]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - fs/dcache.c
floppy: reintroduce O_NDELAY fix
[mirror_ubuntu-kernels.git] / fs / dcache.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * fs/dcache.c
4 *
5 * Complete reimplementation
6 * (C) 1997 Thomas Schoebel-Theuer,
7 * with heavy changes by Linus Torvalds
8 */
9
10 /*
11 * Notes on the allocation strategy:
12 *
13 * The dcache is a master of the icache - whenever a dcache entry
14 * exists, the inode will always exist. "iput()" is done either when
15 * the dcache entry is deleted or garbage collected.
16 */
17
18 #include <linux/ratelimit.h>
19 #include <linux/string.h>
20 #include <linux/mm.h>
21 #include <linux/fs.h>
22 #include <linux/fscrypt.h>
23 #include <linux/fsnotify.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/hash.h>
27 #include <linux/cache.h>
28 #include <linux/export.h>
29 #include <linux/security.h>
30 #include <linux/seqlock.h>
31 #include <linux/memblock.h>
32 #include <linux/bit_spinlock.h>
33 #include <linux/rculist_bl.h>
34 #include <linux/list_lru.h>
35 #include "internal.h"
36 #include "mount.h"
37
38 /*
39 * Usage:
40 * dcache->d_inode->i_lock protects:
41 * - i_dentry, d_u.d_alias, d_inode of aliases
42 * dcache_hash_bucket lock protects:
43 * - the dcache hash table
44 * s_roots bl list spinlock protects:
45 * - the s_roots list (see __d_drop)
46 * dentry->d_sb->s_dentry_lru_lock protects:
47 * - the dcache lru lists and counters
48 * d_lock protects:
49 * - d_flags
50 * - d_name
51 * - d_lru
52 * - d_count
53 * - d_unhashed()
54 * - d_parent and d_subdirs
55 * - childrens' d_child and d_parent
56 * - d_u.d_alias, d_inode
57 *
58 * Ordering:
59 * dentry->d_inode->i_lock
60 * dentry->d_lock
61 * dentry->d_sb->s_dentry_lru_lock
62 * dcache_hash_bucket lock
63 * s_roots lock
64 *
65 * If there is an ancestor relationship:
66 * dentry->d_parent->...->d_parent->d_lock
67 * ...
68 * dentry->d_parent->d_lock
69 * dentry->d_lock
70 *
71 * If no ancestor relationship:
72 * arbitrary, since it's serialized on rename_lock
73 */
74 int sysctl_vfs_cache_pressure __read_mostly = 100;
75 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
76
77 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
78
79 EXPORT_SYMBOL(rename_lock);
80
81 static struct kmem_cache *dentry_cache __read_mostly;
82
83 const struct qstr empty_name = QSTR_INIT("", 0);
84 EXPORT_SYMBOL(empty_name);
85 const struct qstr slash_name = QSTR_INIT("/", 1);
86 EXPORT_SYMBOL(slash_name);
87
88 /*
89 * This is the single most critical data structure when it comes
90 * to the dcache: the hashtable for lookups. Somebody should try
91 * to make this good - I've just made it work.
92 *
93 * This hash-function tries to avoid losing too many bits of hash
94 * information, yet avoid using a prime hash-size or similar.
95 */
96
97 static unsigned int d_hash_shift __read_mostly;
98
99 static struct hlist_bl_head *dentry_hashtable __read_mostly;
100
101 static inline struct hlist_bl_head *d_hash(unsigned int hash)
102 {
103 return dentry_hashtable + (hash >> d_hash_shift);
104 }
105
106 #define IN_LOOKUP_SHIFT 10
107 static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT];
108
109 static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent,
110 unsigned int hash)
111 {
112 hash += (unsigned long) parent / L1_CACHE_BYTES;
113 return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT);
114 }
115
116
117 /* Statistics gathering. */
118 struct dentry_stat_t dentry_stat = {
119 .age_limit = 45,
120 };
121
122 static DEFINE_PER_CPU(long, nr_dentry);
123 static DEFINE_PER_CPU(long, nr_dentry_unused);
124 static DEFINE_PER_CPU(long, nr_dentry_negative);
125
126 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
127
128 /*
129 * Here we resort to our own counters instead of using generic per-cpu counters
130 * for consistency with what the vfs inode code does. We are expected to harvest
131 * better code and performance by having our own specialized counters.
132 *
133 * Please note that the loop is done over all possible CPUs, not over all online
134 * CPUs. The reason for this is that we don't want to play games with CPUs going
135 * on and off. If one of them goes off, we will just keep their counters.
136 *
137 * glommer: See cffbc8a for details, and if you ever intend to change this,
138 * please update all vfs counters to match.
139 */
140 static long get_nr_dentry(void)
141 {
142 int i;
143 long sum = 0;
144 for_each_possible_cpu(i)
145 sum += per_cpu(nr_dentry, i);
146 return sum < 0 ? 0 : sum;
147 }
148
149 static long get_nr_dentry_unused(void)
150 {
151 int i;
152 long sum = 0;
153 for_each_possible_cpu(i)
154 sum += per_cpu(nr_dentry_unused, i);
155 return sum < 0 ? 0 : sum;
156 }
157
158 static long get_nr_dentry_negative(void)
159 {
160 int i;
161 long sum = 0;
162
163 for_each_possible_cpu(i)
164 sum += per_cpu(nr_dentry_negative, i);
165 return sum < 0 ? 0 : sum;
166 }
167
168 int proc_nr_dentry(struct ctl_table *table, int write, void *buffer,
169 size_t *lenp, loff_t *ppos)
170 {
171 dentry_stat.nr_dentry = get_nr_dentry();
172 dentry_stat.nr_unused = get_nr_dentry_unused();
173 dentry_stat.nr_negative = get_nr_dentry_negative();
174 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
175 }
176 #endif
177
178 /*
179 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
180 * The strings are both count bytes long, and count is non-zero.
181 */
182 #ifdef CONFIG_DCACHE_WORD_ACCESS
183
184 #include <asm/word-at-a-time.h>
185 /*
186 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
187 * aligned allocation for this particular component. We don't
188 * strictly need the load_unaligned_zeropad() safety, but it
189 * doesn't hurt either.
190 *
191 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
192 * need the careful unaligned handling.
193 */
194 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
195 {
196 unsigned long a,b,mask;
197
198 for (;;) {
199 a = read_word_at_a_time(cs);
200 b = load_unaligned_zeropad(ct);
201 if (tcount < sizeof(unsigned long))
202 break;
203 if (unlikely(a != b))
204 return 1;
205 cs += sizeof(unsigned long);
206 ct += sizeof(unsigned long);
207 tcount -= sizeof(unsigned long);
208 if (!tcount)
209 return 0;
210 }
211 mask = bytemask_from_count(tcount);
212 return unlikely(!!((a ^ b) & mask));
213 }
214
215 #else
216
217 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
218 {
219 do {
220 if (*cs != *ct)
221 return 1;
222 cs++;
223 ct++;
224 tcount--;
225 } while (tcount);
226 return 0;
227 }
228
229 #endif
230
231 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
232 {
233 /*
234 * Be careful about RCU walk racing with rename:
235 * use 'READ_ONCE' to fetch the name pointer.
236 *
237 * NOTE! Even if a rename will mean that the length
238 * was not loaded atomically, we don't care. The
239 * RCU walk will check the sequence count eventually,
240 * and catch it. And we won't overrun the buffer,
241 * because we're reading the name pointer atomically,
242 * and a dentry name is guaranteed to be properly
243 * terminated with a NUL byte.
244 *
245 * End result: even if 'len' is wrong, we'll exit
246 * early because the data cannot match (there can
247 * be no NUL in the ct/tcount data)
248 */
249 const unsigned char *cs = READ_ONCE(dentry->d_name.name);
250
251 return dentry_string_cmp(cs, ct, tcount);
252 }
253
254 struct external_name {
255 union {
256 atomic_t count;
257 struct rcu_head head;
258 } u;
259 unsigned char name[];
260 };
261
262 static inline struct external_name *external_name(struct dentry *dentry)
263 {
264 return container_of(dentry->d_name.name, struct external_name, name[0]);
265 }
266
267 static void __d_free(struct rcu_head *head)
268 {
269 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
270
271 kmem_cache_free(dentry_cache, dentry);
272 }
273
274 static void __d_free_external(struct rcu_head *head)
275 {
276 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
277 kfree(external_name(dentry));
278 kmem_cache_free(dentry_cache, dentry);
279 }
280
281 static inline int dname_external(const struct dentry *dentry)
282 {
283 return dentry->d_name.name != dentry->d_iname;
284 }
285
286 void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry)
287 {
288 spin_lock(&dentry->d_lock);
289 name->name = dentry->d_name;
290 if (unlikely(dname_external(dentry))) {
291 atomic_inc(&external_name(dentry)->u.count);
292 } else {
293 memcpy(name->inline_name, dentry->d_iname,
294 dentry->d_name.len + 1);
295 name->name.name = name->inline_name;
296 }
297 spin_unlock(&dentry->d_lock);
298 }
299 EXPORT_SYMBOL(take_dentry_name_snapshot);
300
301 void release_dentry_name_snapshot(struct name_snapshot *name)
302 {
303 if (unlikely(name->name.name != name->inline_name)) {
304 struct external_name *p;
305 p = container_of(name->name.name, struct external_name, name[0]);
306 if (unlikely(atomic_dec_and_test(&p->u.count)))
307 kfree_rcu(p, u.head);
308 }
309 }
310 EXPORT_SYMBOL(release_dentry_name_snapshot);
311
312 static inline void __d_set_inode_and_type(struct dentry *dentry,
313 struct inode *inode,
314 unsigned type_flags)
315 {
316 unsigned flags;
317
318 dentry->d_inode = inode;
319 flags = READ_ONCE(dentry->d_flags);
320 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
321 flags |= type_flags;
322 smp_store_release(&dentry->d_flags, flags);
323 }
324
325 static inline void __d_clear_type_and_inode(struct dentry *dentry)
326 {
327 unsigned flags = READ_ONCE(dentry->d_flags);
328
329 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
330 WRITE_ONCE(dentry->d_flags, flags);
331 dentry->d_inode = NULL;
332 if (dentry->d_flags & DCACHE_LRU_LIST)
333 this_cpu_inc(nr_dentry_negative);
334 }
335
336 static void dentry_free(struct dentry *dentry)
337 {
338 WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
339 if (unlikely(dname_external(dentry))) {
340 struct external_name *p = external_name(dentry);
341 if (likely(atomic_dec_and_test(&p->u.count))) {
342 call_rcu(&dentry->d_u.d_rcu, __d_free_external);
343 return;
344 }
345 }
346 /* if dentry was never visible to RCU, immediate free is OK */
347 if (dentry->d_flags & DCACHE_NORCU)
348 __d_free(&dentry->d_u.d_rcu);
349 else
350 call_rcu(&dentry->d_u.d_rcu, __d_free);
351 }
352
353 /*
354 * Release the dentry's inode, using the filesystem
355 * d_iput() operation if defined.
356 */
357 static void dentry_unlink_inode(struct dentry * dentry)
358 __releases(dentry->d_lock)
359 __releases(dentry->d_inode->i_lock)
360 {
361 struct inode *inode = dentry->d_inode;
362
363 raw_write_seqcount_begin(&dentry->d_seq);
364 __d_clear_type_and_inode(dentry);
365 hlist_del_init(&dentry->d_u.d_alias);
366 raw_write_seqcount_end(&dentry->d_seq);
367 spin_unlock(&dentry->d_lock);
368 spin_unlock(&inode->i_lock);
369 if (!inode->i_nlink)
370 fsnotify_inoderemove(inode);
371 if (dentry->d_op && dentry->d_op->d_iput)
372 dentry->d_op->d_iput(dentry, inode);
373 else
374 iput(inode);
375 }
376
377 /*
378 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
379 * is in use - which includes both the "real" per-superblock
380 * LRU list _and_ the DCACHE_SHRINK_LIST use.
381 *
382 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
383 * on the shrink list (ie not on the superblock LRU list).
384 *
385 * The per-cpu "nr_dentry_unused" counters are updated with
386 * the DCACHE_LRU_LIST bit.
387 *
388 * The per-cpu "nr_dentry_negative" counters are only updated
389 * when deleted from or added to the per-superblock LRU list, not
390 * from/to the shrink list. That is to avoid an unneeded dec/inc
391 * pair when moving from LRU to shrink list in select_collect().
392 *
393 * These helper functions make sure we always follow the
394 * rules. d_lock must be held by the caller.
395 */
396 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
397 static void d_lru_add(struct dentry *dentry)
398 {
399 D_FLAG_VERIFY(dentry, 0);
400 dentry->d_flags |= DCACHE_LRU_LIST;
401 this_cpu_inc(nr_dentry_unused);
402 if (d_is_negative(dentry))
403 this_cpu_inc(nr_dentry_negative);
404 WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
405 }
406
407 static void d_lru_del(struct dentry *dentry)
408 {
409 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
410 dentry->d_flags &= ~DCACHE_LRU_LIST;
411 this_cpu_dec(nr_dentry_unused);
412 if (d_is_negative(dentry))
413 this_cpu_dec(nr_dentry_negative);
414 WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
415 }
416
417 static void d_shrink_del(struct dentry *dentry)
418 {
419 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
420 list_del_init(&dentry->d_lru);
421 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
422 this_cpu_dec(nr_dentry_unused);
423 }
424
425 static void d_shrink_add(struct dentry *dentry, struct list_head *list)
426 {
427 D_FLAG_VERIFY(dentry, 0);
428 list_add(&dentry->d_lru, list);
429 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
430 this_cpu_inc(nr_dentry_unused);
431 }
432
433 /*
434 * These can only be called under the global LRU lock, ie during the
435 * callback for freeing the LRU list. "isolate" removes it from the
436 * LRU lists entirely, while shrink_move moves it to the indicated
437 * private list.
438 */
439 static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
440 {
441 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
442 dentry->d_flags &= ~DCACHE_LRU_LIST;
443 this_cpu_dec(nr_dentry_unused);
444 if (d_is_negative(dentry))
445 this_cpu_dec(nr_dentry_negative);
446 list_lru_isolate(lru, &dentry->d_lru);
447 }
448
449 static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
450 struct list_head *list)
451 {
452 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
453 dentry->d_flags |= DCACHE_SHRINK_LIST;
454 if (d_is_negative(dentry))
455 this_cpu_dec(nr_dentry_negative);
456 list_lru_isolate_move(lru, &dentry->d_lru, list);
457 }
458
459 /**
460 * d_drop - drop a dentry
461 * @dentry: dentry to drop
462 *
463 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
464 * be found through a VFS lookup any more. Note that this is different from
465 * deleting the dentry - d_delete will try to mark the dentry negative if
466 * possible, giving a successful _negative_ lookup, while d_drop will
467 * just make the cache lookup fail.
468 *
469 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
470 * reason (NFS timeouts or autofs deletes).
471 *
472 * __d_drop requires dentry->d_lock
473 * ___d_drop doesn't mark dentry as "unhashed"
474 * (dentry->d_hash.pprev will be LIST_POISON2, not NULL).
475 */
476 static void ___d_drop(struct dentry *dentry)
477 {
478 struct hlist_bl_head *b;
479 /*
480 * Hashed dentries are normally on the dentry hashtable,
481 * with the exception of those newly allocated by
482 * d_obtain_root, which are always IS_ROOT:
483 */
484 if (unlikely(IS_ROOT(dentry)))
485 b = &dentry->d_sb->s_roots;
486 else
487 b = d_hash(dentry->d_name.hash);
488
489 hlist_bl_lock(b);
490 __hlist_bl_del(&dentry->d_hash);
491 hlist_bl_unlock(b);
492 }
493
494 void __d_drop(struct dentry *dentry)
495 {
496 if (!d_unhashed(dentry)) {
497 ___d_drop(dentry);
498 dentry->d_hash.pprev = NULL;
499 write_seqcount_invalidate(&dentry->d_seq);
500 }
501 }
502 EXPORT_SYMBOL(__d_drop);
503
504 void d_drop(struct dentry *dentry)
505 {
506 spin_lock(&dentry->d_lock);
507 __d_drop(dentry);
508 spin_unlock(&dentry->d_lock);
509 }
510 EXPORT_SYMBOL(d_drop);
511
512 static inline void dentry_unlist(struct dentry *dentry, struct dentry *parent)
513 {
514 struct dentry *next;
515 /*
516 * Inform d_walk() and shrink_dentry_list() that we are no longer
517 * attached to the dentry tree
518 */
519 dentry->d_flags |= DCACHE_DENTRY_KILLED;
520 if (unlikely(list_empty(&dentry->d_child)))
521 return;
522 __list_del_entry(&dentry->d_child);
523 /*
524 * Cursors can move around the list of children. While we'd been
525 * a normal list member, it didn't matter - ->d_child.next would've
526 * been updated. However, from now on it won't be and for the
527 * things like d_walk() it might end up with a nasty surprise.
528 * Normally d_walk() doesn't care about cursors moving around -
529 * ->d_lock on parent prevents that and since a cursor has no children
530 * of its own, we get through it without ever unlocking the parent.
531 * There is one exception, though - if we ascend from a child that
532 * gets killed as soon as we unlock it, the next sibling is found
533 * using the value left in its ->d_child.next. And if _that_
534 * pointed to a cursor, and cursor got moved (e.g. by lseek())
535 * before d_walk() regains parent->d_lock, we'll end up skipping
536 * everything the cursor had been moved past.
537 *
538 * Solution: make sure that the pointer left behind in ->d_child.next
539 * points to something that won't be moving around. I.e. skip the
540 * cursors.
541 */
542 while (dentry->d_child.next != &parent->d_subdirs) {
543 next = list_entry(dentry->d_child.next, struct dentry, d_child);
544 if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR)))
545 break;
546 dentry->d_child.next = next->d_child.next;
547 }
548 }
549
550 static void __dentry_kill(struct dentry *dentry)
551 {
552 struct dentry *parent = NULL;
553 bool can_free = true;
554 if (!IS_ROOT(dentry))
555 parent = dentry->d_parent;
556
557 /*
558 * The dentry is now unrecoverably dead to the world.
559 */
560 lockref_mark_dead(&dentry->d_lockref);
561
562 /*
563 * inform the fs via d_prune that this dentry is about to be
564 * unhashed and destroyed.
565 */
566 if (dentry->d_flags & DCACHE_OP_PRUNE)
567 dentry->d_op->d_prune(dentry);
568
569 if (dentry->d_flags & DCACHE_LRU_LIST) {
570 if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
571 d_lru_del(dentry);
572 }
573 /* if it was on the hash then remove it */
574 __d_drop(dentry);
575 dentry_unlist(dentry, parent);
576 if (parent)
577 spin_unlock(&parent->d_lock);
578 if (dentry->d_inode)
579 dentry_unlink_inode(dentry);
580 else
581 spin_unlock(&dentry->d_lock);
582 this_cpu_dec(nr_dentry);
583 if (dentry->d_op && dentry->d_op->d_release)
584 dentry->d_op->d_release(dentry);
585
586 spin_lock(&dentry->d_lock);
587 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
588 dentry->d_flags |= DCACHE_MAY_FREE;
589 can_free = false;
590 }
591 spin_unlock(&dentry->d_lock);
592 if (likely(can_free))
593 dentry_free(dentry);
594 cond_resched();
595 }
596
597 static struct dentry *__lock_parent(struct dentry *dentry)
598 {
599 struct dentry *parent;
600 rcu_read_lock();
601 spin_unlock(&dentry->d_lock);
602 again:
603 parent = READ_ONCE(dentry->d_parent);
604 spin_lock(&parent->d_lock);
605 /*
606 * We can't blindly lock dentry until we are sure
607 * that we won't violate the locking order.
608 * Any changes of dentry->d_parent must have
609 * been done with parent->d_lock held, so
610 * spin_lock() above is enough of a barrier
611 * for checking if it's still our child.
612 */
613 if (unlikely(parent != dentry->d_parent)) {
614 spin_unlock(&parent->d_lock);
615 goto again;
616 }
617 rcu_read_unlock();
618 if (parent != dentry)
619 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
620 else
621 parent = NULL;
622 return parent;
623 }
624
625 static inline struct dentry *lock_parent(struct dentry *dentry)
626 {
627 struct dentry *parent = dentry->d_parent;
628 if (IS_ROOT(dentry))
629 return NULL;
630 if (likely(spin_trylock(&parent->d_lock)))
631 return parent;
632 return __lock_parent(dentry);
633 }
634
635 static inline bool retain_dentry(struct dentry *dentry)
636 {
637 WARN_ON(d_in_lookup(dentry));
638
639 /* Unreachable? Get rid of it */
640 if (unlikely(d_unhashed(dentry)))
641 return false;
642
643 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
644 return false;
645
646 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
647 if (dentry->d_op->d_delete(dentry))
648 return false;
649 }
650
651 if (unlikely(dentry->d_flags & DCACHE_DONTCACHE))
652 return false;
653
654 /* retain; LRU fodder */
655 dentry->d_lockref.count--;
656 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
657 d_lru_add(dentry);
658 else if (unlikely(!(dentry->d_flags & DCACHE_REFERENCED)))
659 dentry->d_flags |= DCACHE_REFERENCED;
660 return true;
661 }
662
663 void d_mark_dontcache(struct inode *inode)
664 {
665 struct dentry *de;
666
667 spin_lock(&inode->i_lock);
668 hlist_for_each_entry(de, &inode->i_dentry, d_u.d_alias) {
669 spin_lock(&de->d_lock);
670 de->d_flags |= DCACHE_DONTCACHE;
671 spin_unlock(&de->d_lock);
672 }
673 inode->i_state |= I_DONTCACHE;
674 spin_unlock(&inode->i_lock);
675 }
676 EXPORT_SYMBOL(d_mark_dontcache);
677
678 /*
679 * Finish off a dentry we've decided to kill.
680 * dentry->d_lock must be held, returns with it unlocked.
681 * Returns dentry requiring refcount drop, or NULL if we're done.
682 */
683 static struct dentry *dentry_kill(struct dentry *dentry)
684 __releases(dentry->d_lock)
685 {
686 struct inode *inode = dentry->d_inode;
687 struct dentry *parent = NULL;
688
689 if (inode && unlikely(!spin_trylock(&inode->i_lock)))
690 goto slow_positive;
691
692 if (!IS_ROOT(dentry)) {
693 parent = dentry->d_parent;
694 if (unlikely(!spin_trylock(&parent->d_lock))) {
695 parent = __lock_parent(dentry);
696 if (likely(inode || !dentry->d_inode))
697 goto got_locks;
698 /* negative that became positive */
699 if (parent)
700 spin_unlock(&parent->d_lock);
701 inode = dentry->d_inode;
702 goto slow_positive;
703 }
704 }
705 __dentry_kill(dentry);
706 return parent;
707
708 slow_positive:
709 spin_unlock(&dentry->d_lock);
710 spin_lock(&inode->i_lock);
711 spin_lock(&dentry->d_lock);
712 parent = lock_parent(dentry);
713 got_locks:
714 if (unlikely(dentry->d_lockref.count != 1)) {
715 dentry->d_lockref.count--;
716 } else if (likely(!retain_dentry(dentry))) {
717 __dentry_kill(dentry);
718 return parent;
719 }
720 /* we are keeping it, after all */
721 if (inode)
722 spin_unlock(&inode->i_lock);
723 if (parent)
724 spin_unlock(&parent->d_lock);
725 spin_unlock(&dentry->d_lock);
726 return NULL;
727 }
728
729 /*
730 * Try to do a lockless dput(), and return whether that was successful.
731 *
732 * If unsuccessful, we return false, having already taken the dentry lock.
733 *
734 * The caller needs to hold the RCU read lock, so that the dentry is
735 * guaranteed to stay around even if the refcount goes down to zero!
736 */
737 static inline bool fast_dput(struct dentry *dentry)
738 {
739 int ret;
740 unsigned int d_flags;
741
742 /*
743 * If we have a d_op->d_delete() operation, we sould not
744 * let the dentry count go to zero, so use "put_or_lock".
745 */
746 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE))
747 return lockref_put_or_lock(&dentry->d_lockref);
748
749 /*
750 * .. otherwise, we can try to just decrement the
751 * lockref optimistically.
752 */
753 ret = lockref_put_return(&dentry->d_lockref);
754
755 /*
756 * If the lockref_put_return() failed due to the lock being held
757 * by somebody else, the fast path has failed. We will need to
758 * get the lock, and then check the count again.
759 */
760 if (unlikely(ret < 0)) {
761 spin_lock(&dentry->d_lock);
762 if (dentry->d_lockref.count > 1) {
763 dentry->d_lockref.count--;
764 spin_unlock(&dentry->d_lock);
765 return true;
766 }
767 return false;
768 }
769
770 /*
771 * If we weren't the last ref, we're done.
772 */
773 if (ret)
774 return true;
775
776 /*
777 * Careful, careful. The reference count went down
778 * to zero, but we don't hold the dentry lock, so
779 * somebody else could get it again, and do another
780 * dput(), and we need to not race with that.
781 *
782 * However, there is a very special and common case
783 * where we don't care, because there is nothing to
784 * do: the dentry is still hashed, it does not have
785 * a 'delete' op, and it's referenced and already on
786 * the LRU list.
787 *
788 * NOTE! Since we aren't locked, these values are
789 * not "stable". However, it is sufficient that at
790 * some point after we dropped the reference the
791 * dentry was hashed and the flags had the proper
792 * value. Other dentry users may have re-gotten
793 * a reference to the dentry and change that, but
794 * our work is done - we can leave the dentry
795 * around with a zero refcount.
796 *
797 * Nevertheless, there are two cases that we should kill
798 * the dentry anyway.
799 * 1. free disconnected dentries as soon as their refcount
800 * reached zero.
801 * 2. free dentries if they should not be cached.
802 */
803 smp_rmb();
804 d_flags = READ_ONCE(dentry->d_flags);
805 d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST |
806 DCACHE_DISCONNECTED | DCACHE_DONTCACHE;
807
808 /* Nothing to do? Dropping the reference was all we needed? */
809 if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry))
810 return true;
811
812 /*
813 * Not the fast normal case? Get the lock. We've already decremented
814 * the refcount, but we'll need to re-check the situation after
815 * getting the lock.
816 */
817 spin_lock(&dentry->d_lock);
818
819 /*
820 * Did somebody else grab a reference to it in the meantime, and
821 * we're no longer the last user after all? Alternatively, somebody
822 * else could have killed it and marked it dead. Either way, we
823 * don't need to do anything else.
824 */
825 if (dentry->d_lockref.count) {
826 spin_unlock(&dentry->d_lock);
827 return true;
828 }
829
830 /*
831 * Re-get the reference we optimistically dropped. We hold the
832 * lock, and we just tested that it was zero, so we can just
833 * set it to 1.
834 */
835 dentry->d_lockref.count = 1;
836 return false;
837 }
838
839
840 /*
841 * This is dput
842 *
843 * This is complicated by the fact that we do not want to put
844 * dentries that are no longer on any hash chain on the unused
845 * list: we'd much rather just get rid of them immediately.
846 *
847 * However, that implies that we have to traverse the dentry
848 * tree upwards to the parents which might _also_ now be
849 * scheduled for deletion (it may have been only waiting for
850 * its last child to go away).
851 *
852 * This tail recursion is done by hand as we don't want to depend
853 * on the compiler to always get this right (gcc generally doesn't).
854 * Real recursion would eat up our stack space.
855 */
856
857 /*
858 * dput - release a dentry
859 * @dentry: dentry to release
860 *
861 * Release a dentry. This will drop the usage count and if appropriate
862 * call the dentry unlink method as well as removing it from the queues and
863 * releasing its resources. If the parent dentries were scheduled for release
864 * they too may now get deleted.
865 */
866 void dput(struct dentry *dentry)
867 {
868 while (dentry) {
869 might_sleep();
870
871 rcu_read_lock();
872 if (likely(fast_dput(dentry))) {
873 rcu_read_unlock();
874 return;
875 }
876
877 /* Slow case: now with the dentry lock held */
878 rcu_read_unlock();
879
880 if (likely(retain_dentry(dentry))) {
881 spin_unlock(&dentry->d_lock);
882 return;
883 }
884
885 dentry = dentry_kill(dentry);
886 }
887 }
888 EXPORT_SYMBOL(dput);
889
890 static void __dput_to_list(struct dentry *dentry, struct list_head *list)
891 __must_hold(&dentry->d_lock)
892 {
893 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
894 /* let the owner of the list it's on deal with it */
895 --dentry->d_lockref.count;
896 } else {
897 if (dentry->d_flags & DCACHE_LRU_LIST)
898 d_lru_del(dentry);
899 if (!--dentry->d_lockref.count)
900 d_shrink_add(dentry, list);
901 }
902 }
903
904 void dput_to_list(struct dentry *dentry, struct list_head *list)
905 {
906 rcu_read_lock();
907 if (likely(fast_dput(dentry))) {
908 rcu_read_unlock();
909 return;
910 }
911 rcu_read_unlock();
912 if (!retain_dentry(dentry))
913 __dput_to_list(dentry, list);
914 spin_unlock(&dentry->d_lock);
915 }
916
917 /* This must be called with d_lock held */
918 static inline void __dget_dlock(struct dentry *dentry)
919 {
920 dentry->d_lockref.count++;
921 }
922
923 static inline void __dget(struct dentry *dentry)
924 {
925 lockref_get(&dentry->d_lockref);
926 }
927
928 struct dentry *dget_parent(struct dentry *dentry)
929 {
930 int gotref;
931 struct dentry *ret;
932 unsigned seq;
933
934 /*
935 * Do optimistic parent lookup without any
936 * locking.
937 */
938 rcu_read_lock();
939 seq = raw_seqcount_begin(&dentry->d_seq);
940 ret = READ_ONCE(dentry->d_parent);
941 gotref = lockref_get_not_zero(&ret->d_lockref);
942 rcu_read_unlock();
943 if (likely(gotref)) {
944 if (!read_seqcount_retry(&dentry->d_seq, seq))
945 return ret;
946 dput(ret);
947 }
948
949 repeat:
950 /*
951 * Don't need rcu_dereference because we re-check it was correct under
952 * the lock.
953 */
954 rcu_read_lock();
955 ret = dentry->d_parent;
956 spin_lock(&ret->d_lock);
957 if (unlikely(ret != dentry->d_parent)) {
958 spin_unlock(&ret->d_lock);
959 rcu_read_unlock();
960 goto repeat;
961 }
962 rcu_read_unlock();
963 BUG_ON(!ret->d_lockref.count);
964 ret->d_lockref.count++;
965 spin_unlock(&ret->d_lock);
966 return ret;
967 }
968 EXPORT_SYMBOL(dget_parent);
969
970 static struct dentry * __d_find_any_alias(struct inode *inode)
971 {
972 struct dentry *alias;
973
974 if (hlist_empty(&inode->i_dentry))
975 return NULL;
976 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
977 __dget(alias);
978 return alias;
979 }
980
981 /**
982 * d_find_any_alias - find any alias for a given inode
983 * @inode: inode to find an alias for
984 *
985 * If any aliases exist for the given inode, take and return a
986 * reference for one of them. If no aliases exist, return %NULL.
987 */
988 struct dentry *d_find_any_alias(struct inode *inode)
989 {
990 struct dentry *de;
991
992 spin_lock(&inode->i_lock);
993 de = __d_find_any_alias(inode);
994 spin_unlock(&inode->i_lock);
995 return de;
996 }
997 EXPORT_SYMBOL(d_find_any_alias);
998
999 /**
1000 * d_find_alias - grab a hashed alias of inode
1001 * @inode: inode in question
1002 *
1003 * If inode has a hashed alias, or is a directory and has any alias,
1004 * acquire the reference to alias and return it. Otherwise return NULL.
1005 * Notice that if inode is a directory there can be only one alias and
1006 * it can be unhashed only if it has no children, or if it is the root
1007 * of a filesystem, or if the directory was renamed and d_revalidate
1008 * was the first vfs operation to notice.
1009 *
1010 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
1011 * any other hashed alias over that one.
1012 */
1013 static struct dentry *__d_find_alias(struct inode *inode)
1014 {
1015 struct dentry *alias;
1016
1017 if (S_ISDIR(inode->i_mode))
1018 return __d_find_any_alias(inode);
1019
1020 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
1021 spin_lock(&alias->d_lock);
1022 if (!d_unhashed(alias)) {
1023 __dget_dlock(alias);
1024 spin_unlock(&alias->d_lock);
1025 return alias;
1026 }
1027 spin_unlock(&alias->d_lock);
1028 }
1029 return NULL;
1030 }
1031
1032 struct dentry *d_find_alias(struct inode *inode)
1033 {
1034 struct dentry *de = NULL;
1035
1036 if (!hlist_empty(&inode->i_dentry)) {
1037 spin_lock(&inode->i_lock);
1038 de = __d_find_alias(inode);
1039 spin_unlock(&inode->i_lock);
1040 }
1041 return de;
1042 }
1043 EXPORT_SYMBOL(d_find_alias);
1044
1045 /*
1046 * Try to kill dentries associated with this inode.
1047 * WARNING: you must own a reference to inode.
1048 */
1049 void d_prune_aliases(struct inode *inode)
1050 {
1051 struct dentry *dentry;
1052 restart:
1053 spin_lock(&inode->i_lock);
1054 hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
1055 spin_lock(&dentry->d_lock);
1056 if (!dentry->d_lockref.count) {
1057 struct dentry *parent = lock_parent(dentry);
1058 if (likely(!dentry->d_lockref.count)) {
1059 __dentry_kill(dentry);
1060 dput(parent);
1061 goto restart;
1062 }
1063 if (parent)
1064 spin_unlock(&parent->d_lock);
1065 }
1066 spin_unlock(&dentry->d_lock);
1067 }
1068 spin_unlock(&inode->i_lock);
1069 }
1070 EXPORT_SYMBOL(d_prune_aliases);
1071
1072 /*
1073 * Lock a dentry from shrink list.
1074 * Called under rcu_read_lock() and dentry->d_lock; the former
1075 * guarantees that nothing we access will be freed under us.
1076 * Note that dentry is *not* protected from concurrent dentry_kill(),
1077 * d_delete(), etc.
1078 *
1079 * Return false if dentry has been disrupted or grabbed, leaving
1080 * the caller to kick it off-list. Otherwise, return true and have
1081 * that dentry's inode and parent both locked.
1082 */
1083 static bool shrink_lock_dentry(struct dentry *dentry)
1084 {
1085 struct inode *inode;
1086 struct dentry *parent;
1087
1088 if (dentry->d_lockref.count)
1089 return false;
1090
1091 inode = dentry->d_inode;
1092 if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
1093 spin_unlock(&dentry->d_lock);
1094 spin_lock(&inode->i_lock);
1095 spin_lock(&dentry->d_lock);
1096 if (unlikely(dentry->d_lockref.count))
1097 goto out;
1098 /* changed inode means that somebody had grabbed it */
1099 if (unlikely(inode != dentry->d_inode))
1100 goto out;
1101 }
1102
1103 parent = dentry->d_parent;
1104 if (IS_ROOT(dentry) || likely(spin_trylock(&parent->d_lock)))
1105 return true;
1106
1107 spin_unlock(&dentry->d_lock);
1108 spin_lock(&parent->d_lock);
1109 if (unlikely(parent != dentry->d_parent)) {
1110 spin_unlock(&parent->d_lock);
1111 spin_lock(&dentry->d_lock);
1112 goto out;
1113 }
1114 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1115 if (likely(!dentry->d_lockref.count))
1116 return true;
1117 spin_unlock(&parent->d_lock);
1118 out:
1119 if (inode)
1120 spin_unlock(&inode->i_lock);
1121 return false;
1122 }
1123
1124 void shrink_dentry_list(struct list_head *list)
1125 {
1126 while (!list_empty(list)) {
1127 struct dentry *dentry, *parent;
1128
1129 dentry = list_entry(list->prev, struct dentry, d_lru);
1130 spin_lock(&dentry->d_lock);
1131 rcu_read_lock();
1132 if (!shrink_lock_dentry(dentry)) {
1133 bool can_free = false;
1134 rcu_read_unlock();
1135 d_shrink_del(dentry);
1136 if (dentry->d_lockref.count < 0)
1137 can_free = dentry->d_flags & DCACHE_MAY_FREE;
1138 spin_unlock(&dentry->d_lock);
1139 if (can_free)
1140 dentry_free(dentry);
1141 continue;
1142 }
1143 rcu_read_unlock();
1144 d_shrink_del(dentry);
1145 parent = dentry->d_parent;
1146 if (parent != dentry)
1147 __dput_to_list(parent, list);
1148 __dentry_kill(dentry);
1149 }
1150 }
1151
1152 static enum lru_status dentry_lru_isolate(struct list_head *item,
1153 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1154 {
1155 struct list_head *freeable = arg;
1156 struct dentry *dentry = container_of(item, struct dentry, d_lru);
1157
1158
1159 /*
1160 * we are inverting the lru lock/dentry->d_lock here,
1161 * so use a trylock. If we fail to get the lock, just skip
1162 * it
1163 */
1164 if (!spin_trylock(&dentry->d_lock))
1165 return LRU_SKIP;
1166
1167 /*
1168 * Referenced dentries are still in use. If they have active
1169 * counts, just remove them from the LRU. Otherwise give them
1170 * another pass through the LRU.
1171 */
1172 if (dentry->d_lockref.count) {
1173 d_lru_isolate(lru, dentry);
1174 spin_unlock(&dentry->d_lock);
1175 return LRU_REMOVED;
1176 }
1177
1178 if (dentry->d_flags & DCACHE_REFERENCED) {
1179 dentry->d_flags &= ~DCACHE_REFERENCED;
1180 spin_unlock(&dentry->d_lock);
1181
1182 /*
1183 * The list move itself will be made by the common LRU code. At
1184 * this point, we've dropped the dentry->d_lock but keep the
1185 * lru lock. This is safe to do, since every list movement is
1186 * protected by the lru lock even if both locks are held.
1187 *
1188 * This is guaranteed by the fact that all LRU management
1189 * functions are intermediated by the LRU API calls like
1190 * list_lru_add and list_lru_del. List movement in this file
1191 * only ever occur through this functions or through callbacks
1192 * like this one, that are called from the LRU API.
1193 *
1194 * The only exceptions to this are functions like
1195 * shrink_dentry_list, and code that first checks for the
1196 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be
1197 * operating only with stack provided lists after they are
1198 * properly isolated from the main list. It is thus, always a
1199 * local access.
1200 */
1201 return LRU_ROTATE;
1202 }
1203
1204 d_lru_shrink_move(lru, dentry, freeable);
1205 spin_unlock(&dentry->d_lock);
1206
1207 return LRU_REMOVED;
1208 }
1209
1210 /**
1211 * prune_dcache_sb - shrink the dcache
1212 * @sb: superblock
1213 * @sc: shrink control, passed to list_lru_shrink_walk()
1214 *
1215 * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1216 * is done when we need more memory and called from the superblock shrinker
1217 * function.
1218 *
1219 * This function may fail to free any resources if all the dentries are in
1220 * use.
1221 */
1222 long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
1223 {
1224 LIST_HEAD(dispose);
1225 long freed;
1226
1227 freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1228 dentry_lru_isolate, &dispose);
1229 shrink_dentry_list(&dispose);
1230 return freed;
1231 }
1232
1233 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
1234 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1235 {
1236 struct list_head *freeable = arg;
1237 struct dentry *dentry = container_of(item, struct dentry, d_lru);
1238
1239 /*
1240 * we are inverting the lru lock/dentry->d_lock here,
1241 * so use a trylock. If we fail to get the lock, just skip
1242 * it
1243 */
1244 if (!spin_trylock(&dentry->d_lock))
1245 return LRU_SKIP;
1246
1247 d_lru_shrink_move(lru, dentry, freeable);
1248 spin_unlock(&dentry->d_lock);
1249
1250 return LRU_REMOVED;
1251 }
1252
1253
1254 /**
1255 * shrink_dcache_sb - shrink dcache for a superblock
1256 * @sb: superblock
1257 *
1258 * Shrink the dcache for the specified super block. This is used to free
1259 * the dcache before unmounting a file system.
1260 */
1261 void shrink_dcache_sb(struct super_block *sb)
1262 {
1263 do {
1264 LIST_HEAD(dispose);
1265
1266 list_lru_walk(&sb->s_dentry_lru,
1267 dentry_lru_isolate_shrink, &dispose, 1024);
1268 shrink_dentry_list(&dispose);
1269 } while (list_lru_count(&sb->s_dentry_lru) > 0);
1270 }
1271 EXPORT_SYMBOL(shrink_dcache_sb);
1272
1273 /**
1274 * enum d_walk_ret - action to talke during tree walk
1275 * @D_WALK_CONTINUE: contrinue walk
1276 * @D_WALK_QUIT: quit walk
1277 * @D_WALK_NORETRY: quit when retry is needed
1278 * @D_WALK_SKIP: skip this dentry and its children
1279 */
1280 enum d_walk_ret {
1281 D_WALK_CONTINUE,
1282 D_WALK_QUIT,
1283 D_WALK_NORETRY,
1284 D_WALK_SKIP,
1285 };
1286
1287 /**
1288 * d_walk - walk the dentry tree
1289 * @parent: start of walk
1290 * @data: data passed to @enter() and @finish()
1291 * @enter: callback when first entering the dentry
1292 *
1293 * The @enter() callbacks are called with d_lock held.
1294 */
1295 static void d_walk(struct dentry *parent, void *data,
1296 enum d_walk_ret (*enter)(void *, struct dentry *))
1297 {
1298 struct dentry *this_parent;
1299 struct list_head *next;
1300 unsigned seq = 0;
1301 enum d_walk_ret ret;
1302 bool retry = true;
1303
1304 again:
1305 read_seqbegin_or_lock(&rename_lock, &seq);
1306 this_parent = parent;
1307 spin_lock(&this_parent->d_lock);
1308
1309 ret = enter(data, this_parent);
1310 switch (ret) {
1311 case D_WALK_CONTINUE:
1312 break;
1313 case D_WALK_QUIT:
1314 case D_WALK_SKIP:
1315 goto out_unlock;
1316 case D_WALK_NORETRY:
1317 retry = false;
1318 break;
1319 }
1320 repeat:
1321 next = this_parent->d_subdirs.next;
1322 resume:
1323 while (next != &this_parent->d_subdirs) {
1324 struct list_head *tmp = next;
1325 struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1326 next = tmp->next;
1327
1328 if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR))
1329 continue;
1330
1331 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1332
1333 ret = enter(data, dentry);
1334 switch (ret) {
1335 case D_WALK_CONTINUE:
1336 break;
1337 case D_WALK_QUIT:
1338 spin_unlock(&dentry->d_lock);
1339 goto out_unlock;
1340 case D_WALK_NORETRY:
1341 retry = false;
1342 break;
1343 case D_WALK_SKIP:
1344 spin_unlock(&dentry->d_lock);
1345 continue;
1346 }
1347
1348 if (!list_empty(&dentry->d_subdirs)) {
1349 spin_unlock(&this_parent->d_lock);
1350 spin_release(&dentry->d_lock.dep_map, _RET_IP_);
1351 this_parent = dentry;
1352 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1353 goto repeat;
1354 }
1355 spin_unlock(&dentry->d_lock);
1356 }
1357 /*
1358 * All done at this level ... ascend and resume the search.
1359 */
1360 rcu_read_lock();
1361 ascend:
1362 if (this_parent != parent) {
1363 struct dentry *child = this_parent;
1364 this_parent = child->d_parent;
1365
1366 spin_unlock(&child->d_lock);
1367 spin_lock(&this_parent->d_lock);
1368
1369 /* might go back up the wrong parent if we have had a rename. */
1370 if (need_seqretry(&rename_lock, seq))
1371 goto rename_retry;
1372 /* go into the first sibling still alive */
1373 do {
1374 next = child->d_child.next;
1375 if (next == &this_parent->d_subdirs)
1376 goto ascend;
1377 child = list_entry(next, struct dentry, d_child);
1378 } while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED));
1379 rcu_read_unlock();
1380 goto resume;
1381 }
1382 if (need_seqretry(&rename_lock, seq))
1383 goto rename_retry;
1384 rcu_read_unlock();
1385
1386 out_unlock:
1387 spin_unlock(&this_parent->d_lock);
1388 done_seqretry(&rename_lock, seq);
1389 return;
1390
1391 rename_retry:
1392 spin_unlock(&this_parent->d_lock);
1393 rcu_read_unlock();
1394 BUG_ON(seq & 1);
1395 if (!retry)
1396 return;
1397 seq = 1;
1398 goto again;
1399 }
1400
1401 struct check_mount {
1402 struct vfsmount *mnt;
1403 unsigned int mounted;
1404 };
1405
1406 static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry)
1407 {
1408 struct check_mount *info = data;
1409 struct path path = { .mnt = info->mnt, .dentry = dentry };
1410
1411 if (likely(!d_mountpoint(dentry)))
1412 return D_WALK_CONTINUE;
1413 if (__path_is_mountpoint(&path)) {
1414 info->mounted = 1;
1415 return D_WALK_QUIT;
1416 }
1417 return D_WALK_CONTINUE;
1418 }
1419
1420 /**
1421 * path_has_submounts - check for mounts over a dentry in the
1422 * current namespace.
1423 * @parent: path to check.
1424 *
1425 * Return true if the parent or its subdirectories contain
1426 * a mount point in the current namespace.
1427 */
1428 int path_has_submounts(const struct path *parent)
1429 {
1430 struct check_mount data = { .mnt = parent->mnt, .mounted = 0 };
1431
1432 read_seqlock_excl(&mount_lock);
1433 d_walk(parent->dentry, &data, path_check_mount);
1434 read_sequnlock_excl(&mount_lock);
1435
1436 return data.mounted;
1437 }
1438 EXPORT_SYMBOL(path_has_submounts);
1439
1440 /*
1441 * Called by mount code to set a mountpoint and check if the mountpoint is
1442 * reachable (e.g. NFS can unhash a directory dentry and then the complete
1443 * subtree can become unreachable).
1444 *
1445 * Only one of d_invalidate() and d_set_mounted() must succeed. For
1446 * this reason take rename_lock and d_lock on dentry and ancestors.
1447 */
1448 int d_set_mounted(struct dentry *dentry)
1449 {
1450 struct dentry *p;
1451 int ret = -ENOENT;
1452 write_seqlock(&rename_lock);
1453 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1454 /* Need exclusion wrt. d_invalidate() */
1455 spin_lock(&p->d_lock);
1456 if (unlikely(d_unhashed(p))) {
1457 spin_unlock(&p->d_lock);
1458 goto out;
1459 }
1460 spin_unlock(&p->d_lock);
1461 }
1462 spin_lock(&dentry->d_lock);
1463 if (!d_unlinked(dentry)) {
1464 ret = -EBUSY;
1465 if (!d_mountpoint(dentry)) {
1466 dentry->d_flags |= DCACHE_MOUNTED;
1467 ret = 0;
1468 }
1469 }
1470 spin_unlock(&dentry->d_lock);
1471 out:
1472 write_sequnlock(&rename_lock);
1473 return ret;
1474 }
1475
1476 /*
1477 * Search the dentry child list of the specified parent,
1478 * and move any unused dentries to the end of the unused
1479 * list for prune_dcache(). We descend to the next level
1480 * whenever the d_subdirs list is non-empty and continue
1481 * searching.
1482 *
1483 * It returns zero iff there are no unused children,
1484 * otherwise it returns the number of children moved to
1485 * the end of the unused list. This may not be the total
1486 * number of unused children, because select_parent can
1487 * drop the lock and return early due to latency
1488 * constraints.
1489 */
1490
1491 struct select_data {
1492 struct dentry *start;
1493 union {
1494 long found;
1495 struct dentry *victim;
1496 };
1497 struct list_head dispose;
1498 };
1499
1500 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1501 {
1502 struct select_data *data = _data;
1503 enum d_walk_ret ret = D_WALK_CONTINUE;
1504
1505 if (data->start == dentry)
1506 goto out;
1507
1508 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1509 data->found++;
1510 } else {
1511 if (dentry->d_flags & DCACHE_LRU_LIST)
1512 d_lru_del(dentry);
1513 if (!dentry->d_lockref.count) {
1514 d_shrink_add(dentry, &data->dispose);
1515 data->found++;
1516 }
1517 }
1518 /*
1519 * We can return to the caller if we have found some (this
1520 * ensures forward progress). We'll be coming back to find
1521 * the rest.
1522 */
1523 if (!list_empty(&data->dispose))
1524 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1525 out:
1526 return ret;
1527 }
1528
1529 static enum d_walk_ret select_collect2(void *_data, struct dentry *dentry)
1530 {
1531 struct select_data *data = _data;
1532 enum d_walk_ret ret = D_WALK_CONTINUE;
1533
1534 if (data->start == dentry)
1535 goto out;
1536
1537 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1538 if (!dentry->d_lockref.count) {
1539 rcu_read_lock();
1540 data->victim = dentry;
1541 return D_WALK_QUIT;
1542 }
1543 } else {
1544 if (dentry->d_flags & DCACHE_LRU_LIST)
1545 d_lru_del(dentry);
1546 if (!dentry->d_lockref.count)
1547 d_shrink_add(dentry, &data->dispose);
1548 }
1549 /*
1550 * We can return to the caller if we have found some (this
1551 * ensures forward progress). We'll be coming back to find
1552 * the rest.
1553 */
1554 if (!list_empty(&data->dispose))
1555 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1556 out:
1557 return ret;
1558 }
1559
1560 /**
1561 * shrink_dcache_parent - prune dcache
1562 * @parent: parent of entries to prune
1563 *
1564 * Prune the dcache to remove unused children of the parent dentry.
1565 */
1566 void shrink_dcache_parent(struct dentry *parent)
1567 {
1568 for (;;) {
1569 struct select_data data = {.start = parent};
1570
1571 INIT_LIST_HEAD(&data.dispose);
1572 d_walk(parent, &data, select_collect);
1573
1574 if (!list_empty(&data.dispose)) {
1575 shrink_dentry_list(&data.dispose);
1576 continue;
1577 }
1578
1579 cond_resched();
1580 if (!data.found)
1581 break;
1582 data.victim = NULL;
1583 d_walk(parent, &data, select_collect2);
1584 if (data.victim) {
1585 struct dentry *parent;
1586 spin_lock(&data.victim->d_lock);
1587 if (!shrink_lock_dentry(data.victim)) {
1588 spin_unlock(&data.victim->d_lock);
1589 rcu_read_unlock();
1590 } else {
1591 rcu_read_unlock();
1592 parent = data.victim->d_parent;
1593 if (parent != data.victim)
1594 __dput_to_list(parent, &data.dispose);
1595 __dentry_kill(data.victim);
1596 }
1597 }
1598 if (!list_empty(&data.dispose))
1599 shrink_dentry_list(&data.dispose);
1600 }
1601 }
1602 EXPORT_SYMBOL(shrink_dcache_parent);
1603
1604 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
1605 {
1606 /* it has busy descendents; complain about those instead */
1607 if (!list_empty(&dentry->d_subdirs))
1608 return D_WALK_CONTINUE;
1609
1610 /* root with refcount 1 is fine */
1611 if (dentry == _data && dentry->d_lockref.count == 1)
1612 return D_WALK_CONTINUE;
1613
1614 printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1615 " still in use (%d) [unmount of %s %s]\n",
1616 dentry,
1617 dentry->d_inode ?
1618 dentry->d_inode->i_ino : 0UL,
1619 dentry,
1620 dentry->d_lockref.count,
1621 dentry->d_sb->s_type->name,
1622 dentry->d_sb->s_id);
1623 WARN_ON(1);
1624 return D_WALK_CONTINUE;
1625 }
1626
1627 static void do_one_tree(struct dentry *dentry)
1628 {
1629 shrink_dcache_parent(dentry);
1630 d_walk(dentry, dentry, umount_check);
1631 d_drop(dentry);
1632 dput(dentry);
1633 }
1634
1635 /*
1636 * destroy the dentries attached to a superblock on unmounting
1637 */
1638 void shrink_dcache_for_umount(struct super_block *sb)
1639 {
1640 struct dentry *dentry;
1641
1642 WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
1643
1644 dentry = sb->s_root;
1645 sb->s_root = NULL;
1646 do_one_tree(dentry);
1647
1648 while (!hlist_bl_empty(&sb->s_roots)) {
1649 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_roots), struct dentry, d_hash));
1650 do_one_tree(dentry);
1651 }
1652 }
1653
1654 static enum d_walk_ret find_submount(void *_data, struct dentry *dentry)
1655 {
1656 struct dentry **victim = _data;
1657 if (d_mountpoint(dentry)) {
1658 __dget_dlock(dentry);
1659 *victim = dentry;
1660 return D_WALK_QUIT;
1661 }
1662 return D_WALK_CONTINUE;
1663 }
1664
1665 /**
1666 * d_invalidate - detach submounts, prune dcache, and drop
1667 * @dentry: dentry to invalidate (aka detach, prune and drop)
1668 */
1669 void d_invalidate(struct dentry *dentry)
1670 {
1671 bool had_submounts = false;
1672 spin_lock(&dentry->d_lock);
1673 if (d_unhashed(dentry)) {
1674 spin_unlock(&dentry->d_lock);
1675 return;
1676 }
1677 __d_drop(dentry);
1678 spin_unlock(&dentry->d_lock);
1679
1680 /* Negative dentries can be dropped without further checks */
1681 if (!dentry->d_inode)
1682 return;
1683
1684 shrink_dcache_parent(dentry);
1685 for (;;) {
1686 struct dentry *victim = NULL;
1687 d_walk(dentry, &victim, find_submount);
1688 if (!victim) {
1689 if (had_submounts)
1690 shrink_dcache_parent(dentry);
1691 return;
1692 }
1693 had_submounts = true;
1694 detach_mounts(victim);
1695 dput(victim);
1696 }
1697 }
1698 EXPORT_SYMBOL(d_invalidate);
1699
1700 /**
1701 * __d_alloc - allocate a dcache entry
1702 * @sb: filesystem it will belong to
1703 * @name: qstr of the name
1704 *
1705 * Allocates a dentry. It returns %NULL if there is insufficient memory
1706 * available. On a success the dentry is returned. The name passed in is
1707 * copied and the copy passed in may be reused after this call.
1708 */
1709
1710 static struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1711 {
1712 struct dentry *dentry;
1713 char *dname;
1714 int err;
1715
1716 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1717 if (!dentry)
1718 return NULL;
1719
1720 /*
1721 * We guarantee that the inline name is always NUL-terminated.
1722 * This way the memcpy() done by the name switching in rename
1723 * will still always have a NUL at the end, even if we might
1724 * be overwriting an internal NUL character
1725 */
1726 dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1727 if (unlikely(!name)) {
1728 name = &slash_name;
1729 dname = dentry->d_iname;
1730 } else if (name->len > DNAME_INLINE_LEN-1) {
1731 size_t size = offsetof(struct external_name, name[1]);
1732 struct external_name *p = kmalloc(size + name->len,
1733 GFP_KERNEL_ACCOUNT |
1734 __GFP_RECLAIMABLE);
1735 if (!p) {
1736 kmem_cache_free(dentry_cache, dentry);
1737 return NULL;
1738 }
1739 atomic_set(&p->u.count, 1);
1740 dname = p->name;
1741 } else {
1742 dname = dentry->d_iname;
1743 }
1744
1745 dentry->d_name.len = name->len;
1746 dentry->d_name.hash = name->hash;
1747 memcpy(dname, name->name, name->len);
1748 dname[name->len] = 0;
1749
1750 /* Make sure we always see the terminating NUL character */
1751 smp_store_release(&dentry->d_name.name, dname); /* ^^^ */
1752
1753 dentry->d_lockref.count = 1;
1754 dentry->d_flags = 0;
1755 spin_lock_init(&dentry->d_lock);
1756 seqcount_spinlock_init(&dentry->d_seq, &dentry->d_lock);
1757 dentry->d_inode = NULL;
1758 dentry->d_parent = dentry;
1759 dentry->d_sb = sb;
1760 dentry->d_op = NULL;
1761 dentry->d_fsdata = NULL;
1762 INIT_HLIST_BL_NODE(&dentry->d_hash);
1763 INIT_LIST_HEAD(&dentry->d_lru);
1764 INIT_LIST_HEAD(&dentry->d_subdirs);
1765 INIT_HLIST_NODE(&dentry->d_u.d_alias);
1766 INIT_LIST_HEAD(&dentry->d_child);
1767 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1768
1769 if (dentry->d_op && dentry->d_op->d_init) {
1770 err = dentry->d_op->d_init(dentry);
1771 if (err) {
1772 if (dname_external(dentry))
1773 kfree(external_name(dentry));
1774 kmem_cache_free(dentry_cache, dentry);
1775 return NULL;
1776 }
1777 }
1778
1779 this_cpu_inc(nr_dentry);
1780
1781 return dentry;
1782 }
1783
1784 /**
1785 * d_alloc - allocate a dcache entry
1786 * @parent: parent of entry to allocate
1787 * @name: qstr of the name
1788 *
1789 * Allocates a dentry. It returns %NULL if there is insufficient memory
1790 * available. On a success the dentry is returned. The name passed in is
1791 * copied and the copy passed in may be reused after this call.
1792 */
1793 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1794 {
1795 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1796 if (!dentry)
1797 return NULL;
1798 spin_lock(&parent->d_lock);
1799 /*
1800 * don't need child lock because it is not subject
1801 * to concurrency here
1802 */
1803 __dget_dlock(parent);
1804 dentry->d_parent = parent;
1805 list_add(&dentry->d_child, &parent->d_subdirs);
1806 spin_unlock(&parent->d_lock);
1807
1808 return dentry;
1809 }
1810 EXPORT_SYMBOL(d_alloc);
1811
1812 struct dentry *d_alloc_anon(struct super_block *sb)
1813 {
1814 return __d_alloc(sb, NULL);
1815 }
1816 EXPORT_SYMBOL(d_alloc_anon);
1817
1818 struct dentry *d_alloc_cursor(struct dentry * parent)
1819 {
1820 struct dentry *dentry = d_alloc_anon(parent->d_sb);
1821 if (dentry) {
1822 dentry->d_flags |= DCACHE_DENTRY_CURSOR;
1823 dentry->d_parent = dget(parent);
1824 }
1825 return dentry;
1826 }
1827
1828 /**
1829 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1830 * @sb: the superblock
1831 * @name: qstr of the name
1832 *
1833 * For a filesystem that just pins its dentries in memory and never
1834 * performs lookups at all, return an unhashed IS_ROOT dentry.
1835 * This is used for pipes, sockets et.al. - the stuff that should
1836 * never be anyone's children or parents. Unlike all other
1837 * dentries, these will not have RCU delay between dropping the
1838 * last reference and freeing them.
1839 *
1840 * The only user is alloc_file_pseudo() and that's what should
1841 * be considered a public interface. Don't use directly.
1842 */
1843 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1844 {
1845 struct dentry *dentry = __d_alloc(sb, name);
1846 if (likely(dentry))
1847 dentry->d_flags |= DCACHE_NORCU;
1848 return dentry;
1849 }
1850
1851 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1852 {
1853 struct qstr q;
1854
1855 q.name = name;
1856 q.hash_len = hashlen_string(parent, name);
1857 return d_alloc(parent, &q);
1858 }
1859 EXPORT_SYMBOL(d_alloc_name);
1860
1861 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1862 {
1863 WARN_ON_ONCE(dentry->d_op);
1864 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
1865 DCACHE_OP_COMPARE |
1866 DCACHE_OP_REVALIDATE |
1867 DCACHE_OP_WEAK_REVALIDATE |
1868 DCACHE_OP_DELETE |
1869 DCACHE_OP_REAL));
1870 dentry->d_op = op;
1871 if (!op)
1872 return;
1873 if (op->d_hash)
1874 dentry->d_flags |= DCACHE_OP_HASH;
1875 if (op->d_compare)
1876 dentry->d_flags |= DCACHE_OP_COMPARE;
1877 if (op->d_revalidate)
1878 dentry->d_flags |= DCACHE_OP_REVALIDATE;
1879 if (op->d_weak_revalidate)
1880 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1881 if (op->d_delete)
1882 dentry->d_flags |= DCACHE_OP_DELETE;
1883 if (op->d_prune)
1884 dentry->d_flags |= DCACHE_OP_PRUNE;
1885 if (op->d_real)
1886 dentry->d_flags |= DCACHE_OP_REAL;
1887
1888 }
1889 EXPORT_SYMBOL(d_set_d_op);
1890
1891
1892 /*
1893 * d_set_fallthru - Mark a dentry as falling through to a lower layer
1894 * @dentry - The dentry to mark
1895 *
1896 * Mark a dentry as falling through to the lower layer (as set with
1897 * d_pin_lower()). This flag may be recorded on the medium.
1898 */
1899 void d_set_fallthru(struct dentry *dentry)
1900 {
1901 spin_lock(&dentry->d_lock);
1902 dentry->d_flags |= DCACHE_FALLTHRU;
1903 spin_unlock(&dentry->d_lock);
1904 }
1905 EXPORT_SYMBOL(d_set_fallthru);
1906
1907 static unsigned d_flags_for_inode(struct inode *inode)
1908 {
1909 unsigned add_flags = DCACHE_REGULAR_TYPE;
1910
1911 if (!inode)
1912 return DCACHE_MISS_TYPE;
1913
1914 if (S_ISDIR(inode->i_mode)) {
1915 add_flags = DCACHE_DIRECTORY_TYPE;
1916 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1917 if (unlikely(!inode->i_op->lookup))
1918 add_flags = DCACHE_AUTODIR_TYPE;
1919 else
1920 inode->i_opflags |= IOP_LOOKUP;
1921 }
1922 goto type_determined;
1923 }
1924
1925 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1926 if (unlikely(inode->i_op->get_link)) {
1927 add_flags = DCACHE_SYMLINK_TYPE;
1928 goto type_determined;
1929 }
1930 inode->i_opflags |= IOP_NOFOLLOW;
1931 }
1932
1933 if (unlikely(!S_ISREG(inode->i_mode)))
1934 add_flags = DCACHE_SPECIAL_TYPE;
1935
1936 type_determined:
1937 if (unlikely(IS_AUTOMOUNT(inode)))
1938 add_flags |= DCACHE_NEED_AUTOMOUNT;
1939 return add_flags;
1940 }
1941
1942 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1943 {
1944 unsigned add_flags = d_flags_for_inode(inode);
1945 WARN_ON(d_in_lookup(dentry));
1946
1947 spin_lock(&dentry->d_lock);
1948 /*
1949 * Decrement negative dentry count if it was in the LRU list.
1950 */
1951 if (dentry->d_flags & DCACHE_LRU_LIST)
1952 this_cpu_dec(nr_dentry_negative);
1953 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
1954 raw_write_seqcount_begin(&dentry->d_seq);
1955 __d_set_inode_and_type(dentry, inode, add_flags);
1956 raw_write_seqcount_end(&dentry->d_seq);
1957 fsnotify_update_flags(dentry);
1958 spin_unlock(&dentry->d_lock);
1959 }
1960
1961 /**
1962 * d_instantiate - fill in inode information for a dentry
1963 * @entry: dentry to complete
1964 * @inode: inode to attach to this dentry
1965 *
1966 * Fill in inode information in the entry.
1967 *
1968 * This turns negative dentries into productive full members
1969 * of society.
1970 *
1971 * NOTE! This assumes that the inode count has been incremented
1972 * (or otherwise set) by the caller to indicate that it is now
1973 * in use by the dcache.
1974 */
1975
1976 void d_instantiate(struct dentry *entry, struct inode * inode)
1977 {
1978 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1979 if (inode) {
1980 security_d_instantiate(entry, inode);
1981 spin_lock(&inode->i_lock);
1982 __d_instantiate(entry, inode);
1983 spin_unlock(&inode->i_lock);
1984 }
1985 }
1986 EXPORT_SYMBOL(d_instantiate);
1987
1988 /*
1989 * This should be equivalent to d_instantiate() + unlock_new_inode(),
1990 * with lockdep-related part of unlock_new_inode() done before
1991 * anything else. Use that instead of open-coding d_instantiate()/
1992 * unlock_new_inode() combinations.
1993 */
1994 void d_instantiate_new(struct dentry *entry, struct inode *inode)
1995 {
1996 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1997 BUG_ON(!inode);
1998 lockdep_annotate_inode_mutex_key(inode);
1999 security_d_instantiate(entry, inode);
2000 spin_lock(&inode->i_lock);
2001 __d_instantiate(entry, inode);
2002 WARN_ON(!(inode->i_state & I_NEW));
2003 inode->i_state &= ~I_NEW & ~I_CREATING;
2004 smp_mb();
2005 wake_up_bit(&inode->i_state, __I_NEW);
2006 spin_unlock(&inode->i_lock);
2007 }
2008 EXPORT_SYMBOL(d_instantiate_new);
2009
2010 struct dentry *d_make_root(struct inode *root_inode)
2011 {
2012 struct dentry *res = NULL;
2013
2014 if (root_inode) {
2015 res = d_alloc_anon(root_inode->i_sb);
2016 if (res)
2017 d_instantiate(res, root_inode);
2018 else
2019 iput(root_inode);
2020 }
2021 return res;
2022 }
2023 EXPORT_SYMBOL(d_make_root);
2024
2025 static struct dentry *__d_instantiate_anon(struct dentry *dentry,
2026 struct inode *inode,
2027 bool disconnected)
2028 {
2029 struct dentry *res;
2030 unsigned add_flags;
2031
2032 security_d_instantiate(dentry, inode);
2033 spin_lock(&inode->i_lock);
2034 res = __d_find_any_alias(inode);
2035 if (res) {
2036 spin_unlock(&inode->i_lock);
2037 dput(dentry);
2038 goto out_iput;
2039 }
2040
2041 /* attach a disconnected dentry */
2042 add_flags = d_flags_for_inode(inode);
2043
2044 if (disconnected)
2045 add_flags |= DCACHE_DISCONNECTED;
2046
2047 spin_lock(&dentry->d_lock);
2048 __d_set_inode_and_type(dentry, inode, add_flags);
2049 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2050 if (!disconnected) {
2051 hlist_bl_lock(&dentry->d_sb->s_roots);
2052 hlist_bl_add_head(&dentry->d_hash, &dentry->d_sb->s_roots);
2053 hlist_bl_unlock(&dentry->d_sb->s_roots);
2054 }
2055 spin_unlock(&dentry->d_lock);
2056 spin_unlock(&inode->i_lock);
2057
2058 return dentry;
2059
2060 out_iput:
2061 iput(inode);
2062 return res;
2063 }
2064
2065 struct dentry *d_instantiate_anon(struct dentry *dentry, struct inode *inode)
2066 {
2067 return __d_instantiate_anon(dentry, inode, true);
2068 }
2069 EXPORT_SYMBOL(d_instantiate_anon);
2070
2071 static struct dentry *__d_obtain_alias(struct inode *inode, bool disconnected)
2072 {
2073 struct dentry *tmp;
2074 struct dentry *res;
2075
2076 if (!inode)
2077 return ERR_PTR(-ESTALE);
2078 if (IS_ERR(inode))
2079 return ERR_CAST(inode);
2080
2081 res = d_find_any_alias(inode);
2082 if (res)
2083 goto out_iput;
2084
2085 tmp = d_alloc_anon(inode->i_sb);
2086 if (!tmp) {
2087 res = ERR_PTR(-ENOMEM);
2088 goto out_iput;
2089 }
2090
2091 return __d_instantiate_anon(tmp, inode, disconnected);
2092
2093 out_iput:
2094 iput(inode);
2095 return res;
2096 }
2097
2098 /**
2099 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
2100 * @inode: inode to allocate the dentry for
2101 *
2102 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
2103 * similar open by handle operations. The returned dentry may be anonymous,
2104 * or may have a full name (if the inode was already in the cache).
2105 *
2106 * When called on a directory inode, we must ensure that the inode only ever
2107 * has one dentry. If a dentry is found, that is returned instead of
2108 * allocating a new one.
2109 *
2110 * On successful return, the reference to the inode has been transferred
2111 * to the dentry. In case of an error the reference on the inode is released.
2112 * To make it easier to use in export operations a %NULL or IS_ERR inode may
2113 * be passed in and the error will be propagated to the return value,
2114 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
2115 */
2116 struct dentry *d_obtain_alias(struct inode *inode)
2117 {
2118 return __d_obtain_alias(inode, true);
2119 }
2120 EXPORT_SYMBOL(d_obtain_alias);
2121
2122 /**
2123 * d_obtain_root - find or allocate a dentry for a given inode
2124 * @inode: inode to allocate the dentry for
2125 *
2126 * Obtain an IS_ROOT dentry for the root of a filesystem.
2127 *
2128 * We must ensure that directory inodes only ever have one dentry. If a
2129 * dentry is found, that is returned instead of allocating a new one.
2130 *
2131 * On successful return, the reference to the inode has been transferred
2132 * to the dentry. In case of an error the reference on the inode is
2133 * released. A %NULL or IS_ERR inode may be passed in and will be the
2134 * error will be propagate to the return value, with a %NULL @inode
2135 * replaced by ERR_PTR(-ESTALE).
2136 */
2137 struct dentry *d_obtain_root(struct inode *inode)
2138 {
2139 return __d_obtain_alias(inode, false);
2140 }
2141 EXPORT_SYMBOL(d_obtain_root);
2142
2143 /**
2144 * d_add_ci - lookup or allocate new dentry with case-exact name
2145 * @inode: the inode case-insensitive lookup has found
2146 * @dentry: the negative dentry that was passed to the parent's lookup func
2147 * @name: the case-exact name to be associated with the returned dentry
2148 *
2149 * This is to avoid filling the dcache with case-insensitive names to the
2150 * same inode, only the actual correct case is stored in the dcache for
2151 * case-insensitive filesystems.
2152 *
2153 * For a case-insensitive lookup match and if the the case-exact dentry
2154 * already exists in in the dcache, use it and return it.
2155 *
2156 * If no entry exists with the exact case name, allocate new dentry with
2157 * the exact case, and return the spliced entry.
2158 */
2159 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
2160 struct qstr *name)
2161 {
2162 struct dentry *found, *res;
2163
2164 /*
2165 * First check if a dentry matching the name already exists,
2166 * if not go ahead and create it now.
2167 */
2168 found = d_hash_and_lookup(dentry->d_parent, name);
2169 if (found) {
2170 iput(inode);
2171 return found;
2172 }
2173 if (d_in_lookup(dentry)) {
2174 found = d_alloc_parallel(dentry->d_parent, name,
2175 dentry->d_wait);
2176 if (IS_ERR(found) || !d_in_lookup(found)) {
2177 iput(inode);
2178 return found;
2179 }
2180 } else {
2181 found = d_alloc(dentry->d_parent, name);
2182 if (!found) {
2183 iput(inode);
2184 return ERR_PTR(-ENOMEM);
2185 }
2186 }
2187 res = d_splice_alias(inode, found);
2188 if (res) {
2189 dput(found);
2190 return res;
2191 }
2192 return found;
2193 }
2194 EXPORT_SYMBOL(d_add_ci);
2195
2196
2197 static inline bool d_same_name(const struct dentry *dentry,
2198 const struct dentry *parent,
2199 const struct qstr *name)
2200 {
2201 if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) {
2202 if (dentry->d_name.len != name->len)
2203 return false;
2204 return dentry_cmp(dentry, name->name, name->len) == 0;
2205 }
2206 return parent->d_op->d_compare(dentry,
2207 dentry->d_name.len, dentry->d_name.name,
2208 name) == 0;
2209 }
2210
2211 /**
2212 * __d_lookup_rcu - search for a dentry (racy, store-free)
2213 * @parent: parent dentry
2214 * @name: qstr of name we wish to find
2215 * @seqp: returns d_seq value at the point where the dentry was found
2216 * Returns: dentry, or NULL
2217 *
2218 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2219 * resolution (store-free path walking) design described in
2220 * Documentation/filesystems/path-lookup.txt.
2221 *
2222 * This is not to be used outside core vfs.
2223 *
2224 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2225 * held, and rcu_read_lock held. The returned dentry must not be stored into
2226 * without taking d_lock and checking d_seq sequence count against @seq
2227 * returned here.
2228 *
2229 * A refcount may be taken on the found dentry with the d_rcu_to_refcount
2230 * function.
2231 *
2232 * Alternatively, __d_lookup_rcu may be called again to look up the child of
2233 * the returned dentry, so long as its parent's seqlock is checked after the
2234 * child is looked up. Thus, an interlocking stepping of sequence lock checks
2235 * is formed, giving integrity down the path walk.
2236 *
2237 * NOTE! The caller *has* to check the resulting dentry against the sequence
2238 * number we've returned before using any of the resulting dentry state!
2239 */
2240 struct dentry *__d_lookup_rcu(const struct dentry *parent,
2241 const struct qstr *name,
2242 unsigned *seqp)
2243 {
2244 u64 hashlen = name->hash_len;
2245 const unsigned char *str = name->name;
2246 struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen));
2247 struct hlist_bl_node *node;
2248 struct dentry *dentry;
2249
2250 /*
2251 * Note: There is significant duplication with __d_lookup_rcu which is
2252 * required to prevent single threaded performance regressions
2253 * especially on architectures where smp_rmb (in seqcounts) are costly.
2254 * Keep the two functions in sync.
2255 */
2256
2257 /*
2258 * The hash list is protected using RCU.
2259 *
2260 * Carefully use d_seq when comparing a candidate dentry, to avoid
2261 * races with d_move().
2262 *
2263 * It is possible that concurrent renames can mess up our list
2264 * walk here and result in missing our dentry, resulting in the
2265 * false-negative result. d_lookup() protects against concurrent
2266 * renames using rename_lock seqlock.
2267 *
2268 * See Documentation/filesystems/path-lookup.txt for more details.
2269 */
2270 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2271 unsigned seq;
2272
2273 seqretry:
2274 /*
2275 * The dentry sequence count protects us from concurrent
2276 * renames, and thus protects parent and name fields.
2277 *
2278 * The caller must perform a seqcount check in order
2279 * to do anything useful with the returned dentry.
2280 *
2281 * NOTE! We do a "raw" seqcount_begin here. That means that
2282 * we don't wait for the sequence count to stabilize if it
2283 * is in the middle of a sequence change. If we do the slow
2284 * dentry compare, we will do seqretries until it is stable,
2285 * and if we end up with a successful lookup, we actually
2286 * want to exit RCU lookup anyway.
2287 *
2288 * Note that raw_seqcount_begin still *does* smp_rmb(), so
2289 * we are still guaranteed NUL-termination of ->d_name.name.
2290 */
2291 seq = raw_seqcount_begin(&dentry->d_seq);
2292 if (dentry->d_parent != parent)
2293 continue;
2294 if (d_unhashed(dentry))
2295 continue;
2296
2297 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
2298 int tlen;
2299 const char *tname;
2300 if (dentry->d_name.hash != hashlen_hash(hashlen))
2301 continue;
2302 tlen = dentry->d_name.len;
2303 tname = dentry->d_name.name;
2304 /* we want a consistent (name,len) pair */
2305 if (read_seqcount_retry(&dentry->d_seq, seq)) {
2306 cpu_relax();
2307 goto seqretry;
2308 }
2309 if (parent->d_op->d_compare(dentry,
2310 tlen, tname, name) != 0)
2311 continue;
2312 } else {
2313 if (dentry->d_name.hash_len != hashlen)
2314 continue;
2315 if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0)
2316 continue;
2317 }
2318 *seqp = seq;
2319 return dentry;
2320 }
2321 return NULL;
2322 }
2323
2324 /**
2325 * d_lookup - search for a dentry
2326 * @parent: parent dentry
2327 * @name: qstr of name we wish to find
2328 * Returns: dentry, or NULL
2329 *
2330 * d_lookup searches the children of the parent dentry for the name in
2331 * question. If the dentry is found its reference count is incremented and the
2332 * dentry is returned. The caller must use dput to free the entry when it has
2333 * finished using it. %NULL is returned if the dentry does not exist.
2334 */
2335 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2336 {
2337 struct dentry *dentry;
2338 unsigned seq;
2339
2340 do {
2341 seq = read_seqbegin(&rename_lock);
2342 dentry = __d_lookup(parent, name);
2343 if (dentry)
2344 break;
2345 } while (read_seqretry(&rename_lock, seq));
2346 return dentry;
2347 }
2348 EXPORT_SYMBOL(d_lookup);
2349
2350 /**
2351 * __d_lookup - search for a dentry (racy)
2352 * @parent: parent dentry
2353 * @name: qstr of name we wish to find
2354 * Returns: dentry, or NULL
2355 *
2356 * __d_lookup is like d_lookup, however it may (rarely) return a
2357 * false-negative result due to unrelated rename activity.
2358 *
2359 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2360 * however it must be used carefully, eg. with a following d_lookup in
2361 * the case of failure.
2362 *
2363 * __d_lookup callers must be commented.
2364 */
2365 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2366 {
2367 unsigned int hash = name->hash;
2368 struct hlist_bl_head *b = d_hash(hash);
2369 struct hlist_bl_node *node;
2370 struct dentry *found = NULL;
2371 struct dentry *dentry;
2372
2373 /*
2374 * Note: There is significant duplication with __d_lookup_rcu which is
2375 * required to prevent single threaded performance regressions
2376 * especially on architectures where smp_rmb (in seqcounts) are costly.
2377 * Keep the two functions in sync.
2378 */
2379
2380 /*
2381 * The hash list is protected using RCU.
2382 *
2383 * Take d_lock when comparing a candidate dentry, to avoid races
2384 * with d_move().
2385 *
2386 * It is possible that concurrent renames can mess up our list
2387 * walk here and result in missing our dentry, resulting in the
2388 * false-negative result. d_lookup() protects against concurrent
2389 * renames using rename_lock seqlock.
2390 *
2391 * See Documentation/filesystems/path-lookup.txt for more details.
2392 */
2393 rcu_read_lock();
2394
2395 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2396
2397 if (dentry->d_name.hash != hash)
2398 continue;
2399
2400 spin_lock(&dentry->d_lock);
2401 if (dentry->d_parent != parent)
2402 goto next;
2403 if (d_unhashed(dentry))
2404 goto next;
2405
2406 if (!d_same_name(dentry, parent, name))
2407 goto next;
2408
2409 dentry->d_lockref.count++;
2410 found = dentry;
2411 spin_unlock(&dentry->d_lock);
2412 break;
2413 next:
2414 spin_unlock(&dentry->d_lock);
2415 }
2416 rcu_read_unlock();
2417
2418 return found;
2419 }
2420
2421 /**
2422 * d_hash_and_lookup - hash the qstr then search for a dentry
2423 * @dir: Directory to search in
2424 * @name: qstr of name we wish to find
2425 *
2426 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2427 */
2428 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2429 {
2430 /*
2431 * Check for a fs-specific hash function. Note that we must
2432 * calculate the standard hash first, as the d_op->d_hash()
2433 * routine may choose to leave the hash value unchanged.
2434 */
2435 name->hash = full_name_hash(dir, name->name, name->len);
2436 if (dir->d_flags & DCACHE_OP_HASH) {
2437 int err = dir->d_op->d_hash(dir, name);
2438 if (unlikely(err < 0))
2439 return ERR_PTR(err);
2440 }
2441 return d_lookup(dir, name);
2442 }
2443 EXPORT_SYMBOL(d_hash_and_lookup);
2444
2445 /*
2446 * When a file is deleted, we have two options:
2447 * - turn this dentry into a negative dentry
2448 * - unhash this dentry and free it.
2449 *
2450 * Usually, we want to just turn this into
2451 * a negative dentry, but if anybody else is
2452 * currently using the dentry or the inode
2453 * we can't do that and we fall back on removing
2454 * it from the hash queues and waiting for
2455 * it to be deleted later when it has no users
2456 */
2457
2458 /**
2459 * d_delete - delete a dentry
2460 * @dentry: The dentry to delete
2461 *
2462 * Turn the dentry into a negative dentry if possible, otherwise
2463 * remove it from the hash queues so it can be deleted later
2464 */
2465
2466 void d_delete(struct dentry * dentry)
2467 {
2468 struct inode *inode = dentry->d_inode;
2469
2470 spin_lock(&inode->i_lock);
2471 spin_lock(&dentry->d_lock);
2472 /*
2473 * Are we the only user?
2474 */
2475 if (dentry->d_lockref.count == 1) {
2476 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2477 dentry_unlink_inode(dentry);
2478 } else {
2479 __d_drop(dentry);
2480 spin_unlock(&dentry->d_lock);
2481 spin_unlock(&inode->i_lock);
2482 }
2483 }
2484 EXPORT_SYMBOL(d_delete);
2485
2486 static void __d_rehash(struct dentry *entry)
2487 {
2488 struct hlist_bl_head *b = d_hash(entry->d_name.hash);
2489
2490 hlist_bl_lock(b);
2491 hlist_bl_add_head_rcu(&entry->d_hash, b);
2492 hlist_bl_unlock(b);
2493 }
2494
2495 /**
2496 * d_rehash - add an entry back to the hash
2497 * @entry: dentry to add to the hash
2498 *
2499 * Adds a dentry to the hash according to its name.
2500 */
2501
2502 void d_rehash(struct dentry * entry)
2503 {
2504 spin_lock(&entry->d_lock);
2505 __d_rehash(entry);
2506 spin_unlock(&entry->d_lock);
2507 }
2508 EXPORT_SYMBOL(d_rehash);
2509
2510 static inline unsigned start_dir_add(struct inode *dir)
2511 {
2512
2513 for (;;) {
2514 unsigned n = dir->i_dir_seq;
2515 if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n)
2516 return n;
2517 cpu_relax();
2518 }
2519 }
2520
2521 static inline void end_dir_add(struct inode *dir, unsigned n)
2522 {
2523 smp_store_release(&dir->i_dir_seq, n + 2);
2524 }
2525
2526 static void d_wait_lookup(struct dentry *dentry)
2527 {
2528 if (d_in_lookup(dentry)) {
2529 DECLARE_WAITQUEUE(wait, current);
2530 add_wait_queue(dentry->d_wait, &wait);
2531 do {
2532 set_current_state(TASK_UNINTERRUPTIBLE);
2533 spin_unlock(&dentry->d_lock);
2534 schedule();
2535 spin_lock(&dentry->d_lock);
2536 } while (d_in_lookup(dentry));
2537 }
2538 }
2539
2540 struct dentry *d_alloc_parallel(struct dentry *parent,
2541 const struct qstr *name,
2542 wait_queue_head_t *wq)
2543 {
2544 unsigned int hash = name->hash;
2545 struct hlist_bl_head *b = in_lookup_hash(parent, hash);
2546 struct hlist_bl_node *node;
2547 struct dentry *new = d_alloc(parent, name);
2548 struct dentry *dentry;
2549 unsigned seq, r_seq, d_seq;
2550
2551 if (unlikely(!new))
2552 return ERR_PTR(-ENOMEM);
2553
2554 retry:
2555 rcu_read_lock();
2556 seq = smp_load_acquire(&parent->d_inode->i_dir_seq);
2557 r_seq = read_seqbegin(&rename_lock);
2558 dentry = __d_lookup_rcu(parent, name, &d_seq);
2559 if (unlikely(dentry)) {
2560 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2561 rcu_read_unlock();
2562 goto retry;
2563 }
2564 if (read_seqcount_retry(&dentry->d_seq, d_seq)) {
2565 rcu_read_unlock();
2566 dput(dentry);
2567 goto retry;
2568 }
2569 rcu_read_unlock();
2570 dput(new);
2571 return dentry;
2572 }
2573 if (unlikely(read_seqretry(&rename_lock, r_seq))) {
2574 rcu_read_unlock();
2575 goto retry;
2576 }
2577
2578 if (unlikely(seq & 1)) {
2579 rcu_read_unlock();
2580 goto retry;
2581 }
2582
2583 hlist_bl_lock(b);
2584 if (unlikely(READ_ONCE(parent->d_inode->i_dir_seq) != seq)) {
2585 hlist_bl_unlock(b);
2586 rcu_read_unlock();
2587 goto retry;
2588 }
2589 /*
2590 * No changes for the parent since the beginning of d_lookup().
2591 * Since all removals from the chain happen with hlist_bl_lock(),
2592 * any potential in-lookup matches are going to stay here until
2593 * we unlock the chain. All fields are stable in everything
2594 * we encounter.
2595 */
2596 hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) {
2597 if (dentry->d_name.hash != hash)
2598 continue;
2599 if (dentry->d_parent != parent)
2600 continue;
2601 if (!d_same_name(dentry, parent, name))
2602 continue;
2603 hlist_bl_unlock(b);
2604 /* now we can try to grab a reference */
2605 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2606 rcu_read_unlock();
2607 goto retry;
2608 }
2609
2610 rcu_read_unlock();
2611 /*
2612 * somebody is likely to be still doing lookup for it;
2613 * wait for them to finish
2614 */
2615 spin_lock(&dentry->d_lock);
2616 d_wait_lookup(dentry);
2617 /*
2618 * it's not in-lookup anymore; in principle we should repeat
2619 * everything from dcache lookup, but it's likely to be what
2620 * d_lookup() would've found anyway. If it is, just return it;
2621 * otherwise we really have to repeat the whole thing.
2622 */
2623 if (unlikely(dentry->d_name.hash != hash))
2624 goto mismatch;
2625 if (unlikely(dentry->d_parent != parent))
2626 goto mismatch;
2627 if (unlikely(d_unhashed(dentry)))
2628 goto mismatch;
2629 if (unlikely(!d_same_name(dentry, parent, name)))
2630 goto mismatch;
2631 /* OK, it *is* a hashed match; return it */
2632 spin_unlock(&dentry->d_lock);
2633 dput(new);
2634 return dentry;
2635 }
2636 rcu_read_unlock();
2637 /* we can't take ->d_lock here; it's OK, though. */
2638 new->d_flags |= DCACHE_PAR_LOOKUP;
2639 new->d_wait = wq;
2640 hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b);
2641 hlist_bl_unlock(b);
2642 return new;
2643 mismatch:
2644 spin_unlock(&dentry->d_lock);
2645 dput(dentry);
2646 goto retry;
2647 }
2648 EXPORT_SYMBOL(d_alloc_parallel);
2649
2650 void __d_lookup_done(struct dentry *dentry)
2651 {
2652 struct hlist_bl_head *b = in_lookup_hash(dentry->d_parent,
2653 dentry->d_name.hash);
2654 hlist_bl_lock(b);
2655 dentry->d_flags &= ~DCACHE_PAR_LOOKUP;
2656 __hlist_bl_del(&dentry->d_u.d_in_lookup_hash);
2657 wake_up_all(dentry->d_wait);
2658 dentry->d_wait = NULL;
2659 hlist_bl_unlock(b);
2660 INIT_HLIST_NODE(&dentry->d_u.d_alias);
2661 INIT_LIST_HEAD(&dentry->d_lru);
2662 }
2663 EXPORT_SYMBOL(__d_lookup_done);
2664
2665 /* inode->i_lock held if inode is non-NULL */
2666
2667 static inline void __d_add(struct dentry *dentry, struct inode *inode)
2668 {
2669 struct inode *dir = NULL;
2670 unsigned n;
2671 spin_lock(&dentry->d_lock);
2672 if (unlikely(d_in_lookup(dentry))) {
2673 dir = dentry->d_parent->d_inode;
2674 n = start_dir_add(dir);
2675 __d_lookup_done(dentry);
2676 }
2677 if (inode) {
2678 unsigned add_flags = d_flags_for_inode(inode);
2679 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2680 raw_write_seqcount_begin(&dentry->d_seq);
2681 __d_set_inode_and_type(dentry, inode, add_flags);
2682 raw_write_seqcount_end(&dentry->d_seq);
2683 fsnotify_update_flags(dentry);
2684 }
2685 __d_rehash(dentry);
2686 if (dir)
2687 end_dir_add(dir, n);
2688 spin_unlock(&dentry->d_lock);
2689 if (inode)
2690 spin_unlock(&inode->i_lock);
2691 }
2692
2693 /**
2694 * d_add - add dentry to hash queues
2695 * @entry: dentry to add
2696 * @inode: The inode to attach to this dentry
2697 *
2698 * This adds the entry to the hash queues and initializes @inode.
2699 * The entry was actually filled in earlier during d_alloc().
2700 */
2701
2702 void d_add(struct dentry *entry, struct inode *inode)
2703 {
2704 if (inode) {
2705 security_d_instantiate(entry, inode);
2706 spin_lock(&inode->i_lock);
2707 }
2708 __d_add(entry, inode);
2709 }
2710 EXPORT_SYMBOL(d_add);
2711
2712 /**
2713 * d_exact_alias - find and hash an exact unhashed alias
2714 * @entry: dentry to add
2715 * @inode: The inode to go with this dentry
2716 *
2717 * If an unhashed dentry with the same name/parent and desired
2718 * inode already exists, hash and return it. Otherwise, return
2719 * NULL.
2720 *
2721 * Parent directory should be locked.
2722 */
2723 struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode)
2724 {
2725 struct dentry *alias;
2726 unsigned int hash = entry->d_name.hash;
2727
2728 spin_lock(&inode->i_lock);
2729 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
2730 /*
2731 * Don't need alias->d_lock here, because aliases with
2732 * d_parent == entry->d_parent are not subject to name or
2733 * parent changes, because the parent inode i_mutex is held.
2734 */
2735 if (alias->d_name.hash != hash)
2736 continue;
2737 if (alias->d_parent != entry->d_parent)
2738 continue;
2739 if (!d_same_name(alias, entry->d_parent, &entry->d_name))
2740 continue;
2741 spin_lock(&alias->d_lock);
2742 if (!d_unhashed(alias)) {
2743 spin_unlock(&alias->d_lock);
2744 alias = NULL;
2745 } else {
2746 __dget_dlock(alias);
2747 __d_rehash(alias);
2748 spin_unlock(&alias->d_lock);
2749 }
2750 spin_unlock(&inode->i_lock);
2751 return alias;
2752 }
2753 spin_unlock(&inode->i_lock);
2754 return NULL;
2755 }
2756 EXPORT_SYMBOL(d_exact_alias);
2757
2758 static void swap_names(struct dentry *dentry, struct dentry *target)
2759 {
2760 if (unlikely(dname_external(target))) {
2761 if (unlikely(dname_external(dentry))) {
2762 /*
2763 * Both external: swap the pointers
2764 */
2765 swap(target->d_name.name, dentry->d_name.name);
2766 } else {
2767 /*
2768 * dentry:internal, target:external. Steal target's
2769 * storage and make target internal.
2770 */
2771 memcpy(target->d_iname, dentry->d_name.name,
2772 dentry->d_name.len + 1);
2773 dentry->d_name.name = target->d_name.name;
2774 target->d_name.name = target->d_iname;
2775 }
2776 } else {
2777 if (unlikely(dname_external(dentry))) {
2778 /*
2779 * dentry:external, target:internal. Give dentry's
2780 * storage to target and make dentry internal
2781 */
2782 memcpy(dentry->d_iname, target->d_name.name,
2783 target->d_name.len + 1);
2784 target->d_name.name = dentry->d_name.name;
2785 dentry->d_name.name = dentry->d_iname;
2786 } else {
2787 /*
2788 * Both are internal.
2789 */
2790 unsigned int i;
2791 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2792 for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2793 swap(((long *) &dentry->d_iname)[i],
2794 ((long *) &target->d_iname)[i]);
2795 }
2796 }
2797 }
2798 swap(dentry->d_name.hash_len, target->d_name.hash_len);
2799 }
2800
2801 static void copy_name(struct dentry *dentry, struct dentry *target)
2802 {
2803 struct external_name *old_name = NULL;
2804 if (unlikely(dname_external(dentry)))
2805 old_name = external_name(dentry);
2806 if (unlikely(dname_external(target))) {
2807 atomic_inc(&external_name(target)->u.count);
2808 dentry->d_name = target->d_name;
2809 } else {
2810 memcpy(dentry->d_iname, target->d_name.name,
2811 target->d_name.len + 1);
2812 dentry->d_name.name = dentry->d_iname;
2813 dentry->d_name.hash_len = target->d_name.hash_len;
2814 }
2815 if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2816 kfree_rcu(old_name, u.head);
2817 }
2818
2819 /*
2820 * __d_move - move a dentry
2821 * @dentry: entry to move
2822 * @target: new dentry
2823 * @exchange: exchange the two dentries
2824 *
2825 * Update the dcache to reflect the move of a file name. Negative
2826 * dcache entries should not be moved in this way. Caller must hold
2827 * rename_lock, the i_mutex of the source and target directories,
2828 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2829 */
2830 static void __d_move(struct dentry *dentry, struct dentry *target,
2831 bool exchange)
2832 {
2833 struct dentry *old_parent, *p;
2834 struct inode *dir = NULL;
2835 unsigned n;
2836
2837 WARN_ON(!dentry->d_inode);
2838 if (WARN_ON(dentry == target))
2839 return;
2840
2841 BUG_ON(d_ancestor(target, dentry));
2842 old_parent = dentry->d_parent;
2843 p = d_ancestor(old_parent, target);
2844 if (IS_ROOT(dentry)) {
2845 BUG_ON(p);
2846 spin_lock(&target->d_parent->d_lock);
2847 } else if (!p) {
2848 /* target is not a descendent of dentry->d_parent */
2849 spin_lock(&target->d_parent->d_lock);
2850 spin_lock_nested(&old_parent->d_lock, DENTRY_D_LOCK_NESTED);
2851 } else {
2852 BUG_ON(p == dentry);
2853 spin_lock(&old_parent->d_lock);
2854 if (p != target)
2855 spin_lock_nested(&target->d_parent->d_lock,
2856 DENTRY_D_LOCK_NESTED);
2857 }
2858 spin_lock_nested(&dentry->d_lock, 2);
2859 spin_lock_nested(&target->d_lock, 3);
2860
2861 if (unlikely(d_in_lookup(target))) {
2862 dir = target->d_parent->d_inode;
2863 n = start_dir_add(dir);
2864 __d_lookup_done(target);
2865 }
2866
2867 write_seqcount_begin(&dentry->d_seq);
2868 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
2869
2870 /* unhash both */
2871 if (!d_unhashed(dentry))
2872 ___d_drop(dentry);
2873 if (!d_unhashed(target))
2874 ___d_drop(target);
2875
2876 /* ... and switch them in the tree */
2877 dentry->d_parent = target->d_parent;
2878 if (!exchange) {
2879 copy_name(dentry, target);
2880 target->d_hash.pprev = NULL;
2881 dentry->d_parent->d_lockref.count++;
2882 if (dentry != old_parent) /* wasn't IS_ROOT */
2883 WARN_ON(!--old_parent->d_lockref.count);
2884 } else {
2885 target->d_parent = old_parent;
2886 swap_names(dentry, target);
2887 list_move(&target->d_child, &target->d_parent->d_subdirs);
2888 __d_rehash(target);
2889 fsnotify_update_flags(target);
2890 }
2891 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2892 __d_rehash(dentry);
2893 fsnotify_update_flags(dentry);
2894 fscrypt_handle_d_move(dentry);
2895
2896 write_seqcount_end(&target->d_seq);
2897 write_seqcount_end(&dentry->d_seq);
2898
2899 if (dir)
2900 end_dir_add(dir, n);
2901
2902 if (dentry->d_parent != old_parent)
2903 spin_unlock(&dentry->d_parent->d_lock);
2904 if (dentry != old_parent)
2905 spin_unlock(&old_parent->d_lock);
2906 spin_unlock(&target->d_lock);
2907 spin_unlock(&dentry->d_lock);
2908 }
2909
2910 /*
2911 * d_move - move a dentry
2912 * @dentry: entry to move
2913 * @target: new dentry
2914 *
2915 * Update the dcache to reflect the move of a file name. Negative
2916 * dcache entries should not be moved in this way. See the locking
2917 * requirements for __d_move.
2918 */
2919 void d_move(struct dentry *dentry, struct dentry *target)
2920 {
2921 write_seqlock(&rename_lock);
2922 __d_move(dentry, target, false);
2923 write_sequnlock(&rename_lock);
2924 }
2925 EXPORT_SYMBOL(d_move);
2926
2927 /*
2928 * d_exchange - exchange two dentries
2929 * @dentry1: first dentry
2930 * @dentry2: second dentry
2931 */
2932 void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2933 {
2934 write_seqlock(&rename_lock);
2935
2936 WARN_ON(!dentry1->d_inode);
2937 WARN_ON(!dentry2->d_inode);
2938 WARN_ON(IS_ROOT(dentry1));
2939 WARN_ON(IS_ROOT(dentry2));
2940
2941 __d_move(dentry1, dentry2, true);
2942
2943 write_sequnlock(&rename_lock);
2944 }
2945
2946 /**
2947 * d_ancestor - search for an ancestor
2948 * @p1: ancestor dentry
2949 * @p2: child dentry
2950 *
2951 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2952 * an ancestor of p2, else NULL.
2953 */
2954 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2955 {
2956 struct dentry *p;
2957
2958 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2959 if (p->d_parent == p1)
2960 return p;
2961 }
2962 return NULL;
2963 }
2964
2965 /*
2966 * This helper attempts to cope with remotely renamed directories
2967 *
2968 * It assumes that the caller is already holding
2969 * dentry->d_parent->d_inode->i_mutex, and rename_lock
2970 *
2971 * Note: If ever the locking in lock_rename() changes, then please
2972 * remember to update this too...
2973 */
2974 static int __d_unalias(struct inode *inode,
2975 struct dentry *dentry, struct dentry *alias)
2976 {
2977 struct mutex *m1 = NULL;
2978 struct rw_semaphore *m2 = NULL;
2979 int ret = -ESTALE;
2980
2981 /* If alias and dentry share a parent, then no extra locks required */
2982 if (alias->d_parent == dentry->d_parent)
2983 goto out_unalias;
2984
2985 /* See lock_rename() */
2986 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2987 goto out_err;
2988 m1 = &dentry->d_sb->s_vfs_rename_mutex;
2989 if (!inode_trylock_shared(alias->d_parent->d_inode))
2990 goto out_err;
2991 m2 = &alias->d_parent->d_inode->i_rwsem;
2992 out_unalias:
2993 __d_move(alias, dentry, false);
2994 ret = 0;
2995 out_err:
2996 if (m2)
2997 up_read(m2);
2998 if (m1)
2999 mutex_unlock(m1);
3000 return ret;
3001 }
3002
3003 /**
3004 * d_splice_alias - splice a disconnected dentry into the tree if one exists
3005 * @inode: the inode which may have a disconnected dentry
3006 * @dentry: a negative dentry which we want to point to the inode.
3007 *
3008 * If inode is a directory and has an IS_ROOT alias, then d_move that in
3009 * place of the given dentry and return it, else simply d_add the inode
3010 * to the dentry and return NULL.
3011 *
3012 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
3013 * we should error out: directories can't have multiple aliases.
3014 *
3015 * This is needed in the lookup routine of any filesystem that is exportable
3016 * (via knfsd) so that we can build dcache paths to directories effectively.
3017 *
3018 * If a dentry was found and moved, then it is returned. Otherwise NULL
3019 * is returned. This matches the expected return value of ->lookup.
3020 *
3021 * Cluster filesystems may call this function with a negative, hashed dentry.
3022 * In that case, we know that the inode will be a regular file, and also this
3023 * will only occur during atomic_open. So we need to check for the dentry
3024 * being already hashed only in the final case.
3025 */
3026 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
3027 {
3028 if (IS_ERR(inode))
3029 return ERR_CAST(inode);
3030
3031 BUG_ON(!d_unhashed(dentry));
3032
3033 if (!inode)
3034 goto out;
3035
3036 security_d_instantiate(dentry, inode);
3037 spin_lock(&inode->i_lock);
3038 if (S_ISDIR(inode->i_mode)) {
3039 struct dentry *new = __d_find_any_alias(inode);
3040 if (unlikely(new)) {
3041 /* The reference to new ensures it remains an alias */
3042 spin_unlock(&inode->i_lock);
3043 write_seqlock(&rename_lock);
3044 if (unlikely(d_ancestor(new, dentry))) {
3045 write_sequnlock(&rename_lock);
3046 dput(new);
3047 new = ERR_PTR(-ELOOP);
3048 pr_warn_ratelimited(
3049 "VFS: Lookup of '%s' in %s %s"
3050 " would have caused loop\n",
3051 dentry->d_name.name,
3052 inode->i_sb->s_type->name,
3053 inode->i_sb->s_id);
3054 } else if (!IS_ROOT(new)) {
3055 struct dentry *old_parent = dget(new->d_parent);
3056 int err = __d_unalias(inode, dentry, new);
3057 write_sequnlock(&rename_lock);
3058 if (err) {
3059 dput(new);
3060 new = ERR_PTR(err);
3061 }
3062 dput(old_parent);
3063 } else {
3064 __d_move(new, dentry, false);
3065 write_sequnlock(&rename_lock);
3066 }
3067 iput(inode);
3068 return new;
3069 }
3070 }
3071 out:
3072 __d_add(dentry, inode);
3073 return NULL;
3074 }
3075 EXPORT_SYMBOL(d_splice_alias);
3076
3077 /*
3078 * Test whether new_dentry is a subdirectory of old_dentry.
3079 *
3080 * Trivially implemented using the dcache structure
3081 */
3082
3083 /**
3084 * is_subdir - is new dentry a subdirectory of old_dentry
3085 * @new_dentry: new dentry
3086 * @old_dentry: old dentry
3087 *
3088 * Returns true if new_dentry is a subdirectory of the parent (at any depth).
3089 * Returns false otherwise.
3090 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3091 */
3092
3093 bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
3094 {
3095 bool result;
3096 unsigned seq;
3097
3098 if (new_dentry == old_dentry)
3099 return true;
3100
3101 do {
3102 /* for restarting inner loop in case of seq retry */
3103 seq = read_seqbegin(&rename_lock);
3104 /*
3105 * Need rcu_readlock to protect against the d_parent trashing
3106 * due to d_move
3107 */
3108 rcu_read_lock();
3109 if (d_ancestor(old_dentry, new_dentry))
3110 result = true;
3111 else
3112 result = false;
3113 rcu_read_unlock();
3114 } while (read_seqretry(&rename_lock, seq));
3115
3116 return result;
3117 }
3118 EXPORT_SYMBOL(is_subdir);
3119
3120 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
3121 {
3122 struct dentry *root = data;
3123 if (dentry != root) {
3124 if (d_unhashed(dentry) || !dentry->d_inode)
3125 return D_WALK_SKIP;
3126
3127 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3128 dentry->d_flags |= DCACHE_GENOCIDE;
3129 dentry->d_lockref.count--;
3130 }
3131 }
3132 return D_WALK_CONTINUE;
3133 }
3134
3135 void d_genocide(struct dentry *parent)
3136 {
3137 d_walk(parent, parent, d_genocide_kill);
3138 }
3139
3140 EXPORT_SYMBOL(d_genocide);
3141
3142 void d_tmpfile(struct dentry *dentry, struct inode *inode)
3143 {
3144 inode_dec_link_count(inode);
3145 BUG_ON(dentry->d_name.name != dentry->d_iname ||
3146 !hlist_unhashed(&dentry->d_u.d_alias) ||
3147 !d_unlinked(dentry));
3148 spin_lock(&dentry->d_parent->d_lock);
3149 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3150 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3151 (unsigned long long)inode->i_ino);
3152 spin_unlock(&dentry->d_lock);
3153 spin_unlock(&dentry->d_parent->d_lock);
3154 d_instantiate(dentry, inode);
3155 }
3156 EXPORT_SYMBOL(d_tmpfile);
3157
3158 static __initdata unsigned long dhash_entries;
3159 static int __init set_dhash_entries(char *str)
3160 {
3161 if (!str)
3162 return 0;
3163 dhash_entries = simple_strtoul(str, &str, 0);
3164 return 1;
3165 }
3166 __setup("dhash_entries=", set_dhash_entries);
3167
3168 static void __init dcache_init_early(void)
3169 {
3170 /* If hashes are distributed across NUMA nodes, defer
3171 * hash allocation until vmalloc space is available.
3172 */
3173 if (hashdist)
3174 return;
3175
3176 dentry_hashtable =
3177 alloc_large_system_hash("Dentry cache",
3178 sizeof(struct hlist_bl_head),
3179 dhash_entries,
3180 13,
3181 HASH_EARLY | HASH_ZERO,
3182 &d_hash_shift,
3183 NULL,
3184 0,
3185 0);
3186 d_hash_shift = 32 - d_hash_shift;
3187 }
3188
3189 static void __init dcache_init(void)
3190 {
3191 /*
3192 * A constructor could be added for stable state like the lists,
3193 * but it is probably not worth it because of the cache nature
3194 * of the dcache.
3195 */
3196 dentry_cache = KMEM_CACHE_USERCOPY(dentry,
3197 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT,
3198 d_iname);
3199
3200 /* Hash may have been set up in dcache_init_early */
3201 if (!hashdist)
3202 return;
3203
3204 dentry_hashtable =
3205 alloc_large_system_hash("Dentry cache",
3206 sizeof(struct hlist_bl_head),
3207 dhash_entries,
3208 13,
3209 HASH_ZERO,
3210 &d_hash_shift,
3211 NULL,
3212 0,
3213 0);
3214 d_hash_shift = 32 - d_hash_shift;
3215 }
3216
3217 /* SLAB cache for __getname() consumers */
3218 struct kmem_cache *names_cachep __read_mostly;
3219 EXPORT_SYMBOL(names_cachep);
3220
3221 void __init vfs_caches_init_early(void)
3222 {
3223 int i;
3224
3225 for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++)
3226 INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]);
3227
3228 dcache_init_early();
3229 inode_init_early();
3230 }
3231
3232 void __init vfs_caches_init(void)
3233 {
3234 names_cachep = kmem_cache_create_usercopy("names_cache", PATH_MAX, 0,
3235 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 0, PATH_MAX, NULL);
3236
3237 dcache_init();
3238 inode_init();
3239 files_init();
3240 files_maxfiles_init();
3241 mnt_init();
3242 bdev_cache_init();
3243 chrdev_init();
3244 }