]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/dcache.c
Merge tag 'dma-mapping-5.2' of git://git.infradead.org/users/hch/dma-mapping
[mirror_ubuntu-jammy-kernel.git] / fs / dcache.c
1 /*
2 * fs/dcache.c
3 *
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
8
9 /*
10 * Notes on the allocation strategy:
11 *
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
15 */
16
17 #include <linux/ratelimit.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fscrypt.h>
22 #include <linux/fsnotify.h>
23 #include <linux/slab.h>
24 #include <linux/init.h>
25 #include <linux/hash.h>
26 #include <linux/cache.h>
27 #include <linux/export.h>
28 #include <linux/security.h>
29 #include <linux/seqlock.h>
30 #include <linux/memblock.h>
31 #include <linux/bit_spinlock.h>
32 #include <linux/rculist_bl.h>
33 #include <linux/list_lru.h>
34 #include "internal.h"
35 #include "mount.h"
36
37 /*
38 * Usage:
39 * dcache->d_inode->i_lock protects:
40 * - i_dentry, d_u.d_alias, d_inode of aliases
41 * dcache_hash_bucket lock protects:
42 * - the dcache hash table
43 * s_roots bl list spinlock protects:
44 * - the s_roots list (see __d_drop)
45 * dentry->d_sb->s_dentry_lru_lock protects:
46 * - the dcache lru lists and counters
47 * d_lock protects:
48 * - d_flags
49 * - d_name
50 * - d_lru
51 * - d_count
52 * - d_unhashed()
53 * - d_parent and d_subdirs
54 * - childrens' d_child and d_parent
55 * - d_u.d_alias, d_inode
56 *
57 * Ordering:
58 * dentry->d_inode->i_lock
59 * dentry->d_lock
60 * dentry->d_sb->s_dentry_lru_lock
61 * dcache_hash_bucket lock
62 * s_roots lock
63 *
64 * If there is an ancestor relationship:
65 * dentry->d_parent->...->d_parent->d_lock
66 * ...
67 * dentry->d_parent->d_lock
68 * dentry->d_lock
69 *
70 * If no ancestor relationship:
71 * arbitrary, since it's serialized on rename_lock
72 */
73 int sysctl_vfs_cache_pressure __read_mostly = 100;
74 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
75
76 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
77
78 EXPORT_SYMBOL(rename_lock);
79
80 static struct kmem_cache *dentry_cache __read_mostly;
81
82 const struct qstr empty_name = QSTR_INIT("", 0);
83 EXPORT_SYMBOL(empty_name);
84 const struct qstr slash_name = QSTR_INIT("/", 1);
85 EXPORT_SYMBOL(slash_name);
86
87 /*
88 * This is the single most critical data structure when it comes
89 * to the dcache: the hashtable for lookups. Somebody should try
90 * to make this good - I've just made it work.
91 *
92 * This hash-function tries to avoid losing too many bits of hash
93 * information, yet avoid using a prime hash-size or similar.
94 */
95
96 static unsigned int d_hash_shift __read_mostly;
97
98 static struct hlist_bl_head *dentry_hashtable __read_mostly;
99
100 static inline struct hlist_bl_head *d_hash(unsigned int hash)
101 {
102 return dentry_hashtable + (hash >> d_hash_shift);
103 }
104
105 #define IN_LOOKUP_SHIFT 10
106 static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT];
107
108 static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent,
109 unsigned int hash)
110 {
111 hash += (unsigned long) parent / L1_CACHE_BYTES;
112 return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT);
113 }
114
115
116 /* Statistics gathering. */
117 struct dentry_stat_t dentry_stat = {
118 .age_limit = 45,
119 };
120
121 static DEFINE_PER_CPU(long, nr_dentry);
122 static DEFINE_PER_CPU(long, nr_dentry_unused);
123 static DEFINE_PER_CPU(long, nr_dentry_negative);
124
125 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
126
127 /*
128 * Here we resort to our own counters instead of using generic per-cpu counters
129 * for consistency with what the vfs inode code does. We are expected to harvest
130 * better code and performance by having our own specialized counters.
131 *
132 * Please note that the loop is done over all possible CPUs, not over all online
133 * CPUs. The reason for this is that we don't want to play games with CPUs going
134 * on and off. If one of them goes off, we will just keep their counters.
135 *
136 * glommer: See cffbc8a for details, and if you ever intend to change this,
137 * please update all vfs counters to match.
138 */
139 static long get_nr_dentry(void)
140 {
141 int i;
142 long sum = 0;
143 for_each_possible_cpu(i)
144 sum += per_cpu(nr_dentry, i);
145 return sum < 0 ? 0 : sum;
146 }
147
148 static long get_nr_dentry_unused(void)
149 {
150 int i;
151 long sum = 0;
152 for_each_possible_cpu(i)
153 sum += per_cpu(nr_dentry_unused, i);
154 return sum < 0 ? 0 : sum;
155 }
156
157 static long get_nr_dentry_negative(void)
158 {
159 int i;
160 long sum = 0;
161
162 for_each_possible_cpu(i)
163 sum += per_cpu(nr_dentry_negative, i);
164 return sum < 0 ? 0 : sum;
165 }
166
167 int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer,
168 size_t *lenp, loff_t *ppos)
169 {
170 dentry_stat.nr_dentry = get_nr_dentry();
171 dentry_stat.nr_unused = get_nr_dentry_unused();
172 dentry_stat.nr_negative = get_nr_dentry_negative();
173 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
174 }
175 #endif
176
177 /*
178 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
179 * The strings are both count bytes long, and count is non-zero.
180 */
181 #ifdef CONFIG_DCACHE_WORD_ACCESS
182
183 #include <asm/word-at-a-time.h>
184 /*
185 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
186 * aligned allocation for this particular component. We don't
187 * strictly need the load_unaligned_zeropad() safety, but it
188 * doesn't hurt either.
189 *
190 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
191 * need the careful unaligned handling.
192 */
193 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
194 {
195 unsigned long a,b,mask;
196
197 for (;;) {
198 a = read_word_at_a_time(cs);
199 b = load_unaligned_zeropad(ct);
200 if (tcount < sizeof(unsigned long))
201 break;
202 if (unlikely(a != b))
203 return 1;
204 cs += sizeof(unsigned long);
205 ct += sizeof(unsigned long);
206 tcount -= sizeof(unsigned long);
207 if (!tcount)
208 return 0;
209 }
210 mask = bytemask_from_count(tcount);
211 return unlikely(!!((a ^ b) & mask));
212 }
213
214 #else
215
216 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
217 {
218 do {
219 if (*cs != *ct)
220 return 1;
221 cs++;
222 ct++;
223 tcount--;
224 } while (tcount);
225 return 0;
226 }
227
228 #endif
229
230 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
231 {
232 /*
233 * Be careful about RCU walk racing with rename:
234 * use 'READ_ONCE' to fetch the name pointer.
235 *
236 * NOTE! Even if a rename will mean that the length
237 * was not loaded atomically, we don't care. The
238 * RCU walk will check the sequence count eventually,
239 * and catch it. And we won't overrun the buffer,
240 * because we're reading the name pointer atomically,
241 * and a dentry name is guaranteed to be properly
242 * terminated with a NUL byte.
243 *
244 * End result: even if 'len' is wrong, we'll exit
245 * early because the data cannot match (there can
246 * be no NUL in the ct/tcount data)
247 */
248 const unsigned char *cs = READ_ONCE(dentry->d_name.name);
249
250 return dentry_string_cmp(cs, ct, tcount);
251 }
252
253 struct external_name {
254 union {
255 atomic_t count;
256 struct rcu_head head;
257 } u;
258 unsigned char name[];
259 };
260
261 static inline struct external_name *external_name(struct dentry *dentry)
262 {
263 return container_of(dentry->d_name.name, struct external_name, name[0]);
264 }
265
266 static void __d_free(struct rcu_head *head)
267 {
268 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
269
270 kmem_cache_free(dentry_cache, dentry);
271 }
272
273 static void __d_free_external(struct rcu_head *head)
274 {
275 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
276 kfree(external_name(dentry));
277 kmem_cache_free(dentry_cache, dentry);
278 }
279
280 static inline int dname_external(const struct dentry *dentry)
281 {
282 return dentry->d_name.name != dentry->d_iname;
283 }
284
285 void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry)
286 {
287 spin_lock(&dentry->d_lock);
288 name->name = dentry->d_name;
289 if (unlikely(dname_external(dentry))) {
290 atomic_inc(&external_name(dentry)->u.count);
291 } else {
292 memcpy(name->inline_name, dentry->d_iname,
293 dentry->d_name.len + 1);
294 name->name.name = name->inline_name;
295 }
296 spin_unlock(&dentry->d_lock);
297 }
298 EXPORT_SYMBOL(take_dentry_name_snapshot);
299
300 void release_dentry_name_snapshot(struct name_snapshot *name)
301 {
302 if (unlikely(name->name.name != name->inline_name)) {
303 struct external_name *p;
304 p = container_of(name->name.name, struct external_name, name[0]);
305 if (unlikely(atomic_dec_and_test(&p->u.count)))
306 kfree_rcu(p, u.head);
307 }
308 }
309 EXPORT_SYMBOL(release_dentry_name_snapshot);
310
311 static inline void __d_set_inode_and_type(struct dentry *dentry,
312 struct inode *inode,
313 unsigned type_flags)
314 {
315 unsigned flags;
316
317 dentry->d_inode = inode;
318 flags = READ_ONCE(dentry->d_flags);
319 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
320 flags |= type_flags;
321 WRITE_ONCE(dentry->d_flags, flags);
322 }
323
324 static inline void __d_clear_type_and_inode(struct dentry *dentry)
325 {
326 unsigned flags = READ_ONCE(dentry->d_flags);
327
328 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
329 WRITE_ONCE(dentry->d_flags, flags);
330 dentry->d_inode = NULL;
331 if (dentry->d_flags & DCACHE_LRU_LIST)
332 this_cpu_inc(nr_dentry_negative);
333 }
334
335 static void dentry_free(struct dentry *dentry)
336 {
337 WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
338 if (unlikely(dname_external(dentry))) {
339 struct external_name *p = external_name(dentry);
340 if (likely(atomic_dec_and_test(&p->u.count))) {
341 call_rcu(&dentry->d_u.d_rcu, __d_free_external);
342 return;
343 }
344 }
345 /* if dentry was never visible to RCU, immediate free is OK */
346 if (dentry->d_flags & DCACHE_NORCU)
347 __d_free(&dentry->d_u.d_rcu);
348 else
349 call_rcu(&dentry->d_u.d_rcu, __d_free);
350 }
351
352 /*
353 * Release the dentry's inode, using the filesystem
354 * d_iput() operation if defined.
355 */
356 static void dentry_unlink_inode(struct dentry * dentry)
357 __releases(dentry->d_lock)
358 __releases(dentry->d_inode->i_lock)
359 {
360 struct inode *inode = dentry->d_inode;
361
362 raw_write_seqcount_begin(&dentry->d_seq);
363 __d_clear_type_and_inode(dentry);
364 hlist_del_init(&dentry->d_u.d_alias);
365 raw_write_seqcount_end(&dentry->d_seq);
366 spin_unlock(&dentry->d_lock);
367 spin_unlock(&inode->i_lock);
368 if (!inode->i_nlink)
369 fsnotify_inoderemove(inode);
370 if (dentry->d_op && dentry->d_op->d_iput)
371 dentry->d_op->d_iput(dentry, inode);
372 else
373 iput(inode);
374 }
375
376 /*
377 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
378 * is in use - which includes both the "real" per-superblock
379 * LRU list _and_ the DCACHE_SHRINK_LIST use.
380 *
381 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
382 * on the shrink list (ie not on the superblock LRU list).
383 *
384 * The per-cpu "nr_dentry_unused" counters are updated with
385 * the DCACHE_LRU_LIST bit.
386 *
387 * The per-cpu "nr_dentry_negative" counters are only updated
388 * when deleted from or added to the per-superblock LRU list, not
389 * from/to the shrink list. That is to avoid an unneeded dec/inc
390 * pair when moving from LRU to shrink list in select_collect().
391 *
392 * These helper functions make sure we always follow the
393 * rules. d_lock must be held by the caller.
394 */
395 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
396 static void d_lru_add(struct dentry *dentry)
397 {
398 D_FLAG_VERIFY(dentry, 0);
399 dentry->d_flags |= DCACHE_LRU_LIST;
400 this_cpu_inc(nr_dentry_unused);
401 if (d_is_negative(dentry))
402 this_cpu_inc(nr_dentry_negative);
403 WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
404 }
405
406 static void d_lru_del(struct dentry *dentry)
407 {
408 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
409 dentry->d_flags &= ~DCACHE_LRU_LIST;
410 this_cpu_dec(nr_dentry_unused);
411 if (d_is_negative(dentry))
412 this_cpu_dec(nr_dentry_negative);
413 WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
414 }
415
416 static void d_shrink_del(struct dentry *dentry)
417 {
418 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
419 list_del_init(&dentry->d_lru);
420 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
421 this_cpu_dec(nr_dentry_unused);
422 }
423
424 static void d_shrink_add(struct dentry *dentry, struct list_head *list)
425 {
426 D_FLAG_VERIFY(dentry, 0);
427 list_add(&dentry->d_lru, list);
428 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
429 this_cpu_inc(nr_dentry_unused);
430 }
431
432 /*
433 * These can only be called under the global LRU lock, ie during the
434 * callback for freeing the LRU list. "isolate" removes it from the
435 * LRU lists entirely, while shrink_move moves it to the indicated
436 * private list.
437 */
438 static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
439 {
440 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
441 dentry->d_flags &= ~DCACHE_LRU_LIST;
442 this_cpu_dec(nr_dentry_unused);
443 if (d_is_negative(dentry))
444 this_cpu_dec(nr_dentry_negative);
445 list_lru_isolate(lru, &dentry->d_lru);
446 }
447
448 static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
449 struct list_head *list)
450 {
451 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
452 dentry->d_flags |= DCACHE_SHRINK_LIST;
453 if (d_is_negative(dentry))
454 this_cpu_dec(nr_dentry_negative);
455 list_lru_isolate_move(lru, &dentry->d_lru, list);
456 }
457
458 /**
459 * d_drop - drop a dentry
460 * @dentry: dentry to drop
461 *
462 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
463 * be found through a VFS lookup any more. Note that this is different from
464 * deleting the dentry - d_delete will try to mark the dentry negative if
465 * possible, giving a successful _negative_ lookup, while d_drop will
466 * just make the cache lookup fail.
467 *
468 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
469 * reason (NFS timeouts or autofs deletes).
470 *
471 * __d_drop requires dentry->d_lock
472 * ___d_drop doesn't mark dentry as "unhashed"
473 * (dentry->d_hash.pprev will be LIST_POISON2, not NULL).
474 */
475 static void ___d_drop(struct dentry *dentry)
476 {
477 struct hlist_bl_head *b;
478 /*
479 * Hashed dentries are normally on the dentry hashtable,
480 * with the exception of those newly allocated by
481 * d_obtain_root, which are always IS_ROOT:
482 */
483 if (unlikely(IS_ROOT(dentry)))
484 b = &dentry->d_sb->s_roots;
485 else
486 b = d_hash(dentry->d_name.hash);
487
488 hlist_bl_lock(b);
489 __hlist_bl_del(&dentry->d_hash);
490 hlist_bl_unlock(b);
491 }
492
493 void __d_drop(struct dentry *dentry)
494 {
495 if (!d_unhashed(dentry)) {
496 ___d_drop(dentry);
497 dentry->d_hash.pprev = NULL;
498 write_seqcount_invalidate(&dentry->d_seq);
499 }
500 }
501 EXPORT_SYMBOL(__d_drop);
502
503 void d_drop(struct dentry *dentry)
504 {
505 spin_lock(&dentry->d_lock);
506 __d_drop(dentry);
507 spin_unlock(&dentry->d_lock);
508 }
509 EXPORT_SYMBOL(d_drop);
510
511 static inline void dentry_unlist(struct dentry *dentry, struct dentry *parent)
512 {
513 struct dentry *next;
514 /*
515 * Inform d_walk() and shrink_dentry_list() that we are no longer
516 * attached to the dentry tree
517 */
518 dentry->d_flags |= DCACHE_DENTRY_KILLED;
519 if (unlikely(list_empty(&dentry->d_child)))
520 return;
521 __list_del_entry(&dentry->d_child);
522 /*
523 * Cursors can move around the list of children. While we'd been
524 * a normal list member, it didn't matter - ->d_child.next would've
525 * been updated. However, from now on it won't be and for the
526 * things like d_walk() it might end up with a nasty surprise.
527 * Normally d_walk() doesn't care about cursors moving around -
528 * ->d_lock on parent prevents that and since a cursor has no children
529 * of its own, we get through it without ever unlocking the parent.
530 * There is one exception, though - if we ascend from a child that
531 * gets killed as soon as we unlock it, the next sibling is found
532 * using the value left in its ->d_child.next. And if _that_
533 * pointed to a cursor, and cursor got moved (e.g. by lseek())
534 * before d_walk() regains parent->d_lock, we'll end up skipping
535 * everything the cursor had been moved past.
536 *
537 * Solution: make sure that the pointer left behind in ->d_child.next
538 * points to something that won't be moving around. I.e. skip the
539 * cursors.
540 */
541 while (dentry->d_child.next != &parent->d_subdirs) {
542 next = list_entry(dentry->d_child.next, struct dentry, d_child);
543 if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR)))
544 break;
545 dentry->d_child.next = next->d_child.next;
546 }
547 }
548
549 static void __dentry_kill(struct dentry *dentry)
550 {
551 struct dentry *parent = NULL;
552 bool can_free = true;
553 if (!IS_ROOT(dentry))
554 parent = dentry->d_parent;
555
556 /*
557 * The dentry is now unrecoverably dead to the world.
558 */
559 lockref_mark_dead(&dentry->d_lockref);
560
561 /*
562 * inform the fs via d_prune that this dentry is about to be
563 * unhashed and destroyed.
564 */
565 if (dentry->d_flags & DCACHE_OP_PRUNE)
566 dentry->d_op->d_prune(dentry);
567
568 if (dentry->d_flags & DCACHE_LRU_LIST) {
569 if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
570 d_lru_del(dentry);
571 }
572 /* if it was on the hash then remove it */
573 __d_drop(dentry);
574 dentry_unlist(dentry, parent);
575 if (parent)
576 spin_unlock(&parent->d_lock);
577 if (dentry->d_inode)
578 dentry_unlink_inode(dentry);
579 else
580 spin_unlock(&dentry->d_lock);
581 this_cpu_dec(nr_dentry);
582 if (dentry->d_op && dentry->d_op->d_release)
583 dentry->d_op->d_release(dentry);
584
585 spin_lock(&dentry->d_lock);
586 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
587 dentry->d_flags |= DCACHE_MAY_FREE;
588 can_free = false;
589 }
590 spin_unlock(&dentry->d_lock);
591 if (likely(can_free))
592 dentry_free(dentry);
593 cond_resched();
594 }
595
596 static struct dentry *__lock_parent(struct dentry *dentry)
597 {
598 struct dentry *parent;
599 rcu_read_lock();
600 spin_unlock(&dentry->d_lock);
601 again:
602 parent = READ_ONCE(dentry->d_parent);
603 spin_lock(&parent->d_lock);
604 /*
605 * We can't blindly lock dentry until we are sure
606 * that we won't violate the locking order.
607 * Any changes of dentry->d_parent must have
608 * been done with parent->d_lock held, so
609 * spin_lock() above is enough of a barrier
610 * for checking if it's still our child.
611 */
612 if (unlikely(parent != dentry->d_parent)) {
613 spin_unlock(&parent->d_lock);
614 goto again;
615 }
616 rcu_read_unlock();
617 if (parent != dentry)
618 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
619 else
620 parent = NULL;
621 return parent;
622 }
623
624 static inline struct dentry *lock_parent(struct dentry *dentry)
625 {
626 struct dentry *parent = dentry->d_parent;
627 if (IS_ROOT(dentry))
628 return NULL;
629 if (likely(spin_trylock(&parent->d_lock)))
630 return parent;
631 return __lock_parent(dentry);
632 }
633
634 static inline bool retain_dentry(struct dentry *dentry)
635 {
636 WARN_ON(d_in_lookup(dentry));
637
638 /* Unreachable? Get rid of it */
639 if (unlikely(d_unhashed(dentry)))
640 return false;
641
642 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
643 return false;
644
645 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
646 if (dentry->d_op->d_delete(dentry))
647 return false;
648 }
649 /* retain; LRU fodder */
650 dentry->d_lockref.count--;
651 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
652 d_lru_add(dentry);
653 else if (unlikely(!(dentry->d_flags & DCACHE_REFERENCED)))
654 dentry->d_flags |= DCACHE_REFERENCED;
655 return true;
656 }
657
658 /*
659 * Finish off a dentry we've decided to kill.
660 * dentry->d_lock must be held, returns with it unlocked.
661 * Returns dentry requiring refcount drop, or NULL if we're done.
662 */
663 static struct dentry *dentry_kill(struct dentry *dentry)
664 __releases(dentry->d_lock)
665 {
666 struct inode *inode = dentry->d_inode;
667 struct dentry *parent = NULL;
668
669 if (inode && unlikely(!spin_trylock(&inode->i_lock)))
670 goto slow_positive;
671
672 if (!IS_ROOT(dentry)) {
673 parent = dentry->d_parent;
674 if (unlikely(!spin_trylock(&parent->d_lock))) {
675 parent = __lock_parent(dentry);
676 if (likely(inode || !dentry->d_inode))
677 goto got_locks;
678 /* negative that became positive */
679 if (parent)
680 spin_unlock(&parent->d_lock);
681 inode = dentry->d_inode;
682 goto slow_positive;
683 }
684 }
685 __dentry_kill(dentry);
686 return parent;
687
688 slow_positive:
689 spin_unlock(&dentry->d_lock);
690 spin_lock(&inode->i_lock);
691 spin_lock(&dentry->d_lock);
692 parent = lock_parent(dentry);
693 got_locks:
694 if (unlikely(dentry->d_lockref.count != 1)) {
695 dentry->d_lockref.count--;
696 } else if (likely(!retain_dentry(dentry))) {
697 __dentry_kill(dentry);
698 return parent;
699 }
700 /* we are keeping it, after all */
701 if (inode)
702 spin_unlock(&inode->i_lock);
703 if (parent)
704 spin_unlock(&parent->d_lock);
705 spin_unlock(&dentry->d_lock);
706 return NULL;
707 }
708
709 /*
710 * Try to do a lockless dput(), and return whether that was successful.
711 *
712 * If unsuccessful, we return false, having already taken the dentry lock.
713 *
714 * The caller needs to hold the RCU read lock, so that the dentry is
715 * guaranteed to stay around even if the refcount goes down to zero!
716 */
717 static inline bool fast_dput(struct dentry *dentry)
718 {
719 int ret;
720 unsigned int d_flags;
721
722 /*
723 * If we have a d_op->d_delete() operation, we sould not
724 * let the dentry count go to zero, so use "put_or_lock".
725 */
726 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE))
727 return lockref_put_or_lock(&dentry->d_lockref);
728
729 /*
730 * .. otherwise, we can try to just decrement the
731 * lockref optimistically.
732 */
733 ret = lockref_put_return(&dentry->d_lockref);
734
735 /*
736 * If the lockref_put_return() failed due to the lock being held
737 * by somebody else, the fast path has failed. We will need to
738 * get the lock, and then check the count again.
739 */
740 if (unlikely(ret < 0)) {
741 spin_lock(&dentry->d_lock);
742 if (dentry->d_lockref.count > 1) {
743 dentry->d_lockref.count--;
744 spin_unlock(&dentry->d_lock);
745 return true;
746 }
747 return false;
748 }
749
750 /*
751 * If we weren't the last ref, we're done.
752 */
753 if (ret)
754 return true;
755
756 /*
757 * Careful, careful. The reference count went down
758 * to zero, but we don't hold the dentry lock, so
759 * somebody else could get it again, and do another
760 * dput(), and we need to not race with that.
761 *
762 * However, there is a very special and common case
763 * where we don't care, because there is nothing to
764 * do: the dentry is still hashed, it does not have
765 * a 'delete' op, and it's referenced and already on
766 * the LRU list.
767 *
768 * NOTE! Since we aren't locked, these values are
769 * not "stable". However, it is sufficient that at
770 * some point after we dropped the reference the
771 * dentry was hashed and the flags had the proper
772 * value. Other dentry users may have re-gotten
773 * a reference to the dentry and change that, but
774 * our work is done - we can leave the dentry
775 * around with a zero refcount.
776 */
777 smp_rmb();
778 d_flags = READ_ONCE(dentry->d_flags);
779 d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST | DCACHE_DISCONNECTED;
780
781 /* Nothing to do? Dropping the reference was all we needed? */
782 if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry))
783 return true;
784
785 /*
786 * Not the fast normal case? Get the lock. We've already decremented
787 * the refcount, but we'll need to re-check the situation after
788 * getting the lock.
789 */
790 spin_lock(&dentry->d_lock);
791
792 /*
793 * Did somebody else grab a reference to it in the meantime, and
794 * we're no longer the last user after all? Alternatively, somebody
795 * else could have killed it and marked it dead. Either way, we
796 * don't need to do anything else.
797 */
798 if (dentry->d_lockref.count) {
799 spin_unlock(&dentry->d_lock);
800 return true;
801 }
802
803 /*
804 * Re-get the reference we optimistically dropped. We hold the
805 * lock, and we just tested that it was zero, so we can just
806 * set it to 1.
807 */
808 dentry->d_lockref.count = 1;
809 return false;
810 }
811
812
813 /*
814 * This is dput
815 *
816 * This is complicated by the fact that we do not want to put
817 * dentries that are no longer on any hash chain on the unused
818 * list: we'd much rather just get rid of them immediately.
819 *
820 * However, that implies that we have to traverse the dentry
821 * tree upwards to the parents which might _also_ now be
822 * scheduled for deletion (it may have been only waiting for
823 * its last child to go away).
824 *
825 * This tail recursion is done by hand as we don't want to depend
826 * on the compiler to always get this right (gcc generally doesn't).
827 * Real recursion would eat up our stack space.
828 */
829
830 /*
831 * dput - release a dentry
832 * @dentry: dentry to release
833 *
834 * Release a dentry. This will drop the usage count and if appropriate
835 * call the dentry unlink method as well as removing it from the queues and
836 * releasing its resources. If the parent dentries were scheduled for release
837 * they too may now get deleted.
838 */
839 void dput(struct dentry *dentry)
840 {
841 while (dentry) {
842 might_sleep();
843
844 rcu_read_lock();
845 if (likely(fast_dput(dentry))) {
846 rcu_read_unlock();
847 return;
848 }
849
850 /* Slow case: now with the dentry lock held */
851 rcu_read_unlock();
852
853 if (likely(retain_dentry(dentry))) {
854 spin_unlock(&dentry->d_lock);
855 return;
856 }
857
858 dentry = dentry_kill(dentry);
859 }
860 }
861 EXPORT_SYMBOL(dput);
862
863
864 /* This must be called with d_lock held */
865 static inline void __dget_dlock(struct dentry *dentry)
866 {
867 dentry->d_lockref.count++;
868 }
869
870 static inline void __dget(struct dentry *dentry)
871 {
872 lockref_get(&dentry->d_lockref);
873 }
874
875 struct dentry *dget_parent(struct dentry *dentry)
876 {
877 int gotref;
878 struct dentry *ret;
879
880 /*
881 * Do optimistic parent lookup without any
882 * locking.
883 */
884 rcu_read_lock();
885 ret = READ_ONCE(dentry->d_parent);
886 gotref = lockref_get_not_zero(&ret->d_lockref);
887 rcu_read_unlock();
888 if (likely(gotref)) {
889 if (likely(ret == READ_ONCE(dentry->d_parent)))
890 return ret;
891 dput(ret);
892 }
893
894 repeat:
895 /*
896 * Don't need rcu_dereference because we re-check it was correct under
897 * the lock.
898 */
899 rcu_read_lock();
900 ret = dentry->d_parent;
901 spin_lock(&ret->d_lock);
902 if (unlikely(ret != dentry->d_parent)) {
903 spin_unlock(&ret->d_lock);
904 rcu_read_unlock();
905 goto repeat;
906 }
907 rcu_read_unlock();
908 BUG_ON(!ret->d_lockref.count);
909 ret->d_lockref.count++;
910 spin_unlock(&ret->d_lock);
911 return ret;
912 }
913 EXPORT_SYMBOL(dget_parent);
914
915 static struct dentry * __d_find_any_alias(struct inode *inode)
916 {
917 struct dentry *alias;
918
919 if (hlist_empty(&inode->i_dentry))
920 return NULL;
921 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
922 __dget(alias);
923 return alias;
924 }
925
926 /**
927 * d_find_any_alias - find any alias for a given inode
928 * @inode: inode to find an alias for
929 *
930 * If any aliases exist for the given inode, take and return a
931 * reference for one of them. If no aliases exist, return %NULL.
932 */
933 struct dentry *d_find_any_alias(struct inode *inode)
934 {
935 struct dentry *de;
936
937 spin_lock(&inode->i_lock);
938 de = __d_find_any_alias(inode);
939 spin_unlock(&inode->i_lock);
940 return de;
941 }
942 EXPORT_SYMBOL(d_find_any_alias);
943
944 /**
945 * d_find_alias - grab a hashed alias of inode
946 * @inode: inode in question
947 *
948 * If inode has a hashed alias, or is a directory and has any alias,
949 * acquire the reference to alias and return it. Otherwise return NULL.
950 * Notice that if inode is a directory there can be only one alias and
951 * it can be unhashed only if it has no children, or if it is the root
952 * of a filesystem, or if the directory was renamed and d_revalidate
953 * was the first vfs operation to notice.
954 *
955 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
956 * any other hashed alias over that one.
957 */
958 static struct dentry *__d_find_alias(struct inode *inode)
959 {
960 struct dentry *alias;
961
962 if (S_ISDIR(inode->i_mode))
963 return __d_find_any_alias(inode);
964
965 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
966 spin_lock(&alias->d_lock);
967 if (!d_unhashed(alias)) {
968 __dget_dlock(alias);
969 spin_unlock(&alias->d_lock);
970 return alias;
971 }
972 spin_unlock(&alias->d_lock);
973 }
974 return NULL;
975 }
976
977 struct dentry *d_find_alias(struct inode *inode)
978 {
979 struct dentry *de = NULL;
980
981 if (!hlist_empty(&inode->i_dentry)) {
982 spin_lock(&inode->i_lock);
983 de = __d_find_alias(inode);
984 spin_unlock(&inode->i_lock);
985 }
986 return de;
987 }
988 EXPORT_SYMBOL(d_find_alias);
989
990 /*
991 * Try to kill dentries associated with this inode.
992 * WARNING: you must own a reference to inode.
993 */
994 void d_prune_aliases(struct inode *inode)
995 {
996 struct dentry *dentry;
997 restart:
998 spin_lock(&inode->i_lock);
999 hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
1000 spin_lock(&dentry->d_lock);
1001 if (!dentry->d_lockref.count) {
1002 struct dentry *parent = lock_parent(dentry);
1003 if (likely(!dentry->d_lockref.count)) {
1004 __dentry_kill(dentry);
1005 dput(parent);
1006 goto restart;
1007 }
1008 if (parent)
1009 spin_unlock(&parent->d_lock);
1010 }
1011 spin_unlock(&dentry->d_lock);
1012 }
1013 spin_unlock(&inode->i_lock);
1014 }
1015 EXPORT_SYMBOL(d_prune_aliases);
1016
1017 /*
1018 * Lock a dentry from shrink list.
1019 * Called under rcu_read_lock() and dentry->d_lock; the former
1020 * guarantees that nothing we access will be freed under us.
1021 * Note that dentry is *not* protected from concurrent dentry_kill(),
1022 * d_delete(), etc.
1023 *
1024 * Return false if dentry has been disrupted or grabbed, leaving
1025 * the caller to kick it off-list. Otherwise, return true and have
1026 * that dentry's inode and parent both locked.
1027 */
1028 static bool shrink_lock_dentry(struct dentry *dentry)
1029 {
1030 struct inode *inode;
1031 struct dentry *parent;
1032
1033 if (dentry->d_lockref.count)
1034 return false;
1035
1036 inode = dentry->d_inode;
1037 if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
1038 spin_unlock(&dentry->d_lock);
1039 spin_lock(&inode->i_lock);
1040 spin_lock(&dentry->d_lock);
1041 if (unlikely(dentry->d_lockref.count))
1042 goto out;
1043 /* changed inode means that somebody had grabbed it */
1044 if (unlikely(inode != dentry->d_inode))
1045 goto out;
1046 }
1047
1048 parent = dentry->d_parent;
1049 if (IS_ROOT(dentry) || likely(spin_trylock(&parent->d_lock)))
1050 return true;
1051
1052 spin_unlock(&dentry->d_lock);
1053 spin_lock(&parent->d_lock);
1054 if (unlikely(parent != dentry->d_parent)) {
1055 spin_unlock(&parent->d_lock);
1056 spin_lock(&dentry->d_lock);
1057 goto out;
1058 }
1059 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1060 if (likely(!dentry->d_lockref.count))
1061 return true;
1062 spin_unlock(&parent->d_lock);
1063 out:
1064 if (inode)
1065 spin_unlock(&inode->i_lock);
1066 return false;
1067 }
1068
1069 static void shrink_dentry_list(struct list_head *list)
1070 {
1071 while (!list_empty(list)) {
1072 struct dentry *dentry, *parent;
1073
1074 dentry = list_entry(list->prev, struct dentry, d_lru);
1075 spin_lock(&dentry->d_lock);
1076 rcu_read_lock();
1077 if (!shrink_lock_dentry(dentry)) {
1078 bool can_free = false;
1079 rcu_read_unlock();
1080 d_shrink_del(dentry);
1081 if (dentry->d_lockref.count < 0)
1082 can_free = dentry->d_flags & DCACHE_MAY_FREE;
1083 spin_unlock(&dentry->d_lock);
1084 if (can_free)
1085 dentry_free(dentry);
1086 continue;
1087 }
1088 rcu_read_unlock();
1089 d_shrink_del(dentry);
1090 parent = dentry->d_parent;
1091 __dentry_kill(dentry);
1092 if (parent == dentry)
1093 continue;
1094 /*
1095 * We need to prune ancestors too. This is necessary to prevent
1096 * quadratic behavior of shrink_dcache_parent(), but is also
1097 * expected to be beneficial in reducing dentry cache
1098 * fragmentation.
1099 */
1100 dentry = parent;
1101 while (dentry && !lockref_put_or_lock(&dentry->d_lockref))
1102 dentry = dentry_kill(dentry);
1103 }
1104 }
1105
1106 static enum lru_status dentry_lru_isolate(struct list_head *item,
1107 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1108 {
1109 struct list_head *freeable = arg;
1110 struct dentry *dentry = container_of(item, struct dentry, d_lru);
1111
1112
1113 /*
1114 * we are inverting the lru lock/dentry->d_lock here,
1115 * so use a trylock. If we fail to get the lock, just skip
1116 * it
1117 */
1118 if (!spin_trylock(&dentry->d_lock))
1119 return LRU_SKIP;
1120
1121 /*
1122 * Referenced dentries are still in use. If they have active
1123 * counts, just remove them from the LRU. Otherwise give them
1124 * another pass through the LRU.
1125 */
1126 if (dentry->d_lockref.count) {
1127 d_lru_isolate(lru, dentry);
1128 spin_unlock(&dentry->d_lock);
1129 return LRU_REMOVED;
1130 }
1131
1132 if (dentry->d_flags & DCACHE_REFERENCED) {
1133 dentry->d_flags &= ~DCACHE_REFERENCED;
1134 spin_unlock(&dentry->d_lock);
1135
1136 /*
1137 * The list move itself will be made by the common LRU code. At
1138 * this point, we've dropped the dentry->d_lock but keep the
1139 * lru lock. This is safe to do, since every list movement is
1140 * protected by the lru lock even if both locks are held.
1141 *
1142 * This is guaranteed by the fact that all LRU management
1143 * functions are intermediated by the LRU API calls like
1144 * list_lru_add and list_lru_del. List movement in this file
1145 * only ever occur through this functions or through callbacks
1146 * like this one, that are called from the LRU API.
1147 *
1148 * The only exceptions to this are functions like
1149 * shrink_dentry_list, and code that first checks for the
1150 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be
1151 * operating only with stack provided lists after they are
1152 * properly isolated from the main list. It is thus, always a
1153 * local access.
1154 */
1155 return LRU_ROTATE;
1156 }
1157
1158 d_lru_shrink_move(lru, dentry, freeable);
1159 spin_unlock(&dentry->d_lock);
1160
1161 return LRU_REMOVED;
1162 }
1163
1164 /**
1165 * prune_dcache_sb - shrink the dcache
1166 * @sb: superblock
1167 * @sc: shrink control, passed to list_lru_shrink_walk()
1168 *
1169 * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1170 * is done when we need more memory and called from the superblock shrinker
1171 * function.
1172 *
1173 * This function may fail to free any resources if all the dentries are in
1174 * use.
1175 */
1176 long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
1177 {
1178 LIST_HEAD(dispose);
1179 long freed;
1180
1181 freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1182 dentry_lru_isolate, &dispose);
1183 shrink_dentry_list(&dispose);
1184 return freed;
1185 }
1186
1187 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
1188 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1189 {
1190 struct list_head *freeable = arg;
1191 struct dentry *dentry = container_of(item, struct dentry, d_lru);
1192
1193 /*
1194 * we are inverting the lru lock/dentry->d_lock here,
1195 * so use a trylock. If we fail to get the lock, just skip
1196 * it
1197 */
1198 if (!spin_trylock(&dentry->d_lock))
1199 return LRU_SKIP;
1200
1201 d_lru_shrink_move(lru, dentry, freeable);
1202 spin_unlock(&dentry->d_lock);
1203
1204 return LRU_REMOVED;
1205 }
1206
1207
1208 /**
1209 * shrink_dcache_sb - shrink dcache for a superblock
1210 * @sb: superblock
1211 *
1212 * Shrink the dcache for the specified super block. This is used to free
1213 * the dcache before unmounting a file system.
1214 */
1215 void shrink_dcache_sb(struct super_block *sb)
1216 {
1217 do {
1218 LIST_HEAD(dispose);
1219
1220 list_lru_walk(&sb->s_dentry_lru,
1221 dentry_lru_isolate_shrink, &dispose, 1024);
1222 shrink_dentry_list(&dispose);
1223 } while (list_lru_count(&sb->s_dentry_lru) > 0);
1224 }
1225 EXPORT_SYMBOL(shrink_dcache_sb);
1226
1227 /**
1228 * enum d_walk_ret - action to talke during tree walk
1229 * @D_WALK_CONTINUE: contrinue walk
1230 * @D_WALK_QUIT: quit walk
1231 * @D_WALK_NORETRY: quit when retry is needed
1232 * @D_WALK_SKIP: skip this dentry and its children
1233 */
1234 enum d_walk_ret {
1235 D_WALK_CONTINUE,
1236 D_WALK_QUIT,
1237 D_WALK_NORETRY,
1238 D_WALK_SKIP,
1239 };
1240
1241 /**
1242 * d_walk - walk the dentry tree
1243 * @parent: start of walk
1244 * @data: data passed to @enter() and @finish()
1245 * @enter: callback when first entering the dentry
1246 *
1247 * The @enter() callbacks are called with d_lock held.
1248 */
1249 static void d_walk(struct dentry *parent, void *data,
1250 enum d_walk_ret (*enter)(void *, struct dentry *))
1251 {
1252 struct dentry *this_parent;
1253 struct list_head *next;
1254 unsigned seq = 0;
1255 enum d_walk_ret ret;
1256 bool retry = true;
1257
1258 again:
1259 read_seqbegin_or_lock(&rename_lock, &seq);
1260 this_parent = parent;
1261 spin_lock(&this_parent->d_lock);
1262
1263 ret = enter(data, this_parent);
1264 switch (ret) {
1265 case D_WALK_CONTINUE:
1266 break;
1267 case D_WALK_QUIT:
1268 case D_WALK_SKIP:
1269 goto out_unlock;
1270 case D_WALK_NORETRY:
1271 retry = false;
1272 break;
1273 }
1274 repeat:
1275 next = this_parent->d_subdirs.next;
1276 resume:
1277 while (next != &this_parent->d_subdirs) {
1278 struct list_head *tmp = next;
1279 struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1280 next = tmp->next;
1281
1282 if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR))
1283 continue;
1284
1285 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1286
1287 ret = enter(data, dentry);
1288 switch (ret) {
1289 case D_WALK_CONTINUE:
1290 break;
1291 case D_WALK_QUIT:
1292 spin_unlock(&dentry->d_lock);
1293 goto out_unlock;
1294 case D_WALK_NORETRY:
1295 retry = false;
1296 break;
1297 case D_WALK_SKIP:
1298 spin_unlock(&dentry->d_lock);
1299 continue;
1300 }
1301
1302 if (!list_empty(&dentry->d_subdirs)) {
1303 spin_unlock(&this_parent->d_lock);
1304 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1305 this_parent = dentry;
1306 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1307 goto repeat;
1308 }
1309 spin_unlock(&dentry->d_lock);
1310 }
1311 /*
1312 * All done at this level ... ascend and resume the search.
1313 */
1314 rcu_read_lock();
1315 ascend:
1316 if (this_parent != parent) {
1317 struct dentry *child = this_parent;
1318 this_parent = child->d_parent;
1319
1320 spin_unlock(&child->d_lock);
1321 spin_lock(&this_parent->d_lock);
1322
1323 /* might go back up the wrong parent if we have had a rename. */
1324 if (need_seqretry(&rename_lock, seq))
1325 goto rename_retry;
1326 /* go into the first sibling still alive */
1327 do {
1328 next = child->d_child.next;
1329 if (next == &this_parent->d_subdirs)
1330 goto ascend;
1331 child = list_entry(next, struct dentry, d_child);
1332 } while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED));
1333 rcu_read_unlock();
1334 goto resume;
1335 }
1336 if (need_seqretry(&rename_lock, seq))
1337 goto rename_retry;
1338 rcu_read_unlock();
1339
1340 out_unlock:
1341 spin_unlock(&this_parent->d_lock);
1342 done_seqretry(&rename_lock, seq);
1343 return;
1344
1345 rename_retry:
1346 spin_unlock(&this_parent->d_lock);
1347 rcu_read_unlock();
1348 BUG_ON(seq & 1);
1349 if (!retry)
1350 return;
1351 seq = 1;
1352 goto again;
1353 }
1354
1355 struct check_mount {
1356 struct vfsmount *mnt;
1357 unsigned int mounted;
1358 };
1359
1360 static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry)
1361 {
1362 struct check_mount *info = data;
1363 struct path path = { .mnt = info->mnt, .dentry = dentry };
1364
1365 if (likely(!d_mountpoint(dentry)))
1366 return D_WALK_CONTINUE;
1367 if (__path_is_mountpoint(&path)) {
1368 info->mounted = 1;
1369 return D_WALK_QUIT;
1370 }
1371 return D_WALK_CONTINUE;
1372 }
1373
1374 /**
1375 * path_has_submounts - check for mounts over a dentry in the
1376 * current namespace.
1377 * @parent: path to check.
1378 *
1379 * Return true if the parent or its subdirectories contain
1380 * a mount point in the current namespace.
1381 */
1382 int path_has_submounts(const struct path *parent)
1383 {
1384 struct check_mount data = { .mnt = parent->mnt, .mounted = 0 };
1385
1386 read_seqlock_excl(&mount_lock);
1387 d_walk(parent->dentry, &data, path_check_mount);
1388 read_sequnlock_excl(&mount_lock);
1389
1390 return data.mounted;
1391 }
1392 EXPORT_SYMBOL(path_has_submounts);
1393
1394 /*
1395 * Called by mount code to set a mountpoint and check if the mountpoint is
1396 * reachable (e.g. NFS can unhash a directory dentry and then the complete
1397 * subtree can become unreachable).
1398 *
1399 * Only one of d_invalidate() and d_set_mounted() must succeed. For
1400 * this reason take rename_lock and d_lock on dentry and ancestors.
1401 */
1402 int d_set_mounted(struct dentry *dentry)
1403 {
1404 struct dentry *p;
1405 int ret = -ENOENT;
1406 write_seqlock(&rename_lock);
1407 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1408 /* Need exclusion wrt. d_invalidate() */
1409 spin_lock(&p->d_lock);
1410 if (unlikely(d_unhashed(p))) {
1411 spin_unlock(&p->d_lock);
1412 goto out;
1413 }
1414 spin_unlock(&p->d_lock);
1415 }
1416 spin_lock(&dentry->d_lock);
1417 if (!d_unlinked(dentry)) {
1418 ret = -EBUSY;
1419 if (!d_mountpoint(dentry)) {
1420 dentry->d_flags |= DCACHE_MOUNTED;
1421 ret = 0;
1422 }
1423 }
1424 spin_unlock(&dentry->d_lock);
1425 out:
1426 write_sequnlock(&rename_lock);
1427 return ret;
1428 }
1429
1430 /*
1431 * Search the dentry child list of the specified parent,
1432 * and move any unused dentries to the end of the unused
1433 * list for prune_dcache(). We descend to the next level
1434 * whenever the d_subdirs list is non-empty and continue
1435 * searching.
1436 *
1437 * It returns zero iff there are no unused children,
1438 * otherwise it returns the number of children moved to
1439 * the end of the unused list. This may not be the total
1440 * number of unused children, because select_parent can
1441 * drop the lock and return early due to latency
1442 * constraints.
1443 */
1444
1445 struct select_data {
1446 struct dentry *start;
1447 struct list_head dispose;
1448 int found;
1449 };
1450
1451 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1452 {
1453 struct select_data *data = _data;
1454 enum d_walk_ret ret = D_WALK_CONTINUE;
1455
1456 if (data->start == dentry)
1457 goto out;
1458
1459 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1460 data->found++;
1461 } else {
1462 if (dentry->d_flags & DCACHE_LRU_LIST)
1463 d_lru_del(dentry);
1464 if (!dentry->d_lockref.count) {
1465 d_shrink_add(dentry, &data->dispose);
1466 data->found++;
1467 }
1468 }
1469 /*
1470 * We can return to the caller if we have found some (this
1471 * ensures forward progress). We'll be coming back to find
1472 * the rest.
1473 */
1474 if (!list_empty(&data->dispose))
1475 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1476 out:
1477 return ret;
1478 }
1479
1480 /**
1481 * shrink_dcache_parent - prune dcache
1482 * @parent: parent of entries to prune
1483 *
1484 * Prune the dcache to remove unused children of the parent dentry.
1485 */
1486 void shrink_dcache_parent(struct dentry *parent)
1487 {
1488 for (;;) {
1489 struct select_data data;
1490
1491 INIT_LIST_HEAD(&data.dispose);
1492 data.start = parent;
1493 data.found = 0;
1494
1495 d_walk(parent, &data, select_collect);
1496
1497 if (!list_empty(&data.dispose)) {
1498 shrink_dentry_list(&data.dispose);
1499 continue;
1500 }
1501
1502 cond_resched();
1503 if (!data.found)
1504 break;
1505 }
1506 }
1507 EXPORT_SYMBOL(shrink_dcache_parent);
1508
1509 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
1510 {
1511 /* it has busy descendents; complain about those instead */
1512 if (!list_empty(&dentry->d_subdirs))
1513 return D_WALK_CONTINUE;
1514
1515 /* root with refcount 1 is fine */
1516 if (dentry == _data && dentry->d_lockref.count == 1)
1517 return D_WALK_CONTINUE;
1518
1519 printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1520 " still in use (%d) [unmount of %s %s]\n",
1521 dentry,
1522 dentry->d_inode ?
1523 dentry->d_inode->i_ino : 0UL,
1524 dentry,
1525 dentry->d_lockref.count,
1526 dentry->d_sb->s_type->name,
1527 dentry->d_sb->s_id);
1528 WARN_ON(1);
1529 return D_WALK_CONTINUE;
1530 }
1531
1532 static void do_one_tree(struct dentry *dentry)
1533 {
1534 shrink_dcache_parent(dentry);
1535 d_walk(dentry, dentry, umount_check);
1536 d_drop(dentry);
1537 dput(dentry);
1538 }
1539
1540 /*
1541 * destroy the dentries attached to a superblock on unmounting
1542 */
1543 void shrink_dcache_for_umount(struct super_block *sb)
1544 {
1545 struct dentry *dentry;
1546
1547 WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
1548
1549 dentry = sb->s_root;
1550 sb->s_root = NULL;
1551 do_one_tree(dentry);
1552
1553 while (!hlist_bl_empty(&sb->s_roots)) {
1554 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_roots), struct dentry, d_hash));
1555 do_one_tree(dentry);
1556 }
1557 }
1558
1559 static enum d_walk_ret find_submount(void *_data, struct dentry *dentry)
1560 {
1561 struct dentry **victim = _data;
1562 if (d_mountpoint(dentry)) {
1563 __dget_dlock(dentry);
1564 *victim = dentry;
1565 return D_WALK_QUIT;
1566 }
1567 return D_WALK_CONTINUE;
1568 }
1569
1570 /**
1571 * d_invalidate - detach submounts, prune dcache, and drop
1572 * @dentry: dentry to invalidate (aka detach, prune and drop)
1573 */
1574 void d_invalidate(struct dentry *dentry)
1575 {
1576 bool had_submounts = false;
1577 spin_lock(&dentry->d_lock);
1578 if (d_unhashed(dentry)) {
1579 spin_unlock(&dentry->d_lock);
1580 return;
1581 }
1582 __d_drop(dentry);
1583 spin_unlock(&dentry->d_lock);
1584
1585 /* Negative dentries can be dropped without further checks */
1586 if (!dentry->d_inode)
1587 return;
1588
1589 shrink_dcache_parent(dentry);
1590 for (;;) {
1591 struct dentry *victim = NULL;
1592 d_walk(dentry, &victim, find_submount);
1593 if (!victim) {
1594 if (had_submounts)
1595 shrink_dcache_parent(dentry);
1596 return;
1597 }
1598 had_submounts = true;
1599 detach_mounts(victim);
1600 dput(victim);
1601 }
1602 }
1603 EXPORT_SYMBOL(d_invalidate);
1604
1605 /**
1606 * __d_alloc - allocate a dcache entry
1607 * @sb: filesystem it will belong to
1608 * @name: qstr of the name
1609 *
1610 * Allocates a dentry. It returns %NULL if there is insufficient memory
1611 * available. On a success the dentry is returned. The name passed in is
1612 * copied and the copy passed in may be reused after this call.
1613 */
1614
1615 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1616 {
1617 struct dentry *dentry;
1618 char *dname;
1619 int err;
1620
1621 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1622 if (!dentry)
1623 return NULL;
1624
1625 /*
1626 * We guarantee that the inline name is always NUL-terminated.
1627 * This way the memcpy() done by the name switching in rename
1628 * will still always have a NUL at the end, even if we might
1629 * be overwriting an internal NUL character
1630 */
1631 dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1632 if (unlikely(!name)) {
1633 name = &slash_name;
1634 dname = dentry->d_iname;
1635 } else if (name->len > DNAME_INLINE_LEN-1) {
1636 size_t size = offsetof(struct external_name, name[1]);
1637 struct external_name *p = kmalloc(size + name->len,
1638 GFP_KERNEL_ACCOUNT |
1639 __GFP_RECLAIMABLE);
1640 if (!p) {
1641 kmem_cache_free(dentry_cache, dentry);
1642 return NULL;
1643 }
1644 atomic_set(&p->u.count, 1);
1645 dname = p->name;
1646 } else {
1647 dname = dentry->d_iname;
1648 }
1649
1650 dentry->d_name.len = name->len;
1651 dentry->d_name.hash = name->hash;
1652 memcpy(dname, name->name, name->len);
1653 dname[name->len] = 0;
1654
1655 /* Make sure we always see the terminating NUL character */
1656 smp_store_release(&dentry->d_name.name, dname); /* ^^^ */
1657
1658 dentry->d_lockref.count = 1;
1659 dentry->d_flags = 0;
1660 spin_lock_init(&dentry->d_lock);
1661 seqcount_init(&dentry->d_seq);
1662 dentry->d_inode = NULL;
1663 dentry->d_parent = dentry;
1664 dentry->d_sb = sb;
1665 dentry->d_op = NULL;
1666 dentry->d_fsdata = NULL;
1667 INIT_HLIST_BL_NODE(&dentry->d_hash);
1668 INIT_LIST_HEAD(&dentry->d_lru);
1669 INIT_LIST_HEAD(&dentry->d_subdirs);
1670 INIT_HLIST_NODE(&dentry->d_u.d_alias);
1671 INIT_LIST_HEAD(&dentry->d_child);
1672 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1673
1674 if (dentry->d_op && dentry->d_op->d_init) {
1675 err = dentry->d_op->d_init(dentry);
1676 if (err) {
1677 if (dname_external(dentry))
1678 kfree(external_name(dentry));
1679 kmem_cache_free(dentry_cache, dentry);
1680 return NULL;
1681 }
1682 }
1683
1684 this_cpu_inc(nr_dentry);
1685
1686 return dentry;
1687 }
1688
1689 /**
1690 * d_alloc - allocate a dcache entry
1691 * @parent: parent of entry to allocate
1692 * @name: qstr of the name
1693 *
1694 * Allocates a dentry. It returns %NULL if there is insufficient memory
1695 * available. On a success the dentry is returned. The name passed in is
1696 * copied and the copy passed in may be reused after this call.
1697 */
1698 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1699 {
1700 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1701 if (!dentry)
1702 return NULL;
1703 spin_lock(&parent->d_lock);
1704 /*
1705 * don't need child lock because it is not subject
1706 * to concurrency here
1707 */
1708 __dget_dlock(parent);
1709 dentry->d_parent = parent;
1710 list_add(&dentry->d_child, &parent->d_subdirs);
1711 spin_unlock(&parent->d_lock);
1712
1713 return dentry;
1714 }
1715 EXPORT_SYMBOL(d_alloc);
1716
1717 struct dentry *d_alloc_anon(struct super_block *sb)
1718 {
1719 return __d_alloc(sb, NULL);
1720 }
1721 EXPORT_SYMBOL(d_alloc_anon);
1722
1723 struct dentry *d_alloc_cursor(struct dentry * parent)
1724 {
1725 struct dentry *dentry = d_alloc_anon(parent->d_sb);
1726 if (dentry) {
1727 dentry->d_flags |= DCACHE_DENTRY_CURSOR;
1728 dentry->d_parent = dget(parent);
1729 }
1730 return dentry;
1731 }
1732
1733 /**
1734 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1735 * @sb: the superblock
1736 * @name: qstr of the name
1737 *
1738 * For a filesystem that just pins its dentries in memory and never
1739 * performs lookups at all, return an unhashed IS_ROOT dentry.
1740 * This is used for pipes, sockets et.al. - the stuff that should
1741 * never be anyone's children or parents. Unlike all other
1742 * dentries, these will not have RCU delay between dropping the
1743 * last reference and freeing them.
1744 *
1745 * The only user is alloc_file_pseudo() and that's what should
1746 * be considered a public interface. Don't use directly.
1747 */
1748 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1749 {
1750 struct dentry *dentry = __d_alloc(sb, name);
1751 if (likely(dentry))
1752 dentry->d_flags |= DCACHE_NORCU;
1753 return dentry;
1754 }
1755
1756 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1757 {
1758 struct qstr q;
1759
1760 q.name = name;
1761 q.hash_len = hashlen_string(parent, name);
1762 return d_alloc(parent, &q);
1763 }
1764 EXPORT_SYMBOL(d_alloc_name);
1765
1766 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1767 {
1768 WARN_ON_ONCE(dentry->d_op);
1769 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
1770 DCACHE_OP_COMPARE |
1771 DCACHE_OP_REVALIDATE |
1772 DCACHE_OP_WEAK_REVALIDATE |
1773 DCACHE_OP_DELETE |
1774 DCACHE_OP_REAL));
1775 dentry->d_op = op;
1776 if (!op)
1777 return;
1778 if (op->d_hash)
1779 dentry->d_flags |= DCACHE_OP_HASH;
1780 if (op->d_compare)
1781 dentry->d_flags |= DCACHE_OP_COMPARE;
1782 if (op->d_revalidate)
1783 dentry->d_flags |= DCACHE_OP_REVALIDATE;
1784 if (op->d_weak_revalidate)
1785 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1786 if (op->d_delete)
1787 dentry->d_flags |= DCACHE_OP_DELETE;
1788 if (op->d_prune)
1789 dentry->d_flags |= DCACHE_OP_PRUNE;
1790 if (op->d_real)
1791 dentry->d_flags |= DCACHE_OP_REAL;
1792
1793 }
1794 EXPORT_SYMBOL(d_set_d_op);
1795
1796
1797 /*
1798 * d_set_fallthru - Mark a dentry as falling through to a lower layer
1799 * @dentry - The dentry to mark
1800 *
1801 * Mark a dentry as falling through to the lower layer (as set with
1802 * d_pin_lower()). This flag may be recorded on the medium.
1803 */
1804 void d_set_fallthru(struct dentry *dentry)
1805 {
1806 spin_lock(&dentry->d_lock);
1807 dentry->d_flags |= DCACHE_FALLTHRU;
1808 spin_unlock(&dentry->d_lock);
1809 }
1810 EXPORT_SYMBOL(d_set_fallthru);
1811
1812 static unsigned d_flags_for_inode(struct inode *inode)
1813 {
1814 unsigned add_flags = DCACHE_REGULAR_TYPE;
1815
1816 if (!inode)
1817 return DCACHE_MISS_TYPE;
1818
1819 if (S_ISDIR(inode->i_mode)) {
1820 add_flags = DCACHE_DIRECTORY_TYPE;
1821 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1822 if (unlikely(!inode->i_op->lookup))
1823 add_flags = DCACHE_AUTODIR_TYPE;
1824 else
1825 inode->i_opflags |= IOP_LOOKUP;
1826 }
1827 goto type_determined;
1828 }
1829
1830 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1831 if (unlikely(inode->i_op->get_link)) {
1832 add_flags = DCACHE_SYMLINK_TYPE;
1833 goto type_determined;
1834 }
1835 inode->i_opflags |= IOP_NOFOLLOW;
1836 }
1837
1838 if (unlikely(!S_ISREG(inode->i_mode)))
1839 add_flags = DCACHE_SPECIAL_TYPE;
1840
1841 type_determined:
1842 if (unlikely(IS_AUTOMOUNT(inode)))
1843 add_flags |= DCACHE_NEED_AUTOMOUNT;
1844 return add_flags;
1845 }
1846
1847 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1848 {
1849 unsigned add_flags = d_flags_for_inode(inode);
1850 WARN_ON(d_in_lookup(dentry));
1851
1852 spin_lock(&dentry->d_lock);
1853 /*
1854 * Decrement negative dentry count if it was in the LRU list.
1855 */
1856 if (dentry->d_flags & DCACHE_LRU_LIST)
1857 this_cpu_dec(nr_dentry_negative);
1858 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
1859 raw_write_seqcount_begin(&dentry->d_seq);
1860 __d_set_inode_and_type(dentry, inode, add_flags);
1861 raw_write_seqcount_end(&dentry->d_seq);
1862 fsnotify_update_flags(dentry);
1863 spin_unlock(&dentry->d_lock);
1864 }
1865
1866 /**
1867 * d_instantiate - fill in inode information for a dentry
1868 * @entry: dentry to complete
1869 * @inode: inode to attach to this dentry
1870 *
1871 * Fill in inode information in the entry.
1872 *
1873 * This turns negative dentries into productive full members
1874 * of society.
1875 *
1876 * NOTE! This assumes that the inode count has been incremented
1877 * (or otherwise set) by the caller to indicate that it is now
1878 * in use by the dcache.
1879 */
1880
1881 void d_instantiate(struct dentry *entry, struct inode * inode)
1882 {
1883 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1884 if (inode) {
1885 security_d_instantiate(entry, inode);
1886 spin_lock(&inode->i_lock);
1887 __d_instantiate(entry, inode);
1888 spin_unlock(&inode->i_lock);
1889 }
1890 }
1891 EXPORT_SYMBOL(d_instantiate);
1892
1893 /*
1894 * This should be equivalent to d_instantiate() + unlock_new_inode(),
1895 * with lockdep-related part of unlock_new_inode() done before
1896 * anything else. Use that instead of open-coding d_instantiate()/
1897 * unlock_new_inode() combinations.
1898 */
1899 void d_instantiate_new(struct dentry *entry, struct inode *inode)
1900 {
1901 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1902 BUG_ON(!inode);
1903 lockdep_annotate_inode_mutex_key(inode);
1904 security_d_instantiate(entry, inode);
1905 spin_lock(&inode->i_lock);
1906 __d_instantiate(entry, inode);
1907 WARN_ON(!(inode->i_state & I_NEW));
1908 inode->i_state &= ~I_NEW & ~I_CREATING;
1909 smp_mb();
1910 wake_up_bit(&inode->i_state, __I_NEW);
1911 spin_unlock(&inode->i_lock);
1912 }
1913 EXPORT_SYMBOL(d_instantiate_new);
1914
1915 struct dentry *d_make_root(struct inode *root_inode)
1916 {
1917 struct dentry *res = NULL;
1918
1919 if (root_inode) {
1920 res = d_alloc_anon(root_inode->i_sb);
1921 if (res)
1922 d_instantiate(res, root_inode);
1923 else
1924 iput(root_inode);
1925 }
1926 return res;
1927 }
1928 EXPORT_SYMBOL(d_make_root);
1929
1930 static struct dentry *__d_instantiate_anon(struct dentry *dentry,
1931 struct inode *inode,
1932 bool disconnected)
1933 {
1934 struct dentry *res;
1935 unsigned add_flags;
1936
1937 security_d_instantiate(dentry, inode);
1938 spin_lock(&inode->i_lock);
1939 res = __d_find_any_alias(inode);
1940 if (res) {
1941 spin_unlock(&inode->i_lock);
1942 dput(dentry);
1943 goto out_iput;
1944 }
1945
1946 /* attach a disconnected dentry */
1947 add_flags = d_flags_for_inode(inode);
1948
1949 if (disconnected)
1950 add_flags |= DCACHE_DISCONNECTED;
1951
1952 spin_lock(&dentry->d_lock);
1953 __d_set_inode_and_type(dentry, inode, add_flags);
1954 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
1955 if (!disconnected) {
1956 hlist_bl_lock(&dentry->d_sb->s_roots);
1957 hlist_bl_add_head(&dentry->d_hash, &dentry->d_sb->s_roots);
1958 hlist_bl_unlock(&dentry->d_sb->s_roots);
1959 }
1960 spin_unlock(&dentry->d_lock);
1961 spin_unlock(&inode->i_lock);
1962
1963 return dentry;
1964
1965 out_iput:
1966 iput(inode);
1967 return res;
1968 }
1969
1970 struct dentry *d_instantiate_anon(struct dentry *dentry, struct inode *inode)
1971 {
1972 return __d_instantiate_anon(dentry, inode, true);
1973 }
1974 EXPORT_SYMBOL(d_instantiate_anon);
1975
1976 static struct dentry *__d_obtain_alias(struct inode *inode, bool disconnected)
1977 {
1978 struct dentry *tmp;
1979 struct dentry *res;
1980
1981 if (!inode)
1982 return ERR_PTR(-ESTALE);
1983 if (IS_ERR(inode))
1984 return ERR_CAST(inode);
1985
1986 res = d_find_any_alias(inode);
1987 if (res)
1988 goto out_iput;
1989
1990 tmp = d_alloc_anon(inode->i_sb);
1991 if (!tmp) {
1992 res = ERR_PTR(-ENOMEM);
1993 goto out_iput;
1994 }
1995
1996 return __d_instantiate_anon(tmp, inode, disconnected);
1997
1998 out_iput:
1999 iput(inode);
2000 return res;
2001 }
2002
2003 /**
2004 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
2005 * @inode: inode to allocate the dentry for
2006 *
2007 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
2008 * similar open by handle operations. The returned dentry may be anonymous,
2009 * or may have a full name (if the inode was already in the cache).
2010 *
2011 * When called on a directory inode, we must ensure that the inode only ever
2012 * has one dentry. If a dentry is found, that is returned instead of
2013 * allocating a new one.
2014 *
2015 * On successful return, the reference to the inode has been transferred
2016 * to the dentry. In case of an error the reference on the inode is released.
2017 * To make it easier to use in export operations a %NULL or IS_ERR inode may
2018 * be passed in and the error will be propagated to the return value,
2019 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
2020 */
2021 struct dentry *d_obtain_alias(struct inode *inode)
2022 {
2023 return __d_obtain_alias(inode, true);
2024 }
2025 EXPORT_SYMBOL(d_obtain_alias);
2026
2027 /**
2028 * d_obtain_root - find or allocate a dentry for a given inode
2029 * @inode: inode to allocate the dentry for
2030 *
2031 * Obtain an IS_ROOT dentry for the root of a filesystem.
2032 *
2033 * We must ensure that directory inodes only ever have one dentry. If a
2034 * dentry is found, that is returned instead of allocating a new one.
2035 *
2036 * On successful return, the reference to the inode has been transferred
2037 * to the dentry. In case of an error the reference on the inode is
2038 * released. A %NULL or IS_ERR inode may be passed in and will be the
2039 * error will be propagate to the return value, with a %NULL @inode
2040 * replaced by ERR_PTR(-ESTALE).
2041 */
2042 struct dentry *d_obtain_root(struct inode *inode)
2043 {
2044 return __d_obtain_alias(inode, false);
2045 }
2046 EXPORT_SYMBOL(d_obtain_root);
2047
2048 /**
2049 * d_add_ci - lookup or allocate new dentry with case-exact name
2050 * @inode: the inode case-insensitive lookup has found
2051 * @dentry: the negative dentry that was passed to the parent's lookup func
2052 * @name: the case-exact name to be associated with the returned dentry
2053 *
2054 * This is to avoid filling the dcache with case-insensitive names to the
2055 * same inode, only the actual correct case is stored in the dcache for
2056 * case-insensitive filesystems.
2057 *
2058 * For a case-insensitive lookup match and if the the case-exact dentry
2059 * already exists in in the dcache, use it and return it.
2060 *
2061 * If no entry exists with the exact case name, allocate new dentry with
2062 * the exact case, and return the spliced entry.
2063 */
2064 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
2065 struct qstr *name)
2066 {
2067 struct dentry *found, *res;
2068
2069 /*
2070 * First check if a dentry matching the name already exists,
2071 * if not go ahead and create it now.
2072 */
2073 found = d_hash_and_lookup(dentry->d_parent, name);
2074 if (found) {
2075 iput(inode);
2076 return found;
2077 }
2078 if (d_in_lookup(dentry)) {
2079 found = d_alloc_parallel(dentry->d_parent, name,
2080 dentry->d_wait);
2081 if (IS_ERR(found) || !d_in_lookup(found)) {
2082 iput(inode);
2083 return found;
2084 }
2085 } else {
2086 found = d_alloc(dentry->d_parent, name);
2087 if (!found) {
2088 iput(inode);
2089 return ERR_PTR(-ENOMEM);
2090 }
2091 }
2092 res = d_splice_alias(inode, found);
2093 if (res) {
2094 dput(found);
2095 return res;
2096 }
2097 return found;
2098 }
2099 EXPORT_SYMBOL(d_add_ci);
2100
2101
2102 static inline bool d_same_name(const struct dentry *dentry,
2103 const struct dentry *parent,
2104 const struct qstr *name)
2105 {
2106 if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) {
2107 if (dentry->d_name.len != name->len)
2108 return false;
2109 return dentry_cmp(dentry, name->name, name->len) == 0;
2110 }
2111 return parent->d_op->d_compare(dentry,
2112 dentry->d_name.len, dentry->d_name.name,
2113 name) == 0;
2114 }
2115
2116 /**
2117 * __d_lookup_rcu - search for a dentry (racy, store-free)
2118 * @parent: parent dentry
2119 * @name: qstr of name we wish to find
2120 * @seqp: returns d_seq value at the point where the dentry was found
2121 * Returns: dentry, or NULL
2122 *
2123 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2124 * resolution (store-free path walking) design described in
2125 * Documentation/filesystems/path-lookup.txt.
2126 *
2127 * This is not to be used outside core vfs.
2128 *
2129 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2130 * held, and rcu_read_lock held. The returned dentry must not be stored into
2131 * without taking d_lock and checking d_seq sequence count against @seq
2132 * returned here.
2133 *
2134 * A refcount may be taken on the found dentry with the d_rcu_to_refcount
2135 * function.
2136 *
2137 * Alternatively, __d_lookup_rcu may be called again to look up the child of
2138 * the returned dentry, so long as its parent's seqlock is checked after the
2139 * child is looked up. Thus, an interlocking stepping of sequence lock checks
2140 * is formed, giving integrity down the path walk.
2141 *
2142 * NOTE! The caller *has* to check the resulting dentry against the sequence
2143 * number we've returned before using any of the resulting dentry state!
2144 */
2145 struct dentry *__d_lookup_rcu(const struct dentry *parent,
2146 const struct qstr *name,
2147 unsigned *seqp)
2148 {
2149 u64 hashlen = name->hash_len;
2150 const unsigned char *str = name->name;
2151 struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen));
2152 struct hlist_bl_node *node;
2153 struct dentry *dentry;
2154
2155 /*
2156 * Note: There is significant duplication with __d_lookup_rcu which is
2157 * required to prevent single threaded performance regressions
2158 * especially on architectures where smp_rmb (in seqcounts) are costly.
2159 * Keep the two functions in sync.
2160 */
2161
2162 /*
2163 * The hash list is protected using RCU.
2164 *
2165 * Carefully use d_seq when comparing a candidate dentry, to avoid
2166 * races with d_move().
2167 *
2168 * It is possible that concurrent renames can mess up our list
2169 * walk here and result in missing our dentry, resulting in the
2170 * false-negative result. d_lookup() protects against concurrent
2171 * renames using rename_lock seqlock.
2172 *
2173 * See Documentation/filesystems/path-lookup.txt for more details.
2174 */
2175 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2176 unsigned seq;
2177
2178 seqretry:
2179 /*
2180 * The dentry sequence count protects us from concurrent
2181 * renames, and thus protects parent and name fields.
2182 *
2183 * The caller must perform a seqcount check in order
2184 * to do anything useful with the returned dentry.
2185 *
2186 * NOTE! We do a "raw" seqcount_begin here. That means that
2187 * we don't wait for the sequence count to stabilize if it
2188 * is in the middle of a sequence change. If we do the slow
2189 * dentry compare, we will do seqretries until it is stable,
2190 * and if we end up with a successful lookup, we actually
2191 * want to exit RCU lookup anyway.
2192 *
2193 * Note that raw_seqcount_begin still *does* smp_rmb(), so
2194 * we are still guaranteed NUL-termination of ->d_name.name.
2195 */
2196 seq = raw_seqcount_begin(&dentry->d_seq);
2197 if (dentry->d_parent != parent)
2198 continue;
2199 if (d_unhashed(dentry))
2200 continue;
2201
2202 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
2203 int tlen;
2204 const char *tname;
2205 if (dentry->d_name.hash != hashlen_hash(hashlen))
2206 continue;
2207 tlen = dentry->d_name.len;
2208 tname = dentry->d_name.name;
2209 /* we want a consistent (name,len) pair */
2210 if (read_seqcount_retry(&dentry->d_seq, seq)) {
2211 cpu_relax();
2212 goto seqretry;
2213 }
2214 if (parent->d_op->d_compare(dentry,
2215 tlen, tname, name) != 0)
2216 continue;
2217 } else {
2218 if (dentry->d_name.hash_len != hashlen)
2219 continue;
2220 if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0)
2221 continue;
2222 }
2223 *seqp = seq;
2224 return dentry;
2225 }
2226 return NULL;
2227 }
2228
2229 /**
2230 * d_lookup - search for a dentry
2231 * @parent: parent dentry
2232 * @name: qstr of name we wish to find
2233 * Returns: dentry, or NULL
2234 *
2235 * d_lookup searches the children of the parent dentry for the name in
2236 * question. If the dentry is found its reference count is incremented and the
2237 * dentry is returned. The caller must use dput to free the entry when it has
2238 * finished using it. %NULL is returned if the dentry does not exist.
2239 */
2240 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2241 {
2242 struct dentry *dentry;
2243 unsigned seq;
2244
2245 do {
2246 seq = read_seqbegin(&rename_lock);
2247 dentry = __d_lookup(parent, name);
2248 if (dentry)
2249 break;
2250 } while (read_seqretry(&rename_lock, seq));
2251 return dentry;
2252 }
2253 EXPORT_SYMBOL(d_lookup);
2254
2255 /**
2256 * __d_lookup - search for a dentry (racy)
2257 * @parent: parent dentry
2258 * @name: qstr of name we wish to find
2259 * Returns: dentry, or NULL
2260 *
2261 * __d_lookup is like d_lookup, however it may (rarely) return a
2262 * false-negative result due to unrelated rename activity.
2263 *
2264 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2265 * however it must be used carefully, eg. with a following d_lookup in
2266 * the case of failure.
2267 *
2268 * __d_lookup callers must be commented.
2269 */
2270 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2271 {
2272 unsigned int hash = name->hash;
2273 struct hlist_bl_head *b = d_hash(hash);
2274 struct hlist_bl_node *node;
2275 struct dentry *found = NULL;
2276 struct dentry *dentry;
2277
2278 /*
2279 * Note: There is significant duplication with __d_lookup_rcu which is
2280 * required to prevent single threaded performance regressions
2281 * especially on architectures where smp_rmb (in seqcounts) are costly.
2282 * Keep the two functions in sync.
2283 */
2284
2285 /*
2286 * The hash list is protected using RCU.
2287 *
2288 * Take d_lock when comparing a candidate dentry, to avoid races
2289 * with d_move().
2290 *
2291 * It is possible that concurrent renames can mess up our list
2292 * walk here and result in missing our dentry, resulting in the
2293 * false-negative result. d_lookup() protects against concurrent
2294 * renames using rename_lock seqlock.
2295 *
2296 * See Documentation/filesystems/path-lookup.txt for more details.
2297 */
2298 rcu_read_lock();
2299
2300 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2301
2302 if (dentry->d_name.hash != hash)
2303 continue;
2304
2305 spin_lock(&dentry->d_lock);
2306 if (dentry->d_parent != parent)
2307 goto next;
2308 if (d_unhashed(dentry))
2309 goto next;
2310
2311 if (!d_same_name(dentry, parent, name))
2312 goto next;
2313
2314 dentry->d_lockref.count++;
2315 found = dentry;
2316 spin_unlock(&dentry->d_lock);
2317 break;
2318 next:
2319 spin_unlock(&dentry->d_lock);
2320 }
2321 rcu_read_unlock();
2322
2323 return found;
2324 }
2325
2326 /**
2327 * d_hash_and_lookup - hash the qstr then search for a dentry
2328 * @dir: Directory to search in
2329 * @name: qstr of name we wish to find
2330 *
2331 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2332 */
2333 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2334 {
2335 /*
2336 * Check for a fs-specific hash function. Note that we must
2337 * calculate the standard hash first, as the d_op->d_hash()
2338 * routine may choose to leave the hash value unchanged.
2339 */
2340 name->hash = full_name_hash(dir, name->name, name->len);
2341 if (dir->d_flags & DCACHE_OP_HASH) {
2342 int err = dir->d_op->d_hash(dir, name);
2343 if (unlikely(err < 0))
2344 return ERR_PTR(err);
2345 }
2346 return d_lookup(dir, name);
2347 }
2348 EXPORT_SYMBOL(d_hash_and_lookup);
2349
2350 /*
2351 * When a file is deleted, we have two options:
2352 * - turn this dentry into a negative dentry
2353 * - unhash this dentry and free it.
2354 *
2355 * Usually, we want to just turn this into
2356 * a negative dentry, but if anybody else is
2357 * currently using the dentry or the inode
2358 * we can't do that and we fall back on removing
2359 * it from the hash queues and waiting for
2360 * it to be deleted later when it has no users
2361 */
2362
2363 /**
2364 * d_delete - delete a dentry
2365 * @dentry: The dentry to delete
2366 *
2367 * Turn the dentry into a negative dentry if possible, otherwise
2368 * remove it from the hash queues so it can be deleted later
2369 */
2370
2371 void d_delete(struct dentry * dentry)
2372 {
2373 struct inode *inode = dentry->d_inode;
2374 int isdir = d_is_dir(dentry);
2375
2376 spin_lock(&inode->i_lock);
2377 spin_lock(&dentry->d_lock);
2378 /*
2379 * Are we the only user?
2380 */
2381 if (dentry->d_lockref.count == 1) {
2382 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2383 dentry_unlink_inode(dentry);
2384 } else {
2385 __d_drop(dentry);
2386 spin_unlock(&dentry->d_lock);
2387 spin_unlock(&inode->i_lock);
2388 }
2389 fsnotify_nameremove(dentry, isdir);
2390 }
2391 EXPORT_SYMBOL(d_delete);
2392
2393 static void __d_rehash(struct dentry *entry)
2394 {
2395 struct hlist_bl_head *b = d_hash(entry->d_name.hash);
2396
2397 hlist_bl_lock(b);
2398 hlist_bl_add_head_rcu(&entry->d_hash, b);
2399 hlist_bl_unlock(b);
2400 }
2401
2402 /**
2403 * d_rehash - add an entry back to the hash
2404 * @entry: dentry to add to the hash
2405 *
2406 * Adds a dentry to the hash according to its name.
2407 */
2408
2409 void d_rehash(struct dentry * entry)
2410 {
2411 spin_lock(&entry->d_lock);
2412 __d_rehash(entry);
2413 spin_unlock(&entry->d_lock);
2414 }
2415 EXPORT_SYMBOL(d_rehash);
2416
2417 static inline unsigned start_dir_add(struct inode *dir)
2418 {
2419
2420 for (;;) {
2421 unsigned n = dir->i_dir_seq;
2422 if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n)
2423 return n;
2424 cpu_relax();
2425 }
2426 }
2427
2428 static inline void end_dir_add(struct inode *dir, unsigned n)
2429 {
2430 smp_store_release(&dir->i_dir_seq, n + 2);
2431 }
2432
2433 static void d_wait_lookup(struct dentry *dentry)
2434 {
2435 if (d_in_lookup(dentry)) {
2436 DECLARE_WAITQUEUE(wait, current);
2437 add_wait_queue(dentry->d_wait, &wait);
2438 do {
2439 set_current_state(TASK_UNINTERRUPTIBLE);
2440 spin_unlock(&dentry->d_lock);
2441 schedule();
2442 spin_lock(&dentry->d_lock);
2443 } while (d_in_lookup(dentry));
2444 }
2445 }
2446
2447 struct dentry *d_alloc_parallel(struct dentry *parent,
2448 const struct qstr *name,
2449 wait_queue_head_t *wq)
2450 {
2451 unsigned int hash = name->hash;
2452 struct hlist_bl_head *b = in_lookup_hash(parent, hash);
2453 struct hlist_bl_node *node;
2454 struct dentry *new = d_alloc(parent, name);
2455 struct dentry *dentry;
2456 unsigned seq, r_seq, d_seq;
2457
2458 if (unlikely(!new))
2459 return ERR_PTR(-ENOMEM);
2460
2461 retry:
2462 rcu_read_lock();
2463 seq = smp_load_acquire(&parent->d_inode->i_dir_seq);
2464 r_seq = read_seqbegin(&rename_lock);
2465 dentry = __d_lookup_rcu(parent, name, &d_seq);
2466 if (unlikely(dentry)) {
2467 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2468 rcu_read_unlock();
2469 goto retry;
2470 }
2471 if (read_seqcount_retry(&dentry->d_seq, d_seq)) {
2472 rcu_read_unlock();
2473 dput(dentry);
2474 goto retry;
2475 }
2476 rcu_read_unlock();
2477 dput(new);
2478 return dentry;
2479 }
2480 if (unlikely(read_seqretry(&rename_lock, r_seq))) {
2481 rcu_read_unlock();
2482 goto retry;
2483 }
2484
2485 if (unlikely(seq & 1)) {
2486 rcu_read_unlock();
2487 goto retry;
2488 }
2489
2490 hlist_bl_lock(b);
2491 if (unlikely(READ_ONCE(parent->d_inode->i_dir_seq) != seq)) {
2492 hlist_bl_unlock(b);
2493 rcu_read_unlock();
2494 goto retry;
2495 }
2496 /*
2497 * No changes for the parent since the beginning of d_lookup().
2498 * Since all removals from the chain happen with hlist_bl_lock(),
2499 * any potential in-lookup matches are going to stay here until
2500 * we unlock the chain. All fields are stable in everything
2501 * we encounter.
2502 */
2503 hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) {
2504 if (dentry->d_name.hash != hash)
2505 continue;
2506 if (dentry->d_parent != parent)
2507 continue;
2508 if (!d_same_name(dentry, parent, name))
2509 continue;
2510 hlist_bl_unlock(b);
2511 /* now we can try to grab a reference */
2512 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2513 rcu_read_unlock();
2514 goto retry;
2515 }
2516
2517 rcu_read_unlock();
2518 /*
2519 * somebody is likely to be still doing lookup for it;
2520 * wait for them to finish
2521 */
2522 spin_lock(&dentry->d_lock);
2523 d_wait_lookup(dentry);
2524 /*
2525 * it's not in-lookup anymore; in principle we should repeat
2526 * everything from dcache lookup, but it's likely to be what
2527 * d_lookup() would've found anyway. If it is, just return it;
2528 * otherwise we really have to repeat the whole thing.
2529 */
2530 if (unlikely(dentry->d_name.hash != hash))
2531 goto mismatch;
2532 if (unlikely(dentry->d_parent != parent))
2533 goto mismatch;
2534 if (unlikely(d_unhashed(dentry)))
2535 goto mismatch;
2536 if (unlikely(!d_same_name(dentry, parent, name)))
2537 goto mismatch;
2538 /* OK, it *is* a hashed match; return it */
2539 spin_unlock(&dentry->d_lock);
2540 dput(new);
2541 return dentry;
2542 }
2543 rcu_read_unlock();
2544 /* we can't take ->d_lock here; it's OK, though. */
2545 new->d_flags |= DCACHE_PAR_LOOKUP;
2546 new->d_wait = wq;
2547 hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b);
2548 hlist_bl_unlock(b);
2549 return new;
2550 mismatch:
2551 spin_unlock(&dentry->d_lock);
2552 dput(dentry);
2553 goto retry;
2554 }
2555 EXPORT_SYMBOL(d_alloc_parallel);
2556
2557 void __d_lookup_done(struct dentry *dentry)
2558 {
2559 struct hlist_bl_head *b = in_lookup_hash(dentry->d_parent,
2560 dentry->d_name.hash);
2561 hlist_bl_lock(b);
2562 dentry->d_flags &= ~DCACHE_PAR_LOOKUP;
2563 __hlist_bl_del(&dentry->d_u.d_in_lookup_hash);
2564 wake_up_all(dentry->d_wait);
2565 dentry->d_wait = NULL;
2566 hlist_bl_unlock(b);
2567 INIT_HLIST_NODE(&dentry->d_u.d_alias);
2568 INIT_LIST_HEAD(&dentry->d_lru);
2569 }
2570 EXPORT_SYMBOL(__d_lookup_done);
2571
2572 /* inode->i_lock held if inode is non-NULL */
2573
2574 static inline void __d_add(struct dentry *dentry, struct inode *inode)
2575 {
2576 struct inode *dir = NULL;
2577 unsigned n;
2578 spin_lock(&dentry->d_lock);
2579 if (unlikely(d_in_lookup(dentry))) {
2580 dir = dentry->d_parent->d_inode;
2581 n = start_dir_add(dir);
2582 __d_lookup_done(dentry);
2583 }
2584 if (inode) {
2585 unsigned add_flags = d_flags_for_inode(inode);
2586 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2587 raw_write_seqcount_begin(&dentry->d_seq);
2588 __d_set_inode_and_type(dentry, inode, add_flags);
2589 raw_write_seqcount_end(&dentry->d_seq);
2590 fsnotify_update_flags(dentry);
2591 }
2592 __d_rehash(dentry);
2593 if (dir)
2594 end_dir_add(dir, n);
2595 spin_unlock(&dentry->d_lock);
2596 if (inode)
2597 spin_unlock(&inode->i_lock);
2598 }
2599
2600 /**
2601 * d_add - add dentry to hash queues
2602 * @entry: dentry to add
2603 * @inode: The inode to attach to this dentry
2604 *
2605 * This adds the entry to the hash queues and initializes @inode.
2606 * The entry was actually filled in earlier during d_alloc().
2607 */
2608
2609 void d_add(struct dentry *entry, struct inode *inode)
2610 {
2611 if (inode) {
2612 security_d_instantiate(entry, inode);
2613 spin_lock(&inode->i_lock);
2614 }
2615 __d_add(entry, inode);
2616 }
2617 EXPORT_SYMBOL(d_add);
2618
2619 /**
2620 * d_exact_alias - find and hash an exact unhashed alias
2621 * @entry: dentry to add
2622 * @inode: The inode to go with this dentry
2623 *
2624 * If an unhashed dentry with the same name/parent and desired
2625 * inode already exists, hash and return it. Otherwise, return
2626 * NULL.
2627 *
2628 * Parent directory should be locked.
2629 */
2630 struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode)
2631 {
2632 struct dentry *alias;
2633 unsigned int hash = entry->d_name.hash;
2634
2635 spin_lock(&inode->i_lock);
2636 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
2637 /*
2638 * Don't need alias->d_lock here, because aliases with
2639 * d_parent == entry->d_parent are not subject to name or
2640 * parent changes, because the parent inode i_mutex is held.
2641 */
2642 if (alias->d_name.hash != hash)
2643 continue;
2644 if (alias->d_parent != entry->d_parent)
2645 continue;
2646 if (!d_same_name(alias, entry->d_parent, &entry->d_name))
2647 continue;
2648 spin_lock(&alias->d_lock);
2649 if (!d_unhashed(alias)) {
2650 spin_unlock(&alias->d_lock);
2651 alias = NULL;
2652 } else {
2653 __dget_dlock(alias);
2654 __d_rehash(alias);
2655 spin_unlock(&alias->d_lock);
2656 }
2657 spin_unlock(&inode->i_lock);
2658 return alias;
2659 }
2660 spin_unlock(&inode->i_lock);
2661 return NULL;
2662 }
2663 EXPORT_SYMBOL(d_exact_alias);
2664
2665 static void swap_names(struct dentry *dentry, struct dentry *target)
2666 {
2667 if (unlikely(dname_external(target))) {
2668 if (unlikely(dname_external(dentry))) {
2669 /*
2670 * Both external: swap the pointers
2671 */
2672 swap(target->d_name.name, dentry->d_name.name);
2673 } else {
2674 /*
2675 * dentry:internal, target:external. Steal target's
2676 * storage and make target internal.
2677 */
2678 memcpy(target->d_iname, dentry->d_name.name,
2679 dentry->d_name.len + 1);
2680 dentry->d_name.name = target->d_name.name;
2681 target->d_name.name = target->d_iname;
2682 }
2683 } else {
2684 if (unlikely(dname_external(dentry))) {
2685 /*
2686 * dentry:external, target:internal. Give dentry's
2687 * storage to target and make dentry internal
2688 */
2689 memcpy(dentry->d_iname, target->d_name.name,
2690 target->d_name.len + 1);
2691 target->d_name.name = dentry->d_name.name;
2692 dentry->d_name.name = dentry->d_iname;
2693 } else {
2694 /*
2695 * Both are internal.
2696 */
2697 unsigned int i;
2698 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2699 for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2700 swap(((long *) &dentry->d_iname)[i],
2701 ((long *) &target->d_iname)[i]);
2702 }
2703 }
2704 }
2705 swap(dentry->d_name.hash_len, target->d_name.hash_len);
2706 }
2707
2708 static void copy_name(struct dentry *dentry, struct dentry *target)
2709 {
2710 struct external_name *old_name = NULL;
2711 if (unlikely(dname_external(dentry)))
2712 old_name = external_name(dentry);
2713 if (unlikely(dname_external(target))) {
2714 atomic_inc(&external_name(target)->u.count);
2715 dentry->d_name = target->d_name;
2716 } else {
2717 memcpy(dentry->d_iname, target->d_name.name,
2718 target->d_name.len + 1);
2719 dentry->d_name.name = dentry->d_iname;
2720 dentry->d_name.hash_len = target->d_name.hash_len;
2721 }
2722 if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2723 kfree_rcu(old_name, u.head);
2724 }
2725
2726 /*
2727 * __d_move - move a dentry
2728 * @dentry: entry to move
2729 * @target: new dentry
2730 * @exchange: exchange the two dentries
2731 *
2732 * Update the dcache to reflect the move of a file name. Negative
2733 * dcache entries should not be moved in this way. Caller must hold
2734 * rename_lock, the i_mutex of the source and target directories,
2735 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2736 */
2737 static void __d_move(struct dentry *dentry, struct dentry *target,
2738 bool exchange)
2739 {
2740 struct dentry *old_parent, *p;
2741 struct inode *dir = NULL;
2742 unsigned n;
2743
2744 WARN_ON(!dentry->d_inode);
2745 if (WARN_ON(dentry == target))
2746 return;
2747
2748 BUG_ON(d_ancestor(target, dentry));
2749 old_parent = dentry->d_parent;
2750 p = d_ancestor(old_parent, target);
2751 if (IS_ROOT(dentry)) {
2752 BUG_ON(p);
2753 spin_lock(&target->d_parent->d_lock);
2754 } else if (!p) {
2755 /* target is not a descendent of dentry->d_parent */
2756 spin_lock(&target->d_parent->d_lock);
2757 spin_lock_nested(&old_parent->d_lock, DENTRY_D_LOCK_NESTED);
2758 } else {
2759 BUG_ON(p == dentry);
2760 spin_lock(&old_parent->d_lock);
2761 if (p != target)
2762 spin_lock_nested(&target->d_parent->d_lock,
2763 DENTRY_D_LOCK_NESTED);
2764 }
2765 spin_lock_nested(&dentry->d_lock, 2);
2766 spin_lock_nested(&target->d_lock, 3);
2767
2768 if (unlikely(d_in_lookup(target))) {
2769 dir = target->d_parent->d_inode;
2770 n = start_dir_add(dir);
2771 __d_lookup_done(target);
2772 }
2773
2774 write_seqcount_begin(&dentry->d_seq);
2775 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
2776
2777 /* unhash both */
2778 if (!d_unhashed(dentry))
2779 ___d_drop(dentry);
2780 if (!d_unhashed(target))
2781 ___d_drop(target);
2782
2783 /* ... and switch them in the tree */
2784 dentry->d_parent = target->d_parent;
2785 if (!exchange) {
2786 copy_name(dentry, target);
2787 target->d_hash.pprev = NULL;
2788 dentry->d_parent->d_lockref.count++;
2789 if (dentry != old_parent) /* wasn't IS_ROOT */
2790 WARN_ON(!--old_parent->d_lockref.count);
2791 } else {
2792 target->d_parent = old_parent;
2793 swap_names(dentry, target);
2794 list_move(&target->d_child, &target->d_parent->d_subdirs);
2795 __d_rehash(target);
2796 fsnotify_update_flags(target);
2797 }
2798 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2799 __d_rehash(dentry);
2800 fsnotify_update_flags(dentry);
2801 fscrypt_handle_d_move(dentry);
2802
2803 write_seqcount_end(&target->d_seq);
2804 write_seqcount_end(&dentry->d_seq);
2805
2806 if (dir)
2807 end_dir_add(dir, n);
2808
2809 if (dentry->d_parent != old_parent)
2810 spin_unlock(&dentry->d_parent->d_lock);
2811 if (dentry != old_parent)
2812 spin_unlock(&old_parent->d_lock);
2813 spin_unlock(&target->d_lock);
2814 spin_unlock(&dentry->d_lock);
2815 }
2816
2817 /*
2818 * d_move - move a dentry
2819 * @dentry: entry to move
2820 * @target: new dentry
2821 *
2822 * Update the dcache to reflect the move of a file name. Negative
2823 * dcache entries should not be moved in this way. See the locking
2824 * requirements for __d_move.
2825 */
2826 void d_move(struct dentry *dentry, struct dentry *target)
2827 {
2828 write_seqlock(&rename_lock);
2829 __d_move(dentry, target, false);
2830 write_sequnlock(&rename_lock);
2831 }
2832 EXPORT_SYMBOL(d_move);
2833
2834 /*
2835 * d_exchange - exchange two dentries
2836 * @dentry1: first dentry
2837 * @dentry2: second dentry
2838 */
2839 void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2840 {
2841 write_seqlock(&rename_lock);
2842
2843 WARN_ON(!dentry1->d_inode);
2844 WARN_ON(!dentry2->d_inode);
2845 WARN_ON(IS_ROOT(dentry1));
2846 WARN_ON(IS_ROOT(dentry2));
2847
2848 __d_move(dentry1, dentry2, true);
2849
2850 write_sequnlock(&rename_lock);
2851 }
2852
2853 /**
2854 * d_ancestor - search for an ancestor
2855 * @p1: ancestor dentry
2856 * @p2: child dentry
2857 *
2858 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2859 * an ancestor of p2, else NULL.
2860 */
2861 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2862 {
2863 struct dentry *p;
2864
2865 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2866 if (p->d_parent == p1)
2867 return p;
2868 }
2869 return NULL;
2870 }
2871
2872 /*
2873 * This helper attempts to cope with remotely renamed directories
2874 *
2875 * It assumes that the caller is already holding
2876 * dentry->d_parent->d_inode->i_mutex, and rename_lock
2877 *
2878 * Note: If ever the locking in lock_rename() changes, then please
2879 * remember to update this too...
2880 */
2881 static int __d_unalias(struct inode *inode,
2882 struct dentry *dentry, struct dentry *alias)
2883 {
2884 struct mutex *m1 = NULL;
2885 struct rw_semaphore *m2 = NULL;
2886 int ret = -ESTALE;
2887
2888 /* If alias and dentry share a parent, then no extra locks required */
2889 if (alias->d_parent == dentry->d_parent)
2890 goto out_unalias;
2891
2892 /* See lock_rename() */
2893 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2894 goto out_err;
2895 m1 = &dentry->d_sb->s_vfs_rename_mutex;
2896 if (!inode_trylock_shared(alias->d_parent->d_inode))
2897 goto out_err;
2898 m2 = &alias->d_parent->d_inode->i_rwsem;
2899 out_unalias:
2900 __d_move(alias, dentry, false);
2901 ret = 0;
2902 out_err:
2903 if (m2)
2904 up_read(m2);
2905 if (m1)
2906 mutex_unlock(m1);
2907 return ret;
2908 }
2909
2910 /**
2911 * d_splice_alias - splice a disconnected dentry into the tree if one exists
2912 * @inode: the inode which may have a disconnected dentry
2913 * @dentry: a negative dentry which we want to point to the inode.
2914 *
2915 * If inode is a directory and has an IS_ROOT alias, then d_move that in
2916 * place of the given dentry and return it, else simply d_add the inode
2917 * to the dentry and return NULL.
2918 *
2919 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
2920 * we should error out: directories can't have multiple aliases.
2921 *
2922 * This is needed in the lookup routine of any filesystem that is exportable
2923 * (via knfsd) so that we can build dcache paths to directories effectively.
2924 *
2925 * If a dentry was found and moved, then it is returned. Otherwise NULL
2926 * is returned. This matches the expected return value of ->lookup.
2927 *
2928 * Cluster filesystems may call this function with a negative, hashed dentry.
2929 * In that case, we know that the inode will be a regular file, and also this
2930 * will only occur during atomic_open. So we need to check for the dentry
2931 * being already hashed only in the final case.
2932 */
2933 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
2934 {
2935 if (IS_ERR(inode))
2936 return ERR_CAST(inode);
2937
2938 BUG_ON(!d_unhashed(dentry));
2939
2940 if (!inode)
2941 goto out;
2942
2943 security_d_instantiate(dentry, inode);
2944 spin_lock(&inode->i_lock);
2945 if (S_ISDIR(inode->i_mode)) {
2946 struct dentry *new = __d_find_any_alias(inode);
2947 if (unlikely(new)) {
2948 /* The reference to new ensures it remains an alias */
2949 spin_unlock(&inode->i_lock);
2950 write_seqlock(&rename_lock);
2951 if (unlikely(d_ancestor(new, dentry))) {
2952 write_sequnlock(&rename_lock);
2953 dput(new);
2954 new = ERR_PTR(-ELOOP);
2955 pr_warn_ratelimited(
2956 "VFS: Lookup of '%s' in %s %s"
2957 " would have caused loop\n",
2958 dentry->d_name.name,
2959 inode->i_sb->s_type->name,
2960 inode->i_sb->s_id);
2961 } else if (!IS_ROOT(new)) {
2962 struct dentry *old_parent = dget(new->d_parent);
2963 int err = __d_unalias(inode, dentry, new);
2964 write_sequnlock(&rename_lock);
2965 if (err) {
2966 dput(new);
2967 new = ERR_PTR(err);
2968 }
2969 dput(old_parent);
2970 } else {
2971 __d_move(new, dentry, false);
2972 write_sequnlock(&rename_lock);
2973 }
2974 iput(inode);
2975 return new;
2976 }
2977 }
2978 out:
2979 __d_add(dentry, inode);
2980 return NULL;
2981 }
2982 EXPORT_SYMBOL(d_splice_alias);
2983
2984 /*
2985 * Test whether new_dentry is a subdirectory of old_dentry.
2986 *
2987 * Trivially implemented using the dcache structure
2988 */
2989
2990 /**
2991 * is_subdir - is new dentry a subdirectory of old_dentry
2992 * @new_dentry: new dentry
2993 * @old_dentry: old dentry
2994 *
2995 * Returns true if new_dentry is a subdirectory of the parent (at any depth).
2996 * Returns false otherwise.
2997 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
2998 */
2999
3000 bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
3001 {
3002 bool result;
3003 unsigned seq;
3004
3005 if (new_dentry == old_dentry)
3006 return true;
3007
3008 do {
3009 /* for restarting inner loop in case of seq retry */
3010 seq = read_seqbegin(&rename_lock);
3011 /*
3012 * Need rcu_readlock to protect against the d_parent trashing
3013 * due to d_move
3014 */
3015 rcu_read_lock();
3016 if (d_ancestor(old_dentry, new_dentry))
3017 result = true;
3018 else
3019 result = false;
3020 rcu_read_unlock();
3021 } while (read_seqretry(&rename_lock, seq));
3022
3023 return result;
3024 }
3025 EXPORT_SYMBOL(is_subdir);
3026
3027 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
3028 {
3029 struct dentry *root = data;
3030 if (dentry != root) {
3031 if (d_unhashed(dentry) || !dentry->d_inode)
3032 return D_WALK_SKIP;
3033
3034 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3035 dentry->d_flags |= DCACHE_GENOCIDE;
3036 dentry->d_lockref.count--;
3037 }
3038 }
3039 return D_WALK_CONTINUE;
3040 }
3041
3042 void d_genocide(struct dentry *parent)
3043 {
3044 d_walk(parent, parent, d_genocide_kill);
3045 }
3046
3047 EXPORT_SYMBOL(d_genocide);
3048
3049 void d_tmpfile(struct dentry *dentry, struct inode *inode)
3050 {
3051 inode_dec_link_count(inode);
3052 BUG_ON(dentry->d_name.name != dentry->d_iname ||
3053 !hlist_unhashed(&dentry->d_u.d_alias) ||
3054 !d_unlinked(dentry));
3055 spin_lock(&dentry->d_parent->d_lock);
3056 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3057 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3058 (unsigned long long)inode->i_ino);
3059 spin_unlock(&dentry->d_lock);
3060 spin_unlock(&dentry->d_parent->d_lock);
3061 d_instantiate(dentry, inode);
3062 }
3063 EXPORT_SYMBOL(d_tmpfile);
3064
3065 static __initdata unsigned long dhash_entries;
3066 static int __init set_dhash_entries(char *str)
3067 {
3068 if (!str)
3069 return 0;
3070 dhash_entries = simple_strtoul(str, &str, 0);
3071 return 1;
3072 }
3073 __setup("dhash_entries=", set_dhash_entries);
3074
3075 static void __init dcache_init_early(void)
3076 {
3077 /* If hashes are distributed across NUMA nodes, defer
3078 * hash allocation until vmalloc space is available.
3079 */
3080 if (hashdist)
3081 return;
3082
3083 dentry_hashtable =
3084 alloc_large_system_hash("Dentry cache",
3085 sizeof(struct hlist_bl_head),
3086 dhash_entries,
3087 13,
3088 HASH_EARLY | HASH_ZERO,
3089 &d_hash_shift,
3090 NULL,
3091 0,
3092 0);
3093 d_hash_shift = 32 - d_hash_shift;
3094 }
3095
3096 static void __init dcache_init(void)
3097 {
3098 /*
3099 * A constructor could be added for stable state like the lists,
3100 * but it is probably not worth it because of the cache nature
3101 * of the dcache.
3102 */
3103 dentry_cache = KMEM_CACHE_USERCOPY(dentry,
3104 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT,
3105 d_iname);
3106
3107 /* Hash may have been set up in dcache_init_early */
3108 if (!hashdist)
3109 return;
3110
3111 dentry_hashtable =
3112 alloc_large_system_hash("Dentry cache",
3113 sizeof(struct hlist_bl_head),
3114 dhash_entries,
3115 13,
3116 HASH_ZERO,
3117 &d_hash_shift,
3118 NULL,
3119 0,
3120 0);
3121 d_hash_shift = 32 - d_hash_shift;
3122 }
3123
3124 /* SLAB cache for __getname() consumers */
3125 struct kmem_cache *names_cachep __read_mostly;
3126 EXPORT_SYMBOL(names_cachep);
3127
3128 void __init vfs_caches_init_early(void)
3129 {
3130 int i;
3131
3132 for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++)
3133 INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]);
3134
3135 dcache_init_early();
3136 inode_init_early();
3137 }
3138
3139 void __init vfs_caches_init(void)
3140 {
3141 names_cachep = kmem_cache_create_usercopy("names_cache", PATH_MAX, 0,
3142 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 0, PATH_MAX, NULL);
3143
3144 dcache_init();
3145 inode_init();
3146 files_init();
3147 files_maxfiles_init();
3148 mnt_init();
3149 bdev_cache_init();
3150 chrdev_init();
3151 }