]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/dcache.c
VFS: Provide empty name qstr
[mirror_ubuntu-artful-kernel.git] / fs / dcache.c
1 /*
2 * fs/dcache.c
3 *
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
8
9 /*
10 * Notes on the allocation strategy:
11 *
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
15 */
16
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/export.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <linux/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/rculist_bl.h>
38 #include <linux/prefetch.h>
39 #include <linux/ratelimit.h>
40 #include <linux/list_lru.h>
41 #include <linux/kasan.h>
42
43 #include "internal.h"
44 #include "mount.h"
45
46 /*
47 * Usage:
48 * dcache->d_inode->i_lock protects:
49 * - i_dentry, d_u.d_alias, d_inode of aliases
50 * dcache_hash_bucket lock protects:
51 * - the dcache hash table
52 * s_anon bl list spinlock protects:
53 * - the s_anon list (see __d_drop)
54 * dentry->d_sb->s_dentry_lru_lock protects:
55 * - the dcache lru lists and counters
56 * d_lock protects:
57 * - d_flags
58 * - d_name
59 * - d_lru
60 * - d_count
61 * - d_unhashed()
62 * - d_parent and d_subdirs
63 * - childrens' d_child and d_parent
64 * - d_u.d_alias, d_inode
65 *
66 * Ordering:
67 * dentry->d_inode->i_lock
68 * dentry->d_lock
69 * dentry->d_sb->s_dentry_lru_lock
70 * dcache_hash_bucket lock
71 * s_anon lock
72 *
73 * If there is an ancestor relationship:
74 * dentry->d_parent->...->d_parent->d_lock
75 * ...
76 * dentry->d_parent->d_lock
77 * dentry->d_lock
78 *
79 * If no ancestor relationship:
80 * if (dentry1 < dentry2)
81 * dentry1->d_lock
82 * dentry2->d_lock
83 */
84 int sysctl_vfs_cache_pressure __read_mostly = 100;
85 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
86
87 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
88
89 EXPORT_SYMBOL(rename_lock);
90
91 static struct kmem_cache *dentry_cache __read_mostly;
92
93 const struct qstr empty_name = QSTR_INIT("", 0);
94 EXPORT_SYMBOL(empty_name);
95 const struct qstr slash_name = QSTR_INIT("/", 1);
96 EXPORT_SYMBOL(slash_name);
97
98 /*
99 * This is the single most critical data structure when it comes
100 * to the dcache: the hashtable for lookups. Somebody should try
101 * to make this good - I've just made it work.
102 *
103 * This hash-function tries to avoid losing too many bits of hash
104 * information, yet avoid using a prime hash-size or similar.
105 */
106
107 static unsigned int d_hash_mask __read_mostly;
108 static unsigned int d_hash_shift __read_mostly;
109
110 static struct hlist_bl_head *dentry_hashtable __read_mostly;
111
112 static inline struct hlist_bl_head *d_hash(unsigned int hash)
113 {
114 return dentry_hashtable + (hash >> (32 - d_hash_shift));
115 }
116
117 #define IN_LOOKUP_SHIFT 10
118 static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT];
119
120 static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent,
121 unsigned int hash)
122 {
123 hash += (unsigned long) parent / L1_CACHE_BYTES;
124 return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT);
125 }
126
127
128 /* Statistics gathering. */
129 struct dentry_stat_t dentry_stat = {
130 .age_limit = 45,
131 };
132
133 static DEFINE_PER_CPU(long, nr_dentry);
134 static DEFINE_PER_CPU(long, nr_dentry_unused);
135
136 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
137
138 /*
139 * Here we resort to our own counters instead of using generic per-cpu counters
140 * for consistency with what the vfs inode code does. We are expected to harvest
141 * better code and performance by having our own specialized counters.
142 *
143 * Please note that the loop is done over all possible CPUs, not over all online
144 * CPUs. The reason for this is that we don't want to play games with CPUs going
145 * on and off. If one of them goes off, we will just keep their counters.
146 *
147 * glommer: See cffbc8a for details, and if you ever intend to change this,
148 * please update all vfs counters to match.
149 */
150 static long get_nr_dentry(void)
151 {
152 int i;
153 long sum = 0;
154 for_each_possible_cpu(i)
155 sum += per_cpu(nr_dentry, i);
156 return sum < 0 ? 0 : sum;
157 }
158
159 static long get_nr_dentry_unused(void)
160 {
161 int i;
162 long sum = 0;
163 for_each_possible_cpu(i)
164 sum += per_cpu(nr_dentry_unused, i);
165 return sum < 0 ? 0 : sum;
166 }
167
168 int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer,
169 size_t *lenp, loff_t *ppos)
170 {
171 dentry_stat.nr_dentry = get_nr_dentry();
172 dentry_stat.nr_unused = get_nr_dentry_unused();
173 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
174 }
175 #endif
176
177 /*
178 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
179 * The strings are both count bytes long, and count is non-zero.
180 */
181 #ifdef CONFIG_DCACHE_WORD_ACCESS
182
183 #include <asm/word-at-a-time.h>
184 /*
185 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
186 * aligned allocation for this particular component. We don't
187 * strictly need the load_unaligned_zeropad() safety, but it
188 * doesn't hurt either.
189 *
190 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
191 * need the careful unaligned handling.
192 */
193 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
194 {
195 unsigned long a,b,mask;
196
197 for (;;) {
198 a = *(unsigned long *)cs;
199 b = load_unaligned_zeropad(ct);
200 if (tcount < sizeof(unsigned long))
201 break;
202 if (unlikely(a != b))
203 return 1;
204 cs += sizeof(unsigned long);
205 ct += sizeof(unsigned long);
206 tcount -= sizeof(unsigned long);
207 if (!tcount)
208 return 0;
209 }
210 mask = bytemask_from_count(tcount);
211 return unlikely(!!((a ^ b) & mask));
212 }
213
214 #else
215
216 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
217 {
218 do {
219 if (*cs != *ct)
220 return 1;
221 cs++;
222 ct++;
223 tcount--;
224 } while (tcount);
225 return 0;
226 }
227
228 #endif
229
230 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
231 {
232 /*
233 * Be careful about RCU walk racing with rename:
234 * use 'lockless_dereference' to fetch the name pointer.
235 *
236 * NOTE! Even if a rename will mean that the length
237 * was not loaded atomically, we don't care. The
238 * RCU walk will check the sequence count eventually,
239 * and catch it. And we won't overrun the buffer,
240 * because we're reading the name pointer atomically,
241 * and a dentry name is guaranteed to be properly
242 * terminated with a NUL byte.
243 *
244 * End result: even if 'len' is wrong, we'll exit
245 * early because the data cannot match (there can
246 * be no NUL in the ct/tcount data)
247 */
248 const unsigned char *cs = lockless_dereference(dentry->d_name.name);
249
250 return dentry_string_cmp(cs, ct, tcount);
251 }
252
253 struct external_name {
254 union {
255 atomic_t count;
256 struct rcu_head head;
257 } u;
258 unsigned char name[];
259 };
260
261 static inline struct external_name *external_name(struct dentry *dentry)
262 {
263 return container_of(dentry->d_name.name, struct external_name, name[0]);
264 }
265
266 static void __d_free(struct rcu_head *head)
267 {
268 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
269
270 kmem_cache_free(dentry_cache, dentry);
271 }
272
273 static void __d_free_external(struct rcu_head *head)
274 {
275 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
276 kfree(external_name(dentry));
277 kmem_cache_free(dentry_cache, dentry);
278 }
279
280 static inline int dname_external(const struct dentry *dentry)
281 {
282 return dentry->d_name.name != dentry->d_iname;
283 }
284
285 static inline void __d_set_inode_and_type(struct dentry *dentry,
286 struct inode *inode,
287 unsigned type_flags)
288 {
289 unsigned flags;
290
291 dentry->d_inode = inode;
292 flags = READ_ONCE(dentry->d_flags);
293 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
294 flags |= type_flags;
295 WRITE_ONCE(dentry->d_flags, flags);
296 }
297
298 static inline void __d_clear_type_and_inode(struct dentry *dentry)
299 {
300 unsigned flags = READ_ONCE(dentry->d_flags);
301
302 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
303 WRITE_ONCE(dentry->d_flags, flags);
304 dentry->d_inode = NULL;
305 }
306
307 static void dentry_free(struct dentry *dentry)
308 {
309 WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
310 if (unlikely(dname_external(dentry))) {
311 struct external_name *p = external_name(dentry);
312 if (likely(atomic_dec_and_test(&p->u.count))) {
313 call_rcu(&dentry->d_u.d_rcu, __d_free_external);
314 return;
315 }
316 }
317 /* if dentry was never visible to RCU, immediate free is OK */
318 if (!(dentry->d_flags & DCACHE_RCUACCESS))
319 __d_free(&dentry->d_u.d_rcu);
320 else
321 call_rcu(&dentry->d_u.d_rcu, __d_free);
322 }
323
324 /*
325 * Release the dentry's inode, using the filesystem
326 * d_iput() operation if defined.
327 */
328 static void dentry_unlink_inode(struct dentry * dentry)
329 __releases(dentry->d_lock)
330 __releases(dentry->d_inode->i_lock)
331 {
332 struct inode *inode = dentry->d_inode;
333 bool hashed = !d_unhashed(dentry);
334
335 if (hashed)
336 raw_write_seqcount_begin(&dentry->d_seq);
337 __d_clear_type_and_inode(dentry);
338 hlist_del_init(&dentry->d_u.d_alias);
339 if (hashed)
340 raw_write_seqcount_end(&dentry->d_seq);
341 spin_unlock(&dentry->d_lock);
342 spin_unlock(&inode->i_lock);
343 if (!inode->i_nlink)
344 fsnotify_inoderemove(inode);
345 if (dentry->d_op && dentry->d_op->d_iput)
346 dentry->d_op->d_iput(dentry, inode);
347 else
348 iput(inode);
349 }
350
351 /*
352 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
353 * is in use - which includes both the "real" per-superblock
354 * LRU list _and_ the DCACHE_SHRINK_LIST use.
355 *
356 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
357 * on the shrink list (ie not on the superblock LRU list).
358 *
359 * The per-cpu "nr_dentry_unused" counters are updated with
360 * the DCACHE_LRU_LIST bit.
361 *
362 * These helper functions make sure we always follow the
363 * rules. d_lock must be held by the caller.
364 */
365 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
366 static void d_lru_add(struct dentry *dentry)
367 {
368 D_FLAG_VERIFY(dentry, 0);
369 dentry->d_flags |= DCACHE_LRU_LIST;
370 this_cpu_inc(nr_dentry_unused);
371 WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
372 }
373
374 static void d_lru_del(struct dentry *dentry)
375 {
376 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
377 dentry->d_flags &= ~DCACHE_LRU_LIST;
378 this_cpu_dec(nr_dentry_unused);
379 WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
380 }
381
382 static void d_shrink_del(struct dentry *dentry)
383 {
384 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
385 list_del_init(&dentry->d_lru);
386 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
387 this_cpu_dec(nr_dentry_unused);
388 }
389
390 static void d_shrink_add(struct dentry *dentry, struct list_head *list)
391 {
392 D_FLAG_VERIFY(dentry, 0);
393 list_add(&dentry->d_lru, list);
394 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
395 this_cpu_inc(nr_dentry_unused);
396 }
397
398 /*
399 * These can only be called under the global LRU lock, ie during the
400 * callback for freeing the LRU list. "isolate" removes it from the
401 * LRU lists entirely, while shrink_move moves it to the indicated
402 * private list.
403 */
404 static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
405 {
406 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
407 dentry->d_flags &= ~DCACHE_LRU_LIST;
408 this_cpu_dec(nr_dentry_unused);
409 list_lru_isolate(lru, &dentry->d_lru);
410 }
411
412 static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
413 struct list_head *list)
414 {
415 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
416 dentry->d_flags |= DCACHE_SHRINK_LIST;
417 list_lru_isolate_move(lru, &dentry->d_lru, list);
418 }
419
420 /*
421 * dentry_lru_(add|del)_list) must be called with d_lock held.
422 */
423 static void dentry_lru_add(struct dentry *dentry)
424 {
425 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
426 d_lru_add(dentry);
427 else if (unlikely(!(dentry->d_flags & DCACHE_REFERENCED)))
428 dentry->d_flags |= DCACHE_REFERENCED;
429 }
430
431 /**
432 * d_drop - drop a dentry
433 * @dentry: dentry to drop
434 *
435 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
436 * be found through a VFS lookup any more. Note that this is different from
437 * deleting the dentry - d_delete will try to mark the dentry negative if
438 * possible, giving a successful _negative_ lookup, while d_drop will
439 * just make the cache lookup fail.
440 *
441 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
442 * reason (NFS timeouts or autofs deletes).
443 *
444 * __d_drop requires dentry->d_lock.
445 */
446 void __d_drop(struct dentry *dentry)
447 {
448 if (!d_unhashed(dentry)) {
449 struct hlist_bl_head *b;
450 /*
451 * Hashed dentries are normally on the dentry hashtable,
452 * with the exception of those newly allocated by
453 * d_obtain_alias, which are always IS_ROOT:
454 */
455 if (unlikely(IS_ROOT(dentry)))
456 b = &dentry->d_sb->s_anon;
457 else
458 b = d_hash(dentry->d_name.hash);
459
460 hlist_bl_lock(b);
461 __hlist_bl_del(&dentry->d_hash);
462 dentry->d_hash.pprev = NULL;
463 hlist_bl_unlock(b);
464 /* After this call, in-progress rcu-walk path lookup will fail. */
465 write_seqcount_invalidate(&dentry->d_seq);
466 }
467 }
468 EXPORT_SYMBOL(__d_drop);
469
470 void d_drop(struct dentry *dentry)
471 {
472 spin_lock(&dentry->d_lock);
473 __d_drop(dentry);
474 spin_unlock(&dentry->d_lock);
475 }
476 EXPORT_SYMBOL(d_drop);
477
478 static inline void dentry_unlist(struct dentry *dentry, struct dentry *parent)
479 {
480 struct dentry *next;
481 /*
482 * Inform d_walk() and shrink_dentry_list() that we are no longer
483 * attached to the dentry tree
484 */
485 dentry->d_flags |= DCACHE_DENTRY_KILLED;
486 if (unlikely(list_empty(&dentry->d_child)))
487 return;
488 __list_del_entry(&dentry->d_child);
489 /*
490 * Cursors can move around the list of children. While we'd been
491 * a normal list member, it didn't matter - ->d_child.next would've
492 * been updated. However, from now on it won't be and for the
493 * things like d_walk() it might end up with a nasty surprise.
494 * Normally d_walk() doesn't care about cursors moving around -
495 * ->d_lock on parent prevents that and since a cursor has no children
496 * of its own, we get through it without ever unlocking the parent.
497 * There is one exception, though - if we ascend from a child that
498 * gets killed as soon as we unlock it, the next sibling is found
499 * using the value left in its ->d_child.next. And if _that_
500 * pointed to a cursor, and cursor got moved (e.g. by lseek())
501 * before d_walk() regains parent->d_lock, we'll end up skipping
502 * everything the cursor had been moved past.
503 *
504 * Solution: make sure that the pointer left behind in ->d_child.next
505 * points to something that won't be moving around. I.e. skip the
506 * cursors.
507 */
508 while (dentry->d_child.next != &parent->d_subdirs) {
509 next = list_entry(dentry->d_child.next, struct dentry, d_child);
510 if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR)))
511 break;
512 dentry->d_child.next = next->d_child.next;
513 }
514 }
515
516 static void __dentry_kill(struct dentry *dentry)
517 {
518 struct dentry *parent = NULL;
519 bool can_free = true;
520 if (!IS_ROOT(dentry))
521 parent = dentry->d_parent;
522
523 /*
524 * The dentry is now unrecoverably dead to the world.
525 */
526 lockref_mark_dead(&dentry->d_lockref);
527
528 /*
529 * inform the fs via d_prune that this dentry is about to be
530 * unhashed and destroyed.
531 */
532 if (dentry->d_flags & DCACHE_OP_PRUNE)
533 dentry->d_op->d_prune(dentry);
534
535 if (dentry->d_flags & DCACHE_LRU_LIST) {
536 if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
537 d_lru_del(dentry);
538 }
539 /* if it was on the hash then remove it */
540 __d_drop(dentry);
541 dentry_unlist(dentry, parent);
542 if (parent)
543 spin_unlock(&parent->d_lock);
544 if (dentry->d_inode)
545 dentry_unlink_inode(dentry);
546 else
547 spin_unlock(&dentry->d_lock);
548 this_cpu_dec(nr_dentry);
549 if (dentry->d_op && dentry->d_op->d_release)
550 dentry->d_op->d_release(dentry);
551
552 spin_lock(&dentry->d_lock);
553 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
554 dentry->d_flags |= DCACHE_MAY_FREE;
555 can_free = false;
556 }
557 spin_unlock(&dentry->d_lock);
558 if (likely(can_free))
559 dentry_free(dentry);
560 }
561
562 /*
563 * Finish off a dentry we've decided to kill.
564 * dentry->d_lock must be held, returns with it unlocked.
565 * If ref is non-zero, then decrement the refcount too.
566 * Returns dentry requiring refcount drop, or NULL if we're done.
567 */
568 static struct dentry *dentry_kill(struct dentry *dentry)
569 __releases(dentry->d_lock)
570 {
571 struct inode *inode = dentry->d_inode;
572 struct dentry *parent = NULL;
573
574 if (inode && unlikely(!spin_trylock(&inode->i_lock)))
575 goto failed;
576
577 if (!IS_ROOT(dentry)) {
578 parent = dentry->d_parent;
579 if (unlikely(!spin_trylock(&parent->d_lock))) {
580 if (inode)
581 spin_unlock(&inode->i_lock);
582 goto failed;
583 }
584 }
585
586 __dentry_kill(dentry);
587 return parent;
588
589 failed:
590 spin_unlock(&dentry->d_lock);
591 return dentry; /* try again with same dentry */
592 }
593
594 static inline struct dentry *lock_parent(struct dentry *dentry)
595 {
596 struct dentry *parent = dentry->d_parent;
597 if (IS_ROOT(dentry))
598 return NULL;
599 if (unlikely(dentry->d_lockref.count < 0))
600 return NULL;
601 if (likely(spin_trylock(&parent->d_lock)))
602 return parent;
603 rcu_read_lock();
604 spin_unlock(&dentry->d_lock);
605 again:
606 parent = ACCESS_ONCE(dentry->d_parent);
607 spin_lock(&parent->d_lock);
608 /*
609 * We can't blindly lock dentry until we are sure
610 * that we won't violate the locking order.
611 * Any changes of dentry->d_parent must have
612 * been done with parent->d_lock held, so
613 * spin_lock() above is enough of a barrier
614 * for checking if it's still our child.
615 */
616 if (unlikely(parent != dentry->d_parent)) {
617 spin_unlock(&parent->d_lock);
618 goto again;
619 }
620 rcu_read_unlock();
621 if (parent != dentry)
622 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
623 else
624 parent = NULL;
625 return parent;
626 }
627
628 /*
629 * Try to do a lockless dput(), and return whether that was successful.
630 *
631 * If unsuccessful, we return false, having already taken the dentry lock.
632 *
633 * The caller needs to hold the RCU read lock, so that the dentry is
634 * guaranteed to stay around even if the refcount goes down to zero!
635 */
636 static inline bool fast_dput(struct dentry *dentry)
637 {
638 int ret;
639 unsigned int d_flags;
640
641 /*
642 * If we have a d_op->d_delete() operation, we sould not
643 * let the dentry count go to zero, so use "put_or_lock".
644 */
645 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE))
646 return lockref_put_or_lock(&dentry->d_lockref);
647
648 /*
649 * .. otherwise, we can try to just decrement the
650 * lockref optimistically.
651 */
652 ret = lockref_put_return(&dentry->d_lockref);
653
654 /*
655 * If the lockref_put_return() failed due to the lock being held
656 * by somebody else, the fast path has failed. We will need to
657 * get the lock, and then check the count again.
658 */
659 if (unlikely(ret < 0)) {
660 spin_lock(&dentry->d_lock);
661 if (dentry->d_lockref.count > 1) {
662 dentry->d_lockref.count--;
663 spin_unlock(&dentry->d_lock);
664 return 1;
665 }
666 return 0;
667 }
668
669 /*
670 * If we weren't the last ref, we're done.
671 */
672 if (ret)
673 return 1;
674
675 /*
676 * Careful, careful. The reference count went down
677 * to zero, but we don't hold the dentry lock, so
678 * somebody else could get it again, and do another
679 * dput(), and we need to not race with that.
680 *
681 * However, there is a very special and common case
682 * where we don't care, because there is nothing to
683 * do: the dentry is still hashed, it does not have
684 * a 'delete' op, and it's referenced and already on
685 * the LRU list.
686 *
687 * NOTE! Since we aren't locked, these values are
688 * not "stable". However, it is sufficient that at
689 * some point after we dropped the reference the
690 * dentry was hashed and the flags had the proper
691 * value. Other dentry users may have re-gotten
692 * a reference to the dentry and change that, but
693 * our work is done - we can leave the dentry
694 * around with a zero refcount.
695 */
696 smp_rmb();
697 d_flags = ACCESS_ONCE(dentry->d_flags);
698 d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST | DCACHE_DISCONNECTED;
699
700 /* Nothing to do? Dropping the reference was all we needed? */
701 if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry))
702 return 1;
703
704 /*
705 * Not the fast normal case? Get the lock. We've already decremented
706 * the refcount, but we'll need to re-check the situation after
707 * getting the lock.
708 */
709 spin_lock(&dentry->d_lock);
710
711 /*
712 * Did somebody else grab a reference to it in the meantime, and
713 * we're no longer the last user after all? Alternatively, somebody
714 * else could have killed it and marked it dead. Either way, we
715 * don't need to do anything else.
716 */
717 if (dentry->d_lockref.count) {
718 spin_unlock(&dentry->d_lock);
719 return 1;
720 }
721
722 /*
723 * Re-get the reference we optimistically dropped. We hold the
724 * lock, and we just tested that it was zero, so we can just
725 * set it to 1.
726 */
727 dentry->d_lockref.count = 1;
728 return 0;
729 }
730
731
732 /*
733 * This is dput
734 *
735 * This is complicated by the fact that we do not want to put
736 * dentries that are no longer on any hash chain on the unused
737 * list: we'd much rather just get rid of them immediately.
738 *
739 * However, that implies that we have to traverse the dentry
740 * tree upwards to the parents which might _also_ now be
741 * scheduled for deletion (it may have been only waiting for
742 * its last child to go away).
743 *
744 * This tail recursion is done by hand as we don't want to depend
745 * on the compiler to always get this right (gcc generally doesn't).
746 * Real recursion would eat up our stack space.
747 */
748
749 /*
750 * dput - release a dentry
751 * @dentry: dentry to release
752 *
753 * Release a dentry. This will drop the usage count and if appropriate
754 * call the dentry unlink method as well as removing it from the queues and
755 * releasing its resources. If the parent dentries were scheduled for release
756 * they too may now get deleted.
757 */
758 void dput(struct dentry *dentry)
759 {
760 if (unlikely(!dentry))
761 return;
762
763 repeat:
764 might_sleep();
765
766 rcu_read_lock();
767 if (likely(fast_dput(dentry))) {
768 rcu_read_unlock();
769 return;
770 }
771
772 /* Slow case: now with the dentry lock held */
773 rcu_read_unlock();
774
775 WARN_ON(d_in_lookup(dentry));
776
777 /* Unreachable? Get rid of it */
778 if (unlikely(d_unhashed(dentry)))
779 goto kill_it;
780
781 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
782 goto kill_it;
783
784 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
785 if (dentry->d_op->d_delete(dentry))
786 goto kill_it;
787 }
788
789 dentry_lru_add(dentry);
790
791 dentry->d_lockref.count--;
792 spin_unlock(&dentry->d_lock);
793 return;
794
795 kill_it:
796 dentry = dentry_kill(dentry);
797 if (dentry) {
798 cond_resched();
799 goto repeat;
800 }
801 }
802 EXPORT_SYMBOL(dput);
803
804
805 /* This must be called with d_lock held */
806 static inline void __dget_dlock(struct dentry *dentry)
807 {
808 dentry->d_lockref.count++;
809 }
810
811 static inline void __dget(struct dentry *dentry)
812 {
813 lockref_get(&dentry->d_lockref);
814 }
815
816 struct dentry *dget_parent(struct dentry *dentry)
817 {
818 int gotref;
819 struct dentry *ret;
820
821 /*
822 * Do optimistic parent lookup without any
823 * locking.
824 */
825 rcu_read_lock();
826 ret = ACCESS_ONCE(dentry->d_parent);
827 gotref = lockref_get_not_zero(&ret->d_lockref);
828 rcu_read_unlock();
829 if (likely(gotref)) {
830 if (likely(ret == ACCESS_ONCE(dentry->d_parent)))
831 return ret;
832 dput(ret);
833 }
834
835 repeat:
836 /*
837 * Don't need rcu_dereference because we re-check it was correct under
838 * the lock.
839 */
840 rcu_read_lock();
841 ret = dentry->d_parent;
842 spin_lock(&ret->d_lock);
843 if (unlikely(ret != dentry->d_parent)) {
844 spin_unlock(&ret->d_lock);
845 rcu_read_unlock();
846 goto repeat;
847 }
848 rcu_read_unlock();
849 BUG_ON(!ret->d_lockref.count);
850 ret->d_lockref.count++;
851 spin_unlock(&ret->d_lock);
852 return ret;
853 }
854 EXPORT_SYMBOL(dget_parent);
855
856 /**
857 * d_find_alias - grab a hashed alias of inode
858 * @inode: inode in question
859 *
860 * If inode has a hashed alias, or is a directory and has any alias,
861 * acquire the reference to alias and return it. Otherwise return NULL.
862 * Notice that if inode is a directory there can be only one alias and
863 * it can be unhashed only if it has no children, or if it is the root
864 * of a filesystem, or if the directory was renamed and d_revalidate
865 * was the first vfs operation to notice.
866 *
867 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
868 * any other hashed alias over that one.
869 */
870 static struct dentry *__d_find_alias(struct inode *inode)
871 {
872 struct dentry *alias, *discon_alias;
873
874 again:
875 discon_alias = NULL;
876 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
877 spin_lock(&alias->d_lock);
878 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
879 if (IS_ROOT(alias) &&
880 (alias->d_flags & DCACHE_DISCONNECTED)) {
881 discon_alias = alias;
882 } else {
883 __dget_dlock(alias);
884 spin_unlock(&alias->d_lock);
885 return alias;
886 }
887 }
888 spin_unlock(&alias->d_lock);
889 }
890 if (discon_alias) {
891 alias = discon_alias;
892 spin_lock(&alias->d_lock);
893 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
894 __dget_dlock(alias);
895 spin_unlock(&alias->d_lock);
896 return alias;
897 }
898 spin_unlock(&alias->d_lock);
899 goto again;
900 }
901 return NULL;
902 }
903
904 struct dentry *d_find_alias(struct inode *inode)
905 {
906 struct dentry *de = NULL;
907
908 if (!hlist_empty(&inode->i_dentry)) {
909 spin_lock(&inode->i_lock);
910 de = __d_find_alias(inode);
911 spin_unlock(&inode->i_lock);
912 }
913 return de;
914 }
915 EXPORT_SYMBOL(d_find_alias);
916
917 /*
918 * Try to kill dentries associated with this inode.
919 * WARNING: you must own a reference to inode.
920 */
921 void d_prune_aliases(struct inode *inode)
922 {
923 struct dentry *dentry;
924 restart:
925 spin_lock(&inode->i_lock);
926 hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
927 spin_lock(&dentry->d_lock);
928 if (!dentry->d_lockref.count) {
929 struct dentry *parent = lock_parent(dentry);
930 if (likely(!dentry->d_lockref.count)) {
931 __dentry_kill(dentry);
932 dput(parent);
933 goto restart;
934 }
935 if (parent)
936 spin_unlock(&parent->d_lock);
937 }
938 spin_unlock(&dentry->d_lock);
939 }
940 spin_unlock(&inode->i_lock);
941 }
942 EXPORT_SYMBOL(d_prune_aliases);
943
944 static void shrink_dentry_list(struct list_head *list)
945 {
946 struct dentry *dentry, *parent;
947
948 while (!list_empty(list)) {
949 struct inode *inode;
950 dentry = list_entry(list->prev, struct dentry, d_lru);
951 spin_lock(&dentry->d_lock);
952 parent = lock_parent(dentry);
953
954 /*
955 * The dispose list is isolated and dentries are not accounted
956 * to the LRU here, so we can simply remove it from the list
957 * here regardless of whether it is referenced or not.
958 */
959 d_shrink_del(dentry);
960
961 /*
962 * We found an inuse dentry which was not removed from
963 * the LRU because of laziness during lookup. Do not free it.
964 */
965 if (dentry->d_lockref.count > 0) {
966 spin_unlock(&dentry->d_lock);
967 if (parent)
968 spin_unlock(&parent->d_lock);
969 continue;
970 }
971
972
973 if (unlikely(dentry->d_flags & DCACHE_DENTRY_KILLED)) {
974 bool can_free = dentry->d_flags & DCACHE_MAY_FREE;
975 spin_unlock(&dentry->d_lock);
976 if (parent)
977 spin_unlock(&parent->d_lock);
978 if (can_free)
979 dentry_free(dentry);
980 continue;
981 }
982
983 inode = dentry->d_inode;
984 if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
985 d_shrink_add(dentry, list);
986 spin_unlock(&dentry->d_lock);
987 if (parent)
988 spin_unlock(&parent->d_lock);
989 continue;
990 }
991
992 __dentry_kill(dentry);
993
994 /*
995 * We need to prune ancestors too. This is necessary to prevent
996 * quadratic behavior of shrink_dcache_parent(), but is also
997 * expected to be beneficial in reducing dentry cache
998 * fragmentation.
999 */
1000 dentry = parent;
1001 while (dentry && !lockref_put_or_lock(&dentry->d_lockref)) {
1002 parent = lock_parent(dentry);
1003 if (dentry->d_lockref.count != 1) {
1004 dentry->d_lockref.count--;
1005 spin_unlock(&dentry->d_lock);
1006 if (parent)
1007 spin_unlock(&parent->d_lock);
1008 break;
1009 }
1010 inode = dentry->d_inode; /* can't be NULL */
1011 if (unlikely(!spin_trylock(&inode->i_lock))) {
1012 spin_unlock(&dentry->d_lock);
1013 if (parent)
1014 spin_unlock(&parent->d_lock);
1015 cpu_relax();
1016 continue;
1017 }
1018 __dentry_kill(dentry);
1019 dentry = parent;
1020 }
1021 }
1022 }
1023
1024 static enum lru_status dentry_lru_isolate(struct list_head *item,
1025 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1026 {
1027 struct list_head *freeable = arg;
1028 struct dentry *dentry = container_of(item, struct dentry, d_lru);
1029
1030
1031 /*
1032 * we are inverting the lru lock/dentry->d_lock here,
1033 * so use a trylock. If we fail to get the lock, just skip
1034 * it
1035 */
1036 if (!spin_trylock(&dentry->d_lock))
1037 return LRU_SKIP;
1038
1039 /*
1040 * Referenced dentries are still in use. If they have active
1041 * counts, just remove them from the LRU. Otherwise give them
1042 * another pass through the LRU.
1043 */
1044 if (dentry->d_lockref.count) {
1045 d_lru_isolate(lru, dentry);
1046 spin_unlock(&dentry->d_lock);
1047 return LRU_REMOVED;
1048 }
1049
1050 if (dentry->d_flags & DCACHE_REFERENCED) {
1051 dentry->d_flags &= ~DCACHE_REFERENCED;
1052 spin_unlock(&dentry->d_lock);
1053
1054 /*
1055 * The list move itself will be made by the common LRU code. At
1056 * this point, we've dropped the dentry->d_lock but keep the
1057 * lru lock. This is safe to do, since every list movement is
1058 * protected by the lru lock even if both locks are held.
1059 *
1060 * This is guaranteed by the fact that all LRU management
1061 * functions are intermediated by the LRU API calls like
1062 * list_lru_add and list_lru_del. List movement in this file
1063 * only ever occur through this functions or through callbacks
1064 * like this one, that are called from the LRU API.
1065 *
1066 * The only exceptions to this are functions like
1067 * shrink_dentry_list, and code that first checks for the
1068 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be
1069 * operating only with stack provided lists after they are
1070 * properly isolated from the main list. It is thus, always a
1071 * local access.
1072 */
1073 return LRU_ROTATE;
1074 }
1075
1076 d_lru_shrink_move(lru, dentry, freeable);
1077 spin_unlock(&dentry->d_lock);
1078
1079 return LRU_REMOVED;
1080 }
1081
1082 /**
1083 * prune_dcache_sb - shrink the dcache
1084 * @sb: superblock
1085 * @sc: shrink control, passed to list_lru_shrink_walk()
1086 *
1087 * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1088 * is done when we need more memory and called from the superblock shrinker
1089 * function.
1090 *
1091 * This function may fail to free any resources if all the dentries are in
1092 * use.
1093 */
1094 long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
1095 {
1096 LIST_HEAD(dispose);
1097 long freed;
1098
1099 freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1100 dentry_lru_isolate, &dispose);
1101 shrink_dentry_list(&dispose);
1102 return freed;
1103 }
1104
1105 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
1106 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1107 {
1108 struct list_head *freeable = arg;
1109 struct dentry *dentry = container_of(item, struct dentry, d_lru);
1110
1111 /*
1112 * we are inverting the lru lock/dentry->d_lock here,
1113 * so use a trylock. If we fail to get the lock, just skip
1114 * it
1115 */
1116 if (!spin_trylock(&dentry->d_lock))
1117 return LRU_SKIP;
1118
1119 d_lru_shrink_move(lru, dentry, freeable);
1120 spin_unlock(&dentry->d_lock);
1121
1122 return LRU_REMOVED;
1123 }
1124
1125
1126 /**
1127 * shrink_dcache_sb - shrink dcache for a superblock
1128 * @sb: superblock
1129 *
1130 * Shrink the dcache for the specified super block. This is used to free
1131 * the dcache before unmounting a file system.
1132 */
1133 void shrink_dcache_sb(struct super_block *sb)
1134 {
1135 long freed;
1136
1137 do {
1138 LIST_HEAD(dispose);
1139
1140 freed = list_lru_walk(&sb->s_dentry_lru,
1141 dentry_lru_isolate_shrink, &dispose, UINT_MAX);
1142
1143 this_cpu_sub(nr_dentry_unused, freed);
1144 shrink_dentry_list(&dispose);
1145 } while (freed > 0);
1146 }
1147 EXPORT_SYMBOL(shrink_dcache_sb);
1148
1149 /**
1150 * enum d_walk_ret - action to talke during tree walk
1151 * @D_WALK_CONTINUE: contrinue walk
1152 * @D_WALK_QUIT: quit walk
1153 * @D_WALK_NORETRY: quit when retry is needed
1154 * @D_WALK_SKIP: skip this dentry and its children
1155 */
1156 enum d_walk_ret {
1157 D_WALK_CONTINUE,
1158 D_WALK_QUIT,
1159 D_WALK_NORETRY,
1160 D_WALK_SKIP,
1161 };
1162
1163 /**
1164 * d_walk - walk the dentry tree
1165 * @parent: start of walk
1166 * @data: data passed to @enter() and @finish()
1167 * @enter: callback when first entering the dentry
1168 * @finish: callback when successfully finished the walk
1169 *
1170 * The @enter() and @finish() callbacks are called with d_lock held.
1171 */
1172 static void d_walk(struct dentry *parent, void *data,
1173 enum d_walk_ret (*enter)(void *, struct dentry *),
1174 void (*finish)(void *))
1175 {
1176 struct dentry *this_parent;
1177 struct list_head *next;
1178 unsigned seq = 0;
1179 enum d_walk_ret ret;
1180 bool retry = true;
1181
1182 again:
1183 read_seqbegin_or_lock(&rename_lock, &seq);
1184 this_parent = parent;
1185 spin_lock(&this_parent->d_lock);
1186
1187 ret = enter(data, this_parent);
1188 switch (ret) {
1189 case D_WALK_CONTINUE:
1190 break;
1191 case D_WALK_QUIT:
1192 case D_WALK_SKIP:
1193 goto out_unlock;
1194 case D_WALK_NORETRY:
1195 retry = false;
1196 break;
1197 }
1198 repeat:
1199 next = this_parent->d_subdirs.next;
1200 resume:
1201 while (next != &this_parent->d_subdirs) {
1202 struct list_head *tmp = next;
1203 struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1204 next = tmp->next;
1205
1206 if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR))
1207 continue;
1208
1209 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1210
1211 ret = enter(data, dentry);
1212 switch (ret) {
1213 case D_WALK_CONTINUE:
1214 break;
1215 case D_WALK_QUIT:
1216 spin_unlock(&dentry->d_lock);
1217 goto out_unlock;
1218 case D_WALK_NORETRY:
1219 retry = false;
1220 break;
1221 case D_WALK_SKIP:
1222 spin_unlock(&dentry->d_lock);
1223 continue;
1224 }
1225
1226 if (!list_empty(&dentry->d_subdirs)) {
1227 spin_unlock(&this_parent->d_lock);
1228 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1229 this_parent = dentry;
1230 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1231 goto repeat;
1232 }
1233 spin_unlock(&dentry->d_lock);
1234 }
1235 /*
1236 * All done at this level ... ascend and resume the search.
1237 */
1238 rcu_read_lock();
1239 ascend:
1240 if (this_parent != parent) {
1241 struct dentry *child = this_parent;
1242 this_parent = child->d_parent;
1243
1244 spin_unlock(&child->d_lock);
1245 spin_lock(&this_parent->d_lock);
1246
1247 /* might go back up the wrong parent if we have had a rename. */
1248 if (need_seqretry(&rename_lock, seq))
1249 goto rename_retry;
1250 /* go into the first sibling still alive */
1251 do {
1252 next = child->d_child.next;
1253 if (next == &this_parent->d_subdirs)
1254 goto ascend;
1255 child = list_entry(next, struct dentry, d_child);
1256 } while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED));
1257 rcu_read_unlock();
1258 goto resume;
1259 }
1260 if (need_seqretry(&rename_lock, seq))
1261 goto rename_retry;
1262 rcu_read_unlock();
1263 if (finish)
1264 finish(data);
1265
1266 out_unlock:
1267 spin_unlock(&this_parent->d_lock);
1268 done_seqretry(&rename_lock, seq);
1269 return;
1270
1271 rename_retry:
1272 spin_unlock(&this_parent->d_lock);
1273 rcu_read_unlock();
1274 BUG_ON(seq & 1);
1275 if (!retry)
1276 return;
1277 seq = 1;
1278 goto again;
1279 }
1280
1281 struct check_mount {
1282 struct vfsmount *mnt;
1283 unsigned int mounted;
1284 };
1285
1286 static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry)
1287 {
1288 struct check_mount *info = data;
1289 struct path path = { .mnt = info->mnt, .dentry = dentry };
1290
1291 if (likely(!d_mountpoint(dentry)))
1292 return D_WALK_CONTINUE;
1293 if (__path_is_mountpoint(&path)) {
1294 info->mounted = 1;
1295 return D_WALK_QUIT;
1296 }
1297 return D_WALK_CONTINUE;
1298 }
1299
1300 /**
1301 * path_has_submounts - check for mounts over a dentry in the
1302 * current namespace.
1303 * @parent: path to check.
1304 *
1305 * Return true if the parent or its subdirectories contain
1306 * a mount point in the current namespace.
1307 */
1308 int path_has_submounts(const struct path *parent)
1309 {
1310 struct check_mount data = { .mnt = parent->mnt, .mounted = 0 };
1311
1312 read_seqlock_excl(&mount_lock);
1313 d_walk(parent->dentry, &data, path_check_mount, NULL);
1314 read_sequnlock_excl(&mount_lock);
1315
1316 return data.mounted;
1317 }
1318 EXPORT_SYMBOL(path_has_submounts);
1319
1320 /*
1321 * Called by mount code to set a mountpoint and check if the mountpoint is
1322 * reachable (e.g. NFS can unhash a directory dentry and then the complete
1323 * subtree can become unreachable).
1324 *
1325 * Only one of d_invalidate() and d_set_mounted() must succeed. For
1326 * this reason take rename_lock and d_lock on dentry and ancestors.
1327 */
1328 int d_set_mounted(struct dentry *dentry)
1329 {
1330 struct dentry *p;
1331 int ret = -ENOENT;
1332 write_seqlock(&rename_lock);
1333 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1334 /* Need exclusion wrt. d_invalidate() */
1335 spin_lock(&p->d_lock);
1336 if (unlikely(d_unhashed(p))) {
1337 spin_unlock(&p->d_lock);
1338 goto out;
1339 }
1340 spin_unlock(&p->d_lock);
1341 }
1342 spin_lock(&dentry->d_lock);
1343 if (!d_unlinked(dentry)) {
1344 ret = -EBUSY;
1345 if (!d_mountpoint(dentry)) {
1346 dentry->d_flags |= DCACHE_MOUNTED;
1347 ret = 0;
1348 }
1349 }
1350 spin_unlock(&dentry->d_lock);
1351 out:
1352 write_sequnlock(&rename_lock);
1353 return ret;
1354 }
1355
1356 /*
1357 * Search the dentry child list of the specified parent,
1358 * and move any unused dentries to the end of the unused
1359 * list for prune_dcache(). We descend to the next level
1360 * whenever the d_subdirs list is non-empty and continue
1361 * searching.
1362 *
1363 * It returns zero iff there are no unused children,
1364 * otherwise it returns the number of children moved to
1365 * the end of the unused list. This may not be the total
1366 * number of unused children, because select_parent can
1367 * drop the lock and return early due to latency
1368 * constraints.
1369 */
1370
1371 struct select_data {
1372 struct dentry *start;
1373 struct list_head dispose;
1374 int found;
1375 };
1376
1377 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1378 {
1379 struct select_data *data = _data;
1380 enum d_walk_ret ret = D_WALK_CONTINUE;
1381
1382 if (data->start == dentry)
1383 goto out;
1384
1385 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1386 data->found++;
1387 } else {
1388 if (dentry->d_flags & DCACHE_LRU_LIST)
1389 d_lru_del(dentry);
1390 if (!dentry->d_lockref.count) {
1391 d_shrink_add(dentry, &data->dispose);
1392 data->found++;
1393 }
1394 }
1395 /*
1396 * We can return to the caller if we have found some (this
1397 * ensures forward progress). We'll be coming back to find
1398 * the rest.
1399 */
1400 if (!list_empty(&data->dispose))
1401 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1402 out:
1403 return ret;
1404 }
1405
1406 /**
1407 * shrink_dcache_parent - prune dcache
1408 * @parent: parent of entries to prune
1409 *
1410 * Prune the dcache to remove unused children of the parent dentry.
1411 */
1412 void shrink_dcache_parent(struct dentry *parent)
1413 {
1414 for (;;) {
1415 struct select_data data;
1416
1417 INIT_LIST_HEAD(&data.dispose);
1418 data.start = parent;
1419 data.found = 0;
1420
1421 d_walk(parent, &data, select_collect, NULL);
1422 if (!data.found)
1423 break;
1424
1425 shrink_dentry_list(&data.dispose);
1426 cond_resched();
1427 }
1428 }
1429 EXPORT_SYMBOL(shrink_dcache_parent);
1430
1431 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
1432 {
1433 /* it has busy descendents; complain about those instead */
1434 if (!list_empty(&dentry->d_subdirs))
1435 return D_WALK_CONTINUE;
1436
1437 /* root with refcount 1 is fine */
1438 if (dentry == _data && dentry->d_lockref.count == 1)
1439 return D_WALK_CONTINUE;
1440
1441 printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1442 " still in use (%d) [unmount of %s %s]\n",
1443 dentry,
1444 dentry->d_inode ?
1445 dentry->d_inode->i_ino : 0UL,
1446 dentry,
1447 dentry->d_lockref.count,
1448 dentry->d_sb->s_type->name,
1449 dentry->d_sb->s_id);
1450 WARN_ON(1);
1451 return D_WALK_CONTINUE;
1452 }
1453
1454 static void do_one_tree(struct dentry *dentry)
1455 {
1456 shrink_dcache_parent(dentry);
1457 d_walk(dentry, dentry, umount_check, NULL);
1458 d_drop(dentry);
1459 dput(dentry);
1460 }
1461
1462 /*
1463 * destroy the dentries attached to a superblock on unmounting
1464 */
1465 void shrink_dcache_for_umount(struct super_block *sb)
1466 {
1467 struct dentry *dentry;
1468
1469 WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
1470
1471 dentry = sb->s_root;
1472 sb->s_root = NULL;
1473 do_one_tree(dentry);
1474
1475 while (!hlist_bl_empty(&sb->s_anon)) {
1476 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash));
1477 do_one_tree(dentry);
1478 }
1479 }
1480
1481 struct detach_data {
1482 struct select_data select;
1483 struct dentry *mountpoint;
1484 };
1485 static enum d_walk_ret detach_and_collect(void *_data, struct dentry *dentry)
1486 {
1487 struct detach_data *data = _data;
1488
1489 if (d_mountpoint(dentry)) {
1490 __dget_dlock(dentry);
1491 data->mountpoint = dentry;
1492 return D_WALK_QUIT;
1493 }
1494
1495 return select_collect(&data->select, dentry);
1496 }
1497
1498 static void check_and_drop(void *_data)
1499 {
1500 struct detach_data *data = _data;
1501
1502 if (!data->mountpoint && list_empty(&data->select.dispose))
1503 __d_drop(data->select.start);
1504 }
1505
1506 /**
1507 * d_invalidate - detach submounts, prune dcache, and drop
1508 * @dentry: dentry to invalidate (aka detach, prune and drop)
1509 *
1510 * no dcache lock.
1511 *
1512 * The final d_drop is done as an atomic operation relative to
1513 * rename_lock ensuring there are no races with d_set_mounted. This
1514 * ensures there are no unhashed dentries on the path to a mountpoint.
1515 */
1516 void d_invalidate(struct dentry *dentry)
1517 {
1518 /*
1519 * If it's already been dropped, return OK.
1520 */
1521 spin_lock(&dentry->d_lock);
1522 if (d_unhashed(dentry)) {
1523 spin_unlock(&dentry->d_lock);
1524 return;
1525 }
1526 spin_unlock(&dentry->d_lock);
1527
1528 /* Negative dentries can be dropped without further checks */
1529 if (!dentry->d_inode) {
1530 d_drop(dentry);
1531 return;
1532 }
1533
1534 for (;;) {
1535 struct detach_data data;
1536
1537 data.mountpoint = NULL;
1538 INIT_LIST_HEAD(&data.select.dispose);
1539 data.select.start = dentry;
1540 data.select.found = 0;
1541
1542 d_walk(dentry, &data, detach_and_collect, check_and_drop);
1543
1544 if (!list_empty(&data.select.dispose))
1545 shrink_dentry_list(&data.select.dispose);
1546 else if (!data.mountpoint)
1547 return;
1548
1549 if (data.mountpoint) {
1550 detach_mounts(data.mountpoint);
1551 dput(data.mountpoint);
1552 }
1553 cond_resched();
1554 }
1555 }
1556 EXPORT_SYMBOL(d_invalidate);
1557
1558 /**
1559 * __d_alloc - allocate a dcache entry
1560 * @sb: filesystem it will belong to
1561 * @name: qstr of the name
1562 *
1563 * Allocates a dentry. It returns %NULL if there is insufficient memory
1564 * available. On a success the dentry is returned. The name passed in is
1565 * copied and the copy passed in may be reused after this call.
1566 */
1567
1568 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1569 {
1570 struct dentry *dentry;
1571 char *dname;
1572 int err;
1573
1574 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1575 if (!dentry)
1576 return NULL;
1577
1578 /*
1579 * We guarantee that the inline name is always NUL-terminated.
1580 * This way the memcpy() done by the name switching in rename
1581 * will still always have a NUL at the end, even if we might
1582 * be overwriting an internal NUL character
1583 */
1584 dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1585 if (unlikely(!name)) {
1586 name = &slash_name;
1587 dname = dentry->d_iname;
1588 } else if (name->len > DNAME_INLINE_LEN-1) {
1589 size_t size = offsetof(struct external_name, name[1]);
1590 struct external_name *p = kmalloc(size + name->len,
1591 GFP_KERNEL_ACCOUNT);
1592 if (!p) {
1593 kmem_cache_free(dentry_cache, dentry);
1594 return NULL;
1595 }
1596 atomic_set(&p->u.count, 1);
1597 dname = p->name;
1598 if (IS_ENABLED(CONFIG_DCACHE_WORD_ACCESS))
1599 kasan_unpoison_shadow(dname,
1600 round_up(name->len + 1, sizeof(unsigned long)));
1601 } else {
1602 dname = dentry->d_iname;
1603 }
1604
1605 dentry->d_name.len = name->len;
1606 dentry->d_name.hash = name->hash;
1607 memcpy(dname, name->name, name->len);
1608 dname[name->len] = 0;
1609
1610 /* Make sure we always see the terminating NUL character */
1611 smp_wmb();
1612 dentry->d_name.name = dname;
1613
1614 dentry->d_lockref.count = 1;
1615 dentry->d_flags = 0;
1616 spin_lock_init(&dentry->d_lock);
1617 seqcount_init(&dentry->d_seq);
1618 dentry->d_inode = NULL;
1619 dentry->d_parent = dentry;
1620 dentry->d_sb = sb;
1621 dentry->d_op = NULL;
1622 dentry->d_fsdata = NULL;
1623 INIT_HLIST_BL_NODE(&dentry->d_hash);
1624 INIT_LIST_HEAD(&dentry->d_lru);
1625 INIT_LIST_HEAD(&dentry->d_subdirs);
1626 INIT_HLIST_NODE(&dentry->d_u.d_alias);
1627 INIT_LIST_HEAD(&dentry->d_child);
1628 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1629
1630 if (dentry->d_op && dentry->d_op->d_init) {
1631 err = dentry->d_op->d_init(dentry);
1632 if (err) {
1633 if (dname_external(dentry))
1634 kfree(external_name(dentry));
1635 kmem_cache_free(dentry_cache, dentry);
1636 return NULL;
1637 }
1638 }
1639
1640 this_cpu_inc(nr_dentry);
1641
1642 return dentry;
1643 }
1644
1645 /**
1646 * d_alloc - allocate a dcache entry
1647 * @parent: parent of entry to allocate
1648 * @name: qstr of the name
1649 *
1650 * Allocates a dentry. It returns %NULL if there is insufficient memory
1651 * available. On a success the dentry is returned. The name passed in is
1652 * copied and the copy passed in may be reused after this call.
1653 */
1654 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1655 {
1656 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1657 if (!dentry)
1658 return NULL;
1659 dentry->d_flags |= DCACHE_RCUACCESS;
1660 spin_lock(&parent->d_lock);
1661 /*
1662 * don't need child lock because it is not subject
1663 * to concurrency here
1664 */
1665 __dget_dlock(parent);
1666 dentry->d_parent = parent;
1667 list_add(&dentry->d_child, &parent->d_subdirs);
1668 spin_unlock(&parent->d_lock);
1669
1670 return dentry;
1671 }
1672 EXPORT_SYMBOL(d_alloc);
1673
1674 struct dentry *d_alloc_cursor(struct dentry * parent)
1675 {
1676 struct dentry *dentry = __d_alloc(parent->d_sb, NULL);
1677 if (dentry) {
1678 dentry->d_flags |= DCACHE_RCUACCESS | DCACHE_DENTRY_CURSOR;
1679 dentry->d_parent = dget(parent);
1680 }
1681 return dentry;
1682 }
1683
1684 /**
1685 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1686 * @sb: the superblock
1687 * @name: qstr of the name
1688 *
1689 * For a filesystem that just pins its dentries in memory and never
1690 * performs lookups at all, return an unhashed IS_ROOT dentry.
1691 */
1692 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1693 {
1694 return __d_alloc(sb, name);
1695 }
1696 EXPORT_SYMBOL(d_alloc_pseudo);
1697
1698 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1699 {
1700 struct qstr q;
1701
1702 q.name = name;
1703 q.hash_len = hashlen_string(parent, name);
1704 return d_alloc(parent, &q);
1705 }
1706 EXPORT_SYMBOL(d_alloc_name);
1707
1708 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1709 {
1710 WARN_ON_ONCE(dentry->d_op);
1711 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
1712 DCACHE_OP_COMPARE |
1713 DCACHE_OP_REVALIDATE |
1714 DCACHE_OP_WEAK_REVALIDATE |
1715 DCACHE_OP_DELETE |
1716 DCACHE_OP_REAL));
1717 dentry->d_op = op;
1718 if (!op)
1719 return;
1720 if (op->d_hash)
1721 dentry->d_flags |= DCACHE_OP_HASH;
1722 if (op->d_compare)
1723 dentry->d_flags |= DCACHE_OP_COMPARE;
1724 if (op->d_revalidate)
1725 dentry->d_flags |= DCACHE_OP_REVALIDATE;
1726 if (op->d_weak_revalidate)
1727 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1728 if (op->d_delete)
1729 dentry->d_flags |= DCACHE_OP_DELETE;
1730 if (op->d_prune)
1731 dentry->d_flags |= DCACHE_OP_PRUNE;
1732 if (op->d_real)
1733 dentry->d_flags |= DCACHE_OP_REAL;
1734
1735 }
1736 EXPORT_SYMBOL(d_set_d_op);
1737
1738
1739 /*
1740 * d_set_fallthru - Mark a dentry as falling through to a lower layer
1741 * @dentry - The dentry to mark
1742 *
1743 * Mark a dentry as falling through to the lower layer (as set with
1744 * d_pin_lower()). This flag may be recorded on the medium.
1745 */
1746 void d_set_fallthru(struct dentry *dentry)
1747 {
1748 spin_lock(&dentry->d_lock);
1749 dentry->d_flags |= DCACHE_FALLTHRU;
1750 spin_unlock(&dentry->d_lock);
1751 }
1752 EXPORT_SYMBOL(d_set_fallthru);
1753
1754 static unsigned d_flags_for_inode(struct inode *inode)
1755 {
1756 unsigned add_flags = DCACHE_REGULAR_TYPE;
1757
1758 if (!inode)
1759 return DCACHE_MISS_TYPE;
1760
1761 if (S_ISDIR(inode->i_mode)) {
1762 add_flags = DCACHE_DIRECTORY_TYPE;
1763 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1764 if (unlikely(!inode->i_op->lookup))
1765 add_flags = DCACHE_AUTODIR_TYPE;
1766 else
1767 inode->i_opflags |= IOP_LOOKUP;
1768 }
1769 goto type_determined;
1770 }
1771
1772 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1773 if (unlikely(inode->i_op->get_link)) {
1774 add_flags = DCACHE_SYMLINK_TYPE;
1775 goto type_determined;
1776 }
1777 inode->i_opflags |= IOP_NOFOLLOW;
1778 }
1779
1780 if (unlikely(!S_ISREG(inode->i_mode)))
1781 add_flags = DCACHE_SPECIAL_TYPE;
1782
1783 type_determined:
1784 if (unlikely(IS_AUTOMOUNT(inode)))
1785 add_flags |= DCACHE_NEED_AUTOMOUNT;
1786 return add_flags;
1787 }
1788
1789 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1790 {
1791 unsigned add_flags = d_flags_for_inode(inode);
1792 WARN_ON(d_in_lookup(dentry));
1793
1794 spin_lock(&dentry->d_lock);
1795 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
1796 raw_write_seqcount_begin(&dentry->d_seq);
1797 __d_set_inode_and_type(dentry, inode, add_flags);
1798 raw_write_seqcount_end(&dentry->d_seq);
1799 fsnotify_update_flags(dentry);
1800 spin_unlock(&dentry->d_lock);
1801 }
1802
1803 /**
1804 * d_instantiate - fill in inode information for a dentry
1805 * @entry: dentry to complete
1806 * @inode: inode to attach to this dentry
1807 *
1808 * Fill in inode information in the entry.
1809 *
1810 * This turns negative dentries into productive full members
1811 * of society.
1812 *
1813 * NOTE! This assumes that the inode count has been incremented
1814 * (or otherwise set) by the caller to indicate that it is now
1815 * in use by the dcache.
1816 */
1817
1818 void d_instantiate(struct dentry *entry, struct inode * inode)
1819 {
1820 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1821 if (inode) {
1822 security_d_instantiate(entry, inode);
1823 spin_lock(&inode->i_lock);
1824 __d_instantiate(entry, inode);
1825 spin_unlock(&inode->i_lock);
1826 }
1827 }
1828 EXPORT_SYMBOL(d_instantiate);
1829
1830 /**
1831 * d_instantiate_no_diralias - instantiate a non-aliased dentry
1832 * @entry: dentry to complete
1833 * @inode: inode to attach to this dentry
1834 *
1835 * Fill in inode information in the entry. If a directory alias is found, then
1836 * return an error (and drop inode). Together with d_materialise_unique() this
1837 * guarantees that a directory inode may never have more than one alias.
1838 */
1839 int d_instantiate_no_diralias(struct dentry *entry, struct inode *inode)
1840 {
1841 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1842
1843 security_d_instantiate(entry, inode);
1844 spin_lock(&inode->i_lock);
1845 if (S_ISDIR(inode->i_mode) && !hlist_empty(&inode->i_dentry)) {
1846 spin_unlock(&inode->i_lock);
1847 iput(inode);
1848 return -EBUSY;
1849 }
1850 __d_instantiate(entry, inode);
1851 spin_unlock(&inode->i_lock);
1852
1853 return 0;
1854 }
1855 EXPORT_SYMBOL(d_instantiate_no_diralias);
1856
1857 struct dentry *d_make_root(struct inode *root_inode)
1858 {
1859 struct dentry *res = NULL;
1860
1861 if (root_inode) {
1862 res = __d_alloc(root_inode->i_sb, NULL);
1863 if (res)
1864 d_instantiate(res, root_inode);
1865 else
1866 iput(root_inode);
1867 }
1868 return res;
1869 }
1870 EXPORT_SYMBOL(d_make_root);
1871
1872 static struct dentry * __d_find_any_alias(struct inode *inode)
1873 {
1874 struct dentry *alias;
1875
1876 if (hlist_empty(&inode->i_dentry))
1877 return NULL;
1878 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
1879 __dget(alias);
1880 return alias;
1881 }
1882
1883 /**
1884 * d_find_any_alias - find any alias for a given inode
1885 * @inode: inode to find an alias for
1886 *
1887 * If any aliases exist for the given inode, take and return a
1888 * reference for one of them. If no aliases exist, return %NULL.
1889 */
1890 struct dentry *d_find_any_alias(struct inode *inode)
1891 {
1892 struct dentry *de;
1893
1894 spin_lock(&inode->i_lock);
1895 de = __d_find_any_alias(inode);
1896 spin_unlock(&inode->i_lock);
1897 return de;
1898 }
1899 EXPORT_SYMBOL(d_find_any_alias);
1900
1901 static struct dentry *__d_obtain_alias(struct inode *inode, int disconnected)
1902 {
1903 struct dentry *tmp;
1904 struct dentry *res;
1905 unsigned add_flags;
1906
1907 if (!inode)
1908 return ERR_PTR(-ESTALE);
1909 if (IS_ERR(inode))
1910 return ERR_CAST(inode);
1911
1912 res = d_find_any_alias(inode);
1913 if (res)
1914 goto out_iput;
1915
1916 tmp = __d_alloc(inode->i_sb, NULL);
1917 if (!tmp) {
1918 res = ERR_PTR(-ENOMEM);
1919 goto out_iput;
1920 }
1921
1922 security_d_instantiate(tmp, inode);
1923 spin_lock(&inode->i_lock);
1924 res = __d_find_any_alias(inode);
1925 if (res) {
1926 spin_unlock(&inode->i_lock);
1927 dput(tmp);
1928 goto out_iput;
1929 }
1930
1931 /* attach a disconnected dentry */
1932 add_flags = d_flags_for_inode(inode);
1933
1934 if (disconnected)
1935 add_flags |= DCACHE_DISCONNECTED;
1936
1937 spin_lock(&tmp->d_lock);
1938 __d_set_inode_and_type(tmp, inode, add_flags);
1939 hlist_add_head(&tmp->d_u.d_alias, &inode->i_dentry);
1940 hlist_bl_lock(&tmp->d_sb->s_anon);
1941 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1942 hlist_bl_unlock(&tmp->d_sb->s_anon);
1943 spin_unlock(&tmp->d_lock);
1944 spin_unlock(&inode->i_lock);
1945
1946 return tmp;
1947
1948 out_iput:
1949 iput(inode);
1950 return res;
1951 }
1952
1953 /**
1954 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
1955 * @inode: inode to allocate the dentry for
1956 *
1957 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1958 * similar open by handle operations. The returned dentry may be anonymous,
1959 * or may have a full name (if the inode was already in the cache).
1960 *
1961 * When called on a directory inode, we must ensure that the inode only ever
1962 * has one dentry. If a dentry is found, that is returned instead of
1963 * allocating a new one.
1964 *
1965 * On successful return, the reference to the inode has been transferred
1966 * to the dentry. In case of an error the reference on the inode is released.
1967 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1968 * be passed in and the error will be propagated to the return value,
1969 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1970 */
1971 struct dentry *d_obtain_alias(struct inode *inode)
1972 {
1973 return __d_obtain_alias(inode, 1);
1974 }
1975 EXPORT_SYMBOL(d_obtain_alias);
1976
1977 /**
1978 * d_obtain_root - find or allocate a dentry for a given inode
1979 * @inode: inode to allocate the dentry for
1980 *
1981 * Obtain an IS_ROOT dentry for the root of a filesystem.
1982 *
1983 * We must ensure that directory inodes only ever have one dentry. If a
1984 * dentry is found, that is returned instead of allocating a new one.
1985 *
1986 * On successful return, the reference to the inode has been transferred
1987 * to the dentry. In case of an error the reference on the inode is
1988 * released. A %NULL or IS_ERR inode may be passed in and will be the
1989 * error will be propagate to the return value, with a %NULL @inode
1990 * replaced by ERR_PTR(-ESTALE).
1991 */
1992 struct dentry *d_obtain_root(struct inode *inode)
1993 {
1994 return __d_obtain_alias(inode, 0);
1995 }
1996 EXPORT_SYMBOL(d_obtain_root);
1997
1998 /**
1999 * d_add_ci - lookup or allocate new dentry with case-exact name
2000 * @inode: the inode case-insensitive lookup has found
2001 * @dentry: the negative dentry that was passed to the parent's lookup func
2002 * @name: the case-exact name to be associated with the returned dentry
2003 *
2004 * This is to avoid filling the dcache with case-insensitive names to the
2005 * same inode, only the actual correct case is stored in the dcache for
2006 * case-insensitive filesystems.
2007 *
2008 * For a case-insensitive lookup match and if the the case-exact dentry
2009 * already exists in in the dcache, use it and return it.
2010 *
2011 * If no entry exists with the exact case name, allocate new dentry with
2012 * the exact case, and return the spliced entry.
2013 */
2014 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
2015 struct qstr *name)
2016 {
2017 struct dentry *found, *res;
2018
2019 /*
2020 * First check if a dentry matching the name already exists,
2021 * if not go ahead and create it now.
2022 */
2023 found = d_hash_and_lookup(dentry->d_parent, name);
2024 if (found) {
2025 iput(inode);
2026 return found;
2027 }
2028 if (d_in_lookup(dentry)) {
2029 found = d_alloc_parallel(dentry->d_parent, name,
2030 dentry->d_wait);
2031 if (IS_ERR(found) || !d_in_lookup(found)) {
2032 iput(inode);
2033 return found;
2034 }
2035 } else {
2036 found = d_alloc(dentry->d_parent, name);
2037 if (!found) {
2038 iput(inode);
2039 return ERR_PTR(-ENOMEM);
2040 }
2041 }
2042 res = d_splice_alias(inode, found);
2043 if (res) {
2044 dput(found);
2045 return res;
2046 }
2047 return found;
2048 }
2049 EXPORT_SYMBOL(d_add_ci);
2050
2051
2052 static inline bool d_same_name(const struct dentry *dentry,
2053 const struct dentry *parent,
2054 const struct qstr *name)
2055 {
2056 if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) {
2057 if (dentry->d_name.len != name->len)
2058 return false;
2059 return dentry_cmp(dentry, name->name, name->len) == 0;
2060 }
2061 return parent->d_op->d_compare(dentry,
2062 dentry->d_name.len, dentry->d_name.name,
2063 name) == 0;
2064 }
2065
2066 /**
2067 * __d_lookup_rcu - search for a dentry (racy, store-free)
2068 * @parent: parent dentry
2069 * @name: qstr of name we wish to find
2070 * @seqp: returns d_seq value at the point where the dentry was found
2071 * Returns: dentry, or NULL
2072 *
2073 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2074 * resolution (store-free path walking) design described in
2075 * Documentation/filesystems/path-lookup.txt.
2076 *
2077 * This is not to be used outside core vfs.
2078 *
2079 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2080 * held, and rcu_read_lock held. The returned dentry must not be stored into
2081 * without taking d_lock and checking d_seq sequence count against @seq
2082 * returned here.
2083 *
2084 * A refcount may be taken on the found dentry with the d_rcu_to_refcount
2085 * function.
2086 *
2087 * Alternatively, __d_lookup_rcu may be called again to look up the child of
2088 * the returned dentry, so long as its parent's seqlock is checked after the
2089 * child is looked up. Thus, an interlocking stepping of sequence lock checks
2090 * is formed, giving integrity down the path walk.
2091 *
2092 * NOTE! The caller *has* to check the resulting dentry against the sequence
2093 * number we've returned before using any of the resulting dentry state!
2094 */
2095 struct dentry *__d_lookup_rcu(const struct dentry *parent,
2096 const struct qstr *name,
2097 unsigned *seqp)
2098 {
2099 u64 hashlen = name->hash_len;
2100 const unsigned char *str = name->name;
2101 struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen));
2102 struct hlist_bl_node *node;
2103 struct dentry *dentry;
2104
2105 /*
2106 * Note: There is significant duplication with __d_lookup_rcu which is
2107 * required to prevent single threaded performance regressions
2108 * especially on architectures where smp_rmb (in seqcounts) are costly.
2109 * Keep the two functions in sync.
2110 */
2111
2112 /*
2113 * The hash list is protected using RCU.
2114 *
2115 * Carefully use d_seq when comparing a candidate dentry, to avoid
2116 * races with d_move().
2117 *
2118 * It is possible that concurrent renames can mess up our list
2119 * walk here and result in missing our dentry, resulting in the
2120 * false-negative result. d_lookup() protects against concurrent
2121 * renames using rename_lock seqlock.
2122 *
2123 * See Documentation/filesystems/path-lookup.txt for more details.
2124 */
2125 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2126 unsigned seq;
2127
2128 seqretry:
2129 /*
2130 * The dentry sequence count protects us from concurrent
2131 * renames, and thus protects parent and name fields.
2132 *
2133 * The caller must perform a seqcount check in order
2134 * to do anything useful with the returned dentry.
2135 *
2136 * NOTE! We do a "raw" seqcount_begin here. That means that
2137 * we don't wait for the sequence count to stabilize if it
2138 * is in the middle of a sequence change. If we do the slow
2139 * dentry compare, we will do seqretries until it is stable,
2140 * and if we end up with a successful lookup, we actually
2141 * want to exit RCU lookup anyway.
2142 *
2143 * Note that raw_seqcount_begin still *does* smp_rmb(), so
2144 * we are still guaranteed NUL-termination of ->d_name.name.
2145 */
2146 seq = raw_seqcount_begin(&dentry->d_seq);
2147 if (dentry->d_parent != parent)
2148 continue;
2149 if (d_unhashed(dentry))
2150 continue;
2151
2152 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
2153 int tlen;
2154 const char *tname;
2155 if (dentry->d_name.hash != hashlen_hash(hashlen))
2156 continue;
2157 tlen = dentry->d_name.len;
2158 tname = dentry->d_name.name;
2159 /* we want a consistent (name,len) pair */
2160 if (read_seqcount_retry(&dentry->d_seq, seq)) {
2161 cpu_relax();
2162 goto seqretry;
2163 }
2164 if (parent->d_op->d_compare(dentry,
2165 tlen, tname, name) != 0)
2166 continue;
2167 } else {
2168 if (dentry->d_name.hash_len != hashlen)
2169 continue;
2170 if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0)
2171 continue;
2172 }
2173 *seqp = seq;
2174 return dentry;
2175 }
2176 return NULL;
2177 }
2178
2179 /**
2180 * d_lookup - search for a dentry
2181 * @parent: parent dentry
2182 * @name: qstr of name we wish to find
2183 * Returns: dentry, or NULL
2184 *
2185 * d_lookup searches the children of the parent dentry for the name in
2186 * question. If the dentry is found its reference count is incremented and the
2187 * dentry is returned. The caller must use dput to free the entry when it has
2188 * finished using it. %NULL is returned if the dentry does not exist.
2189 */
2190 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2191 {
2192 struct dentry *dentry;
2193 unsigned seq;
2194
2195 do {
2196 seq = read_seqbegin(&rename_lock);
2197 dentry = __d_lookup(parent, name);
2198 if (dentry)
2199 break;
2200 } while (read_seqretry(&rename_lock, seq));
2201 return dentry;
2202 }
2203 EXPORT_SYMBOL(d_lookup);
2204
2205 /**
2206 * __d_lookup - search for a dentry (racy)
2207 * @parent: parent dentry
2208 * @name: qstr of name we wish to find
2209 * Returns: dentry, or NULL
2210 *
2211 * __d_lookup is like d_lookup, however it may (rarely) return a
2212 * false-negative result due to unrelated rename activity.
2213 *
2214 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2215 * however it must be used carefully, eg. with a following d_lookup in
2216 * the case of failure.
2217 *
2218 * __d_lookup callers must be commented.
2219 */
2220 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2221 {
2222 unsigned int hash = name->hash;
2223 struct hlist_bl_head *b = d_hash(hash);
2224 struct hlist_bl_node *node;
2225 struct dentry *found = NULL;
2226 struct dentry *dentry;
2227
2228 /*
2229 * Note: There is significant duplication with __d_lookup_rcu which is
2230 * required to prevent single threaded performance regressions
2231 * especially on architectures where smp_rmb (in seqcounts) are costly.
2232 * Keep the two functions in sync.
2233 */
2234
2235 /*
2236 * The hash list is protected using RCU.
2237 *
2238 * Take d_lock when comparing a candidate dentry, to avoid races
2239 * with d_move().
2240 *
2241 * It is possible that concurrent renames can mess up our list
2242 * walk here and result in missing our dentry, resulting in the
2243 * false-negative result. d_lookup() protects against concurrent
2244 * renames using rename_lock seqlock.
2245 *
2246 * See Documentation/filesystems/path-lookup.txt for more details.
2247 */
2248 rcu_read_lock();
2249
2250 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2251
2252 if (dentry->d_name.hash != hash)
2253 continue;
2254
2255 spin_lock(&dentry->d_lock);
2256 if (dentry->d_parent != parent)
2257 goto next;
2258 if (d_unhashed(dentry))
2259 goto next;
2260
2261 if (!d_same_name(dentry, parent, name))
2262 goto next;
2263
2264 dentry->d_lockref.count++;
2265 found = dentry;
2266 spin_unlock(&dentry->d_lock);
2267 break;
2268 next:
2269 spin_unlock(&dentry->d_lock);
2270 }
2271 rcu_read_unlock();
2272
2273 return found;
2274 }
2275
2276 /**
2277 * d_hash_and_lookup - hash the qstr then search for a dentry
2278 * @dir: Directory to search in
2279 * @name: qstr of name we wish to find
2280 *
2281 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2282 */
2283 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2284 {
2285 /*
2286 * Check for a fs-specific hash function. Note that we must
2287 * calculate the standard hash first, as the d_op->d_hash()
2288 * routine may choose to leave the hash value unchanged.
2289 */
2290 name->hash = full_name_hash(dir, name->name, name->len);
2291 if (dir->d_flags & DCACHE_OP_HASH) {
2292 int err = dir->d_op->d_hash(dir, name);
2293 if (unlikely(err < 0))
2294 return ERR_PTR(err);
2295 }
2296 return d_lookup(dir, name);
2297 }
2298 EXPORT_SYMBOL(d_hash_and_lookup);
2299
2300 /*
2301 * When a file is deleted, we have two options:
2302 * - turn this dentry into a negative dentry
2303 * - unhash this dentry and free it.
2304 *
2305 * Usually, we want to just turn this into
2306 * a negative dentry, but if anybody else is
2307 * currently using the dentry or the inode
2308 * we can't do that and we fall back on removing
2309 * it from the hash queues and waiting for
2310 * it to be deleted later when it has no users
2311 */
2312
2313 /**
2314 * d_delete - delete a dentry
2315 * @dentry: The dentry to delete
2316 *
2317 * Turn the dentry into a negative dentry if possible, otherwise
2318 * remove it from the hash queues so it can be deleted later
2319 */
2320
2321 void d_delete(struct dentry * dentry)
2322 {
2323 struct inode *inode;
2324 int isdir = 0;
2325 /*
2326 * Are we the only user?
2327 */
2328 again:
2329 spin_lock(&dentry->d_lock);
2330 inode = dentry->d_inode;
2331 isdir = S_ISDIR(inode->i_mode);
2332 if (dentry->d_lockref.count == 1) {
2333 if (!spin_trylock(&inode->i_lock)) {
2334 spin_unlock(&dentry->d_lock);
2335 cpu_relax();
2336 goto again;
2337 }
2338 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2339 dentry_unlink_inode(dentry);
2340 fsnotify_nameremove(dentry, isdir);
2341 return;
2342 }
2343
2344 if (!d_unhashed(dentry))
2345 __d_drop(dentry);
2346
2347 spin_unlock(&dentry->d_lock);
2348
2349 fsnotify_nameremove(dentry, isdir);
2350 }
2351 EXPORT_SYMBOL(d_delete);
2352
2353 static void __d_rehash(struct dentry *entry)
2354 {
2355 struct hlist_bl_head *b = d_hash(entry->d_name.hash);
2356 BUG_ON(!d_unhashed(entry));
2357 hlist_bl_lock(b);
2358 hlist_bl_add_head_rcu(&entry->d_hash, b);
2359 hlist_bl_unlock(b);
2360 }
2361
2362 /**
2363 * d_rehash - add an entry back to the hash
2364 * @entry: dentry to add to the hash
2365 *
2366 * Adds a dentry to the hash according to its name.
2367 */
2368
2369 void d_rehash(struct dentry * entry)
2370 {
2371 spin_lock(&entry->d_lock);
2372 __d_rehash(entry);
2373 spin_unlock(&entry->d_lock);
2374 }
2375 EXPORT_SYMBOL(d_rehash);
2376
2377 static inline unsigned start_dir_add(struct inode *dir)
2378 {
2379
2380 for (;;) {
2381 unsigned n = dir->i_dir_seq;
2382 if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n)
2383 return n;
2384 cpu_relax();
2385 }
2386 }
2387
2388 static inline void end_dir_add(struct inode *dir, unsigned n)
2389 {
2390 smp_store_release(&dir->i_dir_seq, n + 2);
2391 }
2392
2393 static void d_wait_lookup(struct dentry *dentry)
2394 {
2395 if (d_in_lookup(dentry)) {
2396 DECLARE_WAITQUEUE(wait, current);
2397 add_wait_queue(dentry->d_wait, &wait);
2398 do {
2399 set_current_state(TASK_UNINTERRUPTIBLE);
2400 spin_unlock(&dentry->d_lock);
2401 schedule();
2402 spin_lock(&dentry->d_lock);
2403 } while (d_in_lookup(dentry));
2404 }
2405 }
2406
2407 struct dentry *d_alloc_parallel(struct dentry *parent,
2408 const struct qstr *name,
2409 wait_queue_head_t *wq)
2410 {
2411 unsigned int hash = name->hash;
2412 struct hlist_bl_head *b = in_lookup_hash(parent, hash);
2413 struct hlist_bl_node *node;
2414 struct dentry *new = d_alloc(parent, name);
2415 struct dentry *dentry;
2416 unsigned seq, r_seq, d_seq;
2417
2418 if (unlikely(!new))
2419 return ERR_PTR(-ENOMEM);
2420
2421 retry:
2422 rcu_read_lock();
2423 seq = smp_load_acquire(&parent->d_inode->i_dir_seq) & ~1;
2424 r_seq = read_seqbegin(&rename_lock);
2425 dentry = __d_lookup_rcu(parent, name, &d_seq);
2426 if (unlikely(dentry)) {
2427 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2428 rcu_read_unlock();
2429 goto retry;
2430 }
2431 if (read_seqcount_retry(&dentry->d_seq, d_seq)) {
2432 rcu_read_unlock();
2433 dput(dentry);
2434 goto retry;
2435 }
2436 rcu_read_unlock();
2437 dput(new);
2438 return dentry;
2439 }
2440 if (unlikely(read_seqretry(&rename_lock, r_seq))) {
2441 rcu_read_unlock();
2442 goto retry;
2443 }
2444 hlist_bl_lock(b);
2445 if (unlikely(parent->d_inode->i_dir_seq != seq)) {
2446 hlist_bl_unlock(b);
2447 rcu_read_unlock();
2448 goto retry;
2449 }
2450 /*
2451 * No changes for the parent since the beginning of d_lookup().
2452 * Since all removals from the chain happen with hlist_bl_lock(),
2453 * any potential in-lookup matches are going to stay here until
2454 * we unlock the chain. All fields are stable in everything
2455 * we encounter.
2456 */
2457 hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) {
2458 if (dentry->d_name.hash != hash)
2459 continue;
2460 if (dentry->d_parent != parent)
2461 continue;
2462 if (!d_same_name(dentry, parent, name))
2463 continue;
2464 hlist_bl_unlock(b);
2465 /* now we can try to grab a reference */
2466 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2467 rcu_read_unlock();
2468 goto retry;
2469 }
2470
2471 rcu_read_unlock();
2472 /*
2473 * somebody is likely to be still doing lookup for it;
2474 * wait for them to finish
2475 */
2476 spin_lock(&dentry->d_lock);
2477 d_wait_lookup(dentry);
2478 /*
2479 * it's not in-lookup anymore; in principle we should repeat
2480 * everything from dcache lookup, but it's likely to be what
2481 * d_lookup() would've found anyway. If it is, just return it;
2482 * otherwise we really have to repeat the whole thing.
2483 */
2484 if (unlikely(dentry->d_name.hash != hash))
2485 goto mismatch;
2486 if (unlikely(dentry->d_parent != parent))
2487 goto mismatch;
2488 if (unlikely(d_unhashed(dentry)))
2489 goto mismatch;
2490 if (unlikely(!d_same_name(dentry, parent, name)))
2491 goto mismatch;
2492 /* OK, it *is* a hashed match; return it */
2493 spin_unlock(&dentry->d_lock);
2494 dput(new);
2495 return dentry;
2496 }
2497 rcu_read_unlock();
2498 /* we can't take ->d_lock here; it's OK, though. */
2499 new->d_flags |= DCACHE_PAR_LOOKUP;
2500 new->d_wait = wq;
2501 hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b);
2502 hlist_bl_unlock(b);
2503 return new;
2504 mismatch:
2505 spin_unlock(&dentry->d_lock);
2506 dput(dentry);
2507 goto retry;
2508 }
2509 EXPORT_SYMBOL(d_alloc_parallel);
2510
2511 void __d_lookup_done(struct dentry *dentry)
2512 {
2513 struct hlist_bl_head *b = in_lookup_hash(dentry->d_parent,
2514 dentry->d_name.hash);
2515 hlist_bl_lock(b);
2516 dentry->d_flags &= ~DCACHE_PAR_LOOKUP;
2517 __hlist_bl_del(&dentry->d_u.d_in_lookup_hash);
2518 wake_up_all(dentry->d_wait);
2519 dentry->d_wait = NULL;
2520 hlist_bl_unlock(b);
2521 INIT_HLIST_NODE(&dentry->d_u.d_alias);
2522 INIT_LIST_HEAD(&dentry->d_lru);
2523 }
2524 EXPORT_SYMBOL(__d_lookup_done);
2525
2526 /* inode->i_lock held if inode is non-NULL */
2527
2528 static inline void __d_add(struct dentry *dentry, struct inode *inode)
2529 {
2530 struct inode *dir = NULL;
2531 unsigned n;
2532 spin_lock(&dentry->d_lock);
2533 if (unlikely(d_in_lookup(dentry))) {
2534 dir = dentry->d_parent->d_inode;
2535 n = start_dir_add(dir);
2536 __d_lookup_done(dentry);
2537 }
2538 if (inode) {
2539 unsigned add_flags = d_flags_for_inode(inode);
2540 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2541 raw_write_seqcount_begin(&dentry->d_seq);
2542 __d_set_inode_and_type(dentry, inode, add_flags);
2543 raw_write_seqcount_end(&dentry->d_seq);
2544 fsnotify_update_flags(dentry);
2545 }
2546 __d_rehash(dentry);
2547 if (dir)
2548 end_dir_add(dir, n);
2549 spin_unlock(&dentry->d_lock);
2550 if (inode)
2551 spin_unlock(&inode->i_lock);
2552 }
2553
2554 /**
2555 * d_add - add dentry to hash queues
2556 * @entry: dentry to add
2557 * @inode: The inode to attach to this dentry
2558 *
2559 * This adds the entry to the hash queues and initializes @inode.
2560 * The entry was actually filled in earlier during d_alloc().
2561 */
2562
2563 void d_add(struct dentry *entry, struct inode *inode)
2564 {
2565 if (inode) {
2566 security_d_instantiate(entry, inode);
2567 spin_lock(&inode->i_lock);
2568 }
2569 __d_add(entry, inode);
2570 }
2571 EXPORT_SYMBOL(d_add);
2572
2573 /**
2574 * d_exact_alias - find and hash an exact unhashed alias
2575 * @entry: dentry to add
2576 * @inode: The inode to go with this dentry
2577 *
2578 * If an unhashed dentry with the same name/parent and desired
2579 * inode already exists, hash and return it. Otherwise, return
2580 * NULL.
2581 *
2582 * Parent directory should be locked.
2583 */
2584 struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode)
2585 {
2586 struct dentry *alias;
2587 unsigned int hash = entry->d_name.hash;
2588
2589 spin_lock(&inode->i_lock);
2590 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
2591 /*
2592 * Don't need alias->d_lock here, because aliases with
2593 * d_parent == entry->d_parent are not subject to name or
2594 * parent changes, because the parent inode i_mutex is held.
2595 */
2596 if (alias->d_name.hash != hash)
2597 continue;
2598 if (alias->d_parent != entry->d_parent)
2599 continue;
2600 if (!d_same_name(alias, entry->d_parent, &entry->d_name))
2601 continue;
2602 spin_lock(&alias->d_lock);
2603 if (!d_unhashed(alias)) {
2604 spin_unlock(&alias->d_lock);
2605 alias = NULL;
2606 } else {
2607 __dget_dlock(alias);
2608 __d_rehash(alias);
2609 spin_unlock(&alias->d_lock);
2610 }
2611 spin_unlock(&inode->i_lock);
2612 return alias;
2613 }
2614 spin_unlock(&inode->i_lock);
2615 return NULL;
2616 }
2617 EXPORT_SYMBOL(d_exact_alias);
2618
2619 /**
2620 * dentry_update_name_case - update case insensitive dentry with a new name
2621 * @dentry: dentry to be updated
2622 * @name: new name
2623 *
2624 * Update a case insensitive dentry with new case of name.
2625 *
2626 * dentry must have been returned by d_lookup with name @name. Old and new
2627 * name lengths must match (ie. no d_compare which allows mismatched name
2628 * lengths).
2629 *
2630 * Parent inode i_mutex must be held over d_lookup and into this call (to
2631 * keep renames and concurrent inserts, and readdir(2) away).
2632 */
2633 void dentry_update_name_case(struct dentry *dentry, const struct qstr *name)
2634 {
2635 BUG_ON(!inode_is_locked(dentry->d_parent->d_inode));
2636 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2637
2638 spin_lock(&dentry->d_lock);
2639 write_seqcount_begin(&dentry->d_seq);
2640 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
2641 write_seqcount_end(&dentry->d_seq);
2642 spin_unlock(&dentry->d_lock);
2643 }
2644 EXPORT_SYMBOL(dentry_update_name_case);
2645
2646 static void swap_names(struct dentry *dentry, struct dentry *target)
2647 {
2648 if (unlikely(dname_external(target))) {
2649 if (unlikely(dname_external(dentry))) {
2650 /*
2651 * Both external: swap the pointers
2652 */
2653 swap(target->d_name.name, dentry->d_name.name);
2654 } else {
2655 /*
2656 * dentry:internal, target:external. Steal target's
2657 * storage and make target internal.
2658 */
2659 memcpy(target->d_iname, dentry->d_name.name,
2660 dentry->d_name.len + 1);
2661 dentry->d_name.name = target->d_name.name;
2662 target->d_name.name = target->d_iname;
2663 }
2664 } else {
2665 if (unlikely(dname_external(dentry))) {
2666 /*
2667 * dentry:external, target:internal. Give dentry's
2668 * storage to target and make dentry internal
2669 */
2670 memcpy(dentry->d_iname, target->d_name.name,
2671 target->d_name.len + 1);
2672 target->d_name.name = dentry->d_name.name;
2673 dentry->d_name.name = dentry->d_iname;
2674 } else {
2675 /*
2676 * Both are internal.
2677 */
2678 unsigned int i;
2679 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2680 kmemcheck_mark_initialized(dentry->d_iname, DNAME_INLINE_LEN);
2681 kmemcheck_mark_initialized(target->d_iname, DNAME_INLINE_LEN);
2682 for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2683 swap(((long *) &dentry->d_iname)[i],
2684 ((long *) &target->d_iname)[i]);
2685 }
2686 }
2687 }
2688 swap(dentry->d_name.hash_len, target->d_name.hash_len);
2689 }
2690
2691 static void copy_name(struct dentry *dentry, struct dentry *target)
2692 {
2693 struct external_name *old_name = NULL;
2694 if (unlikely(dname_external(dentry)))
2695 old_name = external_name(dentry);
2696 if (unlikely(dname_external(target))) {
2697 atomic_inc(&external_name(target)->u.count);
2698 dentry->d_name = target->d_name;
2699 } else {
2700 memcpy(dentry->d_iname, target->d_name.name,
2701 target->d_name.len + 1);
2702 dentry->d_name.name = dentry->d_iname;
2703 dentry->d_name.hash_len = target->d_name.hash_len;
2704 }
2705 if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2706 kfree_rcu(old_name, u.head);
2707 }
2708
2709 static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2710 {
2711 /*
2712 * XXXX: do we really need to take target->d_lock?
2713 */
2714 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2715 spin_lock(&target->d_parent->d_lock);
2716 else {
2717 if (d_ancestor(dentry->d_parent, target->d_parent)) {
2718 spin_lock(&dentry->d_parent->d_lock);
2719 spin_lock_nested(&target->d_parent->d_lock,
2720 DENTRY_D_LOCK_NESTED);
2721 } else {
2722 spin_lock(&target->d_parent->d_lock);
2723 spin_lock_nested(&dentry->d_parent->d_lock,
2724 DENTRY_D_LOCK_NESTED);
2725 }
2726 }
2727 if (target < dentry) {
2728 spin_lock_nested(&target->d_lock, 2);
2729 spin_lock_nested(&dentry->d_lock, 3);
2730 } else {
2731 spin_lock_nested(&dentry->d_lock, 2);
2732 spin_lock_nested(&target->d_lock, 3);
2733 }
2734 }
2735
2736 static void dentry_unlock_for_move(struct dentry *dentry, struct dentry *target)
2737 {
2738 if (target->d_parent != dentry->d_parent)
2739 spin_unlock(&dentry->d_parent->d_lock);
2740 if (target->d_parent != target)
2741 spin_unlock(&target->d_parent->d_lock);
2742 spin_unlock(&target->d_lock);
2743 spin_unlock(&dentry->d_lock);
2744 }
2745
2746 /*
2747 * When switching names, the actual string doesn't strictly have to
2748 * be preserved in the target - because we're dropping the target
2749 * anyway. As such, we can just do a simple memcpy() to copy over
2750 * the new name before we switch, unless we are going to rehash
2751 * it. Note that if we *do* unhash the target, we are not allowed
2752 * to rehash it without giving it a new name/hash key - whether
2753 * we swap or overwrite the names here, resulting name won't match
2754 * the reality in filesystem; it's only there for d_path() purposes.
2755 * Note that all of this is happening under rename_lock, so the
2756 * any hash lookup seeing it in the middle of manipulations will
2757 * be discarded anyway. So we do not care what happens to the hash
2758 * key in that case.
2759 */
2760 /*
2761 * __d_move - move a dentry
2762 * @dentry: entry to move
2763 * @target: new dentry
2764 * @exchange: exchange the two dentries
2765 *
2766 * Update the dcache to reflect the move of a file name. Negative
2767 * dcache entries should not be moved in this way. Caller must hold
2768 * rename_lock, the i_mutex of the source and target directories,
2769 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2770 */
2771 static void __d_move(struct dentry *dentry, struct dentry *target,
2772 bool exchange)
2773 {
2774 struct inode *dir = NULL;
2775 unsigned n;
2776 if (!dentry->d_inode)
2777 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2778
2779 BUG_ON(d_ancestor(dentry, target));
2780 BUG_ON(d_ancestor(target, dentry));
2781
2782 dentry_lock_for_move(dentry, target);
2783 if (unlikely(d_in_lookup(target))) {
2784 dir = target->d_parent->d_inode;
2785 n = start_dir_add(dir);
2786 __d_lookup_done(target);
2787 }
2788
2789 write_seqcount_begin(&dentry->d_seq);
2790 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
2791
2792 /* unhash both */
2793 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2794 __d_drop(dentry);
2795 __d_drop(target);
2796
2797 /* Switch the names.. */
2798 if (exchange)
2799 swap_names(dentry, target);
2800 else
2801 copy_name(dentry, target);
2802
2803 /* rehash in new place(s) */
2804 __d_rehash(dentry);
2805 if (exchange)
2806 __d_rehash(target);
2807
2808 /* ... and switch them in the tree */
2809 if (IS_ROOT(dentry)) {
2810 /* splicing a tree */
2811 dentry->d_flags |= DCACHE_RCUACCESS;
2812 dentry->d_parent = target->d_parent;
2813 target->d_parent = target;
2814 list_del_init(&target->d_child);
2815 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2816 } else {
2817 /* swapping two dentries */
2818 swap(dentry->d_parent, target->d_parent);
2819 list_move(&target->d_child, &target->d_parent->d_subdirs);
2820 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2821 if (exchange)
2822 fsnotify_update_flags(target);
2823 fsnotify_update_flags(dentry);
2824 }
2825
2826 write_seqcount_end(&target->d_seq);
2827 write_seqcount_end(&dentry->d_seq);
2828
2829 if (dir)
2830 end_dir_add(dir, n);
2831 dentry_unlock_for_move(dentry, target);
2832 }
2833
2834 /*
2835 * d_move - move a dentry
2836 * @dentry: entry to move
2837 * @target: new dentry
2838 *
2839 * Update the dcache to reflect the move of a file name. Negative
2840 * dcache entries should not be moved in this way. See the locking
2841 * requirements for __d_move.
2842 */
2843 void d_move(struct dentry *dentry, struct dentry *target)
2844 {
2845 write_seqlock(&rename_lock);
2846 __d_move(dentry, target, false);
2847 write_sequnlock(&rename_lock);
2848 }
2849 EXPORT_SYMBOL(d_move);
2850
2851 /*
2852 * d_exchange - exchange two dentries
2853 * @dentry1: first dentry
2854 * @dentry2: second dentry
2855 */
2856 void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2857 {
2858 write_seqlock(&rename_lock);
2859
2860 WARN_ON(!dentry1->d_inode);
2861 WARN_ON(!dentry2->d_inode);
2862 WARN_ON(IS_ROOT(dentry1));
2863 WARN_ON(IS_ROOT(dentry2));
2864
2865 __d_move(dentry1, dentry2, true);
2866
2867 write_sequnlock(&rename_lock);
2868 }
2869
2870 /**
2871 * d_ancestor - search for an ancestor
2872 * @p1: ancestor dentry
2873 * @p2: child dentry
2874 *
2875 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2876 * an ancestor of p2, else NULL.
2877 */
2878 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2879 {
2880 struct dentry *p;
2881
2882 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2883 if (p->d_parent == p1)
2884 return p;
2885 }
2886 return NULL;
2887 }
2888
2889 /*
2890 * This helper attempts to cope with remotely renamed directories
2891 *
2892 * It assumes that the caller is already holding
2893 * dentry->d_parent->d_inode->i_mutex, and rename_lock
2894 *
2895 * Note: If ever the locking in lock_rename() changes, then please
2896 * remember to update this too...
2897 */
2898 static int __d_unalias(struct inode *inode,
2899 struct dentry *dentry, struct dentry *alias)
2900 {
2901 struct mutex *m1 = NULL;
2902 struct rw_semaphore *m2 = NULL;
2903 int ret = -ESTALE;
2904
2905 /* If alias and dentry share a parent, then no extra locks required */
2906 if (alias->d_parent == dentry->d_parent)
2907 goto out_unalias;
2908
2909 /* See lock_rename() */
2910 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2911 goto out_err;
2912 m1 = &dentry->d_sb->s_vfs_rename_mutex;
2913 if (!inode_trylock_shared(alias->d_parent->d_inode))
2914 goto out_err;
2915 m2 = &alias->d_parent->d_inode->i_rwsem;
2916 out_unalias:
2917 __d_move(alias, dentry, false);
2918 ret = 0;
2919 out_err:
2920 if (m2)
2921 up_read(m2);
2922 if (m1)
2923 mutex_unlock(m1);
2924 return ret;
2925 }
2926
2927 /**
2928 * d_splice_alias - splice a disconnected dentry into the tree if one exists
2929 * @inode: the inode which may have a disconnected dentry
2930 * @dentry: a negative dentry which we want to point to the inode.
2931 *
2932 * If inode is a directory and has an IS_ROOT alias, then d_move that in
2933 * place of the given dentry and return it, else simply d_add the inode
2934 * to the dentry and return NULL.
2935 *
2936 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
2937 * we should error out: directories can't have multiple aliases.
2938 *
2939 * This is needed in the lookup routine of any filesystem that is exportable
2940 * (via knfsd) so that we can build dcache paths to directories effectively.
2941 *
2942 * If a dentry was found and moved, then it is returned. Otherwise NULL
2943 * is returned. This matches the expected return value of ->lookup.
2944 *
2945 * Cluster filesystems may call this function with a negative, hashed dentry.
2946 * In that case, we know that the inode will be a regular file, and also this
2947 * will only occur during atomic_open. So we need to check for the dentry
2948 * being already hashed only in the final case.
2949 */
2950 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
2951 {
2952 if (IS_ERR(inode))
2953 return ERR_CAST(inode);
2954
2955 BUG_ON(!d_unhashed(dentry));
2956
2957 if (!inode)
2958 goto out;
2959
2960 security_d_instantiate(dentry, inode);
2961 spin_lock(&inode->i_lock);
2962 if (S_ISDIR(inode->i_mode)) {
2963 struct dentry *new = __d_find_any_alias(inode);
2964 if (unlikely(new)) {
2965 /* The reference to new ensures it remains an alias */
2966 spin_unlock(&inode->i_lock);
2967 write_seqlock(&rename_lock);
2968 if (unlikely(d_ancestor(new, dentry))) {
2969 write_sequnlock(&rename_lock);
2970 dput(new);
2971 new = ERR_PTR(-ELOOP);
2972 pr_warn_ratelimited(
2973 "VFS: Lookup of '%s' in %s %s"
2974 " would have caused loop\n",
2975 dentry->d_name.name,
2976 inode->i_sb->s_type->name,
2977 inode->i_sb->s_id);
2978 } else if (!IS_ROOT(new)) {
2979 int err = __d_unalias(inode, dentry, new);
2980 write_sequnlock(&rename_lock);
2981 if (err) {
2982 dput(new);
2983 new = ERR_PTR(err);
2984 }
2985 } else {
2986 __d_move(new, dentry, false);
2987 write_sequnlock(&rename_lock);
2988 }
2989 iput(inode);
2990 return new;
2991 }
2992 }
2993 out:
2994 __d_add(dentry, inode);
2995 return NULL;
2996 }
2997 EXPORT_SYMBOL(d_splice_alias);
2998
2999 static int prepend(char **buffer, int *buflen, const char *str, int namelen)
3000 {
3001 *buflen -= namelen;
3002 if (*buflen < 0)
3003 return -ENAMETOOLONG;
3004 *buffer -= namelen;
3005 memcpy(*buffer, str, namelen);
3006 return 0;
3007 }
3008
3009 /**
3010 * prepend_name - prepend a pathname in front of current buffer pointer
3011 * @buffer: buffer pointer
3012 * @buflen: allocated length of the buffer
3013 * @name: name string and length qstr structure
3014 *
3015 * With RCU path tracing, it may race with d_move(). Use ACCESS_ONCE() to
3016 * make sure that either the old or the new name pointer and length are
3017 * fetched. However, there may be mismatch between length and pointer.
3018 * The length cannot be trusted, we need to copy it byte-by-byte until
3019 * the length is reached or a null byte is found. It also prepends "/" at
3020 * the beginning of the name. The sequence number check at the caller will
3021 * retry it again when a d_move() does happen. So any garbage in the buffer
3022 * due to mismatched pointer and length will be discarded.
3023 *
3024 * Data dependency barrier is needed to make sure that we see that terminating
3025 * NUL. Alpha strikes again, film at 11...
3026 */
3027 static int prepend_name(char **buffer, int *buflen, const struct qstr *name)
3028 {
3029 const char *dname = ACCESS_ONCE(name->name);
3030 u32 dlen = ACCESS_ONCE(name->len);
3031 char *p;
3032
3033 smp_read_barrier_depends();
3034
3035 *buflen -= dlen + 1;
3036 if (*buflen < 0)
3037 return -ENAMETOOLONG;
3038 p = *buffer -= dlen + 1;
3039 *p++ = '/';
3040 while (dlen--) {
3041 char c = *dname++;
3042 if (!c)
3043 break;
3044 *p++ = c;
3045 }
3046 return 0;
3047 }
3048
3049 /**
3050 * prepend_path - Prepend path string to a buffer
3051 * @path: the dentry/vfsmount to report
3052 * @root: root vfsmnt/dentry
3053 * @buffer: pointer to the end of the buffer
3054 * @buflen: pointer to buffer length
3055 *
3056 * The function will first try to write out the pathname without taking any
3057 * lock other than the RCU read lock to make sure that dentries won't go away.
3058 * It only checks the sequence number of the global rename_lock as any change
3059 * in the dentry's d_seq will be preceded by changes in the rename_lock
3060 * sequence number. If the sequence number had been changed, it will restart
3061 * the whole pathname back-tracing sequence again by taking the rename_lock.
3062 * In this case, there is no need to take the RCU read lock as the recursive
3063 * parent pointer references will keep the dentry chain alive as long as no
3064 * rename operation is performed.
3065 */
3066 static int prepend_path(const struct path *path,
3067 const struct path *root,
3068 char **buffer, int *buflen)
3069 {
3070 struct dentry *dentry;
3071 struct vfsmount *vfsmnt;
3072 struct mount *mnt;
3073 int error = 0;
3074 unsigned seq, m_seq = 0;
3075 char *bptr;
3076 int blen;
3077
3078 rcu_read_lock();
3079 restart_mnt:
3080 read_seqbegin_or_lock(&mount_lock, &m_seq);
3081 seq = 0;
3082 rcu_read_lock();
3083 restart:
3084 bptr = *buffer;
3085 blen = *buflen;
3086 error = 0;
3087 dentry = path->dentry;
3088 vfsmnt = path->mnt;
3089 mnt = real_mount(vfsmnt);
3090 read_seqbegin_or_lock(&rename_lock, &seq);
3091 while (dentry != root->dentry || vfsmnt != root->mnt) {
3092 struct dentry * parent;
3093
3094 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
3095 struct mount *parent = ACCESS_ONCE(mnt->mnt_parent);
3096 /* Escaped? */
3097 if (dentry != vfsmnt->mnt_root) {
3098 bptr = *buffer;
3099 blen = *buflen;
3100 error = 3;
3101 break;
3102 }
3103 /* Global root? */
3104 if (mnt != parent) {
3105 dentry = ACCESS_ONCE(mnt->mnt_mountpoint);
3106 mnt = parent;
3107 vfsmnt = &mnt->mnt;
3108 continue;
3109 }
3110 if (!error)
3111 error = is_mounted(vfsmnt) ? 1 : 2;
3112 break;
3113 }
3114 parent = dentry->d_parent;
3115 prefetch(parent);
3116 error = prepend_name(&bptr, &blen, &dentry->d_name);
3117 if (error)
3118 break;
3119
3120 dentry = parent;
3121 }
3122 if (!(seq & 1))
3123 rcu_read_unlock();
3124 if (need_seqretry(&rename_lock, seq)) {
3125 seq = 1;
3126 goto restart;
3127 }
3128 done_seqretry(&rename_lock, seq);
3129
3130 if (!(m_seq & 1))
3131 rcu_read_unlock();
3132 if (need_seqretry(&mount_lock, m_seq)) {
3133 m_seq = 1;
3134 goto restart_mnt;
3135 }
3136 done_seqretry(&mount_lock, m_seq);
3137
3138 if (error >= 0 && bptr == *buffer) {
3139 if (--blen < 0)
3140 error = -ENAMETOOLONG;
3141 else
3142 *--bptr = '/';
3143 }
3144 *buffer = bptr;
3145 *buflen = blen;
3146 return error;
3147 }
3148
3149 /**
3150 * __d_path - return the path of a dentry
3151 * @path: the dentry/vfsmount to report
3152 * @root: root vfsmnt/dentry
3153 * @buf: buffer to return value in
3154 * @buflen: buffer length
3155 *
3156 * Convert a dentry into an ASCII path name.
3157 *
3158 * Returns a pointer into the buffer or an error code if the
3159 * path was too long.
3160 *
3161 * "buflen" should be positive.
3162 *
3163 * If the path is not reachable from the supplied root, return %NULL.
3164 */
3165 char *__d_path(const struct path *path,
3166 const struct path *root,
3167 char *buf, int buflen)
3168 {
3169 char *res = buf + buflen;
3170 int error;
3171
3172 prepend(&res, &buflen, "\0", 1);
3173 error = prepend_path(path, root, &res, &buflen);
3174
3175 if (error < 0)
3176 return ERR_PTR(error);
3177 if (error > 0)
3178 return NULL;
3179 return res;
3180 }
3181
3182 char *d_absolute_path(const struct path *path,
3183 char *buf, int buflen)
3184 {
3185 struct path root = {};
3186 char *res = buf + buflen;
3187 int error;
3188
3189 prepend(&res, &buflen, "\0", 1);
3190 error = prepend_path(path, &root, &res, &buflen);
3191
3192 if (error > 1)
3193 error = -EINVAL;
3194 if (error < 0)
3195 return ERR_PTR(error);
3196 return res;
3197 }
3198
3199 /*
3200 * same as __d_path but appends "(deleted)" for unlinked files.
3201 */
3202 static int path_with_deleted(const struct path *path,
3203 const struct path *root,
3204 char **buf, int *buflen)
3205 {
3206 prepend(buf, buflen, "\0", 1);
3207 if (d_unlinked(path->dentry)) {
3208 int error = prepend(buf, buflen, " (deleted)", 10);
3209 if (error)
3210 return error;
3211 }
3212
3213 return prepend_path(path, root, buf, buflen);
3214 }
3215
3216 static int prepend_unreachable(char **buffer, int *buflen)
3217 {
3218 return prepend(buffer, buflen, "(unreachable)", 13);
3219 }
3220
3221 static void get_fs_root_rcu(struct fs_struct *fs, struct path *root)
3222 {
3223 unsigned seq;
3224
3225 do {
3226 seq = read_seqcount_begin(&fs->seq);
3227 *root = fs->root;
3228 } while (read_seqcount_retry(&fs->seq, seq));
3229 }
3230
3231 /**
3232 * d_path - return the path of a dentry
3233 * @path: path to report
3234 * @buf: buffer to return value in
3235 * @buflen: buffer length
3236 *
3237 * Convert a dentry into an ASCII path name. If the entry has been deleted
3238 * the string " (deleted)" is appended. Note that this is ambiguous.
3239 *
3240 * Returns a pointer into the buffer or an error code if the path was
3241 * too long. Note: Callers should use the returned pointer, not the passed
3242 * in buffer, to use the name! The implementation often starts at an offset
3243 * into the buffer, and may leave 0 bytes at the start.
3244 *
3245 * "buflen" should be positive.
3246 */
3247 char *d_path(const struct path *path, char *buf, int buflen)
3248 {
3249 char *res = buf + buflen;
3250 struct path root;
3251 int error;
3252
3253 /*
3254 * We have various synthetic filesystems that never get mounted. On
3255 * these filesystems dentries are never used for lookup purposes, and
3256 * thus don't need to be hashed. They also don't need a name until a
3257 * user wants to identify the object in /proc/pid/fd/. The little hack
3258 * below allows us to generate a name for these objects on demand:
3259 *
3260 * Some pseudo inodes are mountable. When they are mounted
3261 * path->dentry == path->mnt->mnt_root. In that case don't call d_dname
3262 * and instead have d_path return the mounted path.
3263 */
3264 if (path->dentry->d_op && path->dentry->d_op->d_dname &&
3265 (!IS_ROOT(path->dentry) || path->dentry != path->mnt->mnt_root))
3266 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
3267
3268 rcu_read_lock();
3269 get_fs_root_rcu(current->fs, &root);
3270 error = path_with_deleted(path, &root, &res, &buflen);
3271 rcu_read_unlock();
3272
3273 if (error < 0)
3274 res = ERR_PTR(error);
3275 return res;
3276 }
3277 EXPORT_SYMBOL(d_path);
3278
3279 /*
3280 * Helper function for dentry_operations.d_dname() members
3281 */
3282 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
3283 const char *fmt, ...)
3284 {
3285 va_list args;
3286 char temp[64];
3287 int sz;
3288
3289 va_start(args, fmt);
3290 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
3291 va_end(args);
3292
3293 if (sz > sizeof(temp) || sz > buflen)
3294 return ERR_PTR(-ENAMETOOLONG);
3295
3296 buffer += buflen - sz;
3297 return memcpy(buffer, temp, sz);
3298 }
3299
3300 char *simple_dname(struct dentry *dentry, char *buffer, int buflen)
3301 {
3302 char *end = buffer + buflen;
3303 /* these dentries are never renamed, so d_lock is not needed */
3304 if (prepend(&end, &buflen, " (deleted)", 11) ||
3305 prepend(&end, &buflen, dentry->d_name.name, dentry->d_name.len) ||
3306 prepend(&end, &buflen, "/", 1))
3307 end = ERR_PTR(-ENAMETOOLONG);
3308 return end;
3309 }
3310 EXPORT_SYMBOL(simple_dname);
3311
3312 /*
3313 * Write full pathname from the root of the filesystem into the buffer.
3314 */
3315 static char *__dentry_path(struct dentry *d, char *buf, int buflen)
3316 {
3317 struct dentry *dentry;
3318 char *end, *retval;
3319 int len, seq = 0;
3320 int error = 0;
3321
3322 if (buflen < 2)
3323 goto Elong;
3324
3325 rcu_read_lock();
3326 restart:
3327 dentry = d;
3328 end = buf + buflen;
3329 len = buflen;
3330 prepend(&end, &len, "\0", 1);
3331 /* Get '/' right */
3332 retval = end-1;
3333 *retval = '/';
3334 read_seqbegin_or_lock(&rename_lock, &seq);
3335 while (!IS_ROOT(dentry)) {
3336 struct dentry *parent = dentry->d_parent;
3337
3338 prefetch(parent);
3339 error = prepend_name(&end, &len, &dentry->d_name);
3340 if (error)
3341 break;
3342
3343 retval = end;
3344 dentry = parent;
3345 }
3346 if (!(seq & 1))
3347 rcu_read_unlock();
3348 if (need_seqretry(&rename_lock, seq)) {
3349 seq = 1;
3350 goto restart;
3351 }
3352 done_seqretry(&rename_lock, seq);
3353 if (error)
3354 goto Elong;
3355 return retval;
3356 Elong:
3357 return ERR_PTR(-ENAMETOOLONG);
3358 }
3359
3360 char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
3361 {
3362 return __dentry_path(dentry, buf, buflen);
3363 }
3364 EXPORT_SYMBOL(dentry_path_raw);
3365
3366 char *dentry_path(struct dentry *dentry, char *buf, int buflen)
3367 {
3368 char *p = NULL;
3369 char *retval;
3370
3371 if (d_unlinked(dentry)) {
3372 p = buf + buflen;
3373 if (prepend(&p, &buflen, "//deleted", 10) != 0)
3374 goto Elong;
3375 buflen++;
3376 }
3377 retval = __dentry_path(dentry, buf, buflen);
3378 if (!IS_ERR(retval) && p)
3379 *p = '/'; /* restore '/' overriden with '\0' */
3380 return retval;
3381 Elong:
3382 return ERR_PTR(-ENAMETOOLONG);
3383 }
3384
3385 static void get_fs_root_and_pwd_rcu(struct fs_struct *fs, struct path *root,
3386 struct path *pwd)
3387 {
3388 unsigned seq;
3389
3390 do {
3391 seq = read_seqcount_begin(&fs->seq);
3392 *root = fs->root;
3393 *pwd = fs->pwd;
3394 } while (read_seqcount_retry(&fs->seq, seq));
3395 }
3396
3397 /*
3398 * NOTE! The user-level library version returns a
3399 * character pointer. The kernel system call just
3400 * returns the length of the buffer filled (which
3401 * includes the ending '\0' character), or a negative
3402 * error value. So libc would do something like
3403 *
3404 * char *getcwd(char * buf, size_t size)
3405 * {
3406 * int retval;
3407 *
3408 * retval = sys_getcwd(buf, size);
3409 * if (retval >= 0)
3410 * return buf;
3411 * errno = -retval;
3412 * return NULL;
3413 * }
3414 */
3415 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
3416 {
3417 int error;
3418 struct path pwd, root;
3419 char *page = __getname();
3420
3421 if (!page)
3422 return -ENOMEM;
3423
3424 rcu_read_lock();
3425 get_fs_root_and_pwd_rcu(current->fs, &root, &pwd);
3426
3427 error = -ENOENT;
3428 if (!d_unlinked(pwd.dentry)) {
3429 unsigned long len;
3430 char *cwd = page + PATH_MAX;
3431 int buflen = PATH_MAX;
3432
3433 prepend(&cwd, &buflen, "\0", 1);
3434 error = prepend_path(&pwd, &root, &cwd, &buflen);
3435 rcu_read_unlock();
3436
3437 if (error < 0)
3438 goto out;
3439
3440 /* Unreachable from current root */
3441 if (error > 0) {
3442 error = prepend_unreachable(&cwd, &buflen);
3443 if (error)
3444 goto out;
3445 }
3446
3447 error = -ERANGE;
3448 len = PATH_MAX + page - cwd;
3449 if (len <= size) {
3450 error = len;
3451 if (copy_to_user(buf, cwd, len))
3452 error = -EFAULT;
3453 }
3454 } else {
3455 rcu_read_unlock();
3456 }
3457
3458 out:
3459 __putname(page);
3460 return error;
3461 }
3462
3463 /*
3464 * Test whether new_dentry is a subdirectory of old_dentry.
3465 *
3466 * Trivially implemented using the dcache structure
3467 */
3468
3469 /**
3470 * is_subdir - is new dentry a subdirectory of old_dentry
3471 * @new_dentry: new dentry
3472 * @old_dentry: old dentry
3473 *
3474 * Returns true if new_dentry is a subdirectory of the parent (at any depth).
3475 * Returns false otherwise.
3476 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3477 */
3478
3479 bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
3480 {
3481 bool result;
3482 unsigned seq;
3483
3484 if (new_dentry == old_dentry)
3485 return true;
3486
3487 do {
3488 /* for restarting inner loop in case of seq retry */
3489 seq = read_seqbegin(&rename_lock);
3490 /*
3491 * Need rcu_readlock to protect against the d_parent trashing
3492 * due to d_move
3493 */
3494 rcu_read_lock();
3495 if (d_ancestor(old_dentry, new_dentry))
3496 result = true;
3497 else
3498 result = false;
3499 rcu_read_unlock();
3500 } while (read_seqretry(&rename_lock, seq));
3501
3502 return result;
3503 }
3504
3505 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
3506 {
3507 struct dentry *root = data;
3508 if (dentry != root) {
3509 if (d_unhashed(dentry) || !dentry->d_inode)
3510 return D_WALK_SKIP;
3511
3512 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3513 dentry->d_flags |= DCACHE_GENOCIDE;
3514 dentry->d_lockref.count--;
3515 }
3516 }
3517 return D_WALK_CONTINUE;
3518 }
3519
3520 void d_genocide(struct dentry *parent)
3521 {
3522 d_walk(parent, parent, d_genocide_kill, NULL);
3523 }
3524
3525 void d_tmpfile(struct dentry *dentry, struct inode *inode)
3526 {
3527 inode_dec_link_count(inode);
3528 BUG_ON(dentry->d_name.name != dentry->d_iname ||
3529 !hlist_unhashed(&dentry->d_u.d_alias) ||
3530 !d_unlinked(dentry));
3531 spin_lock(&dentry->d_parent->d_lock);
3532 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3533 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3534 (unsigned long long)inode->i_ino);
3535 spin_unlock(&dentry->d_lock);
3536 spin_unlock(&dentry->d_parent->d_lock);
3537 d_instantiate(dentry, inode);
3538 }
3539 EXPORT_SYMBOL(d_tmpfile);
3540
3541 static __initdata unsigned long dhash_entries;
3542 static int __init set_dhash_entries(char *str)
3543 {
3544 if (!str)
3545 return 0;
3546 dhash_entries = simple_strtoul(str, &str, 0);
3547 return 1;
3548 }
3549 __setup("dhash_entries=", set_dhash_entries);
3550
3551 static void __init dcache_init_early(void)
3552 {
3553 unsigned int loop;
3554
3555 /* If hashes are distributed across NUMA nodes, defer
3556 * hash allocation until vmalloc space is available.
3557 */
3558 if (hashdist)
3559 return;
3560
3561 dentry_hashtable =
3562 alloc_large_system_hash("Dentry cache",
3563 sizeof(struct hlist_bl_head),
3564 dhash_entries,
3565 13,
3566 HASH_EARLY,
3567 &d_hash_shift,
3568 &d_hash_mask,
3569 0,
3570 0);
3571
3572 for (loop = 0; loop < (1U << d_hash_shift); loop++)
3573 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3574 }
3575
3576 static void __init dcache_init(void)
3577 {
3578 unsigned int loop;
3579
3580 /*
3581 * A constructor could be added for stable state like the lists,
3582 * but it is probably not worth it because of the cache nature
3583 * of the dcache.
3584 */
3585 dentry_cache = KMEM_CACHE(dentry,
3586 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT);
3587
3588 /* Hash may have been set up in dcache_init_early */
3589 if (!hashdist)
3590 return;
3591
3592 dentry_hashtable =
3593 alloc_large_system_hash("Dentry cache",
3594 sizeof(struct hlist_bl_head),
3595 dhash_entries,
3596 13,
3597 0,
3598 &d_hash_shift,
3599 &d_hash_mask,
3600 0,
3601 0);
3602
3603 for (loop = 0; loop < (1U << d_hash_shift); loop++)
3604 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3605 }
3606
3607 /* SLAB cache for __getname() consumers */
3608 struct kmem_cache *names_cachep __read_mostly;
3609 EXPORT_SYMBOL(names_cachep);
3610
3611 EXPORT_SYMBOL(d_genocide);
3612
3613 void __init vfs_caches_init_early(void)
3614 {
3615 dcache_init_early();
3616 inode_init_early();
3617 }
3618
3619 void __init vfs_caches_init(void)
3620 {
3621 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
3622 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3623
3624 dcache_init();
3625 inode_init();
3626 files_init();
3627 files_maxfiles_init();
3628 mnt_init();
3629 bdev_cache_init();
3630 chrdev_init();
3631 }