is found, that is returned instead of
1187 * allocating a new one.
1188 *
1189 * On successful return, the reference to the inode has been transferred
1190 * to the dentry. If %NULL is returned (indicating kmalloc failure),
1191 * the reference on the inode has been released. To make it easier
1192 * to use in export operations a NULL or IS_ERR inode may be passed in
1193 * and will be casted to the corresponding NULL or IS_ERR dentry.
1194 */
1195 struct dentry *d_obtain_alias(struct inode *inode)
1196 {
1197 struct dentry *dentry;
1198
1199 if (!inode)
1200 return NULL;
1201 if (IS_ERR(inode))
1202 return ERR_CAST(inode);
1203
1204 dentry = d_alloc_anon(inode);
1205 if (!dentry) {
1206 iput(inode);
1207 dentry = ERR_PTR(-ENOMEM);
1208 }
1209 return dentry;
1210 }
1211 EXPORT_SYMBOL_GPL(d_obtain_alias);
1212
1213 /**
1214 * d_splice_alias - splice a disconnected dentry into the tree if one exists
1215 * @inode: the inode which may have a disconnected dentry
1216 * @dentry: a negative dentry which we want to point to the inode.
1217 *
1218 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1219 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1220 * and return it, else simply d_add the inode to the dentry and return NULL.
1221 *
1222 * This is needed in the lookup routine of any filesystem that is exportable
1223 * (via knfsd) so that we can build dcache paths to directories effectively.
1224 *
1225 * If a dentry was found and moved, then it is returned. Otherwise NULL
1226 * is returned. This matches the expected return value of ->lookup.
1227 *
1228 */
1229 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
1230 {
1231 struct dentry *new = NULL;
1232
1233 if (inode && S_ISDIR(inode->i_mode)) {
1234 spin_lock(&dcache_lock);
1235 new = __d_find_alias(inode, 1);
1236 if (new) {
1237 BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED));
1238 fsnotify_d_instantiate(new, inode);
1239 spin_unlock(&dcache_lock);
1240 security_d_instantiate(new, inode);
1241 d_rehash(dentry);
1242 d_move(new, dentry);
1243 iput(inode);
1244 } else {
1245 /* d_instantiate takes dcache_lock, so we do it by hand */
1246 list_add(&dentry->d_alias, &inode->i_dentry);
1247 dentry->d_inode = inode;
1248 fsnotify_d_instantiate(dentry, inode);
1249 spin_unlock(&dcache_lock);
1250 security_d_instantiate(dentry, inode);
1251 d_rehash(dentry);
1252 }
1253 } else
1254 d_add(dentry, inode);
1255 return new;
1256 }
1257
1258 /**
1259 * d_add_ci - lookup or allocate new dentry with case-exact name
1260 * @inode: the inode case-insensitive lookup has found
1261 * @dentry: the negative dentry that was passed to the parent's lookup func
1262 * @name: the case-exact name to be associated with the returned dentry
1263 *
1264 * This is to avoid filling the dcache with case-insensitive names to the
1265 * same inode, only the actual correct case is stored in the dcache for
1266 * case-insensitive filesystems.
1267 *
1268 * For a case-insensitive lookup match and if the the case-exact dentry
1269 * already exists in in the dcache, use it and return it.
1270 *
1271 * If no entry exists with the exact case name, allocate new dentry with
1272 * the exact case, and return the spliced entry.
1273 */
1274 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
1275 struct qstr *name)
1276 {
1277 int error;
1278 struct dentry *found;
1279 struct dentry *new;
1280
1281 /* Does a dentry matching the name exist already? */
1282 found = d_hash_and_lookup(dentry->d_parent, name);
1283 /* If not, create it now and return */
1284 if (!found) {
1285 new = d_alloc(dentry->d_parent, name);
1286 if (!new) {
1287 error = -ENOMEM;
1288 goto err_out;
1289 }
1290 found = d_splice_alias(inode, new);
1291 if (found) {
1292 dput(new);
1293 return found;
1294 }
1295 return new;
1296 }
1297 /* Matching dentry exists, check if it is negative. */
1298 if (found->d_inode) {
1299 if (unlikely(found->d_inode != inode)) {
1300 /* This can't happen because bad inodes are unhashed. */
1301 BUG_ON(!is_bad_inode(inode));
1302 BUG_ON(!is_bad_inode(found->d_inode));
1303 }
1304 /*
1305 * Already have the inode and the dentry attached, decrement
1306 * the reference count to balance the iget() done
1307 * earlier on. We found the dentry using d_lookup() so it
1308 * cannot be disconnected and thus we do not need to worry
1309 * about any NFS/disconnectedness issues here.
1310 */
1311 iput(inode);
1312 return found;
1313 }
1314 /*
1315 * Negative dentry: instantiate it unless the inode is a directory and
1316 * has a 'disconnected' dentry (i.e. IS_ROOT and DCACHE_DISCONNECTED),
1317 * in which case d_move() that in place of the found dentry.
1318 */
1319 if (!S_ISDIR(inode->i_mode)) {
1320 /* Not a directory; everything is easy. */
1321 d_instantiate(found, inode);
1322 return found;
1323 }
1324 spin_lock(&dcache_lock);
1325 if (list_empty(&inode->i_dentry)) {
1326 /*
1327 * Directory without a 'disconnected' dentry; we need to do
1328 * d_instantiate() by hand because it takes dcache_lock which
1329 * we already hold.
1330 */
1331 list_add(&found->d_alias, &inode->i_dentry);
1332 found->d_inode = inode;
1333 spin_unlock(&dcache_lock);
1334 security_d_instantiate(found, inode);
1335 return found;
1336 }
1337 /*
1338 * Directory with a 'disconnected' dentry; get a reference to the
1339 * 'disconnected' dentry.
1340 */
1341 new = list_entry(inode->i_dentry.next, struct dentry, d_alias);
1342 dget_locked(new);
1343 spin_unlock(&dcache_lock);
1344 /* Do security vodoo. */
1345 security_d_instantiate(found, inode);
1346 /* Move new in place of found. */
1347 d_move(new, found);
1348 /* Balance the iget() we did above. */
1349 iput(inode);
1350 /* Throw away found. */
1351 dput(found);
1352 /* Use new as the actual dentry. */
1353 return new;
1354
1355 err_out:
1356 iput(inode);
1357 return ERR_PTR(error);
1358 }
1359
1360 /**
1361 * d_lookup - search for a dentry
1362 * @parent: parent dentry
1363 * @name: qstr of name we wish to find
1364 *
1365 * Searches the children of the parent dentry for the name in question. If
1366 * the dentry is found its reference count is incremented and the dentry
1367 * is returned. The caller must use d_put to free the entry when it has
1368 * finished using it. %NULL is returned on failure.
1369 *
1370 * __d_lookup is dcache_lock free. The hash list is protected using RCU.
1371 * Memory barriers are used while updating and doing lockless traversal.
1372 * To avoid races with d_move while rename is happening, d_lock is used.
1373 *
1374 * Overflows in memcmp(), while d_move, are avoided by keeping the length
1375 * and name pointer in one structure pointed by d_qstr.
1376 *
1377 * rcu_read_lock() and rcu_read_unlock() are used to disable preemption while
1378 * lookup is going on.
1379 *
1380 * The dentry unused LRU is not updated even if lookup finds the required dentry
1381 * in there. It is updated in places such as prune_dcache, shrink_dcache_sb,
1382 * select_parent and __dget_locked. This laziness saves lookup from dcache_lock
1383 * acquisition.
1384 *
1385 * d_lookup() is protected against the concurrent renames in some unrelated
1386 * directory using the seqlockt_t rename_lock.
1387 */
1388
1389 struct dentry * d_lookup(struct dentry * parent, struct qstr * name)
1390 {
1391 struct dentry * dentry = NULL;
1392 unsigned long seq;
1393
1394 do {
1395 seq = read_seqbegin(&rename_lock);
1396 dentry = __d_lookup(parent, name);
1397 if (dentry)
1398 break;
1399 } while (read_seqretry(&rename_lock, seq));
1400 return dentry;
1401 }
1402
1403 struct dentry * __d_lookup(struct dentry * parent, struct qstr * name)
1404 {
1405 unsigned int len = name->len;
1406 unsigned int hash = name->hash;
1407 const unsigned char *str = name->name;
1408 struct hlist_head *head = d_hash(parent,hash);
1409 struct dentry *found = NULL;
1410 struct hlist_node *node;
1411 struct dentry *dentry;
1412
1413 rcu_read_lock();
1414
1415 hlist_for_each_entry_rcu(dentry, node, head, d_hash) {
1416 struct qstr *qstr;
1417
1418 if (dentry->d_name.hash != hash)
1419 continue;
1420 if (dentry->d_parent != parent)
1421 continue;
1422
1423 spin_lock(&dentry->d_lock);
1424
1425 /*
1426 * Recheck the dentry after taking the lock - d_move may have
1427 * changed things. Don't bother checking the hash because we're
1428 * about to compare the whole name anyway.
1429 */
1430 if (dentry->d_parent != parent)
1431 goto next;
1432
1433 /* non-existing due to RCU? */
1434 if (d_unhashed(dentry))
1435 goto next;
1436
1437 /*
1438 * It is safe to compare names since d_move() cannot
1439 * change the qstr (protected by d_lock).
1440 */
1441 qstr = &dentry->d_name;
1442 if (parent->d_op && parent->d_op->d_compare) {
1443 if (parent->d_op->d_compare(parent, qstr, name))
1444 goto next;
1445 } else {
1446 if (qstr->len != len)
1447 goto next;
1448 if (memcmp(qstr->name, str, len))
1449 goto next;
1450 }
1451
1452 atomic_inc(&dentry->d_count);
1453 found = dentry;
1454 spin_unlock(&dentry->d_lock);
1455 break;
1456 next:
1457 spin_unlock(&dentry->d_lock);
1458 }
1459 rcu_read_unlock();
1460
1461 return found;
1462 }
1463
1464 /**
1465 * d_hash_and_lookup - hash the qstr then search for a dentry
1466 * @dir: Directory to search in
1467 * @name: qstr of name we wish to find
1468 *
1469 * On hash failure or on lookup failure NULL is returned.
1470 */
1471 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
1472 {
1473 struct dentry *dentry = NULL;
1474
1475 /*
1476 * Check for a fs-specific hash function. Note that we must
1477 * calculate the standard hash first, as the d_op->d_hash()
1478 * routine may choose to leave the hash value unchanged.
1479 */
1480 name->hash = full_name_hash(name->name, name->len);
1481 if (dir->d_op && dir->d_op->d_hash) {
1482 if (dir->d_op->d_hash(dir, name) < 0)
1483 goto out;
1484 }
1485 dentry = d_lookup(dir, name);
1486 out:
1487 return dentry;
1488 }
1489
1490 /**
1491 * d_validate - verify dentry provided from insecure source
1492 * @dentry: The dentry alleged to be valid child of @dparent
1493 * @dparent: The parent dentry (known to be valid)
1494 * @hash: Hash of the dentry
1495 * @len: Length of the name
1496 *
1497 * An insecure source has sent us a dentry, here we verify it and dget() it.
1498 * This is used by ncpfs in its readdir implementation.
1499 * Zero is returned in the dentry is invalid.
1500 */
1501
1502 int d_validate(struct dentry *dentry, struct dentry *dparent)
1503 {
1504 struct hlist_head *base;
1505 struct hlist_node *lhp;
1506
1507 /* Check whether the ptr might be valid at all.. */
1508 if (!kmem_ptr_validate(dentry_cache, dentry))
1509 goto out;
1510
1511 if (dentry->d_parent != dparent)
1512 goto out;
1513
1514 spin_lock(&dcache_lock);
1515 base = d_hash(dparent, dentry->d_name.hash);
1516 hlist_for_each(lhp,base) {
1517 /* hlist_for_each_entry_rcu() not required for d_hash list
1518 * as it is parsed under dcache_lock
1519 */
1520 if (dentry == hlist_entry(lhp, struct dentry, d_hash)) {
1521 __dget_locked(dentry);
1522 spin_unlock(&dcache_lock);
1523 return 1;
1524 }
1525 }
1526 spin_unlock(&dcache_lock);
1527 out:
1528 return 0;
1529 }
1530
1531 /*
1532 * When a file is deleted, we have two options:
1533 * - turn this dentry into a negative dentry
1534 * - unhash this dentry and free it.
1535 *
1536 * Usually, we want to just turn this into
1537 * a negative dentry, but if anybody else is
1538 * currently using the dentry or the inode
1539 * we can't do that and we fall back on removing
1540 * it from the hash queues and waiting for
1541 * it to be deleted later when it has no users
1542 */
1543
1544 /**
1545 * d_delete - delete a dentry
1546 * @dentry: The dentry to delete
1547 *
1548 * Turn the dentry into a negative dentry if possible, otherwise
1549 * remove it from the hash queues so it can be deleted later
1550 */
1551
1552 void d_delete(struct dentry * dentry)
1553 {
1554 int isdir = 0;
1555 /*
1556 * Are we the only user?
1557 */
1558 spin_lock(&dcache_lock);
1559 spin_lock(&dentry->d_lock);
1560 isdir = S_ISDIR(dentry->d_inode->i_mode);
1561 if (atomic_read(&dentry->d_count) == 1) {
1562 dentry_iput(dentry);
1563 fsnotify_nameremove(dentry, isdir);
1564 return;
1565 }
1566
1567 if (!d_unhashed(dentry))
1568 __d_drop(dentry);
1569
1570 spin_unlock(&dentry->d_lock);
1571 spin_unlock(&dcache_lock);
1572
1573 fsnotify_nameremove(dentry, isdir);
1574 }
1575
1576 static void __d_rehash(struct dentry * entry, struct hlist_head *list)
1577 {
1578
1579 entry->d_flags &= ~DCACHE_UNHASHED;
1580 hlist_add_head_rcu(&entry->d_hash, list);
1581 }
1582
1583 static void _d_rehash(struct dentry * entry)
1584 {
1585 __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
1586 }
1587
1588 /**
1589 * d_rehash - add an entry back to the hash
1590 * @entry: dentry to add to the hash
1591 *
1592 * Adds a dentry to the hash according to its name.
1593 */
1594
1595 void d_rehash(struct dentry * entry)
1596 {
1597 spin_lock(&dcache_lock);
1598 spin_lock(&entry->d_lock);
1599 _d_rehash(entry);
1600 spin_unlock(&entry->d_lock);
1601 spin_unlock(&dcache_lock);
1602 }
1603
1604 #define do_switch(x,y) do { \
1605 __typeof__ (x) __tmp = x; \
1606 x = y; y = __tmp; } while (0)
1607
1608 /*
1609 * When switching names, the actual string doesn't strictly have to
1610 * be preserved in the target - because we're dropping the target
1611 * anyway. As such, we can just do a simple memcpy() to copy over
1612 * the new name before we switch.
1613 *
1614 * Note that we have to be a lot more careful about getting the hash
1615 * switched - we have to switch the hash value properly even if it
1616 * then no longer matches the actual (corrupted) string of the target.
1617 * The hash value has to match the hash queue that the dentry is on..
1618 */
1619 static void switch_names(struct dentry *dentry, struct dentry *target)
1620 {
1621 if (dname_external(target)) {
1622 if (dname_external(dentry)) {
1623 /*
1624 * Both external: swap the pointers
1625 */
1626 do_switch(target->d_name.name, dentry->d_name.name);
1627 } else {
1628 /*
1629 * dentry:internal, target:external. Steal target's
1630 * storage and make target internal.
1631 */
1632 memcpy(target->d_iname, dentry->d_name.name,
1633 dentry->d_name.len + 1);
1634 dentry->d_name.name = target->d_name.name;
1635 target->d_name.name = target->d_iname;
1636 }
1637 } else {
1638 if (dname_external(dentry)) {
1639 /*
1640 * dentry:external, target:internal. Give dentry's
1641 * storage to target and make dentry internal
1642 */
1643 memcpy(dentry->d_iname, target->d_name.name,
1644 target->d_name.len + 1);
1645 target->d_name.name = dentry->d_name.name;
1646 dentry->d_name.name = dentry->d_iname;
1647 } else {
1648 /*
1649 * Both are internal. Just copy target to dentry
1650 */
1651 memcpy(dentry->d_iname, target->d_name.name,
1652 target->d_name.len + 1);
1653 }
1654 }
1655 }
1656
1657 /*
1658 * We cannibalize "target" when moving dentry on top of it,
1659 * because it's going to be thrown away anyway. We could be more
1660 * polite about it, though.
1661 *
1662 * This forceful removal will result in ugly /proc output if
1663 * somebody holds a file open that got deleted due to a rename.
1664 * We could be nicer about the deleted file, and let it show
1665 * up under the name it had before it was deleted rather than
1666 * under the original name of the file that was moved on top of it.
1667 */
1668
1669 /*
1670 * d_move_locked - move a dentry
1671 * @dentry: entry to move
1672 * @target: new dentry
1673 *
1674 * Update the dcache to reflect the move of a file name. Negative
1675 * dcache entries should not be moved in this way.
1676 */
1677 static void d_move_locked(struct dentry * dentry, struct dentry * target)
1678 {
1679 struct hlist_head *list;
1680
1681 if (!dentry->d_inode)
1682 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
1683
1684 write_seqlock(&rename_lock);
1685 /*
1686 * XXXX: do we really need to take target->d_lock?
1687 */
1688 if (target < dentry) {
1689 spin_lock(&target->d_lock);
1690 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1691 } else {
1692 spin_lock(&dentry->d_lock);
1693 spin_lock_nested(&target->d_lock, DENTRY_D_LOCK_NESTED);
1694 }
1695
1696 /* Move the dentry to the target hash queue, if on different bucket */
1697 if (d_unhashed(dentry))
1698 goto already_unhashed;
1699
1700 hlist_del_rcu(&dentry->d_hash);
1701
1702 already_unhashed:
1703 list = d_hash(target->d_parent, target->d_name.hash);
1704 __d_rehash(dentry, list);
1705
1706 /* Unhash the target: dput() will then get rid of it */
1707 __d_drop(target);
1708
1709 list_del(&dentry->d_u.d_child);
1710 list_del(&target->d_u.d_child);
1711
1712 /* Switch the names.. */
1713 switch_names(dentry, target);
1714 do_switch(dentry->d_name.len, target->d_name.len);
1715 do_switch(dentry->d_name.hash, target->d_name.hash);
1716
1717 /* ... and switch the parents */
1718 if (IS_ROOT(dentry)) {
1719 dentry->d_parent = target->d_parent;
1720 target->d_parent = target;
1721 INIT_LIST_HEAD(&target->d_u.d_child);
1722 } else {
1723 do_switch(dentry->d_parent, target->d_parent);
1724
1725 /* And add them back to the (new) parent lists */
1726 list_add(&target->d_u.d_child, &target->d_parent->d_subdirs);
1727 }
1728
1729 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
1730 spin_unlock(&target->d_lock);
1731 fsnotify_d_move(dentry);
1732 spin_unlock(&dentry->d_lock);
1733 write_sequnlock(&rename_lock);
1734 }
1735
1736 /**
1737 * d_move - move a dentry
1738 * @dentry: entry to move
1739 * @target: new dentry
1740 *
1741 * Update the dcache to reflect the move of a file name. Negative
1742 * dcache entries should not be moved in this way.
1743 */
1744
1745 void d_move(struct dentry * dentry, struct dentry * target)
1746 {
1747 spin_lock(&dcache_lock);
1748 d_move_locked(dentry, target);
1749 spin_unlock(&dcache_lock);
1750 }
1751
1752 /*
1753 * Helper that returns 1 if p1 is a parent of p2, else 0
1754 */
1755 static int d_isparent(struct dentry *p1, struct dentry *p2)
1756 {
1757 struct dentry *p;
1758
1759 for (p = p2; p->d_parent != p; p = p->d_parent) {
1760 if (p->d_parent == p1)
1761 return 1;
1762 }
1763 return 0;
1764 }
1765
1766 /*
1767 * This helper attempts to cope with remotely renamed directories
1768 *
1769 * It assumes that the caller is already holding
1770 * dentry->d_parent->d_inode->i_mutex and the dcache_lock
1771 *
1772 * Note: If ever the locking in lock_rename() changes, then please
1773 * remember to update this too...
1774 */
1775 static struct dentry *__d_unalias(struct dentry *dentry, struct dentry *alias)
1776 __releases(dcache_lock)
1777 {
1778 struct mutex *m1 = NULL, *m2 = NULL;
1779 struct dentry *ret;
1780
1781 /* If alias and dentry share a parent, then no extra locks required */
1782 if (alias->d_parent == dentry->d_parent)
1783 goto out_unalias;
1784
1785 /* Check for loops */
1786 ret = ERR_PTR(-ELOOP);
1787 if (d_isparent(alias, dentry))
1788 goto out_err;
1789
1790 /* See lock_rename() */
1791 ret = ERR_PTR(-EBUSY);
1792 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
1793 goto out_err;
1794 m1 = &dentry->d_sb->s_vfs_rename_mutex;
1795 if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
1796 goto out_err;
1797 m2 = &alias->d_parent->d_inode->i_mutex;
1798 out_unalias:
1799 d_move_locked(alias, dentry);
1800 ret = alias;
1801 out_err:
1802 spin_unlock(&dcache_lock);
1803 if (m2)
1804 mutex_unlock(m2);
1805 if (m1)
1806 mutex_unlock(m1);
1807 return ret;
1808 }
1809
1810 /*
1811 * Prepare an anonymous dentry for life in the superblock's dentry tree as a
1812 * named dentry in place of the dentry to be replaced.
1813 */
1814 static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon)
1815 {
1816 struct dentry *dparent, *aparent;
1817
1818 switch_names(dentry, anon);
1819 do_switch(dentry->d_name.len, anon->d_name.len);
1820 do_switch(dentry->d_name.hash, anon->d_name.hash);
1821
1822 dparent = dentry->d_parent;
1823 aparent = anon->d_parent;
1824
1825 dentry->d_parent = (aparent == anon) ? dentry : aparent;
1826 list_del(&dentry->d_u.d_child);
1827 if (!IS_ROOT(dentry))
1828 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
1829 else
1830 INIT_LIST_HEAD(&dentry->d_u.d_child);
1831
1832 anon->d_parent = (dparent == dentry) ? anon : dparent;
1833 list_del(&anon->d_u.d_child);
1834 if (!IS_ROOT(anon))
1835 list_add(&anon->d_u.d_child, &anon->d_parent->d_subdirs);
1836 else
1837 INIT_LIST_HEAD(&anon->d_u.d_child);
1838
1839 anon->d_flags &= ~DCACHE_DISCONNECTED;
1840 }
1841
1842 /**
1843 * d_materialise_unique - introduce an inode into the tree
1844 * @dentry: candidate dentry
1845 * @inode: inode to bind to the dentry, to which aliases may be attached
1846 *
1847 * Introduces an dentry into the tree, substituting an extant disconnected
1848 * root directory alias in its place if there is one
1849 */
1850 struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
1851 {
1852 struct dentry *actual;
1853
1854 BUG_ON(!d_unhashed(dentry));
1855
1856 spin_lock(&dcache_lock);
1857
1858 if (!inode) {
1859 actual = dentry;
1860 dentry->d_inode = NULL;
1861 goto found_lock;
1862 }
1863
1864 if (S_ISDIR(inode->i_mode)) {
1865 struct dentry *alias;
1866
1867 /* Does an aliased dentry already exist? */
1868 alias = __d_find_alias(inode, 0);
1869 if (alias) {
1870 actual = alias;
1871 /* Is this an anonymous mountpoint that we could splice
1872 * into our tree? */
1873 if (IS_ROOT(alias)) {
1874 spin_lock(&alias->d_lock);
1875 __d_materialise_dentry(dentry, alias);
1876 __d_drop(alias);
1877 goto found;
1878 }
1879 /* Nope, but we must(!) avoid directory aliasing */
1880 actual = __d_unalias(dentry, alias);
1881 if (IS_ERR(actual))
1882 dput(alias);
1883 goto out_nolock;
1884 }
1885 }
1886
1887 /* Add a unique reference */
1888 actual = __d_instantiate_unique(dentry, inode);
1889 if (!actual)
1890 actual = dentry;
1891 else if (unlikely(!d_unhashed(actual)))
1892 goto shouldnt_be_hashed;
1893
1894 found_lock:
1895 spin_lock(&actual->d_lock);
1896 found:
1897 _d_rehash(actual);
1898 spin_unlock(&actual->d_lock);
1899 spin_unlock(&dcache_lock);
1900 out_nolock:
1901 if (actual == dentry) {
1902 security_d_instantiate(dentry, inode);
1903 return NULL;
1904 }
1905
1906 iput(inode);
1907 return actual;
1908
1909 shouldnt_be_hashed:
1910 spin_unlock(&dcache_lock);
1911 BUG();
1912 }
1913
1914 static int prepend(char **buffer, int *buflen, const char *str, int namelen)
1915 {
1916 *buflen -= namelen;
1917 if (*buflen < 0)
1918 return -ENAMETOOLONG;
1919 *buffer -= namelen;
1920 memcpy(*buffer, str, namelen);
1921 return 0;
1922 }
1923
1924 static int prepend_name(char **buffer, int *buflen, struct qstr *name)
1925 {
1926 return prepend(buffer, buflen, name->name, name->len);
1927 }
1928
1929 /**
1930 * __d_path - return the path of a dentry
1931 * @path: the dentry/vfsmount to report
1932 * @root: root vfsmnt/dentry (may be modified by this function)
1933 * @buffer: buffer to return value in
1934 * @buflen: buffer length
1935 *
1936 * Convert a dentry into an ASCII path name. If the entry has been deleted
1937 * the string " (deleted)" is appended. Note that this is ambiguous.
1938 *
1939 * Returns the buffer or an error code if the path was too long.
1940 *
1941 * "buflen" should be positive. Caller holds the dcache_lock.
1942 *
1943 * If path is not reachable from the supplied root, then the value of
1944 * root is changed (without modifying refcounts).
1945 */
1946 char *__d_path(const struct path *path, struct path *root,
1947 char *buffer, int buflen)
1948 {
1949 struct dentry *dentry = path->dentry;
1950 struct vfsmount *vfsmnt = path->mnt;
1951 char *end = buffer + buflen;
1952 char *retval;
1953
1954 spin_lock(&vfsmount_lock);
1955 prepend(&end, &buflen, "\0", 1);
1956 if (!IS_ROOT(dentry) && d_unhashed(dentry) &&
1957 (prepend(&end, &buflen, " (deleted)", 10) != 0))
1958 goto Elong;
1959
1960 if (buflen < 1)
1961 goto Elong;
1962 /* Get '/' right */
1963 retval = end-1;
1964 *retval = '/';
1965
1966 for (;;) {
1967 struct dentry * parent;
1968
1969 if (dentry == root->dentry && vfsmnt == root->mnt)
1970 break;
1971 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
1972 /* Global root? */
1973 if (vfsmnt->mnt_parent == vfsmnt) {
1974 goto global_root;
1975 }
1976 dentry = vfsmnt->mnt_mountpoint;
1977 vfsmnt = vfsmnt->mnt_parent;
1978 continue;
1979 }
1980 parent = dentry->d_parent;
1981 prefetch(parent);
1982 if ((prepend_name(&end, &buflen, &dentry->d_name) != 0) ||
1983 (prepend(&end, &buflen, "/", 1) != 0))
1984 goto Elong;
1985 retval = end;
1986 dentry = parent;
1987 }
1988
1989 out:
1990 spin_unlock(&vfsmount_lock);
1991 return retval;
1992
1993 global_root:
1994 retval += 1; /* hit the slash */
1995 if (prepend_name(&retval, &buflen, &dentry->d_name) != 0)
1996 goto Elong;
1997 root->mnt = vfsmnt;
1998 root->dentry = dentry;
1999 goto out;
2000
2001 Elong:
2002 retval = ERR_PTR(-ENAMETOOLONG);
2003 goto out;
2004 }
2005
2006 /**
2007 * d_path - return the path of a dentry
2008 * @path: path to report
2009 * @buf: buffer to return value in
2010 * @buflen: buffer length
2011 *
2012 * Convert a dentry into an ASCII path name. If the entry has been deleted
2013 * the string " (deleted)" is appended. Note that this is ambiguous.
2014 *
2015 * Returns the buffer or an error code if the path was too long.
2016 *
2017 * "buflen" should be positive.
2018 */
2019 char *d_path(const struct path *path, char *buf, int buflen)
2020 {
2021 char *res;
2022 struct path root;
2023 struct path tmp;
2024
2025 /*
2026 * We have various synthetic filesystems that never get mounted. On
2027 * these filesystems dentries are never used for lookup purposes, and
2028 * thus don't need to be hashed. They also don't need a name until a
2029 * user wants to identify the object in /proc/pid/fd/. The little hack
2030 * below allows us to generate a name for these objects on demand:
2031 */
2032 if (path->dentry->d_op && path->dentry->d_op->d_dname)
2033 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
2034
2035 read_lock(&current->fs->lock);
2036 root = current->fs->root;
2037 path_get(&root);
2038 read_unlock(&current->fs->lock);
2039 spin_lock(&dcache_lock);
2040 tmp = root;
2041 res = __d_path(path, &tmp, buf, buflen);
2042 spin_unlock(&dcache_lock);
2043 path_put(&root);
2044 return res;
2045 }
2046
2047 /*
2048 * Helper function for dentry_operations.d_dname() members
2049 */
2050 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
2051 const char *fmt, ...)
2052 {
2053 va_list args;
2054 char temp[64];
2055 int sz;
2056
2057 va_start(args, fmt);
2058 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
2059 va_end(args);
2060
2061 if (sz > sizeof(temp) || sz > buflen)
2062 return ERR_PTR(-ENAMETOOLONG);
2063
2064 buffer += buflen - sz;
2065 return memcpy(buffer, temp, sz);
2066 }
2067
2068 /*
2069 * Write full pathname from the root of the filesystem into the buffer.
2070 */
2071 char *dentry_path(struct dentry *dentry, char *buf, int buflen)
2072 {
2073 char *end = buf + buflen;
2074 char *retval;
2075
2076 spin_lock(&dcache_lock);
2077 prepend(&end, &buflen, "\0", 1);
2078 if (!IS_ROOT(dentry) && d_unhashed(dentry) &&
2079 (prepend(&end, &buflen, "//deleted", 9) != 0))
2080 goto Elong;
2081 if (buflen < 1)
2082 goto Elong;
2083 /* Get '/' right */
2084 retval = end-1;
2085 *retval = '/';
2086
2087 while (!IS_ROOT(dentry)) {
2088 struct dentry *parent = dentry->d_parent;
2089
2090 prefetch(parent);
2091 if ((prepend_name(&end, &buflen, &dentry->d_name) != 0) ||
2092 (prepend(&end, &buflen, "/", 1) != 0))
2093 goto Elong;
2094
2095 retval = end;
2096 dentry = parent;
2097 }
2098 spin_unlock(&dcache_lock);
2099 return retval;
2100 Elong:
2101 spin_unlock(&dcache_lock);
2102 return ERR_PTR(-ENAMETOOLONG);
2103 }
2104
2105 /*
2106 * NOTE! The user-level library version returns a
2107 * character pointer. The kernel system call just
2108 * returns the length of the buffer filled (which
2109 * includes the ending '\0' character), or a negative
2110 * error value. So libc would do something like
2111 *
2112 * char *getcwd(char * buf, size_t size)
2113 * {
2114 * int retval;
2115 *
2116 * retval = sys_getcwd(buf, size);
2117 * if (retval >= 0)
2118 * return buf;
2119 * errno = -retval;
2120 * return NULL;
2121 * }
2122 */
2123 asmlinkage long sys_getcwd(char __user *buf, unsigned long size)
2124 {
2125 int error;
2126 struct path pwd, root;
2127 char *page = (char *) __get_free_page(GFP_USER);
2128
2129 if (!page)
2130 return -ENOMEM;
2131
2132 read_lock(&current->fs->lock);
2133 pwd = current->fs->pwd;
2134 path_get(&pwd);
2135 root = current->fs->root;
2136 path_get(&root);
2137 read_unlock(&current->fs->lock);
2138
2139 error = -ENOENT;
2140 /* Has the current directory has been unlinked? */
2141 spin_lock(&dcache_lock);
2142 if (IS_ROOT(pwd.dentry) || !d_unhashed(pwd.dentry)) {
2143 unsigned long len;
2144 struct path tmp = root;
2145 char * cwd;
2146
2147 cwd = __d_path(&pwd, &tmp, page, PAGE_SIZE);
2148 spin_unlock(&dcache_lock);
2149
2150 error = PTR_ERR(cwd);
2151 if (IS_ERR(cwd))
2152 goto out;
2153
2154 error = -ERANGE;
2155 len = PAGE_SIZE + page - cwd;
2156 if (len <= size) {
2157 error = len;
2158 if (copy_to_user(buf, cwd, len))
2159 error = -EFAULT;
2160 }
2161 } else
2162 spin_unlock(&dcache_lock);
2163
2164 out:
2165 path_put(&pwd);
2166 path_put(&root);
2167 free_page((unsigned long) page);
2168 return error;
2169 }
2170
2171 /*
2172 * Test whether new_dentry is a subdirectory of old_dentry.
2173 *
2174 * Trivially implemented using the dcache structure
2175 */
2176
2177 /**
2178 * is_subdir - is new dentry a subdirectory of old_dentry
2179 * @new_dentry: new dentry
2180 * @old_dentry: old dentry
2181 *
2182 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
2183 * Returns 0 otherwise.
2184 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
2185 */
2186
2187 int is_subdir(struct dentry * new_dentry, struct dentry * old_dentry)
2188 {
2189 int result;
2190 struct dentry * saved = new_dentry;
2191 unsigned long seq;
2192
2193 /* need rcu_readlock to protect against the d_parent trashing due to
2194 * d_move
2195 */
2196 rcu_read_lock();
2197 do {
2198 /* for restarting inner loop in case of seq retry */
2199 new_dentry = saved;
2200 result = 0;
2201 seq = read_seqbegin(&rename_lock);
2202 for (;;) {
2203 if (new_dentry != old_dentry) {
2204 struct dentry * parent = new_dentry->d_parent;
2205 if (parent == new_dentry)
2206 break;
2207 new_dentry = parent;
2208 continue;
2209 }
2210 result = 1;
2211 break;
2212 }
2213 } while (read_seqretry(&rename_lock, seq));
2214 rcu_read_unlock();
2215
2216 return result;
2217 }
2218
2219 void d_genocide(struct dentry *root)
2220 {
2221 struct dentry *this_parent = root;
2222 struct list_head *next;
2223
2224 spin_lock(&dcache_lock);
2225 repeat:
2226 next = this_parent->d_subdirs.next;
2227 resume:
2228 while (next != &this_parent->d_subdirs) {
2229 struct list_head *tmp = next;
2230 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
2231 next = tmp->next;
2232 if (d_unhashed(dentry)||!dentry->d_inode)
2233 continue;
2234 if (!list_empty(&dentry->d_subdirs)) {
2235 this_parent = dentry;
2236 goto repeat;
2237 }
2238 atomic_dec(&dentry->d_count);
2239 }
2240 if (this_parent != root) {
2241 next = this_parent->d_u.d_child.next;
2242 atomic_dec(&this_parent->d_count);
2243 this_parent = this_parent->d_parent;
2244 goto resume;
2245 }
2246 spin_unlock(&dcache_lock);
2247 }
2248
2249 /**
2250 * find_inode_number - check for dentry with name
2251 * @dir: directory to check
2252 * @name: Name to find.
2253 *
2254 * Check whether a dentry already exists for the given name,
2255 * and return the inode number if it has an inode. Otherwise
2256 * 0 is returned.
2257 *
2258 * This routine is used to post-process directory listings for
2259 * filesystems using synthetic inode numbers, and is necessary
2260 * to keep getcwd() working.
2261 */
2262
2263 ino_t find_inode_number(struct dentry *dir, struct qstr *name)
2264 {
2265 struct dentry * dentry;
2266 ino_t ino = 0;
2267
2268 dentry = d_hash_and_lookup(dir, name);
2269 if (dentry) {
2270 if (dentry->d_inode)
2271 ino = dentry->d_inode->i_ino;
2272 dput(dentry);
2273 }
2274 return ino;
2275 }
2276
2277 static __initdata unsigned long dhash_entries;
2278 static int __init set_dhash_entries(char *str)
2279 {
2280 if (!str)
2281 return 0;
2282 dhash_entries = simple_strtoul(str, &str, 0);
2283 return 1;
2284 }
2285 __setup("dhash_entries=", set_dhash_entries);
2286
2287 static void __init dcache_init_early(void)
2288 {
2289 int loop;
2290
2291 /* If hashes are distributed across NUMA nodes, defer
2292 * hash allocation until vmalloc space is available.
2293 */
2294 if (hashdist)
2295 return;
2296
2297 dentry_hashtable =
2298 alloc_large_system_hash("Dentry cache",
2299 sizeof(struct hlist_head),
2300 dhash_entries,
2301 13,
2302 HASH_EARLY,
2303 &d_hash_shift,
2304 &d_hash_mask,
2305 0);
2306
2307 for (loop = 0; loop < (1 << d_hash_shift); loop++)
2308 INIT_HLIST_HEAD(&dentry_hashtable[loop]);
2309 }
2310
2311 static void __init dcache_init(void)
2312 {
2313 int loop;
2314
2315 /*
2316 * A constructor could be added for stable state like the lists,
2317 * but it is probably not worth it because of the cache nature
2318 * of the dcache.
2319 */
2320 dentry_cache = KMEM_CACHE(dentry,
2321 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
2322
2323 register_shrinker(&dcache_shrinker);
2324
2325 /* Hash may have been set up in dcache_init_early */
2326 if (!hashdist)
2327 return;
2328
2329 dentry_hashtable =
2330 alloc_large_system_hash("Dentry cache",
2331 sizeof(struct hlist_head),
2332 dhash_entries,
2333 13,
2334 0,
2335 &d_hash_shift,
2336 &d_hash_mask,
2337 0);
2338
2339 for (loop = 0; loop < (1 << d_hash_shift); loop++)
2340 INIT_HLIST_HEAD(&dentry_hashtable[loop]);
2341 }
2342
2343 /* SLAB cache for __getname() consumers */
2344 struct kmem_cache *names_cachep __read_mostly;
2345
2346 /* SLAB cache for file structures */
2347 struct kmem_cache *filp_cachep __read_mostly;
2348
2349 EXPORT_SYMBOL(d_genocide);
2350
2351 void __init vfs_caches_init_early(void)
2352 {
2353 dcache_init_early();
2354 inode_init_early();
2355 }
2356
2357 void __init vfs_caches_init(unsigned long mempages)
2358 {
2359 unsigned long reserve;
2360
2361 /* Base hash sizes on available memory, with a reserve equal to
2362 150% of current kernel size */
2363
2364 reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
2365 mempages -= reserve;
2366
2367 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
2368 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2369
2370 filp_cachep = kmem_cache_create("filp", sizeof(struct file), 0,
2371 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2372
2373 dcache_init();
2374 inode_init();
2375 files_init(mempages);
2376 mnt_init();
2377 bdev_cache_init();
2378 chrdev_init();
2379 }
2380
2381 EXPORT_SYMBOL(d_alloc);
2382 EXPORT_SYMBOL(d_alloc_anon);
2383 EXPORT_SYMBOL(d_alloc_root);
2384 EXPORT_SYMBOL(d_delete);
2385 EXPORT_SYMBOL(d_find_alias);
2386 EXPORT_SYMBOL(d_instantiate);
2387 EXPORT_SYMBOL(d_invalidate);
2388 EXPORT_SYMBOL(d_lookup);
2389 EXPORT_SYMBOL(d_move);
2390 EXPORT_SYMBOL_GPL(d_materialise_unique);
2391 EXPORT_SYMBOL(d_path);
2392 EXPORT_SYMBOL(d_prune_aliases);
2393 EXPORT_SYMBOL(d_rehash);
2394 EXPORT_SYMBOL(d_splice_alias);
2395 EXPORT_SYMBOL(d_add_ci);
2396 EXPORT_SYMBOL(d_validate);
2397 EXPORT_SYMBOL(dget_locked);
2398 EXPORT_SYMBOL(dput);
2399 EXPORT_SYMBOL(find_inode_number);
2400 EXPORT_SYMBOL(have_submounts);
2401 EXPORT_SYMBOL(names_cachep);
2402 EXPORT_SYMBOL(shrink_dcache_parent);
2403 EXPORT_SYMBOL(shrink_dcache_sb);