]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/dcache.c
x86/speculation/mmio: Enable CPU Fill buffer clearing on idle
[mirror_ubuntu-jammy-kernel.git] / fs / dcache.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * fs/dcache.c
4 *
5 * Complete reimplementation
6 * (C) 1997 Thomas Schoebel-Theuer,
7 * with heavy changes by Linus Torvalds
8 */
9
10 /*
11 * Notes on the allocation strategy:
12 *
13 * The dcache is a master of the icache - whenever a dcache entry
14 * exists, the inode will always exist. "iput()" is done either when
15 * the dcache entry is deleted or garbage collected.
16 */
17
18 #include <linux/ratelimit.h>
19 #include <linux/string.h>
20 #include <linux/mm.h>
21 #include <linux/fs.h>
22 #include <linux/fscrypt.h>
23 #include <linux/fsnotify.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/hash.h>
27 #include <linux/cache.h>
28 #include <linux/export.h>
29 #include <linux/security.h>
30 #include <linux/seqlock.h>
31 #include <linux/memblock.h>
32 #include <linux/bit_spinlock.h>
33 #include <linux/rculist_bl.h>
34 #include <linux/list_lru.h>
35 #include "internal.h"
36 #include "mount.h"
37
38 /*
39 * Usage:
40 * dcache->d_inode->i_lock protects:
41 * - i_dentry, d_u.d_alias, d_inode of aliases
42 * dcache_hash_bucket lock protects:
43 * - the dcache hash table
44 * s_roots bl list spinlock protects:
45 * - the s_roots list (see __d_drop)
46 * dentry->d_sb->s_dentry_lru_lock protects:
47 * - the dcache lru lists and counters
48 * d_lock protects:
49 * - d_flags
50 * - d_name
51 * - d_lru
52 * - d_count
53 * - d_unhashed()
54 * - d_parent and d_subdirs
55 * - childrens' d_child and d_parent
56 * - d_u.d_alias, d_inode
57 *
58 * Ordering:
59 * dentry->d_inode->i_lock
60 * dentry->d_lock
61 * dentry->d_sb->s_dentry_lru_lock
62 * dcache_hash_bucket lock
63 * s_roots lock
64 *
65 * If there is an ancestor relationship:
66 * dentry->d_parent->...->d_parent->d_lock
67 * ...
68 * dentry->d_parent->d_lock
69 * dentry->d_lock
70 *
71 * If no ancestor relationship:
72 * arbitrary, since it's serialized on rename_lock
73 */
74 int sysctl_vfs_cache_pressure __read_mostly = 100;
75 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
76
77 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
78
79 EXPORT_SYMBOL(rename_lock);
80
81 static struct kmem_cache *dentry_cache __read_mostly;
82
83 const struct qstr empty_name = QSTR_INIT("", 0);
84 EXPORT_SYMBOL(empty_name);
85 const struct qstr slash_name = QSTR_INIT("/", 1);
86 EXPORT_SYMBOL(slash_name);
87 const struct qstr dotdot_name = QSTR_INIT("..", 2);
88 EXPORT_SYMBOL(dotdot_name);
89
90 /*
91 * This is the single most critical data structure when it comes
92 * to the dcache: the hashtable for lookups. Somebody should try
93 * to make this good - I've just made it work.
94 *
95 * This hash-function tries to avoid losing too many bits of hash
96 * information, yet avoid using a prime hash-size or similar.
97 */
98
99 static unsigned int d_hash_shift __read_mostly;
100
101 static struct hlist_bl_head *dentry_hashtable __read_mostly;
102
103 static inline struct hlist_bl_head *d_hash(unsigned int hash)
104 {
105 return dentry_hashtable + (hash >> d_hash_shift);
106 }
107
108 #define IN_LOOKUP_SHIFT 10
109 static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT];
110
111 static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent,
112 unsigned int hash)
113 {
114 hash += (unsigned long) parent / L1_CACHE_BYTES;
115 return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT);
116 }
117
118
119 /* Statistics gathering. */
120 struct dentry_stat_t dentry_stat = {
121 .age_limit = 45,
122 };
123
124 static DEFINE_PER_CPU(long, nr_dentry);
125 static DEFINE_PER_CPU(long, nr_dentry_unused);
126 static DEFINE_PER_CPU(long, nr_dentry_negative);
127
128 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
129
130 /*
131 * Here we resort to our own counters instead of using generic per-cpu counters
132 * for consistency with what the vfs inode code does. We are expected to harvest
133 * better code and performance by having our own specialized counters.
134 *
135 * Please note that the loop is done over all possible CPUs, not over all online
136 * CPUs. The reason for this is that we don't want to play games with CPUs going
137 * on and off. If one of them goes off, we will just keep their counters.
138 *
139 * glommer: See cffbc8a for details, and if you ever intend to change this,
140 * please update all vfs counters to match.
141 */
142 static long get_nr_dentry(void)
143 {
144 int i;
145 long sum = 0;
146 for_each_possible_cpu(i)
147 sum += per_cpu(nr_dentry, i);
148 return sum < 0 ? 0 : sum;
149 }
150
151 static long get_nr_dentry_unused(void)
152 {
153 int i;
154 long sum = 0;
155 for_each_possible_cpu(i)
156 sum += per_cpu(nr_dentry_unused, i);
157 return sum < 0 ? 0 : sum;
158 }
159
160 static long get_nr_dentry_negative(void)
161 {
162 int i;
163 long sum = 0;
164
165 for_each_possible_cpu(i)
166 sum += per_cpu(nr_dentry_negative, i);
167 return sum < 0 ? 0 : sum;
168 }
169
170 int proc_nr_dentry(struct ctl_table *table, int write, void *buffer,
171 size_t *lenp, loff_t *ppos)
172 {
173 dentry_stat.nr_dentry = get_nr_dentry();
174 dentry_stat.nr_unused = get_nr_dentry_unused();
175 dentry_stat.nr_negative = get_nr_dentry_negative();
176 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
177 }
178 #endif
179
180 /*
181 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
182 * The strings are both count bytes long, and count is non-zero.
183 */
184 #ifdef CONFIG_DCACHE_WORD_ACCESS
185
186 #include <asm/word-at-a-time.h>
187 /*
188 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
189 * aligned allocation for this particular component. We don't
190 * strictly need the load_unaligned_zeropad() safety, but it
191 * doesn't hurt either.
192 *
193 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
194 * need the careful unaligned handling.
195 */
196 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
197 {
198 unsigned long a,b,mask;
199
200 for (;;) {
201 a = read_word_at_a_time(cs);
202 b = load_unaligned_zeropad(ct);
203 if (tcount < sizeof(unsigned long))
204 break;
205 if (unlikely(a != b))
206 return 1;
207 cs += sizeof(unsigned long);
208 ct += sizeof(unsigned long);
209 tcount -= sizeof(unsigned long);
210 if (!tcount)
211 return 0;
212 }
213 mask = bytemask_from_count(tcount);
214 return unlikely(!!((a ^ b) & mask));
215 }
216
217 #else
218
219 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
220 {
221 do {
222 if (*cs != *ct)
223 return 1;
224 cs++;
225 ct++;
226 tcount--;
227 } while (tcount);
228 return 0;
229 }
230
231 #endif
232
233 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
234 {
235 /*
236 * Be careful about RCU walk racing with rename:
237 * use 'READ_ONCE' to fetch the name pointer.
238 *
239 * NOTE! Even if a rename will mean that the length
240 * was not loaded atomically, we don't care. The
241 * RCU walk will check the sequence count eventually,
242 * and catch it. And we won't overrun the buffer,
243 * because we're reading the name pointer atomically,
244 * and a dentry name is guaranteed to be properly
245 * terminated with a NUL byte.
246 *
247 * End result: even if 'len' is wrong, we'll exit
248 * early because the data cannot match (there can
249 * be no NUL in the ct/tcount data)
250 */
251 const unsigned char *cs = READ_ONCE(dentry->d_name.name);
252
253 return dentry_string_cmp(cs, ct, tcount);
254 }
255
256 struct external_name {
257 union {
258 atomic_t count;
259 struct rcu_head head;
260 } u;
261 unsigned char name[];
262 };
263
264 static inline struct external_name *external_name(struct dentry *dentry)
265 {
266 return container_of(dentry->d_name.name, struct external_name, name[0]);
267 }
268
269 static void __d_free(struct rcu_head *head)
270 {
271 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
272
273 kmem_cache_free(dentry_cache, dentry);
274 }
275
276 static void __d_free_external(struct rcu_head *head)
277 {
278 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
279 kfree(external_name(dentry));
280 kmem_cache_free(dentry_cache, dentry);
281 }
282
283 static inline int dname_external(const struct dentry *dentry)
284 {
285 return dentry->d_name.name != dentry->d_iname;
286 }
287
288 void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry)
289 {
290 spin_lock(&dentry->d_lock);
291 name->name = dentry->d_name;
292 if (unlikely(dname_external(dentry))) {
293 atomic_inc(&external_name(dentry)->u.count);
294 } else {
295 memcpy(name->inline_name, dentry->d_iname,
296 dentry->d_name.len + 1);
297 name->name.name = name->inline_name;
298 }
299 spin_unlock(&dentry->d_lock);
300 }
301 EXPORT_SYMBOL(take_dentry_name_snapshot);
302
303 void release_dentry_name_snapshot(struct name_snapshot *name)
304 {
305 if (unlikely(name->name.name != name->inline_name)) {
306 struct external_name *p;
307 p = container_of(name->name.name, struct external_name, name[0]);
308 if (unlikely(atomic_dec_and_test(&p->u.count)))
309 kfree_rcu(p, u.head);
310 }
311 }
312 EXPORT_SYMBOL(release_dentry_name_snapshot);
313
314 static inline void __d_set_inode_and_type(struct dentry *dentry,
315 struct inode *inode,
316 unsigned type_flags)
317 {
318 unsigned flags;
319
320 dentry->d_inode = inode;
321 flags = READ_ONCE(dentry->d_flags);
322 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
323 flags |= type_flags;
324 smp_store_release(&dentry->d_flags, flags);
325 }
326
327 static inline void __d_clear_type_and_inode(struct dentry *dentry)
328 {
329 unsigned flags = READ_ONCE(dentry->d_flags);
330
331 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
332 WRITE_ONCE(dentry->d_flags, flags);
333 dentry->d_inode = NULL;
334 if (dentry->d_flags & DCACHE_LRU_LIST)
335 this_cpu_inc(nr_dentry_negative);
336 }
337
338 static void dentry_free(struct dentry *dentry)
339 {
340 WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
341 if (unlikely(dname_external(dentry))) {
342 struct external_name *p = external_name(dentry);
343 if (likely(atomic_dec_and_test(&p->u.count))) {
344 call_rcu(&dentry->d_u.d_rcu, __d_free_external);
345 return;
346 }
347 }
348 /* if dentry was never visible to RCU, immediate free is OK */
349 if (dentry->d_flags & DCACHE_NORCU)
350 __d_free(&dentry->d_u.d_rcu);
351 else
352 call_rcu(&dentry->d_u.d_rcu, __d_free);
353 }
354
355 /*
356 * Release the dentry's inode, using the filesystem
357 * d_iput() operation if defined.
358 */
359 static void dentry_unlink_inode(struct dentry * dentry)
360 __releases(dentry->d_lock)
361 __releases(dentry->d_inode->i_lock)
362 {
363 struct inode *inode = dentry->d_inode;
364
365 raw_write_seqcount_begin(&dentry->d_seq);
366 __d_clear_type_and_inode(dentry);
367 hlist_del_init(&dentry->d_u.d_alias);
368 raw_write_seqcount_end(&dentry->d_seq);
369 spin_unlock(&dentry->d_lock);
370 spin_unlock(&inode->i_lock);
371 if (!inode->i_nlink)
372 fsnotify_inoderemove(inode);
373 if (dentry->d_op && dentry->d_op->d_iput)
374 dentry->d_op->d_iput(dentry, inode);
375 else
376 iput(inode);
377 }
378
379 /*
380 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
381 * is in use - which includes both the "real" per-superblock
382 * LRU list _and_ the DCACHE_SHRINK_LIST use.
383 *
384 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
385 * on the shrink list (ie not on the superblock LRU list).
386 *
387 * The per-cpu "nr_dentry_unused" counters are updated with
388 * the DCACHE_LRU_LIST bit.
389 *
390 * The per-cpu "nr_dentry_negative" counters are only updated
391 * when deleted from or added to the per-superblock LRU list, not
392 * from/to the shrink list. That is to avoid an unneeded dec/inc
393 * pair when moving from LRU to shrink list in select_collect().
394 *
395 * These helper functions make sure we always follow the
396 * rules. d_lock must be held by the caller.
397 */
398 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
399 static void d_lru_add(struct dentry *dentry)
400 {
401 D_FLAG_VERIFY(dentry, 0);
402 dentry->d_flags |= DCACHE_LRU_LIST;
403 this_cpu_inc(nr_dentry_unused);
404 if (d_is_negative(dentry))
405 this_cpu_inc(nr_dentry_negative);
406 WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
407 }
408
409 static void d_lru_del(struct dentry *dentry)
410 {
411 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
412 dentry->d_flags &= ~DCACHE_LRU_LIST;
413 this_cpu_dec(nr_dentry_unused);
414 if (d_is_negative(dentry))
415 this_cpu_dec(nr_dentry_negative);
416 WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
417 }
418
419 static void d_shrink_del(struct dentry *dentry)
420 {
421 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
422 list_del_init(&dentry->d_lru);
423 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
424 this_cpu_dec(nr_dentry_unused);
425 }
426
427 static void d_shrink_add(struct dentry *dentry, struct list_head *list)
428 {
429 D_FLAG_VERIFY(dentry, 0);
430 list_add(&dentry->d_lru, list);
431 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
432 this_cpu_inc(nr_dentry_unused);
433 }
434
435 /*
436 * These can only be called under the global LRU lock, ie during the
437 * callback for freeing the LRU list. "isolate" removes it from the
438 * LRU lists entirely, while shrink_move moves it to the indicated
439 * private list.
440 */
441 static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
442 {
443 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
444 dentry->d_flags &= ~DCACHE_LRU_LIST;
445 this_cpu_dec(nr_dentry_unused);
446 if (d_is_negative(dentry))
447 this_cpu_dec(nr_dentry_negative);
448 list_lru_isolate(lru, &dentry->d_lru);
449 }
450
451 static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
452 struct list_head *list)
453 {
454 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
455 dentry->d_flags |= DCACHE_SHRINK_LIST;
456 if (d_is_negative(dentry))
457 this_cpu_dec(nr_dentry_negative);
458 list_lru_isolate_move(lru, &dentry->d_lru, list);
459 }
460
461 static void ___d_drop(struct dentry *dentry)
462 {
463 struct hlist_bl_head *b;
464 /*
465 * Hashed dentries are normally on the dentry hashtable,
466 * with the exception of those newly allocated by
467 * d_obtain_root, which are always IS_ROOT:
468 */
469 if (unlikely(IS_ROOT(dentry)))
470 b = &dentry->d_sb->s_roots;
471 else
472 b = d_hash(dentry->d_name.hash);
473
474 hlist_bl_lock(b);
475 __hlist_bl_del(&dentry->d_hash);
476 hlist_bl_unlock(b);
477 }
478
479 void __d_drop(struct dentry *dentry)
480 {
481 if (!d_unhashed(dentry)) {
482 ___d_drop(dentry);
483 dentry->d_hash.pprev = NULL;
484 write_seqcount_invalidate(&dentry->d_seq);
485 }
486 }
487 EXPORT_SYMBOL(__d_drop);
488
489 /**
490 * d_drop - drop a dentry
491 * @dentry: dentry to drop
492 *
493 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
494 * be found through a VFS lookup any more. Note that this is different from
495 * deleting the dentry - d_delete will try to mark the dentry negative if
496 * possible, giving a successful _negative_ lookup, while d_drop will
497 * just make the cache lookup fail.
498 *
499 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
500 * reason (NFS timeouts or autofs deletes).
501 *
502 * __d_drop requires dentry->d_lock
503 *
504 * ___d_drop doesn't mark dentry as "unhashed"
505 * (dentry->d_hash.pprev will be LIST_POISON2, not NULL).
506 */
507 void d_drop(struct dentry *dentry)
508 {
509 spin_lock(&dentry->d_lock);
510 __d_drop(dentry);
511 spin_unlock(&dentry->d_lock);
512 }
513 EXPORT_SYMBOL(d_drop);
514
515 static inline void dentry_unlist(struct dentry *dentry, struct dentry *parent)
516 {
517 struct dentry *next;
518 /*
519 * Inform d_walk() and shrink_dentry_list() that we are no longer
520 * attached to the dentry tree
521 */
522 dentry->d_flags |= DCACHE_DENTRY_KILLED;
523 if (unlikely(list_empty(&dentry->d_child)))
524 return;
525 __list_del_entry(&dentry->d_child);
526 /*
527 * Cursors can move around the list of children. While we'd been
528 * a normal list member, it didn't matter - ->d_child.next would've
529 * been updated. However, from now on it won't be and for the
530 * things like d_walk() it might end up with a nasty surprise.
531 * Normally d_walk() doesn't care about cursors moving around -
532 * ->d_lock on parent prevents that and since a cursor has no children
533 * of its own, we get through it without ever unlocking the parent.
534 * There is one exception, though - if we ascend from a child that
535 * gets killed as soon as we unlock it, the next sibling is found
536 * using the value left in its ->d_child.next. And if _that_
537 * pointed to a cursor, and cursor got moved (e.g. by lseek())
538 * before d_walk() regains parent->d_lock, we'll end up skipping
539 * everything the cursor had been moved past.
540 *
541 * Solution: make sure that the pointer left behind in ->d_child.next
542 * points to something that won't be moving around. I.e. skip the
543 * cursors.
544 */
545 while (dentry->d_child.next != &parent->d_subdirs) {
546 next = list_entry(dentry->d_child.next, struct dentry, d_child);
547 if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR)))
548 break;
549 dentry->d_child.next = next->d_child.next;
550 }
551 }
552
553 static void __dentry_kill(struct dentry *dentry)
554 {
555 struct dentry *parent = NULL;
556 bool can_free = true;
557 if (!IS_ROOT(dentry))
558 parent = dentry->d_parent;
559
560 /*
561 * The dentry is now unrecoverably dead to the world.
562 */
563 lockref_mark_dead(&dentry->d_lockref);
564
565 /*
566 * inform the fs via d_prune that this dentry is about to be
567 * unhashed and destroyed.
568 */
569 if (dentry->d_flags & DCACHE_OP_PRUNE)
570 dentry->d_op->d_prune(dentry);
571
572 if (dentry->d_flags & DCACHE_LRU_LIST) {
573 if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
574 d_lru_del(dentry);
575 }
576 /* if it was on the hash then remove it */
577 __d_drop(dentry);
578 dentry_unlist(dentry, parent);
579 if (parent)
580 spin_unlock(&parent->d_lock);
581 if (dentry->d_inode)
582 dentry_unlink_inode(dentry);
583 else
584 spin_unlock(&dentry->d_lock);
585 this_cpu_dec(nr_dentry);
586 if (dentry->d_op && dentry->d_op->d_release)
587 dentry->d_op->d_release(dentry);
588
589 spin_lock(&dentry->d_lock);
590 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
591 dentry->d_flags |= DCACHE_MAY_FREE;
592 can_free = false;
593 }
594 spin_unlock(&dentry->d_lock);
595 if (likely(can_free))
596 dentry_free(dentry);
597 cond_resched();
598 }
599
600 static struct dentry *__lock_parent(struct dentry *dentry)
601 {
602 struct dentry *parent;
603 rcu_read_lock();
604 spin_unlock(&dentry->d_lock);
605 again:
606 parent = READ_ONCE(dentry->d_parent);
607 spin_lock(&parent->d_lock);
608 /*
609 * We can't blindly lock dentry until we are sure
610 * that we won't violate the locking order.
611 * Any changes of dentry->d_parent must have
612 * been done with parent->d_lock held, so
613 * spin_lock() above is enough of a barrier
614 * for checking if it's still our child.
615 */
616 if (unlikely(parent != dentry->d_parent)) {
617 spin_unlock(&parent->d_lock);
618 goto again;
619 }
620 rcu_read_unlock();
621 if (parent != dentry)
622 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
623 else
624 parent = NULL;
625 return parent;
626 }
627
628 static inline struct dentry *lock_parent(struct dentry *dentry)
629 {
630 struct dentry *parent = dentry->d_parent;
631 if (IS_ROOT(dentry))
632 return NULL;
633 if (likely(spin_trylock(&parent->d_lock)))
634 return parent;
635 return __lock_parent(dentry);
636 }
637
638 static inline bool retain_dentry(struct dentry *dentry)
639 {
640 WARN_ON(d_in_lookup(dentry));
641
642 /* Unreachable? Get rid of it */
643 if (unlikely(d_unhashed(dentry)))
644 return false;
645
646 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
647 return false;
648
649 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
650 if (dentry->d_op->d_delete(dentry))
651 return false;
652 }
653
654 if (unlikely(dentry->d_flags & DCACHE_DONTCACHE))
655 return false;
656
657 /* retain; LRU fodder */
658 dentry->d_lockref.count--;
659 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
660 d_lru_add(dentry);
661 else if (unlikely(!(dentry->d_flags & DCACHE_REFERENCED)))
662 dentry->d_flags |= DCACHE_REFERENCED;
663 return true;
664 }
665
666 void d_mark_dontcache(struct inode *inode)
667 {
668 struct dentry *de;
669
670 spin_lock(&inode->i_lock);
671 hlist_for_each_entry(de, &inode->i_dentry, d_u.d_alias) {
672 spin_lock(&de->d_lock);
673 de->d_flags |= DCACHE_DONTCACHE;
674 spin_unlock(&de->d_lock);
675 }
676 inode->i_state |= I_DONTCACHE;
677 spin_unlock(&inode->i_lock);
678 }
679 EXPORT_SYMBOL(d_mark_dontcache);
680
681 /*
682 * Finish off a dentry we've decided to kill.
683 * dentry->d_lock must be held, returns with it unlocked.
684 * Returns dentry requiring refcount drop, or NULL if we're done.
685 */
686 static struct dentry *dentry_kill(struct dentry *dentry)
687 __releases(dentry->d_lock)
688 {
689 struct inode *inode = dentry->d_inode;
690 struct dentry *parent = NULL;
691
692 if (inode && unlikely(!spin_trylock(&inode->i_lock)))
693 goto slow_positive;
694
695 if (!IS_ROOT(dentry)) {
696 parent = dentry->d_parent;
697 if (unlikely(!spin_trylock(&parent->d_lock))) {
698 parent = __lock_parent(dentry);
699 if (likely(inode || !dentry->d_inode))
700 goto got_locks;
701 /* negative that became positive */
702 if (parent)
703 spin_unlock(&parent->d_lock);
704 inode = dentry->d_inode;
705 goto slow_positive;
706 }
707 }
708 __dentry_kill(dentry);
709 return parent;
710
711 slow_positive:
712 spin_unlock(&dentry->d_lock);
713 spin_lock(&inode->i_lock);
714 spin_lock(&dentry->d_lock);
715 parent = lock_parent(dentry);
716 got_locks:
717 if (unlikely(dentry->d_lockref.count != 1)) {
718 dentry->d_lockref.count--;
719 } else if (likely(!retain_dentry(dentry))) {
720 __dentry_kill(dentry);
721 return parent;
722 }
723 /* we are keeping it, after all */
724 if (inode)
725 spin_unlock(&inode->i_lock);
726 if (parent)
727 spin_unlock(&parent->d_lock);
728 spin_unlock(&dentry->d_lock);
729 return NULL;
730 }
731
732 /*
733 * Try to do a lockless dput(), and return whether that was successful.
734 *
735 * If unsuccessful, we return false, having already taken the dentry lock.
736 *
737 * The caller needs to hold the RCU read lock, so that the dentry is
738 * guaranteed to stay around even if the refcount goes down to zero!
739 */
740 static inline bool fast_dput(struct dentry *dentry)
741 {
742 int ret;
743 unsigned int d_flags;
744
745 /*
746 * If we have a d_op->d_delete() operation, we sould not
747 * let the dentry count go to zero, so use "put_or_lock".
748 */
749 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE))
750 return lockref_put_or_lock(&dentry->d_lockref);
751
752 /*
753 * .. otherwise, we can try to just decrement the
754 * lockref optimistically.
755 */
756 ret = lockref_put_return(&dentry->d_lockref);
757
758 /*
759 * If the lockref_put_return() failed due to the lock being held
760 * by somebody else, the fast path has failed. We will need to
761 * get the lock, and then check the count again.
762 */
763 if (unlikely(ret < 0)) {
764 spin_lock(&dentry->d_lock);
765 if (dentry->d_lockref.count > 1) {
766 dentry->d_lockref.count--;
767 spin_unlock(&dentry->d_lock);
768 return true;
769 }
770 return false;
771 }
772
773 /*
774 * If we weren't the last ref, we're done.
775 */
776 if (ret)
777 return true;
778
779 /*
780 * Careful, careful. The reference count went down
781 * to zero, but we don't hold the dentry lock, so
782 * somebody else could get it again, and do another
783 * dput(), and we need to not race with that.
784 *
785 * However, there is a very special and common case
786 * where we don't care, because there is nothing to
787 * do: the dentry is still hashed, it does not have
788 * a 'delete' op, and it's referenced and already on
789 * the LRU list.
790 *
791 * NOTE! Since we aren't locked, these values are
792 * not "stable". However, it is sufficient that at
793 * some point after we dropped the reference the
794 * dentry was hashed and the flags had the proper
795 * value. Other dentry users may have re-gotten
796 * a reference to the dentry and change that, but
797 * our work is done - we can leave the dentry
798 * around with a zero refcount.
799 *
800 * Nevertheless, there are two cases that we should kill
801 * the dentry anyway.
802 * 1. free disconnected dentries as soon as their refcount
803 * reached zero.
804 * 2. free dentries if they should not be cached.
805 */
806 smp_rmb();
807 d_flags = READ_ONCE(dentry->d_flags);
808 d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST |
809 DCACHE_DISCONNECTED | DCACHE_DONTCACHE;
810
811 /* Nothing to do? Dropping the reference was all we needed? */
812 if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry))
813 return true;
814
815 /*
816 * Not the fast normal case? Get the lock. We've already decremented
817 * the refcount, but we'll need to re-check the situation after
818 * getting the lock.
819 */
820 spin_lock(&dentry->d_lock);
821
822 /*
823 * Did somebody else grab a reference to it in the meantime, and
824 * we're no longer the last user after all? Alternatively, somebody
825 * else could have killed it and marked it dead. Either way, we
826 * don't need to do anything else.
827 */
828 if (dentry->d_lockref.count) {
829 spin_unlock(&dentry->d_lock);
830 return true;
831 }
832
833 /*
834 * Re-get the reference we optimistically dropped. We hold the
835 * lock, and we just tested that it was zero, so we can just
836 * set it to 1.
837 */
838 dentry->d_lockref.count = 1;
839 return false;
840 }
841
842
843 /*
844 * This is dput
845 *
846 * This is complicated by the fact that we do not want to put
847 * dentries that are no longer on any hash chain on the unused
848 * list: we'd much rather just get rid of them immediately.
849 *
850 * However, that implies that we have to traverse the dentry
851 * tree upwards to the parents which might _also_ now be
852 * scheduled for deletion (it may have been only waiting for
853 * its last child to go away).
854 *
855 * This tail recursion is done by hand as we don't want to depend
856 * on the compiler to always get this right (gcc generally doesn't).
857 * Real recursion would eat up our stack space.
858 */
859
860 /*
861 * dput - release a dentry
862 * @dentry: dentry to release
863 *
864 * Release a dentry. This will drop the usage count and if appropriate
865 * call the dentry unlink method as well as removing it from the queues and
866 * releasing its resources. If the parent dentries were scheduled for release
867 * they too may now get deleted.
868 */
869 void dput(struct dentry *dentry)
870 {
871 while (dentry) {
872 might_sleep();
873
874 rcu_read_lock();
875 if (likely(fast_dput(dentry))) {
876 rcu_read_unlock();
877 return;
878 }
879
880 /* Slow case: now with the dentry lock held */
881 rcu_read_unlock();
882
883 if (likely(retain_dentry(dentry))) {
884 spin_unlock(&dentry->d_lock);
885 return;
886 }
887
888 dentry = dentry_kill(dentry);
889 }
890 }
891 EXPORT_SYMBOL(dput);
892
893 static void __dput_to_list(struct dentry *dentry, struct list_head *list)
894 __must_hold(&dentry->d_lock)
895 {
896 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
897 /* let the owner of the list it's on deal with it */
898 --dentry->d_lockref.count;
899 } else {
900 if (dentry->d_flags & DCACHE_LRU_LIST)
901 d_lru_del(dentry);
902 if (!--dentry->d_lockref.count)
903 d_shrink_add(dentry, list);
904 }
905 }
906
907 void dput_to_list(struct dentry *dentry, struct list_head *list)
908 {
909 rcu_read_lock();
910 if (likely(fast_dput(dentry))) {
911 rcu_read_unlock();
912 return;
913 }
914 rcu_read_unlock();
915 if (!retain_dentry(dentry))
916 __dput_to_list(dentry, list);
917 spin_unlock(&dentry->d_lock);
918 }
919
920 /* This must be called with d_lock held */
921 static inline void __dget_dlock(struct dentry *dentry)
922 {
923 dentry->d_lockref.count++;
924 }
925
926 static inline void __dget(struct dentry *dentry)
927 {
928 lockref_get(&dentry->d_lockref);
929 }
930
931 struct dentry *dget_parent(struct dentry *dentry)
932 {
933 int gotref;
934 struct dentry *ret;
935 unsigned seq;
936
937 /*
938 * Do optimistic parent lookup without any
939 * locking.
940 */
941 rcu_read_lock();
942 seq = raw_seqcount_begin(&dentry->d_seq);
943 ret = READ_ONCE(dentry->d_parent);
944 gotref = lockref_get_not_zero(&ret->d_lockref);
945 rcu_read_unlock();
946 if (likely(gotref)) {
947 if (!read_seqcount_retry(&dentry->d_seq, seq))
948 return ret;
949 dput(ret);
950 }
951
952 repeat:
953 /*
954 * Don't need rcu_dereference because we re-check it was correct under
955 * the lock.
956 */
957 rcu_read_lock();
958 ret = dentry->d_parent;
959 spin_lock(&ret->d_lock);
960 if (unlikely(ret != dentry->d_parent)) {
961 spin_unlock(&ret->d_lock);
962 rcu_read_unlock();
963 goto repeat;
964 }
965 rcu_read_unlock();
966 BUG_ON(!ret->d_lockref.count);
967 ret->d_lockref.count++;
968 spin_unlock(&ret->d_lock);
969 return ret;
970 }
971 EXPORT_SYMBOL(dget_parent);
972
973 static struct dentry * __d_find_any_alias(struct inode *inode)
974 {
975 struct dentry *alias;
976
977 if (hlist_empty(&inode->i_dentry))
978 return NULL;
979 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
980 __dget(alias);
981 return alias;
982 }
983
984 /**
985 * d_find_any_alias - find any alias for a given inode
986 * @inode: inode to find an alias for
987 *
988 * If any aliases exist for the given inode, take and return a
989 * reference for one of them. If no aliases exist, return %NULL.
990 */
991 struct dentry *d_find_any_alias(struct inode *inode)
992 {
993 struct dentry *de;
994
995 spin_lock(&inode->i_lock);
996 de = __d_find_any_alias(inode);
997 spin_unlock(&inode->i_lock);
998 return de;
999 }
1000 EXPORT_SYMBOL(d_find_any_alias);
1001
1002 static struct dentry *__d_find_alias(struct inode *inode)
1003 {
1004 struct dentry *alias;
1005
1006 if (S_ISDIR(inode->i_mode))
1007 return __d_find_any_alias(inode);
1008
1009 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
1010 spin_lock(&alias->d_lock);
1011 if (!d_unhashed(alias)) {
1012 __dget_dlock(alias);
1013 spin_unlock(&alias->d_lock);
1014 return alias;
1015 }
1016 spin_unlock(&alias->d_lock);
1017 }
1018 return NULL;
1019 }
1020
1021 /**
1022 * d_find_alias - grab a hashed alias of inode
1023 * @inode: inode in question
1024 *
1025 * If inode has a hashed alias, or is a directory and has any alias,
1026 * acquire the reference to alias and return it. Otherwise return NULL.
1027 * Notice that if inode is a directory there can be only one alias and
1028 * it can be unhashed only if it has no children, or if it is the root
1029 * of a filesystem, or if the directory was renamed and d_revalidate
1030 * was the first vfs operation to notice.
1031 *
1032 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
1033 * any other hashed alias over that one.
1034 */
1035 struct dentry *d_find_alias(struct inode *inode)
1036 {
1037 struct dentry *de = NULL;
1038
1039 if (!hlist_empty(&inode->i_dentry)) {
1040 spin_lock(&inode->i_lock);
1041 de = __d_find_alias(inode);
1042 spin_unlock(&inode->i_lock);
1043 }
1044 return de;
1045 }
1046 EXPORT_SYMBOL(d_find_alias);
1047
1048 /*
1049 * Caller MUST be holding rcu_read_lock() and be guaranteed
1050 * that inode won't get freed until rcu_read_unlock().
1051 */
1052 struct dentry *d_find_alias_rcu(struct inode *inode)
1053 {
1054 struct hlist_head *l = &inode->i_dentry;
1055 struct dentry *de = NULL;
1056
1057 spin_lock(&inode->i_lock);
1058 // ->i_dentry and ->i_rcu are colocated, but the latter won't be
1059 // used without having I_FREEING set, which means no aliases left
1060 if (likely(!(inode->i_state & I_FREEING) && !hlist_empty(l))) {
1061 if (S_ISDIR(inode->i_mode)) {
1062 de = hlist_entry(l->first, struct dentry, d_u.d_alias);
1063 } else {
1064 hlist_for_each_entry(de, l, d_u.d_alias)
1065 if (!d_unhashed(de))
1066 break;
1067 }
1068 }
1069 spin_unlock(&inode->i_lock);
1070 return de;
1071 }
1072
1073 /*
1074 * Try to kill dentries associated with this inode.
1075 * WARNING: you must own a reference to inode.
1076 */
1077 void d_prune_aliases(struct inode *inode)
1078 {
1079 struct dentry *dentry;
1080 restart:
1081 spin_lock(&inode->i_lock);
1082 hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
1083 spin_lock(&dentry->d_lock);
1084 if (!dentry->d_lockref.count) {
1085 struct dentry *parent = lock_parent(dentry);
1086 if (likely(!dentry->d_lockref.count)) {
1087 __dentry_kill(dentry);
1088 dput(parent);
1089 goto restart;
1090 }
1091 if (parent)
1092 spin_unlock(&parent->d_lock);
1093 }
1094 spin_unlock(&dentry->d_lock);
1095 }
1096 spin_unlock(&inode->i_lock);
1097 }
1098 EXPORT_SYMBOL(d_prune_aliases);
1099
1100 /*
1101 * Lock a dentry from shrink list.
1102 * Called under rcu_read_lock() and dentry->d_lock; the former
1103 * guarantees that nothing we access will be freed under us.
1104 * Note that dentry is *not* protected from concurrent dentry_kill(),
1105 * d_delete(), etc.
1106 *
1107 * Return false if dentry has been disrupted or grabbed, leaving
1108 * the caller to kick it off-list. Otherwise, return true and have
1109 * that dentry's inode and parent both locked.
1110 */
1111 static bool shrink_lock_dentry(struct dentry *dentry)
1112 {
1113 struct inode *inode;
1114 struct dentry *parent;
1115
1116 if (dentry->d_lockref.count)
1117 return false;
1118
1119 inode = dentry->d_inode;
1120 if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
1121 spin_unlock(&dentry->d_lock);
1122 spin_lock(&inode->i_lock);
1123 spin_lock(&dentry->d_lock);
1124 if (unlikely(dentry->d_lockref.count))
1125 goto out;
1126 /* changed inode means that somebody had grabbed it */
1127 if (unlikely(inode != dentry->d_inode))
1128 goto out;
1129 }
1130
1131 parent = dentry->d_parent;
1132 if (IS_ROOT(dentry) || likely(spin_trylock(&parent->d_lock)))
1133 return true;
1134
1135 spin_unlock(&dentry->d_lock);
1136 spin_lock(&parent->d_lock);
1137 if (unlikely(parent != dentry->d_parent)) {
1138 spin_unlock(&parent->d_lock);
1139 spin_lock(&dentry->d_lock);
1140 goto out;
1141 }
1142 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1143 if (likely(!dentry->d_lockref.count))
1144 return true;
1145 spin_unlock(&parent->d_lock);
1146 out:
1147 if (inode)
1148 spin_unlock(&inode->i_lock);
1149 return false;
1150 }
1151
1152 void shrink_dentry_list(struct list_head *list)
1153 {
1154 while (!list_empty(list)) {
1155 struct dentry *dentry, *parent;
1156
1157 dentry = list_entry(list->prev, struct dentry, d_lru);
1158 spin_lock(&dentry->d_lock);
1159 rcu_read_lock();
1160 if (!shrink_lock_dentry(dentry)) {
1161 bool can_free = false;
1162 rcu_read_unlock();
1163 d_shrink_del(dentry);
1164 if (dentry->d_lockref.count < 0)
1165 can_free = dentry->d_flags & DCACHE_MAY_FREE;
1166 spin_unlock(&dentry->d_lock);
1167 if (can_free)
1168 dentry_free(dentry);
1169 continue;
1170 }
1171 rcu_read_unlock();
1172 d_shrink_del(dentry);
1173 parent = dentry->d_parent;
1174 if (parent != dentry)
1175 __dput_to_list(parent, list);
1176 __dentry_kill(dentry);
1177 }
1178 }
1179
1180 static enum lru_status dentry_lru_isolate(struct list_head *item,
1181 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1182 {
1183 struct list_head *freeable = arg;
1184 struct dentry *dentry = container_of(item, struct dentry, d_lru);
1185
1186
1187 /*
1188 * we are inverting the lru lock/dentry->d_lock here,
1189 * so use a trylock. If we fail to get the lock, just skip
1190 * it
1191 */
1192 if (!spin_trylock(&dentry->d_lock))
1193 return LRU_SKIP;
1194
1195 /*
1196 * Referenced dentries are still in use. If they have active
1197 * counts, just remove them from the LRU. Otherwise give them
1198 * another pass through the LRU.
1199 */
1200 if (dentry->d_lockref.count) {
1201 d_lru_isolate(lru, dentry);
1202 spin_unlock(&dentry->d_lock);
1203 return LRU_REMOVED;
1204 }
1205
1206 if (dentry->d_flags & DCACHE_REFERENCED) {
1207 dentry->d_flags &= ~DCACHE_REFERENCED;
1208 spin_unlock(&dentry->d_lock);
1209
1210 /*
1211 * The list move itself will be made by the common LRU code. At
1212 * this point, we've dropped the dentry->d_lock but keep the
1213 * lru lock. This is safe to do, since every list movement is
1214 * protected by the lru lock even if both locks are held.
1215 *
1216 * This is guaranteed by the fact that all LRU management
1217 * functions are intermediated by the LRU API calls like
1218 * list_lru_add and list_lru_del. List movement in this file
1219 * only ever occur through this functions or through callbacks
1220 * like this one, that are called from the LRU API.
1221 *
1222 * The only exceptions to this are functions like
1223 * shrink_dentry_list, and code that first checks for the
1224 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be
1225 * operating only with stack provided lists after they are
1226 * properly isolated from the main list. It is thus, always a
1227 * local access.
1228 */
1229 return LRU_ROTATE;
1230 }
1231
1232 d_lru_shrink_move(lru, dentry, freeable);
1233 spin_unlock(&dentry->d_lock);
1234
1235 return LRU_REMOVED;
1236 }
1237
1238 /**
1239 * prune_dcache_sb - shrink the dcache
1240 * @sb: superblock
1241 * @sc: shrink control, passed to list_lru_shrink_walk()
1242 *
1243 * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1244 * is done when we need more memory and called from the superblock shrinker
1245 * function.
1246 *
1247 * This function may fail to free any resources if all the dentries are in
1248 * use.
1249 */
1250 long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
1251 {
1252 LIST_HEAD(dispose);
1253 long freed;
1254
1255 freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1256 dentry_lru_isolate, &dispose);
1257 shrink_dentry_list(&dispose);
1258 return freed;
1259 }
1260
1261 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
1262 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1263 {
1264 struct list_head *freeable = arg;
1265 struct dentry *dentry = container_of(item, struct dentry, d_lru);
1266
1267 /*
1268 * we are inverting the lru lock/dentry->d_lock here,
1269 * so use a trylock. If we fail to get the lock, just skip
1270 * it
1271 */
1272 if (!spin_trylock(&dentry->d_lock))
1273 return LRU_SKIP;
1274
1275 d_lru_shrink_move(lru, dentry, freeable);
1276 spin_unlock(&dentry->d_lock);
1277
1278 return LRU_REMOVED;
1279 }
1280
1281
1282 /**
1283 * shrink_dcache_sb - shrink dcache for a superblock
1284 * @sb: superblock
1285 *
1286 * Shrink the dcache for the specified super block. This is used to free
1287 * the dcache before unmounting a file system.
1288 */
1289 void shrink_dcache_sb(struct super_block *sb)
1290 {
1291 do {
1292 LIST_HEAD(dispose);
1293
1294 list_lru_walk(&sb->s_dentry_lru,
1295 dentry_lru_isolate_shrink, &dispose, 1024);
1296 shrink_dentry_list(&dispose);
1297 } while (list_lru_count(&sb->s_dentry_lru) > 0);
1298 }
1299 EXPORT_SYMBOL(shrink_dcache_sb);
1300
1301 /**
1302 * enum d_walk_ret - action to talke during tree walk
1303 * @D_WALK_CONTINUE: contrinue walk
1304 * @D_WALK_QUIT: quit walk
1305 * @D_WALK_NORETRY: quit when retry is needed
1306 * @D_WALK_SKIP: skip this dentry and its children
1307 */
1308 enum d_walk_ret {
1309 D_WALK_CONTINUE,
1310 D_WALK_QUIT,
1311 D_WALK_NORETRY,
1312 D_WALK_SKIP,
1313 };
1314
1315 /**
1316 * d_walk - walk the dentry tree
1317 * @parent: start of walk
1318 * @data: data passed to @enter() and @finish()
1319 * @enter: callback when first entering the dentry
1320 *
1321 * The @enter() callbacks are called with d_lock held.
1322 */
1323 void d_walk(struct dentry *parent, void *data,
1324 enum d_walk_ret (*enter)(void *, struct dentry *))
1325 {
1326 struct dentry *this_parent;
1327 struct list_head *next;
1328 unsigned seq = 0;
1329 enum d_walk_ret ret;
1330 bool retry = true;
1331
1332 again:
1333 read_seqbegin_or_lock(&rename_lock, &seq);
1334 this_parent = parent;
1335 spin_lock(&this_parent->d_lock);
1336
1337 ret = enter(data, this_parent);
1338 switch (ret) {
1339 case D_WALK_CONTINUE:
1340 break;
1341 case D_WALK_QUIT:
1342 case D_WALK_SKIP:
1343 goto out_unlock;
1344 case D_WALK_NORETRY:
1345 retry = false;
1346 break;
1347 }
1348 repeat:
1349 next = this_parent->d_subdirs.next;
1350 resume:
1351 while (next != &this_parent->d_subdirs) {
1352 struct list_head *tmp = next;
1353 struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1354 next = tmp->next;
1355
1356 if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR))
1357 continue;
1358
1359 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1360
1361 ret = enter(data, dentry);
1362 switch (ret) {
1363 case D_WALK_CONTINUE:
1364 break;
1365 case D_WALK_QUIT:
1366 spin_unlock(&dentry->d_lock);
1367 goto out_unlock;
1368 case D_WALK_NORETRY:
1369 retry = false;
1370 break;
1371 case D_WALK_SKIP:
1372 spin_unlock(&dentry->d_lock);
1373 continue;
1374 }
1375
1376 if (!list_empty(&dentry->d_subdirs)) {
1377 spin_unlock(&this_parent->d_lock);
1378 spin_release(&dentry->d_lock.dep_map, _RET_IP_);
1379 this_parent = dentry;
1380 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1381 goto repeat;
1382 }
1383 spin_unlock(&dentry->d_lock);
1384 }
1385 /*
1386 * All done at this level ... ascend and resume the search.
1387 */
1388 rcu_read_lock();
1389 ascend:
1390 if (this_parent != parent) {
1391 struct dentry *child = this_parent;
1392 this_parent = child->d_parent;
1393
1394 spin_unlock(&child->d_lock);
1395 spin_lock(&this_parent->d_lock);
1396
1397 /* might go back up the wrong parent if we have had a rename. */
1398 if (need_seqretry(&rename_lock, seq))
1399 goto rename_retry;
1400 /* go into the first sibling still alive */
1401 do {
1402 next = child->d_child.next;
1403 if (next == &this_parent->d_subdirs)
1404 goto ascend;
1405 child = list_entry(next, struct dentry, d_child);
1406 } while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED));
1407 rcu_read_unlock();
1408 goto resume;
1409 }
1410 if (need_seqretry(&rename_lock, seq))
1411 goto rename_retry;
1412 rcu_read_unlock();
1413
1414 out_unlock:
1415 spin_unlock(&this_parent->d_lock);
1416 done_seqretry(&rename_lock, seq);
1417 return;
1418
1419 rename_retry:
1420 spin_unlock(&this_parent->d_lock);
1421 rcu_read_unlock();
1422 BUG_ON(seq & 1);
1423 if (!retry)
1424 return;
1425 seq = 1;
1426 goto again;
1427 }
1428 EXPORT_SYMBOL_GPL(d_walk);
1429
1430 struct check_mount {
1431 struct vfsmount *mnt;
1432 unsigned int mounted;
1433 };
1434
1435 static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry)
1436 {
1437 struct check_mount *info = data;
1438 struct path path = { .mnt = info->mnt, .dentry = dentry };
1439
1440 if (likely(!d_mountpoint(dentry)))
1441 return D_WALK_CONTINUE;
1442 if (__path_is_mountpoint(&path)) {
1443 info->mounted = 1;
1444 return D_WALK_QUIT;
1445 }
1446 return D_WALK_CONTINUE;
1447 }
1448
1449 /**
1450 * path_has_submounts - check for mounts over a dentry in the
1451 * current namespace.
1452 * @parent: path to check.
1453 *
1454 * Return true if the parent or its subdirectories contain
1455 * a mount point in the current namespace.
1456 */
1457 int path_has_submounts(const struct path *parent)
1458 {
1459 struct check_mount data = { .mnt = parent->mnt, .mounted = 0 };
1460
1461 read_seqlock_excl(&mount_lock);
1462 d_walk(parent->dentry, &data, path_check_mount);
1463 read_sequnlock_excl(&mount_lock);
1464
1465 return data.mounted;
1466 }
1467 EXPORT_SYMBOL(path_has_submounts);
1468
1469 /*
1470 * Called by mount code to set a mountpoint and check if the mountpoint is
1471 * reachable (e.g. NFS can unhash a directory dentry and then the complete
1472 * subtree can become unreachable).
1473 *
1474 * Only one of d_invalidate() and d_set_mounted() must succeed. For
1475 * this reason take rename_lock and d_lock on dentry and ancestors.
1476 */
1477 int d_set_mounted(struct dentry *dentry)
1478 {
1479 struct dentry *p;
1480 int ret = -ENOENT;
1481 write_seqlock(&rename_lock);
1482 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1483 /* Need exclusion wrt. d_invalidate() */
1484 spin_lock(&p->d_lock);
1485 if (unlikely(d_unhashed(p))) {
1486 spin_unlock(&p->d_lock);
1487 goto out;
1488 }
1489 spin_unlock(&p->d_lock);
1490 }
1491 spin_lock(&dentry->d_lock);
1492 if (!d_unlinked(dentry)) {
1493 ret = -EBUSY;
1494 if (!d_mountpoint(dentry)) {
1495 dentry->d_flags |= DCACHE_MOUNTED;
1496 ret = 0;
1497 }
1498 }
1499 spin_unlock(&dentry->d_lock);
1500 out:
1501 write_sequnlock(&rename_lock);
1502 return ret;
1503 }
1504
1505 /*
1506 * Search the dentry child list of the specified parent,
1507 * and move any unused dentries to the end of the unused
1508 * list for prune_dcache(). We descend to the next level
1509 * whenever the d_subdirs list is non-empty and continue
1510 * searching.
1511 *
1512 * It returns zero iff there are no unused children,
1513 * otherwise it returns the number of children moved to
1514 * the end of the unused list. This may not be the total
1515 * number of unused children, because select_parent can
1516 * drop the lock and return early due to latency
1517 * constraints.
1518 */
1519
1520 struct select_data {
1521 struct dentry *start;
1522 union {
1523 long found;
1524 struct dentry *victim;
1525 };
1526 struct list_head dispose;
1527 };
1528
1529 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1530 {
1531 struct select_data *data = _data;
1532 enum d_walk_ret ret = D_WALK_CONTINUE;
1533
1534 if (data->start == dentry)
1535 goto out;
1536
1537 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1538 data->found++;
1539 } else {
1540 if (dentry->d_flags & DCACHE_LRU_LIST)
1541 d_lru_del(dentry);
1542 if (!dentry->d_lockref.count) {
1543 d_shrink_add(dentry, &data->dispose);
1544 data->found++;
1545 }
1546 }
1547 /*
1548 * We can return to the caller if we have found some (this
1549 * ensures forward progress). We'll be coming back to find
1550 * the rest.
1551 */
1552 if (!list_empty(&data->dispose))
1553 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1554 out:
1555 return ret;
1556 }
1557
1558 static enum d_walk_ret select_collect2(void *_data, struct dentry *dentry)
1559 {
1560 struct select_data *data = _data;
1561 enum d_walk_ret ret = D_WALK_CONTINUE;
1562
1563 if (data->start == dentry)
1564 goto out;
1565
1566 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1567 if (!dentry->d_lockref.count) {
1568 rcu_read_lock();
1569 data->victim = dentry;
1570 return D_WALK_QUIT;
1571 }
1572 } else {
1573 if (dentry->d_flags & DCACHE_LRU_LIST)
1574 d_lru_del(dentry);
1575 if (!dentry->d_lockref.count)
1576 d_shrink_add(dentry, &data->dispose);
1577 }
1578 /*
1579 * We can return to the caller if we have found some (this
1580 * ensures forward progress). We'll be coming back to find
1581 * the rest.
1582 */
1583 if (!list_empty(&data->dispose))
1584 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1585 out:
1586 return ret;
1587 }
1588
1589 /**
1590 * shrink_dcache_parent - prune dcache
1591 * @parent: parent of entries to prune
1592 *
1593 * Prune the dcache to remove unused children of the parent dentry.
1594 */
1595 void shrink_dcache_parent(struct dentry *parent)
1596 {
1597 for (;;) {
1598 struct select_data data = {.start = parent};
1599
1600 INIT_LIST_HEAD(&data.dispose);
1601 d_walk(parent, &data, select_collect);
1602
1603 if (!list_empty(&data.dispose)) {
1604 shrink_dentry_list(&data.dispose);
1605 continue;
1606 }
1607
1608 cond_resched();
1609 if (!data.found)
1610 break;
1611 data.victim = NULL;
1612 d_walk(parent, &data, select_collect2);
1613 if (data.victim) {
1614 struct dentry *parent;
1615 spin_lock(&data.victim->d_lock);
1616 if (!shrink_lock_dentry(data.victim)) {
1617 spin_unlock(&data.victim->d_lock);
1618 rcu_read_unlock();
1619 } else {
1620 rcu_read_unlock();
1621 parent = data.victim->d_parent;
1622 if (parent != data.victim)
1623 __dput_to_list(parent, &data.dispose);
1624 __dentry_kill(data.victim);
1625 }
1626 }
1627 if (!list_empty(&data.dispose))
1628 shrink_dentry_list(&data.dispose);
1629 }
1630 }
1631 EXPORT_SYMBOL(shrink_dcache_parent);
1632
1633 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
1634 {
1635 /* it has busy descendents; complain about those instead */
1636 if (!list_empty(&dentry->d_subdirs))
1637 return D_WALK_CONTINUE;
1638
1639 /* root with refcount 1 is fine */
1640 if (dentry == _data && dentry->d_lockref.count == 1)
1641 return D_WALK_CONTINUE;
1642
1643 printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1644 " still in use (%d) [unmount of %s %s]\n",
1645 dentry,
1646 dentry->d_inode ?
1647 dentry->d_inode->i_ino : 0UL,
1648 dentry,
1649 dentry->d_lockref.count,
1650 dentry->d_sb->s_type->name,
1651 dentry->d_sb->s_id);
1652 WARN_ON(1);
1653 return D_WALK_CONTINUE;
1654 }
1655
1656 static void do_one_tree(struct dentry *dentry)
1657 {
1658 shrink_dcache_parent(dentry);
1659 d_walk(dentry, dentry, umount_check);
1660 d_drop(dentry);
1661 dput(dentry);
1662 }
1663
1664 /*
1665 * destroy the dentries attached to a superblock on unmounting
1666 */
1667 void shrink_dcache_for_umount(struct super_block *sb)
1668 {
1669 struct dentry *dentry;
1670
1671 WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
1672
1673 dentry = sb->s_root;
1674 sb->s_root = NULL;
1675 do_one_tree(dentry);
1676
1677 while (!hlist_bl_empty(&sb->s_roots)) {
1678 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_roots), struct dentry, d_hash));
1679 do_one_tree(dentry);
1680 }
1681 }
1682
1683 static enum d_walk_ret find_submount(void *_data, struct dentry *dentry)
1684 {
1685 struct dentry **victim = _data;
1686 if (d_mountpoint(dentry)) {
1687 __dget_dlock(dentry);
1688 *victim = dentry;
1689 return D_WALK_QUIT;
1690 }
1691 return D_WALK_CONTINUE;
1692 }
1693
1694 /**
1695 * d_invalidate - detach submounts, prune dcache, and drop
1696 * @dentry: dentry to invalidate (aka detach, prune and drop)
1697 */
1698 void d_invalidate(struct dentry *dentry)
1699 {
1700 bool had_submounts = false;
1701 spin_lock(&dentry->d_lock);
1702 if (d_unhashed(dentry)) {
1703 spin_unlock(&dentry->d_lock);
1704 return;
1705 }
1706 __d_drop(dentry);
1707 spin_unlock(&dentry->d_lock);
1708
1709 /* Negative dentries can be dropped without further checks */
1710 if (!dentry->d_inode)
1711 return;
1712
1713 shrink_dcache_parent(dentry);
1714 for (;;) {
1715 struct dentry *victim = NULL;
1716 d_walk(dentry, &victim, find_submount);
1717 if (!victim) {
1718 if (had_submounts)
1719 shrink_dcache_parent(dentry);
1720 return;
1721 }
1722 had_submounts = true;
1723 detach_mounts(victim);
1724 dput(victim);
1725 }
1726 }
1727 EXPORT_SYMBOL(d_invalidate);
1728
1729 /**
1730 * __d_alloc - allocate a dcache entry
1731 * @sb: filesystem it will belong to
1732 * @name: qstr of the name
1733 *
1734 * Allocates a dentry. It returns %NULL if there is insufficient memory
1735 * available. On a success the dentry is returned. The name passed in is
1736 * copied and the copy passed in may be reused after this call.
1737 */
1738
1739 static struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1740 {
1741 struct dentry *dentry;
1742 char *dname;
1743 int err;
1744
1745 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1746 if (!dentry)
1747 return NULL;
1748
1749 /*
1750 * We guarantee that the inline name is always NUL-terminated.
1751 * This way the memcpy() done by the name switching in rename
1752 * will still always have a NUL at the end, even if we might
1753 * be overwriting an internal NUL character
1754 */
1755 dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1756 if (unlikely(!name)) {
1757 name = &slash_name;
1758 dname = dentry->d_iname;
1759 } else if (name->len > DNAME_INLINE_LEN-1) {
1760 size_t size = offsetof(struct external_name, name[1]);
1761 struct external_name *p = kmalloc(size + name->len,
1762 GFP_KERNEL_ACCOUNT |
1763 __GFP_RECLAIMABLE);
1764 if (!p) {
1765 kmem_cache_free(dentry_cache, dentry);
1766 return NULL;
1767 }
1768 atomic_set(&p->u.count, 1);
1769 dname = p->name;
1770 } else {
1771 dname = dentry->d_iname;
1772 }
1773
1774 dentry->d_name.len = name->len;
1775 dentry->d_name.hash = name->hash;
1776 memcpy(dname, name->name, name->len);
1777 dname[name->len] = 0;
1778
1779 /* Make sure we always see the terminating NUL character */
1780 smp_store_release(&dentry->d_name.name, dname); /* ^^^ */
1781
1782 dentry->d_lockref.count = 1;
1783 dentry->d_flags = 0;
1784 spin_lock_init(&dentry->d_lock);
1785 seqcount_spinlock_init(&dentry->d_seq, &dentry->d_lock);
1786 dentry->d_inode = NULL;
1787 dentry->d_parent = dentry;
1788 dentry->d_sb = sb;
1789 dentry->d_op = NULL;
1790 dentry->d_fsdata = NULL;
1791 INIT_HLIST_BL_NODE(&dentry->d_hash);
1792 INIT_LIST_HEAD(&dentry->d_lru);
1793 INIT_LIST_HEAD(&dentry->d_subdirs);
1794 INIT_HLIST_NODE(&dentry->d_u.d_alias);
1795 INIT_LIST_HEAD(&dentry->d_child);
1796 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1797
1798 if (dentry->d_op && dentry->d_op->d_init) {
1799 err = dentry->d_op->d_init(dentry);
1800 if (err) {
1801 if (dname_external(dentry))
1802 kfree(external_name(dentry));
1803 kmem_cache_free(dentry_cache, dentry);
1804 return NULL;
1805 }
1806 }
1807
1808 this_cpu_inc(nr_dentry);
1809
1810 return dentry;
1811 }
1812
1813 /**
1814 * d_alloc - allocate a dcache entry
1815 * @parent: parent of entry to allocate
1816 * @name: qstr of the name
1817 *
1818 * Allocates a dentry. It returns %NULL if there is insufficient memory
1819 * available. On a success the dentry is returned. The name passed in is
1820 * copied and the copy passed in may be reused after this call.
1821 */
1822 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1823 {
1824 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1825 if (!dentry)
1826 return NULL;
1827 spin_lock(&parent->d_lock);
1828 /*
1829 * don't need child lock because it is not subject
1830 * to concurrency here
1831 */
1832 __dget_dlock(parent);
1833 dentry->d_parent = parent;
1834 list_add(&dentry->d_child, &parent->d_subdirs);
1835 spin_unlock(&parent->d_lock);
1836
1837 return dentry;
1838 }
1839 EXPORT_SYMBOL(d_alloc);
1840
1841 struct dentry *d_alloc_anon(struct super_block *sb)
1842 {
1843 return __d_alloc(sb, NULL);
1844 }
1845 EXPORT_SYMBOL(d_alloc_anon);
1846
1847 struct dentry *d_alloc_cursor(struct dentry * parent)
1848 {
1849 struct dentry *dentry = d_alloc_anon(parent->d_sb);
1850 if (dentry) {
1851 dentry->d_flags |= DCACHE_DENTRY_CURSOR;
1852 dentry->d_parent = dget(parent);
1853 }
1854 return dentry;
1855 }
1856
1857 /**
1858 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1859 * @sb: the superblock
1860 * @name: qstr of the name
1861 *
1862 * For a filesystem that just pins its dentries in memory and never
1863 * performs lookups at all, return an unhashed IS_ROOT dentry.
1864 * This is used for pipes, sockets et.al. - the stuff that should
1865 * never be anyone's children or parents. Unlike all other
1866 * dentries, these will not have RCU delay between dropping the
1867 * last reference and freeing them.
1868 *
1869 * The only user is alloc_file_pseudo() and that's what should
1870 * be considered a public interface. Don't use directly.
1871 */
1872 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1873 {
1874 struct dentry *dentry = __d_alloc(sb, name);
1875 if (likely(dentry))
1876 dentry->d_flags |= DCACHE_NORCU;
1877 return dentry;
1878 }
1879
1880 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1881 {
1882 struct qstr q;
1883
1884 q.name = name;
1885 q.hash_len = hashlen_string(parent, name);
1886 return d_alloc(parent, &q);
1887 }
1888 EXPORT_SYMBOL(d_alloc_name);
1889
1890 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1891 {
1892 WARN_ON_ONCE(dentry->d_op);
1893 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
1894 DCACHE_OP_COMPARE |
1895 DCACHE_OP_REVALIDATE |
1896 DCACHE_OP_WEAK_REVALIDATE |
1897 DCACHE_OP_DELETE |
1898 DCACHE_OP_REAL));
1899 dentry->d_op = op;
1900 if (!op)
1901 return;
1902 if (op->d_hash)
1903 dentry->d_flags |= DCACHE_OP_HASH;
1904 if (op->d_compare)
1905 dentry->d_flags |= DCACHE_OP_COMPARE;
1906 if (op->d_revalidate)
1907 dentry->d_flags |= DCACHE_OP_REVALIDATE;
1908 if (op->d_weak_revalidate)
1909 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1910 if (op->d_delete)
1911 dentry->d_flags |= DCACHE_OP_DELETE;
1912 if (op->d_prune)
1913 dentry->d_flags |= DCACHE_OP_PRUNE;
1914 if (op->d_real)
1915 dentry->d_flags |= DCACHE_OP_REAL;
1916
1917 }
1918 EXPORT_SYMBOL(d_set_d_op);
1919
1920
1921 /*
1922 * d_set_fallthru - Mark a dentry as falling through to a lower layer
1923 * @dentry - The dentry to mark
1924 *
1925 * Mark a dentry as falling through to the lower layer (as set with
1926 * d_pin_lower()). This flag may be recorded on the medium.
1927 */
1928 void d_set_fallthru(struct dentry *dentry)
1929 {
1930 spin_lock(&dentry->d_lock);
1931 dentry->d_flags |= DCACHE_FALLTHRU;
1932 spin_unlock(&dentry->d_lock);
1933 }
1934 EXPORT_SYMBOL(d_set_fallthru);
1935
1936 static unsigned d_flags_for_inode(struct inode *inode)
1937 {
1938 unsigned add_flags = DCACHE_REGULAR_TYPE;
1939
1940 if (!inode)
1941 return DCACHE_MISS_TYPE;
1942
1943 if (S_ISDIR(inode->i_mode)) {
1944 add_flags = DCACHE_DIRECTORY_TYPE;
1945 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1946 if (unlikely(!inode->i_op->lookup))
1947 add_flags = DCACHE_AUTODIR_TYPE;
1948 else
1949 inode->i_opflags |= IOP_LOOKUP;
1950 }
1951 goto type_determined;
1952 }
1953
1954 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1955 if (unlikely(inode->i_op->get_link)) {
1956 add_flags = DCACHE_SYMLINK_TYPE;
1957 goto type_determined;
1958 }
1959 inode->i_opflags |= IOP_NOFOLLOW;
1960 }
1961
1962 if (unlikely(!S_ISREG(inode->i_mode)))
1963 add_flags = DCACHE_SPECIAL_TYPE;
1964
1965 type_determined:
1966 if (unlikely(IS_AUTOMOUNT(inode)))
1967 add_flags |= DCACHE_NEED_AUTOMOUNT;
1968 return add_flags;
1969 }
1970
1971 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1972 {
1973 unsigned add_flags = d_flags_for_inode(inode);
1974 WARN_ON(d_in_lookup(dentry));
1975
1976 spin_lock(&dentry->d_lock);
1977 /*
1978 * Decrement negative dentry count if it was in the LRU list.
1979 */
1980 if (dentry->d_flags & DCACHE_LRU_LIST)
1981 this_cpu_dec(nr_dentry_negative);
1982 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
1983 raw_write_seqcount_begin(&dentry->d_seq);
1984 __d_set_inode_and_type(dentry, inode, add_flags);
1985 raw_write_seqcount_end(&dentry->d_seq);
1986 fsnotify_update_flags(dentry);
1987 spin_unlock(&dentry->d_lock);
1988 }
1989
1990 /**
1991 * d_instantiate - fill in inode information for a dentry
1992 * @entry: dentry to complete
1993 * @inode: inode to attach to this dentry
1994 *
1995 * Fill in inode information in the entry.
1996 *
1997 * This turns negative dentries into productive full members
1998 * of society.
1999 *
2000 * NOTE! This assumes that the inode count has been incremented
2001 * (or otherwise set) by the caller to indicate that it is now
2002 * in use by the dcache.
2003 */
2004
2005 void d_instantiate(struct dentry *entry, struct inode * inode)
2006 {
2007 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
2008 if (inode) {
2009 security_d_instantiate(entry, inode);
2010 spin_lock(&inode->i_lock);
2011 __d_instantiate(entry, inode);
2012 spin_unlock(&inode->i_lock);
2013 }
2014 }
2015 EXPORT_SYMBOL(d_instantiate);
2016
2017 /*
2018 * This should be equivalent to d_instantiate() + unlock_new_inode(),
2019 * with lockdep-related part of unlock_new_inode() done before
2020 * anything else. Use that instead of open-coding d_instantiate()/
2021 * unlock_new_inode() combinations.
2022 */
2023 void d_instantiate_new(struct dentry *entry, struct inode *inode)
2024 {
2025 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
2026 BUG_ON(!inode);
2027 lockdep_annotate_inode_mutex_key(inode);
2028 security_d_instantiate(entry, inode);
2029 spin_lock(&inode->i_lock);
2030 __d_instantiate(entry, inode);
2031 WARN_ON(!(inode->i_state & I_NEW));
2032 inode->i_state &= ~I_NEW & ~I_CREATING;
2033 smp_mb();
2034 wake_up_bit(&inode->i_state, __I_NEW);
2035 spin_unlock(&inode->i_lock);
2036 }
2037 EXPORT_SYMBOL(d_instantiate_new);
2038
2039 struct dentry *d_make_root(struct inode *root_inode)
2040 {
2041 struct dentry *res = NULL;
2042
2043 if (root_inode) {
2044 res = d_alloc_anon(root_inode->i_sb);
2045 if (res)
2046 d_instantiate(res, root_inode);
2047 else
2048 iput(root_inode);
2049 }
2050 return res;
2051 }
2052 EXPORT_SYMBOL(d_make_root);
2053
2054 static struct dentry *__d_instantiate_anon(struct dentry *dentry,
2055 struct inode *inode,
2056 bool disconnected)
2057 {
2058 struct dentry *res;
2059 unsigned add_flags;
2060
2061 security_d_instantiate(dentry, inode);
2062 spin_lock(&inode->i_lock);
2063 res = __d_find_any_alias(inode);
2064 if (res) {
2065 spin_unlock(&inode->i_lock);
2066 dput(dentry);
2067 goto out_iput;
2068 }
2069
2070 /* attach a disconnected dentry */
2071 add_flags = d_flags_for_inode(inode);
2072
2073 if (disconnected)
2074 add_flags |= DCACHE_DISCONNECTED;
2075
2076 spin_lock(&dentry->d_lock);
2077 __d_set_inode_and_type(dentry, inode, add_flags);
2078 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2079 if (!disconnected) {
2080 hlist_bl_lock(&dentry->d_sb->s_roots);
2081 hlist_bl_add_head(&dentry->d_hash, &dentry->d_sb->s_roots);
2082 hlist_bl_unlock(&dentry->d_sb->s_roots);
2083 }
2084 spin_unlock(&dentry->d_lock);
2085 spin_unlock(&inode->i_lock);
2086
2087 return dentry;
2088
2089 out_iput:
2090 iput(inode);
2091 return res;
2092 }
2093
2094 struct dentry *d_instantiate_anon(struct dentry *dentry, struct inode *inode)
2095 {
2096 return __d_instantiate_anon(dentry, inode, true);
2097 }
2098 EXPORT_SYMBOL(d_instantiate_anon);
2099
2100 static struct dentry *__d_obtain_alias(struct inode *inode, bool disconnected)
2101 {
2102 struct dentry *tmp;
2103 struct dentry *res;
2104
2105 if (!inode)
2106 return ERR_PTR(-ESTALE);
2107 if (IS_ERR(inode))
2108 return ERR_CAST(inode);
2109
2110 res = d_find_any_alias(inode);
2111 if (res)
2112 goto out_iput;
2113
2114 tmp = d_alloc_anon(inode->i_sb);
2115 if (!tmp) {
2116 res = ERR_PTR(-ENOMEM);
2117 goto out_iput;
2118 }
2119
2120 return __d_instantiate_anon(tmp, inode, disconnected);
2121
2122 out_iput:
2123 iput(inode);
2124 return res;
2125 }
2126
2127 /**
2128 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
2129 * @inode: inode to allocate the dentry for
2130 *
2131 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
2132 * similar open by handle operations. The returned dentry may be anonymous,
2133 * or may have a full name (if the inode was already in the cache).
2134 *
2135 * When called on a directory inode, we must ensure that the inode only ever
2136 * has one dentry. If a dentry is found, that is returned instead of
2137 * allocating a new one.
2138 *
2139 * On successful return, the reference to the inode has been transferred
2140 * to the dentry. In case of an error the reference on the inode is released.
2141 * To make it easier to use in export operations a %NULL or IS_ERR inode may
2142 * be passed in and the error will be propagated to the return value,
2143 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
2144 */
2145 struct dentry *d_obtain_alias(struct inode *inode)
2146 {
2147 return __d_obtain_alias(inode, true);
2148 }
2149 EXPORT_SYMBOL(d_obtain_alias);
2150
2151 /**
2152 * d_obtain_root - find or allocate a dentry for a given inode
2153 * @inode: inode to allocate the dentry for
2154 *
2155 * Obtain an IS_ROOT dentry for the root of a filesystem.
2156 *
2157 * We must ensure that directory inodes only ever have one dentry. If a
2158 * dentry is found, that is returned instead of allocating a new one.
2159 *
2160 * On successful return, the reference to the inode has been transferred
2161 * to the dentry. In case of an error the reference on the inode is
2162 * released. A %NULL or IS_ERR inode may be passed in and will be the
2163 * error will be propagate to the return value, with a %NULL @inode
2164 * replaced by ERR_PTR(-ESTALE).
2165 */
2166 struct dentry *d_obtain_root(struct inode *inode)
2167 {
2168 return __d_obtain_alias(inode, false);
2169 }
2170 EXPORT_SYMBOL(d_obtain_root);
2171
2172 /**
2173 * d_add_ci - lookup or allocate new dentry with case-exact name
2174 * @inode: the inode case-insensitive lookup has found
2175 * @dentry: the negative dentry that was passed to the parent's lookup func
2176 * @name: the case-exact name to be associated with the returned dentry
2177 *
2178 * This is to avoid filling the dcache with case-insensitive names to the
2179 * same inode, only the actual correct case is stored in the dcache for
2180 * case-insensitive filesystems.
2181 *
2182 * For a case-insensitive lookup match and if the case-exact dentry
2183 * already exists in the dcache, use it and return it.
2184 *
2185 * If no entry exists with the exact case name, allocate new dentry with
2186 * the exact case, and return the spliced entry.
2187 */
2188 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
2189 struct qstr *name)
2190 {
2191 struct dentry *found, *res;
2192
2193 /*
2194 * First check if a dentry matching the name already exists,
2195 * if not go ahead and create it now.
2196 */
2197 found = d_hash_and_lookup(dentry->d_parent, name);
2198 if (found) {
2199 iput(inode);
2200 return found;
2201 }
2202 if (d_in_lookup(dentry)) {
2203 found = d_alloc_parallel(dentry->d_parent, name,
2204 dentry->d_wait);
2205 if (IS_ERR(found) || !d_in_lookup(found)) {
2206 iput(inode);
2207 return found;
2208 }
2209 } else {
2210 found = d_alloc(dentry->d_parent, name);
2211 if (!found) {
2212 iput(inode);
2213 return ERR_PTR(-ENOMEM);
2214 }
2215 }
2216 res = d_splice_alias(inode, found);
2217 if (res) {
2218 dput(found);
2219 return res;
2220 }
2221 return found;
2222 }
2223 EXPORT_SYMBOL(d_add_ci);
2224
2225
2226 static inline bool d_same_name(const struct dentry *dentry,
2227 const struct dentry *parent,
2228 const struct qstr *name)
2229 {
2230 if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) {
2231 if (dentry->d_name.len != name->len)
2232 return false;
2233 return dentry_cmp(dentry, name->name, name->len) == 0;
2234 }
2235 return parent->d_op->d_compare(dentry,
2236 dentry->d_name.len, dentry->d_name.name,
2237 name) == 0;
2238 }
2239
2240 /**
2241 * __d_lookup_rcu - search for a dentry (racy, store-free)
2242 * @parent: parent dentry
2243 * @name: qstr of name we wish to find
2244 * @seqp: returns d_seq value at the point where the dentry was found
2245 * Returns: dentry, or NULL
2246 *
2247 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2248 * resolution (store-free path walking) design described in
2249 * Documentation/filesystems/path-lookup.txt.
2250 *
2251 * This is not to be used outside core vfs.
2252 *
2253 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2254 * held, and rcu_read_lock held. The returned dentry must not be stored into
2255 * without taking d_lock and checking d_seq sequence count against @seq
2256 * returned here.
2257 *
2258 * A refcount may be taken on the found dentry with the d_rcu_to_refcount
2259 * function.
2260 *
2261 * Alternatively, __d_lookup_rcu may be called again to look up the child of
2262 * the returned dentry, so long as its parent's seqlock is checked after the
2263 * child is looked up. Thus, an interlocking stepping of sequence lock checks
2264 * is formed, giving integrity down the path walk.
2265 *
2266 * NOTE! The caller *has* to check the resulting dentry against the sequence
2267 * number we've returned before using any of the resulting dentry state!
2268 */
2269 struct dentry *__d_lookup_rcu(const struct dentry *parent,
2270 const struct qstr *name,
2271 unsigned *seqp)
2272 {
2273 u64 hashlen = name->hash_len;
2274 const unsigned char *str = name->name;
2275 struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen));
2276 struct hlist_bl_node *node;
2277 struct dentry *dentry;
2278
2279 /*
2280 * Note: There is significant duplication with __d_lookup_rcu which is
2281 * required to prevent single threaded performance regressions
2282 * especially on architectures where smp_rmb (in seqcounts) are costly.
2283 * Keep the two functions in sync.
2284 */
2285
2286 /*
2287 * The hash list is protected using RCU.
2288 *
2289 * Carefully use d_seq when comparing a candidate dentry, to avoid
2290 * races with d_move().
2291 *
2292 * It is possible that concurrent renames can mess up our list
2293 * walk here and result in missing our dentry, resulting in the
2294 * false-negative result. d_lookup() protects against concurrent
2295 * renames using rename_lock seqlock.
2296 *
2297 * See Documentation/filesystems/path-lookup.txt for more details.
2298 */
2299 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2300 unsigned seq;
2301
2302 seqretry:
2303 /*
2304 * The dentry sequence count protects us from concurrent
2305 * renames, and thus protects parent and name fields.
2306 *
2307 * The caller must perform a seqcount check in order
2308 * to do anything useful with the returned dentry.
2309 *
2310 * NOTE! We do a "raw" seqcount_begin here. That means that
2311 * we don't wait for the sequence count to stabilize if it
2312 * is in the middle of a sequence change. If we do the slow
2313 * dentry compare, we will do seqretries until it is stable,
2314 * and if we end up with a successful lookup, we actually
2315 * want to exit RCU lookup anyway.
2316 *
2317 * Note that raw_seqcount_begin still *does* smp_rmb(), so
2318 * we are still guaranteed NUL-termination of ->d_name.name.
2319 */
2320 seq = raw_seqcount_begin(&dentry->d_seq);
2321 if (dentry->d_parent != parent)
2322 continue;
2323 if (d_unhashed(dentry))
2324 continue;
2325
2326 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
2327 int tlen;
2328 const char *tname;
2329 if (dentry->d_name.hash != hashlen_hash(hashlen))
2330 continue;
2331 tlen = dentry->d_name.len;
2332 tname = dentry->d_name.name;
2333 /* we want a consistent (name,len) pair */
2334 if (read_seqcount_retry(&dentry->d_seq, seq)) {
2335 cpu_relax();
2336 goto seqretry;
2337 }
2338 if (parent->d_op->d_compare(dentry,
2339 tlen, tname, name) != 0)
2340 continue;
2341 } else {
2342 if (dentry->d_name.hash_len != hashlen)
2343 continue;
2344 if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0)
2345 continue;
2346 }
2347 *seqp = seq;
2348 return dentry;
2349 }
2350 return NULL;
2351 }
2352
2353 /**
2354 * d_lookup - search for a dentry
2355 * @parent: parent dentry
2356 * @name: qstr of name we wish to find
2357 * Returns: dentry, or NULL
2358 *
2359 * d_lookup searches the children of the parent dentry for the name in
2360 * question. If the dentry is found its reference count is incremented and the
2361 * dentry is returned. The caller must use dput to free the entry when it has
2362 * finished using it. %NULL is returned if the dentry does not exist.
2363 */
2364 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2365 {
2366 struct dentry *dentry;
2367 unsigned seq;
2368
2369 do {
2370 seq = read_seqbegin(&rename_lock);
2371 dentry = __d_lookup(parent, name);
2372 if (dentry)
2373 break;
2374 } while (read_seqretry(&rename_lock, seq));
2375 return dentry;
2376 }
2377 EXPORT_SYMBOL(d_lookup);
2378
2379 /**
2380 * __d_lookup - search for a dentry (racy)
2381 * @parent: parent dentry
2382 * @name: qstr of name we wish to find
2383 * Returns: dentry, or NULL
2384 *
2385 * __d_lookup is like d_lookup, however it may (rarely) return a
2386 * false-negative result due to unrelated rename activity.
2387 *
2388 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2389 * however it must be used carefully, eg. with a following d_lookup in
2390 * the case of failure.
2391 *
2392 * __d_lookup callers must be commented.
2393 */
2394 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2395 {
2396 unsigned int hash = name->hash;
2397 struct hlist_bl_head *b = d_hash(hash);
2398 struct hlist_bl_node *node;
2399 struct dentry *found = NULL;
2400 struct dentry *dentry;
2401
2402 /*
2403 * Note: There is significant duplication with __d_lookup_rcu which is
2404 * required to prevent single threaded performance regressions
2405 * especially on architectures where smp_rmb (in seqcounts) are costly.
2406 * Keep the two functions in sync.
2407 */
2408
2409 /*
2410 * The hash list is protected using RCU.
2411 *
2412 * Take d_lock when comparing a candidate dentry, to avoid races
2413 * with d_move().
2414 *
2415 * It is possible that concurrent renames can mess up our list
2416 * walk here and result in missing our dentry, resulting in the
2417 * false-negative result. d_lookup() protects against concurrent
2418 * renames using rename_lock seqlock.
2419 *
2420 * See Documentation/filesystems/path-lookup.txt for more details.
2421 */
2422 rcu_read_lock();
2423
2424 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2425
2426 if (dentry->d_name.hash != hash)
2427 continue;
2428
2429 spin_lock(&dentry->d_lock);
2430 if (dentry->d_parent != parent)
2431 goto next;
2432 if (d_unhashed(dentry))
2433 goto next;
2434
2435 if (!d_same_name(dentry, parent, name))
2436 goto next;
2437
2438 dentry->d_lockref.count++;
2439 found = dentry;
2440 spin_unlock(&dentry->d_lock);
2441 break;
2442 next:
2443 spin_unlock(&dentry->d_lock);
2444 }
2445 rcu_read_unlock();
2446
2447 return found;
2448 }
2449
2450 /**
2451 * d_hash_and_lookup - hash the qstr then search for a dentry
2452 * @dir: Directory to search in
2453 * @name: qstr of name we wish to find
2454 *
2455 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2456 */
2457 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2458 {
2459 /*
2460 * Check for a fs-specific hash function. Note that we must
2461 * calculate the standard hash first, as the d_op->d_hash()
2462 * routine may choose to leave the hash value unchanged.
2463 */
2464 name->hash = full_name_hash(dir, name->name, name->len);
2465 if (dir->d_flags & DCACHE_OP_HASH) {
2466 int err = dir->d_op->d_hash(dir, name);
2467 if (unlikely(err < 0))
2468 return ERR_PTR(err);
2469 }
2470 return d_lookup(dir, name);
2471 }
2472 EXPORT_SYMBOL(d_hash_and_lookup);
2473
2474 /*
2475 * When a file is deleted, we have two options:
2476 * - turn this dentry into a negative dentry
2477 * - unhash this dentry and free it.
2478 *
2479 * Usually, we want to just turn this into
2480 * a negative dentry, but if anybody else is
2481 * currently using the dentry or the inode
2482 * we can't do that and we fall back on removing
2483 * it from the hash queues and waiting for
2484 * it to be deleted later when it has no users
2485 */
2486
2487 /**
2488 * d_delete - delete a dentry
2489 * @dentry: The dentry to delete
2490 *
2491 * Turn the dentry into a negative dentry if possible, otherwise
2492 * remove it from the hash queues so it can be deleted later
2493 */
2494
2495 void d_delete(struct dentry * dentry)
2496 {
2497 struct inode *inode = dentry->d_inode;
2498
2499 spin_lock(&inode->i_lock);
2500 spin_lock(&dentry->d_lock);
2501 /*
2502 * Are we the only user?
2503 */
2504 if (dentry->d_lockref.count == 1) {
2505 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2506 dentry_unlink_inode(dentry);
2507 } else {
2508 __d_drop(dentry);
2509 spin_unlock(&dentry->d_lock);
2510 spin_unlock(&inode->i_lock);
2511 }
2512 }
2513 EXPORT_SYMBOL(d_delete);
2514
2515 static void __d_rehash(struct dentry *entry)
2516 {
2517 struct hlist_bl_head *b = d_hash(entry->d_name.hash);
2518
2519 hlist_bl_lock(b);
2520 hlist_bl_add_head_rcu(&entry->d_hash, b);
2521 hlist_bl_unlock(b);
2522 }
2523
2524 /**
2525 * d_rehash - add an entry back to the hash
2526 * @entry: dentry to add to the hash
2527 *
2528 * Adds a dentry to the hash according to its name.
2529 */
2530
2531 void d_rehash(struct dentry * entry)
2532 {
2533 spin_lock(&entry->d_lock);
2534 __d_rehash(entry);
2535 spin_unlock(&entry->d_lock);
2536 }
2537 EXPORT_SYMBOL(d_rehash);
2538
2539 static inline unsigned start_dir_add(struct inode *dir)
2540 {
2541
2542 for (;;) {
2543 unsigned n = dir->i_dir_seq;
2544 if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n)
2545 return n;
2546 cpu_relax();
2547 }
2548 }
2549
2550 static inline void end_dir_add(struct inode *dir, unsigned n)
2551 {
2552 smp_store_release(&dir->i_dir_seq, n + 2);
2553 }
2554
2555 static void d_wait_lookup(struct dentry *dentry)
2556 {
2557 if (d_in_lookup(dentry)) {
2558 DECLARE_WAITQUEUE(wait, current);
2559 add_wait_queue(dentry->d_wait, &wait);
2560 do {
2561 set_current_state(TASK_UNINTERRUPTIBLE);
2562 spin_unlock(&dentry->d_lock);
2563 schedule();
2564 spin_lock(&dentry->d_lock);
2565 } while (d_in_lookup(dentry));
2566 }
2567 }
2568
2569 struct dentry *d_alloc_parallel(struct dentry *parent,
2570 const struct qstr *name,
2571 wait_queue_head_t *wq)
2572 {
2573 unsigned int hash = name->hash;
2574 struct hlist_bl_head *b = in_lookup_hash(parent, hash);
2575 struct hlist_bl_node *node;
2576 struct dentry *new = d_alloc(parent, name);
2577 struct dentry *dentry;
2578 unsigned seq, r_seq, d_seq;
2579
2580 if (unlikely(!new))
2581 return ERR_PTR(-ENOMEM);
2582
2583 retry:
2584 rcu_read_lock();
2585 seq = smp_load_acquire(&parent->d_inode->i_dir_seq);
2586 r_seq = read_seqbegin(&rename_lock);
2587 dentry = __d_lookup_rcu(parent, name, &d_seq);
2588 if (unlikely(dentry)) {
2589 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2590 rcu_read_unlock();
2591 goto retry;
2592 }
2593 if (read_seqcount_retry(&dentry->d_seq, d_seq)) {
2594 rcu_read_unlock();
2595 dput(dentry);
2596 goto retry;
2597 }
2598 rcu_read_unlock();
2599 dput(new);
2600 return dentry;
2601 }
2602 if (unlikely(read_seqretry(&rename_lock, r_seq))) {
2603 rcu_read_unlock();
2604 goto retry;
2605 }
2606
2607 if (unlikely(seq & 1)) {
2608 rcu_read_unlock();
2609 goto retry;
2610 }
2611
2612 hlist_bl_lock(b);
2613 if (unlikely(READ_ONCE(parent->d_inode->i_dir_seq) != seq)) {
2614 hlist_bl_unlock(b);
2615 rcu_read_unlock();
2616 goto retry;
2617 }
2618 /*
2619 * No changes for the parent since the beginning of d_lookup().
2620 * Since all removals from the chain happen with hlist_bl_lock(),
2621 * any potential in-lookup matches are going to stay here until
2622 * we unlock the chain. All fields are stable in everything
2623 * we encounter.
2624 */
2625 hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) {
2626 if (dentry->d_name.hash != hash)
2627 continue;
2628 if (dentry->d_parent != parent)
2629 continue;
2630 if (!d_same_name(dentry, parent, name))
2631 continue;
2632 hlist_bl_unlock(b);
2633 /* now we can try to grab a reference */
2634 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2635 rcu_read_unlock();
2636 goto retry;
2637 }
2638
2639 rcu_read_unlock();
2640 /*
2641 * somebody is likely to be still doing lookup for it;
2642 * wait for them to finish
2643 */
2644 spin_lock(&dentry->d_lock);
2645 d_wait_lookup(dentry);
2646 /*
2647 * it's not in-lookup anymore; in principle we should repeat
2648 * everything from dcache lookup, but it's likely to be what
2649 * d_lookup() would've found anyway. If it is, just return it;
2650 * otherwise we really have to repeat the whole thing.
2651 */
2652 if (unlikely(dentry->d_name.hash != hash))
2653 goto mismatch;
2654 if (unlikely(dentry->d_parent != parent))
2655 goto mismatch;
2656 if (unlikely(d_unhashed(dentry)))
2657 goto mismatch;
2658 if (unlikely(!d_same_name(dentry, parent, name)))
2659 goto mismatch;
2660 /* OK, it *is* a hashed match; return it */
2661 spin_unlock(&dentry->d_lock);
2662 dput(new);
2663 return dentry;
2664 }
2665 rcu_read_unlock();
2666 /* we can't take ->d_lock here; it's OK, though. */
2667 new->d_flags |= DCACHE_PAR_LOOKUP;
2668 new->d_wait = wq;
2669 hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b);
2670 hlist_bl_unlock(b);
2671 return new;
2672 mismatch:
2673 spin_unlock(&dentry->d_lock);
2674 dput(dentry);
2675 goto retry;
2676 }
2677 EXPORT_SYMBOL(d_alloc_parallel);
2678
2679 void __d_lookup_done(struct dentry *dentry)
2680 {
2681 struct hlist_bl_head *b = in_lookup_hash(dentry->d_parent,
2682 dentry->d_name.hash);
2683 hlist_bl_lock(b);
2684 dentry->d_flags &= ~DCACHE_PAR_LOOKUP;
2685 __hlist_bl_del(&dentry->d_u.d_in_lookup_hash);
2686 wake_up_all(dentry->d_wait);
2687 dentry->d_wait = NULL;
2688 hlist_bl_unlock(b);
2689 INIT_HLIST_NODE(&dentry->d_u.d_alias);
2690 INIT_LIST_HEAD(&dentry->d_lru);
2691 }
2692 EXPORT_SYMBOL(__d_lookup_done);
2693
2694 /* inode->i_lock held if inode is non-NULL */
2695
2696 static inline void __d_add(struct dentry *dentry, struct inode *inode)
2697 {
2698 struct inode *dir = NULL;
2699 unsigned n;
2700 spin_lock(&dentry->d_lock);
2701 if (unlikely(d_in_lookup(dentry))) {
2702 dir = dentry->d_parent->d_inode;
2703 n = start_dir_add(dir);
2704 __d_lookup_done(dentry);
2705 }
2706 if (inode) {
2707 unsigned add_flags = d_flags_for_inode(inode);
2708 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2709 raw_write_seqcount_begin(&dentry->d_seq);
2710 __d_set_inode_and_type(dentry, inode, add_flags);
2711 raw_write_seqcount_end(&dentry->d_seq);
2712 fsnotify_update_flags(dentry);
2713 }
2714 __d_rehash(dentry);
2715 if (dir)
2716 end_dir_add(dir, n);
2717 spin_unlock(&dentry->d_lock);
2718 if (inode)
2719 spin_unlock(&inode->i_lock);
2720 }
2721
2722 /**
2723 * d_add - add dentry to hash queues
2724 * @entry: dentry to add
2725 * @inode: The inode to attach to this dentry
2726 *
2727 * This adds the entry to the hash queues and initializes @inode.
2728 * The entry was actually filled in earlier during d_alloc().
2729 */
2730
2731 void d_add(struct dentry *entry, struct inode *inode)
2732 {
2733 if (inode) {
2734 security_d_instantiate(entry, inode);
2735 spin_lock(&inode->i_lock);
2736 }
2737 __d_add(entry, inode);
2738 }
2739 EXPORT_SYMBOL(d_add);
2740
2741 /**
2742 * d_exact_alias - find and hash an exact unhashed alias
2743 * @entry: dentry to add
2744 * @inode: The inode to go with this dentry
2745 *
2746 * If an unhashed dentry with the same name/parent and desired
2747 * inode already exists, hash and return it. Otherwise, return
2748 * NULL.
2749 *
2750 * Parent directory should be locked.
2751 */
2752 struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode)
2753 {
2754 struct dentry *alias;
2755 unsigned int hash = entry->d_name.hash;
2756
2757 spin_lock(&inode->i_lock);
2758 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
2759 /*
2760 * Don't need alias->d_lock here, because aliases with
2761 * d_parent == entry->d_parent are not subject to name or
2762 * parent changes, because the parent inode i_mutex is held.
2763 */
2764 if (alias->d_name.hash != hash)
2765 continue;
2766 if (alias->d_parent != entry->d_parent)
2767 continue;
2768 if (!d_same_name(alias, entry->d_parent, &entry->d_name))
2769 continue;
2770 spin_lock(&alias->d_lock);
2771 if (!d_unhashed(alias)) {
2772 spin_unlock(&alias->d_lock);
2773 alias = NULL;
2774 } else {
2775 __dget_dlock(alias);
2776 __d_rehash(alias);
2777 spin_unlock(&alias->d_lock);
2778 }
2779 spin_unlock(&inode->i_lock);
2780 return alias;
2781 }
2782 spin_unlock(&inode->i_lock);
2783 return NULL;
2784 }
2785 EXPORT_SYMBOL(d_exact_alias);
2786
2787 static void swap_names(struct dentry *dentry, struct dentry *target)
2788 {
2789 if (unlikely(dname_external(target))) {
2790 if (unlikely(dname_external(dentry))) {
2791 /*
2792 * Both external: swap the pointers
2793 */
2794 swap(target->d_name.name, dentry->d_name.name);
2795 } else {
2796 /*
2797 * dentry:internal, target:external. Steal target's
2798 * storage and make target internal.
2799 */
2800 memcpy(target->d_iname, dentry->d_name.name,
2801 dentry->d_name.len + 1);
2802 dentry->d_name.name = target->d_name.name;
2803 target->d_name.name = target->d_iname;
2804 }
2805 } else {
2806 if (unlikely(dname_external(dentry))) {
2807 /*
2808 * dentry:external, target:internal. Give dentry's
2809 * storage to target and make dentry internal
2810 */
2811 memcpy(dentry->d_iname, target->d_name.name,
2812 target->d_name.len + 1);
2813 target->d_name.name = dentry->d_name.name;
2814 dentry->d_name.name = dentry->d_iname;
2815 } else {
2816 /*
2817 * Both are internal.
2818 */
2819 unsigned int i;
2820 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2821 for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2822 swap(((long *) &dentry->d_iname)[i],
2823 ((long *) &target->d_iname)[i]);
2824 }
2825 }
2826 }
2827 swap(dentry->d_name.hash_len, target->d_name.hash_len);
2828 }
2829
2830 static void copy_name(struct dentry *dentry, struct dentry *target)
2831 {
2832 struct external_name *old_name = NULL;
2833 if (unlikely(dname_external(dentry)))
2834 old_name = external_name(dentry);
2835 if (unlikely(dname_external(target))) {
2836 atomic_inc(&external_name(target)->u.count);
2837 dentry->d_name = target->d_name;
2838 } else {
2839 memcpy(dentry->d_iname, target->d_name.name,
2840 target->d_name.len + 1);
2841 dentry->d_name.name = dentry->d_iname;
2842 dentry->d_name.hash_len = target->d_name.hash_len;
2843 }
2844 if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2845 kfree_rcu(old_name, u.head);
2846 }
2847
2848 /*
2849 * __d_move - move a dentry
2850 * @dentry: entry to move
2851 * @target: new dentry
2852 * @exchange: exchange the two dentries
2853 *
2854 * Update the dcache to reflect the move of a file name. Negative
2855 * dcache entries should not be moved in this way. Caller must hold
2856 * rename_lock, the i_mutex of the source and target directories,
2857 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2858 */
2859 static void __d_move(struct dentry *dentry, struct dentry *target,
2860 bool exchange)
2861 {
2862 struct dentry *old_parent, *p;
2863 struct inode *dir = NULL;
2864 unsigned n;
2865
2866 WARN_ON(!dentry->d_inode);
2867 if (WARN_ON(dentry == target))
2868 return;
2869
2870 BUG_ON(d_ancestor(target, dentry));
2871 old_parent = dentry->d_parent;
2872 p = d_ancestor(old_parent, target);
2873 if (IS_ROOT(dentry)) {
2874 BUG_ON(p);
2875 spin_lock(&target->d_parent->d_lock);
2876 } else if (!p) {
2877 /* target is not a descendent of dentry->d_parent */
2878 spin_lock(&target->d_parent->d_lock);
2879 spin_lock_nested(&old_parent->d_lock, DENTRY_D_LOCK_NESTED);
2880 } else {
2881 BUG_ON(p == dentry);
2882 spin_lock(&old_parent->d_lock);
2883 if (p != target)
2884 spin_lock_nested(&target->d_parent->d_lock,
2885 DENTRY_D_LOCK_NESTED);
2886 }
2887 spin_lock_nested(&dentry->d_lock, 2);
2888 spin_lock_nested(&target->d_lock, 3);
2889
2890 if (unlikely(d_in_lookup(target))) {
2891 dir = target->d_parent->d_inode;
2892 n = start_dir_add(dir);
2893 __d_lookup_done(target);
2894 }
2895
2896 write_seqcount_begin(&dentry->d_seq);
2897 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
2898
2899 /* unhash both */
2900 if (!d_unhashed(dentry))
2901 ___d_drop(dentry);
2902 if (!d_unhashed(target))
2903 ___d_drop(target);
2904
2905 /* ... and switch them in the tree */
2906 dentry->d_parent = target->d_parent;
2907 if (!exchange) {
2908 copy_name(dentry, target);
2909 target->d_hash.pprev = NULL;
2910 dentry->d_parent->d_lockref.count++;
2911 if (dentry != old_parent) /* wasn't IS_ROOT */
2912 WARN_ON(!--old_parent->d_lockref.count);
2913 } else {
2914 target->d_parent = old_parent;
2915 swap_names(dentry, target);
2916 list_move(&target->d_child, &target->d_parent->d_subdirs);
2917 __d_rehash(target);
2918 fsnotify_update_flags(target);
2919 }
2920 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2921 __d_rehash(dentry);
2922 fsnotify_update_flags(dentry);
2923 fscrypt_handle_d_move(dentry);
2924
2925 write_seqcount_end(&target->d_seq);
2926 write_seqcount_end(&dentry->d_seq);
2927
2928 if (dir)
2929 end_dir_add(dir, n);
2930
2931 if (dentry->d_parent != old_parent)
2932 spin_unlock(&dentry->d_parent->d_lock);
2933 if (dentry != old_parent)
2934 spin_unlock(&old_parent->d_lock);
2935 spin_unlock(&target->d_lock);
2936 spin_unlock(&dentry->d_lock);
2937 }
2938
2939 /*
2940 * d_move - move a dentry
2941 * @dentry: entry to move
2942 * @target: new dentry
2943 *
2944 * Update the dcache to reflect the move of a file name. Negative
2945 * dcache entries should not be moved in this way. See the locking
2946 * requirements for __d_move.
2947 */
2948 void d_move(struct dentry *dentry, struct dentry *target)
2949 {
2950 write_seqlock(&rename_lock);
2951 __d_move(dentry, target, false);
2952 write_sequnlock(&rename_lock);
2953 }
2954 EXPORT_SYMBOL(d_move);
2955
2956 /*
2957 * d_exchange - exchange two dentries
2958 * @dentry1: first dentry
2959 * @dentry2: second dentry
2960 */
2961 void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2962 {
2963 write_seqlock(&rename_lock);
2964
2965 WARN_ON(!dentry1->d_inode);
2966 WARN_ON(!dentry2->d_inode);
2967 WARN_ON(IS_ROOT(dentry1));
2968 WARN_ON(IS_ROOT(dentry2));
2969
2970 __d_move(dentry1, dentry2, true);
2971
2972 write_sequnlock(&rename_lock);
2973 }
2974 EXPORT_SYMBOL_GPL(d_exchange);
2975
2976 /**
2977 * d_ancestor - search for an ancestor
2978 * @p1: ancestor dentry
2979 * @p2: child dentry
2980 *
2981 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2982 * an ancestor of p2, else NULL.
2983 */
2984 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2985 {
2986 struct dentry *p;
2987
2988 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2989 if (p->d_parent == p1)
2990 return p;
2991 }
2992 return NULL;
2993 }
2994
2995 /*
2996 * This helper attempts to cope with remotely renamed directories
2997 *
2998 * It assumes that the caller is already holding
2999 * dentry->d_parent->d_inode->i_mutex, and rename_lock
3000 *
3001 * Note: If ever the locking in lock_rename() changes, then please
3002 * remember to update this too...
3003 */
3004 static int __d_unalias(struct inode *inode,
3005 struct dentry *dentry, struct dentry *alias)
3006 {
3007 struct mutex *m1 = NULL;
3008 struct rw_semaphore *m2 = NULL;
3009 int ret = -ESTALE;
3010
3011 /* If alias and dentry share a parent, then no extra locks required */
3012 if (alias->d_parent == dentry->d_parent)
3013 goto out_unalias;
3014
3015 /* See lock_rename() */
3016 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
3017 goto out_err;
3018 m1 = &dentry->d_sb->s_vfs_rename_mutex;
3019 if (!inode_trylock_shared(alias->d_parent->d_inode))
3020 goto out_err;
3021 m2 = &alias->d_parent->d_inode->i_rwsem;
3022 out_unalias:
3023 __d_move(alias, dentry, false);
3024 ret = 0;
3025 out_err:
3026 if (m2)
3027 up_read(m2);
3028 if (m1)
3029 mutex_unlock(m1);
3030 return ret;
3031 }
3032
3033 /**
3034 * d_splice_alias - splice a disconnected dentry into the tree if one exists
3035 * @inode: the inode which may have a disconnected dentry
3036 * @dentry: a negative dentry which we want to point to the inode.
3037 *
3038 * If inode is a directory and has an IS_ROOT alias, then d_move that in
3039 * place of the given dentry and return it, else simply d_add the inode
3040 * to the dentry and return NULL.
3041 *
3042 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
3043 * we should error out: directories can't have multiple aliases.
3044 *
3045 * This is needed in the lookup routine of any filesystem that is exportable
3046 * (via knfsd) so that we can build dcache paths to directories effectively.
3047 *
3048 * If a dentry was found and moved, then it is returned. Otherwise NULL
3049 * is returned. This matches the expected return value of ->lookup.
3050 *
3051 * Cluster filesystems may call this function with a negative, hashed dentry.
3052 * In that case, we know that the inode will be a regular file, and also this
3053 * will only occur during atomic_open. So we need to check for the dentry
3054 * being already hashed only in the final case.
3055 */
3056 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
3057 {
3058 if (IS_ERR(inode))
3059 return ERR_CAST(inode);
3060
3061 BUG_ON(!d_unhashed(dentry));
3062
3063 if (!inode)
3064 goto out;
3065
3066 security_d_instantiate(dentry, inode);
3067 spin_lock(&inode->i_lock);
3068 if (S_ISDIR(inode->i_mode)) {
3069 struct dentry *new = __d_find_any_alias(inode);
3070 if (unlikely(new)) {
3071 /* The reference to new ensures it remains an alias */
3072 spin_unlock(&inode->i_lock);
3073 write_seqlock(&rename_lock);
3074 if (unlikely(d_ancestor(new, dentry))) {
3075 write_sequnlock(&rename_lock);
3076 dput(new);
3077 new = ERR_PTR(-ELOOP);
3078 pr_warn_ratelimited(
3079 "VFS: Lookup of '%s' in %s %s"
3080 " would have caused loop\n",
3081 dentry->d_name.name,
3082 inode->i_sb->s_type->name,
3083 inode->i_sb->s_id);
3084 } else if (!IS_ROOT(new)) {
3085 struct dentry *old_parent = dget(new->d_parent);
3086 int err = __d_unalias(inode, dentry, new);
3087 write_sequnlock(&rename_lock);
3088 if (err) {
3089 dput(new);
3090 new = ERR_PTR(err);
3091 }
3092 dput(old_parent);
3093 } else {
3094 __d_move(new, dentry, false);
3095 write_sequnlock(&rename_lock);
3096 }
3097 iput(inode);
3098 return new;
3099 }
3100 }
3101 out:
3102 __d_add(dentry, inode);
3103 return NULL;
3104 }
3105 EXPORT_SYMBOL(d_splice_alias);
3106
3107 /*
3108 * Test whether new_dentry is a subdirectory of old_dentry.
3109 *
3110 * Trivially implemented using the dcache structure
3111 */
3112
3113 /**
3114 * is_subdir - is new dentry a subdirectory of old_dentry
3115 * @new_dentry: new dentry
3116 * @old_dentry: old dentry
3117 *
3118 * Returns true if new_dentry is a subdirectory of the parent (at any depth).
3119 * Returns false otherwise.
3120 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3121 */
3122
3123 bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
3124 {
3125 bool result;
3126 unsigned seq;
3127
3128 if (new_dentry == old_dentry)
3129 return true;
3130
3131 do {
3132 /* for restarting inner loop in case of seq retry */
3133 seq = read_seqbegin(&rename_lock);
3134 /*
3135 * Need rcu_readlock to protect against the d_parent trashing
3136 * due to d_move
3137 */
3138 rcu_read_lock();
3139 if (d_ancestor(old_dentry, new_dentry))
3140 result = true;
3141 else
3142 result = false;
3143 rcu_read_unlock();
3144 } while (read_seqretry(&rename_lock, seq));
3145
3146 return result;
3147 }
3148 EXPORT_SYMBOL(is_subdir);
3149
3150 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
3151 {
3152 struct dentry *root = data;
3153 if (dentry != root) {
3154 if (d_unhashed(dentry) || !dentry->d_inode)
3155 return D_WALK_SKIP;
3156
3157 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3158 dentry->d_flags |= DCACHE_GENOCIDE;
3159 dentry->d_lockref.count--;
3160 }
3161 }
3162 return D_WALK_CONTINUE;
3163 }
3164
3165 void d_genocide(struct dentry *parent)
3166 {
3167 d_walk(parent, parent, d_genocide_kill);
3168 }
3169
3170 EXPORT_SYMBOL(d_genocide);
3171
3172 void d_tmpfile(struct dentry *dentry, struct inode *inode)
3173 {
3174 inode_dec_link_count(inode);
3175 BUG_ON(dentry->d_name.name != dentry->d_iname ||
3176 !hlist_unhashed(&dentry->d_u.d_alias) ||
3177 !d_unlinked(dentry));
3178 spin_lock(&dentry->d_parent->d_lock);
3179 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3180 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3181 (unsigned long long)inode->i_ino);
3182 spin_unlock(&dentry->d_lock);
3183 spin_unlock(&dentry->d_parent->d_lock);
3184 d_instantiate(dentry, inode);
3185 }
3186 EXPORT_SYMBOL(d_tmpfile);
3187
3188 static __initdata unsigned long dhash_entries;
3189 static int __init set_dhash_entries(char *str)
3190 {
3191 if (!str)
3192 return 0;
3193 dhash_entries = simple_strtoul(str, &str, 0);
3194 return 1;
3195 }
3196 __setup("dhash_entries=", set_dhash_entries);
3197
3198 static void __init dcache_init_early(void)
3199 {
3200 /* If hashes are distributed across NUMA nodes, defer
3201 * hash allocation until vmalloc space is available.
3202 */
3203 if (hashdist)
3204 return;
3205
3206 dentry_hashtable =
3207 alloc_large_system_hash("Dentry cache",
3208 sizeof(struct hlist_bl_head),
3209 dhash_entries,
3210 13,
3211 HASH_EARLY | HASH_ZERO,
3212 &d_hash_shift,
3213 NULL,
3214 0,
3215 0);
3216 d_hash_shift = 32 - d_hash_shift;
3217 }
3218
3219 static void __init dcache_init(void)
3220 {
3221 /*
3222 * A constructor could be added for stable state like the lists,
3223 * but it is probably not worth it because of the cache nature
3224 * of the dcache.
3225 */
3226 dentry_cache = KMEM_CACHE_USERCOPY(dentry,
3227 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT,
3228 d_iname);
3229
3230 /* Hash may have been set up in dcache_init_early */
3231 if (!hashdist)
3232 return;
3233
3234 dentry_hashtable =
3235 alloc_large_system_hash("Dentry cache",
3236 sizeof(struct hlist_bl_head),
3237 dhash_entries,
3238 13,
3239 HASH_ZERO,
3240 &d_hash_shift,
3241 NULL,
3242 0,
3243 0);
3244 d_hash_shift = 32 - d_hash_shift;
3245 }
3246
3247 /* SLAB cache for __getname() consumers */
3248 struct kmem_cache *names_cachep __read_mostly;
3249 EXPORT_SYMBOL(names_cachep);
3250
3251 void __init vfs_caches_init_early(void)
3252 {
3253 int i;
3254
3255 for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++)
3256 INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]);
3257
3258 dcache_init_early();
3259 inode_init_early();
3260 }
3261
3262 void __init vfs_caches_init(void)
3263 {
3264 names_cachep = kmem_cache_create_usercopy("names_cache", PATH_MAX, 0,
3265 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 0, PATH_MAX, NULL);
3266
3267 dcache_init();
3268 inode_init();
3269 files_init();
3270 files_maxfiles_init();
3271 mnt_init();
3272 bdev_cache_init();
3273 chrdev_init();
3274 }