]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/dcache.c
gfs2: Fix glock rhashtable rcu bug
[mirror_ubuntu-artful-kernel.git] / fs / dcache.c
1 /*
2 * fs/dcache.c
3 *
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
8
9 /*
10 * Notes on the allocation strategy:
11 *
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
15 */
16
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/export.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <asm/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/rculist_bl.h>
38 #include <linux/prefetch.h>
39 #include <linux/ratelimit.h>
40 #include <linux/list_lru.h>
41 #include <linux/kasan.h>
42
43 #include "internal.h"
44 #include "mount.h"
45
46 /*
47 * Usage:
48 * dcache->d_inode->i_lock protects:
49 * - i_dentry, d_u.d_alias, d_inode of aliases
50 * dcache_hash_bucket lock protects:
51 * - the dcache hash table
52 * s_anon bl list spinlock protects:
53 * - the s_anon list (see __d_drop)
54 * dentry->d_sb->s_dentry_lru_lock protects:
55 * - the dcache lru lists and counters
56 * d_lock protects:
57 * - d_flags
58 * - d_name
59 * - d_lru
60 * - d_count
61 * - d_unhashed()
62 * - d_parent and d_subdirs
63 * - childrens' d_child and d_parent
64 * - d_u.d_alias, d_inode
65 *
66 * Ordering:
67 * dentry->d_inode->i_lock
68 * dentry->d_lock
69 * dentry->d_sb->s_dentry_lru_lock
70 * dcache_hash_bucket lock
71 * s_anon lock
72 *
73 * If there is an ancestor relationship:
74 * dentry->d_parent->...->d_parent->d_lock
75 * ...
76 * dentry->d_parent->d_lock
77 * dentry->d_lock
78 *
79 * If no ancestor relationship:
80 * if (dentry1 < dentry2)
81 * dentry1->d_lock
82 * dentry2->d_lock
83 */
84 int sysctl_vfs_cache_pressure __read_mostly = 100;
85 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
86
87 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
88
89 EXPORT_SYMBOL(rename_lock);
90
91 static struct kmem_cache *dentry_cache __read_mostly;
92
93 /*
94 * This is the single most critical data structure when it comes
95 * to the dcache: the hashtable for lookups. Somebody should try
96 * to make this good - I've just made it work.
97 *
98 * This hash-function tries to avoid losing too many bits of hash
99 * information, yet avoid using a prime hash-size or similar.
100 */
101
102 static unsigned int d_hash_mask __read_mostly;
103 static unsigned int d_hash_shift __read_mostly;
104
105 static struct hlist_bl_head *dentry_hashtable __read_mostly;
106
107 static inline struct hlist_bl_head *d_hash(const struct dentry *parent,
108 unsigned int hash)
109 {
110 hash += (unsigned long) parent / L1_CACHE_BYTES;
111 return dentry_hashtable + hash_32(hash, d_hash_shift);
112 }
113
114 /* Statistics gathering. */
115 struct dentry_stat_t dentry_stat = {
116 .age_limit = 45,
117 };
118
119 static DEFINE_PER_CPU(long, nr_dentry);
120 static DEFINE_PER_CPU(long, nr_dentry_unused);
121
122 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
123
124 /*
125 * Here we resort to our own counters instead of using generic per-cpu counters
126 * for consistency with what the vfs inode code does. We are expected to harvest
127 * better code and performance by having our own specialized counters.
128 *
129 * Please note that the loop is done over all possible CPUs, not over all online
130 * CPUs. The reason for this is that we don't want to play games with CPUs going
131 * on and off. If one of them goes off, we will just keep their counters.
132 *
133 * glommer: See cffbc8a for details, and if you ever intend to change this,
134 * please update all vfs counters to match.
135 */
136 static long get_nr_dentry(void)
137 {
138 int i;
139 long sum = 0;
140 for_each_possible_cpu(i)
141 sum += per_cpu(nr_dentry, i);
142 return sum < 0 ? 0 : sum;
143 }
144
145 static long get_nr_dentry_unused(void)
146 {
147 int i;
148 long sum = 0;
149 for_each_possible_cpu(i)
150 sum += per_cpu(nr_dentry_unused, i);
151 return sum < 0 ? 0 : sum;
152 }
153
154 int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer,
155 size_t *lenp, loff_t *ppos)
156 {
157 dentry_stat.nr_dentry = get_nr_dentry();
158 dentry_stat.nr_unused = get_nr_dentry_unused();
159 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
160 }
161 #endif
162
163 /*
164 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
165 * The strings are both count bytes long, and count is non-zero.
166 */
167 #ifdef CONFIG_DCACHE_WORD_ACCESS
168
169 #include <asm/word-at-a-time.h>
170 /*
171 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
172 * aligned allocation for this particular component. We don't
173 * strictly need the load_unaligned_zeropad() safety, but it
174 * doesn't hurt either.
175 *
176 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
177 * need the careful unaligned handling.
178 */
179 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
180 {
181 unsigned long a,b,mask;
182
183 for (;;) {
184 a = *(unsigned long *)cs;
185 b = load_unaligned_zeropad(ct);
186 if (tcount < sizeof(unsigned long))
187 break;
188 if (unlikely(a != b))
189 return 1;
190 cs += sizeof(unsigned long);
191 ct += sizeof(unsigned long);
192 tcount -= sizeof(unsigned long);
193 if (!tcount)
194 return 0;
195 }
196 mask = bytemask_from_count(tcount);
197 return unlikely(!!((a ^ b) & mask));
198 }
199
200 #else
201
202 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
203 {
204 do {
205 if (*cs != *ct)
206 return 1;
207 cs++;
208 ct++;
209 tcount--;
210 } while (tcount);
211 return 0;
212 }
213
214 #endif
215
216 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
217 {
218 const unsigned char *cs;
219 /*
220 * Be careful about RCU walk racing with rename:
221 * use ACCESS_ONCE to fetch the name pointer.
222 *
223 * NOTE! Even if a rename will mean that the length
224 * was not loaded atomically, we don't care. The
225 * RCU walk will check the sequence count eventually,
226 * and catch it. And we won't overrun the buffer,
227 * because we're reading the name pointer atomically,
228 * and a dentry name is guaranteed to be properly
229 * terminated with a NUL byte.
230 *
231 * End result: even if 'len' is wrong, we'll exit
232 * early because the data cannot match (there can
233 * be no NUL in the ct/tcount data)
234 */
235 cs = ACCESS_ONCE(dentry->d_name.name);
236 smp_read_barrier_depends();
237 return dentry_string_cmp(cs, ct, tcount);
238 }
239
240 struct external_name {
241 union {
242 atomic_t count;
243 struct rcu_head head;
244 } u;
245 unsigned char name[];
246 };
247
248 static inline struct external_name *external_name(struct dentry *dentry)
249 {
250 return container_of(dentry->d_name.name, struct external_name, name[0]);
251 }
252
253 static void __d_free(struct rcu_head *head)
254 {
255 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
256
257 kmem_cache_free(dentry_cache, dentry);
258 }
259
260 static void __d_free_external(struct rcu_head *head)
261 {
262 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
263 kfree(external_name(dentry));
264 kmem_cache_free(dentry_cache, dentry);
265 }
266
267 static inline int dname_external(const struct dentry *dentry)
268 {
269 return dentry->d_name.name != dentry->d_iname;
270 }
271
272 void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry)
273 {
274 spin_lock(&dentry->d_lock);
275 if (unlikely(dname_external(dentry))) {
276 struct external_name *p = external_name(dentry);
277 atomic_inc(&p->u.count);
278 spin_unlock(&dentry->d_lock);
279 name->name = p->name;
280 } else {
281 memcpy(name->inline_name, dentry->d_iname, DNAME_INLINE_LEN);
282 spin_unlock(&dentry->d_lock);
283 name->name = name->inline_name;
284 }
285 }
286 EXPORT_SYMBOL(take_dentry_name_snapshot);
287
288 void release_dentry_name_snapshot(struct name_snapshot *name)
289 {
290 if (unlikely(name->name != name->inline_name)) {
291 struct external_name *p;
292 p = container_of(name->name, struct external_name, name[0]);
293 if (unlikely(atomic_dec_and_test(&p->u.count)))
294 kfree_rcu(p, u.head);
295 }
296 }
297 EXPORT_SYMBOL(release_dentry_name_snapshot);
298
299 static inline void __d_set_inode_and_type(struct dentry *dentry,
300 struct inode *inode,
301 unsigned type_flags)
302 {
303 unsigned flags;
304
305 dentry->d_inode = inode;
306 flags = READ_ONCE(dentry->d_flags);
307 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
308 flags |= type_flags;
309 WRITE_ONCE(dentry->d_flags, flags);
310 }
311
312 static inline void __d_clear_type_and_inode(struct dentry *dentry)
313 {
314 unsigned flags = READ_ONCE(dentry->d_flags);
315
316 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
317 WRITE_ONCE(dentry->d_flags, flags);
318 dentry->d_inode = NULL;
319 }
320
321 static void dentry_free(struct dentry *dentry)
322 {
323 WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
324 if (unlikely(dname_external(dentry))) {
325 struct external_name *p = external_name(dentry);
326 if (likely(atomic_dec_and_test(&p->u.count))) {
327 call_rcu(&dentry->d_u.d_rcu, __d_free_external);
328 return;
329 }
330 }
331 /* if dentry was never visible to RCU, immediate free is OK */
332 if (!(dentry->d_flags & DCACHE_RCUACCESS))
333 __d_free(&dentry->d_u.d_rcu);
334 else
335 call_rcu(&dentry->d_u.d_rcu, __d_free);
336 }
337
338 /**
339 * dentry_rcuwalk_invalidate - invalidate in-progress rcu-walk lookups
340 * @dentry: the target dentry
341 * After this call, in-progress rcu-walk path lookup will fail. This
342 * should be called after unhashing, and after changing d_inode (if
343 * the dentry has not already been unhashed).
344 */
345 static inline void dentry_rcuwalk_invalidate(struct dentry *dentry)
346 {
347 lockdep_assert_held(&dentry->d_lock);
348 /* Go through am invalidation barrier */
349 write_seqcount_invalidate(&dentry->d_seq);
350 }
351
352 /*
353 * Release the dentry's inode, using the filesystem
354 * d_iput() operation if defined. Dentry has no refcount
355 * and is unhashed.
356 */
357 static void dentry_iput(struct dentry * dentry)
358 __releases(dentry->d_lock)
359 __releases(dentry->d_inode->i_lock)
360 {
361 struct inode *inode = dentry->d_inode;
362 if (inode) {
363 __d_clear_type_and_inode(dentry);
364 hlist_del_init(&dentry->d_u.d_alias);
365 spin_unlock(&dentry->d_lock);
366 spin_unlock(&inode->i_lock);
367 if (!inode->i_nlink)
368 fsnotify_inoderemove(inode);
369 if (dentry->d_op && dentry->d_op->d_iput)
370 dentry->d_op->d_iput(dentry, inode);
371 else
372 iput(inode);
373 } else {
374 spin_unlock(&dentry->d_lock);
375 }
376 }
377
378 /*
379 * Release the dentry's inode, using the filesystem
380 * d_iput() operation if defined. dentry remains in-use.
381 */
382 static void dentry_unlink_inode(struct dentry * dentry)
383 __releases(dentry->d_lock)
384 __releases(dentry->d_inode->i_lock)
385 {
386 struct inode *inode = dentry->d_inode;
387
388 raw_write_seqcount_begin(&dentry->d_seq);
389 __d_clear_type_and_inode(dentry);
390 hlist_del_init(&dentry->d_u.d_alias);
391 raw_write_seqcount_end(&dentry->d_seq);
392 spin_unlock(&dentry->d_lock);
393 spin_unlock(&inode->i_lock);
394 if (!inode->i_nlink)
395 fsnotify_inoderemove(inode);
396 if (dentry->d_op && dentry->d_op->d_iput)
397 dentry->d_op->d_iput(dentry, inode);
398 else
399 iput(inode);
400 }
401
402 /*
403 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
404 * is in use - which includes both the "real" per-superblock
405 * LRU list _and_ the DCACHE_SHRINK_LIST use.
406 *
407 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
408 * on the shrink list (ie not on the superblock LRU list).
409 *
410 * The per-cpu "nr_dentry_unused" counters are updated with
411 * the DCACHE_LRU_LIST bit.
412 *
413 * These helper functions make sure we always follow the
414 * rules. d_lock must be held by the caller.
415 */
416 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
417 static void d_lru_add(struct dentry *dentry)
418 {
419 D_FLAG_VERIFY(dentry, 0);
420 dentry->d_flags |= DCACHE_LRU_LIST;
421 this_cpu_inc(nr_dentry_unused);
422 WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
423 }
424
425 static void d_lru_del(struct dentry *dentry)
426 {
427 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
428 dentry->d_flags &= ~DCACHE_LRU_LIST;
429 this_cpu_dec(nr_dentry_unused);
430 WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
431 }
432
433 static void d_shrink_del(struct dentry *dentry)
434 {
435 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
436 list_del_init(&dentry->d_lru);
437 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
438 this_cpu_dec(nr_dentry_unused);
439 }
440
441 static void d_shrink_add(struct dentry *dentry, struct list_head *list)
442 {
443 D_FLAG_VERIFY(dentry, 0);
444 list_add(&dentry->d_lru, list);
445 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
446 this_cpu_inc(nr_dentry_unused);
447 }
448
449 /*
450 * These can only be called under the global LRU lock, ie during the
451 * callback for freeing the LRU list. "isolate" removes it from the
452 * LRU lists entirely, while shrink_move moves it to the indicated
453 * private list.
454 */
455 static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
456 {
457 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
458 dentry->d_flags &= ~DCACHE_LRU_LIST;
459 this_cpu_dec(nr_dentry_unused);
460 list_lru_isolate(lru, &dentry->d_lru);
461 }
462
463 static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
464 struct list_head *list)
465 {
466 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
467 dentry->d_flags |= DCACHE_SHRINK_LIST;
468 list_lru_isolate_move(lru, &dentry->d_lru, list);
469 }
470
471 /*
472 * dentry_lru_(add|del)_list) must be called with d_lock held.
473 */
474 static void dentry_lru_add(struct dentry *dentry)
475 {
476 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
477 d_lru_add(dentry);
478 }
479
480 /**
481 * d_drop - drop a dentry
482 * @dentry: dentry to drop
483 *
484 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
485 * be found through a VFS lookup any more. Note that this is different from
486 * deleting the dentry - d_delete will try to mark the dentry negative if
487 * possible, giving a successful _negative_ lookup, while d_drop will
488 * just make the cache lookup fail.
489 *
490 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
491 * reason (NFS timeouts or autofs deletes).
492 *
493 * __d_drop requires dentry->d_lock.
494 */
495 void __d_drop(struct dentry *dentry)
496 {
497 if (!d_unhashed(dentry)) {
498 struct hlist_bl_head *b;
499 /*
500 * Hashed dentries are normally on the dentry hashtable,
501 * with the exception of those newly allocated by
502 * d_obtain_alias, which are always IS_ROOT:
503 */
504 if (unlikely(IS_ROOT(dentry)))
505 b = &dentry->d_sb->s_anon;
506 else
507 b = d_hash(dentry->d_parent, dentry->d_name.hash);
508
509 hlist_bl_lock(b);
510 __hlist_bl_del(&dentry->d_hash);
511 dentry->d_hash.pprev = NULL;
512 hlist_bl_unlock(b);
513 dentry_rcuwalk_invalidate(dentry);
514 }
515 }
516 EXPORT_SYMBOL(__d_drop);
517
518 void d_drop(struct dentry *dentry)
519 {
520 spin_lock(&dentry->d_lock);
521 __d_drop(dentry);
522 spin_unlock(&dentry->d_lock);
523 }
524 EXPORT_SYMBOL(d_drop);
525
526 static void __dentry_kill(struct dentry *dentry)
527 {
528 struct dentry *parent = NULL;
529 bool can_free = true;
530 if (!IS_ROOT(dentry))
531 parent = dentry->d_parent;
532
533 /*
534 * The dentry is now unrecoverably dead to the world.
535 */
536 lockref_mark_dead(&dentry->d_lockref);
537
538 /*
539 * inform the fs via d_prune that this dentry is about to be
540 * unhashed and destroyed.
541 */
542 if (dentry->d_flags & DCACHE_OP_PRUNE)
543 dentry->d_op->d_prune(dentry);
544
545 if (dentry->d_flags & DCACHE_LRU_LIST) {
546 if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
547 d_lru_del(dentry);
548 }
549 /* if it was on the hash then remove it */
550 __d_drop(dentry);
551 __list_del_entry(&dentry->d_child);
552 /*
553 * Inform d_walk() that we are no longer attached to the
554 * dentry tree
555 */
556 dentry->d_flags |= DCACHE_DENTRY_KILLED;
557 if (parent)
558 spin_unlock(&parent->d_lock);
559 dentry_iput(dentry);
560 /*
561 * dentry_iput drops the locks, at which point nobody (except
562 * transient RCU lookups) can reach this dentry.
563 */
564 BUG_ON(dentry->d_lockref.count > 0);
565 this_cpu_dec(nr_dentry);
566 if (dentry->d_op && dentry->d_op->d_release)
567 dentry->d_op->d_release(dentry);
568
569 spin_lock(&dentry->d_lock);
570 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
571 dentry->d_flags |= DCACHE_MAY_FREE;
572 can_free = false;
573 }
574 spin_unlock(&dentry->d_lock);
575 if (likely(can_free))
576 dentry_free(dentry);
577 }
578
579 /*
580 * Finish off a dentry we've decided to kill.
581 * dentry->d_lock must be held, returns with it unlocked.
582 * If ref is non-zero, then decrement the refcount too.
583 * Returns dentry requiring refcount drop, or NULL if we're done.
584 */
585 static struct dentry *dentry_kill(struct dentry *dentry)
586 __releases(dentry->d_lock)
587 {
588 struct inode *inode = dentry->d_inode;
589 struct dentry *parent = NULL;
590
591 if (inode && unlikely(!spin_trylock(&inode->i_lock)))
592 goto failed;
593
594 if (!IS_ROOT(dentry)) {
595 parent = dentry->d_parent;
596 if (unlikely(!spin_trylock(&parent->d_lock))) {
597 if (inode)
598 spin_unlock(&inode->i_lock);
599 goto failed;
600 }
601 }
602
603 __dentry_kill(dentry);
604 return parent;
605
606 failed:
607 spin_unlock(&dentry->d_lock);
608 return dentry; /* try again with same dentry */
609 }
610
611 static inline struct dentry *lock_parent(struct dentry *dentry)
612 {
613 struct dentry *parent = dentry->d_parent;
614 if (IS_ROOT(dentry))
615 return NULL;
616 if (unlikely(dentry->d_lockref.count < 0))
617 return NULL;
618 if (likely(spin_trylock(&parent->d_lock)))
619 return parent;
620 rcu_read_lock();
621 spin_unlock(&dentry->d_lock);
622 again:
623 parent = ACCESS_ONCE(dentry->d_parent);
624 spin_lock(&parent->d_lock);
625 /*
626 * We can't blindly lock dentry until we are sure
627 * that we won't violate the locking order.
628 * Any changes of dentry->d_parent must have
629 * been done with parent->d_lock held, so
630 * spin_lock() above is enough of a barrier
631 * for checking if it's still our child.
632 */
633 if (unlikely(parent != dentry->d_parent)) {
634 spin_unlock(&parent->d_lock);
635 goto again;
636 }
637 rcu_read_unlock();
638 if (parent != dentry)
639 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
640 else
641 parent = NULL;
642 return parent;
643 }
644
645 /*
646 * Try to do a lockless dput(), and return whether that was successful.
647 *
648 * If unsuccessful, we return false, having already taken the dentry lock.
649 *
650 * The caller needs to hold the RCU read lock, so that the dentry is
651 * guaranteed to stay around even if the refcount goes down to zero!
652 */
653 static inline bool fast_dput(struct dentry *dentry)
654 {
655 int ret;
656 unsigned int d_flags;
657
658 /*
659 * If we have a d_op->d_delete() operation, we sould not
660 * let the dentry count go to zero, so use "put_or_lock".
661 */
662 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE))
663 return lockref_put_or_lock(&dentry->d_lockref);
664
665 /*
666 * .. otherwise, we can try to just decrement the
667 * lockref optimistically.
668 */
669 ret = lockref_put_return(&dentry->d_lockref);
670
671 /*
672 * If the lockref_put_return() failed due to the lock being held
673 * by somebody else, the fast path has failed. We will need to
674 * get the lock, and then check the count again.
675 */
676 if (unlikely(ret < 0)) {
677 spin_lock(&dentry->d_lock);
678 if (dentry->d_lockref.count > 1) {
679 dentry->d_lockref.count--;
680 spin_unlock(&dentry->d_lock);
681 return 1;
682 }
683 return 0;
684 }
685
686 /*
687 * If we weren't the last ref, we're done.
688 */
689 if (ret)
690 return 1;
691
692 /*
693 * Careful, careful. The reference count went down
694 * to zero, but we don't hold the dentry lock, so
695 * somebody else could get it again, and do another
696 * dput(), and we need to not race with that.
697 *
698 * However, there is a very special and common case
699 * where we don't care, because there is nothing to
700 * do: the dentry is still hashed, it does not have
701 * a 'delete' op, and it's referenced and already on
702 * the LRU list.
703 *
704 * NOTE! Since we aren't locked, these values are
705 * not "stable". However, it is sufficient that at
706 * some point after we dropped the reference the
707 * dentry was hashed and the flags had the proper
708 * value. Other dentry users may have re-gotten
709 * a reference to the dentry and change that, but
710 * our work is done - we can leave the dentry
711 * around with a zero refcount.
712 */
713 smp_rmb();
714 d_flags = ACCESS_ONCE(dentry->d_flags);
715 d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST | DCACHE_DISCONNECTED;
716
717 /* Nothing to do? Dropping the reference was all we needed? */
718 if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry))
719 return 1;
720
721 /*
722 * Not the fast normal case? Get the lock. We've already decremented
723 * the refcount, but we'll need to re-check the situation after
724 * getting the lock.
725 */
726 spin_lock(&dentry->d_lock);
727
728 /*
729 * Did somebody else grab a reference to it in the meantime, and
730 * we're no longer the last user after all? Alternatively, somebody
731 * else could have killed it and marked it dead. Either way, we
732 * don't need to do anything else.
733 */
734 if (dentry->d_lockref.count) {
735 spin_unlock(&dentry->d_lock);
736 return 1;
737 }
738
739 /*
740 * Re-get the reference we optimistically dropped. We hold the
741 * lock, and we just tested that it was zero, so we can just
742 * set it to 1.
743 */
744 dentry->d_lockref.count = 1;
745 return 0;
746 }
747
748
749 /*
750 * This is dput
751 *
752 * This is complicated by the fact that we do not want to put
753 * dentries that are no longer on any hash chain on the unused
754 * list: we'd much rather just get rid of them immediately.
755 *
756 * However, that implies that we have to traverse the dentry
757 * tree upwards to the parents which might _also_ now be
758 * scheduled for deletion (it may have been only waiting for
759 * its last child to go away).
760 *
761 * This tail recursion is done by hand as we don't want to depend
762 * on the compiler to always get this right (gcc generally doesn't).
763 * Real recursion would eat up our stack space.
764 */
765
766 /*
767 * dput - release a dentry
768 * @dentry: dentry to release
769 *
770 * Release a dentry. This will drop the usage count and if appropriate
771 * call the dentry unlink method as well as removing it from the queues and
772 * releasing its resources. If the parent dentries were scheduled for release
773 * they too may now get deleted.
774 */
775 void dput(struct dentry *dentry)
776 {
777 if (unlikely(!dentry))
778 return;
779
780 repeat:
781 might_sleep();
782
783 rcu_read_lock();
784 if (likely(fast_dput(dentry))) {
785 rcu_read_unlock();
786 return;
787 }
788
789 /* Slow case: now with the dentry lock held */
790 rcu_read_unlock();
791
792 /* Unreachable? Get rid of it */
793 if (unlikely(d_unhashed(dentry)))
794 goto kill_it;
795
796 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
797 goto kill_it;
798
799 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
800 if (dentry->d_op->d_delete(dentry))
801 goto kill_it;
802 }
803
804 if (!(dentry->d_flags & DCACHE_REFERENCED))
805 dentry->d_flags |= DCACHE_REFERENCED;
806 dentry_lru_add(dentry);
807
808 dentry->d_lockref.count--;
809 spin_unlock(&dentry->d_lock);
810 return;
811
812 kill_it:
813 dentry = dentry_kill(dentry);
814 if (dentry) {
815 cond_resched();
816 goto repeat;
817 }
818 }
819 EXPORT_SYMBOL(dput);
820
821
822 /* This must be called with d_lock held */
823 static inline void __dget_dlock(struct dentry *dentry)
824 {
825 dentry->d_lockref.count++;
826 }
827
828 static inline void __dget(struct dentry *dentry)
829 {
830 lockref_get(&dentry->d_lockref);
831 }
832
833 struct dentry *dget_parent(struct dentry *dentry)
834 {
835 int gotref;
836 struct dentry *ret;
837
838 /*
839 * Do optimistic parent lookup without any
840 * locking.
841 */
842 rcu_read_lock();
843 ret = ACCESS_ONCE(dentry->d_parent);
844 gotref = lockref_get_not_zero(&ret->d_lockref);
845 rcu_read_unlock();
846 if (likely(gotref)) {
847 if (likely(ret == ACCESS_ONCE(dentry->d_parent)))
848 return ret;
849 dput(ret);
850 }
851
852 repeat:
853 /*
854 * Don't need rcu_dereference because we re-check it was correct under
855 * the lock.
856 */
857 rcu_read_lock();
858 ret = dentry->d_parent;
859 spin_lock(&ret->d_lock);
860 if (unlikely(ret != dentry->d_parent)) {
861 spin_unlock(&ret->d_lock);
862 rcu_read_unlock();
863 goto repeat;
864 }
865 rcu_read_unlock();
866 BUG_ON(!ret->d_lockref.count);
867 ret->d_lockref.count++;
868 spin_unlock(&ret->d_lock);
869 return ret;
870 }
871 EXPORT_SYMBOL(dget_parent);
872
873 /**
874 * d_find_alias - grab a hashed alias of inode
875 * @inode: inode in question
876 *
877 * If inode has a hashed alias, or is a directory and has any alias,
878 * acquire the reference to alias and return it. Otherwise return NULL.
879 * Notice that if inode is a directory there can be only one alias and
880 * it can be unhashed only if it has no children, or if it is the root
881 * of a filesystem, or if the directory was renamed and d_revalidate
882 * was the first vfs operation to notice.
883 *
884 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
885 * any other hashed alias over that one.
886 */
887 static struct dentry *__d_find_alias(struct inode *inode)
888 {
889 struct dentry *alias, *discon_alias;
890
891 again:
892 discon_alias = NULL;
893 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
894 spin_lock(&alias->d_lock);
895 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
896 if (IS_ROOT(alias) &&
897 (alias->d_flags & DCACHE_DISCONNECTED)) {
898 discon_alias = alias;
899 } else {
900 __dget_dlock(alias);
901 spin_unlock(&alias->d_lock);
902 return alias;
903 }
904 }
905 spin_unlock(&alias->d_lock);
906 }
907 if (discon_alias) {
908 alias = discon_alias;
909 spin_lock(&alias->d_lock);
910 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
911 __dget_dlock(alias);
912 spin_unlock(&alias->d_lock);
913 return alias;
914 }
915 spin_unlock(&alias->d_lock);
916 goto again;
917 }
918 return NULL;
919 }
920
921 struct dentry *d_find_alias(struct inode *inode)
922 {
923 struct dentry *de = NULL;
924
925 if (!hlist_empty(&inode->i_dentry)) {
926 spin_lock(&inode->i_lock);
927 de = __d_find_alias(inode);
928 spin_unlock(&inode->i_lock);
929 }
930 return de;
931 }
932 EXPORT_SYMBOL(d_find_alias);
933
934 /*
935 * Try to kill dentries associated with this inode.
936 * WARNING: you must own a reference to inode.
937 */
938 void d_prune_aliases(struct inode *inode)
939 {
940 struct dentry *dentry;
941 restart:
942 spin_lock(&inode->i_lock);
943 hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
944 spin_lock(&dentry->d_lock);
945 if (!dentry->d_lockref.count) {
946 struct dentry *parent = lock_parent(dentry);
947 if (likely(!dentry->d_lockref.count)) {
948 __dentry_kill(dentry);
949 dput(parent);
950 goto restart;
951 }
952 if (parent)
953 spin_unlock(&parent->d_lock);
954 }
955 spin_unlock(&dentry->d_lock);
956 }
957 spin_unlock(&inode->i_lock);
958 }
959 EXPORT_SYMBOL(d_prune_aliases);
960
961 static void shrink_dentry_list(struct list_head *list)
962 {
963 struct dentry *dentry, *parent;
964
965 while (!list_empty(list)) {
966 struct inode *inode;
967 dentry = list_entry(list->prev, struct dentry, d_lru);
968 spin_lock(&dentry->d_lock);
969 parent = lock_parent(dentry);
970
971 /*
972 * The dispose list is isolated and dentries are not accounted
973 * to the LRU here, so we can simply remove it from the list
974 * here regardless of whether it is referenced or not.
975 */
976 d_shrink_del(dentry);
977
978 /*
979 * We found an inuse dentry which was not removed from
980 * the LRU because of laziness during lookup. Do not free it.
981 */
982 if (dentry->d_lockref.count > 0) {
983 spin_unlock(&dentry->d_lock);
984 if (parent)
985 spin_unlock(&parent->d_lock);
986 continue;
987 }
988
989
990 if (unlikely(dentry->d_flags & DCACHE_DENTRY_KILLED)) {
991 bool can_free = dentry->d_flags & DCACHE_MAY_FREE;
992 spin_unlock(&dentry->d_lock);
993 if (parent)
994 spin_unlock(&parent->d_lock);
995 if (can_free)
996 dentry_free(dentry);
997 continue;
998 }
999
1000 inode = dentry->d_inode;
1001 if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
1002 d_shrink_add(dentry, list);
1003 spin_unlock(&dentry->d_lock);
1004 if (parent)
1005 spin_unlock(&parent->d_lock);
1006 continue;
1007 }
1008
1009 __dentry_kill(dentry);
1010
1011 /*
1012 * We need to prune ancestors too. This is necessary to prevent
1013 * quadratic behavior of shrink_dcache_parent(), but is also
1014 * expected to be beneficial in reducing dentry cache
1015 * fragmentation.
1016 */
1017 dentry = parent;
1018 while (dentry && !lockref_put_or_lock(&dentry->d_lockref)) {
1019 parent = lock_parent(dentry);
1020 if (dentry->d_lockref.count != 1) {
1021 dentry->d_lockref.count--;
1022 spin_unlock(&dentry->d_lock);
1023 if (parent)
1024 spin_unlock(&parent->d_lock);
1025 break;
1026 }
1027 inode = dentry->d_inode; /* can't be NULL */
1028 if (unlikely(!spin_trylock(&inode->i_lock))) {
1029 spin_unlock(&dentry->d_lock);
1030 if (parent)
1031 spin_unlock(&parent->d_lock);
1032 cpu_relax();
1033 continue;
1034 }
1035 __dentry_kill(dentry);
1036 dentry = parent;
1037 }
1038 }
1039 }
1040
1041 static enum lru_status dentry_lru_isolate(struct list_head *item,
1042 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1043 {
1044 struct list_head *freeable = arg;
1045 struct dentry *dentry = container_of(item, struct dentry, d_lru);
1046
1047
1048 /*
1049 * we are inverting the lru lock/dentry->d_lock here,
1050 * so use a trylock. If we fail to get the lock, just skip
1051 * it
1052 */
1053 if (!spin_trylock(&dentry->d_lock))
1054 return LRU_SKIP;
1055
1056 /*
1057 * Referenced dentries are still in use. If they have active
1058 * counts, just remove them from the LRU. Otherwise give them
1059 * another pass through the LRU.
1060 */
1061 if (dentry->d_lockref.count) {
1062 d_lru_isolate(lru, dentry);
1063 spin_unlock(&dentry->d_lock);
1064 return LRU_REMOVED;
1065 }
1066
1067 if (dentry->d_flags & DCACHE_REFERENCED) {
1068 dentry->d_flags &= ~DCACHE_REFERENCED;
1069 spin_unlock(&dentry->d_lock);
1070
1071 /*
1072 * The list move itself will be made by the common LRU code. At
1073 * this point, we've dropped the dentry->d_lock but keep the
1074 * lru lock. This is safe to do, since every list movement is
1075 * protected by the lru lock even if both locks are held.
1076 *
1077 * This is guaranteed by the fact that all LRU management
1078 * functions are intermediated by the LRU API calls like
1079 * list_lru_add and list_lru_del. List movement in this file
1080 * only ever occur through this functions or through callbacks
1081 * like this one, that are called from the LRU API.
1082 *
1083 * The only exceptions to this are functions like
1084 * shrink_dentry_list, and code that first checks for the
1085 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be
1086 * operating only with stack provided lists after they are
1087 * properly isolated from the main list. It is thus, always a
1088 * local access.
1089 */
1090 return LRU_ROTATE;
1091 }
1092
1093 d_lru_shrink_move(lru, dentry, freeable);
1094 spin_unlock(&dentry->d_lock);
1095
1096 return LRU_REMOVED;
1097 }
1098
1099 /**
1100 * prune_dcache_sb - shrink the dcache
1101 * @sb: superblock
1102 * @sc: shrink control, passed to list_lru_shrink_walk()
1103 *
1104 * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1105 * is done when we need more memory and called from the superblock shrinker
1106 * function.
1107 *
1108 * This function may fail to free any resources if all the dentries are in
1109 * use.
1110 */
1111 long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
1112 {
1113 LIST_HEAD(dispose);
1114 long freed;
1115
1116 freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1117 dentry_lru_isolate, &dispose);
1118 shrink_dentry_list(&dispose);
1119 return freed;
1120 }
1121
1122 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
1123 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1124 {
1125 struct list_head *freeable = arg;
1126 struct dentry *dentry = container_of(item, struct dentry, d_lru);
1127
1128 /*
1129 * we are inverting the lru lock/dentry->d_lock here,
1130 * so use a trylock. If we fail to get the lock, just skip
1131 * it
1132 */
1133 if (!spin_trylock(&dentry->d_lock))
1134 return LRU_SKIP;
1135
1136 d_lru_shrink_move(lru, dentry, freeable);
1137 spin_unlock(&dentry->d_lock);
1138
1139 return LRU_REMOVED;
1140 }
1141
1142
1143 /**
1144 * shrink_dcache_sb - shrink dcache for a superblock
1145 * @sb: superblock
1146 *
1147 * Shrink the dcache for the specified super block. This is used to free
1148 * the dcache before unmounting a file system.
1149 */
1150 void shrink_dcache_sb(struct super_block *sb)
1151 {
1152 long freed;
1153
1154 do {
1155 LIST_HEAD(dispose);
1156
1157 freed = list_lru_walk(&sb->s_dentry_lru,
1158 dentry_lru_isolate_shrink, &dispose, UINT_MAX);
1159
1160 this_cpu_sub(nr_dentry_unused, freed);
1161 shrink_dentry_list(&dispose);
1162 } while (freed > 0);
1163 }
1164 EXPORT_SYMBOL(shrink_dcache_sb);
1165
1166 /**
1167 * enum d_walk_ret - action to talke during tree walk
1168 * @D_WALK_CONTINUE: contrinue walk
1169 * @D_WALK_QUIT: quit walk
1170 * @D_WALK_NORETRY: quit when retry is needed
1171 * @D_WALK_SKIP: skip this dentry and its children
1172 */
1173 enum d_walk_ret {
1174 D_WALK_CONTINUE,
1175 D_WALK_QUIT,
1176 D_WALK_NORETRY,
1177 D_WALK_SKIP,
1178 };
1179
1180 /**
1181 * d_walk - walk the dentry tree
1182 * @parent: start of walk
1183 * @data: data passed to @enter() and @finish()
1184 * @enter: callback when first entering the dentry
1185 * @finish: callback when successfully finished the walk
1186 *
1187 * The @enter() and @finish() callbacks are called with d_lock held.
1188 */
1189 void d_walk(struct dentry *parent, void *data,
1190 enum d_walk_ret (*enter)(void *, struct dentry *),
1191 void (*finish)(void *))
1192 {
1193 struct dentry *this_parent;
1194 struct list_head *next;
1195 unsigned seq = 0;
1196 enum d_walk_ret ret;
1197 bool retry = true;
1198
1199 again:
1200 read_seqbegin_or_lock(&rename_lock, &seq);
1201 this_parent = parent;
1202 spin_lock(&this_parent->d_lock);
1203
1204 ret = enter(data, this_parent);
1205 switch (ret) {
1206 case D_WALK_CONTINUE:
1207 break;
1208 case D_WALK_QUIT:
1209 case D_WALK_SKIP:
1210 goto out_unlock;
1211 case D_WALK_NORETRY:
1212 retry = false;
1213 break;
1214 }
1215 repeat:
1216 next = this_parent->d_subdirs.next;
1217 resume:
1218 while (next != &this_parent->d_subdirs) {
1219 struct list_head *tmp = next;
1220 struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1221 next = tmp->next;
1222
1223 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1224
1225 ret = enter(data, dentry);
1226 switch (ret) {
1227 case D_WALK_CONTINUE:
1228 break;
1229 case D_WALK_QUIT:
1230 spin_unlock(&dentry->d_lock);
1231 goto out_unlock;
1232 case D_WALK_NORETRY:
1233 retry = false;
1234 break;
1235 case D_WALK_SKIP:
1236 spin_unlock(&dentry->d_lock);
1237 continue;
1238 }
1239
1240 if (!list_empty(&dentry->d_subdirs)) {
1241 spin_unlock(&this_parent->d_lock);
1242 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1243 this_parent = dentry;
1244 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1245 goto repeat;
1246 }
1247 spin_unlock(&dentry->d_lock);
1248 }
1249 /*
1250 * All done at this level ... ascend and resume the search.
1251 */
1252 rcu_read_lock();
1253 ascend:
1254 if (this_parent != parent) {
1255 struct dentry *child = this_parent;
1256 this_parent = child->d_parent;
1257
1258 spin_unlock(&child->d_lock);
1259 spin_lock(&this_parent->d_lock);
1260
1261 /* might go back up the wrong parent if we have had a rename. */
1262 if (need_seqretry(&rename_lock, seq))
1263 goto rename_retry;
1264 /* go into the first sibling still alive */
1265 do {
1266 next = child->d_child.next;
1267 if (next == &this_parent->d_subdirs)
1268 goto ascend;
1269 child = list_entry(next, struct dentry, d_child);
1270 } while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED));
1271 rcu_read_unlock();
1272 goto resume;
1273 }
1274 if (need_seqretry(&rename_lock, seq))
1275 goto rename_retry;
1276 rcu_read_unlock();
1277 if (finish)
1278 finish(data);
1279
1280 out_unlock:
1281 spin_unlock(&this_parent->d_lock);
1282 done_seqretry(&rename_lock, seq);
1283 return;
1284
1285 rename_retry:
1286 spin_unlock(&this_parent->d_lock);
1287 rcu_read_unlock();
1288 BUG_ON(seq & 1);
1289 if (!retry)
1290 return;
1291 seq = 1;
1292 goto again;
1293 }
1294 EXPORT_SYMBOL(d_walk);
1295
1296 /*
1297 * Search for at least 1 mount point in the dentry's subdirs.
1298 * We descend to the next level whenever the d_subdirs
1299 * list is non-empty and continue searching.
1300 */
1301
1302 static enum d_walk_ret check_mount(void *data, struct dentry *dentry)
1303 {
1304 int *ret = data;
1305 if (d_mountpoint(dentry)) {
1306 *ret = 1;
1307 return D_WALK_QUIT;
1308 }
1309 return D_WALK_CONTINUE;
1310 }
1311
1312 /**
1313 * have_submounts - check for mounts over a dentry
1314 * @parent: dentry to check.
1315 *
1316 * Return true if the parent or its subdirectories contain
1317 * a mount point
1318 */
1319 int have_submounts(struct dentry *parent)
1320 {
1321 int ret = 0;
1322
1323 d_walk(parent, &ret, check_mount, NULL);
1324
1325 return ret;
1326 }
1327 EXPORT_SYMBOL(have_submounts);
1328
1329 /*
1330 * Called by mount code to set a mountpoint and check if the mountpoint is
1331 * reachable (e.g. NFS can unhash a directory dentry and then the complete
1332 * subtree can become unreachable).
1333 *
1334 * Only one of d_invalidate() and d_set_mounted() must succeed. For
1335 * this reason take rename_lock and d_lock on dentry and ancestors.
1336 */
1337 int d_set_mounted(struct dentry *dentry)
1338 {
1339 struct dentry *p;
1340 int ret = -ENOENT;
1341 write_seqlock(&rename_lock);
1342 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1343 /* Need exclusion wrt. d_invalidate() */
1344 spin_lock(&p->d_lock);
1345 if (unlikely(d_unhashed(p))) {
1346 spin_unlock(&p->d_lock);
1347 goto out;
1348 }
1349 spin_unlock(&p->d_lock);
1350 }
1351 spin_lock(&dentry->d_lock);
1352 if (!d_unlinked(dentry)) {
1353 ret = -EBUSY;
1354 if (!d_mountpoint(dentry)) {
1355 dentry->d_flags |= DCACHE_MOUNTED;
1356 ret = 0;
1357 }
1358 }
1359 spin_unlock(&dentry->d_lock);
1360 out:
1361 write_sequnlock(&rename_lock);
1362 return ret;
1363 }
1364
1365 /*
1366 * Search the dentry child list of the specified parent,
1367 * and move any unused dentries to the end of the unused
1368 * list for prune_dcache(). We descend to the next level
1369 * whenever the d_subdirs list is non-empty and continue
1370 * searching.
1371 *
1372 * It returns zero iff there are no unused children,
1373 * otherwise it returns the number of children moved to
1374 * the end of the unused list. This may not be the total
1375 * number of unused children, because select_parent can
1376 * drop the lock and return early due to latency
1377 * constraints.
1378 */
1379
1380 struct select_data {
1381 struct dentry *start;
1382 struct list_head dispose;
1383 int found;
1384 };
1385
1386 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1387 {
1388 struct select_data *data = _data;
1389 enum d_walk_ret ret = D_WALK_CONTINUE;
1390
1391 if (data->start == dentry)
1392 goto out;
1393
1394 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1395 data->found++;
1396 } else {
1397 if (dentry->d_flags & DCACHE_LRU_LIST)
1398 d_lru_del(dentry);
1399 if (!dentry->d_lockref.count) {
1400 d_shrink_add(dentry, &data->dispose);
1401 data->found++;
1402 }
1403 }
1404 /*
1405 * We can return to the caller if we have found some (this
1406 * ensures forward progress). We'll be coming back to find
1407 * the rest.
1408 */
1409 if (!list_empty(&data->dispose))
1410 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1411 out:
1412 return ret;
1413 }
1414
1415 /**
1416 * shrink_dcache_parent - prune dcache
1417 * @parent: parent of entries to prune
1418 *
1419 * Prune the dcache to remove unused children of the parent dentry.
1420 */
1421 void shrink_dcache_parent(struct dentry *parent)
1422 {
1423 for (;;) {
1424 struct select_data data;
1425
1426 INIT_LIST_HEAD(&data.dispose);
1427 data.start = parent;
1428 data.found = 0;
1429
1430 d_walk(parent, &data, select_collect, NULL);
1431 if (!data.found)
1432 break;
1433
1434 shrink_dentry_list(&data.dispose);
1435 cond_resched();
1436 }
1437 }
1438 EXPORT_SYMBOL(shrink_dcache_parent);
1439
1440 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
1441 {
1442 /* it has busy descendents; complain about those instead */
1443 if (!list_empty(&dentry->d_subdirs))
1444 return D_WALK_CONTINUE;
1445
1446 /* root with refcount 1 is fine */
1447 if (dentry == _data && dentry->d_lockref.count == 1)
1448 return D_WALK_CONTINUE;
1449
1450 printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1451 " still in use (%d) [unmount of %s %s]\n",
1452 dentry,
1453 dentry->d_inode ?
1454 dentry->d_inode->i_ino : 0UL,
1455 dentry,
1456 dentry->d_lockref.count,
1457 dentry->d_sb->s_type->name,
1458 dentry->d_sb->s_id);
1459 WARN_ON(1);
1460 return D_WALK_CONTINUE;
1461 }
1462
1463 static void do_one_tree(struct dentry *dentry)
1464 {
1465 shrink_dcache_parent(dentry);
1466 d_walk(dentry, dentry, umount_check, NULL);
1467 d_drop(dentry);
1468 dput(dentry);
1469 }
1470
1471 /*
1472 * destroy the dentries attached to a superblock on unmounting
1473 */
1474 void shrink_dcache_for_umount(struct super_block *sb)
1475 {
1476 struct dentry *dentry;
1477
1478 WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
1479
1480 dentry = sb->s_root;
1481 sb->s_root = NULL;
1482 do_one_tree(dentry);
1483
1484 while (!hlist_bl_empty(&sb->s_anon)) {
1485 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash));
1486 do_one_tree(dentry);
1487 }
1488 }
1489
1490 struct detach_data {
1491 struct select_data select;
1492 struct dentry *mountpoint;
1493 };
1494 static enum d_walk_ret detach_and_collect(void *_data, struct dentry *dentry)
1495 {
1496 struct detach_data *data = _data;
1497
1498 if (d_mountpoint(dentry)) {
1499 __dget_dlock(dentry);
1500 data->mountpoint = dentry;
1501 return D_WALK_QUIT;
1502 }
1503
1504 return select_collect(&data->select, dentry);
1505 }
1506
1507 static void check_and_drop(void *_data)
1508 {
1509 struct detach_data *data = _data;
1510
1511 if (!data->mountpoint && !data->select.found)
1512 __d_drop(data->select.start);
1513 }
1514
1515 /**
1516 * d_invalidate - detach submounts, prune dcache, and drop
1517 * @dentry: dentry to invalidate (aka detach, prune and drop)
1518 *
1519 * no dcache lock.
1520 *
1521 * The final d_drop is done as an atomic operation relative to
1522 * rename_lock ensuring there are no races with d_set_mounted. This
1523 * ensures there are no unhashed dentries on the path to a mountpoint.
1524 */
1525 void d_invalidate(struct dentry *dentry)
1526 {
1527 /*
1528 * If it's already been dropped, return OK.
1529 */
1530 spin_lock(&dentry->d_lock);
1531 if (d_unhashed(dentry)) {
1532 spin_unlock(&dentry->d_lock);
1533 return;
1534 }
1535 spin_unlock(&dentry->d_lock);
1536
1537 /* Negative dentries can be dropped without further checks */
1538 if (!dentry->d_inode) {
1539 d_drop(dentry);
1540 return;
1541 }
1542
1543 for (;;) {
1544 struct detach_data data;
1545
1546 data.mountpoint = NULL;
1547 INIT_LIST_HEAD(&data.select.dispose);
1548 data.select.start = dentry;
1549 data.select.found = 0;
1550
1551 d_walk(dentry, &data, detach_and_collect, check_and_drop);
1552
1553 if (data.select.found)
1554 shrink_dentry_list(&data.select.dispose);
1555
1556 if (data.mountpoint) {
1557 detach_mounts(data.mountpoint);
1558 dput(data.mountpoint);
1559 }
1560
1561 if (!data.mountpoint && !data.select.found)
1562 break;
1563
1564 cond_resched();
1565 }
1566 }
1567 EXPORT_SYMBOL(d_invalidate);
1568
1569 /**
1570 * __d_alloc - allocate a dcache entry
1571 * @sb: filesystem it will belong to
1572 * @name: qstr of the name
1573 *
1574 * Allocates a dentry. It returns %NULL if there is insufficient memory
1575 * available. On a success the dentry is returned. The name passed in is
1576 * copied and the copy passed in may be reused after this call.
1577 */
1578
1579 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1580 {
1581 struct dentry *dentry;
1582 char *dname;
1583
1584 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1585 if (!dentry)
1586 return NULL;
1587
1588 /*
1589 * We guarantee that the inline name is always NUL-terminated.
1590 * This way the memcpy() done by the name switching in rename
1591 * will still always have a NUL at the end, even if we might
1592 * be overwriting an internal NUL character
1593 */
1594 dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1595 if (name->len > DNAME_INLINE_LEN-1) {
1596 size_t size = offsetof(struct external_name, name[1]);
1597 struct external_name *p = kmalloc(size + name->len, GFP_KERNEL);
1598 if (!p) {
1599 kmem_cache_free(dentry_cache, dentry);
1600 return NULL;
1601 }
1602 atomic_set(&p->u.count, 1);
1603 dname = p->name;
1604 if (IS_ENABLED(CONFIG_DCACHE_WORD_ACCESS))
1605 kasan_unpoison_shadow(dname,
1606 round_up(name->len + 1, sizeof(unsigned long)));
1607 } else {
1608 dname = dentry->d_iname;
1609 }
1610
1611 dentry->d_name.len = name->len;
1612 dentry->d_name.hash = name->hash;
1613 memcpy(dname, name->name, name->len);
1614 dname[name->len] = 0;
1615
1616 /* Make sure we always see the terminating NUL character */
1617 smp_wmb();
1618 dentry->d_name.name = dname;
1619
1620 dentry->d_lockref.count = 1;
1621 dentry->d_flags = 0;
1622 spin_lock_init(&dentry->d_lock);
1623 seqcount_init(&dentry->d_seq);
1624 dentry->d_inode = NULL;
1625 dentry->d_parent = dentry;
1626 dentry->d_sb = sb;
1627 dentry->d_op = NULL;
1628 dentry->d_fsdata = NULL;
1629 INIT_HLIST_BL_NODE(&dentry->d_hash);
1630 INIT_LIST_HEAD(&dentry->d_lru);
1631 INIT_LIST_HEAD(&dentry->d_subdirs);
1632 INIT_HLIST_NODE(&dentry->d_u.d_alias);
1633 INIT_LIST_HEAD(&dentry->d_child);
1634 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1635
1636 this_cpu_inc(nr_dentry);
1637
1638 return dentry;
1639 }
1640
1641 /**
1642 * d_alloc - allocate a dcache entry
1643 * @parent: parent of entry to allocate
1644 * @name: qstr of the name
1645 *
1646 * Allocates a dentry. It returns %NULL if there is insufficient memory
1647 * available. On a success the dentry is returned. The name passed in is
1648 * copied and the copy passed in may be reused after this call.
1649 */
1650 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1651 {
1652 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1653 if (!dentry)
1654 return NULL;
1655 dentry->d_flags |= DCACHE_RCUACCESS;
1656 spin_lock(&parent->d_lock);
1657 /*
1658 * don't need child lock because it is not subject
1659 * to concurrency here
1660 */
1661 __dget_dlock(parent);
1662 dentry->d_parent = parent;
1663 list_add(&dentry->d_child, &parent->d_subdirs);
1664 spin_unlock(&parent->d_lock);
1665
1666 return dentry;
1667 }
1668 EXPORT_SYMBOL(d_alloc);
1669
1670 /**
1671 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1672 * @sb: the superblock
1673 * @name: qstr of the name
1674 *
1675 * For a filesystem that just pins its dentries in memory and never
1676 * performs lookups at all, return an unhashed IS_ROOT dentry.
1677 */
1678 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1679 {
1680 return __d_alloc(sb, name);
1681 }
1682 EXPORT_SYMBOL(d_alloc_pseudo);
1683
1684 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1685 {
1686 struct qstr q;
1687
1688 q.name = name;
1689 q.len = strlen(name);
1690 q.hash = full_name_hash(q.name, q.len);
1691 return d_alloc(parent, &q);
1692 }
1693 EXPORT_SYMBOL(d_alloc_name);
1694
1695 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1696 {
1697 WARN_ON_ONCE(dentry->d_op);
1698 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
1699 DCACHE_OP_COMPARE |
1700 DCACHE_OP_REVALIDATE |
1701 DCACHE_OP_WEAK_REVALIDATE |
1702 DCACHE_OP_DELETE |
1703 DCACHE_OP_SELECT_INODE |
1704 DCACHE_OP_REAL));
1705 dentry->d_op = op;
1706 if (!op)
1707 return;
1708 if (op->d_hash)
1709 dentry->d_flags |= DCACHE_OP_HASH;
1710 if (op->d_compare)
1711 dentry->d_flags |= DCACHE_OP_COMPARE;
1712 if (op->d_revalidate)
1713 dentry->d_flags |= DCACHE_OP_REVALIDATE;
1714 if (op->d_weak_revalidate)
1715 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1716 if (op->d_delete)
1717 dentry->d_flags |= DCACHE_OP_DELETE;
1718 if (op->d_prune)
1719 dentry->d_flags |= DCACHE_OP_PRUNE;
1720 if (op->d_select_inode)
1721 dentry->d_flags |= DCACHE_OP_SELECT_INODE;
1722 if (op->d_real)
1723 dentry->d_flags |= DCACHE_OP_REAL;
1724
1725 }
1726 EXPORT_SYMBOL(d_set_d_op);
1727
1728
1729 /*
1730 * d_set_fallthru - Mark a dentry as falling through to a lower layer
1731 * @dentry - The dentry to mark
1732 *
1733 * Mark a dentry as falling through to the lower layer (as set with
1734 * d_pin_lower()). This flag may be recorded on the medium.
1735 */
1736 void d_set_fallthru(struct dentry *dentry)
1737 {
1738 spin_lock(&dentry->d_lock);
1739 dentry->d_flags |= DCACHE_FALLTHRU;
1740 spin_unlock(&dentry->d_lock);
1741 }
1742 EXPORT_SYMBOL(d_set_fallthru);
1743
1744 static unsigned d_flags_for_inode(struct inode *inode)
1745 {
1746 unsigned add_flags = DCACHE_REGULAR_TYPE;
1747
1748 if (!inode)
1749 return DCACHE_MISS_TYPE;
1750
1751 if (S_ISDIR(inode->i_mode)) {
1752 add_flags = DCACHE_DIRECTORY_TYPE;
1753 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1754 if (unlikely(!inode->i_op->lookup))
1755 add_flags = DCACHE_AUTODIR_TYPE;
1756 else
1757 inode->i_opflags |= IOP_LOOKUP;
1758 }
1759 goto type_determined;
1760 }
1761
1762 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1763 if (unlikely(inode->i_op->follow_link)) {
1764 add_flags = DCACHE_SYMLINK_TYPE;
1765 goto type_determined;
1766 }
1767 inode->i_opflags |= IOP_NOFOLLOW;
1768 }
1769
1770 if (unlikely(!S_ISREG(inode->i_mode)))
1771 add_flags = DCACHE_SPECIAL_TYPE;
1772
1773 type_determined:
1774 if (unlikely(IS_AUTOMOUNT(inode)))
1775 add_flags |= DCACHE_NEED_AUTOMOUNT;
1776 return add_flags;
1777 }
1778
1779 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1780 {
1781 unsigned add_flags = d_flags_for_inode(inode);
1782
1783 spin_lock(&dentry->d_lock);
1784 if (inode)
1785 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
1786 raw_write_seqcount_begin(&dentry->d_seq);
1787 __d_set_inode_and_type(dentry, inode, add_flags);
1788 raw_write_seqcount_end(&dentry->d_seq);
1789 spin_unlock(&dentry->d_lock);
1790 fsnotify_d_instantiate(dentry, inode);
1791 }
1792
1793 /**
1794 * d_instantiate - fill in inode information for a dentry
1795 * @entry: dentry to complete
1796 * @inode: inode to attach to this dentry
1797 *
1798 * Fill in inode information in the entry.
1799 *
1800 * This turns negative dentries into productive full members
1801 * of society.
1802 *
1803 * NOTE! This assumes that the inode count has been incremented
1804 * (or otherwise set) by the caller to indicate that it is now
1805 * in use by the dcache.
1806 */
1807
1808 void d_instantiate(struct dentry *entry, struct inode * inode)
1809 {
1810 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1811 if (inode)
1812 spin_lock(&inode->i_lock);
1813 __d_instantiate(entry, inode);
1814 if (inode)
1815 spin_unlock(&inode->i_lock);
1816 security_d_instantiate(entry, inode);
1817 }
1818 EXPORT_SYMBOL(d_instantiate);
1819
1820 /**
1821 * d_instantiate_unique - instantiate a non-aliased dentry
1822 * @entry: dentry to instantiate
1823 * @inode: inode to attach to this dentry
1824 *
1825 * Fill in inode information in the entry. On success, it returns NULL.
1826 * If an unhashed alias of "entry" already exists, then we return the
1827 * aliased dentry instead and drop one reference to inode.
1828 *
1829 * Note that in order to avoid conflicts with rename() etc, the caller
1830 * had better be holding the parent directory semaphore.
1831 *
1832 * This also assumes that the inode count has been incremented
1833 * (or otherwise set) by the caller to indicate that it is now
1834 * in use by the dcache.
1835 */
1836 static struct dentry *__d_instantiate_unique(struct dentry *entry,
1837 struct inode *inode)
1838 {
1839 struct dentry *alias;
1840 int len = entry->d_name.len;
1841 const char *name = entry->d_name.name;
1842 unsigned int hash = entry->d_name.hash;
1843
1844 if (!inode) {
1845 __d_instantiate(entry, NULL);
1846 return NULL;
1847 }
1848
1849 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
1850 /*
1851 * Don't need alias->d_lock here, because aliases with
1852 * d_parent == entry->d_parent are not subject to name or
1853 * parent changes, because the parent inode i_mutex is held.
1854 */
1855 if (alias->d_name.hash != hash)
1856 continue;
1857 if (alias->d_parent != entry->d_parent)
1858 continue;
1859 if (alias->d_name.len != len)
1860 continue;
1861 if (dentry_cmp(alias, name, len))
1862 continue;
1863 __dget(alias);
1864 return alias;
1865 }
1866
1867 __d_instantiate(entry, inode);
1868 return NULL;
1869 }
1870
1871 struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1872 {
1873 struct dentry *result;
1874
1875 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1876
1877 if (inode)
1878 spin_lock(&inode->i_lock);
1879 result = __d_instantiate_unique(entry, inode);
1880 if (inode)
1881 spin_unlock(&inode->i_lock);
1882
1883 if (!result) {
1884 security_d_instantiate(entry, inode);
1885 return NULL;
1886 }
1887
1888 BUG_ON(!d_unhashed(result));
1889 iput(inode);
1890 return result;
1891 }
1892
1893 EXPORT_SYMBOL(d_instantiate_unique);
1894
1895 /**
1896 * d_instantiate_no_diralias - instantiate a non-aliased dentry
1897 * @entry: dentry to complete
1898 * @inode: inode to attach to this dentry
1899 *
1900 * Fill in inode information in the entry. If a directory alias is found, then
1901 * return an error (and drop inode). Together with d_materialise_unique() this
1902 * guarantees that a directory inode may never have more than one alias.
1903 */
1904 int d_instantiate_no_diralias(struct dentry *entry, struct inode *inode)
1905 {
1906 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1907
1908 spin_lock(&inode->i_lock);
1909 if (S_ISDIR(inode->i_mode) && !hlist_empty(&inode->i_dentry)) {
1910 spin_unlock(&inode->i_lock);
1911 iput(inode);
1912 return -EBUSY;
1913 }
1914 __d_instantiate(entry, inode);
1915 spin_unlock(&inode->i_lock);
1916 security_d_instantiate(entry, inode);
1917
1918 return 0;
1919 }
1920 EXPORT_SYMBOL(d_instantiate_no_diralias);
1921
1922 struct dentry *d_make_root(struct inode *root_inode)
1923 {
1924 struct dentry *res = NULL;
1925
1926 if (root_inode) {
1927 static const struct qstr name = QSTR_INIT("/", 1);
1928
1929 res = __d_alloc(root_inode->i_sb, &name);
1930 if (res)
1931 d_instantiate(res, root_inode);
1932 else
1933 iput(root_inode);
1934 }
1935 return res;
1936 }
1937 EXPORT_SYMBOL(d_make_root);
1938
1939 static struct dentry * __d_find_any_alias(struct inode *inode)
1940 {
1941 struct dentry *alias;
1942
1943 if (hlist_empty(&inode->i_dentry))
1944 return NULL;
1945 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
1946 __dget(alias);
1947 return alias;
1948 }
1949
1950 /**
1951 * d_find_any_alias - find any alias for a given inode
1952 * @inode: inode to find an alias for
1953 *
1954 * If any aliases exist for the given inode, take and return a
1955 * reference for one of them. If no aliases exist, return %NULL.
1956 */
1957 struct dentry *d_find_any_alias(struct inode *inode)
1958 {
1959 struct dentry *de;
1960
1961 spin_lock(&inode->i_lock);
1962 de = __d_find_any_alias(inode);
1963 spin_unlock(&inode->i_lock);
1964 return de;
1965 }
1966 EXPORT_SYMBOL(d_find_any_alias);
1967
1968 static struct dentry *__d_obtain_alias(struct inode *inode, int disconnected)
1969 {
1970 static const struct qstr anonstring = QSTR_INIT("/", 1);
1971 struct dentry *tmp;
1972 struct dentry *res;
1973 unsigned add_flags;
1974
1975 if (!inode)
1976 return ERR_PTR(-ESTALE);
1977 if (IS_ERR(inode))
1978 return ERR_CAST(inode);
1979
1980 res = d_find_any_alias(inode);
1981 if (res)
1982 goto out_iput;
1983
1984 tmp = __d_alloc(inode->i_sb, &anonstring);
1985 if (!tmp) {
1986 res = ERR_PTR(-ENOMEM);
1987 goto out_iput;
1988 }
1989
1990 spin_lock(&inode->i_lock);
1991 res = __d_find_any_alias(inode);
1992 if (res) {
1993 spin_unlock(&inode->i_lock);
1994 dput(tmp);
1995 goto out_iput;
1996 }
1997
1998 /* attach a disconnected dentry */
1999 add_flags = d_flags_for_inode(inode);
2000
2001 if (disconnected)
2002 add_flags |= DCACHE_DISCONNECTED;
2003
2004 spin_lock(&tmp->d_lock);
2005 __d_set_inode_and_type(tmp, inode, add_flags);
2006 hlist_add_head(&tmp->d_u.d_alias, &inode->i_dentry);
2007 hlist_bl_lock(&tmp->d_sb->s_anon);
2008 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
2009 hlist_bl_unlock(&tmp->d_sb->s_anon);
2010 spin_unlock(&tmp->d_lock);
2011 spin_unlock(&inode->i_lock);
2012 security_d_instantiate(tmp, inode);
2013
2014 return tmp;
2015
2016 out_iput:
2017 if (res && !IS_ERR(res))
2018 security_d_instantiate(res, inode);
2019 iput(inode);
2020 return res;
2021 }
2022
2023 /**
2024 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
2025 * @inode: inode to allocate the dentry for
2026 *
2027 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
2028 * similar open by handle operations. The returned dentry may be anonymous,
2029 * or may have a full name (if the inode was already in the cache).
2030 *
2031 * When called on a directory inode, we must ensure that the inode only ever
2032 * has one dentry. If a dentry is found, that is returned instead of
2033 * allocating a new one.
2034 *
2035 * On successful return, the reference to the inode has been transferred
2036 * to the dentry. In case of an error the reference on the inode is released.
2037 * To make it easier to use in export operations a %NULL or IS_ERR inode may
2038 * be passed in and the error will be propagated to the return value,
2039 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
2040 */
2041 struct dentry *d_obtain_alias(struct inode *inode)
2042 {
2043 return __d_obtain_alias(inode, 1);
2044 }
2045 EXPORT_SYMBOL(d_obtain_alias);
2046
2047 /**
2048 * d_obtain_root - find or allocate a dentry for a given inode
2049 * @inode: inode to allocate the dentry for
2050 *
2051 * Obtain an IS_ROOT dentry for the root of a filesystem.
2052 *
2053 * We must ensure that directory inodes only ever have one dentry. If a
2054 * dentry is found, that is returned instead of allocating a new one.
2055 *
2056 * On successful return, the reference to the inode has been transferred
2057 * to the dentry. In case of an error the reference on the inode is
2058 * released. A %NULL or IS_ERR inode may be passed in and will be the
2059 * error will be propagate to the return value, with a %NULL @inode
2060 * replaced by ERR_PTR(-ESTALE).
2061 */
2062 struct dentry *d_obtain_root(struct inode *inode)
2063 {
2064 return __d_obtain_alias(inode, 0);
2065 }
2066 EXPORT_SYMBOL(d_obtain_root);
2067
2068 /**
2069 * d_add_ci - lookup or allocate new dentry with case-exact name
2070 * @inode: the inode case-insensitive lookup has found
2071 * @dentry: the negative dentry that was passed to the parent's lookup func
2072 * @name: the case-exact name to be associated with the returned dentry
2073 *
2074 * This is to avoid filling the dcache with case-insensitive names to the
2075 * same inode, only the actual correct case is stored in the dcache for
2076 * case-insensitive filesystems.
2077 *
2078 * For a case-insensitive lookup match and if the the case-exact dentry
2079 * already exists in in the dcache, use it and return it.
2080 *
2081 * If no entry exists with the exact case name, allocate new dentry with
2082 * the exact case, and return the spliced entry.
2083 */
2084 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
2085 struct qstr *name)
2086 {
2087 struct dentry *found;
2088 struct dentry *new;
2089
2090 /*
2091 * First check if a dentry matching the name already exists,
2092 * if not go ahead and create it now.
2093 */
2094 found = d_hash_and_lookup(dentry->d_parent, name);
2095 if (!found) {
2096 new = d_alloc(dentry->d_parent, name);
2097 if (!new) {
2098 found = ERR_PTR(-ENOMEM);
2099 } else {
2100 found = d_splice_alias(inode, new);
2101 if (found) {
2102 dput(new);
2103 return found;
2104 }
2105 return new;
2106 }
2107 }
2108 iput(inode);
2109 return found;
2110 }
2111 EXPORT_SYMBOL(d_add_ci);
2112
2113 /*
2114 * Do the slow-case of the dentry name compare.
2115 *
2116 * Unlike the dentry_cmp() function, we need to atomically
2117 * load the name and length information, so that the
2118 * filesystem can rely on them, and can use the 'name' and
2119 * 'len' information without worrying about walking off the
2120 * end of memory etc.
2121 *
2122 * Thus the read_seqcount_retry() and the "duplicate" info
2123 * in arguments (the low-level filesystem should not look
2124 * at the dentry inode or name contents directly, since
2125 * rename can change them while we're in RCU mode).
2126 */
2127 enum slow_d_compare {
2128 D_COMP_OK,
2129 D_COMP_NOMATCH,
2130 D_COMP_SEQRETRY,
2131 };
2132
2133 static noinline enum slow_d_compare slow_dentry_cmp(
2134 const struct dentry *parent,
2135 struct dentry *dentry,
2136 unsigned int seq,
2137 const struct qstr *name)
2138 {
2139 int tlen = dentry->d_name.len;
2140 const char *tname = dentry->d_name.name;
2141
2142 if (read_seqcount_retry(&dentry->d_seq, seq)) {
2143 cpu_relax();
2144 return D_COMP_SEQRETRY;
2145 }
2146 if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
2147 return D_COMP_NOMATCH;
2148 return D_COMP_OK;
2149 }
2150
2151 /**
2152 * __d_lookup_rcu - search for a dentry (racy, store-free)
2153 * @parent: parent dentry
2154 * @name: qstr of name we wish to find
2155 * @seqp: returns d_seq value at the point where the dentry was found
2156 * Returns: dentry, or NULL
2157 *
2158 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2159 * resolution (store-free path walking) design described in
2160 * Documentation/filesystems/path-lookup.txt.
2161 *
2162 * This is not to be used outside core vfs.
2163 *
2164 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2165 * held, and rcu_read_lock held. The returned dentry must not be stored into
2166 * without taking d_lock and checking d_seq sequence count against @seq
2167 * returned here.
2168 *
2169 * A refcount may be taken on the found dentry with the d_rcu_to_refcount
2170 * function.
2171 *
2172 * Alternatively, __d_lookup_rcu may be called again to look up the child of
2173 * the returned dentry, so long as its parent's seqlock is checked after the
2174 * child is looked up. Thus, an interlocking stepping of sequence lock checks
2175 * is formed, giving integrity down the path walk.
2176 *
2177 * NOTE! The caller *has* to check the resulting dentry against the sequence
2178 * number we've returned before using any of the resulting dentry state!
2179 */
2180 struct dentry *__d_lookup_rcu(const struct dentry *parent,
2181 const struct qstr *name,
2182 unsigned *seqp)
2183 {
2184 u64 hashlen = name->hash_len;
2185 const unsigned char *str = name->name;
2186 struct hlist_bl_head *b = d_hash(parent, hashlen_hash(hashlen));
2187 struct hlist_bl_node *node;
2188 struct dentry *dentry;
2189
2190 /*
2191 * Note: There is significant duplication with __d_lookup_rcu which is
2192 * required to prevent single threaded performance regressions
2193 * especially on architectures where smp_rmb (in seqcounts) are costly.
2194 * Keep the two functions in sync.
2195 */
2196
2197 /*
2198 * The hash list is protected using RCU.
2199 *
2200 * Carefully use d_seq when comparing a candidate dentry, to avoid
2201 * races with d_move().
2202 *
2203 * It is possible that concurrent renames can mess up our list
2204 * walk here and result in missing our dentry, resulting in the
2205 * false-negative result. d_lookup() protects against concurrent
2206 * renames using rename_lock seqlock.
2207 *
2208 * See Documentation/filesystems/path-lookup.txt for more details.
2209 */
2210 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2211 unsigned seq;
2212
2213 seqretry:
2214 /*
2215 * The dentry sequence count protects us from concurrent
2216 * renames, and thus protects parent and name fields.
2217 *
2218 * The caller must perform a seqcount check in order
2219 * to do anything useful with the returned dentry.
2220 *
2221 * NOTE! We do a "raw" seqcount_begin here. That means that
2222 * we don't wait for the sequence count to stabilize if it
2223 * is in the middle of a sequence change. If we do the slow
2224 * dentry compare, we will do seqretries until it is stable,
2225 * and if we end up with a successful lookup, we actually
2226 * want to exit RCU lookup anyway.
2227 */
2228 seq = raw_seqcount_begin(&dentry->d_seq);
2229 if (dentry->d_parent != parent)
2230 continue;
2231 if (d_unhashed(dentry))
2232 continue;
2233
2234 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
2235 if (dentry->d_name.hash != hashlen_hash(hashlen))
2236 continue;
2237 *seqp = seq;
2238 switch (slow_dentry_cmp(parent, dentry, seq, name)) {
2239 case D_COMP_OK:
2240 return dentry;
2241 case D_COMP_NOMATCH:
2242 continue;
2243 default:
2244 goto seqretry;
2245 }
2246 }
2247
2248 if (dentry->d_name.hash_len != hashlen)
2249 continue;
2250 *seqp = seq;
2251 if (!dentry_cmp(dentry, str, hashlen_len(hashlen)))
2252 return dentry;
2253 }
2254 return NULL;
2255 }
2256
2257 /**
2258 * d_lookup - search for a dentry
2259 * @parent: parent dentry
2260 * @name: qstr of name we wish to find
2261 * Returns: dentry, or NULL
2262 *
2263 * d_lookup searches the children of the parent dentry for the name in
2264 * question. If the dentry is found its reference count is incremented and the
2265 * dentry is returned. The caller must use dput to free the entry when it has
2266 * finished using it. %NULL is returned if the dentry does not exist.
2267 */
2268 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2269 {
2270 struct dentry *dentry;
2271 unsigned seq;
2272
2273 do {
2274 seq = read_seqbegin(&rename_lock);
2275 dentry = __d_lookup(parent, name);
2276 if (dentry)
2277 break;
2278 } while (read_seqretry(&rename_lock, seq));
2279 return dentry;
2280 }
2281 EXPORT_SYMBOL(d_lookup);
2282
2283 /**
2284 * __d_lookup - search for a dentry (racy)
2285 * @parent: parent dentry
2286 * @name: qstr of name we wish to find
2287 * Returns: dentry, or NULL
2288 *
2289 * __d_lookup is like d_lookup, however it may (rarely) return a
2290 * false-negative result due to unrelated rename activity.
2291 *
2292 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2293 * however it must be used carefully, eg. with a following d_lookup in
2294 * the case of failure.
2295 *
2296 * __d_lookup callers must be commented.
2297 */
2298 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2299 {
2300 unsigned int len = name->len;
2301 unsigned int hash = name->hash;
2302 const unsigned char *str = name->name;
2303 struct hlist_bl_head *b = d_hash(parent, hash);
2304 struct hlist_bl_node *node;
2305 struct dentry *found = NULL;
2306 struct dentry *dentry;
2307
2308 /*
2309 * Note: There is significant duplication with __d_lookup_rcu which is
2310 * required to prevent single threaded performance regressions
2311 * especially on architectures where smp_rmb (in seqcounts) are costly.
2312 * Keep the two functions in sync.
2313 */
2314
2315 /*
2316 * The hash list is protected using RCU.
2317 *
2318 * Take d_lock when comparing a candidate dentry, to avoid races
2319 * with d_move().
2320 *
2321 * It is possible that concurrent renames can mess up our list
2322 * walk here and result in missing our dentry, resulting in the
2323 * false-negative result. d_lookup() protects against concurrent
2324 * renames using rename_lock seqlock.
2325 *
2326 * See Documentation/filesystems/path-lookup.txt for more details.
2327 */
2328 rcu_read_lock();
2329
2330 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2331
2332 if (dentry->d_name.hash != hash)
2333 continue;
2334
2335 spin_lock(&dentry->d_lock);
2336 if (dentry->d_parent != parent)
2337 goto next;
2338 if (d_unhashed(dentry))
2339 goto next;
2340
2341 /*
2342 * It is safe to compare names since d_move() cannot
2343 * change the qstr (protected by d_lock).
2344 */
2345 if (parent->d_flags & DCACHE_OP_COMPARE) {
2346 int tlen = dentry->d_name.len;
2347 const char *tname = dentry->d_name.name;
2348 if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
2349 goto next;
2350 } else {
2351 if (dentry->d_name.len != len)
2352 goto next;
2353 if (dentry_cmp(dentry, str, len))
2354 goto next;
2355 }
2356
2357 dentry->d_lockref.count++;
2358 found = dentry;
2359 spin_unlock(&dentry->d_lock);
2360 break;
2361 next:
2362 spin_unlock(&dentry->d_lock);
2363 }
2364 rcu_read_unlock();
2365
2366 return found;
2367 }
2368
2369 /**
2370 * d_hash_and_lookup - hash the qstr then search for a dentry
2371 * @dir: Directory to search in
2372 * @name: qstr of name we wish to find
2373 *
2374 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2375 */
2376 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2377 {
2378 /*
2379 * Check for a fs-specific hash function. Note that we must
2380 * calculate the standard hash first, as the d_op->d_hash()
2381 * routine may choose to leave the hash value unchanged.
2382 */
2383 name->hash = full_name_hash(name->name, name->len);
2384 if (dir->d_flags & DCACHE_OP_HASH) {
2385 int err = dir->d_op->d_hash(dir, name);
2386 if (unlikely(err < 0))
2387 return ERR_PTR(err);
2388 }
2389 return d_lookup(dir, name);
2390 }
2391 EXPORT_SYMBOL(d_hash_and_lookup);
2392
2393 /*
2394 * When a file is deleted, we have two options:
2395 * - turn this dentry into a negative dentry
2396 * - unhash this dentry and free it.
2397 *
2398 * Usually, we want to just turn this into
2399 * a negative dentry, but if anybody else is
2400 * currently using the dentry or the inode
2401 * we can't do that and we fall back on removing
2402 * it from the hash queues and waiting for
2403 * it to be deleted later when it has no users
2404 */
2405
2406 /**
2407 * d_delete - delete a dentry
2408 * @dentry: The dentry to delete
2409 *
2410 * Turn the dentry into a negative dentry if possible, otherwise
2411 * remove it from the hash queues so it can be deleted later
2412 */
2413
2414 void d_delete(struct dentry * dentry)
2415 {
2416 struct inode *inode;
2417 int isdir = 0;
2418 /*
2419 * Are we the only user?
2420 */
2421 again:
2422 spin_lock(&dentry->d_lock);
2423 inode = dentry->d_inode;
2424 isdir = S_ISDIR(inode->i_mode);
2425 if (dentry->d_lockref.count == 1) {
2426 if (!spin_trylock(&inode->i_lock)) {
2427 spin_unlock(&dentry->d_lock);
2428 cpu_relax();
2429 goto again;
2430 }
2431 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2432 dentry_unlink_inode(dentry);
2433 fsnotify_nameremove(dentry, isdir);
2434 return;
2435 }
2436
2437 if (!d_unhashed(dentry))
2438 __d_drop(dentry);
2439
2440 spin_unlock(&dentry->d_lock);
2441
2442 fsnotify_nameremove(dentry, isdir);
2443 }
2444 EXPORT_SYMBOL(d_delete);
2445
2446 static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b)
2447 {
2448 BUG_ON(!d_unhashed(entry));
2449 hlist_bl_lock(b);
2450 hlist_bl_add_head_rcu(&entry->d_hash, b);
2451 hlist_bl_unlock(b);
2452 }
2453
2454 static void _d_rehash(struct dentry * entry)
2455 {
2456 __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
2457 }
2458
2459 /**
2460 * d_rehash - add an entry back to the hash
2461 * @entry: dentry to add to the hash
2462 *
2463 * Adds a dentry to the hash according to its name.
2464 */
2465
2466 void d_rehash(struct dentry * entry)
2467 {
2468 spin_lock(&entry->d_lock);
2469 _d_rehash(entry);
2470 spin_unlock(&entry->d_lock);
2471 }
2472 EXPORT_SYMBOL(d_rehash);
2473
2474 /**
2475 * dentry_update_name_case - update case insensitive dentry with a new name
2476 * @dentry: dentry to be updated
2477 * @name: new name
2478 *
2479 * Update a case insensitive dentry with new case of name.
2480 *
2481 * dentry must have been returned by d_lookup with name @name. Old and new
2482 * name lengths must match (ie. no d_compare which allows mismatched name
2483 * lengths).
2484 *
2485 * Parent inode i_mutex must be held over d_lookup and into this call (to
2486 * keep renames and concurrent inserts, and readdir(2) away).
2487 */
2488 void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
2489 {
2490 BUG_ON(!mutex_is_locked(&dentry->d_parent->d_inode->i_mutex));
2491 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2492
2493 spin_lock(&dentry->d_lock);
2494 write_seqcount_begin(&dentry->d_seq);
2495 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
2496 write_seqcount_end(&dentry->d_seq);
2497 spin_unlock(&dentry->d_lock);
2498 }
2499 EXPORT_SYMBOL(dentry_update_name_case);
2500
2501 static void swap_names(struct dentry *dentry, struct dentry *target)
2502 {
2503 if (unlikely(dname_external(target))) {
2504 if (unlikely(dname_external(dentry))) {
2505 /*
2506 * Both external: swap the pointers
2507 */
2508 swap(target->d_name.name, dentry->d_name.name);
2509 } else {
2510 /*
2511 * dentry:internal, target:external. Steal target's
2512 * storage and make target internal.
2513 */
2514 memcpy(target->d_iname, dentry->d_name.name,
2515 dentry->d_name.len + 1);
2516 dentry->d_name.name = target->d_name.name;
2517 target->d_name.name = target->d_iname;
2518 }
2519 } else {
2520 if (unlikely(dname_external(dentry))) {
2521 /*
2522 * dentry:external, target:internal. Give dentry's
2523 * storage to target and make dentry internal
2524 */
2525 memcpy(dentry->d_iname, target->d_name.name,
2526 target->d_name.len + 1);
2527 target->d_name.name = dentry->d_name.name;
2528 dentry->d_name.name = dentry->d_iname;
2529 } else {
2530 /*
2531 * Both are internal.
2532 */
2533 unsigned int i;
2534 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2535 kmemcheck_mark_initialized(dentry->d_iname, DNAME_INLINE_LEN);
2536 kmemcheck_mark_initialized(target->d_iname, DNAME_INLINE_LEN);
2537 for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2538 swap(((long *) &dentry->d_iname)[i],
2539 ((long *) &target->d_iname)[i]);
2540 }
2541 }
2542 }
2543 swap(dentry->d_name.hash_len, target->d_name.hash_len);
2544 }
2545
2546 static void copy_name(struct dentry *dentry, struct dentry *target)
2547 {
2548 struct external_name *old_name = NULL;
2549 if (unlikely(dname_external(dentry)))
2550 old_name = external_name(dentry);
2551 if (unlikely(dname_external(target))) {
2552 atomic_inc(&external_name(target)->u.count);
2553 dentry->d_name = target->d_name;
2554 } else {
2555 memcpy(dentry->d_iname, target->d_name.name,
2556 target->d_name.len + 1);
2557 dentry->d_name.name = dentry->d_iname;
2558 dentry->d_name.hash_len = target->d_name.hash_len;
2559 }
2560 if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2561 kfree_rcu(old_name, u.head);
2562 }
2563
2564 static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2565 {
2566 /*
2567 * XXXX: do we really need to take target->d_lock?
2568 */
2569 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2570 spin_lock(&target->d_parent->d_lock);
2571 else {
2572 if (d_ancestor(dentry->d_parent, target->d_parent)) {
2573 spin_lock(&dentry->d_parent->d_lock);
2574 spin_lock_nested(&target->d_parent->d_lock,
2575 DENTRY_D_LOCK_NESTED);
2576 } else {
2577 spin_lock(&target->d_parent->d_lock);
2578 spin_lock_nested(&dentry->d_parent->d_lock,
2579 DENTRY_D_LOCK_NESTED);
2580 }
2581 }
2582 if (target < dentry) {
2583 spin_lock_nested(&target->d_lock, 2);
2584 spin_lock_nested(&dentry->d_lock, 3);
2585 } else {
2586 spin_lock_nested(&dentry->d_lock, 2);
2587 spin_lock_nested(&target->d_lock, 3);
2588 }
2589 }
2590
2591 static void dentry_unlock_for_move(struct dentry *dentry, struct dentry *target)
2592 {
2593 if (target->d_parent != dentry->d_parent)
2594 spin_unlock(&dentry->d_parent->d_lock);
2595 if (target->d_parent != target)
2596 spin_unlock(&target->d_parent->d_lock);
2597 spin_unlock(&target->d_lock);
2598 spin_unlock(&dentry->d_lock);
2599 }
2600
2601 /*
2602 * When switching names, the actual string doesn't strictly have to
2603 * be preserved in the target - because we're dropping the target
2604 * anyway. As such, we can just do a simple memcpy() to copy over
2605 * the new name before we switch, unless we are going to rehash
2606 * it. Note that if we *do* unhash the target, we are not allowed
2607 * to rehash it without giving it a new name/hash key - whether
2608 * we swap or overwrite the names here, resulting name won't match
2609 * the reality in filesystem; it's only there for d_path() purposes.
2610 * Note that all of this is happening under rename_lock, so the
2611 * any hash lookup seeing it in the middle of manipulations will
2612 * be discarded anyway. So we do not care what happens to the hash
2613 * key in that case.
2614 */
2615 /*
2616 * __d_move - move a dentry
2617 * @dentry: entry to move
2618 * @target: new dentry
2619 * @exchange: exchange the two dentries
2620 *
2621 * Update the dcache to reflect the move of a file name. Negative
2622 * dcache entries should not be moved in this way. Caller must hold
2623 * rename_lock, the i_mutex of the source and target directories,
2624 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2625 */
2626 static void __d_move(struct dentry *dentry, struct dentry *target,
2627 bool exchange)
2628 {
2629 if (!dentry->d_inode)
2630 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2631
2632 BUG_ON(d_ancestor(dentry, target));
2633 BUG_ON(d_ancestor(target, dentry));
2634
2635 dentry_lock_for_move(dentry, target);
2636
2637 write_seqcount_begin(&dentry->d_seq);
2638 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
2639
2640 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2641
2642 /*
2643 * Move the dentry to the target hash queue. Don't bother checking
2644 * for the same hash queue because of how unlikely it is.
2645 */
2646 __d_drop(dentry);
2647 __d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
2648
2649 /*
2650 * Unhash the target (d_delete() is not usable here). If exchanging
2651 * the two dentries, then rehash onto the other's hash queue.
2652 */
2653 __d_drop(target);
2654 if (exchange) {
2655 __d_rehash(target,
2656 d_hash(dentry->d_parent, dentry->d_name.hash));
2657 }
2658
2659 /* Switch the names.. */
2660 if (exchange)
2661 swap_names(dentry, target);
2662 else
2663 copy_name(dentry, target);
2664
2665 /* ... and switch them in the tree */
2666 if (IS_ROOT(dentry)) {
2667 /* splicing a tree */
2668 dentry->d_flags |= DCACHE_RCUACCESS;
2669 dentry->d_parent = target->d_parent;
2670 target->d_parent = target;
2671 list_del_init(&target->d_child);
2672 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2673 } else {
2674 /* swapping two dentries */
2675 swap(dentry->d_parent, target->d_parent);
2676 list_move(&target->d_child, &target->d_parent->d_subdirs);
2677 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2678 if (exchange)
2679 fsnotify_d_move(target);
2680 fsnotify_d_move(dentry);
2681 }
2682
2683 write_seqcount_end(&target->d_seq);
2684 write_seqcount_end(&dentry->d_seq);
2685
2686 dentry_unlock_for_move(dentry, target);
2687 }
2688
2689 /*
2690 * d_move - move a dentry
2691 * @dentry: entry to move
2692 * @target: new dentry
2693 *
2694 * Update the dcache to reflect the move of a file name. Negative
2695 * dcache entries should not be moved in this way. See the locking
2696 * requirements for __d_move.
2697 */
2698 void d_move(struct dentry *dentry, struct dentry *target)
2699 {
2700 write_seqlock(&rename_lock);
2701 __d_move(dentry, target, false);
2702 write_sequnlock(&rename_lock);
2703 }
2704 EXPORT_SYMBOL(d_move);
2705
2706 /*
2707 * d_exchange - exchange two dentries
2708 * @dentry1: first dentry
2709 * @dentry2: second dentry
2710 */
2711 void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2712 {
2713 write_seqlock(&rename_lock);
2714
2715 WARN_ON(!dentry1->d_inode);
2716 WARN_ON(!dentry2->d_inode);
2717 WARN_ON(IS_ROOT(dentry1));
2718 WARN_ON(IS_ROOT(dentry2));
2719
2720 __d_move(dentry1, dentry2, true);
2721
2722 write_sequnlock(&rename_lock);
2723 }
2724
2725 /**
2726 * d_ancestor - search for an ancestor
2727 * @p1: ancestor dentry
2728 * @p2: child dentry
2729 *
2730 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2731 * an ancestor of p2, else NULL.
2732 */
2733 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2734 {
2735 struct dentry *p;
2736
2737 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2738 if (p->d_parent == p1)
2739 return p;
2740 }
2741 return NULL;
2742 }
2743
2744 /*
2745 * This helper attempts to cope with remotely renamed directories
2746 *
2747 * It assumes that the caller is already holding
2748 * dentry->d_parent->d_inode->i_mutex, and rename_lock
2749 *
2750 * Note: If ever the locking in lock_rename() changes, then please
2751 * remember to update this too...
2752 */
2753 static int __d_unalias(struct inode *inode,
2754 struct dentry *dentry, struct dentry *alias)
2755 {
2756 struct mutex *m1 = NULL, *m2 = NULL;
2757 int ret = -ESTALE;
2758
2759 /* If alias and dentry share a parent, then no extra locks required */
2760 if (alias->d_parent == dentry->d_parent)
2761 goto out_unalias;
2762
2763 /* See lock_rename() */
2764 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2765 goto out_err;
2766 m1 = &dentry->d_sb->s_vfs_rename_mutex;
2767 if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
2768 goto out_err;
2769 m2 = &alias->d_parent->d_inode->i_mutex;
2770 out_unalias:
2771 __d_move(alias, dentry, false);
2772 ret = 0;
2773 out_err:
2774 if (m2)
2775 mutex_unlock(m2);
2776 if (m1)
2777 mutex_unlock(m1);
2778 return ret;
2779 }
2780
2781 /**
2782 * d_splice_alias - splice a disconnected dentry into the tree if one exists
2783 * @inode: the inode which may have a disconnected dentry
2784 * @dentry: a negative dentry which we want to point to the inode.
2785 *
2786 * If inode is a directory and has an IS_ROOT alias, then d_move that in
2787 * place of the given dentry and return it, else simply d_add the inode
2788 * to the dentry and return NULL.
2789 *
2790 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
2791 * we should error out: directories can't have multiple aliases.
2792 *
2793 * This is needed in the lookup routine of any filesystem that is exportable
2794 * (via knfsd) so that we can build dcache paths to directories effectively.
2795 *
2796 * If a dentry was found and moved, then it is returned. Otherwise NULL
2797 * is returned. This matches the expected return value of ->lookup.
2798 *
2799 * Cluster filesystems may call this function with a negative, hashed dentry.
2800 * In that case, we know that the inode will be a regular file, and also this
2801 * will only occur during atomic_open. So we need to check for the dentry
2802 * being already hashed only in the final case.
2803 */
2804 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
2805 {
2806 if (IS_ERR(inode))
2807 return ERR_CAST(inode);
2808
2809 BUG_ON(!d_unhashed(dentry));
2810
2811 if (!inode) {
2812 __d_instantiate(dentry, NULL);
2813 goto out;
2814 }
2815 spin_lock(&inode->i_lock);
2816 if (S_ISDIR(inode->i_mode)) {
2817 struct dentry *new = __d_find_any_alias(inode);
2818 if (unlikely(new)) {
2819 /* The reference to new ensures it remains an alias */
2820 spin_unlock(&inode->i_lock);
2821 write_seqlock(&rename_lock);
2822 if (unlikely(d_ancestor(new, dentry))) {
2823 write_sequnlock(&rename_lock);
2824 dput(new);
2825 new = ERR_PTR(-ELOOP);
2826 pr_warn_ratelimited(
2827 "VFS: Lookup of '%s' in %s %s"
2828 " would have caused loop\n",
2829 dentry->d_name.name,
2830 inode->i_sb->s_type->name,
2831 inode->i_sb->s_id);
2832 } else if (!IS_ROOT(new)) {
2833 int err = __d_unalias(inode, dentry, new);
2834 write_sequnlock(&rename_lock);
2835 if (err) {
2836 dput(new);
2837 new = ERR_PTR(err);
2838 }
2839 } else {
2840 __d_move(new, dentry, false);
2841 write_sequnlock(&rename_lock);
2842 security_d_instantiate(new, inode);
2843 }
2844 iput(inode);
2845 return new;
2846 }
2847 }
2848 /* already taking inode->i_lock, so d_add() by hand */
2849 __d_instantiate(dentry, inode);
2850 spin_unlock(&inode->i_lock);
2851 out:
2852 security_d_instantiate(dentry, inode);
2853 d_rehash(dentry);
2854 return NULL;
2855 }
2856 EXPORT_SYMBOL(d_splice_alias);
2857
2858 static int prepend(char **buffer, int *buflen, const char *str, int namelen)
2859 {
2860 *buflen -= namelen;
2861 if (*buflen < 0)
2862 return -ENAMETOOLONG;
2863 *buffer -= namelen;
2864 memcpy(*buffer, str, namelen);
2865 return 0;
2866 }
2867
2868 /**
2869 * prepend_name - prepend a pathname in front of current buffer pointer
2870 * @buffer: buffer pointer
2871 * @buflen: allocated length of the buffer
2872 * @name: name string and length qstr structure
2873 *
2874 * With RCU path tracing, it may race with d_move(). Use ACCESS_ONCE() to
2875 * make sure that either the old or the new name pointer and length are
2876 * fetched. However, there may be mismatch between length and pointer.
2877 * The length cannot be trusted, we need to copy it byte-by-byte until
2878 * the length is reached or a null byte is found. It also prepends "/" at
2879 * the beginning of the name. The sequence number check at the caller will
2880 * retry it again when a d_move() does happen. So any garbage in the buffer
2881 * due to mismatched pointer and length will be discarded.
2882 *
2883 * Data dependency barrier is needed to make sure that we see that terminating
2884 * NUL. Alpha strikes again, film at 11...
2885 */
2886 static int prepend_name(char **buffer, int *buflen, struct qstr *name)
2887 {
2888 const char *dname = ACCESS_ONCE(name->name);
2889 u32 dlen = ACCESS_ONCE(name->len);
2890 char *p;
2891
2892 smp_read_barrier_depends();
2893
2894 *buflen -= dlen + 1;
2895 if (*buflen < 0)
2896 return -ENAMETOOLONG;
2897 p = *buffer -= dlen + 1;
2898 *p++ = '/';
2899 while (dlen--) {
2900 char c = *dname++;
2901 if (!c)
2902 break;
2903 *p++ = c;
2904 }
2905 return 0;
2906 }
2907
2908 /**
2909 * prepend_path - Prepend path string to a buffer
2910 * @path: the dentry/vfsmount to report
2911 * @root: root vfsmnt/dentry
2912 * @buffer: pointer to the end of the buffer
2913 * @buflen: pointer to buffer length
2914 *
2915 * The function will first try to write out the pathname without taking any
2916 * lock other than the RCU read lock to make sure that dentries won't go away.
2917 * It only checks the sequence number of the global rename_lock as any change
2918 * in the dentry's d_seq will be preceded by changes in the rename_lock
2919 * sequence number. If the sequence number had been changed, it will restart
2920 * the whole pathname back-tracing sequence again by taking the rename_lock.
2921 * In this case, there is no need to take the RCU read lock as the recursive
2922 * parent pointer references will keep the dentry chain alive as long as no
2923 * rename operation is performed.
2924 */
2925 static int prepend_path(const struct path *path,
2926 const struct path *root,
2927 char **buffer, int *buflen)
2928 {
2929 struct dentry *dentry;
2930 struct vfsmount *vfsmnt;
2931 struct mount *mnt;
2932 int error = 0;
2933 unsigned seq, m_seq = 0;
2934 char *bptr;
2935 int blen;
2936
2937 rcu_read_lock();
2938 restart_mnt:
2939 read_seqbegin_or_lock(&mount_lock, &m_seq);
2940 seq = 0;
2941 rcu_read_lock();
2942 restart:
2943 bptr = *buffer;
2944 blen = *buflen;
2945 error = 0;
2946 dentry = path->dentry;
2947 vfsmnt = path->mnt;
2948 mnt = real_mount(vfsmnt);
2949 read_seqbegin_or_lock(&rename_lock, &seq);
2950 while (dentry != root->dentry || vfsmnt != root->mnt) {
2951 struct dentry * parent;
2952
2953 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
2954 struct mount *parent = ACCESS_ONCE(mnt->mnt_parent);
2955 /* Escaped? */
2956 if (dentry != vfsmnt->mnt_root) {
2957 bptr = *buffer;
2958 blen = *buflen;
2959 error = 3;
2960 break;
2961 }
2962 /* Global root? */
2963 if (mnt != parent) {
2964 dentry = ACCESS_ONCE(mnt->mnt_mountpoint);
2965 mnt = parent;
2966 vfsmnt = &mnt->mnt;
2967 continue;
2968 }
2969 if (!error)
2970 error = is_mounted(vfsmnt) ? 1 : 2;
2971 break;
2972 }
2973 parent = dentry->d_parent;
2974 prefetch(parent);
2975 error = prepend_name(&bptr, &blen, &dentry->d_name);
2976 if (error)
2977 break;
2978
2979 dentry = parent;
2980 }
2981 if (!(seq & 1))
2982 rcu_read_unlock();
2983 if (need_seqretry(&rename_lock, seq)) {
2984 seq = 1;
2985 goto restart;
2986 }
2987 done_seqretry(&rename_lock, seq);
2988
2989 if (!(m_seq & 1))
2990 rcu_read_unlock();
2991 if (need_seqretry(&mount_lock, m_seq)) {
2992 m_seq = 1;
2993 goto restart_mnt;
2994 }
2995 done_seqretry(&mount_lock, m_seq);
2996
2997 if (error >= 0 && bptr == *buffer) {
2998 if (--blen < 0)
2999 error = -ENAMETOOLONG;
3000 else
3001 *--bptr = '/';
3002 }
3003 *buffer = bptr;
3004 *buflen = blen;
3005 return error;
3006 }
3007
3008 /**
3009 * __d_path - return the path of a dentry
3010 * @path: the dentry/vfsmount to report
3011 * @root: root vfsmnt/dentry
3012 * @buf: buffer to return value in
3013 * @buflen: buffer length
3014 *
3015 * Convert a dentry into an ASCII path name.
3016 *
3017 * Returns a pointer into the buffer or an error code if the
3018 * path was too long.
3019 *
3020 * "buflen" should be positive.
3021 *
3022 * If the path is not reachable from the supplied root, return %NULL.
3023 */
3024 char *__d_path(const struct path *path,
3025 const struct path *root,
3026 char *buf, int buflen)
3027 {
3028 char *res = buf + buflen;
3029 int error;
3030
3031 prepend(&res, &buflen, "\0", 1);
3032 error = prepend_path(path, root, &res, &buflen);
3033
3034 if (error < 0)
3035 return ERR_PTR(error);
3036 if (error > 0)
3037 return NULL;
3038 return res;
3039 }
3040
3041 char *d_absolute_path(const struct path *path,
3042 char *buf, int buflen)
3043 {
3044 struct path root = {};
3045 char *res = buf + buflen;
3046 int error;
3047
3048 prepend(&res, &buflen, "\0", 1);
3049 error = prepend_path(path, &root, &res, &buflen);
3050
3051 if (error > 1)
3052 error = -EINVAL;
3053 if (error < 0)
3054 return ERR_PTR(error);
3055 return res;
3056 }
3057
3058 /*
3059 * same as __d_path but appends "(deleted)" for unlinked files.
3060 */
3061 static int path_with_deleted(const struct path *path,
3062 const struct path *root,
3063 char **buf, int *buflen)
3064 {
3065 prepend(buf, buflen, "\0", 1);
3066 if (d_unlinked(path->dentry)) {
3067 int error = prepend(buf, buflen, " (deleted)", 10);
3068 if (error)
3069 return error;
3070 }
3071
3072 return prepend_path(path, root, buf, buflen);
3073 }
3074
3075 static int prepend_unreachable(char **buffer, int *buflen)
3076 {
3077 return prepend(buffer, buflen, "(unreachable)", 13);
3078 }
3079
3080 static void get_fs_root_rcu(struct fs_struct *fs, struct path *root)
3081 {
3082 unsigned seq;
3083
3084 do {
3085 seq = read_seqcount_begin(&fs->seq);
3086 *root = fs->root;
3087 } while (read_seqcount_retry(&fs->seq, seq));
3088 }
3089
3090 /**
3091 * d_path - return the path of a dentry
3092 * @path: path to report
3093 * @buf: buffer to return value in
3094 * @buflen: buffer length
3095 *
3096 * Convert a dentry into an ASCII path name. If the entry has been deleted
3097 * the string " (deleted)" is appended. Note that this is ambiguous.
3098 *
3099 * Returns a pointer into the buffer or an error code if the path was
3100 * too long. Note: Callers should use the returned pointer, not the passed
3101 * in buffer, to use the name! The implementation often starts at an offset
3102 * into the buffer, and may leave 0 bytes at the start.
3103 *
3104 * "buflen" should be positive.
3105 */
3106 char *d_path(const struct path *path, char *buf, int buflen)
3107 {
3108 char *res = buf + buflen;
3109 struct path root;
3110 int error;
3111
3112 /*
3113 * We have various synthetic filesystems that never get mounted. On
3114 * these filesystems dentries are never used for lookup purposes, and
3115 * thus don't need to be hashed. They also don't need a name until a
3116 * user wants to identify the object in /proc/pid/fd/. The little hack
3117 * below allows us to generate a name for these objects on demand:
3118 *
3119 * Some pseudo inodes are mountable. When they are mounted
3120 * path->dentry == path->mnt->mnt_root. In that case don't call d_dname
3121 * and instead have d_path return the mounted path.
3122 */
3123 if (path->dentry->d_op && path->dentry->d_op->d_dname &&
3124 (!IS_ROOT(path->dentry) || path->dentry != path->mnt->mnt_root))
3125 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
3126
3127 rcu_read_lock();
3128 get_fs_root_rcu(current->fs, &root);
3129 error = path_with_deleted(path, &root, &res, &buflen);
3130 rcu_read_unlock();
3131
3132 if (error < 0)
3133 res = ERR_PTR(error);
3134 return res;
3135 }
3136 EXPORT_SYMBOL(d_path);
3137
3138 /*
3139 * Helper function for dentry_operations.d_dname() members
3140 */
3141 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
3142 const char *fmt, ...)
3143 {
3144 va_list args;
3145 char temp[64];
3146 int sz;
3147
3148 va_start(args, fmt);
3149 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
3150 va_end(args);
3151
3152 if (sz > sizeof(temp) || sz > buflen)
3153 return ERR_PTR(-ENAMETOOLONG);
3154
3155 buffer += buflen - sz;
3156 return memcpy(buffer, temp, sz);
3157 }
3158
3159 char *simple_dname(struct dentry *dentry, char *buffer, int buflen)
3160 {
3161 char *end = buffer + buflen;
3162 /* these dentries are never renamed, so d_lock is not needed */
3163 if (prepend(&end, &buflen, " (deleted)", 11) ||
3164 prepend(&end, &buflen, dentry->d_name.name, dentry->d_name.len) ||
3165 prepend(&end, &buflen, "/", 1))
3166 end = ERR_PTR(-ENAMETOOLONG);
3167 return end;
3168 }
3169 EXPORT_SYMBOL(simple_dname);
3170
3171 /*
3172 * Write full pathname from the root of the filesystem into the buffer.
3173 */
3174 static char *__dentry_path(struct dentry *d, char *buf, int buflen)
3175 {
3176 struct dentry *dentry;
3177 char *end, *retval;
3178 int len, seq = 0;
3179 int error = 0;
3180
3181 if (buflen < 2)
3182 goto Elong;
3183
3184 rcu_read_lock();
3185 restart:
3186 dentry = d;
3187 end = buf + buflen;
3188 len = buflen;
3189 prepend(&end, &len, "\0", 1);
3190 /* Get '/' right */
3191 retval = end-1;
3192 *retval = '/';
3193 read_seqbegin_or_lock(&rename_lock, &seq);
3194 while (!IS_ROOT(dentry)) {
3195 struct dentry *parent = dentry->d_parent;
3196
3197 prefetch(parent);
3198 error = prepend_name(&end, &len, &dentry->d_name);
3199 if (error)
3200 break;
3201
3202 retval = end;
3203 dentry = parent;
3204 }
3205 if (!(seq & 1))
3206 rcu_read_unlock();
3207 if (need_seqretry(&rename_lock, seq)) {
3208 seq = 1;
3209 goto restart;
3210 }
3211 done_seqretry(&rename_lock, seq);
3212 if (error)
3213 goto Elong;
3214 return retval;
3215 Elong:
3216 return ERR_PTR(-ENAMETOOLONG);
3217 }
3218
3219 char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
3220 {
3221 return __dentry_path(dentry, buf, buflen);
3222 }
3223 EXPORT_SYMBOL(dentry_path_raw);
3224
3225 char *dentry_path(struct dentry *dentry, char *buf, int buflen)
3226 {
3227 char *p = NULL;
3228 char *retval;
3229
3230 if (d_unlinked(dentry)) {
3231 p = buf + buflen;
3232 if (prepend(&p, &buflen, "//deleted", 10) != 0)
3233 goto Elong;
3234 buflen++;
3235 }
3236 retval = __dentry_path(dentry, buf, buflen);
3237 if (!IS_ERR(retval) && p)
3238 *p = '/'; /* restore '/' overriden with '\0' */
3239 return retval;
3240 Elong:
3241 return ERR_PTR(-ENAMETOOLONG);
3242 }
3243
3244 static void get_fs_root_and_pwd_rcu(struct fs_struct *fs, struct path *root,
3245 struct path *pwd)
3246 {
3247 unsigned seq;
3248
3249 do {
3250 seq = read_seqcount_begin(&fs->seq);
3251 *root = fs->root;
3252 *pwd = fs->pwd;
3253 } while (read_seqcount_retry(&fs->seq, seq));
3254 }
3255
3256 /*
3257 * NOTE! The user-level library version returns a
3258 * character pointer. The kernel system call just
3259 * returns the length of the buffer filled (which
3260 * includes the ending '\0' character), or a negative
3261 * error value. So libc would do something like
3262 *
3263 * char *getcwd(char * buf, size_t size)
3264 * {
3265 * int retval;
3266 *
3267 * retval = sys_getcwd(buf, size);
3268 * if (retval >= 0)
3269 * return buf;
3270 * errno = -retval;
3271 * return NULL;
3272 * }
3273 */
3274 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
3275 {
3276 int error;
3277 struct path pwd, root;
3278 char *page = __getname();
3279
3280 if (!page)
3281 return -ENOMEM;
3282
3283 rcu_read_lock();
3284 get_fs_root_and_pwd_rcu(current->fs, &root, &pwd);
3285
3286 error = -ENOENT;
3287 if (!d_unlinked(pwd.dentry)) {
3288 unsigned long len;
3289 char *cwd = page + PATH_MAX;
3290 int buflen = PATH_MAX;
3291
3292 prepend(&cwd, &buflen, "\0", 1);
3293 error = prepend_path(&pwd, &root, &cwd, &buflen);
3294 rcu_read_unlock();
3295
3296 if (error < 0)
3297 goto out;
3298
3299 /* Unreachable from current root */
3300 if (error > 0) {
3301 error = prepend_unreachable(&cwd, &buflen);
3302 if (error)
3303 goto out;
3304 }
3305
3306 error = -ERANGE;
3307 len = PATH_MAX + page - cwd;
3308 if (len <= size) {
3309 error = len;
3310 if (copy_to_user(buf, cwd, len))
3311 error = -EFAULT;
3312 }
3313 } else {
3314 rcu_read_unlock();
3315 }
3316
3317 out:
3318 __putname(page);
3319 return error;
3320 }
3321
3322 /*
3323 * Test whether new_dentry is a subdirectory of old_dentry.
3324 *
3325 * Trivially implemented using the dcache structure
3326 */
3327
3328 /**
3329 * is_subdir - is new dentry a subdirectory of old_dentry
3330 * @new_dentry: new dentry
3331 * @old_dentry: old dentry
3332 *
3333 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
3334 * Returns 0 otherwise.
3335 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3336 */
3337
3338 int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
3339 {
3340 int result;
3341 unsigned seq;
3342
3343 if (new_dentry == old_dentry)
3344 return 1;
3345
3346 do {
3347 /* for restarting inner loop in case of seq retry */
3348 seq = read_seqbegin(&rename_lock);
3349 /*
3350 * Need rcu_readlock to protect against the d_parent trashing
3351 * due to d_move
3352 */
3353 rcu_read_lock();
3354 if (d_ancestor(old_dentry, new_dentry))
3355 result = 1;
3356 else
3357 result = 0;
3358 rcu_read_unlock();
3359 } while (read_seqretry(&rename_lock, seq));
3360
3361 return result;
3362 }
3363
3364 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
3365 {
3366 struct dentry *root = data;
3367 if (dentry != root) {
3368 if (d_unhashed(dentry) || !dentry->d_inode)
3369 return D_WALK_SKIP;
3370
3371 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3372 dentry->d_flags |= DCACHE_GENOCIDE;
3373 dentry->d_lockref.count--;
3374 }
3375 }
3376 return D_WALK_CONTINUE;
3377 }
3378
3379 void d_genocide(struct dentry *parent)
3380 {
3381 d_walk(parent, parent, d_genocide_kill, NULL);
3382 }
3383
3384 void d_tmpfile(struct dentry *dentry, struct inode *inode)
3385 {
3386 inode_dec_link_count(inode);
3387 BUG_ON(dentry->d_name.name != dentry->d_iname ||
3388 !hlist_unhashed(&dentry->d_u.d_alias) ||
3389 !d_unlinked(dentry));
3390 spin_lock(&dentry->d_parent->d_lock);
3391 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3392 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3393 (unsigned long long)inode->i_ino);
3394 spin_unlock(&dentry->d_lock);
3395 spin_unlock(&dentry->d_parent->d_lock);
3396 d_instantiate(dentry, inode);
3397 }
3398 EXPORT_SYMBOL(d_tmpfile);
3399
3400 static __initdata unsigned long dhash_entries;
3401 static int __init set_dhash_entries(char *str)
3402 {
3403 if (!str)
3404 return 0;
3405 dhash_entries = simple_strtoul(str, &str, 0);
3406 return 1;
3407 }
3408 __setup("dhash_entries=", set_dhash_entries);
3409
3410 static void __init dcache_init_early(void)
3411 {
3412 unsigned int loop;
3413
3414 /* If hashes are distributed across NUMA nodes, defer
3415 * hash allocation until vmalloc space is available.
3416 */
3417 if (hashdist)
3418 return;
3419
3420 dentry_hashtable =
3421 alloc_large_system_hash("Dentry cache",
3422 sizeof(struct hlist_bl_head),
3423 dhash_entries,
3424 13,
3425 HASH_EARLY,
3426 &d_hash_shift,
3427 &d_hash_mask,
3428 0,
3429 0);
3430
3431 for (loop = 0; loop < (1U << d_hash_shift); loop++)
3432 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3433 }
3434
3435 static void __init dcache_init(void)
3436 {
3437 unsigned int loop;
3438
3439 /*
3440 * A constructor could be added for stable state like the lists,
3441 * but it is probably not worth it because of the cache nature
3442 * of the dcache.
3443 */
3444 dentry_cache = KMEM_CACHE(dentry,
3445 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
3446
3447 /* Hash may have been set up in dcache_init_early */
3448 if (!hashdist)
3449 return;
3450
3451 dentry_hashtable =
3452 alloc_large_system_hash("Dentry cache",
3453 sizeof(struct hlist_bl_head),
3454 dhash_entries,
3455 13,
3456 0,
3457 &d_hash_shift,
3458 &d_hash_mask,
3459 0,
3460 0);
3461
3462 for (loop = 0; loop < (1U << d_hash_shift); loop++)
3463 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3464 }
3465
3466 /* SLAB cache for __getname() consumers */
3467 struct kmem_cache *names_cachep __read_mostly;
3468 EXPORT_SYMBOL(names_cachep);
3469
3470 EXPORT_SYMBOL(d_genocide);
3471
3472 void __init vfs_caches_init_early(void)
3473 {
3474 dcache_init_early();
3475 inode_init_early();
3476 }
3477
3478 void __init vfs_caches_init(void)
3479 {
3480 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
3481 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3482
3483 dcache_init();
3484 inode_init();
3485 files_init();
3486 files_maxfiles_init();
3487 mnt_init();
3488 bdev_cache_init();
3489 chrdev_init();
3490 }