]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - fs/dcache.c
btrfs: properly track when rescan worker is running
[mirror_ubuntu-zesty-kernel.git] / fs / dcache.c
1 /*
2 * fs/dcache.c
3 *
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
8
9 /*
10 * Notes on the allocation strategy:
11 *
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
15 */
16
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/export.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <asm/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/rculist_bl.h>
38 #include <linux/prefetch.h>
39 #include <linux/ratelimit.h>
40 #include <linux/list_lru.h>
41 #include <linux/kasan.h>
42
43 #include "internal.h"
44 #include "mount.h"
45
46 /*
47 * Usage:
48 * dcache->d_inode->i_lock protects:
49 * - i_dentry, d_u.d_alias, d_inode of aliases
50 * dcache_hash_bucket lock protects:
51 * - the dcache hash table
52 * s_anon bl list spinlock protects:
53 * - the s_anon list (see __d_drop)
54 * dentry->d_sb->s_dentry_lru_lock protects:
55 * - the dcache lru lists and counters
56 * d_lock protects:
57 * - d_flags
58 * - d_name
59 * - d_lru
60 * - d_count
61 * - d_unhashed()
62 * - d_parent and d_subdirs
63 * - childrens' d_child and d_parent
64 * - d_u.d_alias, d_inode
65 *
66 * Ordering:
67 * dentry->d_inode->i_lock
68 * dentry->d_lock
69 * dentry->d_sb->s_dentry_lru_lock
70 * dcache_hash_bucket lock
71 * s_anon lock
72 *
73 * If there is an ancestor relationship:
74 * dentry->d_parent->...->d_parent->d_lock
75 * ...
76 * dentry->d_parent->d_lock
77 * dentry->d_lock
78 *
79 * If no ancestor relationship:
80 * if (dentry1 < dentry2)
81 * dentry1->d_lock
82 * dentry2->d_lock
83 */
84 int sysctl_vfs_cache_pressure __read_mostly = 100;
85 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
86
87 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
88
89 EXPORT_SYMBOL(rename_lock);
90
91 static struct kmem_cache *dentry_cache __read_mostly;
92
93 /*
94 * This is the single most critical data structure when it comes
95 * to the dcache: the hashtable for lookups. Somebody should try
96 * to make this good - I've just made it work.
97 *
98 * This hash-function tries to avoid losing too many bits of hash
99 * information, yet avoid using a prime hash-size or similar.
100 */
101
102 static unsigned int d_hash_mask __read_mostly;
103 static unsigned int d_hash_shift __read_mostly;
104
105 static struct hlist_bl_head *dentry_hashtable __read_mostly;
106
107 static inline struct hlist_bl_head *d_hash(const struct dentry *parent,
108 unsigned int hash)
109 {
110 hash += (unsigned long) parent / L1_CACHE_BYTES;
111 return dentry_hashtable + hash_32(hash, d_hash_shift);
112 }
113
114 /* Statistics gathering. */
115 struct dentry_stat_t dentry_stat = {
116 .age_limit = 45,
117 };
118
119 static DEFINE_PER_CPU(long, nr_dentry);
120 static DEFINE_PER_CPU(long, nr_dentry_unused);
121
122 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
123
124 /*
125 * Here we resort to our own counters instead of using generic per-cpu counters
126 * for consistency with what the vfs inode code does. We are expected to harvest
127 * better code and performance by having our own specialized counters.
128 *
129 * Please note that the loop is done over all possible CPUs, not over all online
130 * CPUs. The reason for this is that we don't want to play games with CPUs going
131 * on and off. If one of them goes off, we will just keep their counters.
132 *
133 * glommer: See cffbc8a for details, and if you ever intend to change this,
134 * please update all vfs counters to match.
135 */
136 static long get_nr_dentry(void)
137 {
138 int i;
139 long sum = 0;
140 for_each_possible_cpu(i)
141 sum += per_cpu(nr_dentry, i);
142 return sum < 0 ? 0 : sum;
143 }
144
145 static long get_nr_dentry_unused(void)
146 {
147 int i;
148 long sum = 0;
149 for_each_possible_cpu(i)
150 sum += per_cpu(nr_dentry_unused, i);
151 return sum < 0 ? 0 : sum;
152 }
153
154 int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer,
155 size_t *lenp, loff_t *ppos)
156 {
157 dentry_stat.nr_dentry = get_nr_dentry();
158 dentry_stat.nr_unused = get_nr_dentry_unused();
159 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
160 }
161 #endif
162
163 /*
164 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
165 * The strings are both count bytes long, and count is non-zero.
166 */
167 #ifdef CONFIG_DCACHE_WORD_ACCESS
168
169 #include <asm/word-at-a-time.h>
170 /*
171 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
172 * aligned allocation for this particular component. We don't
173 * strictly need the load_unaligned_zeropad() safety, but it
174 * doesn't hurt either.
175 *
176 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
177 * need the careful unaligned handling.
178 */
179 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
180 {
181 unsigned long a,b,mask;
182
183 for (;;) {
184 a = *(unsigned long *)cs;
185 b = load_unaligned_zeropad(ct);
186 if (tcount < sizeof(unsigned long))
187 break;
188 if (unlikely(a != b))
189 return 1;
190 cs += sizeof(unsigned long);
191 ct += sizeof(unsigned long);
192 tcount -= sizeof(unsigned long);
193 if (!tcount)
194 return 0;
195 }
196 mask = bytemask_from_count(tcount);
197 return unlikely(!!((a ^ b) & mask));
198 }
199
200 #else
201
202 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
203 {
204 do {
205 if (*cs != *ct)
206 return 1;
207 cs++;
208 ct++;
209 tcount--;
210 } while (tcount);
211 return 0;
212 }
213
214 #endif
215
216 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
217 {
218 const unsigned char *cs;
219 /*
220 * Be careful about RCU walk racing with rename:
221 * use ACCESS_ONCE to fetch the name pointer.
222 *
223 * NOTE! Even if a rename will mean that the length
224 * was not loaded atomically, we don't care. The
225 * RCU walk will check the sequence count eventually,
226 * and catch it. And we won't overrun the buffer,
227 * because we're reading the name pointer atomically,
228 * and a dentry name is guaranteed to be properly
229 * terminated with a NUL byte.
230 *
231 * End result: even if 'len' is wrong, we'll exit
232 * early because the data cannot match (there can
233 * be no NUL in the ct/tcount data)
234 */
235 cs = ACCESS_ONCE(dentry->d_name.name);
236 smp_read_barrier_depends();
237 return dentry_string_cmp(cs, ct, tcount);
238 }
239
240 struct external_name {
241 union {
242 atomic_t count;
243 struct rcu_head head;
244 } u;
245 unsigned char name[];
246 };
247
248 static inline struct external_name *external_name(struct dentry *dentry)
249 {
250 return container_of(dentry->d_name.name, struct external_name, name[0]);
251 }
252
253 static void __d_free(struct rcu_head *head)
254 {
255 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
256
257 kmem_cache_free(dentry_cache, dentry);
258 }
259
260 static void __d_free_external(struct rcu_head *head)
261 {
262 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
263 kfree(external_name(dentry));
264 kmem_cache_free(dentry_cache, dentry);
265 }
266
267 static inline int dname_external(const struct dentry *dentry)
268 {
269 return dentry->d_name.name != dentry->d_iname;
270 }
271
272 static inline void __d_set_inode_and_type(struct dentry *dentry,
273 struct inode *inode,
274 unsigned type_flags)
275 {
276 unsigned flags;
277
278 dentry->d_inode = inode;
279 flags = READ_ONCE(dentry->d_flags);
280 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
281 flags |= type_flags;
282 WRITE_ONCE(dentry->d_flags, flags);
283 }
284
285 static inline void __d_clear_type_and_inode(struct dentry *dentry)
286 {
287 unsigned flags = READ_ONCE(dentry->d_flags);
288
289 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
290 WRITE_ONCE(dentry->d_flags, flags);
291 dentry->d_inode = NULL;
292 }
293
294 static void dentry_free(struct dentry *dentry)
295 {
296 WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
297 if (unlikely(dname_external(dentry))) {
298 struct external_name *p = external_name(dentry);
299 if (likely(atomic_dec_and_test(&p->u.count))) {
300 call_rcu(&dentry->d_u.d_rcu, __d_free_external);
301 return;
302 }
303 }
304 /* if dentry was never visible to RCU, immediate free is OK */
305 if (!(dentry->d_flags & DCACHE_RCUACCESS))
306 __d_free(&dentry->d_u.d_rcu);
307 else
308 call_rcu(&dentry->d_u.d_rcu, __d_free);
309 }
310
311 /**
312 * dentry_rcuwalk_invalidate - invalidate in-progress rcu-walk lookups
313 * @dentry: the target dentry
314 * After this call, in-progress rcu-walk path lookup will fail. This
315 * should be called after unhashing, and after changing d_inode (if
316 * the dentry has not already been unhashed).
317 */
318 static inline void dentry_rcuwalk_invalidate(struct dentry *dentry)
319 {
320 lockdep_assert_held(&dentry->d_lock);
321 /* Go through am invalidation barrier */
322 write_seqcount_invalidate(&dentry->d_seq);
323 }
324
325 /*
326 * Release the dentry's inode, using the filesystem
327 * d_iput() operation if defined. Dentry has no refcount
328 * and is unhashed.
329 */
330 static void dentry_iput(struct dentry * dentry)
331 __releases(dentry->d_lock)
332 __releases(dentry->d_inode->i_lock)
333 {
334 struct inode *inode = dentry->d_inode;
335 if (inode) {
336 __d_clear_type_and_inode(dentry);
337 hlist_del_init(&dentry->d_u.d_alias);
338 spin_unlock(&dentry->d_lock);
339 spin_unlock(&inode->i_lock);
340 if (!inode->i_nlink)
341 fsnotify_inoderemove(inode);
342 if (dentry->d_op && dentry->d_op->d_iput)
343 dentry->d_op->d_iput(dentry, inode);
344 else
345 iput(inode);
346 } else {
347 spin_unlock(&dentry->d_lock);
348 }
349 }
350
351 /*
352 * Release the dentry's inode, using the filesystem
353 * d_iput() operation if defined. dentry remains in-use.
354 */
355 static void dentry_unlink_inode(struct dentry * dentry)
356 __releases(dentry->d_lock)
357 __releases(dentry->d_inode->i_lock)
358 {
359 struct inode *inode = dentry->d_inode;
360
361 raw_write_seqcount_begin(&dentry->d_seq);
362 __d_clear_type_and_inode(dentry);
363 hlist_del_init(&dentry->d_u.d_alias);
364 raw_write_seqcount_end(&dentry->d_seq);
365 spin_unlock(&dentry->d_lock);
366 spin_unlock(&inode->i_lock);
367 if (!inode->i_nlink)
368 fsnotify_inoderemove(inode);
369 if (dentry->d_op && dentry->d_op->d_iput)
370 dentry->d_op->d_iput(dentry, inode);
371 else
372 iput(inode);
373 }
374
375 /*
376 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
377 * is in use - which includes both the "real" per-superblock
378 * LRU list _and_ the DCACHE_SHRINK_LIST use.
379 *
380 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
381 * on the shrink list (ie not on the superblock LRU list).
382 *
383 * The per-cpu "nr_dentry_unused" counters are updated with
384 * the DCACHE_LRU_LIST bit.
385 *
386 * These helper functions make sure we always follow the
387 * rules. d_lock must be held by the caller.
388 */
389 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
390 static void d_lru_add(struct dentry *dentry)
391 {
392 D_FLAG_VERIFY(dentry, 0);
393 dentry->d_flags |= DCACHE_LRU_LIST;
394 this_cpu_inc(nr_dentry_unused);
395 WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
396 }
397
398 static void d_lru_del(struct dentry *dentry)
399 {
400 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
401 dentry->d_flags &= ~DCACHE_LRU_LIST;
402 this_cpu_dec(nr_dentry_unused);
403 WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
404 }
405
406 static void d_shrink_del(struct dentry *dentry)
407 {
408 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
409 list_del_init(&dentry->d_lru);
410 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
411 this_cpu_dec(nr_dentry_unused);
412 }
413
414 static void d_shrink_add(struct dentry *dentry, struct list_head *list)
415 {
416 D_FLAG_VERIFY(dentry, 0);
417 list_add(&dentry->d_lru, list);
418 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
419 this_cpu_inc(nr_dentry_unused);
420 }
421
422 /*
423 * These can only be called under the global LRU lock, ie during the
424 * callback for freeing the LRU list. "isolate" removes it from the
425 * LRU lists entirely, while shrink_move moves it to the indicated
426 * private list.
427 */
428 static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
429 {
430 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
431 dentry->d_flags &= ~DCACHE_LRU_LIST;
432 this_cpu_dec(nr_dentry_unused);
433 list_lru_isolate(lru, &dentry->d_lru);
434 }
435
436 static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
437 struct list_head *list)
438 {
439 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
440 dentry->d_flags |= DCACHE_SHRINK_LIST;
441 list_lru_isolate_move(lru, &dentry->d_lru, list);
442 }
443
444 /*
445 * dentry_lru_(add|del)_list) must be called with d_lock held.
446 */
447 static void dentry_lru_add(struct dentry *dentry)
448 {
449 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
450 d_lru_add(dentry);
451 }
452
453 /**
454 * d_drop - drop a dentry
455 * @dentry: dentry to drop
456 *
457 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
458 * be found through a VFS lookup any more. Note that this is different from
459 * deleting the dentry - d_delete will try to mark the dentry negative if
460 * possible, giving a successful _negative_ lookup, while d_drop will
461 * just make the cache lookup fail.
462 *
463 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
464 * reason (NFS timeouts or autofs deletes).
465 *
466 * __d_drop requires dentry->d_lock.
467 */
468 void __d_drop(struct dentry *dentry)
469 {
470 if (!d_unhashed(dentry)) {
471 struct hlist_bl_head *b;
472 /*
473 * Hashed dentries are normally on the dentry hashtable,
474 * with the exception of those newly allocated by
475 * d_obtain_alias, which are always IS_ROOT:
476 */
477 if (unlikely(IS_ROOT(dentry)))
478 b = &dentry->d_sb->s_anon;
479 else
480 b = d_hash(dentry->d_parent, dentry->d_name.hash);
481
482 hlist_bl_lock(b);
483 __hlist_bl_del(&dentry->d_hash);
484 dentry->d_hash.pprev = NULL;
485 hlist_bl_unlock(b);
486 dentry_rcuwalk_invalidate(dentry);
487 }
488 }
489 EXPORT_SYMBOL(__d_drop);
490
491 void d_drop(struct dentry *dentry)
492 {
493 spin_lock(&dentry->d_lock);
494 __d_drop(dentry);
495 spin_unlock(&dentry->d_lock);
496 }
497 EXPORT_SYMBOL(d_drop);
498
499 static void __dentry_kill(struct dentry *dentry)
500 {
501 struct dentry *parent = NULL;
502 bool can_free = true;
503 if (!IS_ROOT(dentry))
504 parent = dentry->d_parent;
505
506 /*
507 * The dentry is now unrecoverably dead to the world.
508 */
509 lockref_mark_dead(&dentry->d_lockref);
510
511 /*
512 * inform the fs via d_prune that this dentry is about to be
513 * unhashed and destroyed.
514 */
515 if (dentry->d_flags & DCACHE_OP_PRUNE)
516 dentry->d_op->d_prune(dentry);
517
518 if (dentry->d_flags & DCACHE_LRU_LIST) {
519 if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
520 d_lru_del(dentry);
521 }
522 /* if it was on the hash then remove it */
523 __d_drop(dentry);
524 __list_del_entry(&dentry->d_child);
525 /*
526 * Inform d_walk() that we are no longer attached to the
527 * dentry tree
528 */
529 dentry->d_flags |= DCACHE_DENTRY_KILLED;
530 if (parent)
531 spin_unlock(&parent->d_lock);
532 dentry_iput(dentry);
533 /*
534 * dentry_iput drops the locks, at which point nobody (except
535 * transient RCU lookups) can reach this dentry.
536 */
537 BUG_ON(dentry->d_lockref.count > 0);
538 this_cpu_dec(nr_dentry);
539 if (dentry->d_op && dentry->d_op->d_release)
540 dentry->d_op->d_release(dentry);
541
542 spin_lock(&dentry->d_lock);
543 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
544 dentry->d_flags |= DCACHE_MAY_FREE;
545 can_free = false;
546 }
547 spin_unlock(&dentry->d_lock);
548 if (likely(can_free))
549 dentry_free(dentry);
550 }
551
552 /*
553 * Finish off a dentry we've decided to kill.
554 * dentry->d_lock must be held, returns with it unlocked.
555 * If ref is non-zero, then decrement the refcount too.
556 * Returns dentry requiring refcount drop, or NULL if we're done.
557 */
558 static struct dentry *dentry_kill(struct dentry *dentry)
559 __releases(dentry->d_lock)
560 {
561 struct inode *inode = dentry->d_inode;
562 struct dentry *parent = NULL;
563
564 if (inode && unlikely(!spin_trylock(&inode->i_lock)))
565 goto failed;
566
567 if (!IS_ROOT(dentry)) {
568 parent = dentry->d_parent;
569 if (unlikely(!spin_trylock(&parent->d_lock))) {
570 if (inode)
571 spin_unlock(&inode->i_lock);
572 goto failed;
573 }
574 }
575
576 __dentry_kill(dentry);
577 return parent;
578
579 failed:
580 spin_unlock(&dentry->d_lock);
581 return dentry; /* try again with same dentry */
582 }
583
584 static inline struct dentry *lock_parent(struct dentry *dentry)
585 {
586 struct dentry *parent = dentry->d_parent;
587 if (IS_ROOT(dentry))
588 return NULL;
589 if (unlikely(dentry->d_lockref.count < 0))
590 return NULL;
591 if (likely(spin_trylock(&parent->d_lock)))
592 return parent;
593 rcu_read_lock();
594 spin_unlock(&dentry->d_lock);
595 again:
596 parent = ACCESS_ONCE(dentry->d_parent);
597 spin_lock(&parent->d_lock);
598 /*
599 * We can't blindly lock dentry until we are sure
600 * that we won't violate the locking order.
601 * Any changes of dentry->d_parent must have
602 * been done with parent->d_lock held, so
603 * spin_lock() above is enough of a barrier
604 * for checking if it's still our child.
605 */
606 if (unlikely(parent != dentry->d_parent)) {
607 spin_unlock(&parent->d_lock);
608 goto again;
609 }
610 rcu_read_unlock();
611 if (parent != dentry)
612 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
613 else
614 parent = NULL;
615 return parent;
616 }
617
618 /*
619 * Try to do a lockless dput(), and return whether that was successful.
620 *
621 * If unsuccessful, we return false, having already taken the dentry lock.
622 *
623 * The caller needs to hold the RCU read lock, so that the dentry is
624 * guaranteed to stay around even if the refcount goes down to zero!
625 */
626 static inline bool fast_dput(struct dentry *dentry)
627 {
628 int ret;
629 unsigned int d_flags;
630
631 /*
632 * If we have a d_op->d_delete() operation, we sould not
633 * let the dentry count go to zero, so use "put_or_lock".
634 */
635 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE))
636 return lockref_put_or_lock(&dentry->d_lockref);
637
638 /*
639 * .. otherwise, we can try to just decrement the
640 * lockref optimistically.
641 */
642 ret = lockref_put_return(&dentry->d_lockref);
643
644 /*
645 * If the lockref_put_return() failed due to the lock being held
646 * by somebody else, the fast path has failed. We will need to
647 * get the lock, and then check the count again.
648 */
649 if (unlikely(ret < 0)) {
650 spin_lock(&dentry->d_lock);
651 if (dentry->d_lockref.count > 1) {
652 dentry->d_lockref.count--;
653 spin_unlock(&dentry->d_lock);
654 return 1;
655 }
656 return 0;
657 }
658
659 /*
660 * If we weren't the last ref, we're done.
661 */
662 if (ret)
663 return 1;
664
665 /*
666 * Careful, careful. The reference count went down
667 * to zero, but we don't hold the dentry lock, so
668 * somebody else could get it again, and do another
669 * dput(), and we need to not race with that.
670 *
671 * However, there is a very special and common case
672 * where we don't care, because there is nothing to
673 * do: the dentry is still hashed, it does not have
674 * a 'delete' op, and it's referenced and already on
675 * the LRU list.
676 *
677 * NOTE! Since we aren't locked, these values are
678 * not "stable". However, it is sufficient that at
679 * some point after we dropped the reference the
680 * dentry was hashed and the flags had the proper
681 * value. Other dentry users may have re-gotten
682 * a reference to the dentry and change that, but
683 * our work is done - we can leave the dentry
684 * around with a zero refcount.
685 */
686 smp_rmb();
687 d_flags = ACCESS_ONCE(dentry->d_flags);
688 d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST | DCACHE_DISCONNECTED;
689
690 /* Nothing to do? Dropping the reference was all we needed? */
691 if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry))
692 return 1;
693
694 /*
695 * Not the fast normal case? Get the lock. We've already decremented
696 * the refcount, but we'll need to re-check the situation after
697 * getting the lock.
698 */
699 spin_lock(&dentry->d_lock);
700
701 /*
702 * Did somebody else grab a reference to it in the meantime, and
703 * we're no longer the last user after all? Alternatively, somebody
704 * else could have killed it and marked it dead. Either way, we
705 * don't need to do anything else.
706 */
707 if (dentry->d_lockref.count) {
708 spin_unlock(&dentry->d_lock);
709 return 1;
710 }
711
712 /*
713 * Re-get the reference we optimistically dropped. We hold the
714 * lock, and we just tested that it was zero, so we can just
715 * set it to 1.
716 */
717 dentry->d_lockref.count = 1;
718 return 0;
719 }
720
721
722 /*
723 * This is dput
724 *
725 * This is complicated by the fact that we do not want to put
726 * dentries that are no longer on any hash chain on the unused
727 * list: we'd much rather just get rid of them immediately.
728 *
729 * However, that implies that we have to traverse the dentry
730 * tree upwards to the parents which might _also_ now be
731 * scheduled for deletion (it may have been only waiting for
732 * its last child to go away).
733 *
734 * This tail recursion is done by hand as we don't want to depend
735 * on the compiler to always get this right (gcc generally doesn't).
736 * Real recursion would eat up our stack space.
737 */
738
739 /*
740 * dput - release a dentry
741 * @dentry: dentry to release
742 *
743 * Release a dentry. This will drop the usage count and if appropriate
744 * call the dentry unlink method as well as removing it from the queues and
745 * releasing its resources. If the parent dentries were scheduled for release
746 * they too may now get deleted.
747 */
748 void dput(struct dentry *dentry)
749 {
750 if (unlikely(!dentry))
751 return;
752
753 repeat:
754 might_sleep();
755
756 rcu_read_lock();
757 if (likely(fast_dput(dentry))) {
758 rcu_read_unlock();
759 return;
760 }
761
762 /* Slow case: now with the dentry lock held */
763 rcu_read_unlock();
764
765 /* Unreachable? Get rid of it */
766 if (unlikely(d_unhashed(dentry)))
767 goto kill_it;
768
769 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
770 goto kill_it;
771
772 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
773 if (dentry->d_op->d_delete(dentry))
774 goto kill_it;
775 }
776
777 if (!(dentry->d_flags & DCACHE_REFERENCED))
778 dentry->d_flags |= DCACHE_REFERENCED;
779 dentry_lru_add(dentry);
780
781 dentry->d_lockref.count--;
782 spin_unlock(&dentry->d_lock);
783 return;
784
785 kill_it:
786 dentry = dentry_kill(dentry);
787 if (dentry) {
788 cond_resched();
789 goto repeat;
790 }
791 }
792 EXPORT_SYMBOL(dput);
793
794
795 /* This must be called with d_lock held */
796 static inline void __dget_dlock(struct dentry *dentry)
797 {
798 dentry->d_lockref.count++;
799 }
800
801 static inline void __dget(struct dentry *dentry)
802 {
803 lockref_get(&dentry->d_lockref);
804 }
805
806 struct dentry *dget_parent(struct dentry *dentry)
807 {
808 int gotref;
809 struct dentry *ret;
810
811 /*
812 * Do optimistic parent lookup without any
813 * locking.
814 */
815 rcu_read_lock();
816 ret = ACCESS_ONCE(dentry->d_parent);
817 gotref = lockref_get_not_zero(&ret->d_lockref);
818 rcu_read_unlock();
819 if (likely(gotref)) {
820 if (likely(ret == ACCESS_ONCE(dentry->d_parent)))
821 return ret;
822 dput(ret);
823 }
824
825 repeat:
826 /*
827 * Don't need rcu_dereference because we re-check it was correct under
828 * the lock.
829 */
830 rcu_read_lock();
831 ret = dentry->d_parent;
832 spin_lock(&ret->d_lock);
833 if (unlikely(ret != dentry->d_parent)) {
834 spin_unlock(&ret->d_lock);
835 rcu_read_unlock();
836 goto repeat;
837 }
838 rcu_read_unlock();
839 BUG_ON(!ret->d_lockref.count);
840 ret->d_lockref.count++;
841 spin_unlock(&ret->d_lock);
842 return ret;
843 }
844 EXPORT_SYMBOL(dget_parent);
845
846 /**
847 * d_find_alias - grab a hashed alias of inode
848 * @inode: inode in question
849 *
850 * If inode has a hashed alias, or is a directory and has any alias,
851 * acquire the reference to alias and return it. Otherwise return NULL.
852 * Notice that if inode is a directory there can be only one alias and
853 * it can be unhashed only if it has no children, or if it is the root
854 * of a filesystem, or if the directory was renamed and d_revalidate
855 * was the first vfs operation to notice.
856 *
857 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
858 * any other hashed alias over that one.
859 */
860 static struct dentry *__d_find_alias(struct inode *inode)
861 {
862 struct dentry *alias, *discon_alias;
863
864 again:
865 discon_alias = NULL;
866 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
867 spin_lock(&alias->d_lock);
868 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
869 if (IS_ROOT(alias) &&
870 (alias->d_flags & DCACHE_DISCONNECTED)) {
871 discon_alias = alias;
872 } else {
873 __dget_dlock(alias);
874 spin_unlock(&alias->d_lock);
875 return alias;
876 }
877 }
878 spin_unlock(&alias->d_lock);
879 }
880 if (discon_alias) {
881 alias = discon_alias;
882 spin_lock(&alias->d_lock);
883 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
884 __dget_dlock(alias);
885 spin_unlock(&alias->d_lock);
886 return alias;
887 }
888 spin_unlock(&alias->d_lock);
889 goto again;
890 }
891 return NULL;
892 }
893
894 struct dentry *d_find_alias(struct inode *inode)
895 {
896 struct dentry *de = NULL;
897
898 if (!hlist_empty(&inode->i_dentry)) {
899 spin_lock(&inode->i_lock);
900 de = __d_find_alias(inode);
901 spin_unlock(&inode->i_lock);
902 }
903 return de;
904 }
905 EXPORT_SYMBOL(d_find_alias);
906
907 /*
908 * Try to kill dentries associated with this inode.
909 * WARNING: you must own a reference to inode.
910 */
911 void d_prune_aliases(struct inode *inode)
912 {
913 struct dentry *dentry;
914 restart:
915 spin_lock(&inode->i_lock);
916 hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
917 spin_lock(&dentry->d_lock);
918 if (!dentry->d_lockref.count) {
919 struct dentry *parent = lock_parent(dentry);
920 if (likely(!dentry->d_lockref.count)) {
921 __dentry_kill(dentry);
922 dput(parent);
923 goto restart;
924 }
925 if (parent)
926 spin_unlock(&parent->d_lock);
927 }
928 spin_unlock(&dentry->d_lock);
929 }
930 spin_unlock(&inode->i_lock);
931 }
932 EXPORT_SYMBOL(d_prune_aliases);
933
934 static void shrink_dentry_list(struct list_head *list)
935 {
936 struct dentry *dentry, *parent;
937
938 while (!list_empty(list)) {
939 struct inode *inode;
940 dentry = list_entry(list->prev, struct dentry, d_lru);
941 spin_lock(&dentry->d_lock);
942 parent = lock_parent(dentry);
943
944 /*
945 * The dispose list is isolated and dentries are not accounted
946 * to the LRU here, so we can simply remove it from the list
947 * here regardless of whether it is referenced or not.
948 */
949 d_shrink_del(dentry);
950
951 /*
952 * We found an inuse dentry which was not removed from
953 * the LRU because of laziness during lookup. Do not free it.
954 */
955 if (dentry->d_lockref.count > 0) {
956 spin_unlock(&dentry->d_lock);
957 if (parent)
958 spin_unlock(&parent->d_lock);
959 continue;
960 }
961
962
963 if (unlikely(dentry->d_flags & DCACHE_DENTRY_KILLED)) {
964 bool can_free = dentry->d_flags & DCACHE_MAY_FREE;
965 spin_unlock(&dentry->d_lock);
966 if (parent)
967 spin_unlock(&parent->d_lock);
968 if (can_free)
969 dentry_free(dentry);
970 continue;
971 }
972
973 inode = dentry->d_inode;
974 if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
975 d_shrink_add(dentry, list);
976 spin_unlock(&dentry->d_lock);
977 if (parent)
978 spin_unlock(&parent->d_lock);
979 continue;
980 }
981
982 __dentry_kill(dentry);
983
984 /*
985 * We need to prune ancestors too. This is necessary to prevent
986 * quadratic behavior of shrink_dcache_parent(), but is also
987 * expected to be beneficial in reducing dentry cache
988 * fragmentation.
989 */
990 dentry = parent;
991 while (dentry && !lockref_put_or_lock(&dentry->d_lockref)) {
992 parent = lock_parent(dentry);
993 if (dentry->d_lockref.count != 1) {
994 dentry->d_lockref.count--;
995 spin_unlock(&dentry->d_lock);
996 if (parent)
997 spin_unlock(&parent->d_lock);
998 break;
999 }
1000 inode = dentry->d_inode; /* can't be NULL */
1001 if (unlikely(!spin_trylock(&inode->i_lock))) {
1002 spin_unlock(&dentry->d_lock);
1003 if (parent)
1004 spin_unlock(&parent->d_lock);
1005 cpu_relax();
1006 continue;
1007 }
1008 __dentry_kill(dentry);
1009 dentry = parent;
1010 }
1011 }
1012 }
1013
1014 static enum lru_status dentry_lru_isolate(struct list_head *item,
1015 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1016 {
1017 struct list_head *freeable = arg;
1018 struct dentry *dentry = container_of(item, struct dentry, d_lru);
1019
1020
1021 /*
1022 * we are inverting the lru lock/dentry->d_lock here,
1023 * so use a trylock. If we fail to get the lock, just skip
1024 * it
1025 */
1026 if (!spin_trylock(&dentry->d_lock))
1027 return LRU_SKIP;
1028
1029 /*
1030 * Referenced dentries are still in use. If they have active
1031 * counts, just remove them from the LRU. Otherwise give them
1032 * another pass through the LRU.
1033 */
1034 if (dentry->d_lockref.count) {
1035 d_lru_isolate(lru, dentry);
1036 spin_unlock(&dentry->d_lock);
1037 return LRU_REMOVED;
1038 }
1039
1040 if (dentry->d_flags & DCACHE_REFERENCED) {
1041 dentry->d_flags &= ~DCACHE_REFERENCED;
1042 spin_unlock(&dentry->d_lock);
1043
1044 /*
1045 * The list move itself will be made by the common LRU code. At
1046 * this point, we've dropped the dentry->d_lock but keep the
1047 * lru lock. This is safe to do, since every list movement is
1048 * protected by the lru lock even if both locks are held.
1049 *
1050 * This is guaranteed by the fact that all LRU management
1051 * functions are intermediated by the LRU API calls like
1052 * list_lru_add and list_lru_del. List movement in this file
1053 * only ever occur through this functions or through callbacks
1054 * like this one, that are called from the LRU API.
1055 *
1056 * The only exceptions to this are functions like
1057 * shrink_dentry_list, and code that first checks for the
1058 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be
1059 * operating only with stack provided lists after they are
1060 * properly isolated from the main list. It is thus, always a
1061 * local access.
1062 */
1063 return LRU_ROTATE;
1064 }
1065
1066 d_lru_shrink_move(lru, dentry, freeable);
1067 spin_unlock(&dentry->d_lock);
1068
1069 return LRU_REMOVED;
1070 }
1071
1072 /**
1073 * prune_dcache_sb - shrink the dcache
1074 * @sb: superblock
1075 * @sc: shrink control, passed to list_lru_shrink_walk()
1076 *
1077 * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1078 * is done when we need more memory and called from the superblock shrinker
1079 * function.
1080 *
1081 * This function may fail to free any resources if all the dentries are in
1082 * use.
1083 */
1084 long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
1085 {
1086 LIST_HEAD(dispose);
1087 long freed;
1088
1089 freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1090 dentry_lru_isolate, &dispose);
1091 shrink_dentry_list(&dispose);
1092 return freed;
1093 }
1094
1095 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
1096 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1097 {
1098 struct list_head *freeable = arg;
1099 struct dentry *dentry = container_of(item, struct dentry, d_lru);
1100
1101 /*
1102 * we are inverting the lru lock/dentry->d_lock here,
1103 * so use a trylock. If we fail to get the lock, just skip
1104 * it
1105 */
1106 if (!spin_trylock(&dentry->d_lock))
1107 return LRU_SKIP;
1108
1109 d_lru_shrink_move(lru, dentry, freeable);
1110 spin_unlock(&dentry->d_lock);
1111
1112 return LRU_REMOVED;
1113 }
1114
1115
1116 /**
1117 * shrink_dcache_sb - shrink dcache for a superblock
1118 * @sb: superblock
1119 *
1120 * Shrink the dcache for the specified super block. This is used to free
1121 * the dcache before unmounting a file system.
1122 */
1123 void shrink_dcache_sb(struct super_block *sb)
1124 {
1125 long freed;
1126
1127 do {
1128 LIST_HEAD(dispose);
1129
1130 freed = list_lru_walk(&sb->s_dentry_lru,
1131 dentry_lru_isolate_shrink, &dispose, UINT_MAX);
1132
1133 this_cpu_sub(nr_dentry_unused, freed);
1134 shrink_dentry_list(&dispose);
1135 } while (freed > 0);
1136 }
1137 EXPORT_SYMBOL(shrink_dcache_sb);
1138
1139 /**
1140 * enum d_walk_ret - action to talke during tree walk
1141 * @D_WALK_CONTINUE: contrinue walk
1142 * @D_WALK_QUIT: quit walk
1143 * @D_WALK_NORETRY: quit when retry is needed
1144 * @D_WALK_SKIP: skip this dentry and its children
1145 */
1146 enum d_walk_ret {
1147 D_WALK_CONTINUE,
1148 D_WALK_QUIT,
1149 D_WALK_NORETRY,
1150 D_WALK_SKIP,
1151 };
1152
1153 /**
1154 * d_walk - walk the dentry tree
1155 * @parent: start of walk
1156 * @data: data passed to @enter() and @finish()
1157 * @enter: callback when first entering the dentry
1158 * @finish: callback when successfully finished the walk
1159 *
1160 * The @enter() and @finish() callbacks are called with d_lock held.
1161 */
1162 void d_walk(struct dentry *parent, void *data,
1163 enum d_walk_ret (*enter)(void *, struct dentry *),
1164 void (*finish)(void *))
1165 {
1166 struct dentry *this_parent;
1167 struct list_head *next;
1168 unsigned seq = 0;
1169 enum d_walk_ret ret;
1170 bool retry = true;
1171
1172 again:
1173 read_seqbegin_or_lock(&rename_lock, &seq);
1174 this_parent = parent;
1175 spin_lock(&this_parent->d_lock);
1176
1177 ret = enter(data, this_parent);
1178 switch (ret) {
1179 case D_WALK_CONTINUE:
1180 break;
1181 case D_WALK_QUIT:
1182 case D_WALK_SKIP:
1183 goto out_unlock;
1184 case D_WALK_NORETRY:
1185 retry = false;
1186 break;
1187 }
1188 repeat:
1189 next = this_parent->d_subdirs.next;
1190 resume:
1191 while (next != &this_parent->d_subdirs) {
1192 struct list_head *tmp = next;
1193 struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1194 next = tmp->next;
1195
1196 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1197
1198 ret = enter(data, dentry);
1199 switch (ret) {
1200 case D_WALK_CONTINUE:
1201 break;
1202 case D_WALK_QUIT:
1203 spin_unlock(&dentry->d_lock);
1204 goto out_unlock;
1205 case D_WALK_NORETRY:
1206 retry = false;
1207 break;
1208 case D_WALK_SKIP:
1209 spin_unlock(&dentry->d_lock);
1210 continue;
1211 }
1212
1213 if (!list_empty(&dentry->d_subdirs)) {
1214 spin_unlock(&this_parent->d_lock);
1215 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1216 this_parent = dentry;
1217 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1218 goto repeat;
1219 }
1220 spin_unlock(&dentry->d_lock);
1221 }
1222 /*
1223 * All done at this level ... ascend and resume the search.
1224 */
1225 rcu_read_lock();
1226 ascend:
1227 if (this_parent != parent) {
1228 struct dentry *child = this_parent;
1229 this_parent = child->d_parent;
1230
1231 spin_unlock(&child->d_lock);
1232 spin_lock(&this_parent->d_lock);
1233
1234 /* might go back up the wrong parent if we have had a rename. */
1235 if (need_seqretry(&rename_lock, seq))
1236 goto rename_retry;
1237 /* go into the first sibling still alive */
1238 do {
1239 next = child->d_child.next;
1240 if (next == &this_parent->d_subdirs)
1241 goto ascend;
1242 child = list_entry(next, struct dentry, d_child);
1243 } while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED));
1244 rcu_read_unlock();
1245 goto resume;
1246 }
1247 if (need_seqretry(&rename_lock, seq))
1248 goto rename_retry;
1249 rcu_read_unlock();
1250 if (finish)
1251 finish(data);
1252
1253 out_unlock:
1254 spin_unlock(&this_parent->d_lock);
1255 done_seqretry(&rename_lock, seq);
1256 return;
1257
1258 rename_retry:
1259 spin_unlock(&this_parent->d_lock);
1260 rcu_read_unlock();
1261 BUG_ON(seq & 1);
1262 if (!retry)
1263 return;
1264 seq = 1;
1265 goto again;
1266 }
1267 EXPORT_SYMBOL(d_walk);
1268
1269 /*
1270 * Search for at least 1 mount point in the dentry's subdirs.
1271 * We descend to the next level whenever the d_subdirs
1272 * list is non-empty and continue searching.
1273 */
1274
1275 static enum d_walk_ret check_mount(void *data, struct dentry *dentry)
1276 {
1277 int *ret = data;
1278 if (d_mountpoint(dentry)) {
1279 *ret = 1;
1280 return D_WALK_QUIT;
1281 }
1282 return D_WALK_CONTINUE;
1283 }
1284
1285 /**
1286 * have_submounts - check for mounts over a dentry
1287 * @parent: dentry to check.
1288 *
1289 * Return true if the parent or its subdirectories contain
1290 * a mount point
1291 */
1292 int have_submounts(struct dentry *parent)
1293 {
1294 int ret = 0;
1295
1296 d_walk(parent, &ret, check_mount, NULL);
1297
1298 return ret;
1299 }
1300 EXPORT_SYMBOL(have_submounts);
1301
1302 /*
1303 * Called by mount code to set a mountpoint and check if the mountpoint is
1304 * reachable (e.g. NFS can unhash a directory dentry and then the complete
1305 * subtree can become unreachable).
1306 *
1307 * Only one of d_invalidate() and d_set_mounted() must succeed. For
1308 * this reason take rename_lock and d_lock on dentry and ancestors.
1309 */
1310 int d_set_mounted(struct dentry *dentry)
1311 {
1312 struct dentry *p;
1313 int ret = -ENOENT;
1314 write_seqlock(&rename_lock);
1315 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1316 /* Need exclusion wrt. d_invalidate() */
1317 spin_lock(&p->d_lock);
1318 if (unlikely(d_unhashed(p))) {
1319 spin_unlock(&p->d_lock);
1320 goto out;
1321 }
1322 spin_unlock(&p->d_lock);
1323 }
1324 spin_lock(&dentry->d_lock);
1325 if (!d_unlinked(dentry)) {
1326 dentry->d_flags |= DCACHE_MOUNTED;
1327 ret = 0;
1328 }
1329 spin_unlock(&dentry->d_lock);
1330 out:
1331 write_sequnlock(&rename_lock);
1332 return ret;
1333 }
1334
1335 /*
1336 * Search the dentry child list of the specified parent,
1337 * and move any unused dentries to the end of the unused
1338 * list for prune_dcache(). We descend to the next level
1339 * whenever the d_subdirs list is non-empty and continue
1340 * searching.
1341 *
1342 * It returns zero iff there are no unused children,
1343 * otherwise it returns the number of children moved to
1344 * the end of the unused list. This may not be the total
1345 * number of unused children, because select_parent can
1346 * drop the lock and return early due to latency
1347 * constraints.
1348 */
1349
1350 struct select_data {
1351 struct dentry *start;
1352 struct list_head dispose;
1353 int found;
1354 };
1355
1356 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1357 {
1358 struct select_data *data = _data;
1359 enum d_walk_ret ret = D_WALK_CONTINUE;
1360
1361 if (data->start == dentry)
1362 goto out;
1363
1364 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1365 data->found++;
1366 } else {
1367 if (dentry->d_flags & DCACHE_LRU_LIST)
1368 d_lru_del(dentry);
1369 if (!dentry->d_lockref.count) {
1370 d_shrink_add(dentry, &data->dispose);
1371 data->found++;
1372 }
1373 }
1374 /*
1375 * We can return to the caller if we have found some (this
1376 * ensures forward progress). We'll be coming back to find
1377 * the rest.
1378 */
1379 if (!list_empty(&data->dispose))
1380 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1381 out:
1382 return ret;
1383 }
1384
1385 /**
1386 * shrink_dcache_parent - prune dcache
1387 * @parent: parent of entries to prune
1388 *
1389 * Prune the dcache to remove unused children of the parent dentry.
1390 */
1391 void shrink_dcache_parent(struct dentry *parent)
1392 {
1393 for (;;) {
1394 struct select_data data;
1395
1396 INIT_LIST_HEAD(&data.dispose);
1397 data.start = parent;
1398 data.found = 0;
1399
1400 d_walk(parent, &data, select_collect, NULL);
1401 if (!data.found)
1402 break;
1403
1404 shrink_dentry_list(&data.dispose);
1405 cond_resched();
1406 }
1407 }
1408 EXPORT_SYMBOL(shrink_dcache_parent);
1409
1410 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
1411 {
1412 /* it has busy descendents; complain about those instead */
1413 if (!list_empty(&dentry->d_subdirs))
1414 return D_WALK_CONTINUE;
1415
1416 /* root with refcount 1 is fine */
1417 if (dentry == _data && dentry->d_lockref.count == 1)
1418 return D_WALK_CONTINUE;
1419
1420 printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1421 " still in use (%d) [unmount of %s %s]\n",
1422 dentry,
1423 dentry->d_inode ?
1424 dentry->d_inode->i_ino : 0UL,
1425 dentry,
1426 dentry->d_lockref.count,
1427 dentry->d_sb->s_type->name,
1428 dentry->d_sb->s_id);
1429 WARN_ON(1);
1430 return D_WALK_CONTINUE;
1431 }
1432
1433 static void do_one_tree(struct dentry *dentry)
1434 {
1435 shrink_dcache_parent(dentry);
1436 d_walk(dentry, dentry, umount_check, NULL);
1437 d_drop(dentry);
1438 dput(dentry);
1439 }
1440
1441 /*
1442 * destroy the dentries attached to a superblock on unmounting
1443 */
1444 void shrink_dcache_for_umount(struct super_block *sb)
1445 {
1446 struct dentry *dentry;
1447
1448 WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
1449
1450 dentry = sb->s_root;
1451 sb->s_root = NULL;
1452 do_one_tree(dentry);
1453
1454 while (!hlist_bl_empty(&sb->s_anon)) {
1455 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash));
1456 do_one_tree(dentry);
1457 }
1458 }
1459
1460 struct detach_data {
1461 struct select_data select;
1462 struct dentry *mountpoint;
1463 };
1464 static enum d_walk_ret detach_and_collect(void *_data, struct dentry *dentry)
1465 {
1466 struct detach_data *data = _data;
1467
1468 if (d_mountpoint(dentry)) {
1469 __dget_dlock(dentry);
1470 data->mountpoint = dentry;
1471 return D_WALK_QUIT;
1472 }
1473
1474 return select_collect(&data->select, dentry);
1475 }
1476
1477 static void check_and_drop(void *_data)
1478 {
1479 struct detach_data *data = _data;
1480
1481 if (!data->mountpoint && !data->select.found)
1482 __d_drop(data->select.start);
1483 }
1484
1485 /**
1486 * d_invalidate - detach submounts, prune dcache, and drop
1487 * @dentry: dentry to invalidate (aka detach, prune and drop)
1488 *
1489 * no dcache lock.
1490 *
1491 * The final d_drop is done as an atomic operation relative to
1492 * rename_lock ensuring there are no races with d_set_mounted. This
1493 * ensures there are no unhashed dentries on the path to a mountpoint.
1494 */
1495 void d_invalidate(struct dentry *dentry)
1496 {
1497 /*
1498 * If it's already been dropped, return OK.
1499 */
1500 spin_lock(&dentry->d_lock);
1501 if (d_unhashed(dentry)) {
1502 spin_unlock(&dentry->d_lock);
1503 return;
1504 }
1505 spin_unlock(&dentry->d_lock);
1506
1507 /* Negative dentries can be dropped without further checks */
1508 if (!dentry->d_inode) {
1509 d_drop(dentry);
1510 return;
1511 }
1512
1513 for (;;) {
1514 struct detach_data data;
1515
1516 data.mountpoint = NULL;
1517 INIT_LIST_HEAD(&data.select.dispose);
1518 data.select.start = dentry;
1519 data.select.found = 0;
1520
1521 d_walk(dentry, &data, detach_and_collect, check_and_drop);
1522
1523 if (data.select.found)
1524 shrink_dentry_list(&data.select.dispose);
1525
1526 if (data.mountpoint) {
1527 detach_mounts(data.mountpoint);
1528 dput(data.mountpoint);
1529 }
1530
1531 if (!data.mountpoint && !data.select.found)
1532 break;
1533
1534 cond_resched();
1535 }
1536 }
1537 EXPORT_SYMBOL(d_invalidate);
1538
1539 /**
1540 * __d_alloc - allocate a dcache entry
1541 * @sb: filesystem it will belong to
1542 * @name: qstr of the name
1543 *
1544 * Allocates a dentry. It returns %NULL if there is insufficient memory
1545 * available. On a success the dentry is returned. The name passed in is
1546 * copied and the copy passed in may be reused after this call.
1547 */
1548
1549 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1550 {
1551 struct dentry *dentry;
1552 char *dname;
1553
1554 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1555 if (!dentry)
1556 return NULL;
1557
1558 /*
1559 * We guarantee that the inline name is always NUL-terminated.
1560 * This way the memcpy() done by the name switching in rename
1561 * will still always have a NUL at the end, even if we might
1562 * be overwriting an internal NUL character
1563 */
1564 dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1565 if (name->len > DNAME_INLINE_LEN-1) {
1566 size_t size = offsetof(struct external_name, name[1]);
1567 struct external_name *p = kmalloc(size + name->len, GFP_KERNEL);
1568 if (!p) {
1569 kmem_cache_free(dentry_cache, dentry);
1570 return NULL;
1571 }
1572 atomic_set(&p->u.count, 1);
1573 dname = p->name;
1574 if (IS_ENABLED(CONFIG_DCACHE_WORD_ACCESS))
1575 kasan_unpoison_shadow(dname,
1576 round_up(name->len + 1, sizeof(unsigned long)));
1577 } else {
1578 dname = dentry->d_iname;
1579 }
1580
1581 dentry->d_name.len = name->len;
1582 dentry->d_name.hash = name->hash;
1583 memcpy(dname, name->name, name->len);
1584 dname[name->len] = 0;
1585
1586 /* Make sure we always see the terminating NUL character */
1587 smp_wmb();
1588 dentry->d_name.name = dname;
1589
1590 dentry->d_lockref.count = 1;
1591 dentry->d_flags = 0;
1592 spin_lock_init(&dentry->d_lock);
1593 seqcount_init(&dentry->d_seq);
1594 dentry->d_inode = NULL;
1595 dentry->d_parent = dentry;
1596 dentry->d_sb = sb;
1597 dentry->d_op = NULL;
1598 dentry->d_fsdata = NULL;
1599 INIT_HLIST_BL_NODE(&dentry->d_hash);
1600 INIT_LIST_HEAD(&dentry->d_lru);
1601 INIT_LIST_HEAD(&dentry->d_subdirs);
1602 INIT_HLIST_NODE(&dentry->d_u.d_alias);
1603 INIT_LIST_HEAD(&dentry->d_child);
1604 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1605
1606 this_cpu_inc(nr_dentry);
1607
1608 return dentry;
1609 }
1610
1611 /**
1612 * d_alloc - allocate a dcache entry
1613 * @parent: parent of entry to allocate
1614 * @name: qstr of the name
1615 *
1616 * Allocates a dentry. It returns %NULL if there is insufficient memory
1617 * available. On a success the dentry is returned. The name passed in is
1618 * copied and the copy passed in may be reused after this call.
1619 */
1620 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1621 {
1622 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1623 if (!dentry)
1624 return NULL;
1625 dentry->d_flags |= DCACHE_RCUACCESS;
1626 spin_lock(&parent->d_lock);
1627 /*
1628 * don't need child lock because it is not subject
1629 * to concurrency here
1630 */
1631 __dget_dlock(parent);
1632 dentry->d_parent = parent;
1633 list_add(&dentry->d_child, &parent->d_subdirs);
1634 spin_unlock(&parent->d_lock);
1635
1636 return dentry;
1637 }
1638 EXPORT_SYMBOL(d_alloc);
1639
1640 /**
1641 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1642 * @sb: the superblock
1643 * @name: qstr of the name
1644 *
1645 * For a filesystem that just pins its dentries in memory and never
1646 * performs lookups at all, return an unhashed IS_ROOT dentry.
1647 */
1648 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1649 {
1650 return __d_alloc(sb, name);
1651 }
1652 EXPORT_SYMBOL(d_alloc_pseudo);
1653
1654 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1655 {
1656 struct qstr q;
1657
1658 q.name = name;
1659 q.len = strlen(name);
1660 q.hash = full_name_hash(q.name, q.len);
1661 return d_alloc(parent, &q);
1662 }
1663 EXPORT_SYMBOL(d_alloc_name);
1664
1665 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1666 {
1667 WARN_ON_ONCE(dentry->d_op);
1668 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
1669 DCACHE_OP_COMPARE |
1670 DCACHE_OP_REVALIDATE |
1671 DCACHE_OP_WEAK_REVALIDATE |
1672 DCACHE_OP_DELETE |
1673 DCACHE_OP_SELECT_INODE |
1674 DCACHE_OP_REAL));
1675 dentry->d_op = op;
1676 if (!op)
1677 return;
1678 if (op->d_hash)
1679 dentry->d_flags |= DCACHE_OP_HASH;
1680 if (op->d_compare)
1681 dentry->d_flags |= DCACHE_OP_COMPARE;
1682 if (op->d_revalidate)
1683 dentry->d_flags |= DCACHE_OP_REVALIDATE;
1684 if (op->d_weak_revalidate)
1685 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1686 if (op->d_delete)
1687 dentry->d_flags |= DCACHE_OP_DELETE;
1688 if (op->d_prune)
1689 dentry->d_flags |= DCACHE_OP_PRUNE;
1690 if (op->d_select_inode)
1691 dentry->d_flags |= DCACHE_OP_SELECT_INODE;
1692 if (op->d_real)
1693 dentry->d_flags |= DCACHE_OP_REAL;
1694
1695 }
1696 EXPORT_SYMBOL(d_set_d_op);
1697
1698
1699 /*
1700 * d_set_fallthru - Mark a dentry as falling through to a lower layer
1701 * @dentry - The dentry to mark
1702 *
1703 * Mark a dentry as falling through to the lower layer (as set with
1704 * d_pin_lower()). This flag may be recorded on the medium.
1705 */
1706 void d_set_fallthru(struct dentry *dentry)
1707 {
1708 spin_lock(&dentry->d_lock);
1709 dentry->d_flags |= DCACHE_FALLTHRU;
1710 spin_unlock(&dentry->d_lock);
1711 }
1712 EXPORT_SYMBOL(d_set_fallthru);
1713
1714 static unsigned d_flags_for_inode(struct inode *inode)
1715 {
1716 unsigned add_flags = DCACHE_REGULAR_TYPE;
1717
1718 if (!inode)
1719 return DCACHE_MISS_TYPE;
1720
1721 if (S_ISDIR(inode->i_mode)) {
1722 add_flags = DCACHE_DIRECTORY_TYPE;
1723 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1724 if (unlikely(!inode->i_op->lookup))
1725 add_flags = DCACHE_AUTODIR_TYPE;
1726 else
1727 inode->i_opflags |= IOP_LOOKUP;
1728 }
1729 goto type_determined;
1730 }
1731
1732 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1733 if (unlikely(inode->i_op->follow_link)) {
1734 add_flags = DCACHE_SYMLINK_TYPE;
1735 goto type_determined;
1736 }
1737 inode->i_opflags |= IOP_NOFOLLOW;
1738 }
1739
1740 if (unlikely(!S_ISREG(inode->i_mode)))
1741 add_flags = DCACHE_SPECIAL_TYPE;
1742
1743 type_determined:
1744 if (unlikely(IS_AUTOMOUNT(inode)))
1745 add_flags |= DCACHE_NEED_AUTOMOUNT;
1746 return add_flags;
1747 }
1748
1749 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1750 {
1751 unsigned add_flags = d_flags_for_inode(inode);
1752
1753 spin_lock(&dentry->d_lock);
1754 if (inode)
1755 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
1756 raw_write_seqcount_begin(&dentry->d_seq);
1757 __d_set_inode_and_type(dentry, inode, add_flags);
1758 raw_write_seqcount_end(&dentry->d_seq);
1759 spin_unlock(&dentry->d_lock);
1760 fsnotify_d_instantiate(dentry, inode);
1761 }
1762
1763 /**
1764 * d_instantiate - fill in inode information for a dentry
1765 * @entry: dentry to complete
1766 * @inode: inode to attach to this dentry
1767 *
1768 * Fill in inode information in the entry.
1769 *
1770 * This turns negative dentries into productive full members
1771 * of society.
1772 *
1773 * NOTE! This assumes that the inode count has been incremented
1774 * (or otherwise set) by the caller to indicate that it is now
1775 * in use by the dcache.
1776 */
1777
1778 void d_instantiate(struct dentry *entry, struct inode * inode)
1779 {
1780 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1781 if (inode)
1782 spin_lock(&inode->i_lock);
1783 __d_instantiate(entry, inode);
1784 if (inode)
1785 spin_unlock(&inode->i_lock);
1786 security_d_instantiate(entry, inode);
1787 }
1788 EXPORT_SYMBOL(d_instantiate);
1789
1790 /**
1791 * d_instantiate_unique - instantiate a non-aliased dentry
1792 * @entry: dentry to instantiate
1793 * @inode: inode to attach to this dentry
1794 *
1795 * Fill in inode information in the entry. On success, it returns NULL.
1796 * If an unhashed alias of "entry" already exists, then we return the
1797 * aliased dentry instead and drop one reference to inode.
1798 *
1799 * Note that in order to avoid conflicts with rename() etc, the caller
1800 * had better be holding the parent directory semaphore.
1801 *
1802 * This also assumes that the inode count has been incremented
1803 * (or otherwise set) by the caller to indicate that it is now
1804 * in use by the dcache.
1805 */
1806 static struct dentry *__d_instantiate_unique(struct dentry *entry,
1807 struct inode *inode)
1808 {
1809 struct dentry *alias;
1810 int len = entry->d_name.len;
1811 const char *name = entry->d_name.name;
1812 unsigned int hash = entry->d_name.hash;
1813
1814 if (!inode) {
1815 __d_instantiate(entry, NULL);
1816 return NULL;
1817 }
1818
1819 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
1820 /*
1821 * Don't need alias->d_lock here, because aliases with
1822 * d_parent == entry->d_parent are not subject to name or
1823 * parent changes, because the parent inode i_mutex is held.
1824 */
1825 if (alias->d_name.hash != hash)
1826 continue;
1827 if (alias->d_parent != entry->d_parent)
1828 continue;
1829 if (alias->d_name.len != len)
1830 continue;
1831 if (dentry_cmp(alias, name, len))
1832 continue;
1833 __dget(alias);
1834 return alias;
1835 }
1836
1837 __d_instantiate(entry, inode);
1838 return NULL;
1839 }
1840
1841 struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1842 {
1843 struct dentry *result;
1844
1845 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1846
1847 if (inode)
1848 spin_lock(&inode->i_lock);
1849 result = __d_instantiate_unique(entry, inode);
1850 if (inode)
1851 spin_unlock(&inode->i_lock);
1852
1853 if (!result) {
1854 security_d_instantiate(entry, inode);
1855 return NULL;
1856 }
1857
1858 BUG_ON(!d_unhashed(result));
1859 iput(inode);
1860 return result;
1861 }
1862
1863 EXPORT_SYMBOL(d_instantiate_unique);
1864
1865 /**
1866 * d_instantiate_no_diralias - instantiate a non-aliased dentry
1867 * @entry: dentry to complete
1868 * @inode: inode to attach to this dentry
1869 *
1870 * Fill in inode information in the entry. If a directory alias is found, then
1871 * return an error (and drop inode). Together with d_materialise_unique() this
1872 * guarantees that a directory inode may never have more than one alias.
1873 */
1874 int d_instantiate_no_diralias(struct dentry *entry, struct inode *inode)
1875 {
1876 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1877
1878 spin_lock(&inode->i_lock);
1879 if (S_ISDIR(inode->i_mode) && !hlist_empty(&inode->i_dentry)) {
1880 spin_unlock(&inode->i_lock);
1881 iput(inode);
1882 return -EBUSY;
1883 }
1884 __d_instantiate(entry, inode);
1885 spin_unlock(&inode->i_lock);
1886 security_d_instantiate(entry, inode);
1887
1888 return 0;
1889 }
1890 EXPORT_SYMBOL(d_instantiate_no_diralias);
1891
1892 struct dentry *d_make_root(struct inode *root_inode)
1893 {
1894 struct dentry *res = NULL;
1895
1896 if (root_inode) {
1897 static const struct qstr name = QSTR_INIT("/", 1);
1898
1899 res = __d_alloc(root_inode->i_sb, &name);
1900 if (res)
1901 d_instantiate(res, root_inode);
1902 else
1903 iput(root_inode);
1904 }
1905 return res;
1906 }
1907 EXPORT_SYMBOL(d_make_root);
1908
1909 static struct dentry * __d_find_any_alias(struct inode *inode)
1910 {
1911 struct dentry *alias;
1912
1913 if (hlist_empty(&inode->i_dentry))
1914 return NULL;
1915 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
1916 __dget(alias);
1917 return alias;
1918 }
1919
1920 /**
1921 * d_find_any_alias - find any alias for a given inode
1922 * @inode: inode to find an alias for
1923 *
1924 * If any aliases exist for the given inode, take and return a
1925 * reference for one of them. If no aliases exist, return %NULL.
1926 */
1927 struct dentry *d_find_any_alias(struct inode *inode)
1928 {
1929 struct dentry *de;
1930
1931 spin_lock(&inode->i_lock);
1932 de = __d_find_any_alias(inode);
1933 spin_unlock(&inode->i_lock);
1934 return de;
1935 }
1936 EXPORT_SYMBOL(d_find_any_alias);
1937
1938 static struct dentry *__d_obtain_alias(struct inode *inode, int disconnected)
1939 {
1940 static const struct qstr anonstring = QSTR_INIT("/", 1);
1941 struct dentry *tmp;
1942 struct dentry *res;
1943 unsigned add_flags;
1944
1945 if (!inode)
1946 return ERR_PTR(-ESTALE);
1947 if (IS_ERR(inode))
1948 return ERR_CAST(inode);
1949
1950 res = d_find_any_alias(inode);
1951 if (res)
1952 goto out_iput;
1953
1954 tmp = __d_alloc(inode->i_sb, &anonstring);
1955 if (!tmp) {
1956 res = ERR_PTR(-ENOMEM);
1957 goto out_iput;
1958 }
1959
1960 spin_lock(&inode->i_lock);
1961 res = __d_find_any_alias(inode);
1962 if (res) {
1963 spin_unlock(&inode->i_lock);
1964 dput(tmp);
1965 goto out_iput;
1966 }
1967
1968 /* attach a disconnected dentry */
1969 add_flags = d_flags_for_inode(inode);
1970
1971 if (disconnected)
1972 add_flags |= DCACHE_DISCONNECTED;
1973
1974 spin_lock(&tmp->d_lock);
1975 __d_set_inode_and_type(tmp, inode, add_flags);
1976 hlist_add_head(&tmp->d_u.d_alias, &inode->i_dentry);
1977 hlist_bl_lock(&tmp->d_sb->s_anon);
1978 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1979 hlist_bl_unlock(&tmp->d_sb->s_anon);
1980 spin_unlock(&tmp->d_lock);
1981 spin_unlock(&inode->i_lock);
1982 security_d_instantiate(tmp, inode);
1983
1984 return tmp;
1985
1986 out_iput:
1987 if (res && !IS_ERR(res))
1988 security_d_instantiate(res, inode);
1989 iput(inode);
1990 return res;
1991 }
1992
1993 /**
1994 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
1995 * @inode: inode to allocate the dentry for
1996 *
1997 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1998 * similar open by handle operations. The returned dentry may be anonymous,
1999 * or may have a full name (if the inode was already in the cache).
2000 *
2001 * When called on a directory inode, we must ensure that the inode only ever
2002 * has one dentry. If a dentry is found, that is returned instead of
2003 * allocating a new one.
2004 *
2005 * On successful return, the reference to the inode has been transferred
2006 * to the dentry. In case of an error the reference on the inode is released.
2007 * To make it easier to use in export operations a %NULL or IS_ERR inode may
2008 * be passed in and the error will be propagated to the return value,
2009 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
2010 */
2011 struct dentry *d_obtain_alias(struct inode *inode)
2012 {
2013 return __d_obtain_alias(inode, 1);
2014 }
2015 EXPORT_SYMBOL(d_obtain_alias);
2016
2017 /**
2018 * d_obtain_root - find or allocate a dentry for a given inode
2019 * @inode: inode to allocate the dentry for
2020 *
2021 * Obtain an IS_ROOT dentry for the root of a filesystem.
2022 *
2023 * We must ensure that directory inodes only ever have one dentry. If a
2024 * dentry is found, that is returned instead of allocating a new one.
2025 *
2026 * On successful return, the reference to the inode has been transferred
2027 * to the dentry. In case of an error the reference on the inode is
2028 * released. A %NULL or IS_ERR inode may be passed in and will be the
2029 * error will be propagate to the return value, with a %NULL @inode
2030 * replaced by ERR_PTR(-ESTALE).
2031 */
2032 struct dentry *d_obtain_root(struct inode *inode)
2033 {
2034 return __d_obtain_alias(inode, 0);
2035 }
2036 EXPORT_SYMBOL(d_obtain_root);
2037
2038 /**
2039 * d_add_ci - lookup or allocate new dentry with case-exact name
2040 * @inode: the inode case-insensitive lookup has found
2041 * @dentry: the negative dentry that was passed to the parent's lookup func
2042 * @name: the case-exact name to be associated with the returned dentry
2043 *
2044 * This is to avoid filling the dcache with case-insensitive names to the
2045 * same inode, only the actual correct case is stored in the dcache for
2046 * case-insensitive filesystems.
2047 *
2048 * For a case-insensitive lookup match and if the the case-exact dentry
2049 * already exists in in the dcache, use it and return it.
2050 *
2051 * If no entry exists with the exact case name, allocate new dentry with
2052 * the exact case, and return the spliced entry.
2053 */
2054 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
2055 struct qstr *name)
2056 {
2057 struct dentry *found;
2058 struct dentry *new;
2059
2060 /*
2061 * First check if a dentry matching the name already exists,
2062 * if not go ahead and create it now.
2063 */
2064 found = d_hash_and_lookup(dentry->d_parent, name);
2065 if (!found) {
2066 new = d_alloc(dentry->d_parent, name);
2067 if (!new) {
2068 found = ERR_PTR(-ENOMEM);
2069 } else {
2070 found = d_splice_alias(inode, new);
2071 if (found) {
2072 dput(new);
2073 return found;
2074 }
2075 return new;
2076 }
2077 }
2078 iput(inode);
2079 return found;
2080 }
2081 EXPORT_SYMBOL(d_add_ci);
2082
2083 /*
2084 * Do the slow-case of the dentry name compare.
2085 *
2086 * Unlike the dentry_cmp() function, we need to atomically
2087 * load the name and length information, so that the
2088 * filesystem can rely on them, and can use the 'name' and
2089 * 'len' information without worrying about walking off the
2090 * end of memory etc.
2091 *
2092 * Thus the read_seqcount_retry() and the "duplicate" info
2093 * in arguments (the low-level filesystem should not look
2094 * at the dentry inode or name contents directly, since
2095 * rename can change them while we're in RCU mode).
2096 */
2097 enum slow_d_compare {
2098 D_COMP_OK,
2099 D_COMP_NOMATCH,
2100 D_COMP_SEQRETRY,
2101 };
2102
2103 static noinline enum slow_d_compare slow_dentry_cmp(
2104 const struct dentry *parent,
2105 struct dentry *dentry,
2106 unsigned int seq,
2107 const struct qstr *name)
2108 {
2109 int tlen = dentry->d_name.len;
2110 const char *tname = dentry->d_name.name;
2111
2112 if (read_seqcount_retry(&dentry->d_seq, seq)) {
2113 cpu_relax();
2114 return D_COMP_SEQRETRY;
2115 }
2116 if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
2117 return D_COMP_NOMATCH;
2118 return D_COMP_OK;
2119 }
2120
2121 /**
2122 * __d_lookup_rcu - search for a dentry (racy, store-free)
2123 * @parent: parent dentry
2124 * @name: qstr of name we wish to find
2125 * @seqp: returns d_seq value at the point where the dentry was found
2126 * Returns: dentry, or NULL
2127 *
2128 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2129 * resolution (store-free path walking) design described in
2130 * Documentation/filesystems/path-lookup.txt.
2131 *
2132 * This is not to be used outside core vfs.
2133 *
2134 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2135 * held, and rcu_read_lock held. The returned dentry must not be stored into
2136 * without taking d_lock and checking d_seq sequence count against @seq
2137 * returned here.
2138 *
2139 * A refcount may be taken on the found dentry with the d_rcu_to_refcount
2140 * function.
2141 *
2142 * Alternatively, __d_lookup_rcu may be called again to look up the child of
2143 * the returned dentry, so long as its parent's seqlock is checked after the
2144 * child is looked up. Thus, an interlocking stepping of sequence lock checks
2145 * is formed, giving integrity down the path walk.
2146 *
2147 * NOTE! The caller *has* to check the resulting dentry against the sequence
2148 * number we've returned before using any of the resulting dentry state!
2149 */
2150 struct dentry *__d_lookup_rcu(const struct dentry *parent,
2151 const struct qstr *name,
2152 unsigned *seqp)
2153 {
2154 u64 hashlen = name->hash_len;
2155 const unsigned char *str = name->name;
2156 struct hlist_bl_head *b = d_hash(parent, hashlen_hash(hashlen));
2157 struct hlist_bl_node *node;
2158 struct dentry *dentry;
2159
2160 /*
2161 * Note: There is significant duplication with __d_lookup_rcu which is
2162 * required to prevent single threaded performance regressions
2163 * especially on architectures where smp_rmb (in seqcounts) are costly.
2164 * Keep the two functions in sync.
2165 */
2166
2167 /*
2168 * The hash list is protected using RCU.
2169 *
2170 * Carefully use d_seq when comparing a candidate dentry, to avoid
2171 * races with d_move().
2172 *
2173 * It is possible that concurrent renames can mess up our list
2174 * walk here and result in missing our dentry, resulting in the
2175 * false-negative result. d_lookup() protects against concurrent
2176 * renames using rename_lock seqlock.
2177 *
2178 * See Documentation/filesystems/path-lookup.txt for more details.
2179 */
2180 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2181 unsigned seq;
2182
2183 seqretry:
2184 /*
2185 * The dentry sequence count protects us from concurrent
2186 * renames, and thus protects parent and name fields.
2187 *
2188 * The caller must perform a seqcount check in order
2189 * to do anything useful with the returned dentry.
2190 *
2191 * NOTE! We do a "raw" seqcount_begin here. That means that
2192 * we don't wait for the sequence count to stabilize if it
2193 * is in the middle of a sequence change. If we do the slow
2194 * dentry compare, we will do seqretries until it is stable,
2195 * and if we end up with a successful lookup, we actually
2196 * want to exit RCU lookup anyway.
2197 */
2198 seq = raw_seqcount_begin(&dentry->d_seq);
2199 if (dentry->d_parent != parent)
2200 continue;
2201 if (d_unhashed(dentry))
2202 continue;
2203
2204 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
2205 if (dentry->d_name.hash != hashlen_hash(hashlen))
2206 continue;
2207 *seqp = seq;
2208 switch (slow_dentry_cmp(parent, dentry, seq, name)) {
2209 case D_COMP_OK:
2210 return dentry;
2211 case D_COMP_NOMATCH:
2212 continue;
2213 default:
2214 goto seqretry;
2215 }
2216 }
2217
2218 if (dentry->d_name.hash_len != hashlen)
2219 continue;
2220 *seqp = seq;
2221 if (!dentry_cmp(dentry, str, hashlen_len(hashlen)))
2222 return dentry;
2223 }
2224 return NULL;
2225 }
2226
2227 /**
2228 * d_lookup - search for a dentry
2229 * @parent: parent dentry
2230 * @name: qstr of name we wish to find
2231 * Returns: dentry, or NULL
2232 *
2233 * d_lookup searches the children of the parent dentry for the name in
2234 * question. If the dentry is found its reference count is incremented and the
2235 * dentry is returned. The caller must use dput to free the entry when it has
2236 * finished using it. %NULL is returned if the dentry does not exist.
2237 */
2238 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2239 {
2240 struct dentry *dentry;
2241 unsigned seq;
2242
2243 do {
2244 seq = read_seqbegin(&rename_lock);
2245 dentry = __d_lookup(parent, name);
2246 if (dentry)
2247 break;
2248 } while (read_seqretry(&rename_lock, seq));
2249 return dentry;
2250 }
2251 EXPORT_SYMBOL(d_lookup);
2252
2253 /**
2254 * __d_lookup - search for a dentry (racy)
2255 * @parent: parent dentry
2256 * @name: qstr of name we wish to find
2257 * Returns: dentry, or NULL
2258 *
2259 * __d_lookup is like d_lookup, however it may (rarely) return a
2260 * false-negative result due to unrelated rename activity.
2261 *
2262 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2263 * however it must be used carefully, eg. with a following d_lookup in
2264 * the case of failure.
2265 *
2266 * __d_lookup callers must be commented.
2267 */
2268 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2269 {
2270 unsigned int len = name->len;
2271 unsigned int hash = name->hash;
2272 const unsigned char *str = name->name;
2273 struct hlist_bl_head *b = d_hash(parent, hash);
2274 struct hlist_bl_node *node;
2275 struct dentry *found = NULL;
2276 struct dentry *dentry;
2277
2278 /*
2279 * Note: There is significant duplication with __d_lookup_rcu which is
2280 * required to prevent single threaded performance regressions
2281 * especially on architectures where smp_rmb (in seqcounts) are costly.
2282 * Keep the two functions in sync.
2283 */
2284
2285 /*
2286 * The hash list is protected using RCU.
2287 *
2288 * Take d_lock when comparing a candidate dentry, to avoid races
2289 * with d_move().
2290 *
2291 * It is possible that concurrent renames can mess up our list
2292 * walk here and result in missing our dentry, resulting in the
2293 * false-negative result. d_lookup() protects against concurrent
2294 * renames using rename_lock seqlock.
2295 *
2296 * See Documentation/filesystems/path-lookup.txt for more details.
2297 */
2298 rcu_read_lock();
2299
2300 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2301
2302 if (dentry->d_name.hash != hash)
2303 continue;
2304
2305 spin_lock(&dentry->d_lock);
2306 if (dentry->d_parent != parent)
2307 goto next;
2308 if (d_unhashed(dentry))
2309 goto next;
2310
2311 /*
2312 * It is safe to compare names since d_move() cannot
2313 * change the qstr (protected by d_lock).
2314 */
2315 if (parent->d_flags & DCACHE_OP_COMPARE) {
2316 int tlen = dentry->d_name.len;
2317 const char *tname = dentry->d_name.name;
2318 if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
2319 goto next;
2320 } else {
2321 if (dentry->d_name.len != len)
2322 goto next;
2323 if (dentry_cmp(dentry, str, len))
2324 goto next;
2325 }
2326
2327 dentry->d_lockref.count++;
2328 found = dentry;
2329 spin_unlock(&dentry->d_lock);
2330 break;
2331 next:
2332 spin_unlock(&dentry->d_lock);
2333 }
2334 rcu_read_unlock();
2335
2336 return found;
2337 }
2338
2339 /**
2340 * d_hash_and_lookup - hash the qstr then search for a dentry
2341 * @dir: Directory to search in
2342 * @name: qstr of name we wish to find
2343 *
2344 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2345 */
2346 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2347 {
2348 /*
2349 * Check for a fs-specific hash function. Note that we must
2350 * calculate the standard hash first, as the d_op->d_hash()
2351 * routine may choose to leave the hash value unchanged.
2352 */
2353 name->hash = full_name_hash(name->name, name->len);
2354 if (dir->d_flags & DCACHE_OP_HASH) {
2355 int err = dir->d_op->d_hash(dir, name);
2356 if (unlikely(err < 0))
2357 return ERR_PTR(err);
2358 }
2359 return d_lookup(dir, name);
2360 }
2361 EXPORT_SYMBOL(d_hash_and_lookup);
2362
2363 /*
2364 * When a file is deleted, we have two options:
2365 * - turn this dentry into a negative dentry
2366 * - unhash this dentry and free it.
2367 *
2368 * Usually, we want to just turn this into
2369 * a negative dentry, but if anybody else is
2370 * currently using the dentry or the inode
2371 * we can't do that and we fall back on removing
2372 * it from the hash queues and waiting for
2373 * it to be deleted later when it has no users
2374 */
2375
2376 /**
2377 * d_delete - delete a dentry
2378 * @dentry: The dentry to delete
2379 *
2380 * Turn the dentry into a negative dentry if possible, otherwise
2381 * remove it from the hash queues so it can be deleted later
2382 */
2383
2384 void d_delete(struct dentry * dentry)
2385 {
2386 struct inode *inode;
2387 int isdir = 0;
2388 /*
2389 * Are we the only user?
2390 */
2391 again:
2392 spin_lock(&dentry->d_lock);
2393 inode = dentry->d_inode;
2394 isdir = S_ISDIR(inode->i_mode);
2395 if (dentry->d_lockref.count == 1) {
2396 if (!spin_trylock(&inode->i_lock)) {
2397 spin_unlock(&dentry->d_lock);
2398 cpu_relax();
2399 goto again;
2400 }
2401 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2402 dentry_unlink_inode(dentry);
2403 fsnotify_nameremove(dentry, isdir);
2404 return;
2405 }
2406
2407 if (!d_unhashed(dentry))
2408 __d_drop(dentry);
2409
2410 spin_unlock(&dentry->d_lock);
2411
2412 fsnotify_nameremove(dentry, isdir);
2413 }
2414 EXPORT_SYMBOL(d_delete);
2415
2416 static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b)
2417 {
2418 BUG_ON(!d_unhashed(entry));
2419 hlist_bl_lock(b);
2420 hlist_bl_add_head_rcu(&entry->d_hash, b);
2421 hlist_bl_unlock(b);
2422 }
2423
2424 static void _d_rehash(struct dentry * entry)
2425 {
2426 __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
2427 }
2428
2429 /**
2430 * d_rehash - add an entry back to the hash
2431 * @entry: dentry to add to the hash
2432 *
2433 * Adds a dentry to the hash according to its name.
2434 */
2435
2436 void d_rehash(struct dentry * entry)
2437 {
2438 spin_lock(&entry->d_lock);
2439 _d_rehash(entry);
2440 spin_unlock(&entry->d_lock);
2441 }
2442 EXPORT_SYMBOL(d_rehash);
2443
2444 /**
2445 * dentry_update_name_case - update case insensitive dentry with a new name
2446 * @dentry: dentry to be updated
2447 * @name: new name
2448 *
2449 * Update a case insensitive dentry with new case of name.
2450 *
2451 * dentry must have been returned by d_lookup with name @name. Old and new
2452 * name lengths must match (ie. no d_compare which allows mismatched name
2453 * lengths).
2454 *
2455 * Parent inode i_mutex must be held over d_lookup and into this call (to
2456 * keep renames and concurrent inserts, and readdir(2) away).
2457 */
2458 void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
2459 {
2460 BUG_ON(!mutex_is_locked(&dentry->d_parent->d_inode->i_mutex));
2461 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2462
2463 spin_lock(&dentry->d_lock);
2464 write_seqcount_begin(&dentry->d_seq);
2465 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
2466 write_seqcount_end(&dentry->d_seq);
2467 spin_unlock(&dentry->d_lock);
2468 }
2469 EXPORT_SYMBOL(dentry_update_name_case);
2470
2471 static void swap_names(struct dentry *dentry, struct dentry *target)
2472 {
2473 if (unlikely(dname_external(target))) {
2474 if (unlikely(dname_external(dentry))) {
2475 /*
2476 * Both external: swap the pointers
2477 */
2478 swap(target->d_name.name, dentry->d_name.name);
2479 } else {
2480 /*
2481 * dentry:internal, target:external. Steal target's
2482 * storage and make target internal.
2483 */
2484 memcpy(target->d_iname, dentry->d_name.name,
2485 dentry->d_name.len + 1);
2486 dentry->d_name.name = target->d_name.name;
2487 target->d_name.name = target->d_iname;
2488 }
2489 } else {
2490 if (unlikely(dname_external(dentry))) {
2491 /*
2492 * dentry:external, target:internal. Give dentry's
2493 * storage to target and make dentry internal
2494 */
2495 memcpy(dentry->d_iname, target->d_name.name,
2496 target->d_name.len + 1);
2497 target->d_name.name = dentry->d_name.name;
2498 dentry->d_name.name = dentry->d_iname;
2499 } else {
2500 /*
2501 * Both are internal.
2502 */
2503 unsigned int i;
2504 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2505 kmemcheck_mark_initialized(dentry->d_iname, DNAME_INLINE_LEN);
2506 kmemcheck_mark_initialized(target->d_iname, DNAME_INLINE_LEN);
2507 for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2508 swap(((long *) &dentry->d_iname)[i],
2509 ((long *) &target->d_iname)[i]);
2510 }
2511 }
2512 }
2513 swap(dentry->d_name.hash_len, target->d_name.hash_len);
2514 }
2515
2516 static void copy_name(struct dentry *dentry, struct dentry *target)
2517 {
2518 struct external_name *old_name = NULL;
2519 if (unlikely(dname_external(dentry)))
2520 old_name = external_name(dentry);
2521 if (unlikely(dname_external(target))) {
2522 atomic_inc(&external_name(target)->u.count);
2523 dentry->d_name = target->d_name;
2524 } else {
2525 memcpy(dentry->d_iname, target->d_name.name,
2526 target->d_name.len + 1);
2527 dentry->d_name.name = dentry->d_iname;
2528 dentry->d_name.hash_len = target->d_name.hash_len;
2529 }
2530 if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2531 kfree_rcu(old_name, u.head);
2532 }
2533
2534 static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2535 {
2536 /*
2537 * XXXX: do we really need to take target->d_lock?
2538 */
2539 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2540 spin_lock(&target->d_parent->d_lock);
2541 else {
2542 if (d_ancestor(dentry->d_parent, target->d_parent)) {
2543 spin_lock(&dentry->d_parent->d_lock);
2544 spin_lock_nested(&target->d_parent->d_lock,
2545 DENTRY_D_LOCK_NESTED);
2546 } else {
2547 spin_lock(&target->d_parent->d_lock);
2548 spin_lock_nested(&dentry->d_parent->d_lock,
2549 DENTRY_D_LOCK_NESTED);
2550 }
2551 }
2552 if (target < dentry) {
2553 spin_lock_nested(&target->d_lock, 2);
2554 spin_lock_nested(&dentry->d_lock, 3);
2555 } else {
2556 spin_lock_nested(&dentry->d_lock, 2);
2557 spin_lock_nested(&target->d_lock, 3);
2558 }
2559 }
2560
2561 static void dentry_unlock_for_move(struct dentry *dentry, struct dentry *target)
2562 {
2563 if (target->d_parent != dentry->d_parent)
2564 spin_unlock(&dentry->d_parent->d_lock);
2565 if (target->d_parent != target)
2566 spin_unlock(&target->d_parent->d_lock);
2567 spin_unlock(&target->d_lock);
2568 spin_unlock(&dentry->d_lock);
2569 }
2570
2571 /*
2572 * When switching names, the actual string doesn't strictly have to
2573 * be preserved in the target - because we're dropping the target
2574 * anyway. As such, we can just do a simple memcpy() to copy over
2575 * the new name before we switch, unless we are going to rehash
2576 * it. Note that if we *do* unhash the target, we are not allowed
2577 * to rehash it without giving it a new name/hash key - whether
2578 * we swap or overwrite the names here, resulting name won't match
2579 * the reality in filesystem; it's only there for d_path() purposes.
2580 * Note that all of this is happening under rename_lock, so the
2581 * any hash lookup seeing it in the middle of manipulations will
2582 * be discarded anyway. So we do not care what happens to the hash
2583 * key in that case.
2584 */
2585 /*
2586 * __d_move - move a dentry
2587 * @dentry: entry to move
2588 * @target: new dentry
2589 * @exchange: exchange the two dentries
2590 *
2591 * Update the dcache to reflect the move of a file name. Negative
2592 * dcache entries should not be moved in this way. Caller must hold
2593 * rename_lock, the i_mutex of the source and target directories,
2594 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2595 */
2596 static void __d_move(struct dentry *dentry, struct dentry *target,
2597 bool exchange)
2598 {
2599 if (!dentry->d_inode)
2600 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2601
2602 BUG_ON(d_ancestor(dentry, target));
2603 BUG_ON(d_ancestor(target, dentry));
2604
2605 dentry_lock_for_move(dentry, target);
2606
2607 write_seqcount_begin(&dentry->d_seq);
2608 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
2609
2610 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2611
2612 /*
2613 * Move the dentry to the target hash queue. Don't bother checking
2614 * for the same hash queue because of how unlikely it is.
2615 */
2616 __d_drop(dentry);
2617 __d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
2618
2619 /*
2620 * Unhash the target (d_delete() is not usable here). If exchanging
2621 * the two dentries, then rehash onto the other's hash queue.
2622 */
2623 __d_drop(target);
2624 if (exchange) {
2625 __d_rehash(target,
2626 d_hash(dentry->d_parent, dentry->d_name.hash));
2627 }
2628
2629 /* Switch the names.. */
2630 if (exchange)
2631 swap_names(dentry, target);
2632 else
2633 copy_name(dentry, target);
2634
2635 /* ... and switch them in the tree */
2636 if (IS_ROOT(dentry)) {
2637 /* splicing a tree */
2638 dentry->d_flags |= DCACHE_RCUACCESS;
2639 dentry->d_parent = target->d_parent;
2640 target->d_parent = target;
2641 list_del_init(&target->d_child);
2642 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2643 } else {
2644 /* swapping two dentries */
2645 swap(dentry->d_parent, target->d_parent);
2646 list_move(&target->d_child, &target->d_parent->d_subdirs);
2647 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2648 if (exchange)
2649 fsnotify_d_move(target);
2650 fsnotify_d_move(dentry);
2651 }
2652
2653 write_seqcount_end(&target->d_seq);
2654 write_seqcount_end(&dentry->d_seq);
2655
2656 dentry_unlock_for_move(dentry, target);
2657 }
2658
2659 /*
2660 * d_move - move a dentry
2661 * @dentry: entry to move
2662 * @target: new dentry
2663 *
2664 * Update the dcache to reflect the move of a file name. Negative
2665 * dcache entries should not be moved in this way. See the locking
2666 * requirements for __d_move.
2667 */
2668 void d_move(struct dentry *dentry, struct dentry *target)
2669 {
2670 write_seqlock(&rename_lock);
2671 __d_move(dentry, target, false);
2672 write_sequnlock(&rename_lock);
2673 }
2674 EXPORT_SYMBOL(d_move);
2675
2676 /*
2677 * d_exchange - exchange two dentries
2678 * @dentry1: first dentry
2679 * @dentry2: second dentry
2680 */
2681 void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2682 {
2683 write_seqlock(&rename_lock);
2684
2685 WARN_ON(!dentry1->d_inode);
2686 WARN_ON(!dentry2->d_inode);
2687 WARN_ON(IS_ROOT(dentry1));
2688 WARN_ON(IS_ROOT(dentry2));
2689
2690 __d_move(dentry1, dentry2, true);
2691
2692 write_sequnlock(&rename_lock);
2693 }
2694
2695 /**
2696 * d_ancestor - search for an ancestor
2697 * @p1: ancestor dentry
2698 * @p2: child dentry
2699 *
2700 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2701 * an ancestor of p2, else NULL.
2702 */
2703 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2704 {
2705 struct dentry *p;
2706
2707 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2708 if (p->d_parent == p1)
2709 return p;
2710 }
2711 return NULL;
2712 }
2713
2714 /*
2715 * This helper attempts to cope with remotely renamed directories
2716 *
2717 * It assumes that the caller is already holding
2718 * dentry->d_parent->d_inode->i_mutex, and rename_lock
2719 *
2720 * Note: If ever the locking in lock_rename() changes, then please
2721 * remember to update this too...
2722 */
2723 static int __d_unalias(struct inode *inode,
2724 struct dentry *dentry, struct dentry *alias)
2725 {
2726 struct mutex *m1 = NULL, *m2 = NULL;
2727 int ret = -ESTALE;
2728
2729 /* If alias and dentry share a parent, then no extra locks required */
2730 if (alias->d_parent == dentry->d_parent)
2731 goto out_unalias;
2732
2733 /* See lock_rename() */
2734 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2735 goto out_err;
2736 m1 = &dentry->d_sb->s_vfs_rename_mutex;
2737 if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
2738 goto out_err;
2739 m2 = &alias->d_parent->d_inode->i_mutex;
2740 out_unalias:
2741 __d_move(alias, dentry, false);
2742 ret = 0;
2743 out_err:
2744 if (m2)
2745 mutex_unlock(m2);
2746 if (m1)
2747 mutex_unlock(m1);
2748 return ret;
2749 }
2750
2751 /**
2752 * d_splice_alias - splice a disconnected dentry into the tree if one exists
2753 * @inode: the inode which may have a disconnected dentry
2754 * @dentry: a negative dentry which we want to point to the inode.
2755 *
2756 * If inode is a directory and has an IS_ROOT alias, then d_move that in
2757 * place of the given dentry and return it, else simply d_add the inode
2758 * to the dentry and return NULL.
2759 *
2760 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
2761 * we should error out: directories can't have multiple aliases.
2762 *
2763 * This is needed in the lookup routine of any filesystem that is exportable
2764 * (via knfsd) so that we can build dcache paths to directories effectively.
2765 *
2766 * If a dentry was found and moved, then it is returned. Otherwise NULL
2767 * is returned. This matches the expected return value of ->lookup.
2768 *
2769 * Cluster filesystems may call this function with a negative, hashed dentry.
2770 * In that case, we know that the inode will be a regular file, and also this
2771 * will only occur during atomic_open. So we need to check for the dentry
2772 * being already hashed only in the final case.
2773 */
2774 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
2775 {
2776 if (IS_ERR(inode))
2777 return ERR_CAST(inode);
2778
2779 BUG_ON(!d_unhashed(dentry));
2780
2781 if (!inode) {
2782 __d_instantiate(dentry, NULL);
2783 goto out;
2784 }
2785 spin_lock(&inode->i_lock);
2786 if (S_ISDIR(inode->i_mode)) {
2787 struct dentry *new = __d_find_any_alias(inode);
2788 if (unlikely(new)) {
2789 /* The reference to new ensures it remains an alias */
2790 spin_unlock(&inode->i_lock);
2791 write_seqlock(&rename_lock);
2792 if (unlikely(d_ancestor(new, dentry))) {
2793 write_sequnlock(&rename_lock);
2794 dput(new);
2795 new = ERR_PTR(-ELOOP);
2796 pr_warn_ratelimited(
2797 "VFS: Lookup of '%s' in %s %s"
2798 " would have caused loop\n",
2799 dentry->d_name.name,
2800 inode->i_sb->s_type->name,
2801 inode->i_sb->s_id);
2802 } else if (!IS_ROOT(new)) {
2803 int err = __d_unalias(inode, dentry, new);
2804 write_sequnlock(&rename_lock);
2805 if (err) {
2806 dput(new);
2807 new = ERR_PTR(err);
2808 }
2809 } else {
2810 __d_move(new, dentry, false);
2811 write_sequnlock(&rename_lock);
2812 security_d_instantiate(new, inode);
2813 }
2814 iput(inode);
2815 return new;
2816 }
2817 }
2818 /* already taking inode->i_lock, so d_add() by hand */
2819 __d_instantiate(dentry, inode);
2820 spin_unlock(&inode->i_lock);
2821 out:
2822 security_d_instantiate(dentry, inode);
2823 d_rehash(dentry);
2824 return NULL;
2825 }
2826 EXPORT_SYMBOL(d_splice_alias);
2827
2828 static int prepend(char **buffer, int *buflen, const char *str, int namelen)
2829 {
2830 *buflen -= namelen;
2831 if (*buflen < 0)
2832 return -ENAMETOOLONG;
2833 *buffer -= namelen;
2834 memcpy(*buffer, str, namelen);
2835 return 0;
2836 }
2837
2838 /**
2839 * prepend_name - prepend a pathname in front of current buffer pointer
2840 * @buffer: buffer pointer
2841 * @buflen: allocated length of the buffer
2842 * @name: name string and length qstr structure
2843 *
2844 * With RCU path tracing, it may race with d_move(). Use ACCESS_ONCE() to
2845 * make sure that either the old or the new name pointer and length are
2846 * fetched. However, there may be mismatch between length and pointer.
2847 * The length cannot be trusted, we need to copy it byte-by-byte until
2848 * the length is reached or a null byte is found. It also prepends "/" at
2849 * the beginning of the name. The sequence number check at the caller will
2850 * retry it again when a d_move() does happen. So any garbage in the buffer
2851 * due to mismatched pointer and length will be discarded.
2852 *
2853 * Data dependency barrier is needed to make sure that we see that terminating
2854 * NUL. Alpha strikes again, film at 11...
2855 */
2856 static int prepend_name(char **buffer, int *buflen, struct qstr *name)
2857 {
2858 const char *dname = ACCESS_ONCE(name->name);
2859 u32 dlen = ACCESS_ONCE(name->len);
2860 char *p;
2861
2862 smp_read_barrier_depends();
2863
2864 *buflen -= dlen + 1;
2865 if (*buflen < 0)
2866 return -ENAMETOOLONG;
2867 p = *buffer -= dlen + 1;
2868 *p++ = '/';
2869 while (dlen--) {
2870 char c = *dname++;
2871 if (!c)
2872 break;
2873 *p++ = c;
2874 }
2875 return 0;
2876 }
2877
2878 /**
2879 * prepend_path - Prepend path string to a buffer
2880 * @path: the dentry/vfsmount to report
2881 * @root: root vfsmnt/dentry
2882 * @buffer: pointer to the end of the buffer
2883 * @buflen: pointer to buffer length
2884 *
2885 * The function will first try to write out the pathname without taking any
2886 * lock other than the RCU read lock to make sure that dentries won't go away.
2887 * It only checks the sequence number of the global rename_lock as any change
2888 * in the dentry's d_seq will be preceded by changes in the rename_lock
2889 * sequence number. If the sequence number had been changed, it will restart
2890 * the whole pathname back-tracing sequence again by taking the rename_lock.
2891 * In this case, there is no need to take the RCU read lock as the recursive
2892 * parent pointer references will keep the dentry chain alive as long as no
2893 * rename operation is performed.
2894 */
2895 static int prepend_path(const struct path *path,
2896 const struct path *root,
2897 char **buffer, int *buflen)
2898 {
2899 struct dentry *dentry;
2900 struct vfsmount *vfsmnt;
2901 struct mount *mnt;
2902 int error = 0;
2903 unsigned seq, m_seq = 0;
2904 char *bptr;
2905 int blen;
2906
2907 rcu_read_lock();
2908 restart_mnt:
2909 read_seqbegin_or_lock(&mount_lock, &m_seq);
2910 seq = 0;
2911 rcu_read_lock();
2912 restart:
2913 bptr = *buffer;
2914 blen = *buflen;
2915 error = 0;
2916 dentry = path->dentry;
2917 vfsmnt = path->mnt;
2918 mnt = real_mount(vfsmnt);
2919 read_seqbegin_or_lock(&rename_lock, &seq);
2920 while (dentry != root->dentry || vfsmnt != root->mnt) {
2921 struct dentry * parent;
2922
2923 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
2924 struct mount *parent = ACCESS_ONCE(mnt->mnt_parent);
2925 /* Escaped? */
2926 if (dentry != vfsmnt->mnt_root) {
2927 bptr = *buffer;
2928 blen = *buflen;
2929 error = 3;
2930 break;
2931 }
2932 /* Global root? */
2933 if (mnt != parent) {
2934 dentry = ACCESS_ONCE(mnt->mnt_mountpoint);
2935 mnt = parent;
2936 vfsmnt = &mnt->mnt;
2937 continue;
2938 }
2939 if (!error)
2940 error = is_mounted(vfsmnt) ? 1 : 2;
2941 break;
2942 }
2943 parent = dentry->d_parent;
2944 prefetch(parent);
2945 error = prepend_name(&bptr, &blen, &dentry->d_name);
2946 if (error)
2947 break;
2948
2949 dentry = parent;
2950 }
2951 if (!(seq & 1))
2952 rcu_read_unlock();
2953 if (need_seqretry(&rename_lock, seq)) {
2954 seq = 1;
2955 goto restart;
2956 }
2957 done_seqretry(&rename_lock, seq);
2958
2959 if (!(m_seq & 1))
2960 rcu_read_unlock();
2961 if (need_seqretry(&mount_lock, m_seq)) {
2962 m_seq = 1;
2963 goto restart_mnt;
2964 }
2965 done_seqretry(&mount_lock, m_seq);
2966
2967 if (error >= 0 && bptr == *buffer) {
2968 if (--blen < 0)
2969 error = -ENAMETOOLONG;
2970 else
2971 *--bptr = '/';
2972 }
2973 *buffer = bptr;
2974 *buflen = blen;
2975 return error;
2976 }
2977
2978 /**
2979 * __d_path - return the path of a dentry
2980 * @path: the dentry/vfsmount to report
2981 * @root: root vfsmnt/dentry
2982 * @buf: buffer to return value in
2983 * @buflen: buffer length
2984 *
2985 * Convert a dentry into an ASCII path name.
2986 *
2987 * Returns a pointer into the buffer or an error code if the
2988 * path was too long.
2989 *
2990 * "buflen" should be positive.
2991 *
2992 * If the path is not reachable from the supplied root, return %NULL.
2993 */
2994 char *__d_path(const struct path *path,
2995 const struct path *root,
2996 char *buf, int buflen)
2997 {
2998 char *res = buf + buflen;
2999 int error;
3000
3001 prepend(&res, &buflen, "\0", 1);
3002 error = prepend_path(path, root, &res, &buflen);
3003
3004 if (error < 0)
3005 return ERR_PTR(error);
3006 if (error > 0)
3007 return NULL;
3008 return res;
3009 }
3010
3011 char *d_absolute_path(const struct path *path,
3012 char *buf, int buflen)
3013 {
3014 struct path root = {};
3015 char *res = buf + buflen;
3016 int error;
3017
3018 prepend(&res, &buflen, "\0", 1);
3019 error = prepend_path(path, &root, &res, &buflen);
3020
3021 if (error > 1)
3022 error = -EINVAL;
3023 if (error < 0)
3024 return ERR_PTR(error);
3025 return res;
3026 }
3027
3028 /*
3029 * same as __d_path but appends "(deleted)" for unlinked files.
3030 */
3031 static int path_with_deleted(const struct path *path,
3032 const struct path *root,
3033 char **buf, int *buflen)
3034 {
3035 prepend(buf, buflen, "\0", 1);
3036 if (d_unlinked(path->dentry)) {
3037 int error = prepend(buf, buflen, " (deleted)", 10);
3038 if (error)
3039 return error;
3040 }
3041
3042 return prepend_path(path, root, buf, buflen);
3043 }
3044
3045 static int prepend_unreachable(char **buffer, int *buflen)
3046 {
3047 return prepend(buffer, buflen, "(unreachable)", 13);
3048 }
3049
3050 static void get_fs_root_rcu(struct fs_struct *fs, struct path *root)
3051 {
3052 unsigned seq;
3053
3054 do {
3055 seq = read_seqcount_begin(&fs->seq);
3056 *root = fs->root;
3057 } while (read_seqcount_retry(&fs->seq, seq));
3058 }
3059
3060 /**
3061 * d_path - return the path of a dentry
3062 * @path: path to report
3063 * @buf: buffer to return value in
3064 * @buflen: buffer length
3065 *
3066 * Convert a dentry into an ASCII path name. If the entry has been deleted
3067 * the string " (deleted)" is appended. Note that this is ambiguous.
3068 *
3069 * Returns a pointer into the buffer or an error code if the path was
3070 * too long. Note: Callers should use the returned pointer, not the passed
3071 * in buffer, to use the name! The implementation often starts at an offset
3072 * into the buffer, and may leave 0 bytes at the start.
3073 *
3074 * "buflen" should be positive.
3075 */
3076 char *d_path(const struct path *path, char *buf, int buflen)
3077 {
3078 char *res = buf + buflen;
3079 struct path root;
3080 int error;
3081
3082 /*
3083 * We have various synthetic filesystems that never get mounted. On
3084 * these filesystems dentries are never used for lookup purposes, and
3085 * thus don't need to be hashed. They also don't need a name until a
3086 * user wants to identify the object in /proc/pid/fd/. The little hack
3087 * below allows us to generate a name for these objects on demand:
3088 *
3089 * Some pseudo inodes are mountable. When they are mounted
3090 * path->dentry == path->mnt->mnt_root. In that case don't call d_dname
3091 * and instead have d_path return the mounted path.
3092 */
3093 if (path->dentry->d_op && path->dentry->d_op->d_dname &&
3094 (!IS_ROOT(path->dentry) || path->dentry != path->mnt->mnt_root))
3095 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
3096
3097 rcu_read_lock();
3098 get_fs_root_rcu(current->fs, &root);
3099 error = path_with_deleted(path, &root, &res, &buflen);
3100 rcu_read_unlock();
3101
3102 if (error < 0)
3103 res = ERR_PTR(error);
3104 return res;
3105 }
3106 EXPORT_SYMBOL(d_path);
3107
3108 /*
3109 * Helper function for dentry_operations.d_dname() members
3110 */
3111 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
3112 const char *fmt, ...)
3113 {
3114 va_list args;
3115 char temp[64];
3116 int sz;
3117
3118 va_start(args, fmt);
3119 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
3120 va_end(args);
3121
3122 if (sz > sizeof(temp) || sz > buflen)
3123 return ERR_PTR(-ENAMETOOLONG);
3124
3125 buffer += buflen - sz;
3126 return memcpy(buffer, temp, sz);
3127 }
3128
3129 char *simple_dname(struct dentry *dentry, char *buffer, int buflen)
3130 {
3131 char *end = buffer + buflen;
3132 /* these dentries are never renamed, so d_lock is not needed */
3133 if (prepend(&end, &buflen, " (deleted)", 11) ||
3134 prepend(&end, &buflen, dentry->d_name.name, dentry->d_name.len) ||
3135 prepend(&end, &buflen, "/", 1))
3136 end = ERR_PTR(-ENAMETOOLONG);
3137 return end;
3138 }
3139 EXPORT_SYMBOL(simple_dname);
3140
3141 /*
3142 * Write full pathname from the root of the filesystem into the buffer.
3143 */
3144 static char *__dentry_path(struct dentry *d, char *buf, int buflen)
3145 {
3146 struct dentry *dentry;
3147 char *end, *retval;
3148 int len, seq = 0;
3149 int error = 0;
3150
3151 if (buflen < 2)
3152 goto Elong;
3153
3154 rcu_read_lock();
3155 restart:
3156 dentry = d;
3157 end = buf + buflen;
3158 len = buflen;
3159 prepend(&end, &len, "\0", 1);
3160 /* Get '/' right */
3161 retval = end-1;
3162 *retval = '/';
3163 read_seqbegin_or_lock(&rename_lock, &seq);
3164 while (!IS_ROOT(dentry)) {
3165 struct dentry *parent = dentry->d_parent;
3166
3167 prefetch(parent);
3168 error = prepend_name(&end, &len, &dentry->d_name);
3169 if (error)
3170 break;
3171
3172 retval = end;
3173 dentry = parent;
3174 }
3175 if (!(seq & 1))
3176 rcu_read_unlock();
3177 if (need_seqretry(&rename_lock, seq)) {
3178 seq = 1;
3179 goto restart;
3180 }
3181 done_seqretry(&rename_lock, seq);
3182 if (error)
3183 goto Elong;
3184 return retval;
3185 Elong:
3186 return ERR_PTR(-ENAMETOOLONG);
3187 }
3188
3189 char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
3190 {
3191 return __dentry_path(dentry, buf, buflen);
3192 }
3193 EXPORT_SYMBOL(dentry_path_raw);
3194
3195 char *dentry_path(struct dentry *dentry, char *buf, int buflen)
3196 {
3197 char *p = NULL;
3198 char *retval;
3199
3200 if (d_unlinked(dentry)) {
3201 p = buf + buflen;
3202 if (prepend(&p, &buflen, "//deleted", 10) != 0)
3203 goto Elong;
3204 buflen++;
3205 }
3206 retval = __dentry_path(dentry, buf, buflen);
3207 if (!IS_ERR(retval) && p)
3208 *p = '/'; /* restore '/' overriden with '\0' */
3209 return retval;
3210 Elong:
3211 return ERR_PTR(-ENAMETOOLONG);
3212 }
3213
3214 static void get_fs_root_and_pwd_rcu(struct fs_struct *fs, struct path *root,
3215 struct path *pwd)
3216 {
3217 unsigned seq;
3218
3219 do {
3220 seq = read_seqcount_begin(&fs->seq);
3221 *root = fs->root;
3222 *pwd = fs->pwd;
3223 } while (read_seqcount_retry(&fs->seq, seq));
3224 }
3225
3226 /*
3227 * NOTE! The user-level library version returns a
3228 * character pointer. The kernel system call just
3229 * returns the length of the buffer filled (which
3230 * includes the ending '\0' character), or a negative
3231 * error value. So libc would do something like
3232 *
3233 * char *getcwd(char * buf, size_t size)
3234 * {
3235 * int retval;
3236 *
3237 * retval = sys_getcwd(buf, size);
3238 * if (retval >= 0)
3239 * return buf;
3240 * errno = -retval;
3241 * return NULL;
3242 * }
3243 */
3244 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
3245 {
3246 int error;
3247 struct path pwd, root;
3248 char *page = __getname();
3249
3250 if (!page)
3251 return -ENOMEM;
3252
3253 rcu_read_lock();
3254 get_fs_root_and_pwd_rcu(current->fs, &root, &pwd);
3255
3256 error = -ENOENT;
3257 if (!d_unlinked(pwd.dentry)) {
3258 unsigned long len;
3259 char *cwd = page + PATH_MAX;
3260 int buflen = PATH_MAX;
3261
3262 prepend(&cwd, &buflen, "\0", 1);
3263 error = prepend_path(&pwd, &root, &cwd, &buflen);
3264 rcu_read_unlock();
3265
3266 if (error < 0)
3267 goto out;
3268
3269 /* Unreachable from current root */
3270 if (error > 0) {
3271 error = prepend_unreachable(&cwd, &buflen);
3272 if (error)
3273 goto out;
3274 }
3275
3276 error = -ERANGE;
3277 len = PATH_MAX + page - cwd;
3278 if (len <= size) {
3279 error = len;
3280 if (copy_to_user(buf, cwd, len))
3281 error = -EFAULT;
3282 }
3283 } else {
3284 rcu_read_unlock();
3285 }
3286
3287 out:
3288 __putname(page);
3289 return error;
3290 }
3291
3292 /*
3293 * Test whether new_dentry is a subdirectory of old_dentry.
3294 *
3295 * Trivially implemented using the dcache structure
3296 */
3297
3298 /**
3299 * is_subdir - is new dentry a subdirectory of old_dentry
3300 * @new_dentry: new dentry
3301 * @old_dentry: old dentry
3302 *
3303 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
3304 * Returns 0 otherwise.
3305 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3306 */
3307
3308 int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
3309 {
3310 int result;
3311 unsigned seq;
3312
3313 if (new_dentry == old_dentry)
3314 return 1;
3315
3316 do {
3317 /* for restarting inner loop in case of seq retry */
3318 seq = read_seqbegin(&rename_lock);
3319 /*
3320 * Need rcu_readlock to protect against the d_parent trashing
3321 * due to d_move
3322 */
3323 rcu_read_lock();
3324 if (d_ancestor(old_dentry, new_dentry))
3325 result = 1;
3326 else
3327 result = 0;
3328 rcu_read_unlock();
3329 } while (read_seqretry(&rename_lock, seq));
3330
3331 return result;
3332 }
3333
3334 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
3335 {
3336 struct dentry *root = data;
3337 if (dentry != root) {
3338 if (d_unhashed(dentry) || !dentry->d_inode)
3339 return D_WALK_SKIP;
3340
3341 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3342 dentry->d_flags |= DCACHE_GENOCIDE;
3343 dentry->d_lockref.count--;
3344 }
3345 }
3346 return D_WALK_CONTINUE;
3347 }
3348
3349 void d_genocide(struct dentry *parent)
3350 {
3351 d_walk(parent, parent, d_genocide_kill, NULL);
3352 }
3353
3354 void d_tmpfile(struct dentry *dentry, struct inode *inode)
3355 {
3356 inode_dec_link_count(inode);
3357 BUG_ON(dentry->d_name.name != dentry->d_iname ||
3358 !hlist_unhashed(&dentry->d_u.d_alias) ||
3359 !d_unlinked(dentry));
3360 spin_lock(&dentry->d_parent->d_lock);
3361 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3362 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3363 (unsigned long long)inode->i_ino);
3364 spin_unlock(&dentry->d_lock);
3365 spin_unlock(&dentry->d_parent->d_lock);
3366 d_instantiate(dentry, inode);
3367 }
3368 EXPORT_SYMBOL(d_tmpfile);
3369
3370 static __initdata unsigned long dhash_entries;
3371 static int __init set_dhash_entries(char *str)
3372 {
3373 if (!str)
3374 return 0;
3375 dhash_entries = simple_strtoul(str, &str, 0);
3376 return 1;
3377 }
3378 __setup("dhash_entries=", set_dhash_entries);
3379
3380 static void __init dcache_init_early(void)
3381 {
3382 unsigned int loop;
3383
3384 /* If hashes are distributed across NUMA nodes, defer
3385 * hash allocation until vmalloc space is available.
3386 */
3387 if (hashdist)
3388 return;
3389
3390 dentry_hashtable =
3391 alloc_large_system_hash("Dentry cache",
3392 sizeof(struct hlist_bl_head),
3393 dhash_entries,
3394 13,
3395 HASH_EARLY,
3396 &d_hash_shift,
3397 &d_hash_mask,
3398 0,
3399 0);
3400
3401 for (loop = 0; loop < (1U << d_hash_shift); loop++)
3402 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3403 }
3404
3405 static void __init dcache_init(void)
3406 {
3407 unsigned int loop;
3408
3409 /*
3410 * A constructor could be added for stable state like the lists,
3411 * but it is probably not worth it because of the cache nature
3412 * of the dcache.
3413 */
3414 dentry_cache = KMEM_CACHE(dentry,
3415 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
3416
3417 /* Hash may have been set up in dcache_init_early */
3418 if (!hashdist)
3419 return;
3420
3421 dentry_hashtable =
3422 alloc_large_system_hash("Dentry cache",
3423 sizeof(struct hlist_bl_head),
3424 dhash_entries,
3425 13,
3426 0,
3427 &d_hash_shift,
3428 &d_hash_mask,
3429 0,
3430 0);
3431
3432 for (loop = 0; loop < (1U << d_hash_shift); loop++)
3433 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3434 }
3435
3436 /* SLAB cache for __getname() consumers */
3437 struct kmem_cache *names_cachep __read_mostly;
3438 EXPORT_SYMBOL(names_cachep);
3439
3440 EXPORT_SYMBOL(d_genocide);
3441
3442 void __init vfs_caches_init_early(void)
3443 {
3444 dcache_init_early();
3445 inode_init_early();
3446 }
3447
3448 void __init vfs_caches_init(void)
3449 {
3450 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
3451 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3452
3453 dcache_init();
3454 inode_init();
3455 files_init();
3456 files_maxfiles_init();
3457 mnt_init();
3458 bdev_cache_init();
3459 chrdev_init();
3460 }