]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/dcache.c
Merge branch 'for-linus' of git://git.open-osd.org/linux-open-osd
[mirror_ubuntu-bionic-kernel.git] / fs / dcache.c
1 /*
2 * fs/dcache.c
3 *
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
8
9 /*
10 * Notes on the allocation strategy:
11 *
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
15 */
16
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/module.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <asm/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include "internal.h"
37
38 int sysctl_vfs_cache_pressure __read_mostly = 100;
39 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
40
41 __cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_lock);
42 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
43
44 EXPORT_SYMBOL(dcache_lock);
45
46 static struct kmem_cache *dentry_cache __read_mostly;
47
48 #define DNAME_INLINE_LEN (sizeof(struct dentry)-offsetof(struct dentry,d_iname))
49
50 /*
51 * This is the single most critical data structure when it comes
52 * to the dcache: the hashtable for lookups. Somebody should try
53 * to make this good - I've just made it work.
54 *
55 * This hash-function tries to avoid losing too many bits of hash
56 * information, yet avoid using a prime hash-size or similar.
57 */
58 #define D_HASHBITS d_hash_shift
59 #define D_HASHMASK d_hash_mask
60
61 static unsigned int d_hash_mask __read_mostly;
62 static unsigned int d_hash_shift __read_mostly;
63 static struct hlist_head *dentry_hashtable __read_mostly;
64
65 /* Statistics gathering. */
66 struct dentry_stat_t dentry_stat = {
67 .age_limit = 45,
68 };
69
70 static void __d_free(struct dentry *dentry)
71 {
72 WARN_ON(!list_empty(&dentry->d_alias));
73 if (dname_external(dentry))
74 kfree(dentry->d_name.name);
75 kmem_cache_free(dentry_cache, dentry);
76 }
77
78 static void d_callback(struct rcu_head *head)
79 {
80 struct dentry * dentry = container_of(head, struct dentry, d_u.d_rcu);
81 __d_free(dentry);
82 }
83
84 /*
85 * no dcache_lock, please. The caller must decrement dentry_stat.nr_dentry
86 * inside dcache_lock.
87 */
88 static void d_free(struct dentry *dentry)
89 {
90 if (dentry->d_op && dentry->d_op->d_release)
91 dentry->d_op->d_release(dentry);
92 /* if dentry was never inserted into hash, immediate free is OK */
93 if (hlist_unhashed(&dentry->d_hash))
94 __d_free(dentry);
95 else
96 call_rcu(&dentry->d_u.d_rcu, d_callback);
97 }
98
99 /*
100 * Release the dentry's inode, using the filesystem
101 * d_iput() operation if defined.
102 */
103 static void dentry_iput(struct dentry * dentry)
104 __releases(dentry->d_lock)
105 __releases(dcache_lock)
106 {
107 struct inode *inode = dentry->d_inode;
108 if (inode) {
109 dentry->d_inode = NULL;
110 list_del_init(&dentry->d_alias);
111 spin_unlock(&dentry->d_lock);
112 spin_unlock(&dcache_lock);
113 if (!inode->i_nlink)
114 fsnotify_inoderemove(inode);
115 if (dentry->d_op && dentry->d_op->d_iput)
116 dentry->d_op->d_iput(dentry, inode);
117 else
118 iput(inode);
119 } else {
120 spin_unlock(&dentry->d_lock);
121 spin_unlock(&dcache_lock);
122 }
123 }
124
125 /*
126 * dentry_lru_(add|add_tail|del|del_init) must be called with dcache_lock held.
127 */
128 static void dentry_lru_add(struct dentry *dentry)
129 {
130 list_add(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
131 dentry->d_sb->s_nr_dentry_unused++;
132 dentry_stat.nr_unused++;
133 }
134
135 static void dentry_lru_add_tail(struct dentry *dentry)
136 {
137 list_add_tail(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
138 dentry->d_sb->s_nr_dentry_unused++;
139 dentry_stat.nr_unused++;
140 }
141
142 static void dentry_lru_del(struct dentry *dentry)
143 {
144 if (!list_empty(&dentry->d_lru)) {
145 list_del(&dentry->d_lru);
146 dentry->d_sb->s_nr_dentry_unused--;
147 dentry_stat.nr_unused--;
148 }
149 }
150
151 static void dentry_lru_del_init(struct dentry *dentry)
152 {
153 if (likely(!list_empty(&dentry->d_lru))) {
154 list_del_init(&dentry->d_lru);
155 dentry->d_sb->s_nr_dentry_unused--;
156 dentry_stat.nr_unused--;
157 }
158 }
159
160 /**
161 * d_kill - kill dentry and return parent
162 * @dentry: dentry to kill
163 *
164 * The dentry must already be unhashed and removed from the LRU.
165 *
166 * If this is the root of the dentry tree, return NULL.
167 */
168 static struct dentry *d_kill(struct dentry *dentry)
169 __releases(dentry->d_lock)
170 __releases(dcache_lock)
171 {
172 struct dentry *parent;
173
174 list_del(&dentry->d_u.d_child);
175 dentry_stat.nr_dentry--; /* For d_free, below */
176 /*drops the locks, at that point nobody can reach this dentry */
177 dentry_iput(dentry);
178 if (IS_ROOT(dentry))
179 parent = NULL;
180 else
181 parent = dentry->d_parent;
182 d_free(dentry);
183 return parent;
184 }
185
186 /*
187 * This is dput
188 *
189 * This is complicated by the fact that we do not want to put
190 * dentries that are no longer on any hash chain on the unused
191 * list: we'd much rather just get rid of them immediately.
192 *
193 * However, that implies that we have to traverse the dentry
194 * tree upwards to the parents which might _also_ now be
195 * scheduled for deletion (it may have been only waiting for
196 * its last child to go away).
197 *
198 * This tail recursion is done by hand as we don't want to depend
199 * on the compiler to always get this right (gcc generally doesn't).
200 * Real recursion would eat up our stack space.
201 */
202
203 /*
204 * dput - release a dentry
205 * @dentry: dentry to release
206 *
207 * Release a dentry. This will drop the usage count and if appropriate
208 * call the dentry unlink method as well as removing it from the queues and
209 * releasing its resources. If the parent dentries were scheduled for release
210 * they too may now get deleted.
211 *
212 * no dcache lock, please.
213 */
214
215 void dput(struct dentry *dentry)
216 {
217 if (!dentry)
218 return;
219
220 repeat:
221 if (atomic_read(&dentry->d_count) == 1)
222 might_sleep();
223 if (!atomic_dec_and_lock(&dentry->d_count, &dcache_lock))
224 return;
225
226 spin_lock(&dentry->d_lock);
227 if (atomic_read(&dentry->d_count)) {
228 spin_unlock(&dentry->d_lock);
229 spin_unlock(&dcache_lock);
230 return;
231 }
232
233 /*
234 * AV: ->d_delete() is _NOT_ allowed to block now.
235 */
236 if (dentry->d_op && dentry->d_op->d_delete) {
237 if (dentry->d_op->d_delete(dentry))
238 goto unhash_it;
239 }
240 /* Unreachable? Get rid of it */
241 if (d_unhashed(dentry))
242 goto kill_it;
243 if (list_empty(&dentry->d_lru)) {
244 dentry->d_flags |= DCACHE_REFERENCED;
245 dentry_lru_add(dentry);
246 }
247 spin_unlock(&dentry->d_lock);
248 spin_unlock(&dcache_lock);
249 return;
250
251 unhash_it:
252 __d_drop(dentry);
253 kill_it:
254 /* if dentry was on the d_lru list delete it from there */
255 dentry_lru_del(dentry);
256 dentry = d_kill(dentry);
257 if (dentry)
258 goto repeat;
259 }
260
261 /**
262 * d_invalidate - invalidate a dentry
263 * @dentry: dentry to invalidate
264 *
265 * Try to invalidate the dentry if it turns out to be
266 * possible. If there are other dentries that can be
267 * reached through this one we can't delete it and we
268 * return -EBUSY. On success we return 0.
269 *
270 * no dcache lock.
271 */
272
273 int d_invalidate(struct dentry * dentry)
274 {
275 /*
276 * If it's already been dropped, return OK.
277 */
278 spin_lock(&dcache_lock);
279 if (d_unhashed(dentry)) {
280 spin_unlock(&dcache_lock);
281 return 0;
282 }
283 /*
284 * Check whether to do a partial shrink_dcache
285 * to get rid of unused child entries.
286 */
287 if (!list_empty(&dentry->d_subdirs)) {
288 spin_unlock(&dcache_lock);
289 shrink_dcache_parent(dentry);
290 spin_lock(&dcache_lock);
291 }
292
293 /*
294 * Somebody else still using it?
295 *
296 * If it's a directory, we can't drop it
297 * for fear of somebody re-populating it
298 * with children (even though dropping it
299 * would make it unreachable from the root,
300 * we might still populate it if it was a
301 * working directory or similar).
302 */
303 spin_lock(&dentry->d_lock);
304 if (atomic_read(&dentry->d_count) > 1) {
305 if (dentry->d_inode && S_ISDIR(dentry->d_inode->i_mode)) {
306 spin_unlock(&dentry->d_lock);
307 spin_unlock(&dcache_lock);
308 return -EBUSY;
309 }
310 }
311
312 __d_drop(dentry);
313 spin_unlock(&dentry->d_lock);
314 spin_unlock(&dcache_lock);
315 return 0;
316 }
317
318 /* This should be called _only_ with dcache_lock held */
319
320 static inline struct dentry * __dget_locked(struct dentry *dentry)
321 {
322 atomic_inc(&dentry->d_count);
323 dentry_lru_del_init(dentry);
324 return dentry;
325 }
326
327 struct dentry * dget_locked(struct dentry *dentry)
328 {
329 return __dget_locked(dentry);
330 }
331
332 /**
333 * d_find_alias - grab a hashed alias of inode
334 * @inode: inode in question
335 * @want_discon: flag, used by d_splice_alias, to request
336 * that only a DISCONNECTED alias be returned.
337 *
338 * If inode has a hashed alias, or is a directory and has any alias,
339 * acquire the reference to alias and return it. Otherwise return NULL.
340 * Notice that if inode is a directory there can be only one alias and
341 * it can be unhashed only if it has no children, or if it is the root
342 * of a filesystem.
343 *
344 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
345 * any other hashed alias over that one unless @want_discon is set,
346 * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
347 */
348
349 static struct dentry * __d_find_alias(struct inode *inode, int want_discon)
350 {
351 struct list_head *head, *next, *tmp;
352 struct dentry *alias, *discon_alias=NULL;
353
354 head = &inode->i_dentry;
355 next = inode->i_dentry.next;
356 while (next != head) {
357 tmp = next;
358 next = tmp->next;
359 prefetch(next);
360 alias = list_entry(tmp, struct dentry, d_alias);
361 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
362 if (IS_ROOT(alias) &&
363 (alias->d_flags & DCACHE_DISCONNECTED))
364 discon_alias = alias;
365 else if (!want_discon) {
366 __dget_locked(alias);
367 return alias;
368 }
369 }
370 }
371 if (discon_alias)
372 __dget_locked(discon_alias);
373 return discon_alias;
374 }
375
376 struct dentry * d_find_alias(struct inode *inode)
377 {
378 struct dentry *de = NULL;
379
380 if (!list_empty(&inode->i_dentry)) {
381 spin_lock(&dcache_lock);
382 de = __d_find_alias(inode, 0);
383 spin_unlock(&dcache_lock);
384 }
385 return de;
386 }
387
388 /*
389 * Try to kill dentries associated with this inode.
390 * WARNING: you must own a reference to inode.
391 */
392 void d_prune_aliases(struct inode *inode)
393 {
394 struct dentry *dentry;
395 restart:
396 spin_lock(&dcache_lock);
397 list_for_each_entry(dentry, &inode->i_dentry, d_alias) {
398 spin_lock(&dentry->d_lock);
399 if (!atomic_read(&dentry->d_count)) {
400 __dget_locked(dentry);
401 __d_drop(dentry);
402 spin_unlock(&dentry->d_lock);
403 spin_unlock(&dcache_lock);
404 dput(dentry);
405 goto restart;
406 }
407 spin_unlock(&dentry->d_lock);
408 }
409 spin_unlock(&dcache_lock);
410 }
411
412 /*
413 * Throw away a dentry - free the inode, dput the parent. This requires that
414 * the LRU list has already been removed.
415 *
416 * Try to prune ancestors as well. This is necessary to prevent
417 * quadratic behavior of shrink_dcache_parent(), but is also expected
418 * to be beneficial in reducing dentry cache fragmentation.
419 */
420 static void prune_one_dentry(struct dentry * dentry)
421 __releases(dentry->d_lock)
422 __releases(dcache_lock)
423 __acquires(dcache_lock)
424 {
425 __d_drop(dentry);
426 dentry = d_kill(dentry);
427
428 /*
429 * Prune ancestors. Locking is simpler than in dput(),
430 * because dcache_lock needs to be taken anyway.
431 */
432 spin_lock(&dcache_lock);
433 while (dentry) {
434 if (!atomic_dec_and_lock(&dentry->d_count, &dentry->d_lock))
435 return;
436
437 if (dentry->d_op && dentry->d_op->d_delete)
438 dentry->d_op->d_delete(dentry);
439 dentry_lru_del_init(dentry);
440 __d_drop(dentry);
441 dentry = d_kill(dentry);
442 spin_lock(&dcache_lock);
443 }
444 }
445
446 /*
447 * Shrink the dentry LRU on a given superblock.
448 * @sb : superblock to shrink dentry LRU.
449 * @count: If count is NULL, we prune all dentries on superblock.
450 * @flags: If flags is non-zero, we need to do special processing based on
451 * which flags are set. This means we don't need to maintain multiple
452 * similar copies of this loop.
453 */
454 static void __shrink_dcache_sb(struct super_block *sb, int *count, int flags)
455 {
456 LIST_HEAD(referenced);
457 LIST_HEAD(tmp);
458 struct dentry *dentry;
459 int cnt = 0;
460
461 BUG_ON(!sb);
462 BUG_ON((flags & DCACHE_REFERENCED) && count == NULL);
463 spin_lock(&dcache_lock);
464 if (count != NULL)
465 /* called from prune_dcache() and shrink_dcache_parent() */
466 cnt = *count;
467 restart:
468 if (count == NULL)
469 list_splice_init(&sb->s_dentry_lru, &tmp);
470 else {
471 while (!list_empty(&sb->s_dentry_lru)) {
472 dentry = list_entry(sb->s_dentry_lru.prev,
473 struct dentry, d_lru);
474 BUG_ON(dentry->d_sb != sb);
475
476 spin_lock(&dentry->d_lock);
477 /*
478 * If we are honouring the DCACHE_REFERENCED flag and
479 * the dentry has this flag set, don't free it. Clear
480 * the flag and put it back on the LRU.
481 */
482 if ((flags & DCACHE_REFERENCED)
483 && (dentry->d_flags & DCACHE_REFERENCED)) {
484 dentry->d_flags &= ~DCACHE_REFERENCED;
485 list_move(&dentry->d_lru, &referenced);
486 spin_unlock(&dentry->d_lock);
487 } else {
488 list_move_tail(&dentry->d_lru, &tmp);
489 spin_unlock(&dentry->d_lock);
490 cnt--;
491 if (!cnt)
492 break;
493 }
494 cond_resched_lock(&dcache_lock);
495 }
496 }
497 while (!list_empty(&tmp)) {
498 dentry = list_entry(tmp.prev, struct dentry, d_lru);
499 dentry_lru_del_init(dentry);
500 spin_lock(&dentry->d_lock);
501 /*
502 * We found an inuse dentry which was not removed from
503 * the LRU because of laziness during lookup. Do not free
504 * it - just keep it off the LRU list.
505 */
506 if (atomic_read(&dentry->d_count)) {
507 spin_unlock(&dentry->d_lock);
508 continue;
509 }
510 prune_one_dentry(dentry);
511 /* dentry->d_lock was dropped in prune_one_dentry() */
512 cond_resched_lock(&dcache_lock);
513 }
514 if (count == NULL && !list_empty(&sb->s_dentry_lru))
515 goto restart;
516 if (count != NULL)
517 *count = cnt;
518 if (!list_empty(&referenced))
519 list_splice(&referenced, &sb->s_dentry_lru);
520 spin_unlock(&dcache_lock);
521 }
522
523 /**
524 * prune_dcache - shrink the dcache
525 * @count: number of entries to try to free
526 *
527 * Shrink the dcache. This is done when we need more memory, or simply when we
528 * need to unmount something (at which point we need to unuse all dentries).
529 *
530 * This function may fail to free any resources if all the dentries are in use.
531 */
532 static void prune_dcache(int count)
533 {
534 struct super_block *sb;
535 int w_count;
536 int unused = dentry_stat.nr_unused;
537 int prune_ratio;
538 int pruned;
539
540 if (unused == 0 || count == 0)
541 return;
542 spin_lock(&dcache_lock);
543 restart:
544 if (count >= unused)
545 prune_ratio = 1;
546 else
547 prune_ratio = unused / count;
548 spin_lock(&sb_lock);
549 list_for_each_entry(sb, &super_blocks, s_list) {
550 if (sb->s_nr_dentry_unused == 0)
551 continue;
552 sb->s_count++;
553 /* Now, we reclaim unused dentrins with fairness.
554 * We reclaim them same percentage from each superblock.
555 * We calculate number of dentries to scan on this sb
556 * as follows, but the implementation is arranged to avoid
557 * overflows:
558 * number of dentries to scan on this sb =
559 * count * (number of dentries on this sb /
560 * number of dentries in the machine)
561 */
562 spin_unlock(&sb_lock);
563 if (prune_ratio != 1)
564 w_count = (sb->s_nr_dentry_unused / prune_ratio) + 1;
565 else
566 w_count = sb->s_nr_dentry_unused;
567 pruned = w_count;
568 /*
569 * We need to be sure this filesystem isn't being unmounted,
570 * otherwise we could race with generic_shutdown_super(), and
571 * end up holding a reference to an inode while the filesystem
572 * is unmounted. So we try to get s_umount, and make sure
573 * s_root isn't NULL.
574 */
575 if (down_read_trylock(&sb->s_umount)) {
576 if ((sb->s_root != NULL) &&
577 (!list_empty(&sb->s_dentry_lru))) {
578 spin_unlock(&dcache_lock);
579 __shrink_dcache_sb(sb, &w_count,
580 DCACHE_REFERENCED);
581 pruned -= w_count;
582 spin_lock(&dcache_lock);
583 }
584 up_read(&sb->s_umount);
585 }
586 spin_lock(&sb_lock);
587 count -= pruned;
588 /*
589 * restart only when sb is no longer on the list and
590 * we have more work to do.
591 */
592 if (__put_super_and_need_restart(sb) && count > 0) {
593 spin_unlock(&sb_lock);
594 goto restart;
595 }
596 }
597 spin_unlock(&sb_lock);
598 spin_unlock(&dcache_lock);
599 }
600
601 /**
602 * shrink_dcache_sb - shrink dcache for a superblock
603 * @sb: superblock
604 *
605 * Shrink the dcache for the specified super block. This
606 * is used to free the dcache before unmounting a file
607 * system
608 */
609 void shrink_dcache_sb(struct super_block * sb)
610 {
611 __shrink_dcache_sb(sb, NULL, 0);
612 }
613
614 /*
615 * destroy a single subtree of dentries for unmount
616 * - see the comments on shrink_dcache_for_umount() for a description of the
617 * locking
618 */
619 static void shrink_dcache_for_umount_subtree(struct dentry *dentry)
620 {
621 struct dentry *parent;
622 unsigned detached = 0;
623
624 BUG_ON(!IS_ROOT(dentry));
625
626 /* detach this root from the system */
627 spin_lock(&dcache_lock);
628 dentry_lru_del_init(dentry);
629 __d_drop(dentry);
630 spin_unlock(&dcache_lock);
631
632 for (;;) {
633 /* descend to the first leaf in the current subtree */
634 while (!list_empty(&dentry->d_subdirs)) {
635 struct dentry *loop;
636
637 /* this is a branch with children - detach all of them
638 * from the system in one go */
639 spin_lock(&dcache_lock);
640 list_for_each_entry(loop, &dentry->d_subdirs,
641 d_u.d_child) {
642 dentry_lru_del_init(loop);
643 __d_drop(loop);
644 cond_resched_lock(&dcache_lock);
645 }
646 spin_unlock(&dcache_lock);
647
648 /* move to the first child */
649 dentry = list_entry(dentry->d_subdirs.next,
650 struct dentry, d_u.d_child);
651 }
652
653 /* consume the dentries from this leaf up through its parents
654 * until we find one with children or run out altogether */
655 do {
656 struct inode *inode;
657
658 if (atomic_read(&dentry->d_count) != 0) {
659 printk(KERN_ERR
660 "BUG: Dentry %p{i=%lx,n=%s}"
661 " still in use (%d)"
662 " [unmount of %s %s]\n",
663 dentry,
664 dentry->d_inode ?
665 dentry->d_inode->i_ino : 0UL,
666 dentry->d_name.name,
667 atomic_read(&dentry->d_count),
668 dentry->d_sb->s_type->name,
669 dentry->d_sb->s_id);
670 BUG();
671 }
672
673 if (IS_ROOT(dentry))
674 parent = NULL;
675 else {
676 parent = dentry->d_parent;
677 atomic_dec(&parent->d_count);
678 }
679
680 list_del(&dentry->d_u.d_child);
681 detached++;
682
683 inode = dentry->d_inode;
684 if (inode) {
685 dentry->d_inode = NULL;
686 list_del_init(&dentry->d_alias);
687 if (dentry->d_op && dentry->d_op->d_iput)
688 dentry->d_op->d_iput(dentry, inode);
689 else
690 iput(inode);
691 }
692
693 d_free(dentry);
694
695 /* finished when we fall off the top of the tree,
696 * otherwise we ascend to the parent and move to the
697 * next sibling if there is one */
698 if (!parent)
699 goto out;
700
701 dentry = parent;
702
703 } while (list_empty(&dentry->d_subdirs));
704
705 dentry = list_entry(dentry->d_subdirs.next,
706 struct dentry, d_u.d_child);
707 }
708 out:
709 /* several dentries were freed, need to correct nr_dentry */
710 spin_lock(&dcache_lock);
711 dentry_stat.nr_dentry -= detached;
712 spin_unlock(&dcache_lock);
713 }
714
715 /*
716 * destroy the dentries attached to a superblock on unmounting
717 * - we don't need to use dentry->d_lock, and only need dcache_lock when
718 * removing the dentry from the system lists and hashes because:
719 * - the superblock is detached from all mountings and open files, so the
720 * dentry trees will not be rearranged by the VFS
721 * - s_umount is write-locked, so the memory pressure shrinker will ignore
722 * any dentries belonging to this superblock that it comes across
723 * - the filesystem itself is no longer permitted to rearrange the dentries
724 * in this superblock
725 */
726 void shrink_dcache_for_umount(struct super_block *sb)
727 {
728 struct dentry *dentry;
729
730 if (down_read_trylock(&sb->s_umount))
731 BUG();
732
733 dentry = sb->s_root;
734 sb->s_root = NULL;
735 atomic_dec(&dentry->d_count);
736 shrink_dcache_for_umount_subtree(dentry);
737
738 while (!hlist_empty(&sb->s_anon)) {
739 dentry = hlist_entry(sb->s_anon.first, struct dentry, d_hash);
740 shrink_dcache_for_umount_subtree(dentry);
741 }
742 }
743
744 /*
745 * Search for at least 1 mount point in the dentry's subdirs.
746 * We descend to the next level whenever the d_subdirs
747 * list is non-empty and continue searching.
748 */
749
750 /**
751 * have_submounts - check for mounts over a dentry
752 * @parent: dentry to check.
753 *
754 * Return true if the parent or its subdirectories contain
755 * a mount point
756 */
757
758 int have_submounts(struct dentry *parent)
759 {
760 struct dentry *this_parent = parent;
761 struct list_head *next;
762
763 spin_lock(&dcache_lock);
764 if (d_mountpoint(parent))
765 goto positive;
766 repeat:
767 next = this_parent->d_subdirs.next;
768 resume:
769 while (next != &this_parent->d_subdirs) {
770 struct list_head *tmp = next;
771 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
772 next = tmp->next;
773 /* Have we found a mount point ? */
774 if (d_mountpoint(dentry))
775 goto positive;
776 if (!list_empty(&dentry->d_subdirs)) {
777 this_parent = dentry;
778 goto repeat;
779 }
780 }
781 /*
782 * All done at this level ... ascend and resume the search.
783 */
784 if (this_parent != parent) {
785 next = this_parent->d_u.d_child.next;
786 this_parent = this_parent->d_parent;
787 goto resume;
788 }
789 spin_unlock(&dcache_lock);
790 return 0; /* No mount points found in tree */
791 positive:
792 spin_unlock(&dcache_lock);
793 return 1;
794 }
795
796 /*
797 * Search the dentry child list for the specified parent,
798 * and move any unused dentries to the end of the unused
799 * list for prune_dcache(). We descend to the next level
800 * whenever the d_subdirs list is non-empty and continue
801 * searching.
802 *
803 * It returns zero iff there are no unused children,
804 * otherwise it returns the number of children moved to
805 * the end of the unused list. This may not be the total
806 * number of unused children, because select_parent can
807 * drop the lock and return early due to latency
808 * constraints.
809 */
810 static int select_parent(struct dentry * parent)
811 {
812 struct dentry *this_parent = parent;
813 struct list_head *next;
814 int found = 0;
815
816 spin_lock(&dcache_lock);
817 repeat:
818 next = this_parent->d_subdirs.next;
819 resume:
820 while (next != &this_parent->d_subdirs) {
821 struct list_head *tmp = next;
822 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
823 next = tmp->next;
824
825 dentry_lru_del_init(dentry);
826 /*
827 * move only zero ref count dentries to the end
828 * of the unused list for prune_dcache
829 */
830 if (!atomic_read(&dentry->d_count)) {
831 dentry_lru_add_tail(dentry);
832 found++;
833 }
834
835 /*
836 * We can return to the caller if we have found some (this
837 * ensures forward progress). We'll be coming back to find
838 * the rest.
839 */
840 if (found && need_resched())
841 goto out;
842
843 /*
844 * Descend a level if the d_subdirs list is non-empty.
845 */
846 if (!list_empty(&dentry->d_subdirs)) {
847 this_parent = dentry;
848 goto repeat;
849 }
850 }
851 /*
852 * All done at this level ... ascend and resume the search.
853 */
854 if (this_parent != parent) {
855 next = this_parent->d_u.d_child.next;
856 this_parent = this_parent->d_parent;
857 goto resume;
858 }
859 out:
860 spin_unlock(&dcache_lock);
861 return found;
862 }
863
864 /**
865 * shrink_dcache_parent - prune dcache
866 * @parent: parent of entries to prune
867 *
868 * Prune the dcache to remove unused children of the parent dentry.
869 */
870
871 void shrink_dcache_parent(struct dentry * parent)
872 {
873 struct super_block *sb = parent->d_sb;
874 int found;
875
876 while ((found = select_parent(parent)) != 0)
877 __shrink_dcache_sb(sb, &found, 0);
878 }
879
880 /*
881 * Scan `nr' dentries and return the number which remain.
882 *
883 * We need to avoid reentering the filesystem if the caller is performing a
884 * GFP_NOFS allocation attempt. One example deadlock is:
885 *
886 * ext2_new_block->getblk->GFP->shrink_dcache_memory->prune_dcache->
887 * prune_one_dentry->dput->dentry_iput->iput->inode->i_sb->s_op->put_inode->
888 * ext2_discard_prealloc->ext2_free_blocks->lock_super->DEADLOCK.
889 *
890 * In this case we return -1 to tell the caller that we baled.
891 */
892 static int shrink_dcache_memory(int nr, gfp_t gfp_mask)
893 {
894 if (nr) {
895 if (!(gfp_mask & __GFP_FS))
896 return -1;
897 prune_dcache(nr);
898 }
899 return (dentry_stat.nr_unused / 100) * sysctl_vfs_cache_pressure;
900 }
901
902 static struct shrinker dcache_shrinker = {
903 .shrink = shrink_dcache_memory,
904 .seeks = DEFAULT_SEEKS,
905 };
906
907 /**
908 * d_alloc - allocate a dcache entry
909 * @parent: parent of entry to allocate
910 * @name: qstr of the name
911 *
912 * Allocates a dentry. It returns %NULL if there is insufficient memory
913 * available. On a success the dentry is returned. The name passed in is
914 * copied and the copy passed in may be reused after this call.
915 */
916
917 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
918 {
919 struct dentry *dentry;
920 char *dname;
921
922 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
923 if (!dentry)
924 return NULL;
925
926 if (name->len > DNAME_INLINE_LEN-1) {
927 dname = kmalloc(name->len + 1, GFP_KERNEL);
928 if (!dname) {
929 kmem_cache_free(dentry_cache, dentry);
930 return NULL;
931 }
932 } else {
933 dname = dentry->d_iname;
934 }
935 dentry->d_name.name = dname;
936
937 dentry->d_name.len = name->len;
938 dentry->d_name.hash = name->hash;
939 memcpy(dname, name->name, name->len);
940 dname[name->len] = 0;
941
942 atomic_set(&dentry->d_count, 1);
943 dentry->d_flags = DCACHE_UNHASHED;
944 spin_lock_init(&dentry->d_lock);
945 dentry->d_inode = NULL;
946 dentry->d_parent = NULL;
947 dentry->d_sb = NULL;
948 dentry->d_op = NULL;
949 dentry->d_fsdata = NULL;
950 dentry->d_mounted = 0;
951 INIT_HLIST_NODE(&dentry->d_hash);
952 INIT_LIST_HEAD(&dentry->d_lru);
953 INIT_LIST_HEAD(&dentry->d_subdirs);
954 INIT_LIST_HEAD(&dentry->d_alias);
955
956 if (parent) {
957 dentry->d_parent = dget(parent);
958 dentry->d_sb = parent->d_sb;
959 } else {
960 INIT_LIST_HEAD(&dentry->d_u.d_child);
961 }
962
963 spin_lock(&dcache_lock);
964 if (parent)
965 list_add(&dentry->d_u.d_child, &parent->d_subdirs);
966 dentry_stat.nr_dentry++;
967 spin_unlock(&dcache_lock);
968
969 return dentry;
970 }
971
972 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
973 {
974 struct qstr q;
975
976 q.name = name;
977 q.len = strlen(name);
978 q.hash = full_name_hash(q.name, q.len);
979 return d_alloc(parent, &q);
980 }
981 EXPORT_SYMBOL(d_alloc_name);
982
983 /* the caller must hold dcache_lock */
984 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
985 {
986 if (inode)
987 list_add(&dentry->d_alias, &inode->i_dentry);
988 dentry->d_inode = inode;
989 fsnotify_d_instantiate(dentry, inode);
990 }
991
992 /**
993 * d_instantiate - fill in inode information for a dentry
994 * @entry: dentry to complete
995 * @inode: inode to attach to this dentry
996 *
997 * Fill in inode information in the entry.
998 *
999 * This turns negative dentries into productive full members
1000 * of society.
1001 *
1002 * NOTE! This assumes that the inode count has been incremented
1003 * (or otherwise set) by the caller to indicate that it is now
1004 * in use by the dcache.
1005 */
1006
1007 void d_instantiate(struct dentry *entry, struct inode * inode)
1008 {
1009 BUG_ON(!list_empty(&entry->d_alias));
1010 spin_lock(&dcache_lock);
1011 __d_instantiate(entry, inode);
1012 spin_unlock(&dcache_lock);
1013 security_d_instantiate(entry, inode);
1014 }
1015
1016 /**
1017 * d_instantiate_unique - instantiate a non-aliased dentry
1018 * @entry: dentry to instantiate
1019 * @inode: inode to attach to this dentry
1020 *
1021 * Fill in inode information in the entry. On success, it returns NULL.
1022 * If an unhashed alias of "entry" already exists, then we return the
1023 * aliased dentry instead and drop one reference to inode.
1024 *
1025 * Note that in order to avoid conflicts with rename() etc, the caller
1026 * had better be holding the parent directory semaphore.
1027 *
1028 * This also assumes that the inode count has been incremented
1029 * (or otherwise set) by the caller to indicate that it is now
1030 * in use by the dcache.
1031 */
1032 static struct dentry *__d_instantiate_unique(struct dentry *entry,
1033 struct inode *inode)
1034 {
1035 struct dentry *alias;
1036 int len = entry->d_name.len;
1037 const char *name = entry->d_name.name;
1038 unsigned int hash = entry->d_name.hash;
1039
1040 if (!inode) {
1041 __d_instantiate(entry, NULL);
1042 return NULL;
1043 }
1044
1045 list_for_each_entry(alias, &inode->i_dentry, d_alias) {
1046 struct qstr *qstr = &alias->d_name;
1047
1048 if (qstr->hash != hash)
1049 continue;
1050 if (alias->d_parent != entry->d_parent)
1051 continue;
1052 if (qstr->len != len)
1053 continue;
1054 if (memcmp(qstr->name, name, len))
1055 continue;
1056 dget_locked(alias);
1057 return alias;
1058 }
1059
1060 __d_instantiate(entry, inode);
1061 return NULL;
1062 }
1063
1064 struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1065 {
1066 struct dentry *result;
1067
1068 BUG_ON(!list_empty(&entry->d_alias));
1069
1070 spin_lock(&dcache_lock);
1071 result = __d_instantiate_unique(entry, inode);
1072 spin_unlock(&dcache_lock);
1073
1074 if (!result) {
1075 security_d_instantiate(entry, inode);
1076 return NULL;
1077 }
1078
1079 BUG_ON(!d_unhashed(result));
1080 iput(inode);
1081 return result;
1082 }
1083
1084 EXPORT_SYMBOL(d_instantiate_unique);
1085
1086 /**
1087 * d_alloc_root - allocate root dentry
1088 * @root_inode: inode to allocate the root for
1089 *
1090 * Allocate a root ("/") dentry for the inode given. The inode is
1091 * instantiated and returned. %NULL is returned if there is insufficient
1092 * memory or the inode passed is %NULL.
1093 */
1094
1095 struct dentry * d_alloc_root(struct inode * root_inode)
1096 {
1097 struct dentry *res = NULL;
1098
1099 if (root_inode) {
1100 static const struct qstr name = { .name = "/", .len = 1 };
1101
1102 res = d_alloc(NULL, &name);
1103 if (res) {
1104 res->d_sb = root_inode->i_sb;
1105 res->d_parent = res;
1106 d_instantiate(res, root_inode);
1107 }
1108 }
1109 return res;
1110 }
1111
1112 static inline struct hlist_head *d_hash(struct dentry *parent,
1113 unsigned long hash)
1114 {
1115 hash += ((unsigned long) parent ^ GOLDEN_RATIO_PRIME) / L1_CACHE_BYTES;
1116 hash = hash ^ ((hash ^ GOLDEN_RATIO_PRIME) >> D_HASHBITS);
1117 return dentry_hashtable + (hash & D_HASHMASK);
1118 }
1119
1120 /**
1121 * d_obtain_alias - find or allocate a dentry for a given inode
1122 * @inode: inode to allocate the dentry for
1123 *
1124 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1125 * similar open by handle operations. The returned dentry may be anonymous,
1126 * or may have a full name (if the inode was already in the cache).
1127 *
1128 * When called on a directory inode, we must ensure that the inode only ever
1129 * has one dentry. If a dentry is found, that is returned instead of
1130 * allocating a new one.
1131 *
1132 * On successful return, the reference to the inode has been transferred
1133 * to the dentry. In case of an error the reference on the inode is released.
1134 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1135 * be passed in and will be the error will be propagate to the return value,
1136 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1137 */
1138 struct dentry *d_obtain_alias(struct inode *inode)
1139 {
1140 static const struct qstr anonstring = { .name = "" };
1141 struct dentry *tmp;
1142 struct dentry *res;
1143
1144 if (!inode)
1145 return ERR_PTR(-ESTALE);
1146 if (IS_ERR(inode))
1147 return ERR_CAST(inode);
1148
1149 res = d_find_alias(inode);
1150 if (res)
1151 goto out_iput;
1152
1153 tmp = d_alloc(NULL, &anonstring);
1154 if (!tmp) {
1155 res = ERR_PTR(-ENOMEM);
1156 goto out_iput;
1157 }
1158 tmp->d_parent = tmp; /* make sure dput doesn't croak */
1159
1160 spin_lock(&dcache_lock);
1161 res = __d_find_alias(inode, 0);
1162 if (res) {
1163 spin_unlock(&dcache_lock);
1164 dput(tmp);
1165 goto out_iput;
1166 }
1167
1168 /* attach a disconnected dentry */
1169 spin_lock(&tmp->d_lock);
1170 tmp->d_sb = inode->i_sb;
1171 tmp->d_inode = inode;
1172 tmp->d_flags |= DCACHE_DISCONNECTED;
1173 tmp->d_flags &= ~DCACHE_UNHASHED;
1174 list_add(&tmp->d_alias, &inode->i_dentry);
1175 hlist_add_head(&tmp->d_hash, &inode->i_sb->s_anon);
1176 spin_unlock(&tmp->d_lock);
1177
1178 spin_unlock(&dcache_lock);
1179 return tmp;
1180
1181 out_iput:
1182 iput(inode);
1183 return res;
1184 }
1185 EXPORT_SYMBOL(d_obtain_alias);
1186
1187 /**
1188 * d_splice_alias - splice a disconnected dentry into the tree if one exists
1189 * @inode: the inode which may have a disconnected dentry
1190 * @dentry: a negative dentry which we want to point to the inode.
1191 *
1192 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1193 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1194 * and return it, else simply d_add the inode to the dentry and return NULL.
1195 *
1196 * This is needed in the lookup routine of any filesystem that is exportable
1197 * (via knfsd) so that we can build dcache paths to directories effectively.
1198 *
1199 * If a dentry was found and moved, then it is returned. Otherwise NULL
1200 * is returned. This matches the expected return value of ->lookup.
1201 *
1202 */
1203 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
1204 {
1205 struct dentry *new = NULL;
1206
1207 if (inode && S_ISDIR(inode->i_mode)) {
1208 spin_lock(&dcache_lock);
1209 new = __d_find_alias(inode, 1);
1210 if (new) {
1211 BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED));
1212 spin_unlock(&dcache_lock);
1213 security_d_instantiate(new, inode);
1214 d_rehash(dentry);
1215 d_move(new, dentry);
1216 iput(inode);
1217 } else {
1218 /* already taking dcache_lock, so d_add() by hand */
1219 __d_instantiate(dentry, inode);
1220 spin_unlock(&dcache_lock);
1221 security_d_instantiate(dentry, inode);
1222 d_rehash(dentry);
1223 }
1224 } else
1225 d_add(dentry, inode);
1226 return new;
1227 }
1228
1229 /**
1230 * d_add_ci - lookup or allocate new dentry with case-exact name
1231 * @inode: the inode case-insensitive lookup has found
1232 * @dentry: the negative dentry that was passed to the parent's lookup func
1233 * @name: the case-exact name to be associated with the returned dentry
1234 *
1235 * This is to avoid filling the dcache with case-insensitive names to the
1236 * same inode, only the actual correct case is stored in the dcache for
1237 * case-insensitive filesystems.
1238 *
1239 * For a case-insensitive lookup match and if the the case-exact dentry
1240 * already exists in in the dcache, use it and return it.
1241 *
1242 * If no entry exists with the exact case name, allocate new dentry with
1243 * the exact case, and return the spliced entry.
1244 */
1245 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
1246 struct qstr *name)
1247 {
1248 int error;
1249 struct dentry *found;
1250 struct dentry *new;
1251
1252 /*
1253 * First check if a dentry matching the name already exists,
1254 * if not go ahead and create it now.
1255 */
1256 found = d_hash_and_lookup(dentry->d_parent, name);
1257 if (!found) {
1258 new = d_alloc(dentry->d_parent, name);
1259 if (!new) {
1260 error = -ENOMEM;
1261 goto err_out;
1262 }
1263
1264 found = d_splice_alias(inode, new);
1265 if (found) {
1266 dput(new);
1267 return found;
1268 }
1269 return new;
1270 }
1271
1272 /*
1273 * If a matching dentry exists, and it's not negative use it.
1274 *
1275 * Decrement the reference count to balance the iget() done
1276 * earlier on.
1277 */
1278 if (found->d_inode) {
1279 if (unlikely(found->d_inode != inode)) {
1280 /* This can't happen because bad inodes are unhashed. */
1281 BUG_ON(!is_bad_inode(inode));
1282 BUG_ON(!is_bad_inode(found->d_inode));
1283 }
1284 iput(inode);
1285 return found;
1286 }
1287
1288 /*
1289 * Negative dentry: instantiate it unless the inode is a directory and
1290 * already has a dentry.
1291 */
1292 spin_lock(&dcache_lock);
1293 if (!S_ISDIR(inode->i_mode) || list_empty(&inode->i_dentry)) {
1294 __d_instantiate(found, inode);
1295 spin_unlock(&dcache_lock);
1296 security_d_instantiate(found, inode);
1297 return found;
1298 }
1299
1300 /*
1301 * In case a directory already has a (disconnected) entry grab a
1302 * reference to it, move it in place and use it.
1303 */
1304 new = list_entry(inode->i_dentry.next, struct dentry, d_alias);
1305 dget_locked(new);
1306 spin_unlock(&dcache_lock);
1307 security_d_instantiate(found, inode);
1308 d_move(new, found);
1309 iput(inode);
1310 dput(found);
1311 return new;
1312
1313 err_out:
1314 iput(inode);
1315 return ERR_PTR(error);
1316 }
1317
1318 /**
1319 * d_lookup - search for a dentry
1320 * @parent: parent dentry
1321 * @name: qstr of name we wish to find
1322 *
1323 * Searches the children of the parent dentry for the name in question. If
1324 * the dentry is found its reference count is incremented and the dentry
1325 * is returned. The caller must use dput to free the entry when it has
1326 * finished using it. %NULL is returned on failure.
1327 *
1328 * __d_lookup is dcache_lock free. The hash list is protected using RCU.
1329 * Memory barriers are used while updating and doing lockless traversal.
1330 * To avoid races with d_move while rename is happening, d_lock is used.
1331 *
1332 * Overflows in memcmp(), while d_move, are avoided by keeping the length
1333 * and name pointer in one structure pointed by d_qstr.
1334 *
1335 * rcu_read_lock() and rcu_read_unlock() are used to disable preemption while
1336 * lookup is going on.
1337 *
1338 * The dentry unused LRU is not updated even if lookup finds the required dentry
1339 * in there. It is updated in places such as prune_dcache, shrink_dcache_sb,
1340 * select_parent and __dget_locked. This laziness saves lookup from dcache_lock
1341 * acquisition.
1342 *
1343 * d_lookup() is protected against the concurrent renames in some unrelated
1344 * directory using the seqlockt_t rename_lock.
1345 */
1346
1347 struct dentry * d_lookup(struct dentry * parent, struct qstr * name)
1348 {
1349 struct dentry * dentry = NULL;
1350 unsigned long seq;
1351
1352 do {
1353 seq = read_seqbegin(&rename_lock);
1354 dentry = __d_lookup(parent, name);
1355 if (dentry)
1356 break;
1357 } while (read_seqretry(&rename_lock, seq));
1358 return dentry;
1359 }
1360
1361 struct dentry * __d_lookup(struct dentry * parent, struct qstr * name)
1362 {
1363 unsigned int len = name->len;
1364 unsigned int hash = name->hash;
1365 const unsigned char *str = name->name;
1366 struct hlist_head *head = d_hash(parent,hash);
1367 struct dentry *found = NULL;
1368 struct hlist_node *node;
1369 struct dentry *dentry;
1370
1371 rcu_read_lock();
1372
1373 hlist_for_each_entry_rcu(dentry, node, head, d_hash) {
1374 struct qstr *qstr;
1375
1376 if (dentry->d_name.hash != hash)
1377 continue;
1378 if (dentry->d_parent != parent)
1379 continue;
1380
1381 spin_lock(&dentry->d_lock);
1382
1383 /*
1384 * Recheck the dentry after taking the lock - d_move may have
1385 * changed things. Don't bother checking the hash because we're
1386 * about to compare the whole name anyway.
1387 */
1388 if (dentry->d_parent != parent)
1389 goto next;
1390
1391 /* non-existing due to RCU? */
1392 if (d_unhashed(dentry))
1393 goto next;
1394
1395 /*
1396 * It is safe to compare names since d_move() cannot
1397 * change the qstr (protected by d_lock).
1398 */
1399 qstr = &dentry->d_name;
1400 if (parent->d_op && parent->d_op->d_compare) {
1401 if (parent->d_op->d_compare(parent, qstr, name))
1402 goto next;
1403 } else {
1404 if (qstr->len != len)
1405 goto next;
1406 if (memcmp(qstr->name, str, len))
1407 goto next;
1408 }
1409
1410 atomic_inc(&dentry->d_count);
1411 found = dentry;
1412 spin_unlock(&dentry->d_lock);
1413 break;
1414 next:
1415 spin_unlock(&dentry->d_lock);
1416 }
1417 rcu_read_unlock();
1418
1419 return found;
1420 }
1421
1422 /**
1423 * d_hash_and_lookup - hash the qstr then search for a dentry
1424 * @dir: Directory to search in
1425 * @name: qstr of name we wish to find
1426 *
1427 * On hash failure or on lookup failure NULL is returned.
1428 */
1429 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
1430 {
1431 struct dentry *dentry = NULL;
1432
1433 /*
1434 * Check for a fs-specific hash function. Note that we must
1435 * calculate the standard hash first, as the d_op->d_hash()
1436 * routine may choose to leave the hash value unchanged.
1437 */
1438 name->hash = full_name_hash(name->name, name->len);
1439 if (dir->d_op && dir->d_op->d_hash) {
1440 if (dir->d_op->d_hash(dir, name) < 0)
1441 goto out;
1442 }
1443 dentry = d_lookup(dir, name);
1444 out:
1445 return dentry;
1446 }
1447
1448 /**
1449 * d_validate - verify dentry provided from insecure source
1450 * @dentry: The dentry alleged to be valid child of @dparent
1451 * @dparent: The parent dentry (known to be valid)
1452 *
1453 * An insecure source has sent us a dentry, here we verify it and dget() it.
1454 * This is used by ncpfs in its readdir implementation.
1455 * Zero is returned in the dentry is invalid.
1456 */
1457
1458 int d_validate(struct dentry *dentry, struct dentry *dparent)
1459 {
1460 struct hlist_head *base;
1461 struct hlist_node *lhp;
1462
1463 /* Check whether the ptr might be valid at all.. */
1464 if (!kmem_ptr_validate(dentry_cache, dentry))
1465 goto out;
1466
1467 if (dentry->d_parent != dparent)
1468 goto out;
1469
1470 spin_lock(&dcache_lock);
1471 base = d_hash(dparent, dentry->d_name.hash);
1472 hlist_for_each(lhp,base) {
1473 /* hlist_for_each_entry_rcu() not required for d_hash list
1474 * as it is parsed under dcache_lock
1475 */
1476 if (dentry == hlist_entry(lhp, struct dentry, d_hash)) {
1477 __dget_locked(dentry);
1478 spin_unlock(&dcache_lock);
1479 return 1;
1480 }
1481 }
1482 spin_unlock(&dcache_lock);
1483 out:
1484 return 0;
1485 }
1486
1487 /*
1488 * When a file is deleted, we have two options:
1489 * - turn this dentry into a negative dentry
1490 * - unhash this dentry and free it.
1491 *
1492 * Usually, we want to just turn this into
1493 * a negative dentry, but if anybody else is
1494 * currently using the dentry or the inode
1495 * we can't do that and we fall back on removing
1496 * it from the hash queues and waiting for
1497 * it to be deleted later when it has no users
1498 */
1499
1500 /**
1501 * d_delete - delete a dentry
1502 * @dentry: The dentry to delete
1503 *
1504 * Turn the dentry into a negative dentry if possible, otherwise
1505 * remove it from the hash queues so it can be deleted later
1506 */
1507
1508 void d_delete(struct dentry * dentry)
1509 {
1510 int isdir = 0;
1511 /*
1512 * Are we the only user?
1513 */
1514 spin_lock(&dcache_lock);
1515 spin_lock(&dentry->d_lock);
1516 isdir = S_ISDIR(dentry->d_inode->i_mode);
1517 if (atomic_read(&dentry->d_count) == 1) {
1518 dentry_iput(dentry);
1519 fsnotify_nameremove(dentry, isdir);
1520 return;
1521 }
1522
1523 if (!d_unhashed(dentry))
1524 __d_drop(dentry);
1525
1526 spin_unlock(&dentry->d_lock);
1527 spin_unlock(&dcache_lock);
1528
1529 fsnotify_nameremove(dentry, isdir);
1530 }
1531
1532 static void __d_rehash(struct dentry * entry, struct hlist_head *list)
1533 {
1534
1535 entry->d_flags &= ~DCACHE_UNHASHED;
1536 hlist_add_head_rcu(&entry->d_hash, list);
1537 }
1538
1539 static void _d_rehash(struct dentry * entry)
1540 {
1541 __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
1542 }
1543
1544 /**
1545 * d_rehash - add an entry back to the hash
1546 * @entry: dentry to add to the hash
1547 *
1548 * Adds a dentry to the hash according to its name.
1549 */
1550
1551 void d_rehash(struct dentry * entry)
1552 {
1553 spin_lock(&dcache_lock);
1554 spin_lock(&entry->d_lock);
1555 _d_rehash(entry);
1556 spin_unlock(&entry->d_lock);
1557 spin_unlock(&dcache_lock);
1558 }
1559
1560 /*
1561 * When switching names, the actual string doesn't strictly have to
1562 * be preserved in the target - because we're dropping the target
1563 * anyway. As such, we can just do a simple memcpy() to copy over
1564 * the new name before we switch.
1565 *
1566 * Note that we have to be a lot more careful about getting the hash
1567 * switched - we have to switch the hash value properly even if it
1568 * then no longer matches the actual (corrupted) string of the target.
1569 * The hash value has to match the hash queue that the dentry is on..
1570 */
1571 static void switch_names(struct dentry *dentry, struct dentry *target)
1572 {
1573 if (dname_external(target)) {
1574 if (dname_external(dentry)) {
1575 /*
1576 * Both external: swap the pointers
1577 */
1578 swap(target->d_name.name, dentry->d_name.name);
1579 } else {
1580 /*
1581 * dentry:internal, target:external. Steal target's
1582 * storage and make target internal.
1583 */
1584 memcpy(target->d_iname, dentry->d_name.name,
1585 dentry->d_name.len + 1);
1586 dentry->d_name.name = target->d_name.name;
1587 target->d_name.name = target->d_iname;
1588 }
1589 } else {
1590 if (dname_external(dentry)) {
1591 /*
1592 * dentry:external, target:internal. Give dentry's
1593 * storage to target and make dentry internal
1594 */
1595 memcpy(dentry->d_iname, target->d_name.name,
1596 target->d_name.len + 1);
1597 target->d_name.name = dentry->d_name.name;
1598 dentry->d_name.name = dentry->d_iname;
1599 } else {
1600 /*
1601 * Both are internal. Just copy target to dentry
1602 */
1603 memcpy(dentry->d_iname, target->d_name.name,
1604 target->d_name.len + 1);
1605 dentry->d_name.len = target->d_name.len;
1606 return;
1607 }
1608 }
1609 swap(dentry->d_name.len, target->d_name.len);
1610 }
1611
1612 /*
1613 * We cannibalize "target" when moving dentry on top of it,
1614 * because it's going to be thrown away anyway. We could be more
1615 * polite about it, though.
1616 *
1617 * This forceful removal will result in ugly /proc output if
1618 * somebody holds a file open that got deleted due to a rename.
1619 * We could be nicer about the deleted file, and let it show
1620 * up under the name it had before it was deleted rather than
1621 * under the original name of the file that was moved on top of it.
1622 */
1623
1624 /*
1625 * d_move_locked - move a dentry
1626 * @dentry: entry to move
1627 * @target: new dentry
1628 *
1629 * Update the dcache to reflect the move of a file name. Negative
1630 * dcache entries should not be moved in this way.
1631 */
1632 static void d_move_locked(struct dentry * dentry, struct dentry * target)
1633 {
1634 struct hlist_head *list;
1635
1636 if (!dentry->d_inode)
1637 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
1638
1639 write_seqlock(&rename_lock);
1640 /*
1641 * XXXX: do we really need to take target->d_lock?
1642 */
1643 if (target < dentry) {
1644 spin_lock(&target->d_lock);
1645 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1646 } else {
1647 spin_lock(&dentry->d_lock);
1648 spin_lock_nested(&target->d_lock, DENTRY_D_LOCK_NESTED);
1649 }
1650
1651 /* Move the dentry to the target hash queue, if on different bucket */
1652 if (d_unhashed(dentry))
1653 goto already_unhashed;
1654
1655 hlist_del_rcu(&dentry->d_hash);
1656
1657 already_unhashed:
1658 list = d_hash(target->d_parent, target->d_name.hash);
1659 __d_rehash(dentry, list);
1660
1661 /* Unhash the target: dput() will then get rid of it */
1662 __d_drop(target);
1663
1664 list_del(&dentry->d_u.d_child);
1665 list_del(&target->d_u.d_child);
1666
1667 /* Switch the names.. */
1668 switch_names(dentry, target);
1669 swap(dentry->d_name.hash, target->d_name.hash);
1670
1671 /* ... and switch the parents */
1672 if (IS_ROOT(dentry)) {
1673 dentry->d_parent = target->d_parent;
1674 target->d_parent = target;
1675 INIT_LIST_HEAD(&target->d_u.d_child);
1676 } else {
1677 swap(dentry->d_parent, target->d_parent);
1678
1679 /* And add them back to the (new) parent lists */
1680 list_add(&target->d_u.d_child, &target->d_parent->d_subdirs);
1681 }
1682
1683 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
1684 spin_unlock(&target->d_lock);
1685 fsnotify_d_move(dentry);
1686 spin_unlock(&dentry->d_lock);
1687 write_sequnlock(&rename_lock);
1688 }
1689
1690 /**
1691 * d_move - move a dentry
1692 * @dentry: entry to move
1693 * @target: new dentry
1694 *
1695 * Update the dcache to reflect the move of a file name. Negative
1696 * dcache entries should not be moved in this way.
1697 */
1698
1699 void d_move(struct dentry * dentry, struct dentry * target)
1700 {
1701 spin_lock(&dcache_lock);
1702 d_move_locked(dentry, target);
1703 spin_unlock(&dcache_lock);
1704 }
1705
1706 /**
1707 * d_ancestor - search for an ancestor
1708 * @p1: ancestor dentry
1709 * @p2: child dentry
1710 *
1711 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
1712 * an ancestor of p2, else NULL.
1713 */
1714 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
1715 {
1716 struct dentry *p;
1717
1718 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
1719 if (p->d_parent == p1)
1720 return p;
1721 }
1722 return NULL;
1723 }
1724
1725 /*
1726 * This helper attempts to cope with remotely renamed directories
1727 *
1728 * It assumes that the caller is already holding
1729 * dentry->d_parent->d_inode->i_mutex and the dcache_lock
1730 *
1731 * Note: If ever the locking in lock_rename() changes, then please
1732 * remember to update this too...
1733 */
1734 static struct dentry *__d_unalias(struct dentry *dentry, struct dentry *alias)
1735 __releases(dcache_lock)
1736 {
1737 struct mutex *m1 = NULL, *m2 = NULL;
1738 struct dentry *ret;
1739
1740 /* If alias and dentry share a parent, then no extra locks required */
1741 if (alias->d_parent == dentry->d_parent)
1742 goto out_unalias;
1743
1744 /* Check for loops */
1745 ret = ERR_PTR(-ELOOP);
1746 if (d_ancestor(alias, dentry))
1747 goto out_err;
1748
1749 /* See lock_rename() */
1750 ret = ERR_PTR(-EBUSY);
1751 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
1752 goto out_err;
1753 m1 = &dentry->d_sb->s_vfs_rename_mutex;
1754 if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
1755 goto out_err;
1756 m2 = &alias->d_parent->d_inode->i_mutex;
1757 out_unalias:
1758 d_move_locked(alias, dentry);
1759 ret = alias;
1760 out_err:
1761 spin_unlock(&dcache_lock);
1762 if (m2)
1763 mutex_unlock(m2);
1764 if (m1)
1765 mutex_unlock(m1);
1766 return ret;
1767 }
1768
1769 /*
1770 * Prepare an anonymous dentry for life in the superblock's dentry tree as a
1771 * named dentry in place of the dentry to be replaced.
1772 */
1773 static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon)
1774 {
1775 struct dentry *dparent, *aparent;
1776
1777 switch_names(dentry, anon);
1778 swap(dentry->d_name.hash, anon->d_name.hash);
1779
1780 dparent = dentry->d_parent;
1781 aparent = anon->d_parent;
1782
1783 dentry->d_parent = (aparent == anon) ? dentry : aparent;
1784 list_del(&dentry->d_u.d_child);
1785 if (!IS_ROOT(dentry))
1786 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
1787 else
1788 INIT_LIST_HEAD(&dentry->d_u.d_child);
1789
1790 anon->d_parent = (dparent == dentry) ? anon : dparent;
1791 list_del(&anon->d_u.d_child);
1792 if (!IS_ROOT(anon))
1793 list_add(&anon->d_u.d_child, &anon->d_parent->d_subdirs);
1794 else
1795 INIT_LIST_HEAD(&anon->d_u.d_child);
1796
1797 anon->d_flags &= ~DCACHE_DISCONNECTED;
1798 }
1799
1800 /**
1801 * d_materialise_unique - introduce an inode into the tree
1802 * @dentry: candidate dentry
1803 * @inode: inode to bind to the dentry, to which aliases may be attached
1804 *
1805 * Introduces an dentry into the tree, substituting an extant disconnected
1806 * root directory alias in its place if there is one
1807 */
1808 struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
1809 {
1810 struct dentry *actual;
1811
1812 BUG_ON(!d_unhashed(dentry));
1813
1814 spin_lock(&dcache_lock);
1815
1816 if (!inode) {
1817 actual = dentry;
1818 __d_instantiate(dentry, NULL);
1819 goto found_lock;
1820 }
1821
1822 if (S_ISDIR(inode->i_mode)) {
1823 struct dentry *alias;
1824
1825 /* Does an aliased dentry already exist? */
1826 alias = __d_find_alias(inode, 0);
1827 if (alias) {
1828 actual = alias;
1829 /* Is this an anonymous mountpoint that we could splice
1830 * into our tree? */
1831 if (IS_ROOT(alias)) {
1832 spin_lock(&alias->d_lock);
1833 __d_materialise_dentry(dentry, alias);
1834 __d_drop(alias);
1835 goto found;
1836 }
1837 /* Nope, but we must(!) avoid directory aliasing */
1838 actual = __d_unalias(dentry, alias);
1839 if (IS_ERR(actual))
1840 dput(alias);
1841 goto out_nolock;
1842 }
1843 }
1844
1845 /* Add a unique reference */
1846 actual = __d_instantiate_unique(dentry, inode);
1847 if (!actual)
1848 actual = dentry;
1849 else if (unlikely(!d_unhashed(actual)))
1850 goto shouldnt_be_hashed;
1851
1852 found_lock:
1853 spin_lock(&actual->d_lock);
1854 found:
1855 _d_rehash(actual);
1856 spin_unlock(&actual->d_lock);
1857 spin_unlock(&dcache_lock);
1858 out_nolock:
1859 if (actual == dentry) {
1860 security_d_instantiate(dentry, inode);
1861 return NULL;
1862 }
1863
1864 iput(inode);
1865 return actual;
1866
1867 shouldnt_be_hashed:
1868 spin_unlock(&dcache_lock);
1869 BUG();
1870 }
1871
1872 static int prepend(char **buffer, int *buflen, const char *str, int namelen)
1873 {
1874 *buflen -= namelen;
1875 if (*buflen < 0)
1876 return -ENAMETOOLONG;
1877 *buffer -= namelen;
1878 memcpy(*buffer, str, namelen);
1879 return 0;
1880 }
1881
1882 static int prepend_name(char **buffer, int *buflen, struct qstr *name)
1883 {
1884 return prepend(buffer, buflen, name->name, name->len);
1885 }
1886
1887 /**
1888 * __d_path - return the path of a dentry
1889 * @path: the dentry/vfsmount to report
1890 * @root: root vfsmnt/dentry (may be modified by this function)
1891 * @buffer: buffer to return value in
1892 * @buflen: buffer length
1893 *
1894 * Convert a dentry into an ASCII path name. If the entry has been deleted
1895 * the string " (deleted)" is appended. Note that this is ambiguous.
1896 *
1897 * Returns a pointer into the buffer or an error code if the
1898 * path was too long.
1899 *
1900 * "buflen" should be positive. Caller holds the dcache_lock.
1901 *
1902 * If path is not reachable from the supplied root, then the value of
1903 * root is changed (without modifying refcounts).
1904 */
1905 char *__d_path(const struct path *path, struct path *root,
1906 char *buffer, int buflen)
1907 {
1908 struct dentry *dentry = path->dentry;
1909 struct vfsmount *vfsmnt = path->mnt;
1910 char *end = buffer + buflen;
1911 char *retval;
1912
1913 spin_lock(&vfsmount_lock);
1914 prepend(&end, &buflen, "\0", 1);
1915 if (d_unlinked(dentry) &&
1916 (prepend(&end, &buflen, " (deleted)", 10) != 0))
1917 goto Elong;
1918
1919 if (buflen < 1)
1920 goto Elong;
1921 /* Get '/' right */
1922 retval = end-1;
1923 *retval = '/';
1924
1925 for (;;) {
1926 struct dentry * parent;
1927
1928 if (dentry == root->dentry && vfsmnt == root->mnt)
1929 break;
1930 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
1931 /* Global root? */
1932 if (vfsmnt->mnt_parent == vfsmnt) {
1933 goto global_root;
1934 }
1935 dentry = vfsmnt->mnt_mountpoint;
1936 vfsmnt = vfsmnt->mnt_parent;
1937 continue;
1938 }
1939 parent = dentry->d_parent;
1940 prefetch(parent);
1941 if ((prepend_name(&end, &buflen, &dentry->d_name) != 0) ||
1942 (prepend(&end, &buflen, "/", 1) != 0))
1943 goto Elong;
1944 retval = end;
1945 dentry = parent;
1946 }
1947
1948 out:
1949 spin_unlock(&vfsmount_lock);
1950 return retval;
1951
1952 global_root:
1953 retval += 1; /* hit the slash */
1954 if (prepend_name(&retval, &buflen, &dentry->d_name) != 0)
1955 goto Elong;
1956 root->mnt = vfsmnt;
1957 root->dentry = dentry;
1958 goto out;
1959
1960 Elong:
1961 retval = ERR_PTR(-ENAMETOOLONG);
1962 goto out;
1963 }
1964
1965 /**
1966 * d_path - return the path of a dentry
1967 * @path: path to report
1968 * @buf: buffer to return value in
1969 * @buflen: buffer length
1970 *
1971 * Convert a dentry into an ASCII path name. If the entry has been deleted
1972 * the string " (deleted)" is appended. Note that this is ambiguous.
1973 *
1974 * Returns a pointer into the buffer or an error code if the path was
1975 * too long. Note: Callers should use the returned pointer, not the passed
1976 * in buffer, to use the name! The implementation often starts at an offset
1977 * into the buffer, and may leave 0 bytes at the start.
1978 *
1979 * "buflen" should be positive.
1980 */
1981 char *d_path(const struct path *path, char *buf, int buflen)
1982 {
1983 char *res;
1984 struct path root;
1985 struct path tmp;
1986
1987 /*
1988 * We have various synthetic filesystems that never get mounted. On
1989 * these filesystems dentries are never used for lookup purposes, and
1990 * thus don't need to be hashed. They also don't need a name until a
1991 * user wants to identify the object in /proc/pid/fd/. The little hack
1992 * below allows us to generate a name for these objects on demand:
1993 */
1994 if (path->dentry->d_op && path->dentry->d_op->d_dname)
1995 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
1996
1997 read_lock(&current->fs->lock);
1998 root = current->fs->root;
1999 path_get(&root);
2000 read_unlock(&current->fs->lock);
2001 spin_lock(&dcache_lock);
2002 tmp = root;
2003 res = __d_path(path, &tmp, buf, buflen);
2004 spin_unlock(&dcache_lock);
2005 path_put(&root);
2006 return res;
2007 }
2008
2009 /*
2010 * Helper function for dentry_operations.d_dname() members
2011 */
2012 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
2013 const char *fmt, ...)
2014 {
2015 va_list args;
2016 char temp[64];
2017 int sz;
2018
2019 va_start(args, fmt);
2020 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
2021 va_end(args);
2022
2023 if (sz > sizeof(temp) || sz > buflen)
2024 return ERR_PTR(-ENAMETOOLONG);
2025
2026 buffer += buflen - sz;
2027 return memcpy(buffer, temp, sz);
2028 }
2029
2030 /*
2031 * Write full pathname from the root of the filesystem into the buffer.
2032 */
2033 char *dentry_path(struct dentry *dentry, char *buf, int buflen)
2034 {
2035 char *end = buf + buflen;
2036 char *retval;
2037
2038 spin_lock(&dcache_lock);
2039 prepend(&end, &buflen, "\0", 1);
2040 if (d_unlinked(dentry) &&
2041 (prepend(&end, &buflen, "//deleted", 9) != 0))
2042 goto Elong;
2043 if (buflen < 1)
2044 goto Elong;
2045 /* Get '/' right */
2046 retval = end-1;
2047 *retval = '/';
2048
2049 while (!IS_ROOT(dentry)) {
2050 struct dentry *parent = dentry->d_parent;
2051
2052 prefetch(parent);
2053 if ((prepend_name(&end, &buflen, &dentry->d_name) != 0) ||
2054 (prepend(&end, &buflen, "/", 1) != 0))
2055 goto Elong;
2056
2057 retval = end;
2058 dentry = parent;
2059 }
2060 spin_unlock(&dcache_lock);
2061 return retval;
2062 Elong:
2063 spin_unlock(&dcache_lock);
2064 return ERR_PTR(-ENAMETOOLONG);
2065 }
2066
2067 /*
2068 * NOTE! The user-level library version returns a
2069 * character pointer. The kernel system call just
2070 * returns the length of the buffer filled (which
2071 * includes the ending '\0' character), or a negative
2072 * error value. So libc would do something like
2073 *
2074 * char *getcwd(char * buf, size_t size)
2075 * {
2076 * int retval;
2077 *
2078 * retval = sys_getcwd(buf, size);
2079 * if (retval >= 0)
2080 * return buf;
2081 * errno = -retval;
2082 * return NULL;
2083 * }
2084 */
2085 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
2086 {
2087 int error;
2088 struct path pwd, root;
2089 char *page = (char *) __get_free_page(GFP_USER);
2090
2091 if (!page)
2092 return -ENOMEM;
2093
2094 read_lock(&current->fs->lock);
2095 pwd = current->fs->pwd;
2096 path_get(&pwd);
2097 root = current->fs->root;
2098 path_get(&root);
2099 read_unlock(&current->fs->lock);
2100
2101 error = -ENOENT;
2102 spin_lock(&dcache_lock);
2103 if (!d_unlinked(pwd.dentry)) {
2104 unsigned long len;
2105 struct path tmp = root;
2106 char * cwd;
2107
2108 cwd = __d_path(&pwd, &tmp, page, PAGE_SIZE);
2109 spin_unlock(&dcache_lock);
2110
2111 error = PTR_ERR(cwd);
2112 if (IS_ERR(cwd))
2113 goto out;
2114
2115 error = -ERANGE;
2116 len = PAGE_SIZE + page - cwd;
2117 if (len <= size) {
2118 error = len;
2119 if (copy_to_user(buf, cwd, len))
2120 error = -EFAULT;
2121 }
2122 } else
2123 spin_unlock(&dcache_lock);
2124
2125 out:
2126 path_put(&pwd);
2127 path_put(&root);
2128 free_page((unsigned long) page);
2129 return error;
2130 }
2131
2132 /*
2133 * Test whether new_dentry is a subdirectory of old_dentry.
2134 *
2135 * Trivially implemented using the dcache structure
2136 */
2137
2138 /**
2139 * is_subdir - is new dentry a subdirectory of old_dentry
2140 * @new_dentry: new dentry
2141 * @old_dentry: old dentry
2142 *
2143 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
2144 * Returns 0 otherwise.
2145 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
2146 */
2147
2148 int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
2149 {
2150 int result;
2151 unsigned long seq;
2152
2153 if (new_dentry == old_dentry)
2154 return 1;
2155
2156 /*
2157 * Need rcu_readlock to protect against the d_parent trashing
2158 * due to d_move
2159 */
2160 rcu_read_lock();
2161 do {
2162 /* for restarting inner loop in case of seq retry */
2163 seq = read_seqbegin(&rename_lock);
2164 if (d_ancestor(old_dentry, new_dentry))
2165 result = 1;
2166 else
2167 result = 0;
2168 } while (read_seqretry(&rename_lock, seq));
2169 rcu_read_unlock();
2170
2171 return result;
2172 }
2173
2174 void d_genocide(struct dentry *root)
2175 {
2176 struct dentry *this_parent = root;
2177 struct list_head *next;
2178
2179 spin_lock(&dcache_lock);
2180 repeat:
2181 next = this_parent->d_subdirs.next;
2182 resume:
2183 while (next != &this_parent->d_subdirs) {
2184 struct list_head *tmp = next;
2185 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
2186 next = tmp->next;
2187 if (d_unhashed(dentry)||!dentry->d_inode)
2188 continue;
2189 if (!list_empty(&dentry->d_subdirs)) {
2190 this_parent = dentry;
2191 goto repeat;
2192 }
2193 atomic_dec(&dentry->d_count);
2194 }
2195 if (this_parent != root) {
2196 next = this_parent->d_u.d_child.next;
2197 atomic_dec(&this_parent->d_count);
2198 this_parent = this_parent->d_parent;
2199 goto resume;
2200 }
2201 spin_unlock(&dcache_lock);
2202 }
2203
2204 /**
2205 * find_inode_number - check for dentry with name
2206 * @dir: directory to check
2207 * @name: Name to find.
2208 *
2209 * Check whether a dentry already exists for the given name,
2210 * and return the inode number if it has an inode. Otherwise
2211 * 0 is returned.
2212 *
2213 * This routine is used to post-process directory listings for
2214 * filesystems using synthetic inode numbers, and is necessary
2215 * to keep getcwd() working.
2216 */
2217
2218 ino_t find_inode_number(struct dentry *dir, struct qstr *name)
2219 {
2220 struct dentry * dentry;
2221 ino_t ino = 0;
2222
2223 dentry = d_hash_and_lookup(dir, name);
2224 if (dentry) {
2225 if (dentry->d_inode)
2226 ino = dentry->d_inode->i_ino;
2227 dput(dentry);
2228 }
2229 return ino;
2230 }
2231
2232 static __initdata unsigned long dhash_entries;
2233 static int __init set_dhash_entries(char *str)
2234 {
2235 if (!str)
2236 return 0;
2237 dhash_entries = simple_strtoul(str, &str, 0);
2238 return 1;
2239 }
2240 __setup("dhash_entries=", set_dhash_entries);
2241
2242 static void __init dcache_init_early(void)
2243 {
2244 int loop;
2245
2246 /* If hashes are distributed across NUMA nodes, defer
2247 * hash allocation until vmalloc space is available.
2248 */
2249 if (hashdist)
2250 return;
2251
2252 dentry_hashtable =
2253 alloc_large_system_hash("Dentry cache",
2254 sizeof(struct hlist_head),
2255 dhash_entries,
2256 13,
2257 HASH_EARLY,
2258 &d_hash_shift,
2259 &d_hash_mask,
2260 0);
2261
2262 for (loop = 0; loop < (1 << d_hash_shift); loop++)
2263 INIT_HLIST_HEAD(&dentry_hashtable[loop]);
2264 }
2265
2266 static void __init dcache_init(void)
2267 {
2268 int loop;
2269
2270 /*
2271 * A constructor could be added for stable state like the lists,
2272 * but it is probably not worth it because of the cache nature
2273 * of the dcache.
2274 */
2275 dentry_cache = KMEM_CACHE(dentry,
2276 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
2277
2278 register_shrinker(&dcache_shrinker);
2279
2280 /* Hash may have been set up in dcache_init_early */
2281 if (!hashdist)
2282 return;
2283
2284 dentry_hashtable =
2285 alloc_large_system_hash("Dentry cache",
2286 sizeof(struct hlist_head),
2287 dhash_entries,
2288 13,
2289 0,
2290 &d_hash_shift,
2291 &d_hash_mask,
2292 0);
2293
2294 for (loop = 0; loop < (1 << d_hash_shift); loop++)
2295 INIT_HLIST_HEAD(&dentry_hashtable[loop]);
2296 }
2297
2298 /* SLAB cache for __getname() consumers */
2299 struct kmem_cache *names_cachep __read_mostly;
2300
2301 EXPORT_SYMBOL(d_genocide);
2302
2303 void __init vfs_caches_init_early(void)
2304 {
2305 dcache_init_early();
2306 inode_init_early();
2307 }
2308
2309 void __init vfs_caches_init(unsigned long mempages)
2310 {
2311 unsigned long reserve;
2312
2313 /* Base hash sizes on available memory, with a reserve equal to
2314 150% of current kernel size */
2315
2316 reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
2317 mempages -= reserve;
2318
2319 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
2320 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2321
2322 dcache_init();
2323 inode_init();
2324 files_init(mempages);
2325 mnt_init();
2326 bdev_cache_init();
2327 chrdev_init();
2328 }
2329
2330 EXPORT_SYMBOL(d_alloc);
2331 EXPORT_SYMBOL(d_alloc_root);
2332 EXPORT_SYMBOL(d_delete);
2333 EXPORT_SYMBOL(d_find_alias);
2334 EXPORT_SYMBOL(d_instantiate);
2335 EXPORT_SYMBOL(d_invalidate);
2336 EXPORT_SYMBOL(d_lookup);
2337 EXPORT_SYMBOL(d_move);
2338 EXPORT_SYMBOL_GPL(d_materialise_unique);
2339 EXPORT_SYMBOL(d_path);
2340 EXPORT_SYMBOL(d_prune_aliases);
2341 EXPORT_SYMBOL(d_rehash);
2342 EXPORT_SYMBOL(d_splice_alias);
2343 EXPORT_SYMBOL(d_add_ci);
2344 EXPORT_SYMBOL(d_validate);
2345 EXPORT_SYMBOL(dget_locked);
2346 EXPORT_SYMBOL(dput);
2347 EXPORT_SYMBOL(find_inode_number);
2348 EXPORT_SYMBOL(have_submounts);
2349 EXPORT_SYMBOL(names_cachep);
2350 EXPORT_SYMBOL(shrink_dcache_parent);
2351 EXPORT_SYMBOL(shrink_dcache_sb);