]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/dcache.c
vfs: get rid of 'struct dcache_hash_bucket' abstraction
[mirror_ubuntu-artful-kernel.git] / fs / dcache.c
1 /*
2 * fs/dcache.c
3 *
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
8
9 /*
10 * Notes on the allocation strategy:
11 *
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
15 */
16
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/module.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <asm/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/rculist_bl.h>
38 #include "internal.h"
39
40 /*
41 * Usage:
42 * dcache->d_inode->i_lock protects:
43 * - i_dentry, d_alias, d_inode of aliases
44 * dcache_hash_bucket lock protects:
45 * - the dcache hash table
46 * s_anon bl list spinlock protects:
47 * - the s_anon list (see __d_drop)
48 * dcache_lru_lock protects:
49 * - the dcache lru lists and counters
50 * d_lock protects:
51 * - d_flags
52 * - d_name
53 * - d_lru
54 * - d_count
55 * - d_unhashed()
56 * - d_parent and d_subdirs
57 * - childrens' d_child and d_parent
58 * - d_alias, d_inode
59 *
60 * Ordering:
61 * dentry->d_inode->i_lock
62 * dentry->d_lock
63 * dcache_lru_lock
64 * dcache_hash_bucket lock
65 * s_anon lock
66 *
67 * If there is an ancestor relationship:
68 * dentry->d_parent->...->d_parent->d_lock
69 * ...
70 * dentry->d_parent->d_lock
71 * dentry->d_lock
72 *
73 * If no ancestor relationship:
74 * if (dentry1 < dentry2)
75 * dentry1->d_lock
76 * dentry2->d_lock
77 */
78 int sysctl_vfs_cache_pressure __read_mostly = 100;
79 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
80
81 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_lru_lock);
82 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
83
84 EXPORT_SYMBOL(rename_lock);
85
86 static struct kmem_cache *dentry_cache __read_mostly;
87
88 /*
89 * This is the single most critical data structure when it comes
90 * to the dcache: the hashtable for lookups. Somebody should try
91 * to make this good - I've just made it work.
92 *
93 * This hash-function tries to avoid losing too many bits of hash
94 * information, yet avoid using a prime hash-size or similar.
95 */
96 #define D_HASHBITS d_hash_shift
97 #define D_HASHMASK d_hash_mask
98
99 static unsigned int d_hash_mask __read_mostly;
100 static unsigned int d_hash_shift __read_mostly;
101
102 static struct hlist_bl_head *dentry_hashtable __read_mostly;
103
104 static inline struct hlist_bl_head *d_hash(struct dentry *parent,
105 unsigned long hash)
106 {
107 hash += ((unsigned long) parent ^ GOLDEN_RATIO_PRIME) / L1_CACHE_BYTES;
108 hash = hash ^ ((hash ^ GOLDEN_RATIO_PRIME) >> D_HASHBITS);
109 return dentry_hashtable + (hash & D_HASHMASK);
110 }
111
112 static inline void spin_lock_bucket(struct hlist_bl_head *b)
113 {
114 bit_spin_lock(0, (unsigned long *)&b->first);
115 }
116
117 static inline void spin_unlock_bucket(struct hlist_bl_head *b)
118 {
119 __bit_spin_unlock(0, (unsigned long *)&b->first);
120 }
121
122 /* Statistics gathering. */
123 struct dentry_stat_t dentry_stat = {
124 .age_limit = 45,
125 };
126
127 static DEFINE_PER_CPU(unsigned int, nr_dentry);
128
129 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
130 static int get_nr_dentry(void)
131 {
132 int i;
133 int sum = 0;
134 for_each_possible_cpu(i)
135 sum += per_cpu(nr_dentry, i);
136 return sum < 0 ? 0 : sum;
137 }
138
139 int proc_nr_dentry(ctl_table *table, int write, void __user *buffer,
140 size_t *lenp, loff_t *ppos)
141 {
142 dentry_stat.nr_dentry = get_nr_dentry();
143 return proc_dointvec(table, write, buffer, lenp, ppos);
144 }
145 #endif
146
147 static void __d_free(struct rcu_head *head)
148 {
149 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
150
151 WARN_ON(!list_empty(&dentry->d_alias));
152 if (dname_external(dentry))
153 kfree(dentry->d_name.name);
154 kmem_cache_free(dentry_cache, dentry);
155 }
156
157 /*
158 * no locks, please.
159 */
160 static void d_free(struct dentry *dentry)
161 {
162 BUG_ON(dentry->d_count);
163 this_cpu_dec(nr_dentry);
164 if (dentry->d_op && dentry->d_op->d_release)
165 dentry->d_op->d_release(dentry);
166
167 /* if dentry was never inserted into hash, immediate free is OK */
168 if (hlist_bl_unhashed(&dentry->d_hash))
169 __d_free(&dentry->d_u.d_rcu);
170 else
171 call_rcu(&dentry->d_u.d_rcu, __d_free);
172 }
173
174 /**
175 * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
176 * @dentry: the target dentry
177 * After this call, in-progress rcu-walk path lookup will fail. This
178 * should be called after unhashing, and after changing d_inode (if
179 * the dentry has not already been unhashed).
180 */
181 static inline void dentry_rcuwalk_barrier(struct dentry *dentry)
182 {
183 assert_spin_locked(&dentry->d_lock);
184 /* Go through a barrier */
185 write_seqcount_barrier(&dentry->d_seq);
186 }
187
188 /*
189 * Release the dentry's inode, using the filesystem
190 * d_iput() operation if defined. Dentry has no refcount
191 * and is unhashed.
192 */
193 static void dentry_iput(struct dentry * dentry)
194 __releases(dentry->d_lock)
195 __releases(dentry->d_inode->i_lock)
196 {
197 struct inode *inode = dentry->d_inode;
198 if (inode) {
199 dentry->d_inode = NULL;
200 list_del_init(&dentry->d_alias);
201 spin_unlock(&dentry->d_lock);
202 spin_unlock(&inode->i_lock);
203 if (!inode->i_nlink)
204 fsnotify_inoderemove(inode);
205 if (dentry->d_op && dentry->d_op->d_iput)
206 dentry->d_op->d_iput(dentry, inode);
207 else
208 iput(inode);
209 } else {
210 spin_unlock(&dentry->d_lock);
211 }
212 }
213
214 /*
215 * Release the dentry's inode, using the filesystem
216 * d_iput() operation if defined. dentry remains in-use.
217 */
218 static void dentry_unlink_inode(struct dentry * dentry)
219 __releases(dentry->d_lock)
220 __releases(dentry->d_inode->i_lock)
221 {
222 struct inode *inode = dentry->d_inode;
223 dentry->d_inode = NULL;
224 list_del_init(&dentry->d_alias);
225 dentry_rcuwalk_barrier(dentry);
226 spin_unlock(&dentry->d_lock);
227 spin_unlock(&inode->i_lock);
228 if (!inode->i_nlink)
229 fsnotify_inoderemove(inode);
230 if (dentry->d_op && dentry->d_op->d_iput)
231 dentry->d_op->d_iput(dentry, inode);
232 else
233 iput(inode);
234 }
235
236 /*
237 * dentry_lru_(add|del|move_tail) must be called with d_lock held.
238 */
239 static void dentry_lru_add(struct dentry *dentry)
240 {
241 if (list_empty(&dentry->d_lru)) {
242 spin_lock(&dcache_lru_lock);
243 list_add(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
244 dentry->d_sb->s_nr_dentry_unused++;
245 dentry_stat.nr_unused++;
246 spin_unlock(&dcache_lru_lock);
247 }
248 }
249
250 static void __dentry_lru_del(struct dentry *dentry)
251 {
252 list_del_init(&dentry->d_lru);
253 dentry->d_sb->s_nr_dentry_unused--;
254 dentry_stat.nr_unused--;
255 }
256
257 static void dentry_lru_del(struct dentry *dentry)
258 {
259 if (!list_empty(&dentry->d_lru)) {
260 spin_lock(&dcache_lru_lock);
261 __dentry_lru_del(dentry);
262 spin_unlock(&dcache_lru_lock);
263 }
264 }
265
266 static void dentry_lru_move_tail(struct dentry *dentry)
267 {
268 spin_lock(&dcache_lru_lock);
269 if (list_empty(&dentry->d_lru)) {
270 list_add_tail(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
271 dentry->d_sb->s_nr_dentry_unused++;
272 dentry_stat.nr_unused++;
273 } else {
274 list_move_tail(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
275 }
276 spin_unlock(&dcache_lru_lock);
277 }
278
279 /**
280 * d_kill - kill dentry and return parent
281 * @dentry: dentry to kill
282 * @parent: parent dentry
283 *
284 * The dentry must already be unhashed and removed from the LRU.
285 *
286 * If this is the root of the dentry tree, return NULL.
287 *
288 * dentry->d_lock and parent->d_lock must be held by caller, and are dropped by
289 * d_kill.
290 */
291 static struct dentry *d_kill(struct dentry *dentry, struct dentry *parent)
292 __releases(dentry->d_lock)
293 __releases(parent->d_lock)
294 __releases(dentry->d_inode->i_lock)
295 {
296 list_del(&dentry->d_u.d_child);
297 /*
298 * Inform try_to_ascend() that we are no longer attached to the
299 * dentry tree
300 */
301 dentry->d_flags |= DCACHE_DISCONNECTED;
302 if (parent)
303 spin_unlock(&parent->d_lock);
304 dentry_iput(dentry);
305 /*
306 * dentry_iput drops the locks, at which point nobody (except
307 * transient RCU lookups) can reach this dentry.
308 */
309 d_free(dentry);
310 return parent;
311 }
312
313 /**
314 * d_drop - drop a dentry
315 * @dentry: dentry to drop
316 *
317 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
318 * be found through a VFS lookup any more. Note that this is different from
319 * deleting the dentry - d_delete will try to mark the dentry negative if
320 * possible, giving a successful _negative_ lookup, while d_drop will
321 * just make the cache lookup fail.
322 *
323 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
324 * reason (NFS timeouts or autofs deletes).
325 *
326 * __d_drop requires dentry->d_lock.
327 */
328 void __d_drop(struct dentry *dentry)
329 {
330 if (!(dentry->d_flags & DCACHE_UNHASHED)) {
331 struct hlist_bl_head *b;
332 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED)) {
333 b = &dentry->d_sb->s_anon;
334 spin_lock_bucket(b);
335 dentry->d_flags |= DCACHE_UNHASHED;
336 hlist_bl_del_init(&dentry->d_hash);
337 spin_unlock_bucket(b);
338 } else {
339 struct hlist_bl_head *b;
340 b = d_hash(dentry->d_parent, dentry->d_name.hash);
341 spin_lock_bucket(b);
342 /*
343 * We may not actually need to put DCACHE_UNHASHED
344 * manipulations under the hash lock, but follow
345 * the principle of least surprise.
346 */
347 dentry->d_flags |= DCACHE_UNHASHED;
348 hlist_bl_del_rcu(&dentry->d_hash);
349 spin_unlock_bucket(b);
350 dentry_rcuwalk_barrier(dentry);
351 }
352 }
353 }
354 EXPORT_SYMBOL(__d_drop);
355
356 void d_drop(struct dentry *dentry)
357 {
358 spin_lock(&dentry->d_lock);
359 __d_drop(dentry);
360 spin_unlock(&dentry->d_lock);
361 }
362 EXPORT_SYMBOL(d_drop);
363
364 /*
365 * Finish off a dentry we've decided to kill.
366 * dentry->d_lock must be held, returns with it unlocked.
367 * If ref is non-zero, then decrement the refcount too.
368 * Returns dentry requiring refcount drop, or NULL if we're done.
369 */
370 static inline struct dentry *dentry_kill(struct dentry *dentry, int ref)
371 __releases(dentry->d_lock)
372 {
373 struct inode *inode;
374 struct dentry *parent;
375
376 inode = dentry->d_inode;
377 if (inode && !spin_trylock(&inode->i_lock)) {
378 relock:
379 spin_unlock(&dentry->d_lock);
380 cpu_relax();
381 return dentry; /* try again with same dentry */
382 }
383 if (IS_ROOT(dentry))
384 parent = NULL;
385 else
386 parent = dentry->d_parent;
387 if (parent && !spin_trylock(&parent->d_lock)) {
388 if (inode)
389 spin_unlock(&inode->i_lock);
390 goto relock;
391 }
392
393 if (ref)
394 dentry->d_count--;
395 /* if dentry was on the d_lru list delete it from there */
396 dentry_lru_del(dentry);
397 /* if it was on the hash then remove it */
398 __d_drop(dentry);
399 return d_kill(dentry, parent);
400 }
401
402 /*
403 * This is dput
404 *
405 * This is complicated by the fact that we do not want to put
406 * dentries that are no longer on any hash chain on the unused
407 * list: we'd much rather just get rid of them immediately.
408 *
409 * However, that implies that we have to traverse the dentry
410 * tree upwards to the parents which might _also_ now be
411 * scheduled for deletion (it may have been only waiting for
412 * its last child to go away).
413 *
414 * This tail recursion is done by hand as we don't want to depend
415 * on the compiler to always get this right (gcc generally doesn't).
416 * Real recursion would eat up our stack space.
417 */
418
419 /*
420 * dput - release a dentry
421 * @dentry: dentry to release
422 *
423 * Release a dentry. This will drop the usage count and if appropriate
424 * call the dentry unlink method as well as removing it from the queues and
425 * releasing its resources. If the parent dentries were scheduled for release
426 * they too may now get deleted.
427 */
428 void dput(struct dentry *dentry)
429 {
430 if (!dentry)
431 return;
432
433 repeat:
434 if (dentry->d_count == 1)
435 might_sleep();
436 spin_lock(&dentry->d_lock);
437 BUG_ON(!dentry->d_count);
438 if (dentry->d_count > 1) {
439 dentry->d_count--;
440 spin_unlock(&dentry->d_lock);
441 return;
442 }
443
444 if (dentry->d_flags & DCACHE_OP_DELETE) {
445 if (dentry->d_op->d_delete(dentry))
446 goto kill_it;
447 }
448
449 /* Unreachable? Get rid of it */
450 if (d_unhashed(dentry))
451 goto kill_it;
452
453 /* Otherwise leave it cached and ensure it's on the LRU */
454 dentry->d_flags |= DCACHE_REFERENCED;
455 dentry_lru_add(dentry);
456
457 dentry->d_count--;
458 spin_unlock(&dentry->d_lock);
459 return;
460
461 kill_it:
462 dentry = dentry_kill(dentry, 1);
463 if (dentry)
464 goto repeat;
465 }
466 EXPORT_SYMBOL(dput);
467
468 /**
469 * d_invalidate - invalidate a dentry
470 * @dentry: dentry to invalidate
471 *
472 * Try to invalidate the dentry if it turns out to be
473 * possible. If there are other dentries that can be
474 * reached through this one we can't delete it and we
475 * return -EBUSY. On success we return 0.
476 *
477 * no dcache lock.
478 */
479
480 int d_invalidate(struct dentry * dentry)
481 {
482 /*
483 * If it's already been dropped, return OK.
484 */
485 spin_lock(&dentry->d_lock);
486 if (d_unhashed(dentry)) {
487 spin_unlock(&dentry->d_lock);
488 return 0;
489 }
490 /*
491 * Check whether to do a partial shrink_dcache
492 * to get rid of unused child entries.
493 */
494 if (!list_empty(&dentry->d_subdirs)) {
495 spin_unlock(&dentry->d_lock);
496 shrink_dcache_parent(dentry);
497 spin_lock(&dentry->d_lock);
498 }
499
500 /*
501 * Somebody else still using it?
502 *
503 * If it's a directory, we can't drop it
504 * for fear of somebody re-populating it
505 * with children (even though dropping it
506 * would make it unreachable from the root,
507 * we might still populate it if it was a
508 * working directory or similar).
509 */
510 if (dentry->d_count > 1) {
511 if (dentry->d_inode && S_ISDIR(dentry->d_inode->i_mode)) {
512 spin_unlock(&dentry->d_lock);
513 return -EBUSY;
514 }
515 }
516
517 __d_drop(dentry);
518 spin_unlock(&dentry->d_lock);
519 return 0;
520 }
521 EXPORT_SYMBOL(d_invalidate);
522
523 /* This must be called with d_lock held */
524 static inline void __dget_dlock(struct dentry *dentry)
525 {
526 dentry->d_count++;
527 }
528
529 static inline void __dget(struct dentry *dentry)
530 {
531 spin_lock(&dentry->d_lock);
532 __dget_dlock(dentry);
533 spin_unlock(&dentry->d_lock);
534 }
535
536 struct dentry *dget_parent(struct dentry *dentry)
537 {
538 struct dentry *ret;
539
540 repeat:
541 /*
542 * Don't need rcu_dereference because we re-check it was correct under
543 * the lock.
544 */
545 rcu_read_lock();
546 ret = dentry->d_parent;
547 if (!ret) {
548 rcu_read_unlock();
549 goto out;
550 }
551 spin_lock(&ret->d_lock);
552 if (unlikely(ret != dentry->d_parent)) {
553 spin_unlock(&ret->d_lock);
554 rcu_read_unlock();
555 goto repeat;
556 }
557 rcu_read_unlock();
558 BUG_ON(!ret->d_count);
559 ret->d_count++;
560 spin_unlock(&ret->d_lock);
561 out:
562 return ret;
563 }
564 EXPORT_SYMBOL(dget_parent);
565
566 /**
567 * d_find_alias - grab a hashed alias of inode
568 * @inode: inode in question
569 * @want_discon: flag, used by d_splice_alias, to request
570 * that only a DISCONNECTED alias be returned.
571 *
572 * If inode has a hashed alias, or is a directory and has any alias,
573 * acquire the reference to alias and return it. Otherwise return NULL.
574 * Notice that if inode is a directory there can be only one alias and
575 * it can be unhashed only if it has no children, or if it is the root
576 * of a filesystem.
577 *
578 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
579 * any other hashed alias over that one unless @want_discon is set,
580 * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
581 */
582 static struct dentry *__d_find_alias(struct inode *inode, int want_discon)
583 {
584 struct dentry *alias, *discon_alias;
585
586 again:
587 discon_alias = NULL;
588 list_for_each_entry(alias, &inode->i_dentry, d_alias) {
589 spin_lock(&alias->d_lock);
590 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
591 if (IS_ROOT(alias) &&
592 (alias->d_flags & DCACHE_DISCONNECTED)) {
593 discon_alias = alias;
594 } else if (!want_discon) {
595 __dget_dlock(alias);
596 spin_unlock(&alias->d_lock);
597 return alias;
598 }
599 }
600 spin_unlock(&alias->d_lock);
601 }
602 if (discon_alias) {
603 alias = discon_alias;
604 spin_lock(&alias->d_lock);
605 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
606 if (IS_ROOT(alias) &&
607 (alias->d_flags & DCACHE_DISCONNECTED)) {
608 __dget_dlock(alias);
609 spin_unlock(&alias->d_lock);
610 return alias;
611 }
612 }
613 spin_unlock(&alias->d_lock);
614 goto again;
615 }
616 return NULL;
617 }
618
619 struct dentry *d_find_alias(struct inode *inode)
620 {
621 struct dentry *de = NULL;
622
623 if (!list_empty(&inode->i_dentry)) {
624 spin_lock(&inode->i_lock);
625 de = __d_find_alias(inode, 0);
626 spin_unlock(&inode->i_lock);
627 }
628 return de;
629 }
630 EXPORT_SYMBOL(d_find_alias);
631
632 /*
633 * Try to kill dentries associated with this inode.
634 * WARNING: you must own a reference to inode.
635 */
636 void d_prune_aliases(struct inode *inode)
637 {
638 struct dentry *dentry;
639 restart:
640 spin_lock(&inode->i_lock);
641 list_for_each_entry(dentry, &inode->i_dentry, d_alias) {
642 spin_lock(&dentry->d_lock);
643 if (!dentry->d_count) {
644 __dget_dlock(dentry);
645 __d_drop(dentry);
646 spin_unlock(&dentry->d_lock);
647 spin_unlock(&inode->i_lock);
648 dput(dentry);
649 goto restart;
650 }
651 spin_unlock(&dentry->d_lock);
652 }
653 spin_unlock(&inode->i_lock);
654 }
655 EXPORT_SYMBOL(d_prune_aliases);
656
657 /*
658 * Try to throw away a dentry - free the inode, dput the parent.
659 * Requires dentry->d_lock is held, and dentry->d_count == 0.
660 * Releases dentry->d_lock.
661 *
662 * This may fail if locks cannot be acquired no problem, just try again.
663 */
664 static void try_prune_one_dentry(struct dentry *dentry)
665 __releases(dentry->d_lock)
666 {
667 struct dentry *parent;
668
669 parent = dentry_kill(dentry, 0);
670 /*
671 * If dentry_kill returns NULL, we have nothing more to do.
672 * if it returns the same dentry, trylocks failed. In either
673 * case, just loop again.
674 *
675 * Otherwise, we need to prune ancestors too. This is necessary
676 * to prevent quadratic behavior of shrink_dcache_parent(), but
677 * is also expected to be beneficial in reducing dentry cache
678 * fragmentation.
679 */
680 if (!parent)
681 return;
682 if (parent == dentry)
683 return;
684
685 /* Prune ancestors. */
686 dentry = parent;
687 while (dentry) {
688 spin_lock(&dentry->d_lock);
689 if (dentry->d_count > 1) {
690 dentry->d_count--;
691 spin_unlock(&dentry->d_lock);
692 return;
693 }
694 dentry = dentry_kill(dentry, 1);
695 }
696 }
697
698 static void shrink_dentry_list(struct list_head *list)
699 {
700 struct dentry *dentry;
701
702 rcu_read_lock();
703 for (;;) {
704 dentry = list_entry_rcu(list->prev, struct dentry, d_lru);
705 if (&dentry->d_lru == list)
706 break; /* empty */
707 spin_lock(&dentry->d_lock);
708 if (dentry != list_entry(list->prev, struct dentry, d_lru)) {
709 spin_unlock(&dentry->d_lock);
710 continue;
711 }
712
713 /*
714 * We found an inuse dentry which was not removed from
715 * the LRU because of laziness during lookup. Do not free
716 * it - just keep it off the LRU list.
717 */
718 if (dentry->d_count) {
719 dentry_lru_del(dentry);
720 spin_unlock(&dentry->d_lock);
721 continue;
722 }
723
724 rcu_read_unlock();
725
726 try_prune_one_dentry(dentry);
727
728 rcu_read_lock();
729 }
730 rcu_read_unlock();
731 }
732
733 /**
734 * __shrink_dcache_sb - shrink the dentry LRU on a given superblock
735 * @sb: superblock to shrink dentry LRU.
736 * @count: number of entries to prune
737 * @flags: flags to control the dentry processing
738 *
739 * If flags contains DCACHE_REFERENCED reference dentries will not be pruned.
740 */
741 static void __shrink_dcache_sb(struct super_block *sb, int *count, int flags)
742 {
743 /* called from prune_dcache() and shrink_dcache_parent() */
744 struct dentry *dentry;
745 LIST_HEAD(referenced);
746 LIST_HEAD(tmp);
747 int cnt = *count;
748
749 relock:
750 spin_lock(&dcache_lru_lock);
751 while (!list_empty(&sb->s_dentry_lru)) {
752 dentry = list_entry(sb->s_dentry_lru.prev,
753 struct dentry, d_lru);
754 BUG_ON(dentry->d_sb != sb);
755
756 if (!spin_trylock(&dentry->d_lock)) {
757 spin_unlock(&dcache_lru_lock);
758 cpu_relax();
759 goto relock;
760 }
761
762 /*
763 * If we are honouring the DCACHE_REFERENCED flag and the
764 * dentry has this flag set, don't free it. Clear the flag
765 * and put it back on the LRU.
766 */
767 if (flags & DCACHE_REFERENCED &&
768 dentry->d_flags & DCACHE_REFERENCED) {
769 dentry->d_flags &= ~DCACHE_REFERENCED;
770 list_move(&dentry->d_lru, &referenced);
771 spin_unlock(&dentry->d_lock);
772 } else {
773 list_move_tail(&dentry->d_lru, &tmp);
774 spin_unlock(&dentry->d_lock);
775 if (!--cnt)
776 break;
777 }
778 cond_resched_lock(&dcache_lru_lock);
779 }
780 if (!list_empty(&referenced))
781 list_splice(&referenced, &sb->s_dentry_lru);
782 spin_unlock(&dcache_lru_lock);
783
784 shrink_dentry_list(&tmp);
785
786 *count = cnt;
787 }
788
789 /**
790 * prune_dcache - shrink the dcache
791 * @count: number of entries to try to free
792 *
793 * Shrink the dcache. This is done when we need more memory, or simply when we
794 * need to unmount something (at which point we need to unuse all dentries).
795 *
796 * This function may fail to free any resources if all the dentries are in use.
797 */
798 static void prune_dcache(int count)
799 {
800 struct super_block *sb, *p = NULL;
801 int w_count;
802 int unused = dentry_stat.nr_unused;
803 int prune_ratio;
804 int pruned;
805
806 if (unused == 0 || count == 0)
807 return;
808 if (count >= unused)
809 prune_ratio = 1;
810 else
811 prune_ratio = unused / count;
812 spin_lock(&sb_lock);
813 list_for_each_entry(sb, &super_blocks, s_list) {
814 if (list_empty(&sb->s_instances))
815 continue;
816 if (sb->s_nr_dentry_unused == 0)
817 continue;
818 sb->s_count++;
819 /* Now, we reclaim unused dentrins with fairness.
820 * We reclaim them same percentage from each superblock.
821 * We calculate number of dentries to scan on this sb
822 * as follows, but the implementation is arranged to avoid
823 * overflows:
824 * number of dentries to scan on this sb =
825 * count * (number of dentries on this sb /
826 * number of dentries in the machine)
827 */
828 spin_unlock(&sb_lock);
829 if (prune_ratio != 1)
830 w_count = (sb->s_nr_dentry_unused / prune_ratio) + 1;
831 else
832 w_count = sb->s_nr_dentry_unused;
833 pruned = w_count;
834 /*
835 * We need to be sure this filesystem isn't being unmounted,
836 * otherwise we could race with generic_shutdown_super(), and
837 * end up holding a reference to an inode while the filesystem
838 * is unmounted. So we try to get s_umount, and make sure
839 * s_root isn't NULL.
840 */
841 if (down_read_trylock(&sb->s_umount)) {
842 if ((sb->s_root != NULL) &&
843 (!list_empty(&sb->s_dentry_lru))) {
844 __shrink_dcache_sb(sb, &w_count,
845 DCACHE_REFERENCED);
846 pruned -= w_count;
847 }
848 up_read(&sb->s_umount);
849 }
850 spin_lock(&sb_lock);
851 if (p)
852 __put_super(p);
853 count -= pruned;
854 p = sb;
855 /* more work left to do? */
856 if (count <= 0)
857 break;
858 }
859 if (p)
860 __put_super(p);
861 spin_unlock(&sb_lock);
862 }
863
864 /**
865 * shrink_dcache_sb - shrink dcache for a superblock
866 * @sb: superblock
867 *
868 * Shrink the dcache for the specified super block. This is used to free
869 * the dcache before unmounting a file system.
870 */
871 void shrink_dcache_sb(struct super_block *sb)
872 {
873 LIST_HEAD(tmp);
874
875 spin_lock(&dcache_lru_lock);
876 while (!list_empty(&sb->s_dentry_lru)) {
877 list_splice_init(&sb->s_dentry_lru, &tmp);
878 spin_unlock(&dcache_lru_lock);
879 shrink_dentry_list(&tmp);
880 spin_lock(&dcache_lru_lock);
881 }
882 spin_unlock(&dcache_lru_lock);
883 }
884 EXPORT_SYMBOL(shrink_dcache_sb);
885
886 /*
887 * destroy a single subtree of dentries for unmount
888 * - see the comments on shrink_dcache_for_umount() for a description of the
889 * locking
890 */
891 static void shrink_dcache_for_umount_subtree(struct dentry *dentry)
892 {
893 struct dentry *parent;
894 unsigned detached = 0;
895
896 BUG_ON(!IS_ROOT(dentry));
897
898 /* detach this root from the system */
899 spin_lock(&dentry->d_lock);
900 dentry_lru_del(dentry);
901 __d_drop(dentry);
902 spin_unlock(&dentry->d_lock);
903
904 for (;;) {
905 /* descend to the first leaf in the current subtree */
906 while (!list_empty(&dentry->d_subdirs)) {
907 struct dentry *loop;
908
909 /* this is a branch with children - detach all of them
910 * from the system in one go */
911 spin_lock(&dentry->d_lock);
912 list_for_each_entry(loop, &dentry->d_subdirs,
913 d_u.d_child) {
914 spin_lock_nested(&loop->d_lock,
915 DENTRY_D_LOCK_NESTED);
916 dentry_lru_del(loop);
917 __d_drop(loop);
918 spin_unlock(&loop->d_lock);
919 }
920 spin_unlock(&dentry->d_lock);
921
922 /* move to the first child */
923 dentry = list_entry(dentry->d_subdirs.next,
924 struct dentry, d_u.d_child);
925 }
926
927 /* consume the dentries from this leaf up through its parents
928 * until we find one with children or run out altogether */
929 do {
930 struct inode *inode;
931
932 if (dentry->d_count != 0) {
933 printk(KERN_ERR
934 "BUG: Dentry %p{i=%lx,n=%s}"
935 " still in use (%d)"
936 " [unmount of %s %s]\n",
937 dentry,
938 dentry->d_inode ?
939 dentry->d_inode->i_ino : 0UL,
940 dentry->d_name.name,
941 dentry->d_count,
942 dentry->d_sb->s_type->name,
943 dentry->d_sb->s_id);
944 BUG();
945 }
946
947 if (IS_ROOT(dentry)) {
948 parent = NULL;
949 list_del(&dentry->d_u.d_child);
950 } else {
951 parent = dentry->d_parent;
952 spin_lock(&parent->d_lock);
953 parent->d_count--;
954 list_del(&dentry->d_u.d_child);
955 spin_unlock(&parent->d_lock);
956 }
957
958 detached++;
959
960 inode = dentry->d_inode;
961 if (inode) {
962 dentry->d_inode = NULL;
963 list_del_init(&dentry->d_alias);
964 if (dentry->d_op && dentry->d_op->d_iput)
965 dentry->d_op->d_iput(dentry, inode);
966 else
967 iput(inode);
968 }
969
970 d_free(dentry);
971
972 /* finished when we fall off the top of the tree,
973 * otherwise we ascend to the parent and move to the
974 * next sibling if there is one */
975 if (!parent)
976 return;
977 dentry = parent;
978 } while (list_empty(&dentry->d_subdirs));
979
980 dentry = list_entry(dentry->d_subdirs.next,
981 struct dentry, d_u.d_child);
982 }
983 }
984
985 /*
986 * destroy the dentries attached to a superblock on unmounting
987 * - we don't need to use dentry->d_lock because:
988 * - the superblock is detached from all mountings and open files, so the
989 * dentry trees will not be rearranged by the VFS
990 * - s_umount is write-locked, so the memory pressure shrinker will ignore
991 * any dentries belonging to this superblock that it comes across
992 * - the filesystem itself is no longer permitted to rearrange the dentries
993 * in this superblock
994 */
995 void shrink_dcache_for_umount(struct super_block *sb)
996 {
997 struct dentry *dentry;
998
999 if (down_read_trylock(&sb->s_umount))
1000 BUG();
1001
1002 dentry = sb->s_root;
1003 sb->s_root = NULL;
1004 spin_lock(&dentry->d_lock);
1005 dentry->d_count--;
1006 spin_unlock(&dentry->d_lock);
1007 shrink_dcache_for_umount_subtree(dentry);
1008
1009 while (!hlist_bl_empty(&sb->s_anon)) {
1010 dentry = hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash);
1011 shrink_dcache_for_umount_subtree(dentry);
1012 }
1013 }
1014
1015 /*
1016 * This tries to ascend one level of parenthood, but
1017 * we can race with renaming, so we need to re-check
1018 * the parenthood after dropping the lock and check
1019 * that the sequence number still matches.
1020 */
1021 static struct dentry *try_to_ascend(struct dentry *old, int locked, unsigned seq)
1022 {
1023 struct dentry *new = old->d_parent;
1024
1025 rcu_read_lock();
1026 spin_unlock(&old->d_lock);
1027 spin_lock(&new->d_lock);
1028
1029 /*
1030 * might go back up the wrong parent if we have had a rename
1031 * or deletion
1032 */
1033 if (new != old->d_parent ||
1034 (old->d_flags & DCACHE_DISCONNECTED) ||
1035 (!locked && read_seqretry(&rename_lock, seq))) {
1036 spin_unlock(&new->d_lock);
1037 new = NULL;
1038 }
1039 rcu_read_unlock();
1040 return new;
1041 }
1042
1043
1044 /*
1045 * Search for at least 1 mount point in the dentry's subdirs.
1046 * We descend to the next level whenever the d_subdirs
1047 * list is non-empty and continue searching.
1048 */
1049
1050 /**
1051 * have_submounts - check for mounts over a dentry
1052 * @parent: dentry to check.
1053 *
1054 * Return true if the parent or its subdirectories contain
1055 * a mount point
1056 */
1057 int have_submounts(struct dentry *parent)
1058 {
1059 struct dentry *this_parent;
1060 struct list_head *next;
1061 unsigned seq;
1062 int locked = 0;
1063
1064 seq = read_seqbegin(&rename_lock);
1065 again:
1066 this_parent = parent;
1067
1068 if (d_mountpoint(parent))
1069 goto positive;
1070 spin_lock(&this_parent->d_lock);
1071 repeat:
1072 next = this_parent->d_subdirs.next;
1073 resume:
1074 while (next != &this_parent->d_subdirs) {
1075 struct list_head *tmp = next;
1076 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1077 next = tmp->next;
1078
1079 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1080 /* Have we found a mount point ? */
1081 if (d_mountpoint(dentry)) {
1082 spin_unlock(&dentry->d_lock);
1083 spin_unlock(&this_parent->d_lock);
1084 goto positive;
1085 }
1086 if (!list_empty(&dentry->d_subdirs)) {
1087 spin_unlock(&this_parent->d_lock);
1088 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1089 this_parent = dentry;
1090 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1091 goto repeat;
1092 }
1093 spin_unlock(&dentry->d_lock);
1094 }
1095 /*
1096 * All done at this level ... ascend and resume the search.
1097 */
1098 if (this_parent != parent) {
1099 struct dentry *child = this_parent;
1100 this_parent = try_to_ascend(this_parent, locked, seq);
1101 if (!this_parent)
1102 goto rename_retry;
1103 next = child->d_u.d_child.next;
1104 goto resume;
1105 }
1106 spin_unlock(&this_parent->d_lock);
1107 if (!locked && read_seqretry(&rename_lock, seq))
1108 goto rename_retry;
1109 if (locked)
1110 write_sequnlock(&rename_lock);
1111 return 0; /* No mount points found in tree */
1112 positive:
1113 if (!locked && read_seqretry(&rename_lock, seq))
1114 goto rename_retry;
1115 if (locked)
1116 write_sequnlock(&rename_lock);
1117 return 1;
1118
1119 rename_retry:
1120 locked = 1;
1121 write_seqlock(&rename_lock);
1122 goto again;
1123 }
1124 EXPORT_SYMBOL(have_submounts);
1125
1126 /*
1127 * Search the dentry child list for the specified parent,
1128 * and move any unused dentries to the end of the unused
1129 * list for prune_dcache(). We descend to the next level
1130 * whenever the d_subdirs list is non-empty and continue
1131 * searching.
1132 *
1133 * It returns zero iff there are no unused children,
1134 * otherwise it returns the number of children moved to
1135 * the end of the unused list. This may not be the total
1136 * number of unused children, because select_parent can
1137 * drop the lock and return early due to latency
1138 * constraints.
1139 */
1140 static int select_parent(struct dentry * parent)
1141 {
1142 struct dentry *this_parent;
1143 struct list_head *next;
1144 unsigned seq;
1145 int found = 0;
1146 int locked = 0;
1147
1148 seq = read_seqbegin(&rename_lock);
1149 again:
1150 this_parent = parent;
1151 spin_lock(&this_parent->d_lock);
1152 repeat:
1153 next = this_parent->d_subdirs.next;
1154 resume:
1155 while (next != &this_parent->d_subdirs) {
1156 struct list_head *tmp = next;
1157 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1158 next = tmp->next;
1159
1160 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1161
1162 /*
1163 * move only zero ref count dentries to the end
1164 * of the unused list for prune_dcache
1165 */
1166 if (!dentry->d_count) {
1167 dentry_lru_move_tail(dentry);
1168 found++;
1169 } else {
1170 dentry_lru_del(dentry);
1171 }
1172
1173 /*
1174 * We can return to the caller if we have found some (this
1175 * ensures forward progress). We'll be coming back to find
1176 * the rest.
1177 */
1178 if (found && need_resched()) {
1179 spin_unlock(&dentry->d_lock);
1180 goto out;
1181 }
1182
1183 /*
1184 * Descend a level if the d_subdirs list is non-empty.
1185 */
1186 if (!list_empty(&dentry->d_subdirs)) {
1187 spin_unlock(&this_parent->d_lock);
1188 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1189 this_parent = dentry;
1190 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1191 goto repeat;
1192 }
1193
1194 spin_unlock(&dentry->d_lock);
1195 }
1196 /*
1197 * All done at this level ... ascend and resume the search.
1198 */
1199 if (this_parent != parent) {
1200 struct dentry *child = this_parent;
1201 this_parent = try_to_ascend(this_parent, locked, seq);
1202 if (!this_parent)
1203 goto rename_retry;
1204 next = child->d_u.d_child.next;
1205 goto resume;
1206 }
1207 out:
1208 spin_unlock(&this_parent->d_lock);
1209 if (!locked && read_seqretry(&rename_lock, seq))
1210 goto rename_retry;
1211 if (locked)
1212 write_sequnlock(&rename_lock);
1213 return found;
1214
1215 rename_retry:
1216 if (found)
1217 return found;
1218 locked = 1;
1219 write_seqlock(&rename_lock);
1220 goto again;
1221 }
1222
1223 /**
1224 * shrink_dcache_parent - prune dcache
1225 * @parent: parent of entries to prune
1226 *
1227 * Prune the dcache to remove unused children of the parent dentry.
1228 */
1229
1230 void shrink_dcache_parent(struct dentry * parent)
1231 {
1232 struct super_block *sb = parent->d_sb;
1233 int found;
1234
1235 while ((found = select_parent(parent)) != 0)
1236 __shrink_dcache_sb(sb, &found, 0);
1237 }
1238 EXPORT_SYMBOL(shrink_dcache_parent);
1239
1240 /*
1241 * Scan `nr' dentries and return the number which remain.
1242 *
1243 * We need to avoid reentering the filesystem if the caller is performing a
1244 * GFP_NOFS allocation attempt. One example deadlock is:
1245 *
1246 * ext2_new_block->getblk->GFP->shrink_dcache_memory->prune_dcache->
1247 * prune_one_dentry->dput->dentry_iput->iput->inode->i_sb->s_op->put_inode->
1248 * ext2_discard_prealloc->ext2_free_blocks->lock_super->DEADLOCK.
1249 *
1250 * In this case we return -1 to tell the caller that we baled.
1251 */
1252 static int shrink_dcache_memory(struct shrinker *shrink, int nr, gfp_t gfp_mask)
1253 {
1254 if (nr) {
1255 if (!(gfp_mask & __GFP_FS))
1256 return -1;
1257 prune_dcache(nr);
1258 }
1259
1260 return (dentry_stat.nr_unused / 100) * sysctl_vfs_cache_pressure;
1261 }
1262
1263 static struct shrinker dcache_shrinker = {
1264 .shrink = shrink_dcache_memory,
1265 .seeks = DEFAULT_SEEKS,
1266 };
1267
1268 /**
1269 * d_alloc - allocate a dcache entry
1270 * @parent: parent of entry to allocate
1271 * @name: qstr of the name
1272 *
1273 * Allocates a dentry. It returns %NULL if there is insufficient memory
1274 * available. On a success the dentry is returned. The name passed in is
1275 * copied and the copy passed in may be reused after this call.
1276 */
1277
1278 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1279 {
1280 struct dentry *dentry;
1281 char *dname;
1282
1283 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1284 if (!dentry)
1285 return NULL;
1286
1287 if (name->len > DNAME_INLINE_LEN-1) {
1288 dname = kmalloc(name->len + 1, GFP_KERNEL);
1289 if (!dname) {
1290 kmem_cache_free(dentry_cache, dentry);
1291 return NULL;
1292 }
1293 } else {
1294 dname = dentry->d_iname;
1295 }
1296 dentry->d_name.name = dname;
1297
1298 dentry->d_name.len = name->len;
1299 dentry->d_name.hash = name->hash;
1300 memcpy(dname, name->name, name->len);
1301 dname[name->len] = 0;
1302
1303 dentry->d_count = 1;
1304 dentry->d_flags = DCACHE_UNHASHED;
1305 spin_lock_init(&dentry->d_lock);
1306 seqcount_init(&dentry->d_seq);
1307 dentry->d_inode = NULL;
1308 dentry->d_parent = NULL;
1309 dentry->d_sb = NULL;
1310 dentry->d_op = NULL;
1311 dentry->d_fsdata = NULL;
1312 INIT_HLIST_BL_NODE(&dentry->d_hash);
1313 INIT_LIST_HEAD(&dentry->d_lru);
1314 INIT_LIST_HEAD(&dentry->d_subdirs);
1315 INIT_LIST_HEAD(&dentry->d_alias);
1316 INIT_LIST_HEAD(&dentry->d_u.d_child);
1317
1318 if (parent) {
1319 spin_lock(&parent->d_lock);
1320 /*
1321 * don't need child lock because it is not subject
1322 * to concurrency here
1323 */
1324 __dget_dlock(parent);
1325 dentry->d_parent = parent;
1326 dentry->d_sb = parent->d_sb;
1327 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1328 list_add(&dentry->d_u.d_child, &parent->d_subdirs);
1329 spin_unlock(&parent->d_lock);
1330 }
1331
1332 this_cpu_inc(nr_dentry);
1333
1334 return dentry;
1335 }
1336 EXPORT_SYMBOL(d_alloc);
1337
1338 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1339 {
1340 struct dentry *dentry = d_alloc(NULL, name);
1341 if (dentry) {
1342 dentry->d_sb = sb;
1343 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1344 dentry->d_parent = dentry;
1345 dentry->d_flags |= DCACHE_DISCONNECTED;
1346 }
1347 return dentry;
1348 }
1349 EXPORT_SYMBOL(d_alloc_pseudo);
1350
1351 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1352 {
1353 struct qstr q;
1354
1355 q.name = name;
1356 q.len = strlen(name);
1357 q.hash = full_name_hash(q.name, q.len);
1358 return d_alloc(parent, &q);
1359 }
1360 EXPORT_SYMBOL(d_alloc_name);
1361
1362 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1363 {
1364 WARN_ON_ONCE(dentry->d_op);
1365 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
1366 DCACHE_OP_COMPARE |
1367 DCACHE_OP_REVALIDATE |
1368 DCACHE_OP_DELETE ));
1369 dentry->d_op = op;
1370 if (!op)
1371 return;
1372 if (op->d_hash)
1373 dentry->d_flags |= DCACHE_OP_HASH;
1374 if (op->d_compare)
1375 dentry->d_flags |= DCACHE_OP_COMPARE;
1376 if (op->d_revalidate)
1377 dentry->d_flags |= DCACHE_OP_REVALIDATE;
1378 if (op->d_delete)
1379 dentry->d_flags |= DCACHE_OP_DELETE;
1380
1381 }
1382 EXPORT_SYMBOL(d_set_d_op);
1383
1384 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1385 {
1386 spin_lock(&dentry->d_lock);
1387 if (inode) {
1388 if (unlikely(IS_AUTOMOUNT(inode)))
1389 dentry->d_flags |= DCACHE_NEED_AUTOMOUNT;
1390 list_add(&dentry->d_alias, &inode->i_dentry);
1391 }
1392 dentry->d_inode = inode;
1393 dentry_rcuwalk_barrier(dentry);
1394 spin_unlock(&dentry->d_lock);
1395 fsnotify_d_instantiate(dentry, inode);
1396 }
1397
1398 /**
1399 * d_instantiate - fill in inode information for a dentry
1400 * @entry: dentry to complete
1401 * @inode: inode to attach to this dentry
1402 *
1403 * Fill in inode information in the entry.
1404 *
1405 * This turns negative dentries into productive full members
1406 * of society.
1407 *
1408 * NOTE! This assumes that the inode count has been incremented
1409 * (or otherwise set) by the caller to indicate that it is now
1410 * in use by the dcache.
1411 */
1412
1413 void d_instantiate(struct dentry *entry, struct inode * inode)
1414 {
1415 BUG_ON(!list_empty(&entry->d_alias));
1416 if (inode)
1417 spin_lock(&inode->i_lock);
1418 __d_instantiate(entry, inode);
1419 if (inode)
1420 spin_unlock(&inode->i_lock);
1421 security_d_instantiate(entry, inode);
1422 }
1423 EXPORT_SYMBOL(d_instantiate);
1424
1425 /**
1426 * d_instantiate_unique - instantiate a non-aliased dentry
1427 * @entry: dentry to instantiate
1428 * @inode: inode to attach to this dentry
1429 *
1430 * Fill in inode information in the entry. On success, it returns NULL.
1431 * If an unhashed alias of "entry" already exists, then we return the
1432 * aliased dentry instead and drop one reference to inode.
1433 *
1434 * Note that in order to avoid conflicts with rename() etc, the caller
1435 * had better be holding the parent directory semaphore.
1436 *
1437 * This also assumes that the inode count has been incremented
1438 * (or otherwise set) by the caller to indicate that it is now
1439 * in use by the dcache.
1440 */
1441 static struct dentry *__d_instantiate_unique(struct dentry *entry,
1442 struct inode *inode)
1443 {
1444 struct dentry *alias;
1445 int len = entry->d_name.len;
1446 const char *name = entry->d_name.name;
1447 unsigned int hash = entry->d_name.hash;
1448
1449 if (!inode) {
1450 __d_instantiate(entry, NULL);
1451 return NULL;
1452 }
1453
1454 list_for_each_entry(alias, &inode->i_dentry, d_alias) {
1455 struct qstr *qstr = &alias->d_name;
1456
1457 /*
1458 * Don't need alias->d_lock here, because aliases with
1459 * d_parent == entry->d_parent are not subject to name or
1460 * parent changes, because the parent inode i_mutex is held.
1461 */
1462 if (qstr->hash != hash)
1463 continue;
1464 if (alias->d_parent != entry->d_parent)
1465 continue;
1466 if (dentry_cmp(qstr->name, qstr->len, name, len))
1467 continue;
1468 __dget(alias);
1469 return alias;
1470 }
1471
1472 __d_instantiate(entry, inode);
1473 return NULL;
1474 }
1475
1476 struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1477 {
1478 struct dentry *result;
1479
1480 BUG_ON(!list_empty(&entry->d_alias));
1481
1482 if (inode)
1483 spin_lock(&inode->i_lock);
1484 result = __d_instantiate_unique(entry, inode);
1485 if (inode)
1486 spin_unlock(&inode->i_lock);
1487
1488 if (!result) {
1489 security_d_instantiate(entry, inode);
1490 return NULL;
1491 }
1492
1493 BUG_ON(!d_unhashed(result));
1494 iput(inode);
1495 return result;
1496 }
1497
1498 EXPORT_SYMBOL(d_instantiate_unique);
1499
1500 /**
1501 * d_alloc_root - allocate root dentry
1502 * @root_inode: inode to allocate the root for
1503 *
1504 * Allocate a root ("/") dentry for the inode given. The inode is
1505 * instantiated and returned. %NULL is returned if there is insufficient
1506 * memory or the inode passed is %NULL.
1507 */
1508
1509 struct dentry * d_alloc_root(struct inode * root_inode)
1510 {
1511 struct dentry *res = NULL;
1512
1513 if (root_inode) {
1514 static const struct qstr name = { .name = "/", .len = 1 };
1515
1516 res = d_alloc(NULL, &name);
1517 if (res) {
1518 res->d_sb = root_inode->i_sb;
1519 d_set_d_op(res, res->d_sb->s_d_op);
1520 res->d_parent = res;
1521 d_instantiate(res, root_inode);
1522 }
1523 }
1524 return res;
1525 }
1526 EXPORT_SYMBOL(d_alloc_root);
1527
1528 static struct dentry * __d_find_any_alias(struct inode *inode)
1529 {
1530 struct dentry *alias;
1531
1532 if (list_empty(&inode->i_dentry))
1533 return NULL;
1534 alias = list_first_entry(&inode->i_dentry, struct dentry, d_alias);
1535 __dget(alias);
1536 return alias;
1537 }
1538
1539 static struct dentry * d_find_any_alias(struct inode *inode)
1540 {
1541 struct dentry *de;
1542
1543 spin_lock(&inode->i_lock);
1544 de = __d_find_any_alias(inode);
1545 spin_unlock(&inode->i_lock);
1546 return de;
1547 }
1548
1549
1550 /**
1551 * d_obtain_alias - find or allocate a dentry for a given inode
1552 * @inode: inode to allocate the dentry for
1553 *
1554 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1555 * similar open by handle operations. The returned dentry may be anonymous,
1556 * or may have a full name (if the inode was already in the cache).
1557 *
1558 * When called on a directory inode, we must ensure that the inode only ever
1559 * has one dentry. If a dentry is found, that is returned instead of
1560 * allocating a new one.
1561 *
1562 * On successful return, the reference to the inode has been transferred
1563 * to the dentry. In case of an error the reference on the inode is released.
1564 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1565 * be passed in and will be the error will be propagate to the return value,
1566 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1567 */
1568 struct dentry *d_obtain_alias(struct inode *inode)
1569 {
1570 static const struct qstr anonstring = { .name = "" };
1571 struct dentry *tmp;
1572 struct dentry *res;
1573
1574 if (!inode)
1575 return ERR_PTR(-ESTALE);
1576 if (IS_ERR(inode))
1577 return ERR_CAST(inode);
1578
1579 res = d_find_any_alias(inode);
1580 if (res)
1581 goto out_iput;
1582
1583 tmp = d_alloc(NULL, &anonstring);
1584 if (!tmp) {
1585 res = ERR_PTR(-ENOMEM);
1586 goto out_iput;
1587 }
1588 tmp->d_parent = tmp; /* make sure dput doesn't croak */
1589
1590
1591 spin_lock(&inode->i_lock);
1592 res = __d_find_any_alias(inode);
1593 if (res) {
1594 spin_unlock(&inode->i_lock);
1595 dput(tmp);
1596 goto out_iput;
1597 }
1598
1599 /* attach a disconnected dentry */
1600 spin_lock(&tmp->d_lock);
1601 tmp->d_sb = inode->i_sb;
1602 d_set_d_op(tmp, tmp->d_sb->s_d_op);
1603 tmp->d_inode = inode;
1604 tmp->d_flags |= DCACHE_DISCONNECTED;
1605 list_add(&tmp->d_alias, &inode->i_dentry);
1606 bit_spin_lock(0, (unsigned long *)&tmp->d_sb->s_anon.first);
1607 tmp->d_flags &= ~DCACHE_UNHASHED;
1608 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1609 __bit_spin_unlock(0, (unsigned long *)&tmp->d_sb->s_anon.first);
1610 spin_unlock(&tmp->d_lock);
1611 spin_unlock(&inode->i_lock);
1612 security_d_instantiate(tmp, inode);
1613
1614 return tmp;
1615
1616 out_iput:
1617 if (res && !IS_ERR(res))
1618 security_d_instantiate(res, inode);
1619 iput(inode);
1620 return res;
1621 }
1622 EXPORT_SYMBOL(d_obtain_alias);
1623
1624 /**
1625 * d_splice_alias - splice a disconnected dentry into the tree if one exists
1626 * @inode: the inode which may have a disconnected dentry
1627 * @dentry: a negative dentry which we want to point to the inode.
1628 *
1629 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1630 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1631 * and return it, else simply d_add the inode to the dentry and return NULL.
1632 *
1633 * This is needed in the lookup routine of any filesystem that is exportable
1634 * (via knfsd) so that we can build dcache paths to directories effectively.
1635 *
1636 * If a dentry was found and moved, then it is returned. Otherwise NULL
1637 * is returned. This matches the expected return value of ->lookup.
1638 *
1639 */
1640 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
1641 {
1642 struct dentry *new = NULL;
1643
1644 if (inode && S_ISDIR(inode->i_mode)) {
1645 spin_lock(&inode->i_lock);
1646 new = __d_find_alias(inode, 1);
1647 if (new) {
1648 BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED));
1649 spin_unlock(&inode->i_lock);
1650 security_d_instantiate(new, inode);
1651 d_move(new, dentry);
1652 iput(inode);
1653 } else {
1654 /* already taking inode->i_lock, so d_add() by hand */
1655 __d_instantiate(dentry, inode);
1656 spin_unlock(&inode->i_lock);
1657 security_d_instantiate(dentry, inode);
1658 d_rehash(dentry);
1659 }
1660 } else
1661 d_add(dentry, inode);
1662 return new;
1663 }
1664 EXPORT_SYMBOL(d_splice_alias);
1665
1666 /**
1667 * d_add_ci - lookup or allocate new dentry with case-exact name
1668 * @inode: the inode case-insensitive lookup has found
1669 * @dentry: the negative dentry that was passed to the parent's lookup func
1670 * @name: the case-exact name to be associated with the returned dentry
1671 *
1672 * This is to avoid filling the dcache with case-insensitive names to the
1673 * same inode, only the actual correct case is stored in the dcache for
1674 * case-insensitive filesystems.
1675 *
1676 * For a case-insensitive lookup match and if the the case-exact dentry
1677 * already exists in in the dcache, use it and return it.
1678 *
1679 * If no entry exists with the exact case name, allocate new dentry with
1680 * the exact case, and return the spliced entry.
1681 */
1682 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
1683 struct qstr *name)
1684 {
1685 int error;
1686 struct dentry *found;
1687 struct dentry *new;
1688
1689 /*
1690 * First check if a dentry matching the name already exists,
1691 * if not go ahead and create it now.
1692 */
1693 found = d_hash_and_lookup(dentry->d_parent, name);
1694 if (!found) {
1695 new = d_alloc(dentry->d_parent, name);
1696 if (!new) {
1697 error = -ENOMEM;
1698 goto err_out;
1699 }
1700
1701 found = d_splice_alias(inode, new);
1702 if (found) {
1703 dput(new);
1704 return found;
1705 }
1706 return new;
1707 }
1708
1709 /*
1710 * If a matching dentry exists, and it's not negative use it.
1711 *
1712 * Decrement the reference count to balance the iget() done
1713 * earlier on.
1714 */
1715 if (found->d_inode) {
1716 if (unlikely(found->d_inode != inode)) {
1717 /* This can't happen because bad inodes are unhashed. */
1718 BUG_ON(!is_bad_inode(inode));
1719 BUG_ON(!is_bad_inode(found->d_inode));
1720 }
1721 iput(inode);
1722 return found;
1723 }
1724
1725 /*
1726 * Negative dentry: instantiate it unless the inode is a directory and
1727 * already has a dentry.
1728 */
1729 spin_lock(&inode->i_lock);
1730 if (!S_ISDIR(inode->i_mode) || list_empty(&inode->i_dentry)) {
1731 __d_instantiate(found, inode);
1732 spin_unlock(&inode->i_lock);
1733 security_d_instantiate(found, inode);
1734 return found;
1735 }
1736
1737 /*
1738 * In case a directory already has a (disconnected) entry grab a
1739 * reference to it, move it in place and use it.
1740 */
1741 new = list_entry(inode->i_dentry.next, struct dentry, d_alias);
1742 __dget(new);
1743 spin_unlock(&inode->i_lock);
1744 security_d_instantiate(found, inode);
1745 d_move(new, found);
1746 iput(inode);
1747 dput(found);
1748 return new;
1749
1750 err_out:
1751 iput(inode);
1752 return ERR_PTR(error);
1753 }
1754 EXPORT_SYMBOL(d_add_ci);
1755
1756 /**
1757 * __d_lookup_rcu - search for a dentry (racy, store-free)
1758 * @parent: parent dentry
1759 * @name: qstr of name we wish to find
1760 * @seq: returns d_seq value at the point where the dentry was found
1761 * @inode: returns dentry->d_inode when the inode was found valid.
1762 * Returns: dentry, or NULL
1763 *
1764 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
1765 * resolution (store-free path walking) design described in
1766 * Documentation/filesystems/path-lookup.txt.
1767 *
1768 * This is not to be used outside core vfs.
1769 *
1770 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
1771 * held, and rcu_read_lock held. The returned dentry must not be stored into
1772 * without taking d_lock and checking d_seq sequence count against @seq
1773 * returned here.
1774 *
1775 * A refcount may be taken on the found dentry with the __d_rcu_to_refcount
1776 * function.
1777 *
1778 * Alternatively, __d_lookup_rcu may be called again to look up the child of
1779 * the returned dentry, so long as its parent's seqlock is checked after the
1780 * child is looked up. Thus, an interlocking stepping of sequence lock checks
1781 * is formed, giving integrity down the path walk.
1782 */
1783 struct dentry *__d_lookup_rcu(struct dentry *parent, struct qstr *name,
1784 unsigned *seq, struct inode **inode)
1785 {
1786 unsigned int len = name->len;
1787 unsigned int hash = name->hash;
1788 const unsigned char *str = name->name;
1789 struct hlist_bl_head *b = d_hash(parent, hash);
1790 struct hlist_bl_node *node;
1791 struct dentry *dentry;
1792
1793 /*
1794 * Note: There is significant duplication with __d_lookup_rcu which is
1795 * required to prevent single threaded performance regressions
1796 * especially on architectures where smp_rmb (in seqcounts) are costly.
1797 * Keep the two functions in sync.
1798 */
1799
1800 /*
1801 * The hash list is protected using RCU.
1802 *
1803 * Carefully use d_seq when comparing a candidate dentry, to avoid
1804 * races with d_move().
1805 *
1806 * It is possible that concurrent renames can mess up our list
1807 * walk here and result in missing our dentry, resulting in the
1808 * false-negative result. d_lookup() protects against concurrent
1809 * renames using rename_lock seqlock.
1810 *
1811 * See Documentation/filesystems/path-lookup.txt for more details.
1812 */
1813 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1814 struct inode *i;
1815 const char *tname;
1816 int tlen;
1817
1818 if (dentry->d_name.hash != hash)
1819 continue;
1820
1821 seqretry:
1822 *seq = read_seqcount_begin(&dentry->d_seq);
1823 if (dentry->d_parent != parent)
1824 continue;
1825 if (d_unhashed(dentry))
1826 continue;
1827 tlen = dentry->d_name.len;
1828 tname = dentry->d_name.name;
1829 i = dentry->d_inode;
1830 prefetch(tname);
1831 if (i)
1832 prefetch(i);
1833 /*
1834 * This seqcount check is required to ensure name and
1835 * len are loaded atomically, so as not to walk off the
1836 * edge of memory when walking. If we could load this
1837 * atomically some other way, we could drop this check.
1838 */
1839 if (read_seqcount_retry(&dentry->d_seq, *seq))
1840 goto seqretry;
1841 if (parent->d_flags & DCACHE_OP_COMPARE) {
1842 if (parent->d_op->d_compare(parent, *inode,
1843 dentry, i,
1844 tlen, tname, name))
1845 continue;
1846 } else {
1847 if (dentry_cmp(tname, tlen, str, len))
1848 continue;
1849 }
1850 /*
1851 * No extra seqcount check is required after the name
1852 * compare. The caller must perform a seqcount check in
1853 * order to do anything useful with the returned dentry
1854 * anyway.
1855 */
1856 *inode = i;
1857 return dentry;
1858 }
1859 return NULL;
1860 }
1861
1862 /**
1863 * d_lookup - search for a dentry
1864 * @parent: parent dentry
1865 * @name: qstr of name we wish to find
1866 * Returns: dentry, or NULL
1867 *
1868 * d_lookup searches the children of the parent dentry for the name in
1869 * question. If the dentry is found its reference count is incremented and the
1870 * dentry is returned. The caller must use dput to free the entry when it has
1871 * finished using it. %NULL is returned if the dentry does not exist.
1872 */
1873 struct dentry *d_lookup(struct dentry *parent, struct qstr *name)
1874 {
1875 struct dentry *dentry;
1876 unsigned seq;
1877
1878 do {
1879 seq = read_seqbegin(&rename_lock);
1880 dentry = __d_lookup(parent, name);
1881 if (dentry)
1882 break;
1883 } while (read_seqretry(&rename_lock, seq));
1884 return dentry;
1885 }
1886 EXPORT_SYMBOL(d_lookup);
1887
1888 /**
1889 * __d_lookup - search for a dentry (racy)
1890 * @parent: parent dentry
1891 * @name: qstr of name we wish to find
1892 * Returns: dentry, or NULL
1893 *
1894 * __d_lookup is like d_lookup, however it may (rarely) return a
1895 * false-negative result due to unrelated rename activity.
1896 *
1897 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
1898 * however it must be used carefully, eg. with a following d_lookup in
1899 * the case of failure.
1900 *
1901 * __d_lookup callers must be commented.
1902 */
1903 struct dentry *__d_lookup(struct dentry *parent, struct qstr *name)
1904 {
1905 unsigned int len = name->len;
1906 unsigned int hash = name->hash;
1907 const unsigned char *str = name->name;
1908 struct hlist_bl_head *b = d_hash(parent, hash);
1909 struct hlist_bl_node *node;
1910 struct dentry *found = NULL;
1911 struct dentry *dentry;
1912
1913 /*
1914 * Note: There is significant duplication with __d_lookup_rcu which is
1915 * required to prevent single threaded performance regressions
1916 * especially on architectures where smp_rmb (in seqcounts) are costly.
1917 * Keep the two functions in sync.
1918 */
1919
1920 /*
1921 * The hash list is protected using RCU.
1922 *
1923 * Take d_lock when comparing a candidate dentry, to avoid races
1924 * with d_move().
1925 *
1926 * It is possible that concurrent renames can mess up our list
1927 * walk here and result in missing our dentry, resulting in the
1928 * false-negative result. d_lookup() protects against concurrent
1929 * renames using rename_lock seqlock.
1930 *
1931 * See Documentation/filesystems/path-lookup.txt for more details.
1932 */
1933 rcu_read_lock();
1934
1935 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1936 const char *tname;
1937 int tlen;
1938
1939 if (dentry->d_name.hash != hash)
1940 continue;
1941
1942 spin_lock(&dentry->d_lock);
1943 if (dentry->d_parent != parent)
1944 goto next;
1945 if (d_unhashed(dentry))
1946 goto next;
1947
1948 /*
1949 * It is safe to compare names since d_move() cannot
1950 * change the qstr (protected by d_lock).
1951 */
1952 tlen = dentry->d_name.len;
1953 tname = dentry->d_name.name;
1954 if (parent->d_flags & DCACHE_OP_COMPARE) {
1955 if (parent->d_op->d_compare(parent, parent->d_inode,
1956 dentry, dentry->d_inode,
1957 tlen, tname, name))
1958 goto next;
1959 } else {
1960 if (dentry_cmp(tname, tlen, str, len))
1961 goto next;
1962 }
1963
1964 dentry->d_count++;
1965 found = dentry;
1966 spin_unlock(&dentry->d_lock);
1967 break;
1968 next:
1969 spin_unlock(&dentry->d_lock);
1970 }
1971 rcu_read_unlock();
1972
1973 return found;
1974 }
1975
1976 /**
1977 * d_hash_and_lookup - hash the qstr then search for a dentry
1978 * @dir: Directory to search in
1979 * @name: qstr of name we wish to find
1980 *
1981 * On hash failure or on lookup failure NULL is returned.
1982 */
1983 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
1984 {
1985 struct dentry *dentry = NULL;
1986
1987 /*
1988 * Check for a fs-specific hash function. Note that we must
1989 * calculate the standard hash first, as the d_op->d_hash()
1990 * routine may choose to leave the hash value unchanged.
1991 */
1992 name->hash = full_name_hash(name->name, name->len);
1993 if (dir->d_flags & DCACHE_OP_HASH) {
1994 if (dir->d_op->d_hash(dir, dir->d_inode, name) < 0)
1995 goto out;
1996 }
1997 dentry = d_lookup(dir, name);
1998 out:
1999 return dentry;
2000 }
2001
2002 /**
2003 * d_validate - verify dentry provided from insecure source (deprecated)
2004 * @dentry: The dentry alleged to be valid child of @dparent
2005 * @dparent: The parent dentry (known to be valid)
2006 *
2007 * An insecure source has sent us a dentry, here we verify it and dget() it.
2008 * This is used by ncpfs in its readdir implementation.
2009 * Zero is returned in the dentry is invalid.
2010 *
2011 * This function is slow for big directories, and deprecated, do not use it.
2012 */
2013 int d_validate(struct dentry *dentry, struct dentry *dparent)
2014 {
2015 struct dentry *child;
2016
2017 spin_lock(&dparent->d_lock);
2018 list_for_each_entry(child, &dparent->d_subdirs, d_u.d_child) {
2019 if (dentry == child) {
2020 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
2021 __dget_dlock(dentry);
2022 spin_unlock(&dentry->d_lock);
2023 spin_unlock(&dparent->d_lock);
2024 return 1;
2025 }
2026 }
2027 spin_unlock(&dparent->d_lock);
2028
2029 return 0;
2030 }
2031 EXPORT_SYMBOL(d_validate);
2032
2033 /*
2034 * When a file is deleted, we have two options:
2035 * - turn this dentry into a negative dentry
2036 * - unhash this dentry and free it.
2037 *
2038 * Usually, we want to just turn this into
2039 * a negative dentry, but if anybody else is
2040 * currently using the dentry or the inode
2041 * we can't do that and we fall back on removing
2042 * it from the hash queues and waiting for
2043 * it to be deleted later when it has no users
2044 */
2045
2046 /**
2047 * d_delete - delete a dentry
2048 * @dentry: The dentry to delete
2049 *
2050 * Turn the dentry into a negative dentry if possible, otherwise
2051 * remove it from the hash queues so it can be deleted later
2052 */
2053
2054 void d_delete(struct dentry * dentry)
2055 {
2056 struct inode *inode;
2057 int isdir = 0;
2058 /*
2059 * Are we the only user?
2060 */
2061 again:
2062 spin_lock(&dentry->d_lock);
2063 inode = dentry->d_inode;
2064 isdir = S_ISDIR(inode->i_mode);
2065 if (dentry->d_count == 1) {
2066 if (inode && !spin_trylock(&inode->i_lock)) {
2067 spin_unlock(&dentry->d_lock);
2068 cpu_relax();
2069 goto again;
2070 }
2071 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2072 dentry_unlink_inode(dentry);
2073 fsnotify_nameremove(dentry, isdir);
2074 return;
2075 }
2076
2077 if (!d_unhashed(dentry))
2078 __d_drop(dentry);
2079
2080 spin_unlock(&dentry->d_lock);
2081
2082 fsnotify_nameremove(dentry, isdir);
2083 }
2084 EXPORT_SYMBOL(d_delete);
2085
2086 static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b)
2087 {
2088 BUG_ON(!d_unhashed(entry));
2089 spin_lock_bucket(b);
2090 entry->d_flags &= ~DCACHE_UNHASHED;
2091 hlist_bl_add_head_rcu(&entry->d_hash, b);
2092 spin_unlock_bucket(b);
2093 }
2094
2095 static void _d_rehash(struct dentry * entry)
2096 {
2097 __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
2098 }
2099
2100 /**
2101 * d_rehash - add an entry back to the hash
2102 * @entry: dentry to add to the hash
2103 *
2104 * Adds a dentry to the hash according to its name.
2105 */
2106
2107 void d_rehash(struct dentry * entry)
2108 {
2109 spin_lock(&entry->d_lock);
2110 _d_rehash(entry);
2111 spin_unlock(&entry->d_lock);
2112 }
2113 EXPORT_SYMBOL(d_rehash);
2114
2115 /**
2116 * dentry_update_name_case - update case insensitive dentry with a new name
2117 * @dentry: dentry to be updated
2118 * @name: new name
2119 *
2120 * Update a case insensitive dentry with new case of name.
2121 *
2122 * dentry must have been returned by d_lookup with name @name. Old and new
2123 * name lengths must match (ie. no d_compare which allows mismatched name
2124 * lengths).
2125 *
2126 * Parent inode i_mutex must be held over d_lookup and into this call (to
2127 * keep renames and concurrent inserts, and readdir(2) away).
2128 */
2129 void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
2130 {
2131 BUG_ON(!mutex_is_locked(&dentry->d_parent->d_inode->i_mutex));
2132 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2133
2134 spin_lock(&dentry->d_lock);
2135 write_seqcount_begin(&dentry->d_seq);
2136 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
2137 write_seqcount_end(&dentry->d_seq);
2138 spin_unlock(&dentry->d_lock);
2139 }
2140 EXPORT_SYMBOL(dentry_update_name_case);
2141
2142 static void switch_names(struct dentry *dentry, struct dentry *target)
2143 {
2144 if (dname_external(target)) {
2145 if (dname_external(dentry)) {
2146 /*
2147 * Both external: swap the pointers
2148 */
2149 swap(target->d_name.name, dentry->d_name.name);
2150 } else {
2151 /*
2152 * dentry:internal, target:external. Steal target's
2153 * storage and make target internal.
2154 */
2155 memcpy(target->d_iname, dentry->d_name.name,
2156 dentry->d_name.len + 1);
2157 dentry->d_name.name = target->d_name.name;
2158 target->d_name.name = target->d_iname;
2159 }
2160 } else {
2161 if (dname_external(dentry)) {
2162 /*
2163 * dentry:external, target:internal. Give dentry's
2164 * storage to target and make dentry internal
2165 */
2166 memcpy(dentry->d_iname, target->d_name.name,
2167 target->d_name.len + 1);
2168 target->d_name.name = dentry->d_name.name;
2169 dentry->d_name.name = dentry->d_iname;
2170 } else {
2171 /*
2172 * Both are internal. Just copy target to dentry
2173 */
2174 memcpy(dentry->d_iname, target->d_name.name,
2175 target->d_name.len + 1);
2176 dentry->d_name.len = target->d_name.len;
2177 return;
2178 }
2179 }
2180 swap(dentry->d_name.len, target->d_name.len);
2181 }
2182
2183 static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2184 {
2185 /*
2186 * XXXX: do we really need to take target->d_lock?
2187 */
2188 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2189 spin_lock(&target->d_parent->d_lock);
2190 else {
2191 if (d_ancestor(dentry->d_parent, target->d_parent)) {
2192 spin_lock(&dentry->d_parent->d_lock);
2193 spin_lock_nested(&target->d_parent->d_lock,
2194 DENTRY_D_LOCK_NESTED);
2195 } else {
2196 spin_lock(&target->d_parent->d_lock);
2197 spin_lock_nested(&dentry->d_parent->d_lock,
2198 DENTRY_D_LOCK_NESTED);
2199 }
2200 }
2201 if (target < dentry) {
2202 spin_lock_nested(&target->d_lock, 2);
2203 spin_lock_nested(&dentry->d_lock, 3);
2204 } else {
2205 spin_lock_nested(&dentry->d_lock, 2);
2206 spin_lock_nested(&target->d_lock, 3);
2207 }
2208 }
2209
2210 static void dentry_unlock_parents_for_move(struct dentry *dentry,
2211 struct dentry *target)
2212 {
2213 if (target->d_parent != dentry->d_parent)
2214 spin_unlock(&dentry->d_parent->d_lock);
2215 if (target->d_parent != target)
2216 spin_unlock(&target->d_parent->d_lock);
2217 }
2218
2219 /*
2220 * When switching names, the actual string doesn't strictly have to
2221 * be preserved in the target - because we're dropping the target
2222 * anyway. As such, we can just do a simple memcpy() to copy over
2223 * the new name before we switch.
2224 *
2225 * Note that we have to be a lot more careful about getting the hash
2226 * switched - we have to switch the hash value properly even if it
2227 * then no longer matches the actual (corrupted) string of the target.
2228 * The hash value has to match the hash queue that the dentry is on..
2229 */
2230 /*
2231 * d_move - move a dentry
2232 * @dentry: entry to move
2233 * @target: new dentry
2234 *
2235 * Update the dcache to reflect the move of a file name. Negative
2236 * dcache entries should not be moved in this way.
2237 */
2238 void d_move(struct dentry * dentry, struct dentry * target)
2239 {
2240 if (!dentry->d_inode)
2241 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2242
2243 BUG_ON(d_ancestor(dentry, target));
2244 BUG_ON(d_ancestor(target, dentry));
2245
2246 write_seqlock(&rename_lock);
2247
2248 dentry_lock_for_move(dentry, target);
2249
2250 write_seqcount_begin(&dentry->d_seq);
2251 write_seqcount_begin(&target->d_seq);
2252
2253 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2254
2255 /*
2256 * Move the dentry to the target hash queue. Don't bother checking
2257 * for the same hash queue because of how unlikely it is.
2258 */
2259 __d_drop(dentry);
2260 __d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
2261
2262 /* Unhash the target: dput() will then get rid of it */
2263 __d_drop(target);
2264
2265 list_del(&dentry->d_u.d_child);
2266 list_del(&target->d_u.d_child);
2267
2268 /* Switch the names.. */
2269 switch_names(dentry, target);
2270 swap(dentry->d_name.hash, target->d_name.hash);
2271
2272 /* ... and switch the parents */
2273 if (IS_ROOT(dentry)) {
2274 dentry->d_parent = target->d_parent;
2275 target->d_parent = target;
2276 INIT_LIST_HEAD(&target->d_u.d_child);
2277 } else {
2278 swap(dentry->d_parent, target->d_parent);
2279
2280 /* And add them back to the (new) parent lists */
2281 list_add(&target->d_u.d_child, &target->d_parent->d_subdirs);
2282 }
2283
2284 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2285
2286 write_seqcount_end(&target->d_seq);
2287 write_seqcount_end(&dentry->d_seq);
2288
2289 dentry_unlock_parents_for_move(dentry, target);
2290 spin_unlock(&target->d_lock);
2291 fsnotify_d_move(dentry);
2292 spin_unlock(&dentry->d_lock);
2293 write_sequnlock(&rename_lock);
2294 }
2295 EXPORT_SYMBOL(d_move);
2296
2297 /**
2298 * d_ancestor - search for an ancestor
2299 * @p1: ancestor dentry
2300 * @p2: child dentry
2301 *
2302 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2303 * an ancestor of p2, else NULL.
2304 */
2305 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2306 {
2307 struct dentry *p;
2308
2309 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2310 if (p->d_parent == p1)
2311 return p;
2312 }
2313 return NULL;
2314 }
2315
2316 /*
2317 * This helper attempts to cope with remotely renamed directories
2318 *
2319 * It assumes that the caller is already holding
2320 * dentry->d_parent->d_inode->i_mutex and the inode->i_lock
2321 *
2322 * Note: If ever the locking in lock_rename() changes, then please
2323 * remember to update this too...
2324 */
2325 static struct dentry *__d_unalias(struct inode *inode,
2326 struct dentry *dentry, struct dentry *alias)
2327 {
2328 struct mutex *m1 = NULL, *m2 = NULL;
2329 struct dentry *ret;
2330
2331 /* If alias and dentry share a parent, then no extra locks required */
2332 if (alias->d_parent == dentry->d_parent)
2333 goto out_unalias;
2334
2335 /* Check for loops */
2336 ret = ERR_PTR(-ELOOP);
2337 if (d_ancestor(alias, dentry))
2338 goto out_err;
2339
2340 /* See lock_rename() */
2341 ret = ERR_PTR(-EBUSY);
2342 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2343 goto out_err;
2344 m1 = &dentry->d_sb->s_vfs_rename_mutex;
2345 if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
2346 goto out_err;
2347 m2 = &alias->d_parent->d_inode->i_mutex;
2348 out_unalias:
2349 d_move(alias, dentry);
2350 ret = alias;
2351 out_err:
2352 spin_unlock(&inode->i_lock);
2353 if (m2)
2354 mutex_unlock(m2);
2355 if (m1)
2356 mutex_unlock(m1);
2357 return ret;
2358 }
2359
2360 /*
2361 * Prepare an anonymous dentry for life in the superblock's dentry tree as a
2362 * named dentry in place of the dentry to be replaced.
2363 * returns with anon->d_lock held!
2364 */
2365 static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon)
2366 {
2367 struct dentry *dparent, *aparent;
2368
2369 dentry_lock_for_move(anon, dentry);
2370
2371 write_seqcount_begin(&dentry->d_seq);
2372 write_seqcount_begin(&anon->d_seq);
2373
2374 dparent = dentry->d_parent;
2375 aparent = anon->d_parent;
2376
2377 switch_names(dentry, anon);
2378 swap(dentry->d_name.hash, anon->d_name.hash);
2379
2380 dentry->d_parent = (aparent == anon) ? dentry : aparent;
2381 list_del(&dentry->d_u.d_child);
2382 if (!IS_ROOT(dentry))
2383 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2384 else
2385 INIT_LIST_HEAD(&dentry->d_u.d_child);
2386
2387 anon->d_parent = (dparent == dentry) ? anon : dparent;
2388 list_del(&anon->d_u.d_child);
2389 if (!IS_ROOT(anon))
2390 list_add(&anon->d_u.d_child, &anon->d_parent->d_subdirs);
2391 else
2392 INIT_LIST_HEAD(&anon->d_u.d_child);
2393
2394 write_seqcount_end(&dentry->d_seq);
2395 write_seqcount_end(&anon->d_seq);
2396
2397 dentry_unlock_parents_for_move(anon, dentry);
2398 spin_unlock(&dentry->d_lock);
2399
2400 /* anon->d_lock still locked, returns locked */
2401 anon->d_flags &= ~DCACHE_DISCONNECTED;
2402 }
2403
2404 /**
2405 * d_materialise_unique - introduce an inode into the tree
2406 * @dentry: candidate dentry
2407 * @inode: inode to bind to the dentry, to which aliases may be attached
2408 *
2409 * Introduces an dentry into the tree, substituting an extant disconnected
2410 * root directory alias in its place if there is one
2411 */
2412 struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
2413 {
2414 struct dentry *actual;
2415
2416 BUG_ON(!d_unhashed(dentry));
2417
2418 if (!inode) {
2419 actual = dentry;
2420 __d_instantiate(dentry, NULL);
2421 d_rehash(actual);
2422 goto out_nolock;
2423 }
2424
2425 spin_lock(&inode->i_lock);
2426
2427 if (S_ISDIR(inode->i_mode)) {
2428 struct dentry *alias;
2429
2430 /* Does an aliased dentry already exist? */
2431 alias = __d_find_alias(inode, 0);
2432 if (alias) {
2433 actual = alias;
2434 /* Is this an anonymous mountpoint that we could splice
2435 * into our tree? */
2436 if (IS_ROOT(alias)) {
2437 __d_materialise_dentry(dentry, alias);
2438 __d_drop(alias);
2439 goto found;
2440 }
2441 /* Nope, but we must(!) avoid directory aliasing */
2442 actual = __d_unalias(inode, dentry, alias);
2443 if (IS_ERR(actual))
2444 dput(alias);
2445 goto out_nolock;
2446 }
2447 }
2448
2449 /* Add a unique reference */
2450 actual = __d_instantiate_unique(dentry, inode);
2451 if (!actual)
2452 actual = dentry;
2453 else
2454 BUG_ON(!d_unhashed(actual));
2455
2456 spin_lock(&actual->d_lock);
2457 found:
2458 _d_rehash(actual);
2459 spin_unlock(&actual->d_lock);
2460 spin_unlock(&inode->i_lock);
2461 out_nolock:
2462 if (actual == dentry) {
2463 security_d_instantiate(dentry, inode);
2464 return NULL;
2465 }
2466
2467 iput(inode);
2468 return actual;
2469 }
2470 EXPORT_SYMBOL_GPL(d_materialise_unique);
2471
2472 static int prepend(char **buffer, int *buflen, const char *str, int namelen)
2473 {
2474 *buflen -= namelen;
2475 if (*buflen < 0)
2476 return -ENAMETOOLONG;
2477 *buffer -= namelen;
2478 memcpy(*buffer, str, namelen);
2479 return 0;
2480 }
2481
2482 static int prepend_name(char **buffer, int *buflen, struct qstr *name)
2483 {
2484 return prepend(buffer, buflen, name->name, name->len);
2485 }
2486
2487 /**
2488 * prepend_path - Prepend path string to a buffer
2489 * @path: the dentry/vfsmount to report
2490 * @root: root vfsmnt/dentry (may be modified by this function)
2491 * @buffer: pointer to the end of the buffer
2492 * @buflen: pointer to buffer length
2493 *
2494 * Caller holds the rename_lock.
2495 *
2496 * If path is not reachable from the supplied root, then the value of
2497 * root is changed (without modifying refcounts).
2498 */
2499 static int prepend_path(const struct path *path, struct path *root,
2500 char **buffer, int *buflen)
2501 {
2502 struct dentry *dentry = path->dentry;
2503 struct vfsmount *vfsmnt = path->mnt;
2504 bool slash = false;
2505 int error = 0;
2506
2507 br_read_lock(vfsmount_lock);
2508 while (dentry != root->dentry || vfsmnt != root->mnt) {
2509 struct dentry * parent;
2510
2511 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
2512 /* Global root? */
2513 if (vfsmnt->mnt_parent == vfsmnt) {
2514 goto global_root;
2515 }
2516 dentry = vfsmnt->mnt_mountpoint;
2517 vfsmnt = vfsmnt->mnt_parent;
2518 continue;
2519 }
2520 parent = dentry->d_parent;
2521 prefetch(parent);
2522 spin_lock(&dentry->d_lock);
2523 error = prepend_name(buffer, buflen, &dentry->d_name);
2524 spin_unlock(&dentry->d_lock);
2525 if (!error)
2526 error = prepend(buffer, buflen, "/", 1);
2527 if (error)
2528 break;
2529
2530 slash = true;
2531 dentry = parent;
2532 }
2533
2534 out:
2535 if (!error && !slash)
2536 error = prepend(buffer, buflen, "/", 1);
2537
2538 br_read_unlock(vfsmount_lock);
2539 return error;
2540
2541 global_root:
2542 /*
2543 * Filesystems needing to implement special "root names"
2544 * should do so with ->d_dname()
2545 */
2546 if (IS_ROOT(dentry) &&
2547 (dentry->d_name.len != 1 || dentry->d_name.name[0] != '/')) {
2548 WARN(1, "Root dentry has weird name <%.*s>\n",
2549 (int) dentry->d_name.len, dentry->d_name.name);
2550 }
2551 root->mnt = vfsmnt;
2552 root->dentry = dentry;
2553 goto out;
2554 }
2555
2556 /**
2557 * __d_path - return the path of a dentry
2558 * @path: the dentry/vfsmount to report
2559 * @root: root vfsmnt/dentry (may be modified by this function)
2560 * @buf: buffer to return value in
2561 * @buflen: buffer length
2562 *
2563 * Convert a dentry into an ASCII path name.
2564 *
2565 * Returns a pointer into the buffer or an error code if the
2566 * path was too long.
2567 *
2568 * "buflen" should be positive.
2569 *
2570 * If path is not reachable from the supplied root, then the value of
2571 * root is changed (without modifying refcounts).
2572 */
2573 char *__d_path(const struct path *path, struct path *root,
2574 char *buf, int buflen)
2575 {
2576 char *res = buf + buflen;
2577 int error;
2578
2579 prepend(&res, &buflen, "\0", 1);
2580 write_seqlock(&rename_lock);
2581 error = prepend_path(path, root, &res, &buflen);
2582 write_sequnlock(&rename_lock);
2583
2584 if (error)
2585 return ERR_PTR(error);
2586 return res;
2587 }
2588
2589 /*
2590 * same as __d_path but appends "(deleted)" for unlinked files.
2591 */
2592 static int path_with_deleted(const struct path *path, struct path *root,
2593 char **buf, int *buflen)
2594 {
2595 prepend(buf, buflen, "\0", 1);
2596 if (d_unlinked(path->dentry)) {
2597 int error = prepend(buf, buflen, " (deleted)", 10);
2598 if (error)
2599 return error;
2600 }
2601
2602 return prepend_path(path, root, buf, buflen);
2603 }
2604
2605 static int prepend_unreachable(char **buffer, int *buflen)
2606 {
2607 return prepend(buffer, buflen, "(unreachable)", 13);
2608 }
2609
2610 /**
2611 * d_path - return the path of a dentry
2612 * @path: path to report
2613 * @buf: buffer to return value in
2614 * @buflen: buffer length
2615 *
2616 * Convert a dentry into an ASCII path name. If the entry has been deleted
2617 * the string " (deleted)" is appended. Note that this is ambiguous.
2618 *
2619 * Returns a pointer into the buffer or an error code if the path was
2620 * too long. Note: Callers should use the returned pointer, not the passed
2621 * in buffer, to use the name! The implementation often starts at an offset
2622 * into the buffer, and may leave 0 bytes at the start.
2623 *
2624 * "buflen" should be positive.
2625 */
2626 char *d_path(const struct path *path, char *buf, int buflen)
2627 {
2628 char *res = buf + buflen;
2629 struct path root;
2630 struct path tmp;
2631 int error;
2632
2633 /*
2634 * We have various synthetic filesystems that never get mounted. On
2635 * these filesystems dentries are never used for lookup purposes, and
2636 * thus don't need to be hashed. They also don't need a name until a
2637 * user wants to identify the object in /proc/pid/fd/. The little hack
2638 * below allows us to generate a name for these objects on demand:
2639 */
2640 if (path->dentry->d_op && path->dentry->d_op->d_dname)
2641 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
2642
2643 get_fs_root(current->fs, &root);
2644 write_seqlock(&rename_lock);
2645 tmp = root;
2646 error = path_with_deleted(path, &tmp, &res, &buflen);
2647 if (error)
2648 res = ERR_PTR(error);
2649 write_sequnlock(&rename_lock);
2650 path_put(&root);
2651 return res;
2652 }
2653 EXPORT_SYMBOL(d_path);
2654
2655 /**
2656 * d_path_with_unreachable - return the path of a dentry
2657 * @path: path to report
2658 * @buf: buffer to return value in
2659 * @buflen: buffer length
2660 *
2661 * The difference from d_path() is that this prepends "(unreachable)"
2662 * to paths which are unreachable from the current process' root.
2663 */
2664 char *d_path_with_unreachable(const struct path *path, char *buf, int buflen)
2665 {
2666 char *res = buf + buflen;
2667 struct path root;
2668 struct path tmp;
2669 int error;
2670
2671 if (path->dentry->d_op && path->dentry->d_op->d_dname)
2672 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
2673
2674 get_fs_root(current->fs, &root);
2675 write_seqlock(&rename_lock);
2676 tmp = root;
2677 error = path_with_deleted(path, &tmp, &res, &buflen);
2678 if (!error && !path_equal(&tmp, &root))
2679 error = prepend_unreachable(&res, &buflen);
2680 write_sequnlock(&rename_lock);
2681 path_put(&root);
2682 if (error)
2683 res = ERR_PTR(error);
2684
2685 return res;
2686 }
2687
2688 /*
2689 * Helper function for dentry_operations.d_dname() members
2690 */
2691 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
2692 const char *fmt, ...)
2693 {
2694 va_list args;
2695 char temp[64];
2696 int sz;
2697
2698 va_start(args, fmt);
2699 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
2700 va_end(args);
2701
2702 if (sz > sizeof(temp) || sz > buflen)
2703 return ERR_PTR(-ENAMETOOLONG);
2704
2705 buffer += buflen - sz;
2706 return memcpy(buffer, temp, sz);
2707 }
2708
2709 /*
2710 * Write full pathname from the root of the filesystem into the buffer.
2711 */
2712 static char *__dentry_path(struct dentry *dentry, char *buf, int buflen)
2713 {
2714 char *end = buf + buflen;
2715 char *retval;
2716
2717 prepend(&end, &buflen, "\0", 1);
2718 if (buflen < 1)
2719 goto Elong;
2720 /* Get '/' right */
2721 retval = end-1;
2722 *retval = '/';
2723
2724 while (!IS_ROOT(dentry)) {
2725 struct dentry *parent = dentry->d_parent;
2726 int error;
2727
2728 prefetch(parent);
2729 spin_lock(&dentry->d_lock);
2730 error = prepend_name(&end, &buflen, &dentry->d_name);
2731 spin_unlock(&dentry->d_lock);
2732 if (error != 0 || prepend(&end, &buflen, "/", 1) != 0)
2733 goto Elong;
2734
2735 retval = end;
2736 dentry = parent;
2737 }
2738 return retval;
2739 Elong:
2740 return ERR_PTR(-ENAMETOOLONG);
2741 }
2742
2743 char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
2744 {
2745 char *retval;
2746
2747 write_seqlock(&rename_lock);
2748 retval = __dentry_path(dentry, buf, buflen);
2749 write_sequnlock(&rename_lock);
2750
2751 return retval;
2752 }
2753 EXPORT_SYMBOL(dentry_path_raw);
2754
2755 char *dentry_path(struct dentry *dentry, char *buf, int buflen)
2756 {
2757 char *p = NULL;
2758 char *retval;
2759
2760 write_seqlock(&rename_lock);
2761 if (d_unlinked(dentry)) {
2762 p = buf + buflen;
2763 if (prepend(&p, &buflen, "//deleted", 10) != 0)
2764 goto Elong;
2765 buflen++;
2766 }
2767 retval = __dentry_path(dentry, buf, buflen);
2768 write_sequnlock(&rename_lock);
2769 if (!IS_ERR(retval) && p)
2770 *p = '/'; /* restore '/' overriden with '\0' */
2771 return retval;
2772 Elong:
2773 return ERR_PTR(-ENAMETOOLONG);
2774 }
2775
2776 /*
2777 * NOTE! The user-level library version returns a
2778 * character pointer. The kernel system call just
2779 * returns the length of the buffer filled (which
2780 * includes the ending '\0' character), or a negative
2781 * error value. So libc would do something like
2782 *
2783 * char *getcwd(char * buf, size_t size)
2784 * {
2785 * int retval;
2786 *
2787 * retval = sys_getcwd(buf, size);
2788 * if (retval >= 0)
2789 * return buf;
2790 * errno = -retval;
2791 * return NULL;
2792 * }
2793 */
2794 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
2795 {
2796 int error;
2797 struct path pwd, root;
2798 char *page = (char *) __get_free_page(GFP_USER);
2799
2800 if (!page)
2801 return -ENOMEM;
2802
2803 get_fs_root_and_pwd(current->fs, &root, &pwd);
2804
2805 error = -ENOENT;
2806 write_seqlock(&rename_lock);
2807 if (!d_unlinked(pwd.dentry)) {
2808 unsigned long len;
2809 struct path tmp = root;
2810 char *cwd = page + PAGE_SIZE;
2811 int buflen = PAGE_SIZE;
2812
2813 prepend(&cwd, &buflen, "\0", 1);
2814 error = prepend_path(&pwd, &tmp, &cwd, &buflen);
2815 write_sequnlock(&rename_lock);
2816
2817 if (error)
2818 goto out;
2819
2820 /* Unreachable from current root */
2821 if (!path_equal(&tmp, &root)) {
2822 error = prepend_unreachable(&cwd, &buflen);
2823 if (error)
2824 goto out;
2825 }
2826
2827 error = -ERANGE;
2828 len = PAGE_SIZE + page - cwd;
2829 if (len <= size) {
2830 error = len;
2831 if (copy_to_user(buf, cwd, len))
2832 error = -EFAULT;
2833 }
2834 } else {
2835 write_sequnlock(&rename_lock);
2836 }
2837
2838 out:
2839 path_put(&pwd);
2840 path_put(&root);
2841 free_page((unsigned long) page);
2842 return error;
2843 }
2844
2845 /*
2846 * Test whether new_dentry is a subdirectory of old_dentry.
2847 *
2848 * Trivially implemented using the dcache structure
2849 */
2850
2851 /**
2852 * is_subdir - is new dentry a subdirectory of old_dentry
2853 * @new_dentry: new dentry
2854 * @old_dentry: old dentry
2855 *
2856 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
2857 * Returns 0 otherwise.
2858 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
2859 */
2860
2861 int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
2862 {
2863 int result;
2864 unsigned seq;
2865
2866 if (new_dentry == old_dentry)
2867 return 1;
2868
2869 do {
2870 /* for restarting inner loop in case of seq retry */
2871 seq = read_seqbegin(&rename_lock);
2872 /*
2873 * Need rcu_readlock to protect against the d_parent trashing
2874 * due to d_move
2875 */
2876 rcu_read_lock();
2877 if (d_ancestor(old_dentry, new_dentry))
2878 result = 1;
2879 else
2880 result = 0;
2881 rcu_read_unlock();
2882 } while (read_seqretry(&rename_lock, seq));
2883
2884 return result;
2885 }
2886
2887 int path_is_under(struct path *path1, struct path *path2)
2888 {
2889 struct vfsmount *mnt = path1->mnt;
2890 struct dentry *dentry = path1->dentry;
2891 int res;
2892
2893 br_read_lock(vfsmount_lock);
2894 if (mnt != path2->mnt) {
2895 for (;;) {
2896 if (mnt->mnt_parent == mnt) {
2897 br_read_unlock(vfsmount_lock);
2898 return 0;
2899 }
2900 if (mnt->mnt_parent == path2->mnt)
2901 break;
2902 mnt = mnt->mnt_parent;
2903 }
2904 dentry = mnt->mnt_mountpoint;
2905 }
2906 res = is_subdir(dentry, path2->dentry);
2907 br_read_unlock(vfsmount_lock);
2908 return res;
2909 }
2910 EXPORT_SYMBOL(path_is_under);
2911
2912 void d_genocide(struct dentry *root)
2913 {
2914 struct dentry *this_parent;
2915 struct list_head *next;
2916 unsigned seq;
2917 int locked = 0;
2918
2919 seq = read_seqbegin(&rename_lock);
2920 again:
2921 this_parent = root;
2922 spin_lock(&this_parent->d_lock);
2923 repeat:
2924 next = this_parent->d_subdirs.next;
2925 resume:
2926 while (next != &this_parent->d_subdirs) {
2927 struct list_head *tmp = next;
2928 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
2929 next = tmp->next;
2930
2931 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
2932 if (d_unhashed(dentry) || !dentry->d_inode) {
2933 spin_unlock(&dentry->d_lock);
2934 continue;
2935 }
2936 if (!list_empty(&dentry->d_subdirs)) {
2937 spin_unlock(&this_parent->d_lock);
2938 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
2939 this_parent = dentry;
2940 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
2941 goto repeat;
2942 }
2943 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
2944 dentry->d_flags |= DCACHE_GENOCIDE;
2945 dentry->d_count--;
2946 }
2947 spin_unlock(&dentry->d_lock);
2948 }
2949 if (this_parent != root) {
2950 struct dentry *child = this_parent;
2951 if (!(this_parent->d_flags & DCACHE_GENOCIDE)) {
2952 this_parent->d_flags |= DCACHE_GENOCIDE;
2953 this_parent->d_count--;
2954 }
2955 this_parent = try_to_ascend(this_parent, locked, seq);
2956 if (!this_parent)
2957 goto rename_retry;
2958 next = child->d_u.d_child.next;
2959 goto resume;
2960 }
2961 spin_unlock(&this_parent->d_lock);
2962 if (!locked && read_seqretry(&rename_lock, seq))
2963 goto rename_retry;
2964 if (locked)
2965 write_sequnlock(&rename_lock);
2966 return;
2967
2968 rename_retry:
2969 locked = 1;
2970 write_seqlock(&rename_lock);
2971 goto again;
2972 }
2973
2974 /**
2975 * find_inode_number - check for dentry with name
2976 * @dir: directory to check
2977 * @name: Name to find.
2978 *
2979 * Check whether a dentry already exists for the given name,
2980 * and return the inode number if it has an inode. Otherwise
2981 * 0 is returned.
2982 *
2983 * This routine is used to post-process directory listings for
2984 * filesystems using synthetic inode numbers, and is necessary
2985 * to keep getcwd() working.
2986 */
2987
2988 ino_t find_inode_number(struct dentry *dir, struct qstr *name)
2989 {
2990 struct dentry * dentry;
2991 ino_t ino = 0;
2992
2993 dentry = d_hash_and_lookup(dir, name);
2994 if (dentry) {
2995 if (dentry->d_inode)
2996 ino = dentry->d_inode->i_ino;
2997 dput(dentry);
2998 }
2999 return ino;
3000 }
3001 EXPORT_SYMBOL(find_inode_number);
3002
3003 static __initdata unsigned long dhash_entries;
3004 static int __init set_dhash_entries(char *str)
3005 {
3006 if (!str)
3007 return 0;
3008 dhash_entries = simple_strtoul(str, &str, 0);
3009 return 1;
3010 }
3011 __setup("dhash_entries=", set_dhash_entries);
3012
3013 static void __init dcache_init_early(void)
3014 {
3015 int loop;
3016
3017 /* If hashes are distributed across NUMA nodes, defer
3018 * hash allocation until vmalloc space is available.
3019 */
3020 if (hashdist)
3021 return;
3022
3023 dentry_hashtable =
3024 alloc_large_system_hash("Dentry cache",
3025 sizeof(struct hlist_bl_head),
3026 dhash_entries,
3027 13,
3028 HASH_EARLY,
3029 &d_hash_shift,
3030 &d_hash_mask,
3031 0);
3032
3033 for (loop = 0; loop < (1 << d_hash_shift); loop++)
3034 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3035 }
3036
3037 static void __init dcache_init(void)
3038 {
3039 int loop;
3040
3041 /*
3042 * A constructor could be added for stable state like the lists,
3043 * but it is probably not worth it because of the cache nature
3044 * of the dcache.
3045 */
3046 dentry_cache = KMEM_CACHE(dentry,
3047 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
3048
3049 register_shrinker(&dcache_shrinker);
3050
3051 /* Hash may have been set up in dcache_init_early */
3052 if (!hashdist)
3053 return;
3054
3055 dentry_hashtable =
3056 alloc_large_system_hash("Dentry cache",
3057 sizeof(struct hlist_bl_head),
3058 dhash_entries,
3059 13,
3060 0,
3061 &d_hash_shift,
3062 &d_hash_mask,
3063 0);
3064
3065 for (loop = 0; loop < (1 << d_hash_shift); loop++)
3066 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3067 }
3068
3069 /* SLAB cache for __getname() consumers */
3070 struct kmem_cache *names_cachep __read_mostly;
3071 EXPORT_SYMBOL(names_cachep);
3072
3073 EXPORT_SYMBOL(d_genocide);
3074
3075 void __init vfs_caches_init_early(void)
3076 {
3077 dcache_init_early();
3078 inode_init_early();
3079 }
3080
3081 void __init vfs_caches_init(unsigned long mempages)
3082 {
3083 unsigned long reserve;
3084
3085 /* Base hash sizes on available memory, with a reserve equal to
3086 150% of current kernel size */
3087
3088 reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
3089 mempages -= reserve;
3090
3091 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
3092 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3093
3094 dcache_init();
3095 inode_init();
3096 files_init(mempages);
3097 mnt_init();
3098 bdev_cache_init();
3099 chrdev_init();
3100 }