]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - fs/dcache.c
New helper: path_is_under(path1, path2)
[mirror_ubuntu-zesty-kernel.git] / fs / dcache.c
1 /*
2 * fs/dcache.c
3 *
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
8
9 /*
10 * Notes on the allocation strategy:
11 *
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
15 */
16
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/module.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <asm/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include "internal.h"
37
38 int sysctl_vfs_cache_pressure __read_mostly = 100;
39 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
40
41 __cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_lock);
42 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
43
44 EXPORT_SYMBOL(dcache_lock);
45
46 static struct kmem_cache *dentry_cache __read_mostly;
47
48 #define DNAME_INLINE_LEN (sizeof(struct dentry)-offsetof(struct dentry,d_iname))
49
50 /*
51 * This is the single most critical data structure when it comes
52 * to the dcache: the hashtable for lookups. Somebody should try
53 * to make this good - I've just made it work.
54 *
55 * This hash-function tries to avoid losing too many bits of hash
56 * information, yet avoid using a prime hash-size or similar.
57 */
58 #define D_HASHBITS d_hash_shift
59 #define D_HASHMASK d_hash_mask
60
61 static unsigned int d_hash_mask __read_mostly;
62 static unsigned int d_hash_shift __read_mostly;
63 static struct hlist_head *dentry_hashtable __read_mostly;
64
65 /* Statistics gathering. */
66 struct dentry_stat_t dentry_stat = {
67 .age_limit = 45,
68 };
69
70 static void __d_free(struct dentry *dentry)
71 {
72 WARN_ON(!list_empty(&dentry->d_alias));
73 if (dname_external(dentry))
74 kfree(dentry->d_name.name);
75 kmem_cache_free(dentry_cache, dentry);
76 }
77
78 static void d_callback(struct rcu_head *head)
79 {
80 struct dentry * dentry = container_of(head, struct dentry, d_u.d_rcu);
81 __d_free(dentry);
82 }
83
84 /*
85 * no dcache_lock, please. The caller must decrement dentry_stat.nr_dentry
86 * inside dcache_lock.
87 */
88 static void d_free(struct dentry *dentry)
89 {
90 if (dentry->d_op && dentry->d_op->d_release)
91 dentry->d_op->d_release(dentry);
92 /* if dentry was never inserted into hash, immediate free is OK */
93 if (hlist_unhashed(&dentry->d_hash))
94 __d_free(dentry);
95 else
96 call_rcu(&dentry->d_u.d_rcu, d_callback);
97 }
98
99 /*
100 * Release the dentry's inode, using the filesystem
101 * d_iput() operation if defined.
102 */
103 static void dentry_iput(struct dentry * dentry)
104 __releases(dentry->d_lock)
105 __releases(dcache_lock)
106 {
107 struct inode *inode = dentry->d_inode;
108 if (inode) {
109 dentry->d_inode = NULL;
110 list_del_init(&dentry->d_alias);
111 spin_unlock(&dentry->d_lock);
112 spin_unlock(&dcache_lock);
113 if (!inode->i_nlink)
114 fsnotify_inoderemove(inode);
115 if (dentry->d_op && dentry->d_op->d_iput)
116 dentry->d_op->d_iput(dentry, inode);
117 else
118 iput(inode);
119 } else {
120 spin_unlock(&dentry->d_lock);
121 spin_unlock(&dcache_lock);
122 }
123 }
124
125 /*
126 * dentry_lru_(add|add_tail|del|del_init) must be called with dcache_lock held.
127 */
128 static void dentry_lru_add(struct dentry *dentry)
129 {
130 list_add(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
131 dentry->d_sb->s_nr_dentry_unused++;
132 dentry_stat.nr_unused++;
133 }
134
135 static void dentry_lru_add_tail(struct dentry *dentry)
136 {
137 list_add_tail(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
138 dentry->d_sb->s_nr_dentry_unused++;
139 dentry_stat.nr_unused++;
140 }
141
142 static void dentry_lru_del(struct dentry *dentry)
143 {
144 if (!list_empty(&dentry->d_lru)) {
145 list_del(&dentry->d_lru);
146 dentry->d_sb->s_nr_dentry_unused--;
147 dentry_stat.nr_unused--;
148 }
149 }
150
151 static void dentry_lru_del_init(struct dentry *dentry)
152 {
153 if (likely(!list_empty(&dentry->d_lru))) {
154 list_del_init(&dentry->d_lru);
155 dentry->d_sb->s_nr_dentry_unused--;
156 dentry_stat.nr_unused--;
157 }
158 }
159
160 /**
161 * d_kill - kill dentry and return parent
162 * @dentry: dentry to kill
163 *
164 * The dentry must already be unhashed and removed from the LRU.
165 *
166 * If this is the root of the dentry tree, return NULL.
167 */
168 static struct dentry *d_kill(struct dentry *dentry)
169 __releases(dentry->d_lock)
170 __releases(dcache_lock)
171 {
172 struct dentry *parent;
173
174 list_del(&dentry->d_u.d_child);
175 dentry_stat.nr_dentry--; /* For d_free, below */
176 /*drops the locks, at that point nobody can reach this dentry */
177 dentry_iput(dentry);
178 if (IS_ROOT(dentry))
179 parent = NULL;
180 else
181 parent = dentry->d_parent;
182 d_free(dentry);
183 return parent;
184 }
185
186 /*
187 * This is dput
188 *
189 * This is complicated by the fact that we do not want to put
190 * dentries that are no longer on any hash chain on the unused
191 * list: we'd much rather just get rid of them immediately.
192 *
193 * However, that implies that we have to traverse the dentry
194 * tree upwards to the parents which might _also_ now be
195 * scheduled for deletion (it may have been only waiting for
196 * its last child to go away).
197 *
198 * This tail recursion is done by hand as we don't want to depend
199 * on the compiler to always get this right (gcc generally doesn't).
200 * Real recursion would eat up our stack space.
201 */
202
203 /*
204 * dput - release a dentry
205 * @dentry: dentry to release
206 *
207 * Release a dentry. This will drop the usage count and if appropriate
208 * call the dentry unlink method as well as removing it from the queues and
209 * releasing its resources. If the parent dentries were scheduled for release
210 * they too may now get deleted.
211 *
212 * no dcache lock, please.
213 */
214
215 void dput(struct dentry *dentry)
216 {
217 if (!dentry)
218 return;
219
220 repeat:
221 if (atomic_read(&dentry->d_count) == 1)
222 might_sleep();
223 if (!atomic_dec_and_lock(&dentry->d_count, &dcache_lock))
224 return;
225
226 spin_lock(&dentry->d_lock);
227 if (atomic_read(&dentry->d_count)) {
228 spin_unlock(&dentry->d_lock);
229 spin_unlock(&dcache_lock);
230 return;
231 }
232
233 /*
234 * AV: ->d_delete() is _NOT_ allowed to block now.
235 */
236 if (dentry->d_op && dentry->d_op->d_delete) {
237 if (dentry->d_op->d_delete(dentry))
238 goto unhash_it;
239 }
240 /* Unreachable? Get rid of it */
241 if (d_unhashed(dentry))
242 goto kill_it;
243 if (list_empty(&dentry->d_lru)) {
244 dentry->d_flags |= DCACHE_REFERENCED;
245 dentry_lru_add(dentry);
246 }
247 spin_unlock(&dentry->d_lock);
248 spin_unlock(&dcache_lock);
249 return;
250
251 unhash_it:
252 __d_drop(dentry);
253 kill_it:
254 /* if dentry was on the d_lru list delete it from there */
255 dentry_lru_del(dentry);
256 dentry = d_kill(dentry);
257 if (dentry)
258 goto repeat;
259 }
260 EXPORT_SYMBOL(dput);
261
262 /**
263 * d_invalidate - invalidate a dentry
264 * @dentry: dentry to invalidate
265 *
266 * Try to invalidate the dentry if it turns out to be
267 * possible. If there are other dentries that can be
268 * reached through this one we can't delete it and we
269 * return -EBUSY. On success we return 0.
270 *
271 * no dcache lock.
272 */
273
274 int d_invalidate(struct dentry * dentry)
275 {
276 /*
277 * If it's already been dropped, return OK.
278 */
279 spin_lock(&dcache_lock);
280 if (d_unhashed(dentry)) {
281 spin_unlock(&dcache_lock);
282 return 0;
283 }
284 /*
285 * Check whether to do a partial shrink_dcache
286 * to get rid of unused child entries.
287 */
288 if (!list_empty(&dentry->d_subdirs)) {
289 spin_unlock(&dcache_lock);
290 shrink_dcache_parent(dentry);
291 spin_lock(&dcache_lock);
292 }
293
294 /*
295 * Somebody else still using it?
296 *
297 * If it's a directory, we can't drop it
298 * for fear of somebody re-populating it
299 * with children (even though dropping it
300 * would make it unreachable from the root,
301 * we might still populate it if it was a
302 * working directory or similar).
303 */
304 spin_lock(&dentry->d_lock);
305 if (atomic_read(&dentry->d_count) > 1) {
306 if (dentry->d_inode && S_ISDIR(dentry->d_inode->i_mode)) {
307 spin_unlock(&dentry->d_lock);
308 spin_unlock(&dcache_lock);
309 return -EBUSY;
310 }
311 }
312
313 __d_drop(dentry);
314 spin_unlock(&dentry->d_lock);
315 spin_unlock(&dcache_lock);
316 return 0;
317 }
318 EXPORT_SYMBOL(d_invalidate);
319
320 /* This should be called _only_ with dcache_lock held */
321
322 static inline struct dentry * __dget_locked(struct dentry *dentry)
323 {
324 atomic_inc(&dentry->d_count);
325 dentry_lru_del_init(dentry);
326 return dentry;
327 }
328
329 struct dentry * dget_locked(struct dentry *dentry)
330 {
331 return __dget_locked(dentry);
332 }
333 EXPORT_SYMBOL(dget_locked);
334
335 /**
336 * d_find_alias - grab a hashed alias of inode
337 * @inode: inode in question
338 * @want_discon: flag, used by d_splice_alias, to request
339 * that only a DISCONNECTED alias be returned.
340 *
341 * If inode has a hashed alias, or is a directory and has any alias,
342 * acquire the reference to alias and return it. Otherwise return NULL.
343 * Notice that if inode is a directory there can be only one alias and
344 * it can be unhashed only if it has no children, or if it is the root
345 * of a filesystem.
346 *
347 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
348 * any other hashed alias over that one unless @want_discon is set,
349 * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
350 */
351
352 static struct dentry * __d_find_alias(struct inode *inode, int want_discon)
353 {
354 struct list_head *head, *next, *tmp;
355 struct dentry *alias, *discon_alias=NULL;
356
357 head = &inode->i_dentry;
358 next = inode->i_dentry.next;
359 while (next != head) {
360 tmp = next;
361 next = tmp->next;
362 prefetch(next);
363 alias = list_entry(tmp, struct dentry, d_alias);
364 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
365 if (IS_ROOT(alias) &&
366 (alias->d_flags & DCACHE_DISCONNECTED))
367 discon_alias = alias;
368 else if (!want_discon) {
369 __dget_locked(alias);
370 return alias;
371 }
372 }
373 }
374 if (discon_alias)
375 __dget_locked(discon_alias);
376 return discon_alias;
377 }
378
379 struct dentry * d_find_alias(struct inode *inode)
380 {
381 struct dentry *de = NULL;
382
383 if (!list_empty(&inode->i_dentry)) {
384 spin_lock(&dcache_lock);
385 de = __d_find_alias(inode, 0);
386 spin_unlock(&dcache_lock);
387 }
388 return de;
389 }
390 EXPORT_SYMBOL(d_find_alias);
391
392 /*
393 * Try to kill dentries associated with this inode.
394 * WARNING: you must own a reference to inode.
395 */
396 void d_prune_aliases(struct inode *inode)
397 {
398 struct dentry *dentry;
399 restart:
400 spin_lock(&dcache_lock);
401 list_for_each_entry(dentry, &inode->i_dentry, d_alias) {
402 spin_lock(&dentry->d_lock);
403 if (!atomic_read(&dentry->d_count)) {
404 __dget_locked(dentry);
405 __d_drop(dentry);
406 spin_unlock(&dentry->d_lock);
407 spin_unlock(&dcache_lock);
408 dput(dentry);
409 goto restart;
410 }
411 spin_unlock(&dentry->d_lock);
412 }
413 spin_unlock(&dcache_lock);
414 }
415 EXPORT_SYMBOL(d_prune_aliases);
416
417 /*
418 * Throw away a dentry - free the inode, dput the parent. This requires that
419 * the LRU list has already been removed.
420 *
421 * Try to prune ancestors as well. This is necessary to prevent
422 * quadratic behavior of shrink_dcache_parent(), but is also expected
423 * to be beneficial in reducing dentry cache fragmentation.
424 */
425 static void prune_one_dentry(struct dentry * dentry)
426 __releases(dentry->d_lock)
427 __releases(dcache_lock)
428 __acquires(dcache_lock)
429 {
430 __d_drop(dentry);
431 dentry = d_kill(dentry);
432
433 /*
434 * Prune ancestors. Locking is simpler than in dput(),
435 * because dcache_lock needs to be taken anyway.
436 */
437 spin_lock(&dcache_lock);
438 while (dentry) {
439 if (!atomic_dec_and_lock(&dentry->d_count, &dentry->d_lock))
440 return;
441
442 if (dentry->d_op && dentry->d_op->d_delete)
443 dentry->d_op->d_delete(dentry);
444 dentry_lru_del_init(dentry);
445 __d_drop(dentry);
446 dentry = d_kill(dentry);
447 spin_lock(&dcache_lock);
448 }
449 }
450
451 /*
452 * Shrink the dentry LRU on a given superblock.
453 * @sb : superblock to shrink dentry LRU.
454 * @count: If count is NULL, we prune all dentries on superblock.
455 * @flags: If flags is non-zero, we need to do special processing based on
456 * which flags are set. This means we don't need to maintain multiple
457 * similar copies of this loop.
458 */
459 static void __shrink_dcache_sb(struct super_block *sb, int *count, int flags)
460 {
461 LIST_HEAD(referenced);
462 LIST_HEAD(tmp);
463 struct dentry *dentry;
464 int cnt = 0;
465
466 BUG_ON(!sb);
467 BUG_ON((flags & DCACHE_REFERENCED) && count == NULL);
468 spin_lock(&dcache_lock);
469 if (count != NULL)
470 /* called from prune_dcache() and shrink_dcache_parent() */
471 cnt = *count;
472 restart:
473 if (count == NULL)
474 list_splice_init(&sb->s_dentry_lru, &tmp);
475 else {
476 while (!list_empty(&sb->s_dentry_lru)) {
477 dentry = list_entry(sb->s_dentry_lru.prev,
478 struct dentry, d_lru);
479 BUG_ON(dentry->d_sb != sb);
480
481 spin_lock(&dentry->d_lock);
482 /*
483 * If we are honouring the DCACHE_REFERENCED flag and
484 * the dentry has this flag set, don't free it. Clear
485 * the flag and put it back on the LRU.
486 */
487 if ((flags & DCACHE_REFERENCED)
488 && (dentry->d_flags & DCACHE_REFERENCED)) {
489 dentry->d_flags &= ~DCACHE_REFERENCED;
490 list_move(&dentry->d_lru, &referenced);
491 spin_unlock(&dentry->d_lock);
492 } else {
493 list_move_tail(&dentry->d_lru, &tmp);
494 spin_unlock(&dentry->d_lock);
495 cnt--;
496 if (!cnt)
497 break;
498 }
499 cond_resched_lock(&dcache_lock);
500 }
501 }
502 while (!list_empty(&tmp)) {
503 dentry = list_entry(tmp.prev, struct dentry, d_lru);
504 dentry_lru_del_init(dentry);
505 spin_lock(&dentry->d_lock);
506 /*
507 * We found an inuse dentry which was not removed from
508 * the LRU because of laziness during lookup. Do not free
509 * it - just keep it off the LRU list.
510 */
511 if (atomic_read(&dentry->d_count)) {
512 spin_unlock(&dentry->d_lock);
513 continue;
514 }
515 prune_one_dentry(dentry);
516 /* dentry->d_lock was dropped in prune_one_dentry() */
517 cond_resched_lock(&dcache_lock);
518 }
519 if (count == NULL && !list_empty(&sb->s_dentry_lru))
520 goto restart;
521 if (count != NULL)
522 *count = cnt;
523 if (!list_empty(&referenced))
524 list_splice(&referenced, &sb->s_dentry_lru);
525 spin_unlock(&dcache_lock);
526 }
527
528 /**
529 * prune_dcache - shrink the dcache
530 * @count: number of entries to try to free
531 *
532 * Shrink the dcache. This is done when we need more memory, or simply when we
533 * need to unmount something (at which point we need to unuse all dentries).
534 *
535 * This function may fail to free any resources if all the dentries are in use.
536 */
537 static void prune_dcache(int count)
538 {
539 struct super_block *sb;
540 int w_count;
541 int unused = dentry_stat.nr_unused;
542 int prune_ratio;
543 int pruned;
544
545 if (unused == 0 || count == 0)
546 return;
547 spin_lock(&dcache_lock);
548 restart:
549 if (count >= unused)
550 prune_ratio = 1;
551 else
552 prune_ratio = unused / count;
553 spin_lock(&sb_lock);
554 list_for_each_entry(sb, &super_blocks, s_list) {
555 if (sb->s_nr_dentry_unused == 0)
556 continue;
557 sb->s_count++;
558 /* Now, we reclaim unused dentrins with fairness.
559 * We reclaim them same percentage from each superblock.
560 * We calculate number of dentries to scan on this sb
561 * as follows, but the implementation is arranged to avoid
562 * overflows:
563 * number of dentries to scan on this sb =
564 * count * (number of dentries on this sb /
565 * number of dentries in the machine)
566 */
567 spin_unlock(&sb_lock);
568 if (prune_ratio != 1)
569 w_count = (sb->s_nr_dentry_unused / prune_ratio) + 1;
570 else
571 w_count = sb->s_nr_dentry_unused;
572 pruned = w_count;
573 /*
574 * We need to be sure this filesystem isn't being unmounted,
575 * otherwise we could race with generic_shutdown_super(), and
576 * end up holding a reference to an inode while the filesystem
577 * is unmounted. So we try to get s_umount, and make sure
578 * s_root isn't NULL.
579 */
580 if (down_read_trylock(&sb->s_umount)) {
581 if ((sb->s_root != NULL) &&
582 (!list_empty(&sb->s_dentry_lru))) {
583 spin_unlock(&dcache_lock);
584 __shrink_dcache_sb(sb, &w_count,
585 DCACHE_REFERENCED);
586 pruned -= w_count;
587 spin_lock(&dcache_lock);
588 }
589 up_read(&sb->s_umount);
590 }
591 spin_lock(&sb_lock);
592 count -= pruned;
593 /*
594 * restart only when sb is no longer on the list and
595 * we have more work to do.
596 */
597 if (__put_super_and_need_restart(sb) && count > 0) {
598 spin_unlock(&sb_lock);
599 goto restart;
600 }
601 }
602 spin_unlock(&sb_lock);
603 spin_unlock(&dcache_lock);
604 }
605
606 /**
607 * shrink_dcache_sb - shrink dcache for a superblock
608 * @sb: superblock
609 *
610 * Shrink the dcache for the specified super block. This
611 * is used to free the dcache before unmounting a file
612 * system
613 */
614 void shrink_dcache_sb(struct super_block * sb)
615 {
616 __shrink_dcache_sb(sb, NULL, 0);
617 }
618 EXPORT_SYMBOL(shrink_dcache_sb);
619
620 /*
621 * destroy a single subtree of dentries for unmount
622 * - see the comments on shrink_dcache_for_umount() for a description of the
623 * locking
624 */
625 static void shrink_dcache_for_umount_subtree(struct dentry *dentry)
626 {
627 struct dentry *parent;
628 unsigned detached = 0;
629
630 BUG_ON(!IS_ROOT(dentry));
631
632 /* detach this root from the system */
633 spin_lock(&dcache_lock);
634 dentry_lru_del_init(dentry);
635 __d_drop(dentry);
636 spin_unlock(&dcache_lock);
637
638 for (;;) {
639 /* descend to the first leaf in the current subtree */
640 while (!list_empty(&dentry->d_subdirs)) {
641 struct dentry *loop;
642
643 /* this is a branch with children - detach all of them
644 * from the system in one go */
645 spin_lock(&dcache_lock);
646 list_for_each_entry(loop, &dentry->d_subdirs,
647 d_u.d_child) {
648 dentry_lru_del_init(loop);
649 __d_drop(loop);
650 cond_resched_lock(&dcache_lock);
651 }
652 spin_unlock(&dcache_lock);
653
654 /* move to the first child */
655 dentry = list_entry(dentry->d_subdirs.next,
656 struct dentry, d_u.d_child);
657 }
658
659 /* consume the dentries from this leaf up through its parents
660 * until we find one with children or run out altogether */
661 do {
662 struct inode *inode;
663
664 if (atomic_read(&dentry->d_count) != 0) {
665 printk(KERN_ERR
666 "BUG: Dentry %p{i=%lx,n=%s}"
667 " still in use (%d)"
668 " [unmount of %s %s]\n",
669 dentry,
670 dentry->d_inode ?
671 dentry->d_inode->i_ino : 0UL,
672 dentry->d_name.name,
673 atomic_read(&dentry->d_count),
674 dentry->d_sb->s_type->name,
675 dentry->d_sb->s_id);
676 BUG();
677 }
678
679 if (IS_ROOT(dentry))
680 parent = NULL;
681 else {
682 parent = dentry->d_parent;
683 atomic_dec(&parent->d_count);
684 }
685
686 list_del(&dentry->d_u.d_child);
687 detached++;
688
689 inode = dentry->d_inode;
690 if (inode) {
691 dentry->d_inode = NULL;
692 list_del_init(&dentry->d_alias);
693 if (dentry->d_op && dentry->d_op->d_iput)
694 dentry->d_op->d_iput(dentry, inode);
695 else
696 iput(inode);
697 }
698
699 d_free(dentry);
700
701 /* finished when we fall off the top of the tree,
702 * otherwise we ascend to the parent and move to the
703 * next sibling if there is one */
704 if (!parent)
705 goto out;
706
707 dentry = parent;
708
709 } while (list_empty(&dentry->d_subdirs));
710
711 dentry = list_entry(dentry->d_subdirs.next,
712 struct dentry, d_u.d_child);
713 }
714 out:
715 /* several dentries were freed, need to correct nr_dentry */
716 spin_lock(&dcache_lock);
717 dentry_stat.nr_dentry -= detached;
718 spin_unlock(&dcache_lock);
719 }
720
721 /*
722 * destroy the dentries attached to a superblock on unmounting
723 * - we don't need to use dentry->d_lock, and only need dcache_lock when
724 * removing the dentry from the system lists and hashes because:
725 * - the superblock is detached from all mountings and open files, so the
726 * dentry trees will not be rearranged by the VFS
727 * - s_umount is write-locked, so the memory pressure shrinker will ignore
728 * any dentries belonging to this superblock that it comes across
729 * - the filesystem itself is no longer permitted to rearrange the dentries
730 * in this superblock
731 */
732 void shrink_dcache_for_umount(struct super_block *sb)
733 {
734 struct dentry *dentry;
735
736 if (down_read_trylock(&sb->s_umount))
737 BUG();
738
739 dentry = sb->s_root;
740 sb->s_root = NULL;
741 atomic_dec(&dentry->d_count);
742 shrink_dcache_for_umount_subtree(dentry);
743
744 while (!hlist_empty(&sb->s_anon)) {
745 dentry = hlist_entry(sb->s_anon.first, struct dentry, d_hash);
746 shrink_dcache_for_umount_subtree(dentry);
747 }
748 }
749
750 /*
751 * Search for at least 1 mount point in the dentry's subdirs.
752 * We descend to the next level whenever the d_subdirs
753 * list is non-empty and continue searching.
754 */
755
756 /**
757 * have_submounts - check for mounts over a dentry
758 * @parent: dentry to check.
759 *
760 * Return true if the parent or its subdirectories contain
761 * a mount point
762 */
763
764 int have_submounts(struct dentry *parent)
765 {
766 struct dentry *this_parent = parent;
767 struct list_head *next;
768
769 spin_lock(&dcache_lock);
770 if (d_mountpoint(parent))
771 goto positive;
772 repeat:
773 next = this_parent->d_subdirs.next;
774 resume:
775 while (next != &this_parent->d_subdirs) {
776 struct list_head *tmp = next;
777 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
778 next = tmp->next;
779 /* Have we found a mount point ? */
780 if (d_mountpoint(dentry))
781 goto positive;
782 if (!list_empty(&dentry->d_subdirs)) {
783 this_parent = dentry;
784 goto repeat;
785 }
786 }
787 /*
788 * All done at this level ... ascend and resume the search.
789 */
790 if (this_parent != parent) {
791 next = this_parent->d_u.d_child.next;
792 this_parent = this_parent->d_parent;
793 goto resume;
794 }
795 spin_unlock(&dcache_lock);
796 return 0; /* No mount points found in tree */
797 positive:
798 spin_unlock(&dcache_lock);
799 return 1;
800 }
801 EXPORT_SYMBOL(have_submounts);
802
803 /*
804 * Search the dentry child list for the specified parent,
805 * and move any unused dentries to the end of the unused
806 * list for prune_dcache(). We descend to the next level
807 * whenever the d_subdirs list is non-empty and continue
808 * searching.
809 *
810 * It returns zero iff there are no unused children,
811 * otherwise it returns the number of children moved to
812 * the end of the unused list. This may not be the total
813 * number of unused children, because select_parent can
814 * drop the lock and return early due to latency
815 * constraints.
816 */
817 static int select_parent(struct dentry * parent)
818 {
819 struct dentry *this_parent = parent;
820 struct list_head *next;
821 int found = 0;
822
823 spin_lock(&dcache_lock);
824 repeat:
825 next = this_parent->d_subdirs.next;
826 resume:
827 while (next != &this_parent->d_subdirs) {
828 struct list_head *tmp = next;
829 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
830 next = tmp->next;
831
832 dentry_lru_del_init(dentry);
833 /*
834 * move only zero ref count dentries to the end
835 * of the unused list for prune_dcache
836 */
837 if (!atomic_read(&dentry->d_count)) {
838 dentry_lru_add_tail(dentry);
839 found++;
840 }
841
842 /*
843 * We can return to the caller if we have found some (this
844 * ensures forward progress). We'll be coming back to find
845 * the rest.
846 */
847 if (found && need_resched())
848 goto out;
849
850 /*
851 * Descend a level if the d_subdirs list is non-empty.
852 */
853 if (!list_empty(&dentry->d_subdirs)) {
854 this_parent = dentry;
855 goto repeat;
856 }
857 }
858 /*
859 * All done at this level ... ascend and resume the search.
860 */
861 if (this_parent != parent) {
862 next = this_parent->d_u.d_child.next;
863 this_parent = this_parent->d_parent;
864 goto resume;
865 }
866 out:
867 spin_unlock(&dcache_lock);
868 return found;
869 }
870
871 /**
872 * shrink_dcache_parent - prune dcache
873 * @parent: parent of entries to prune
874 *
875 * Prune the dcache to remove unused children of the parent dentry.
876 */
877
878 void shrink_dcache_parent(struct dentry * parent)
879 {
880 struct super_block *sb = parent->d_sb;
881 int found;
882
883 while ((found = select_parent(parent)) != 0)
884 __shrink_dcache_sb(sb, &found, 0);
885 }
886 EXPORT_SYMBOL(shrink_dcache_parent);
887
888 /*
889 * Scan `nr' dentries and return the number which remain.
890 *
891 * We need to avoid reentering the filesystem if the caller is performing a
892 * GFP_NOFS allocation attempt. One example deadlock is:
893 *
894 * ext2_new_block->getblk->GFP->shrink_dcache_memory->prune_dcache->
895 * prune_one_dentry->dput->dentry_iput->iput->inode->i_sb->s_op->put_inode->
896 * ext2_discard_prealloc->ext2_free_blocks->lock_super->DEADLOCK.
897 *
898 * In this case we return -1 to tell the caller that we baled.
899 */
900 static int shrink_dcache_memory(int nr, gfp_t gfp_mask)
901 {
902 if (nr) {
903 if (!(gfp_mask & __GFP_FS))
904 return -1;
905 prune_dcache(nr);
906 }
907 return (dentry_stat.nr_unused / 100) * sysctl_vfs_cache_pressure;
908 }
909
910 static struct shrinker dcache_shrinker = {
911 .shrink = shrink_dcache_memory,
912 .seeks = DEFAULT_SEEKS,
913 };
914
915 /**
916 * d_alloc - allocate a dcache entry
917 * @parent: parent of entry to allocate
918 * @name: qstr of the name
919 *
920 * Allocates a dentry. It returns %NULL if there is insufficient memory
921 * available. On a success the dentry is returned. The name passed in is
922 * copied and the copy passed in may be reused after this call.
923 */
924
925 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
926 {
927 struct dentry *dentry;
928 char *dname;
929
930 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
931 if (!dentry)
932 return NULL;
933
934 if (name->len > DNAME_INLINE_LEN-1) {
935 dname = kmalloc(name->len + 1, GFP_KERNEL);
936 if (!dname) {
937 kmem_cache_free(dentry_cache, dentry);
938 return NULL;
939 }
940 } else {
941 dname = dentry->d_iname;
942 }
943 dentry->d_name.name = dname;
944
945 dentry->d_name.len = name->len;
946 dentry->d_name.hash = name->hash;
947 memcpy(dname, name->name, name->len);
948 dname[name->len] = 0;
949
950 atomic_set(&dentry->d_count, 1);
951 dentry->d_flags = DCACHE_UNHASHED;
952 spin_lock_init(&dentry->d_lock);
953 dentry->d_inode = NULL;
954 dentry->d_parent = NULL;
955 dentry->d_sb = NULL;
956 dentry->d_op = NULL;
957 dentry->d_fsdata = NULL;
958 dentry->d_mounted = 0;
959 INIT_HLIST_NODE(&dentry->d_hash);
960 INIT_LIST_HEAD(&dentry->d_lru);
961 INIT_LIST_HEAD(&dentry->d_subdirs);
962 INIT_LIST_HEAD(&dentry->d_alias);
963
964 if (parent) {
965 dentry->d_parent = dget(parent);
966 dentry->d_sb = parent->d_sb;
967 } else {
968 INIT_LIST_HEAD(&dentry->d_u.d_child);
969 }
970
971 spin_lock(&dcache_lock);
972 if (parent)
973 list_add(&dentry->d_u.d_child, &parent->d_subdirs);
974 dentry_stat.nr_dentry++;
975 spin_unlock(&dcache_lock);
976
977 return dentry;
978 }
979 EXPORT_SYMBOL(d_alloc);
980
981 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
982 {
983 struct qstr q;
984
985 q.name = name;
986 q.len = strlen(name);
987 q.hash = full_name_hash(q.name, q.len);
988 return d_alloc(parent, &q);
989 }
990 EXPORT_SYMBOL(d_alloc_name);
991
992 /* the caller must hold dcache_lock */
993 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
994 {
995 if (inode)
996 list_add(&dentry->d_alias, &inode->i_dentry);
997 dentry->d_inode = inode;
998 fsnotify_d_instantiate(dentry, inode);
999 }
1000
1001 /**
1002 * d_instantiate - fill in inode information for a dentry
1003 * @entry: dentry to complete
1004 * @inode: inode to attach to this dentry
1005 *
1006 * Fill in inode information in the entry.
1007 *
1008 * This turns negative dentries into productive full members
1009 * of society.
1010 *
1011 * NOTE! This assumes that the inode count has been incremented
1012 * (or otherwise set) by the caller to indicate that it is now
1013 * in use by the dcache.
1014 */
1015
1016 void d_instantiate(struct dentry *entry, struct inode * inode)
1017 {
1018 BUG_ON(!list_empty(&entry->d_alias));
1019 spin_lock(&dcache_lock);
1020 __d_instantiate(entry, inode);
1021 spin_unlock(&dcache_lock);
1022 security_d_instantiate(entry, inode);
1023 }
1024 EXPORT_SYMBOL(d_instantiate);
1025
1026 /**
1027 * d_instantiate_unique - instantiate a non-aliased dentry
1028 * @entry: dentry to instantiate
1029 * @inode: inode to attach to this dentry
1030 *
1031 * Fill in inode information in the entry. On success, it returns NULL.
1032 * If an unhashed alias of "entry" already exists, then we return the
1033 * aliased dentry instead and drop one reference to inode.
1034 *
1035 * Note that in order to avoid conflicts with rename() etc, the caller
1036 * had better be holding the parent directory semaphore.
1037 *
1038 * This also assumes that the inode count has been incremented
1039 * (or otherwise set) by the caller to indicate that it is now
1040 * in use by the dcache.
1041 */
1042 static struct dentry *__d_instantiate_unique(struct dentry *entry,
1043 struct inode *inode)
1044 {
1045 struct dentry *alias;
1046 int len = entry->d_name.len;
1047 const char *name = entry->d_name.name;
1048 unsigned int hash = entry->d_name.hash;
1049
1050 if (!inode) {
1051 __d_instantiate(entry, NULL);
1052 return NULL;
1053 }
1054
1055 list_for_each_entry(alias, &inode->i_dentry, d_alias) {
1056 struct qstr *qstr = &alias->d_name;
1057
1058 if (qstr->hash != hash)
1059 continue;
1060 if (alias->d_parent != entry->d_parent)
1061 continue;
1062 if (qstr->len != len)
1063 continue;
1064 if (memcmp(qstr->name, name, len))
1065 continue;
1066 dget_locked(alias);
1067 return alias;
1068 }
1069
1070 __d_instantiate(entry, inode);
1071 return NULL;
1072 }
1073
1074 struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1075 {
1076 struct dentry *result;
1077
1078 BUG_ON(!list_empty(&entry->d_alias));
1079
1080 spin_lock(&dcache_lock);
1081 result = __d_instantiate_unique(entry, inode);
1082 spin_unlock(&dcache_lock);
1083
1084 if (!result) {
1085 security_d_instantiate(entry, inode);
1086 return NULL;
1087 }
1088
1089 BUG_ON(!d_unhashed(result));
1090 iput(inode);
1091 return result;
1092 }
1093
1094 EXPORT_SYMBOL(d_instantiate_unique);
1095
1096 /**
1097 * d_alloc_root - allocate root dentry
1098 * @root_inode: inode to allocate the root for
1099 *
1100 * Allocate a root ("/") dentry for the inode given. The inode is
1101 * instantiated and returned. %NULL is returned if there is insufficient
1102 * memory or the inode passed is %NULL.
1103 */
1104
1105 struct dentry * d_alloc_root(struct inode * root_inode)
1106 {
1107 struct dentry *res = NULL;
1108
1109 if (root_inode) {
1110 static const struct qstr name = { .name = "/", .len = 1 };
1111
1112 res = d_alloc(NULL, &name);
1113 if (res) {
1114 res->d_sb = root_inode->i_sb;
1115 res->d_parent = res;
1116 d_instantiate(res, root_inode);
1117 }
1118 }
1119 return res;
1120 }
1121 EXPORT_SYMBOL(d_alloc_root);
1122
1123 static inline struct hlist_head *d_hash(struct dentry *parent,
1124 unsigned long hash)
1125 {
1126 hash += ((unsigned long) parent ^ GOLDEN_RATIO_PRIME) / L1_CACHE_BYTES;
1127 hash = hash ^ ((hash ^ GOLDEN_RATIO_PRIME) >> D_HASHBITS);
1128 return dentry_hashtable + (hash & D_HASHMASK);
1129 }
1130
1131 /**
1132 * d_obtain_alias - find or allocate a dentry for a given inode
1133 * @inode: inode to allocate the dentry for
1134 *
1135 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1136 * similar open by handle operations. The returned dentry may be anonymous,
1137 * or may have a full name (if the inode was already in the cache).
1138 *
1139 * When called on a directory inode, we must ensure that the inode only ever
1140 * has one dentry. If a dentry is found, that is returned instead of
1141 * allocating a new one.
1142 *
1143 * On successful return, the reference to the inode has been transferred
1144 * to the dentry. In case of an error the reference on the inode is released.
1145 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1146 * be passed in and will be the error will be propagate to the return value,
1147 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1148 */
1149 struct dentry *d_obtain_alias(struct inode *inode)
1150 {
1151 static const struct qstr anonstring = { .name = "" };
1152 struct dentry *tmp;
1153 struct dentry *res;
1154
1155 if (!inode)
1156 return ERR_PTR(-ESTALE);
1157 if (IS_ERR(inode))
1158 return ERR_CAST(inode);
1159
1160 res = d_find_alias(inode);
1161 if (res)
1162 goto out_iput;
1163
1164 tmp = d_alloc(NULL, &anonstring);
1165 if (!tmp) {
1166 res = ERR_PTR(-ENOMEM);
1167 goto out_iput;
1168 }
1169 tmp->d_parent = tmp; /* make sure dput doesn't croak */
1170
1171 spin_lock(&dcache_lock);
1172 res = __d_find_alias(inode, 0);
1173 if (res) {
1174 spin_unlock(&dcache_lock);
1175 dput(tmp);
1176 goto out_iput;
1177 }
1178
1179 /* attach a disconnected dentry */
1180 spin_lock(&tmp->d_lock);
1181 tmp->d_sb = inode->i_sb;
1182 tmp->d_inode = inode;
1183 tmp->d_flags |= DCACHE_DISCONNECTED;
1184 tmp->d_flags &= ~DCACHE_UNHASHED;
1185 list_add(&tmp->d_alias, &inode->i_dentry);
1186 hlist_add_head(&tmp->d_hash, &inode->i_sb->s_anon);
1187 spin_unlock(&tmp->d_lock);
1188
1189 spin_unlock(&dcache_lock);
1190 return tmp;
1191
1192 out_iput:
1193 iput(inode);
1194 return res;
1195 }
1196 EXPORT_SYMBOL(d_obtain_alias);
1197
1198 /**
1199 * d_splice_alias - splice a disconnected dentry into the tree if one exists
1200 * @inode: the inode which may have a disconnected dentry
1201 * @dentry: a negative dentry which we want to point to the inode.
1202 *
1203 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1204 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1205 * and return it, else simply d_add the inode to the dentry and return NULL.
1206 *
1207 * This is needed in the lookup routine of any filesystem that is exportable
1208 * (via knfsd) so that we can build dcache paths to directories effectively.
1209 *
1210 * If a dentry was found and moved, then it is returned. Otherwise NULL
1211 * is returned. This matches the expected return value of ->lookup.
1212 *
1213 */
1214 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
1215 {
1216 struct dentry *new = NULL;
1217
1218 if (inode && S_ISDIR(inode->i_mode)) {
1219 spin_lock(&dcache_lock);
1220 new = __d_find_alias(inode, 1);
1221 if (new) {
1222 BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED));
1223 spin_unlock(&dcache_lock);
1224 security_d_instantiate(new, inode);
1225 d_rehash(dentry);
1226 d_move(new, dentry);
1227 iput(inode);
1228 } else {
1229 /* already taking dcache_lock, so d_add() by hand */
1230 __d_instantiate(dentry, inode);
1231 spin_unlock(&dcache_lock);
1232 security_d_instantiate(dentry, inode);
1233 d_rehash(dentry);
1234 }
1235 } else
1236 d_add(dentry, inode);
1237 return new;
1238 }
1239 EXPORT_SYMBOL(d_splice_alias);
1240
1241 /**
1242 * d_add_ci - lookup or allocate new dentry with case-exact name
1243 * @inode: the inode case-insensitive lookup has found
1244 * @dentry: the negative dentry that was passed to the parent's lookup func
1245 * @name: the case-exact name to be associated with the returned dentry
1246 *
1247 * This is to avoid filling the dcache with case-insensitive names to the
1248 * same inode, only the actual correct case is stored in the dcache for
1249 * case-insensitive filesystems.
1250 *
1251 * For a case-insensitive lookup match and if the the case-exact dentry
1252 * already exists in in the dcache, use it and return it.
1253 *
1254 * If no entry exists with the exact case name, allocate new dentry with
1255 * the exact case, and return the spliced entry.
1256 */
1257 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
1258 struct qstr *name)
1259 {
1260 int error;
1261 struct dentry *found;
1262 struct dentry *new;
1263
1264 /*
1265 * First check if a dentry matching the name already exists,
1266 * if not go ahead and create it now.
1267 */
1268 found = d_hash_and_lookup(dentry->d_parent, name);
1269 if (!found) {
1270 new = d_alloc(dentry->d_parent, name);
1271 if (!new) {
1272 error = -ENOMEM;
1273 goto err_out;
1274 }
1275
1276 found = d_splice_alias(inode, new);
1277 if (found) {
1278 dput(new);
1279 return found;
1280 }
1281 return new;
1282 }
1283
1284 /*
1285 * If a matching dentry exists, and it's not negative use it.
1286 *
1287 * Decrement the reference count to balance the iget() done
1288 * earlier on.
1289 */
1290 if (found->d_inode) {
1291 if (unlikely(found->d_inode != inode)) {
1292 /* This can't happen because bad inodes are unhashed. */
1293 BUG_ON(!is_bad_inode(inode));
1294 BUG_ON(!is_bad_inode(found->d_inode));
1295 }
1296 iput(inode);
1297 return found;
1298 }
1299
1300 /*
1301 * Negative dentry: instantiate it unless the inode is a directory and
1302 * already has a dentry.
1303 */
1304 spin_lock(&dcache_lock);
1305 if (!S_ISDIR(inode->i_mode) || list_empty(&inode->i_dentry)) {
1306 __d_instantiate(found, inode);
1307 spin_unlock(&dcache_lock);
1308 security_d_instantiate(found, inode);
1309 return found;
1310 }
1311
1312 /*
1313 * In case a directory already has a (disconnected) entry grab a
1314 * reference to it, move it in place and use it.
1315 */
1316 new = list_entry(inode->i_dentry.next, struct dentry, d_alias);
1317 dget_locked(new);
1318 spin_unlock(&dcache_lock);
1319 security_d_instantiate(found, inode);
1320 d_move(new, found);
1321 iput(inode);
1322 dput(found);
1323 return new;
1324
1325 err_out:
1326 iput(inode);
1327 return ERR_PTR(error);
1328 }
1329 EXPORT_SYMBOL(d_add_ci);
1330
1331 /**
1332 * d_lookup - search for a dentry
1333 * @parent: parent dentry
1334 * @name: qstr of name we wish to find
1335 *
1336 * Searches the children of the parent dentry for the name in question. If
1337 * the dentry is found its reference count is incremented and the dentry
1338 * is returned. The caller must use dput to free the entry when it has
1339 * finished using it. %NULL is returned on failure.
1340 *
1341 * __d_lookup is dcache_lock free. The hash list is protected using RCU.
1342 * Memory barriers are used while updating and doing lockless traversal.
1343 * To avoid races with d_move while rename is happening, d_lock is used.
1344 *
1345 * Overflows in memcmp(), while d_move, are avoided by keeping the length
1346 * and name pointer in one structure pointed by d_qstr.
1347 *
1348 * rcu_read_lock() and rcu_read_unlock() are used to disable preemption while
1349 * lookup is going on.
1350 *
1351 * The dentry unused LRU is not updated even if lookup finds the required dentry
1352 * in there. It is updated in places such as prune_dcache, shrink_dcache_sb,
1353 * select_parent and __dget_locked. This laziness saves lookup from dcache_lock
1354 * acquisition.
1355 *
1356 * d_lookup() is protected against the concurrent renames in some unrelated
1357 * directory using the seqlockt_t rename_lock.
1358 */
1359
1360 struct dentry * d_lookup(struct dentry * parent, struct qstr * name)
1361 {
1362 struct dentry * dentry = NULL;
1363 unsigned long seq;
1364
1365 do {
1366 seq = read_seqbegin(&rename_lock);
1367 dentry = __d_lookup(parent, name);
1368 if (dentry)
1369 break;
1370 } while (read_seqretry(&rename_lock, seq));
1371 return dentry;
1372 }
1373 EXPORT_SYMBOL(d_lookup);
1374
1375 struct dentry * __d_lookup(struct dentry * parent, struct qstr * name)
1376 {
1377 unsigned int len = name->len;
1378 unsigned int hash = name->hash;
1379 const unsigned char *str = name->name;
1380 struct hlist_head *head = d_hash(parent,hash);
1381 struct dentry *found = NULL;
1382 struct hlist_node *node;
1383 struct dentry *dentry;
1384
1385 rcu_read_lock();
1386
1387 hlist_for_each_entry_rcu(dentry, node, head, d_hash) {
1388 struct qstr *qstr;
1389
1390 if (dentry->d_name.hash != hash)
1391 continue;
1392 if (dentry->d_parent != parent)
1393 continue;
1394
1395 spin_lock(&dentry->d_lock);
1396
1397 /*
1398 * Recheck the dentry after taking the lock - d_move may have
1399 * changed things. Don't bother checking the hash because we're
1400 * about to compare the whole name anyway.
1401 */
1402 if (dentry->d_parent != parent)
1403 goto next;
1404
1405 /* non-existing due to RCU? */
1406 if (d_unhashed(dentry))
1407 goto next;
1408
1409 /*
1410 * It is safe to compare names since d_move() cannot
1411 * change the qstr (protected by d_lock).
1412 */
1413 qstr = &dentry->d_name;
1414 if (parent->d_op && parent->d_op->d_compare) {
1415 if (parent->d_op->d_compare(parent, qstr, name))
1416 goto next;
1417 } else {
1418 if (qstr->len != len)
1419 goto next;
1420 if (memcmp(qstr->name, str, len))
1421 goto next;
1422 }
1423
1424 atomic_inc(&dentry->d_count);
1425 found = dentry;
1426 spin_unlock(&dentry->d_lock);
1427 break;
1428 next:
1429 spin_unlock(&dentry->d_lock);
1430 }
1431 rcu_read_unlock();
1432
1433 return found;
1434 }
1435
1436 /**
1437 * d_hash_and_lookup - hash the qstr then search for a dentry
1438 * @dir: Directory to search in
1439 * @name: qstr of name we wish to find
1440 *
1441 * On hash failure or on lookup failure NULL is returned.
1442 */
1443 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
1444 {
1445 struct dentry *dentry = NULL;
1446
1447 /*
1448 * Check for a fs-specific hash function. Note that we must
1449 * calculate the standard hash first, as the d_op->d_hash()
1450 * routine may choose to leave the hash value unchanged.
1451 */
1452 name->hash = full_name_hash(name->name, name->len);
1453 if (dir->d_op && dir->d_op->d_hash) {
1454 if (dir->d_op->d_hash(dir, name) < 0)
1455 goto out;
1456 }
1457 dentry = d_lookup(dir, name);
1458 out:
1459 return dentry;
1460 }
1461
1462 /**
1463 * d_validate - verify dentry provided from insecure source
1464 * @dentry: The dentry alleged to be valid child of @dparent
1465 * @dparent: The parent dentry (known to be valid)
1466 *
1467 * An insecure source has sent us a dentry, here we verify it and dget() it.
1468 * This is used by ncpfs in its readdir implementation.
1469 * Zero is returned in the dentry is invalid.
1470 */
1471
1472 int d_validate(struct dentry *dentry, struct dentry *dparent)
1473 {
1474 struct hlist_head *base;
1475 struct hlist_node *lhp;
1476
1477 /* Check whether the ptr might be valid at all.. */
1478 if (!kmem_ptr_validate(dentry_cache, dentry))
1479 goto out;
1480
1481 if (dentry->d_parent != dparent)
1482 goto out;
1483
1484 spin_lock(&dcache_lock);
1485 base = d_hash(dparent, dentry->d_name.hash);
1486 hlist_for_each(lhp,base) {
1487 /* hlist_for_each_entry_rcu() not required for d_hash list
1488 * as it is parsed under dcache_lock
1489 */
1490 if (dentry == hlist_entry(lhp, struct dentry, d_hash)) {
1491 __dget_locked(dentry);
1492 spin_unlock(&dcache_lock);
1493 return 1;
1494 }
1495 }
1496 spin_unlock(&dcache_lock);
1497 out:
1498 return 0;
1499 }
1500 EXPORT_SYMBOL(d_validate);
1501
1502 /*
1503 * When a file is deleted, we have two options:
1504 * - turn this dentry into a negative dentry
1505 * - unhash this dentry and free it.
1506 *
1507 * Usually, we want to just turn this into
1508 * a negative dentry, but if anybody else is
1509 * currently using the dentry or the inode
1510 * we can't do that and we fall back on removing
1511 * it from the hash queues and waiting for
1512 * it to be deleted later when it has no users
1513 */
1514
1515 /**
1516 * d_delete - delete a dentry
1517 * @dentry: The dentry to delete
1518 *
1519 * Turn the dentry into a negative dentry if possible, otherwise
1520 * remove it from the hash queues so it can be deleted later
1521 */
1522
1523 void d_delete(struct dentry * dentry)
1524 {
1525 int isdir = 0;
1526 /*
1527 * Are we the only user?
1528 */
1529 spin_lock(&dcache_lock);
1530 spin_lock(&dentry->d_lock);
1531 isdir = S_ISDIR(dentry->d_inode->i_mode);
1532 if (atomic_read(&dentry->d_count) == 1) {
1533 dentry_iput(dentry);
1534 fsnotify_nameremove(dentry, isdir);
1535 return;
1536 }
1537
1538 if (!d_unhashed(dentry))
1539 __d_drop(dentry);
1540
1541 spin_unlock(&dentry->d_lock);
1542 spin_unlock(&dcache_lock);
1543
1544 fsnotify_nameremove(dentry, isdir);
1545 }
1546 EXPORT_SYMBOL(d_delete);
1547
1548 static void __d_rehash(struct dentry * entry, struct hlist_head *list)
1549 {
1550
1551 entry->d_flags &= ~DCACHE_UNHASHED;
1552 hlist_add_head_rcu(&entry->d_hash, list);
1553 }
1554
1555 static void _d_rehash(struct dentry * entry)
1556 {
1557 __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
1558 }
1559
1560 /**
1561 * d_rehash - add an entry back to the hash
1562 * @entry: dentry to add to the hash
1563 *
1564 * Adds a dentry to the hash according to its name.
1565 */
1566
1567 void d_rehash(struct dentry * entry)
1568 {
1569 spin_lock(&dcache_lock);
1570 spin_lock(&entry->d_lock);
1571 _d_rehash(entry);
1572 spin_unlock(&entry->d_lock);
1573 spin_unlock(&dcache_lock);
1574 }
1575 EXPORT_SYMBOL(d_rehash);
1576
1577 /*
1578 * When switching names, the actual string doesn't strictly have to
1579 * be preserved in the target - because we're dropping the target
1580 * anyway. As such, we can just do a simple memcpy() to copy over
1581 * the new name before we switch.
1582 *
1583 * Note that we have to be a lot more careful about getting the hash
1584 * switched - we have to switch the hash value properly even if it
1585 * then no longer matches the actual (corrupted) string of the target.
1586 * The hash value has to match the hash queue that the dentry is on..
1587 */
1588 static void switch_names(struct dentry *dentry, struct dentry *target)
1589 {
1590 if (dname_external(target)) {
1591 if (dname_external(dentry)) {
1592 /*
1593 * Both external: swap the pointers
1594 */
1595 swap(target->d_name.name, dentry->d_name.name);
1596 } else {
1597 /*
1598 * dentry:internal, target:external. Steal target's
1599 * storage and make target internal.
1600 */
1601 memcpy(target->d_iname, dentry->d_name.name,
1602 dentry->d_name.len + 1);
1603 dentry->d_name.name = target->d_name.name;
1604 target->d_name.name = target->d_iname;
1605 }
1606 } else {
1607 if (dname_external(dentry)) {
1608 /*
1609 * dentry:external, target:internal. Give dentry's
1610 * storage to target and make dentry internal
1611 */
1612 memcpy(dentry->d_iname, target->d_name.name,
1613 target->d_name.len + 1);
1614 target->d_name.name = dentry->d_name.name;
1615 dentry->d_name.name = dentry->d_iname;
1616 } else {
1617 /*
1618 * Both are internal. Just copy target to dentry
1619 */
1620 memcpy(dentry->d_iname, target->d_name.name,
1621 target->d_name.len + 1);
1622 dentry->d_name.len = target->d_name.len;
1623 return;
1624 }
1625 }
1626 swap(dentry->d_name.len, target->d_name.len);
1627 }
1628
1629 /*
1630 * We cannibalize "target" when moving dentry on top of it,
1631 * because it's going to be thrown away anyway. We could be more
1632 * polite about it, though.
1633 *
1634 * This forceful removal will result in ugly /proc output if
1635 * somebody holds a file open that got deleted due to a rename.
1636 * We could be nicer about the deleted file, and let it show
1637 * up under the name it had before it was deleted rather than
1638 * under the original name of the file that was moved on top of it.
1639 */
1640
1641 /*
1642 * d_move_locked - move a dentry
1643 * @dentry: entry to move
1644 * @target: new dentry
1645 *
1646 * Update the dcache to reflect the move of a file name. Negative
1647 * dcache entries should not be moved in this way.
1648 */
1649 static void d_move_locked(struct dentry * dentry, struct dentry * target)
1650 {
1651 struct hlist_head *list;
1652
1653 if (!dentry->d_inode)
1654 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
1655
1656 write_seqlock(&rename_lock);
1657 /*
1658 * XXXX: do we really need to take target->d_lock?
1659 */
1660 if (target < dentry) {
1661 spin_lock(&target->d_lock);
1662 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1663 } else {
1664 spin_lock(&dentry->d_lock);
1665 spin_lock_nested(&target->d_lock, DENTRY_D_LOCK_NESTED);
1666 }
1667
1668 /* Move the dentry to the target hash queue, if on different bucket */
1669 if (d_unhashed(dentry))
1670 goto already_unhashed;
1671
1672 hlist_del_rcu(&dentry->d_hash);
1673
1674 already_unhashed:
1675 list = d_hash(target->d_parent, target->d_name.hash);
1676 __d_rehash(dentry, list);
1677
1678 /* Unhash the target: dput() will then get rid of it */
1679 __d_drop(target);
1680
1681 list_del(&dentry->d_u.d_child);
1682 list_del(&target->d_u.d_child);
1683
1684 /* Switch the names.. */
1685 switch_names(dentry, target);
1686 swap(dentry->d_name.hash, target->d_name.hash);
1687
1688 /* ... and switch the parents */
1689 if (IS_ROOT(dentry)) {
1690 dentry->d_parent = target->d_parent;
1691 target->d_parent = target;
1692 INIT_LIST_HEAD(&target->d_u.d_child);
1693 } else {
1694 swap(dentry->d_parent, target->d_parent);
1695
1696 /* And add them back to the (new) parent lists */
1697 list_add(&target->d_u.d_child, &target->d_parent->d_subdirs);
1698 }
1699
1700 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
1701 spin_unlock(&target->d_lock);
1702 fsnotify_d_move(dentry);
1703 spin_unlock(&dentry->d_lock);
1704 write_sequnlock(&rename_lock);
1705 }
1706
1707 /**
1708 * d_move - move a dentry
1709 * @dentry: entry to move
1710 * @target: new dentry
1711 *
1712 * Update the dcache to reflect the move of a file name. Negative
1713 * dcache entries should not be moved in this way.
1714 */
1715
1716 void d_move(struct dentry * dentry, struct dentry * target)
1717 {
1718 spin_lock(&dcache_lock);
1719 d_move_locked(dentry, target);
1720 spin_unlock(&dcache_lock);
1721 }
1722 EXPORT_SYMBOL(d_move);
1723
1724 /**
1725 * d_ancestor - search for an ancestor
1726 * @p1: ancestor dentry
1727 * @p2: child dentry
1728 *
1729 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
1730 * an ancestor of p2, else NULL.
1731 */
1732 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
1733 {
1734 struct dentry *p;
1735
1736 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
1737 if (p->d_parent == p1)
1738 return p;
1739 }
1740 return NULL;
1741 }
1742
1743 /*
1744 * This helper attempts to cope with remotely renamed directories
1745 *
1746 * It assumes that the caller is already holding
1747 * dentry->d_parent->d_inode->i_mutex and the dcache_lock
1748 *
1749 * Note: If ever the locking in lock_rename() changes, then please
1750 * remember to update this too...
1751 */
1752 static struct dentry *__d_unalias(struct dentry *dentry, struct dentry *alias)
1753 __releases(dcache_lock)
1754 {
1755 struct mutex *m1 = NULL, *m2 = NULL;
1756 struct dentry *ret;
1757
1758 /* If alias and dentry share a parent, then no extra locks required */
1759 if (alias->d_parent == dentry->d_parent)
1760 goto out_unalias;
1761
1762 /* Check for loops */
1763 ret = ERR_PTR(-ELOOP);
1764 if (d_ancestor(alias, dentry))
1765 goto out_err;
1766
1767 /* See lock_rename() */
1768 ret = ERR_PTR(-EBUSY);
1769 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
1770 goto out_err;
1771 m1 = &dentry->d_sb->s_vfs_rename_mutex;
1772 if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
1773 goto out_err;
1774 m2 = &alias->d_parent->d_inode->i_mutex;
1775 out_unalias:
1776 d_move_locked(alias, dentry);
1777 ret = alias;
1778 out_err:
1779 spin_unlock(&dcache_lock);
1780 if (m2)
1781 mutex_unlock(m2);
1782 if (m1)
1783 mutex_unlock(m1);
1784 return ret;
1785 }
1786
1787 /*
1788 * Prepare an anonymous dentry for life in the superblock's dentry tree as a
1789 * named dentry in place of the dentry to be replaced.
1790 */
1791 static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon)
1792 {
1793 struct dentry *dparent, *aparent;
1794
1795 switch_names(dentry, anon);
1796 swap(dentry->d_name.hash, anon->d_name.hash);
1797
1798 dparent = dentry->d_parent;
1799 aparent = anon->d_parent;
1800
1801 dentry->d_parent = (aparent == anon) ? dentry : aparent;
1802 list_del(&dentry->d_u.d_child);
1803 if (!IS_ROOT(dentry))
1804 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
1805 else
1806 INIT_LIST_HEAD(&dentry->d_u.d_child);
1807
1808 anon->d_parent = (dparent == dentry) ? anon : dparent;
1809 list_del(&anon->d_u.d_child);
1810 if (!IS_ROOT(anon))
1811 list_add(&anon->d_u.d_child, &anon->d_parent->d_subdirs);
1812 else
1813 INIT_LIST_HEAD(&anon->d_u.d_child);
1814
1815 anon->d_flags &= ~DCACHE_DISCONNECTED;
1816 }
1817
1818 /**
1819 * d_materialise_unique - introduce an inode into the tree
1820 * @dentry: candidate dentry
1821 * @inode: inode to bind to the dentry, to which aliases may be attached
1822 *
1823 * Introduces an dentry into the tree, substituting an extant disconnected
1824 * root directory alias in its place if there is one
1825 */
1826 struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
1827 {
1828 struct dentry *actual;
1829
1830 BUG_ON(!d_unhashed(dentry));
1831
1832 spin_lock(&dcache_lock);
1833
1834 if (!inode) {
1835 actual = dentry;
1836 __d_instantiate(dentry, NULL);
1837 goto found_lock;
1838 }
1839
1840 if (S_ISDIR(inode->i_mode)) {
1841 struct dentry *alias;
1842
1843 /* Does an aliased dentry already exist? */
1844 alias = __d_find_alias(inode, 0);
1845 if (alias) {
1846 actual = alias;
1847 /* Is this an anonymous mountpoint that we could splice
1848 * into our tree? */
1849 if (IS_ROOT(alias)) {
1850 spin_lock(&alias->d_lock);
1851 __d_materialise_dentry(dentry, alias);
1852 __d_drop(alias);
1853 goto found;
1854 }
1855 /* Nope, but we must(!) avoid directory aliasing */
1856 actual = __d_unalias(dentry, alias);
1857 if (IS_ERR(actual))
1858 dput(alias);
1859 goto out_nolock;
1860 }
1861 }
1862
1863 /* Add a unique reference */
1864 actual = __d_instantiate_unique(dentry, inode);
1865 if (!actual)
1866 actual = dentry;
1867 else if (unlikely(!d_unhashed(actual)))
1868 goto shouldnt_be_hashed;
1869
1870 found_lock:
1871 spin_lock(&actual->d_lock);
1872 found:
1873 _d_rehash(actual);
1874 spin_unlock(&actual->d_lock);
1875 spin_unlock(&dcache_lock);
1876 out_nolock:
1877 if (actual == dentry) {
1878 security_d_instantiate(dentry, inode);
1879 return NULL;
1880 }
1881
1882 iput(inode);
1883 return actual;
1884
1885 shouldnt_be_hashed:
1886 spin_unlock(&dcache_lock);
1887 BUG();
1888 }
1889 EXPORT_SYMBOL_GPL(d_materialise_unique);
1890
1891 static int prepend(char **buffer, int *buflen, const char *str, int namelen)
1892 {
1893 *buflen -= namelen;
1894 if (*buflen < 0)
1895 return -ENAMETOOLONG;
1896 *buffer -= namelen;
1897 memcpy(*buffer, str, namelen);
1898 return 0;
1899 }
1900
1901 static int prepend_name(char **buffer, int *buflen, struct qstr *name)
1902 {
1903 return prepend(buffer, buflen, name->name, name->len);
1904 }
1905
1906 /**
1907 * __d_path - return the path of a dentry
1908 * @path: the dentry/vfsmount to report
1909 * @root: root vfsmnt/dentry (may be modified by this function)
1910 * @buffer: buffer to return value in
1911 * @buflen: buffer length
1912 *
1913 * Convert a dentry into an ASCII path name. If the entry has been deleted
1914 * the string " (deleted)" is appended. Note that this is ambiguous.
1915 *
1916 * Returns a pointer into the buffer or an error code if the
1917 * path was too long.
1918 *
1919 * "buflen" should be positive. Caller holds the dcache_lock.
1920 *
1921 * If path is not reachable from the supplied root, then the value of
1922 * root is changed (without modifying refcounts).
1923 */
1924 char *__d_path(const struct path *path, struct path *root,
1925 char *buffer, int buflen)
1926 {
1927 struct dentry *dentry = path->dentry;
1928 struct vfsmount *vfsmnt = path->mnt;
1929 char *end = buffer + buflen;
1930 char *retval;
1931
1932 spin_lock(&vfsmount_lock);
1933 prepend(&end, &buflen, "\0", 1);
1934 if (d_unlinked(dentry) &&
1935 (prepend(&end, &buflen, " (deleted)", 10) != 0))
1936 goto Elong;
1937
1938 if (buflen < 1)
1939 goto Elong;
1940 /* Get '/' right */
1941 retval = end-1;
1942 *retval = '/';
1943
1944 for (;;) {
1945 struct dentry * parent;
1946
1947 if (dentry == root->dentry && vfsmnt == root->mnt)
1948 break;
1949 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
1950 /* Global root? */
1951 if (vfsmnt->mnt_parent == vfsmnt) {
1952 goto global_root;
1953 }
1954 dentry = vfsmnt->mnt_mountpoint;
1955 vfsmnt = vfsmnt->mnt_parent;
1956 continue;
1957 }
1958 parent = dentry->d_parent;
1959 prefetch(parent);
1960 if ((prepend_name(&end, &buflen, &dentry->d_name) != 0) ||
1961 (prepend(&end, &buflen, "/", 1) != 0))
1962 goto Elong;
1963 retval = end;
1964 dentry = parent;
1965 }
1966
1967 out:
1968 spin_unlock(&vfsmount_lock);
1969 return retval;
1970
1971 global_root:
1972 retval += 1; /* hit the slash */
1973 if (prepend_name(&retval, &buflen, &dentry->d_name) != 0)
1974 goto Elong;
1975 root->mnt = vfsmnt;
1976 root->dentry = dentry;
1977 goto out;
1978
1979 Elong:
1980 retval = ERR_PTR(-ENAMETOOLONG);
1981 goto out;
1982 }
1983
1984 /**
1985 * d_path - return the path of a dentry
1986 * @path: path to report
1987 * @buf: buffer to return value in
1988 * @buflen: buffer length
1989 *
1990 * Convert a dentry into an ASCII path name. If the entry has been deleted
1991 * the string " (deleted)" is appended. Note that this is ambiguous.
1992 *
1993 * Returns a pointer into the buffer or an error code if the path was
1994 * too long. Note: Callers should use the returned pointer, not the passed
1995 * in buffer, to use the name! The implementation often starts at an offset
1996 * into the buffer, and may leave 0 bytes at the start.
1997 *
1998 * "buflen" should be positive.
1999 */
2000 char *d_path(const struct path *path, char *buf, int buflen)
2001 {
2002 char *res;
2003 struct path root;
2004 struct path tmp;
2005
2006 /*
2007 * We have various synthetic filesystems that never get mounted. On
2008 * these filesystems dentries are never used for lookup purposes, and
2009 * thus don't need to be hashed. They also don't need a name until a
2010 * user wants to identify the object in /proc/pid/fd/. The little hack
2011 * below allows us to generate a name for these objects on demand:
2012 */
2013 if (path->dentry->d_op && path->dentry->d_op->d_dname)
2014 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
2015
2016 read_lock(&current->fs->lock);
2017 root = current->fs->root;
2018 path_get(&root);
2019 read_unlock(&current->fs->lock);
2020 spin_lock(&dcache_lock);
2021 tmp = root;
2022 res = __d_path(path, &tmp, buf, buflen);
2023 spin_unlock(&dcache_lock);
2024 path_put(&root);
2025 return res;
2026 }
2027 EXPORT_SYMBOL(d_path);
2028
2029 /*
2030 * Helper function for dentry_operations.d_dname() members
2031 */
2032 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
2033 const char *fmt, ...)
2034 {
2035 va_list args;
2036 char temp[64];
2037 int sz;
2038
2039 va_start(args, fmt);
2040 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
2041 va_end(args);
2042
2043 if (sz > sizeof(temp) || sz > buflen)
2044 return ERR_PTR(-ENAMETOOLONG);
2045
2046 buffer += buflen - sz;
2047 return memcpy(buffer, temp, sz);
2048 }
2049
2050 /*
2051 * Write full pathname from the root of the filesystem into the buffer.
2052 */
2053 char *dentry_path(struct dentry *dentry, char *buf, int buflen)
2054 {
2055 char *end = buf + buflen;
2056 char *retval;
2057
2058 spin_lock(&dcache_lock);
2059 prepend(&end, &buflen, "\0", 1);
2060 if (d_unlinked(dentry) &&
2061 (prepend(&end, &buflen, "//deleted", 9) != 0))
2062 goto Elong;
2063 if (buflen < 1)
2064 goto Elong;
2065 /* Get '/' right */
2066 retval = end-1;
2067 *retval = '/';
2068
2069 while (!IS_ROOT(dentry)) {
2070 struct dentry *parent = dentry->d_parent;
2071
2072 prefetch(parent);
2073 if ((prepend_name(&end, &buflen, &dentry->d_name) != 0) ||
2074 (prepend(&end, &buflen, "/", 1) != 0))
2075 goto Elong;
2076
2077 retval = end;
2078 dentry = parent;
2079 }
2080 spin_unlock(&dcache_lock);
2081 return retval;
2082 Elong:
2083 spin_unlock(&dcache_lock);
2084 return ERR_PTR(-ENAMETOOLONG);
2085 }
2086
2087 /*
2088 * NOTE! The user-level library version returns a
2089 * character pointer. The kernel system call just
2090 * returns the length of the buffer filled (which
2091 * includes the ending '\0' character), or a negative
2092 * error value. So libc would do something like
2093 *
2094 * char *getcwd(char * buf, size_t size)
2095 * {
2096 * int retval;
2097 *
2098 * retval = sys_getcwd(buf, size);
2099 * if (retval >= 0)
2100 * return buf;
2101 * errno = -retval;
2102 * return NULL;
2103 * }
2104 */
2105 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
2106 {
2107 int error;
2108 struct path pwd, root;
2109 char *page = (char *) __get_free_page(GFP_USER);
2110
2111 if (!page)
2112 return -ENOMEM;
2113
2114 read_lock(&current->fs->lock);
2115 pwd = current->fs->pwd;
2116 path_get(&pwd);
2117 root = current->fs->root;
2118 path_get(&root);
2119 read_unlock(&current->fs->lock);
2120
2121 error = -ENOENT;
2122 spin_lock(&dcache_lock);
2123 if (!d_unlinked(pwd.dentry)) {
2124 unsigned long len;
2125 struct path tmp = root;
2126 char * cwd;
2127
2128 cwd = __d_path(&pwd, &tmp, page, PAGE_SIZE);
2129 spin_unlock(&dcache_lock);
2130
2131 error = PTR_ERR(cwd);
2132 if (IS_ERR(cwd))
2133 goto out;
2134
2135 error = -ERANGE;
2136 len = PAGE_SIZE + page - cwd;
2137 if (len <= size) {
2138 error = len;
2139 if (copy_to_user(buf, cwd, len))
2140 error = -EFAULT;
2141 }
2142 } else
2143 spin_unlock(&dcache_lock);
2144
2145 out:
2146 path_put(&pwd);
2147 path_put(&root);
2148 free_page((unsigned long) page);
2149 return error;
2150 }
2151
2152 /*
2153 * Test whether new_dentry is a subdirectory of old_dentry.
2154 *
2155 * Trivially implemented using the dcache structure
2156 */
2157
2158 /**
2159 * is_subdir - is new dentry a subdirectory of old_dentry
2160 * @new_dentry: new dentry
2161 * @old_dentry: old dentry
2162 *
2163 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
2164 * Returns 0 otherwise.
2165 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
2166 */
2167
2168 int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
2169 {
2170 int result;
2171 unsigned long seq;
2172
2173 if (new_dentry == old_dentry)
2174 return 1;
2175
2176 /*
2177 * Need rcu_readlock to protect against the d_parent trashing
2178 * due to d_move
2179 */
2180 rcu_read_lock();
2181 do {
2182 /* for restarting inner loop in case of seq retry */
2183 seq = read_seqbegin(&rename_lock);
2184 if (d_ancestor(old_dentry, new_dentry))
2185 result = 1;
2186 else
2187 result = 0;
2188 } while (read_seqretry(&rename_lock, seq));
2189 rcu_read_unlock();
2190
2191 return result;
2192 }
2193
2194 int path_is_under(struct path *path1, struct path *path2)
2195 {
2196 struct vfsmount *mnt = path1->mnt;
2197 struct dentry *dentry = path1->dentry;
2198 int res;
2199 spin_lock(&vfsmount_lock);
2200 if (mnt != path2->mnt) {
2201 for (;;) {
2202 if (mnt->mnt_parent == mnt) {
2203 spin_unlock(&vfsmount_lock);
2204 return 0;
2205 }
2206 if (mnt->mnt_parent == path2->mnt)
2207 break;
2208 mnt = mnt->mnt_parent;
2209 }
2210 dentry = mnt->mnt_mountpoint;
2211 }
2212 res = is_subdir(dentry, path2->dentry);
2213 spin_unlock(&vfsmount_lock);
2214 return res;
2215 }
2216 EXPORT_SYMBOL(path_is_under);
2217
2218 void d_genocide(struct dentry *root)
2219 {
2220 struct dentry *this_parent = root;
2221 struct list_head *next;
2222
2223 spin_lock(&dcache_lock);
2224 repeat:
2225 next = this_parent->d_subdirs.next;
2226 resume:
2227 while (next != &this_parent->d_subdirs) {
2228 struct list_head *tmp = next;
2229 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
2230 next = tmp->next;
2231 if (d_unhashed(dentry)||!dentry->d_inode)
2232 continue;
2233 if (!list_empty(&dentry->d_subdirs)) {
2234 this_parent = dentry;
2235 goto repeat;
2236 }
2237 atomic_dec(&dentry->d_count);
2238 }
2239 if (this_parent != root) {
2240 next = this_parent->d_u.d_child.next;
2241 atomic_dec(&this_parent->d_count);
2242 this_parent = this_parent->d_parent;
2243 goto resume;
2244 }
2245 spin_unlock(&dcache_lock);
2246 }
2247
2248 /**
2249 * find_inode_number - check for dentry with name
2250 * @dir: directory to check
2251 * @name: Name to find.
2252 *
2253 * Check whether a dentry already exists for the given name,
2254 * and return the inode number if it has an inode. Otherwise
2255 * 0 is returned.
2256 *
2257 * This routine is used to post-process directory listings for
2258 * filesystems using synthetic inode numbers, and is necessary
2259 * to keep getcwd() working.
2260 */
2261
2262 ino_t find_inode_number(struct dentry *dir, struct qstr *name)
2263 {
2264 struct dentry * dentry;
2265 ino_t ino = 0;
2266
2267 dentry = d_hash_and_lookup(dir, name);
2268 if (dentry) {
2269 if (dentry->d_inode)
2270 ino = dentry->d_inode->i_ino;
2271 dput(dentry);
2272 }
2273 return ino;
2274 }
2275 EXPORT_SYMBOL(find_inode_number);
2276
2277 static __initdata unsigned long dhash_entries;
2278 static int __init set_dhash_entries(char *str)
2279 {
2280 if (!str)
2281 return 0;
2282 dhash_entries = simple_strtoul(str, &str, 0);
2283 return 1;
2284 }
2285 __setup("dhash_entries=", set_dhash_entries);
2286
2287 static void __init dcache_init_early(void)
2288 {
2289 int loop;
2290
2291 /* If hashes are distributed across NUMA nodes, defer
2292 * hash allocation until vmalloc space is available.
2293 */
2294 if (hashdist)
2295 return;
2296
2297 dentry_hashtable =
2298 alloc_large_system_hash("Dentry cache",
2299 sizeof(struct hlist_head),
2300 dhash_entries,
2301 13,
2302 HASH_EARLY,
2303 &d_hash_shift,
2304 &d_hash_mask,
2305 0);
2306
2307 for (loop = 0; loop < (1 << d_hash_shift); loop++)
2308 INIT_HLIST_HEAD(&dentry_hashtable[loop]);
2309 }
2310
2311 static void __init dcache_init(void)
2312 {
2313 int loop;
2314
2315 /*
2316 * A constructor could be added for stable state like the lists,
2317 * but it is probably not worth it because of the cache nature
2318 * of the dcache.
2319 */
2320 dentry_cache = KMEM_CACHE(dentry,
2321 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
2322
2323 register_shrinker(&dcache_shrinker);
2324
2325 /* Hash may have been set up in dcache_init_early */
2326 if (!hashdist)
2327 return;
2328
2329 dentry_hashtable =
2330 alloc_large_system_hash("Dentry cache",
2331 sizeof(struct hlist_head),
2332 dhash_entries,
2333 13,
2334 0,
2335 &d_hash_shift,
2336 &d_hash_mask,
2337 0);
2338
2339 for (loop = 0; loop < (1 << d_hash_shift); loop++)
2340 INIT_HLIST_HEAD(&dentry_hashtable[loop]);
2341 }
2342
2343 /* SLAB cache for __getname() consumers */
2344 struct kmem_cache *names_cachep __read_mostly;
2345 EXPORT_SYMBOL(names_cachep);
2346
2347 EXPORT_SYMBOL(d_genocide);
2348
2349 void __init vfs_caches_init_early(void)
2350 {
2351 dcache_init_early();
2352 inode_init_early();
2353 }
2354
2355 void __init vfs_caches_init(unsigned long mempages)
2356 {
2357 unsigned long reserve;
2358
2359 /* Base hash sizes on available memory, with a reserve equal to
2360 150% of current kernel size */
2361
2362 reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
2363 mempages -= reserve;
2364
2365 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
2366 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2367
2368 dcache_init();
2369 inode_init();
2370 files_init(mempages);
2371 mnt_init();
2372 bdev_cache_init();
2373 chrdev_init();
2374 }