]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/dcache.c
dcache: let the dentry count go down to zero without taking d_lock
[mirror_ubuntu-artful-kernel.git] / fs / dcache.c
1 /*
2 * fs/dcache.c
3 *
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
8
9 /*
10 * Notes on the allocation strategy:
11 *
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
15 */
16
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/export.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <asm/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/rculist_bl.h>
38 #include <linux/prefetch.h>
39 #include <linux/ratelimit.h>
40 #include <linux/list_lru.h>
41 #include "internal.h"
42 #include "mount.h"
43
44 /*
45 * Usage:
46 * dcache->d_inode->i_lock protects:
47 * - i_dentry, d_u.d_alias, d_inode of aliases
48 * dcache_hash_bucket lock protects:
49 * - the dcache hash table
50 * s_anon bl list spinlock protects:
51 * - the s_anon list (see __d_drop)
52 * dentry->d_sb->s_dentry_lru_lock protects:
53 * - the dcache lru lists and counters
54 * d_lock protects:
55 * - d_flags
56 * - d_name
57 * - d_lru
58 * - d_count
59 * - d_unhashed()
60 * - d_parent and d_subdirs
61 * - childrens' d_child and d_parent
62 * - d_u.d_alias, d_inode
63 *
64 * Ordering:
65 * dentry->d_inode->i_lock
66 * dentry->d_lock
67 * dentry->d_sb->s_dentry_lru_lock
68 * dcache_hash_bucket lock
69 * s_anon lock
70 *
71 * If there is an ancestor relationship:
72 * dentry->d_parent->...->d_parent->d_lock
73 * ...
74 * dentry->d_parent->d_lock
75 * dentry->d_lock
76 *
77 * If no ancestor relationship:
78 * if (dentry1 < dentry2)
79 * dentry1->d_lock
80 * dentry2->d_lock
81 */
82 int sysctl_vfs_cache_pressure __read_mostly = 100;
83 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
84
85 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
86
87 EXPORT_SYMBOL(rename_lock);
88
89 static struct kmem_cache *dentry_cache __read_mostly;
90
91 /*
92 * This is the single most critical data structure when it comes
93 * to the dcache: the hashtable for lookups. Somebody should try
94 * to make this good - I've just made it work.
95 *
96 * This hash-function tries to avoid losing too many bits of hash
97 * information, yet avoid using a prime hash-size or similar.
98 */
99
100 static unsigned int d_hash_mask __read_mostly;
101 static unsigned int d_hash_shift __read_mostly;
102
103 static struct hlist_bl_head *dentry_hashtable __read_mostly;
104
105 static inline struct hlist_bl_head *d_hash(const struct dentry *parent,
106 unsigned int hash)
107 {
108 hash += (unsigned long) parent / L1_CACHE_BYTES;
109 return dentry_hashtable + hash_32(hash, d_hash_shift);
110 }
111
112 /* Statistics gathering. */
113 struct dentry_stat_t dentry_stat = {
114 .age_limit = 45,
115 };
116
117 static DEFINE_PER_CPU(long, nr_dentry);
118 static DEFINE_PER_CPU(long, nr_dentry_unused);
119
120 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
121
122 /*
123 * Here we resort to our own counters instead of using generic per-cpu counters
124 * for consistency with what the vfs inode code does. We are expected to harvest
125 * better code and performance by having our own specialized counters.
126 *
127 * Please note that the loop is done over all possible CPUs, not over all online
128 * CPUs. The reason for this is that we don't want to play games with CPUs going
129 * on and off. If one of them goes off, we will just keep their counters.
130 *
131 * glommer: See cffbc8a for details, and if you ever intend to change this,
132 * please update all vfs counters to match.
133 */
134 static long get_nr_dentry(void)
135 {
136 int i;
137 long sum = 0;
138 for_each_possible_cpu(i)
139 sum += per_cpu(nr_dentry, i);
140 return sum < 0 ? 0 : sum;
141 }
142
143 static long get_nr_dentry_unused(void)
144 {
145 int i;
146 long sum = 0;
147 for_each_possible_cpu(i)
148 sum += per_cpu(nr_dentry_unused, i);
149 return sum < 0 ? 0 : sum;
150 }
151
152 int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer,
153 size_t *lenp, loff_t *ppos)
154 {
155 dentry_stat.nr_dentry = get_nr_dentry();
156 dentry_stat.nr_unused = get_nr_dentry_unused();
157 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
158 }
159 #endif
160
161 /*
162 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
163 * The strings are both count bytes long, and count is non-zero.
164 */
165 #ifdef CONFIG_DCACHE_WORD_ACCESS
166
167 #include <asm/word-at-a-time.h>
168 /*
169 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
170 * aligned allocation for this particular component. We don't
171 * strictly need the load_unaligned_zeropad() safety, but it
172 * doesn't hurt either.
173 *
174 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
175 * need the careful unaligned handling.
176 */
177 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
178 {
179 unsigned long a,b,mask;
180
181 for (;;) {
182 a = *(unsigned long *)cs;
183 b = load_unaligned_zeropad(ct);
184 if (tcount < sizeof(unsigned long))
185 break;
186 if (unlikely(a != b))
187 return 1;
188 cs += sizeof(unsigned long);
189 ct += sizeof(unsigned long);
190 tcount -= sizeof(unsigned long);
191 if (!tcount)
192 return 0;
193 }
194 mask = bytemask_from_count(tcount);
195 return unlikely(!!((a ^ b) & mask));
196 }
197
198 #else
199
200 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
201 {
202 do {
203 if (*cs != *ct)
204 return 1;
205 cs++;
206 ct++;
207 tcount--;
208 } while (tcount);
209 return 0;
210 }
211
212 #endif
213
214 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
215 {
216 const unsigned char *cs;
217 /*
218 * Be careful about RCU walk racing with rename:
219 * use ACCESS_ONCE to fetch the name pointer.
220 *
221 * NOTE! Even if a rename will mean that the length
222 * was not loaded atomically, we don't care. The
223 * RCU walk will check the sequence count eventually,
224 * and catch it. And we won't overrun the buffer,
225 * because we're reading the name pointer atomically,
226 * and a dentry name is guaranteed to be properly
227 * terminated with a NUL byte.
228 *
229 * End result: even if 'len' is wrong, we'll exit
230 * early because the data cannot match (there can
231 * be no NUL in the ct/tcount data)
232 */
233 cs = ACCESS_ONCE(dentry->d_name.name);
234 smp_read_barrier_depends();
235 return dentry_string_cmp(cs, ct, tcount);
236 }
237
238 struct external_name {
239 union {
240 atomic_t count;
241 struct rcu_head head;
242 } u;
243 unsigned char name[];
244 };
245
246 static inline struct external_name *external_name(struct dentry *dentry)
247 {
248 return container_of(dentry->d_name.name, struct external_name, name[0]);
249 }
250
251 static void __d_free(struct rcu_head *head)
252 {
253 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
254
255 kmem_cache_free(dentry_cache, dentry);
256 }
257
258 static void __d_free_external(struct rcu_head *head)
259 {
260 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
261 kfree(external_name(dentry));
262 kmem_cache_free(dentry_cache, dentry);
263 }
264
265 static inline int dname_external(const struct dentry *dentry)
266 {
267 return dentry->d_name.name != dentry->d_iname;
268 }
269
270 static void dentry_free(struct dentry *dentry)
271 {
272 WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
273 if (unlikely(dname_external(dentry))) {
274 struct external_name *p = external_name(dentry);
275 if (likely(atomic_dec_and_test(&p->u.count))) {
276 call_rcu(&dentry->d_u.d_rcu, __d_free_external);
277 return;
278 }
279 }
280 /* if dentry was never visible to RCU, immediate free is OK */
281 if (!(dentry->d_flags & DCACHE_RCUACCESS))
282 __d_free(&dentry->d_u.d_rcu);
283 else
284 call_rcu(&dentry->d_u.d_rcu, __d_free);
285 }
286
287 /**
288 * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
289 * @dentry: the target dentry
290 * After this call, in-progress rcu-walk path lookup will fail. This
291 * should be called after unhashing, and after changing d_inode (if
292 * the dentry has not already been unhashed).
293 */
294 static inline void dentry_rcuwalk_barrier(struct dentry *dentry)
295 {
296 assert_spin_locked(&dentry->d_lock);
297 /* Go through a barrier */
298 write_seqcount_barrier(&dentry->d_seq);
299 }
300
301 /*
302 * Release the dentry's inode, using the filesystem
303 * d_iput() operation if defined. Dentry has no refcount
304 * and is unhashed.
305 */
306 static void dentry_iput(struct dentry * dentry)
307 __releases(dentry->d_lock)
308 __releases(dentry->d_inode->i_lock)
309 {
310 struct inode *inode = dentry->d_inode;
311 if (inode) {
312 dentry->d_inode = NULL;
313 hlist_del_init(&dentry->d_u.d_alias);
314 spin_unlock(&dentry->d_lock);
315 spin_unlock(&inode->i_lock);
316 if (!inode->i_nlink)
317 fsnotify_inoderemove(inode);
318 if (dentry->d_op && dentry->d_op->d_iput)
319 dentry->d_op->d_iput(dentry, inode);
320 else
321 iput(inode);
322 } else {
323 spin_unlock(&dentry->d_lock);
324 }
325 }
326
327 /*
328 * Release the dentry's inode, using the filesystem
329 * d_iput() operation if defined. dentry remains in-use.
330 */
331 static void dentry_unlink_inode(struct dentry * dentry)
332 __releases(dentry->d_lock)
333 __releases(dentry->d_inode->i_lock)
334 {
335 struct inode *inode = dentry->d_inode;
336 __d_clear_type(dentry);
337 dentry->d_inode = NULL;
338 hlist_del_init(&dentry->d_u.d_alias);
339 dentry_rcuwalk_barrier(dentry);
340 spin_unlock(&dentry->d_lock);
341 spin_unlock(&inode->i_lock);
342 if (!inode->i_nlink)
343 fsnotify_inoderemove(inode);
344 if (dentry->d_op && dentry->d_op->d_iput)
345 dentry->d_op->d_iput(dentry, inode);
346 else
347 iput(inode);
348 }
349
350 /*
351 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
352 * is in use - which includes both the "real" per-superblock
353 * LRU list _and_ the DCACHE_SHRINK_LIST use.
354 *
355 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
356 * on the shrink list (ie not on the superblock LRU list).
357 *
358 * The per-cpu "nr_dentry_unused" counters are updated with
359 * the DCACHE_LRU_LIST bit.
360 *
361 * These helper functions make sure we always follow the
362 * rules. d_lock must be held by the caller.
363 */
364 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
365 static void d_lru_add(struct dentry *dentry)
366 {
367 D_FLAG_VERIFY(dentry, 0);
368 dentry->d_flags |= DCACHE_LRU_LIST;
369 this_cpu_inc(nr_dentry_unused);
370 WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
371 }
372
373 static void d_lru_del(struct dentry *dentry)
374 {
375 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
376 dentry->d_flags &= ~DCACHE_LRU_LIST;
377 this_cpu_dec(nr_dentry_unused);
378 WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
379 }
380
381 static void d_shrink_del(struct dentry *dentry)
382 {
383 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
384 list_del_init(&dentry->d_lru);
385 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
386 this_cpu_dec(nr_dentry_unused);
387 }
388
389 static void d_shrink_add(struct dentry *dentry, struct list_head *list)
390 {
391 D_FLAG_VERIFY(dentry, 0);
392 list_add(&dentry->d_lru, list);
393 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
394 this_cpu_inc(nr_dentry_unused);
395 }
396
397 /*
398 * These can only be called under the global LRU lock, ie during the
399 * callback for freeing the LRU list. "isolate" removes it from the
400 * LRU lists entirely, while shrink_move moves it to the indicated
401 * private list.
402 */
403 static void d_lru_isolate(struct dentry *dentry)
404 {
405 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
406 dentry->d_flags &= ~DCACHE_LRU_LIST;
407 this_cpu_dec(nr_dentry_unused);
408 list_del_init(&dentry->d_lru);
409 }
410
411 static void d_lru_shrink_move(struct dentry *dentry, struct list_head *list)
412 {
413 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
414 dentry->d_flags |= DCACHE_SHRINK_LIST;
415 list_move_tail(&dentry->d_lru, list);
416 }
417
418 /*
419 * dentry_lru_(add|del)_list) must be called with d_lock held.
420 */
421 static void dentry_lru_add(struct dentry *dentry)
422 {
423 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
424 d_lru_add(dentry);
425 }
426
427 /**
428 * d_drop - drop a dentry
429 * @dentry: dentry to drop
430 *
431 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
432 * be found through a VFS lookup any more. Note that this is different from
433 * deleting the dentry - d_delete will try to mark the dentry negative if
434 * possible, giving a successful _negative_ lookup, while d_drop will
435 * just make the cache lookup fail.
436 *
437 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
438 * reason (NFS timeouts or autofs deletes).
439 *
440 * __d_drop requires dentry->d_lock.
441 */
442 void __d_drop(struct dentry *dentry)
443 {
444 if (!d_unhashed(dentry)) {
445 struct hlist_bl_head *b;
446 /*
447 * Hashed dentries are normally on the dentry hashtable,
448 * with the exception of those newly allocated by
449 * d_obtain_alias, which are always IS_ROOT:
450 */
451 if (unlikely(IS_ROOT(dentry)))
452 b = &dentry->d_sb->s_anon;
453 else
454 b = d_hash(dentry->d_parent, dentry->d_name.hash);
455
456 hlist_bl_lock(b);
457 __hlist_bl_del(&dentry->d_hash);
458 dentry->d_hash.pprev = NULL;
459 hlist_bl_unlock(b);
460 dentry_rcuwalk_barrier(dentry);
461 }
462 }
463 EXPORT_SYMBOL(__d_drop);
464
465 void d_drop(struct dentry *dentry)
466 {
467 spin_lock(&dentry->d_lock);
468 __d_drop(dentry);
469 spin_unlock(&dentry->d_lock);
470 }
471 EXPORT_SYMBOL(d_drop);
472
473 static void __dentry_kill(struct dentry *dentry)
474 {
475 struct dentry *parent = NULL;
476 bool can_free = true;
477 if (!IS_ROOT(dentry))
478 parent = dentry->d_parent;
479
480 /*
481 * The dentry is now unrecoverably dead to the world.
482 */
483 lockref_mark_dead(&dentry->d_lockref);
484
485 /*
486 * inform the fs via d_prune that this dentry is about to be
487 * unhashed and destroyed.
488 */
489 if (dentry->d_flags & DCACHE_OP_PRUNE)
490 dentry->d_op->d_prune(dentry);
491
492 if (dentry->d_flags & DCACHE_LRU_LIST) {
493 if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
494 d_lru_del(dentry);
495 }
496 /* if it was on the hash then remove it */
497 __d_drop(dentry);
498 __list_del_entry(&dentry->d_child);
499 /*
500 * Inform d_walk() that we are no longer attached to the
501 * dentry tree
502 */
503 dentry->d_flags |= DCACHE_DENTRY_KILLED;
504 if (parent)
505 spin_unlock(&parent->d_lock);
506 dentry_iput(dentry);
507 /*
508 * dentry_iput drops the locks, at which point nobody (except
509 * transient RCU lookups) can reach this dentry.
510 */
511 BUG_ON(dentry->d_lockref.count > 0);
512 this_cpu_dec(nr_dentry);
513 if (dentry->d_op && dentry->d_op->d_release)
514 dentry->d_op->d_release(dentry);
515
516 spin_lock(&dentry->d_lock);
517 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
518 dentry->d_flags |= DCACHE_MAY_FREE;
519 can_free = false;
520 }
521 spin_unlock(&dentry->d_lock);
522 if (likely(can_free))
523 dentry_free(dentry);
524 }
525
526 /*
527 * Finish off a dentry we've decided to kill.
528 * dentry->d_lock must be held, returns with it unlocked.
529 * If ref is non-zero, then decrement the refcount too.
530 * Returns dentry requiring refcount drop, or NULL if we're done.
531 */
532 static struct dentry *dentry_kill(struct dentry *dentry)
533 __releases(dentry->d_lock)
534 {
535 struct inode *inode = dentry->d_inode;
536 struct dentry *parent = NULL;
537
538 if (inode && unlikely(!spin_trylock(&inode->i_lock)))
539 goto failed;
540
541 if (!IS_ROOT(dentry)) {
542 parent = dentry->d_parent;
543 if (unlikely(!spin_trylock(&parent->d_lock))) {
544 if (inode)
545 spin_unlock(&inode->i_lock);
546 goto failed;
547 }
548 }
549
550 __dentry_kill(dentry);
551 return parent;
552
553 failed:
554 spin_unlock(&dentry->d_lock);
555 cpu_relax();
556 return dentry; /* try again with same dentry */
557 }
558
559 static inline struct dentry *lock_parent(struct dentry *dentry)
560 {
561 struct dentry *parent = dentry->d_parent;
562 if (IS_ROOT(dentry))
563 return NULL;
564 if (unlikely(dentry->d_lockref.count < 0))
565 return NULL;
566 if (likely(spin_trylock(&parent->d_lock)))
567 return parent;
568 rcu_read_lock();
569 spin_unlock(&dentry->d_lock);
570 again:
571 parent = ACCESS_ONCE(dentry->d_parent);
572 spin_lock(&parent->d_lock);
573 /*
574 * We can't blindly lock dentry until we are sure
575 * that we won't violate the locking order.
576 * Any changes of dentry->d_parent must have
577 * been done with parent->d_lock held, so
578 * spin_lock() above is enough of a barrier
579 * for checking if it's still our child.
580 */
581 if (unlikely(parent != dentry->d_parent)) {
582 spin_unlock(&parent->d_lock);
583 goto again;
584 }
585 rcu_read_unlock();
586 if (parent != dentry)
587 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
588 else
589 parent = NULL;
590 return parent;
591 }
592
593 /*
594 * Try to do a lockless dput(), and return whether that was successful.
595 *
596 * If unsuccessful, we return false, having already taken the dentry lock.
597 *
598 * The caller needs to hold the RCU read lock, so that the dentry is
599 * guaranteed to stay around even if the refcount goes down to zero!
600 */
601 static inline bool fast_dput(struct dentry *dentry)
602 {
603 int ret;
604 unsigned int d_flags;
605
606 /*
607 * If we have a d_op->d_delete() operation, we sould not
608 * let the dentry count go to zero, so use "put__or_lock".
609 */
610 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE))
611 return lockref_put_or_lock(&dentry->d_lockref);
612
613 /*
614 * .. otherwise, we can try to just decrement the
615 * lockref optimistically.
616 */
617 ret = lockref_put_return(&dentry->d_lockref);
618
619 /*
620 * If the lockref_put_return() failed due to the lock being held
621 * by somebody else, the fast path has failed. We will need to
622 * get the lock, and then check the count again.
623 */
624 if (unlikely(ret < 0)) {
625 spin_lock(&dentry->d_lock);
626 if (dentry->d_lockref.count > 1) {
627 dentry->d_lockref.count--;
628 spin_unlock(&dentry->d_lock);
629 return 1;
630 }
631 return 0;
632 }
633
634 /*
635 * If we weren't the last ref, we're done.
636 */
637 if (ret)
638 return 1;
639
640 /*
641 * Careful, careful. The reference count went down
642 * to zero, but we don't hold the dentry lock, so
643 * somebody else could get it again, and do another
644 * dput(), and we need to not race with that.
645 *
646 * However, there is a very special and common case
647 * where we don't care, because there is nothing to
648 * do: the dentry is still hashed, it does not have
649 * a 'delete' op, and it's referenced and already on
650 * the LRU list.
651 *
652 * NOTE! Since we aren't locked, these values are
653 * not "stable". However, it is sufficient that at
654 * some point after we dropped the reference the
655 * dentry was hashed and the flags had the proper
656 * value. Other dentry users may have re-gotten
657 * a reference to the dentry and change that, but
658 * our work is done - we can leave the dentry
659 * around with a zero refcount.
660 */
661 smp_rmb();
662 d_flags = ACCESS_ONCE(dentry->d_flags);
663 d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST;
664
665 /* Nothing to do? Dropping the reference was all we needed? */
666 if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry))
667 return 1;
668
669 /*
670 * Not the fast normal case? Get the lock. We've already decremented
671 * the refcount, but we'll need to re-check the situation after
672 * getting the lock.
673 */
674 spin_lock(&dentry->d_lock);
675
676 /*
677 * Did somebody else grab a reference to it in the meantime, and
678 * we're no longer the last user after all? Alternatively, somebody
679 * else could have killed it and marked it dead. Either way, we
680 * don't need to do anything else.
681 */
682 if (dentry->d_lockref.count) {
683 spin_unlock(&dentry->d_lock);
684 return 1;
685 }
686
687 /*
688 * Re-get the reference we optimistically dropped. We hold the
689 * lock, and we just tested that it was zero, so we can just
690 * set it to 1.
691 */
692 dentry->d_lockref.count = 1;
693 return 0;
694 }
695
696
697 /*
698 * This is dput
699 *
700 * This is complicated by the fact that we do not want to put
701 * dentries that are no longer on any hash chain on the unused
702 * list: we'd much rather just get rid of them immediately.
703 *
704 * However, that implies that we have to traverse the dentry
705 * tree upwards to the parents which might _also_ now be
706 * scheduled for deletion (it may have been only waiting for
707 * its last child to go away).
708 *
709 * This tail recursion is done by hand as we don't want to depend
710 * on the compiler to always get this right (gcc generally doesn't).
711 * Real recursion would eat up our stack space.
712 */
713
714 /*
715 * dput - release a dentry
716 * @dentry: dentry to release
717 *
718 * Release a dentry. This will drop the usage count and if appropriate
719 * call the dentry unlink method as well as removing it from the queues and
720 * releasing its resources. If the parent dentries were scheduled for release
721 * they too may now get deleted.
722 */
723 void dput(struct dentry *dentry)
724 {
725 if (unlikely(!dentry))
726 return;
727
728 repeat:
729 rcu_read_lock();
730 if (likely(fast_dput(dentry))) {
731 rcu_read_unlock();
732 return;
733 }
734
735 /* Slow case: now with the dentry lock held */
736 rcu_read_unlock();
737
738 /* Unreachable? Get rid of it */
739 if (unlikely(d_unhashed(dentry)))
740 goto kill_it;
741
742 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
743 if (dentry->d_op->d_delete(dentry))
744 goto kill_it;
745 }
746
747 if (!(dentry->d_flags & DCACHE_REFERENCED))
748 dentry->d_flags |= DCACHE_REFERENCED;
749 dentry_lru_add(dentry);
750
751 dentry->d_lockref.count--;
752 spin_unlock(&dentry->d_lock);
753 return;
754
755 kill_it:
756 dentry = dentry_kill(dentry);
757 if (dentry)
758 goto repeat;
759 }
760 EXPORT_SYMBOL(dput);
761
762
763 /* This must be called with d_lock held */
764 static inline void __dget_dlock(struct dentry *dentry)
765 {
766 dentry->d_lockref.count++;
767 }
768
769 static inline void __dget(struct dentry *dentry)
770 {
771 lockref_get(&dentry->d_lockref);
772 }
773
774 struct dentry *dget_parent(struct dentry *dentry)
775 {
776 int gotref;
777 struct dentry *ret;
778
779 /*
780 * Do optimistic parent lookup without any
781 * locking.
782 */
783 rcu_read_lock();
784 ret = ACCESS_ONCE(dentry->d_parent);
785 gotref = lockref_get_not_zero(&ret->d_lockref);
786 rcu_read_unlock();
787 if (likely(gotref)) {
788 if (likely(ret == ACCESS_ONCE(dentry->d_parent)))
789 return ret;
790 dput(ret);
791 }
792
793 repeat:
794 /*
795 * Don't need rcu_dereference because we re-check it was correct under
796 * the lock.
797 */
798 rcu_read_lock();
799 ret = dentry->d_parent;
800 spin_lock(&ret->d_lock);
801 if (unlikely(ret != dentry->d_parent)) {
802 spin_unlock(&ret->d_lock);
803 rcu_read_unlock();
804 goto repeat;
805 }
806 rcu_read_unlock();
807 BUG_ON(!ret->d_lockref.count);
808 ret->d_lockref.count++;
809 spin_unlock(&ret->d_lock);
810 return ret;
811 }
812 EXPORT_SYMBOL(dget_parent);
813
814 /**
815 * d_find_alias - grab a hashed alias of inode
816 * @inode: inode in question
817 *
818 * If inode has a hashed alias, or is a directory and has any alias,
819 * acquire the reference to alias and return it. Otherwise return NULL.
820 * Notice that if inode is a directory there can be only one alias and
821 * it can be unhashed only if it has no children, or if it is the root
822 * of a filesystem, or if the directory was renamed and d_revalidate
823 * was the first vfs operation to notice.
824 *
825 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
826 * any other hashed alias over that one.
827 */
828 static struct dentry *__d_find_alias(struct inode *inode)
829 {
830 struct dentry *alias, *discon_alias;
831
832 again:
833 discon_alias = NULL;
834 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
835 spin_lock(&alias->d_lock);
836 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
837 if (IS_ROOT(alias) &&
838 (alias->d_flags & DCACHE_DISCONNECTED)) {
839 discon_alias = alias;
840 } else {
841 __dget_dlock(alias);
842 spin_unlock(&alias->d_lock);
843 return alias;
844 }
845 }
846 spin_unlock(&alias->d_lock);
847 }
848 if (discon_alias) {
849 alias = discon_alias;
850 spin_lock(&alias->d_lock);
851 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
852 __dget_dlock(alias);
853 spin_unlock(&alias->d_lock);
854 return alias;
855 }
856 spin_unlock(&alias->d_lock);
857 goto again;
858 }
859 return NULL;
860 }
861
862 struct dentry *d_find_alias(struct inode *inode)
863 {
864 struct dentry *de = NULL;
865
866 if (!hlist_empty(&inode->i_dentry)) {
867 spin_lock(&inode->i_lock);
868 de = __d_find_alias(inode);
869 spin_unlock(&inode->i_lock);
870 }
871 return de;
872 }
873 EXPORT_SYMBOL(d_find_alias);
874
875 /*
876 * Try to kill dentries associated with this inode.
877 * WARNING: you must own a reference to inode.
878 */
879 void d_prune_aliases(struct inode *inode)
880 {
881 struct dentry *dentry;
882 restart:
883 spin_lock(&inode->i_lock);
884 hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
885 spin_lock(&dentry->d_lock);
886 if (!dentry->d_lockref.count) {
887 struct dentry *parent = lock_parent(dentry);
888 if (likely(!dentry->d_lockref.count)) {
889 __dentry_kill(dentry);
890 dput(parent);
891 goto restart;
892 }
893 if (parent)
894 spin_unlock(&parent->d_lock);
895 }
896 spin_unlock(&dentry->d_lock);
897 }
898 spin_unlock(&inode->i_lock);
899 }
900 EXPORT_SYMBOL(d_prune_aliases);
901
902 static void shrink_dentry_list(struct list_head *list)
903 {
904 struct dentry *dentry, *parent;
905
906 while (!list_empty(list)) {
907 struct inode *inode;
908 dentry = list_entry(list->prev, struct dentry, d_lru);
909 spin_lock(&dentry->d_lock);
910 parent = lock_parent(dentry);
911
912 /*
913 * The dispose list is isolated and dentries are not accounted
914 * to the LRU here, so we can simply remove it from the list
915 * here regardless of whether it is referenced or not.
916 */
917 d_shrink_del(dentry);
918
919 /*
920 * We found an inuse dentry which was not removed from
921 * the LRU because of laziness during lookup. Do not free it.
922 */
923 if (dentry->d_lockref.count > 0) {
924 spin_unlock(&dentry->d_lock);
925 if (parent)
926 spin_unlock(&parent->d_lock);
927 continue;
928 }
929
930
931 if (unlikely(dentry->d_flags & DCACHE_DENTRY_KILLED)) {
932 bool can_free = dentry->d_flags & DCACHE_MAY_FREE;
933 spin_unlock(&dentry->d_lock);
934 if (parent)
935 spin_unlock(&parent->d_lock);
936 if (can_free)
937 dentry_free(dentry);
938 continue;
939 }
940
941 inode = dentry->d_inode;
942 if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
943 d_shrink_add(dentry, list);
944 spin_unlock(&dentry->d_lock);
945 if (parent)
946 spin_unlock(&parent->d_lock);
947 continue;
948 }
949
950 __dentry_kill(dentry);
951
952 /*
953 * We need to prune ancestors too. This is necessary to prevent
954 * quadratic behavior of shrink_dcache_parent(), but is also
955 * expected to be beneficial in reducing dentry cache
956 * fragmentation.
957 */
958 dentry = parent;
959 while (dentry && !lockref_put_or_lock(&dentry->d_lockref)) {
960 parent = lock_parent(dentry);
961 if (dentry->d_lockref.count != 1) {
962 dentry->d_lockref.count--;
963 spin_unlock(&dentry->d_lock);
964 if (parent)
965 spin_unlock(&parent->d_lock);
966 break;
967 }
968 inode = dentry->d_inode; /* can't be NULL */
969 if (unlikely(!spin_trylock(&inode->i_lock))) {
970 spin_unlock(&dentry->d_lock);
971 if (parent)
972 spin_unlock(&parent->d_lock);
973 cpu_relax();
974 continue;
975 }
976 __dentry_kill(dentry);
977 dentry = parent;
978 }
979 }
980 }
981
982 static enum lru_status
983 dentry_lru_isolate(struct list_head *item, spinlock_t *lru_lock, void *arg)
984 {
985 struct list_head *freeable = arg;
986 struct dentry *dentry = container_of(item, struct dentry, d_lru);
987
988
989 /*
990 * we are inverting the lru lock/dentry->d_lock here,
991 * so use a trylock. If we fail to get the lock, just skip
992 * it
993 */
994 if (!spin_trylock(&dentry->d_lock))
995 return LRU_SKIP;
996
997 /*
998 * Referenced dentries are still in use. If they have active
999 * counts, just remove them from the LRU. Otherwise give them
1000 * another pass through the LRU.
1001 */
1002 if (dentry->d_lockref.count) {
1003 d_lru_isolate(dentry);
1004 spin_unlock(&dentry->d_lock);
1005 return LRU_REMOVED;
1006 }
1007
1008 if (dentry->d_flags & DCACHE_REFERENCED) {
1009 dentry->d_flags &= ~DCACHE_REFERENCED;
1010 spin_unlock(&dentry->d_lock);
1011
1012 /*
1013 * The list move itself will be made by the common LRU code. At
1014 * this point, we've dropped the dentry->d_lock but keep the
1015 * lru lock. This is safe to do, since every list movement is
1016 * protected by the lru lock even if both locks are held.
1017 *
1018 * This is guaranteed by the fact that all LRU management
1019 * functions are intermediated by the LRU API calls like
1020 * list_lru_add and list_lru_del. List movement in this file
1021 * only ever occur through this functions or through callbacks
1022 * like this one, that are called from the LRU API.
1023 *
1024 * The only exceptions to this are functions like
1025 * shrink_dentry_list, and code that first checks for the
1026 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be
1027 * operating only with stack provided lists after they are
1028 * properly isolated from the main list. It is thus, always a
1029 * local access.
1030 */
1031 return LRU_ROTATE;
1032 }
1033
1034 d_lru_shrink_move(dentry, freeable);
1035 spin_unlock(&dentry->d_lock);
1036
1037 return LRU_REMOVED;
1038 }
1039
1040 /**
1041 * prune_dcache_sb - shrink the dcache
1042 * @sb: superblock
1043 * @nr_to_scan : number of entries to try to free
1044 * @nid: which node to scan for freeable entities
1045 *
1046 * Attempt to shrink the superblock dcache LRU by @nr_to_scan entries. This is
1047 * done when we need more memory an called from the superblock shrinker
1048 * function.
1049 *
1050 * This function may fail to free any resources if all the dentries are in
1051 * use.
1052 */
1053 long prune_dcache_sb(struct super_block *sb, unsigned long nr_to_scan,
1054 int nid)
1055 {
1056 LIST_HEAD(dispose);
1057 long freed;
1058
1059 freed = list_lru_walk_node(&sb->s_dentry_lru, nid, dentry_lru_isolate,
1060 &dispose, &nr_to_scan);
1061 shrink_dentry_list(&dispose);
1062 return freed;
1063 }
1064
1065 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
1066 spinlock_t *lru_lock, void *arg)
1067 {
1068 struct list_head *freeable = arg;
1069 struct dentry *dentry = container_of(item, struct dentry, d_lru);
1070
1071 /*
1072 * we are inverting the lru lock/dentry->d_lock here,
1073 * so use a trylock. If we fail to get the lock, just skip
1074 * it
1075 */
1076 if (!spin_trylock(&dentry->d_lock))
1077 return LRU_SKIP;
1078
1079 d_lru_shrink_move(dentry, freeable);
1080 spin_unlock(&dentry->d_lock);
1081
1082 return LRU_REMOVED;
1083 }
1084
1085
1086 /**
1087 * shrink_dcache_sb - shrink dcache for a superblock
1088 * @sb: superblock
1089 *
1090 * Shrink the dcache for the specified super block. This is used to free
1091 * the dcache before unmounting a file system.
1092 */
1093 void shrink_dcache_sb(struct super_block *sb)
1094 {
1095 long freed;
1096
1097 do {
1098 LIST_HEAD(dispose);
1099
1100 freed = list_lru_walk(&sb->s_dentry_lru,
1101 dentry_lru_isolate_shrink, &dispose, UINT_MAX);
1102
1103 this_cpu_sub(nr_dentry_unused, freed);
1104 shrink_dentry_list(&dispose);
1105 } while (freed > 0);
1106 }
1107 EXPORT_SYMBOL(shrink_dcache_sb);
1108
1109 /**
1110 * enum d_walk_ret - action to talke during tree walk
1111 * @D_WALK_CONTINUE: contrinue walk
1112 * @D_WALK_QUIT: quit walk
1113 * @D_WALK_NORETRY: quit when retry is needed
1114 * @D_WALK_SKIP: skip this dentry and its children
1115 */
1116 enum d_walk_ret {
1117 D_WALK_CONTINUE,
1118 D_WALK_QUIT,
1119 D_WALK_NORETRY,
1120 D_WALK_SKIP,
1121 };
1122
1123 /**
1124 * d_walk - walk the dentry tree
1125 * @parent: start of walk
1126 * @data: data passed to @enter() and @finish()
1127 * @enter: callback when first entering the dentry
1128 * @finish: callback when successfully finished the walk
1129 *
1130 * The @enter() and @finish() callbacks are called with d_lock held.
1131 */
1132 static void d_walk(struct dentry *parent, void *data,
1133 enum d_walk_ret (*enter)(void *, struct dentry *),
1134 void (*finish)(void *))
1135 {
1136 struct dentry *this_parent;
1137 struct list_head *next;
1138 unsigned seq = 0;
1139 enum d_walk_ret ret;
1140 bool retry = true;
1141
1142 again:
1143 read_seqbegin_or_lock(&rename_lock, &seq);
1144 this_parent = parent;
1145 spin_lock(&this_parent->d_lock);
1146
1147 ret = enter(data, this_parent);
1148 switch (ret) {
1149 case D_WALK_CONTINUE:
1150 break;
1151 case D_WALK_QUIT:
1152 case D_WALK_SKIP:
1153 goto out_unlock;
1154 case D_WALK_NORETRY:
1155 retry = false;
1156 break;
1157 }
1158 repeat:
1159 next = this_parent->d_subdirs.next;
1160 resume:
1161 while (next != &this_parent->d_subdirs) {
1162 struct list_head *tmp = next;
1163 struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1164 next = tmp->next;
1165
1166 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1167
1168 ret = enter(data, dentry);
1169 switch (ret) {
1170 case D_WALK_CONTINUE:
1171 break;
1172 case D_WALK_QUIT:
1173 spin_unlock(&dentry->d_lock);
1174 goto out_unlock;
1175 case D_WALK_NORETRY:
1176 retry = false;
1177 break;
1178 case D_WALK_SKIP:
1179 spin_unlock(&dentry->d_lock);
1180 continue;
1181 }
1182
1183 if (!list_empty(&dentry->d_subdirs)) {
1184 spin_unlock(&this_parent->d_lock);
1185 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1186 this_parent = dentry;
1187 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1188 goto repeat;
1189 }
1190 spin_unlock(&dentry->d_lock);
1191 }
1192 /*
1193 * All done at this level ... ascend and resume the search.
1194 */
1195 rcu_read_lock();
1196 ascend:
1197 if (this_parent != parent) {
1198 struct dentry *child = this_parent;
1199 this_parent = child->d_parent;
1200
1201 spin_unlock(&child->d_lock);
1202 spin_lock(&this_parent->d_lock);
1203
1204 /* might go back up the wrong parent if we have had a rename. */
1205 if (need_seqretry(&rename_lock, seq))
1206 goto rename_retry;
1207 next = child->d_child.next;
1208 while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED)) {
1209 if (next == &this_parent->d_subdirs)
1210 goto ascend;
1211 child = list_entry(next, struct dentry, d_child);
1212 next = next->next;
1213 }
1214 rcu_read_unlock();
1215 goto resume;
1216 }
1217 if (need_seqretry(&rename_lock, seq))
1218 goto rename_retry;
1219 rcu_read_unlock();
1220 if (finish)
1221 finish(data);
1222
1223 out_unlock:
1224 spin_unlock(&this_parent->d_lock);
1225 done_seqretry(&rename_lock, seq);
1226 return;
1227
1228 rename_retry:
1229 spin_unlock(&this_parent->d_lock);
1230 rcu_read_unlock();
1231 BUG_ON(seq & 1);
1232 if (!retry)
1233 return;
1234 seq = 1;
1235 goto again;
1236 }
1237
1238 /*
1239 * Search for at least 1 mount point in the dentry's subdirs.
1240 * We descend to the next level whenever the d_subdirs
1241 * list is non-empty and continue searching.
1242 */
1243
1244 static enum d_walk_ret check_mount(void *data, struct dentry *dentry)
1245 {
1246 int *ret = data;
1247 if (d_mountpoint(dentry)) {
1248 *ret = 1;
1249 return D_WALK_QUIT;
1250 }
1251 return D_WALK_CONTINUE;
1252 }
1253
1254 /**
1255 * have_submounts - check for mounts over a dentry
1256 * @parent: dentry to check.
1257 *
1258 * Return true if the parent or its subdirectories contain
1259 * a mount point
1260 */
1261 int have_submounts(struct dentry *parent)
1262 {
1263 int ret = 0;
1264
1265 d_walk(parent, &ret, check_mount, NULL);
1266
1267 return ret;
1268 }
1269 EXPORT_SYMBOL(have_submounts);
1270
1271 /*
1272 * Called by mount code to set a mountpoint and check if the mountpoint is
1273 * reachable (e.g. NFS can unhash a directory dentry and then the complete
1274 * subtree can become unreachable).
1275 *
1276 * Only one of d_invalidate() and d_set_mounted() must succeed. For
1277 * this reason take rename_lock and d_lock on dentry and ancestors.
1278 */
1279 int d_set_mounted(struct dentry *dentry)
1280 {
1281 struct dentry *p;
1282 int ret = -ENOENT;
1283 write_seqlock(&rename_lock);
1284 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1285 /* Need exclusion wrt. d_invalidate() */
1286 spin_lock(&p->d_lock);
1287 if (unlikely(d_unhashed(p))) {
1288 spin_unlock(&p->d_lock);
1289 goto out;
1290 }
1291 spin_unlock(&p->d_lock);
1292 }
1293 spin_lock(&dentry->d_lock);
1294 if (!d_unlinked(dentry)) {
1295 dentry->d_flags |= DCACHE_MOUNTED;
1296 ret = 0;
1297 }
1298 spin_unlock(&dentry->d_lock);
1299 out:
1300 write_sequnlock(&rename_lock);
1301 return ret;
1302 }
1303
1304 /*
1305 * Search the dentry child list of the specified parent,
1306 * and move any unused dentries to the end of the unused
1307 * list for prune_dcache(). We descend to the next level
1308 * whenever the d_subdirs list is non-empty and continue
1309 * searching.
1310 *
1311 * It returns zero iff there are no unused children,
1312 * otherwise it returns the number of children moved to
1313 * the end of the unused list. This may not be the total
1314 * number of unused children, because select_parent can
1315 * drop the lock and return early due to latency
1316 * constraints.
1317 */
1318
1319 struct select_data {
1320 struct dentry *start;
1321 struct list_head dispose;
1322 int found;
1323 };
1324
1325 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1326 {
1327 struct select_data *data = _data;
1328 enum d_walk_ret ret = D_WALK_CONTINUE;
1329
1330 if (data->start == dentry)
1331 goto out;
1332
1333 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1334 data->found++;
1335 } else {
1336 if (dentry->d_flags & DCACHE_LRU_LIST)
1337 d_lru_del(dentry);
1338 if (!dentry->d_lockref.count) {
1339 d_shrink_add(dentry, &data->dispose);
1340 data->found++;
1341 }
1342 }
1343 /*
1344 * We can return to the caller if we have found some (this
1345 * ensures forward progress). We'll be coming back to find
1346 * the rest.
1347 */
1348 if (!list_empty(&data->dispose))
1349 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1350 out:
1351 return ret;
1352 }
1353
1354 /**
1355 * shrink_dcache_parent - prune dcache
1356 * @parent: parent of entries to prune
1357 *
1358 * Prune the dcache to remove unused children of the parent dentry.
1359 */
1360 void shrink_dcache_parent(struct dentry *parent)
1361 {
1362 for (;;) {
1363 struct select_data data;
1364
1365 INIT_LIST_HEAD(&data.dispose);
1366 data.start = parent;
1367 data.found = 0;
1368
1369 d_walk(parent, &data, select_collect, NULL);
1370 if (!data.found)
1371 break;
1372
1373 shrink_dentry_list(&data.dispose);
1374 cond_resched();
1375 }
1376 }
1377 EXPORT_SYMBOL(shrink_dcache_parent);
1378
1379 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
1380 {
1381 /* it has busy descendents; complain about those instead */
1382 if (!list_empty(&dentry->d_subdirs))
1383 return D_WALK_CONTINUE;
1384
1385 /* root with refcount 1 is fine */
1386 if (dentry == _data && dentry->d_lockref.count == 1)
1387 return D_WALK_CONTINUE;
1388
1389 printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1390 " still in use (%d) [unmount of %s %s]\n",
1391 dentry,
1392 dentry->d_inode ?
1393 dentry->d_inode->i_ino : 0UL,
1394 dentry,
1395 dentry->d_lockref.count,
1396 dentry->d_sb->s_type->name,
1397 dentry->d_sb->s_id);
1398 WARN_ON(1);
1399 return D_WALK_CONTINUE;
1400 }
1401
1402 static void do_one_tree(struct dentry *dentry)
1403 {
1404 shrink_dcache_parent(dentry);
1405 d_walk(dentry, dentry, umount_check, NULL);
1406 d_drop(dentry);
1407 dput(dentry);
1408 }
1409
1410 /*
1411 * destroy the dentries attached to a superblock on unmounting
1412 */
1413 void shrink_dcache_for_umount(struct super_block *sb)
1414 {
1415 struct dentry *dentry;
1416
1417 WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
1418
1419 dentry = sb->s_root;
1420 sb->s_root = NULL;
1421 do_one_tree(dentry);
1422
1423 while (!hlist_bl_empty(&sb->s_anon)) {
1424 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash));
1425 do_one_tree(dentry);
1426 }
1427 }
1428
1429 struct detach_data {
1430 struct select_data select;
1431 struct dentry *mountpoint;
1432 };
1433 static enum d_walk_ret detach_and_collect(void *_data, struct dentry *dentry)
1434 {
1435 struct detach_data *data = _data;
1436
1437 if (d_mountpoint(dentry)) {
1438 __dget_dlock(dentry);
1439 data->mountpoint = dentry;
1440 return D_WALK_QUIT;
1441 }
1442
1443 return select_collect(&data->select, dentry);
1444 }
1445
1446 static void check_and_drop(void *_data)
1447 {
1448 struct detach_data *data = _data;
1449
1450 if (!data->mountpoint && !data->select.found)
1451 __d_drop(data->select.start);
1452 }
1453
1454 /**
1455 * d_invalidate - detach submounts, prune dcache, and drop
1456 * @dentry: dentry to invalidate (aka detach, prune and drop)
1457 *
1458 * no dcache lock.
1459 *
1460 * The final d_drop is done as an atomic operation relative to
1461 * rename_lock ensuring there are no races with d_set_mounted. This
1462 * ensures there are no unhashed dentries on the path to a mountpoint.
1463 */
1464 void d_invalidate(struct dentry *dentry)
1465 {
1466 /*
1467 * If it's already been dropped, return OK.
1468 */
1469 spin_lock(&dentry->d_lock);
1470 if (d_unhashed(dentry)) {
1471 spin_unlock(&dentry->d_lock);
1472 return;
1473 }
1474 spin_unlock(&dentry->d_lock);
1475
1476 /* Negative dentries can be dropped without further checks */
1477 if (!dentry->d_inode) {
1478 d_drop(dentry);
1479 return;
1480 }
1481
1482 for (;;) {
1483 struct detach_data data;
1484
1485 data.mountpoint = NULL;
1486 INIT_LIST_HEAD(&data.select.dispose);
1487 data.select.start = dentry;
1488 data.select.found = 0;
1489
1490 d_walk(dentry, &data, detach_and_collect, check_and_drop);
1491
1492 if (data.select.found)
1493 shrink_dentry_list(&data.select.dispose);
1494
1495 if (data.mountpoint) {
1496 detach_mounts(data.mountpoint);
1497 dput(data.mountpoint);
1498 }
1499
1500 if (!data.mountpoint && !data.select.found)
1501 break;
1502
1503 cond_resched();
1504 }
1505 }
1506 EXPORT_SYMBOL(d_invalidate);
1507
1508 /**
1509 * __d_alloc - allocate a dcache entry
1510 * @sb: filesystem it will belong to
1511 * @name: qstr of the name
1512 *
1513 * Allocates a dentry. It returns %NULL if there is insufficient memory
1514 * available. On a success the dentry is returned. The name passed in is
1515 * copied and the copy passed in may be reused after this call.
1516 */
1517
1518 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1519 {
1520 struct dentry *dentry;
1521 char *dname;
1522
1523 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1524 if (!dentry)
1525 return NULL;
1526
1527 /*
1528 * We guarantee that the inline name is always NUL-terminated.
1529 * This way the memcpy() done by the name switching in rename
1530 * will still always have a NUL at the end, even if we might
1531 * be overwriting an internal NUL character
1532 */
1533 dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1534 if (name->len > DNAME_INLINE_LEN-1) {
1535 size_t size = offsetof(struct external_name, name[1]);
1536 struct external_name *p = kmalloc(size + name->len, GFP_KERNEL);
1537 if (!p) {
1538 kmem_cache_free(dentry_cache, dentry);
1539 return NULL;
1540 }
1541 atomic_set(&p->u.count, 1);
1542 dname = p->name;
1543 } else {
1544 dname = dentry->d_iname;
1545 }
1546
1547 dentry->d_name.len = name->len;
1548 dentry->d_name.hash = name->hash;
1549 memcpy(dname, name->name, name->len);
1550 dname[name->len] = 0;
1551
1552 /* Make sure we always see the terminating NUL character */
1553 smp_wmb();
1554 dentry->d_name.name = dname;
1555
1556 dentry->d_lockref.count = 1;
1557 dentry->d_flags = 0;
1558 spin_lock_init(&dentry->d_lock);
1559 seqcount_init(&dentry->d_seq);
1560 dentry->d_inode = NULL;
1561 dentry->d_parent = dentry;
1562 dentry->d_sb = sb;
1563 dentry->d_op = NULL;
1564 dentry->d_fsdata = NULL;
1565 INIT_HLIST_BL_NODE(&dentry->d_hash);
1566 INIT_LIST_HEAD(&dentry->d_lru);
1567 INIT_LIST_HEAD(&dentry->d_subdirs);
1568 INIT_HLIST_NODE(&dentry->d_u.d_alias);
1569 INIT_LIST_HEAD(&dentry->d_child);
1570 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1571
1572 this_cpu_inc(nr_dentry);
1573
1574 return dentry;
1575 }
1576
1577 /**
1578 * d_alloc - allocate a dcache entry
1579 * @parent: parent of entry to allocate
1580 * @name: qstr of the name
1581 *
1582 * Allocates a dentry. It returns %NULL if there is insufficient memory
1583 * available. On a success the dentry is returned. The name passed in is
1584 * copied and the copy passed in may be reused after this call.
1585 */
1586 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1587 {
1588 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1589 if (!dentry)
1590 return NULL;
1591
1592 spin_lock(&parent->d_lock);
1593 /*
1594 * don't need child lock because it is not subject
1595 * to concurrency here
1596 */
1597 __dget_dlock(parent);
1598 dentry->d_parent = parent;
1599 list_add(&dentry->d_child, &parent->d_subdirs);
1600 spin_unlock(&parent->d_lock);
1601
1602 return dentry;
1603 }
1604 EXPORT_SYMBOL(d_alloc);
1605
1606 /**
1607 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1608 * @sb: the superblock
1609 * @name: qstr of the name
1610 *
1611 * For a filesystem that just pins its dentries in memory and never
1612 * performs lookups at all, return an unhashed IS_ROOT dentry.
1613 */
1614 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1615 {
1616 return __d_alloc(sb, name);
1617 }
1618 EXPORT_SYMBOL(d_alloc_pseudo);
1619
1620 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1621 {
1622 struct qstr q;
1623
1624 q.name = name;
1625 q.len = strlen(name);
1626 q.hash = full_name_hash(q.name, q.len);
1627 return d_alloc(parent, &q);
1628 }
1629 EXPORT_SYMBOL(d_alloc_name);
1630
1631 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1632 {
1633 WARN_ON_ONCE(dentry->d_op);
1634 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
1635 DCACHE_OP_COMPARE |
1636 DCACHE_OP_REVALIDATE |
1637 DCACHE_OP_WEAK_REVALIDATE |
1638 DCACHE_OP_DELETE ));
1639 dentry->d_op = op;
1640 if (!op)
1641 return;
1642 if (op->d_hash)
1643 dentry->d_flags |= DCACHE_OP_HASH;
1644 if (op->d_compare)
1645 dentry->d_flags |= DCACHE_OP_COMPARE;
1646 if (op->d_revalidate)
1647 dentry->d_flags |= DCACHE_OP_REVALIDATE;
1648 if (op->d_weak_revalidate)
1649 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1650 if (op->d_delete)
1651 dentry->d_flags |= DCACHE_OP_DELETE;
1652 if (op->d_prune)
1653 dentry->d_flags |= DCACHE_OP_PRUNE;
1654
1655 }
1656 EXPORT_SYMBOL(d_set_d_op);
1657
1658 static unsigned d_flags_for_inode(struct inode *inode)
1659 {
1660 unsigned add_flags = DCACHE_FILE_TYPE;
1661
1662 if (!inode)
1663 return DCACHE_MISS_TYPE;
1664
1665 if (S_ISDIR(inode->i_mode)) {
1666 add_flags = DCACHE_DIRECTORY_TYPE;
1667 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1668 if (unlikely(!inode->i_op->lookup))
1669 add_flags = DCACHE_AUTODIR_TYPE;
1670 else
1671 inode->i_opflags |= IOP_LOOKUP;
1672 }
1673 } else if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1674 if (unlikely(inode->i_op->follow_link))
1675 add_flags = DCACHE_SYMLINK_TYPE;
1676 else
1677 inode->i_opflags |= IOP_NOFOLLOW;
1678 }
1679
1680 if (unlikely(IS_AUTOMOUNT(inode)))
1681 add_flags |= DCACHE_NEED_AUTOMOUNT;
1682 return add_flags;
1683 }
1684
1685 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1686 {
1687 unsigned add_flags = d_flags_for_inode(inode);
1688
1689 spin_lock(&dentry->d_lock);
1690 __d_set_type(dentry, add_flags);
1691 if (inode)
1692 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
1693 dentry->d_inode = inode;
1694 dentry_rcuwalk_barrier(dentry);
1695 spin_unlock(&dentry->d_lock);
1696 fsnotify_d_instantiate(dentry, inode);
1697 }
1698
1699 /**
1700 * d_instantiate - fill in inode information for a dentry
1701 * @entry: dentry to complete
1702 * @inode: inode to attach to this dentry
1703 *
1704 * Fill in inode information in the entry.
1705 *
1706 * This turns negative dentries into productive full members
1707 * of society.
1708 *
1709 * NOTE! This assumes that the inode count has been incremented
1710 * (or otherwise set) by the caller to indicate that it is now
1711 * in use by the dcache.
1712 */
1713
1714 void d_instantiate(struct dentry *entry, struct inode * inode)
1715 {
1716 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1717 if (inode)
1718 spin_lock(&inode->i_lock);
1719 __d_instantiate(entry, inode);
1720 if (inode)
1721 spin_unlock(&inode->i_lock);
1722 security_d_instantiate(entry, inode);
1723 }
1724 EXPORT_SYMBOL(d_instantiate);
1725
1726 /**
1727 * d_instantiate_unique - instantiate a non-aliased dentry
1728 * @entry: dentry to instantiate
1729 * @inode: inode to attach to this dentry
1730 *
1731 * Fill in inode information in the entry. On success, it returns NULL.
1732 * If an unhashed alias of "entry" already exists, then we return the
1733 * aliased dentry instead and drop one reference to inode.
1734 *
1735 * Note that in order to avoid conflicts with rename() etc, the caller
1736 * had better be holding the parent directory semaphore.
1737 *
1738 * This also assumes that the inode count has been incremented
1739 * (or otherwise set) by the caller to indicate that it is now
1740 * in use by the dcache.
1741 */
1742 static struct dentry *__d_instantiate_unique(struct dentry *entry,
1743 struct inode *inode)
1744 {
1745 struct dentry *alias;
1746 int len = entry->d_name.len;
1747 const char *name = entry->d_name.name;
1748 unsigned int hash = entry->d_name.hash;
1749
1750 if (!inode) {
1751 __d_instantiate(entry, NULL);
1752 return NULL;
1753 }
1754
1755 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
1756 /*
1757 * Don't need alias->d_lock here, because aliases with
1758 * d_parent == entry->d_parent are not subject to name or
1759 * parent changes, because the parent inode i_mutex is held.
1760 */
1761 if (alias->d_name.hash != hash)
1762 continue;
1763 if (alias->d_parent != entry->d_parent)
1764 continue;
1765 if (alias->d_name.len != len)
1766 continue;
1767 if (dentry_cmp(alias, name, len))
1768 continue;
1769 __dget(alias);
1770 return alias;
1771 }
1772
1773 __d_instantiate(entry, inode);
1774 return NULL;
1775 }
1776
1777 struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1778 {
1779 struct dentry *result;
1780
1781 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1782
1783 if (inode)
1784 spin_lock(&inode->i_lock);
1785 result = __d_instantiate_unique(entry, inode);
1786 if (inode)
1787 spin_unlock(&inode->i_lock);
1788
1789 if (!result) {
1790 security_d_instantiate(entry, inode);
1791 return NULL;
1792 }
1793
1794 BUG_ON(!d_unhashed(result));
1795 iput(inode);
1796 return result;
1797 }
1798
1799 EXPORT_SYMBOL(d_instantiate_unique);
1800
1801 /**
1802 * d_instantiate_no_diralias - instantiate a non-aliased dentry
1803 * @entry: dentry to complete
1804 * @inode: inode to attach to this dentry
1805 *
1806 * Fill in inode information in the entry. If a directory alias is found, then
1807 * return an error (and drop inode). Together with d_materialise_unique() this
1808 * guarantees that a directory inode may never have more than one alias.
1809 */
1810 int d_instantiate_no_diralias(struct dentry *entry, struct inode *inode)
1811 {
1812 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1813
1814 spin_lock(&inode->i_lock);
1815 if (S_ISDIR(inode->i_mode) && !hlist_empty(&inode->i_dentry)) {
1816 spin_unlock(&inode->i_lock);
1817 iput(inode);
1818 return -EBUSY;
1819 }
1820 __d_instantiate(entry, inode);
1821 spin_unlock(&inode->i_lock);
1822 security_d_instantiate(entry, inode);
1823
1824 return 0;
1825 }
1826 EXPORT_SYMBOL(d_instantiate_no_diralias);
1827
1828 struct dentry *d_make_root(struct inode *root_inode)
1829 {
1830 struct dentry *res = NULL;
1831
1832 if (root_inode) {
1833 static const struct qstr name = QSTR_INIT("/", 1);
1834
1835 res = __d_alloc(root_inode->i_sb, &name);
1836 if (res)
1837 d_instantiate(res, root_inode);
1838 else
1839 iput(root_inode);
1840 }
1841 return res;
1842 }
1843 EXPORT_SYMBOL(d_make_root);
1844
1845 static struct dentry * __d_find_any_alias(struct inode *inode)
1846 {
1847 struct dentry *alias;
1848
1849 if (hlist_empty(&inode->i_dentry))
1850 return NULL;
1851 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
1852 __dget(alias);
1853 return alias;
1854 }
1855
1856 /**
1857 * d_find_any_alias - find any alias for a given inode
1858 * @inode: inode to find an alias for
1859 *
1860 * If any aliases exist for the given inode, take and return a
1861 * reference for one of them. If no aliases exist, return %NULL.
1862 */
1863 struct dentry *d_find_any_alias(struct inode *inode)
1864 {
1865 struct dentry *de;
1866
1867 spin_lock(&inode->i_lock);
1868 de = __d_find_any_alias(inode);
1869 spin_unlock(&inode->i_lock);
1870 return de;
1871 }
1872 EXPORT_SYMBOL(d_find_any_alias);
1873
1874 static struct dentry *__d_obtain_alias(struct inode *inode, int disconnected)
1875 {
1876 static const struct qstr anonstring = QSTR_INIT("/", 1);
1877 struct dentry *tmp;
1878 struct dentry *res;
1879 unsigned add_flags;
1880
1881 if (!inode)
1882 return ERR_PTR(-ESTALE);
1883 if (IS_ERR(inode))
1884 return ERR_CAST(inode);
1885
1886 res = d_find_any_alias(inode);
1887 if (res)
1888 goto out_iput;
1889
1890 tmp = __d_alloc(inode->i_sb, &anonstring);
1891 if (!tmp) {
1892 res = ERR_PTR(-ENOMEM);
1893 goto out_iput;
1894 }
1895
1896 spin_lock(&inode->i_lock);
1897 res = __d_find_any_alias(inode);
1898 if (res) {
1899 spin_unlock(&inode->i_lock);
1900 dput(tmp);
1901 goto out_iput;
1902 }
1903
1904 /* attach a disconnected dentry */
1905 add_flags = d_flags_for_inode(inode);
1906
1907 if (disconnected)
1908 add_flags |= DCACHE_DISCONNECTED;
1909
1910 spin_lock(&tmp->d_lock);
1911 tmp->d_inode = inode;
1912 tmp->d_flags |= add_flags;
1913 hlist_add_head(&tmp->d_u.d_alias, &inode->i_dentry);
1914 hlist_bl_lock(&tmp->d_sb->s_anon);
1915 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1916 hlist_bl_unlock(&tmp->d_sb->s_anon);
1917 spin_unlock(&tmp->d_lock);
1918 spin_unlock(&inode->i_lock);
1919 security_d_instantiate(tmp, inode);
1920
1921 return tmp;
1922
1923 out_iput:
1924 if (res && !IS_ERR(res))
1925 security_d_instantiate(res, inode);
1926 iput(inode);
1927 return res;
1928 }
1929
1930 /**
1931 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
1932 * @inode: inode to allocate the dentry for
1933 *
1934 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1935 * similar open by handle operations. The returned dentry may be anonymous,
1936 * or may have a full name (if the inode was already in the cache).
1937 *
1938 * When called on a directory inode, we must ensure that the inode only ever
1939 * has one dentry. If a dentry is found, that is returned instead of
1940 * allocating a new one.
1941 *
1942 * On successful return, the reference to the inode has been transferred
1943 * to the dentry. In case of an error the reference on the inode is released.
1944 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1945 * be passed in and the error will be propagated to the return value,
1946 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1947 */
1948 struct dentry *d_obtain_alias(struct inode *inode)
1949 {
1950 return __d_obtain_alias(inode, 1);
1951 }
1952 EXPORT_SYMBOL(d_obtain_alias);
1953
1954 /**
1955 * d_obtain_root - find or allocate a dentry for a given inode
1956 * @inode: inode to allocate the dentry for
1957 *
1958 * Obtain an IS_ROOT dentry for the root of a filesystem.
1959 *
1960 * We must ensure that directory inodes only ever have one dentry. If a
1961 * dentry is found, that is returned instead of allocating a new one.
1962 *
1963 * On successful return, the reference to the inode has been transferred
1964 * to the dentry. In case of an error the reference on the inode is
1965 * released. A %NULL or IS_ERR inode may be passed in and will be the
1966 * error will be propagate to the return value, with a %NULL @inode
1967 * replaced by ERR_PTR(-ESTALE).
1968 */
1969 struct dentry *d_obtain_root(struct inode *inode)
1970 {
1971 return __d_obtain_alias(inode, 0);
1972 }
1973 EXPORT_SYMBOL(d_obtain_root);
1974
1975 /**
1976 * d_add_ci - lookup or allocate new dentry with case-exact name
1977 * @inode: the inode case-insensitive lookup has found
1978 * @dentry: the negative dentry that was passed to the parent's lookup func
1979 * @name: the case-exact name to be associated with the returned dentry
1980 *
1981 * This is to avoid filling the dcache with case-insensitive names to the
1982 * same inode, only the actual correct case is stored in the dcache for
1983 * case-insensitive filesystems.
1984 *
1985 * For a case-insensitive lookup match and if the the case-exact dentry
1986 * already exists in in the dcache, use it and return it.
1987 *
1988 * If no entry exists with the exact case name, allocate new dentry with
1989 * the exact case, and return the spliced entry.
1990 */
1991 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
1992 struct qstr *name)
1993 {
1994 struct dentry *found;
1995 struct dentry *new;
1996
1997 /*
1998 * First check if a dentry matching the name already exists,
1999 * if not go ahead and create it now.
2000 */
2001 found = d_hash_and_lookup(dentry->d_parent, name);
2002 if (!found) {
2003 new = d_alloc(dentry->d_parent, name);
2004 if (!new) {
2005 found = ERR_PTR(-ENOMEM);
2006 } else {
2007 found = d_splice_alias(inode, new);
2008 if (found) {
2009 dput(new);
2010 return found;
2011 }
2012 return new;
2013 }
2014 }
2015 iput(inode);
2016 return found;
2017 }
2018 EXPORT_SYMBOL(d_add_ci);
2019
2020 /*
2021 * Do the slow-case of the dentry name compare.
2022 *
2023 * Unlike the dentry_cmp() function, we need to atomically
2024 * load the name and length information, so that the
2025 * filesystem can rely on them, and can use the 'name' and
2026 * 'len' information without worrying about walking off the
2027 * end of memory etc.
2028 *
2029 * Thus the read_seqcount_retry() and the "duplicate" info
2030 * in arguments (the low-level filesystem should not look
2031 * at the dentry inode or name contents directly, since
2032 * rename can change them while we're in RCU mode).
2033 */
2034 enum slow_d_compare {
2035 D_COMP_OK,
2036 D_COMP_NOMATCH,
2037 D_COMP_SEQRETRY,
2038 };
2039
2040 static noinline enum slow_d_compare slow_dentry_cmp(
2041 const struct dentry *parent,
2042 struct dentry *dentry,
2043 unsigned int seq,
2044 const struct qstr *name)
2045 {
2046 int tlen = dentry->d_name.len;
2047 const char *tname = dentry->d_name.name;
2048
2049 if (read_seqcount_retry(&dentry->d_seq, seq)) {
2050 cpu_relax();
2051 return D_COMP_SEQRETRY;
2052 }
2053 if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
2054 return D_COMP_NOMATCH;
2055 return D_COMP_OK;
2056 }
2057
2058 /**
2059 * __d_lookup_rcu - search for a dentry (racy, store-free)
2060 * @parent: parent dentry
2061 * @name: qstr of name we wish to find
2062 * @seqp: returns d_seq value at the point where the dentry was found
2063 * Returns: dentry, or NULL
2064 *
2065 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2066 * resolution (store-free path walking) design described in
2067 * Documentation/filesystems/path-lookup.txt.
2068 *
2069 * This is not to be used outside core vfs.
2070 *
2071 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2072 * held, and rcu_read_lock held. The returned dentry must not be stored into
2073 * without taking d_lock and checking d_seq sequence count against @seq
2074 * returned here.
2075 *
2076 * A refcount may be taken on the found dentry with the d_rcu_to_refcount
2077 * function.
2078 *
2079 * Alternatively, __d_lookup_rcu may be called again to look up the child of
2080 * the returned dentry, so long as its parent's seqlock is checked after the
2081 * child is looked up. Thus, an interlocking stepping of sequence lock checks
2082 * is formed, giving integrity down the path walk.
2083 *
2084 * NOTE! The caller *has* to check the resulting dentry against the sequence
2085 * number we've returned before using any of the resulting dentry state!
2086 */
2087 struct dentry *__d_lookup_rcu(const struct dentry *parent,
2088 const struct qstr *name,
2089 unsigned *seqp)
2090 {
2091 u64 hashlen = name->hash_len;
2092 const unsigned char *str = name->name;
2093 struct hlist_bl_head *b = d_hash(parent, hashlen_hash(hashlen));
2094 struct hlist_bl_node *node;
2095 struct dentry *dentry;
2096
2097 /*
2098 * Note: There is significant duplication with __d_lookup_rcu which is
2099 * required to prevent single threaded performance regressions
2100 * especially on architectures where smp_rmb (in seqcounts) are costly.
2101 * Keep the two functions in sync.
2102 */
2103
2104 /*
2105 * The hash list is protected using RCU.
2106 *
2107 * Carefully use d_seq when comparing a candidate dentry, to avoid
2108 * races with d_move().
2109 *
2110 * It is possible that concurrent renames can mess up our list
2111 * walk here and result in missing our dentry, resulting in the
2112 * false-negative result. d_lookup() protects against concurrent
2113 * renames using rename_lock seqlock.
2114 *
2115 * See Documentation/filesystems/path-lookup.txt for more details.
2116 */
2117 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2118 unsigned seq;
2119
2120 seqretry:
2121 /*
2122 * The dentry sequence count protects us from concurrent
2123 * renames, and thus protects parent and name fields.
2124 *
2125 * The caller must perform a seqcount check in order
2126 * to do anything useful with the returned dentry.
2127 *
2128 * NOTE! We do a "raw" seqcount_begin here. That means that
2129 * we don't wait for the sequence count to stabilize if it
2130 * is in the middle of a sequence change. If we do the slow
2131 * dentry compare, we will do seqretries until it is stable,
2132 * and if we end up with a successful lookup, we actually
2133 * want to exit RCU lookup anyway.
2134 */
2135 seq = raw_seqcount_begin(&dentry->d_seq);
2136 if (dentry->d_parent != parent)
2137 continue;
2138 if (d_unhashed(dentry))
2139 continue;
2140
2141 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
2142 if (dentry->d_name.hash != hashlen_hash(hashlen))
2143 continue;
2144 *seqp = seq;
2145 switch (slow_dentry_cmp(parent, dentry, seq, name)) {
2146 case D_COMP_OK:
2147 return dentry;
2148 case D_COMP_NOMATCH:
2149 continue;
2150 default:
2151 goto seqretry;
2152 }
2153 }
2154
2155 if (dentry->d_name.hash_len != hashlen)
2156 continue;
2157 *seqp = seq;
2158 if (!dentry_cmp(dentry, str, hashlen_len(hashlen)))
2159 return dentry;
2160 }
2161 return NULL;
2162 }
2163
2164 /**
2165 * d_lookup - search for a dentry
2166 * @parent: parent dentry
2167 * @name: qstr of name we wish to find
2168 * Returns: dentry, or NULL
2169 *
2170 * d_lookup searches the children of the parent dentry for the name in
2171 * question. If the dentry is found its reference count is incremented and the
2172 * dentry is returned. The caller must use dput to free the entry when it has
2173 * finished using it. %NULL is returned if the dentry does not exist.
2174 */
2175 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2176 {
2177 struct dentry *dentry;
2178 unsigned seq;
2179
2180 do {
2181 seq = read_seqbegin(&rename_lock);
2182 dentry = __d_lookup(parent, name);
2183 if (dentry)
2184 break;
2185 } while (read_seqretry(&rename_lock, seq));
2186 return dentry;
2187 }
2188 EXPORT_SYMBOL(d_lookup);
2189
2190 /**
2191 * __d_lookup - search for a dentry (racy)
2192 * @parent: parent dentry
2193 * @name: qstr of name we wish to find
2194 * Returns: dentry, or NULL
2195 *
2196 * __d_lookup is like d_lookup, however it may (rarely) return a
2197 * false-negative result due to unrelated rename activity.
2198 *
2199 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2200 * however it must be used carefully, eg. with a following d_lookup in
2201 * the case of failure.
2202 *
2203 * __d_lookup callers must be commented.
2204 */
2205 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2206 {
2207 unsigned int len = name->len;
2208 unsigned int hash = name->hash;
2209 const unsigned char *str = name->name;
2210 struct hlist_bl_head *b = d_hash(parent, hash);
2211 struct hlist_bl_node *node;
2212 struct dentry *found = NULL;
2213 struct dentry *dentry;
2214
2215 /*
2216 * Note: There is significant duplication with __d_lookup_rcu which is
2217 * required to prevent single threaded performance regressions
2218 * especially on architectures where smp_rmb (in seqcounts) are costly.
2219 * Keep the two functions in sync.
2220 */
2221
2222 /*
2223 * The hash list is protected using RCU.
2224 *
2225 * Take d_lock when comparing a candidate dentry, to avoid races
2226 * with d_move().
2227 *
2228 * It is possible that concurrent renames can mess up our list
2229 * walk here and result in missing our dentry, resulting in the
2230 * false-negative result. d_lookup() protects against concurrent
2231 * renames using rename_lock seqlock.
2232 *
2233 * See Documentation/filesystems/path-lookup.txt for more details.
2234 */
2235 rcu_read_lock();
2236
2237 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2238
2239 if (dentry->d_name.hash != hash)
2240 continue;
2241
2242 spin_lock(&dentry->d_lock);
2243 if (dentry->d_parent != parent)
2244 goto next;
2245 if (d_unhashed(dentry))
2246 goto next;
2247
2248 /*
2249 * It is safe to compare names since d_move() cannot
2250 * change the qstr (protected by d_lock).
2251 */
2252 if (parent->d_flags & DCACHE_OP_COMPARE) {
2253 int tlen = dentry->d_name.len;
2254 const char *tname = dentry->d_name.name;
2255 if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
2256 goto next;
2257 } else {
2258 if (dentry->d_name.len != len)
2259 goto next;
2260 if (dentry_cmp(dentry, str, len))
2261 goto next;
2262 }
2263
2264 dentry->d_lockref.count++;
2265 found = dentry;
2266 spin_unlock(&dentry->d_lock);
2267 break;
2268 next:
2269 spin_unlock(&dentry->d_lock);
2270 }
2271 rcu_read_unlock();
2272
2273 return found;
2274 }
2275
2276 /**
2277 * d_hash_and_lookup - hash the qstr then search for a dentry
2278 * @dir: Directory to search in
2279 * @name: qstr of name we wish to find
2280 *
2281 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2282 */
2283 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2284 {
2285 /*
2286 * Check for a fs-specific hash function. Note that we must
2287 * calculate the standard hash first, as the d_op->d_hash()
2288 * routine may choose to leave the hash value unchanged.
2289 */
2290 name->hash = full_name_hash(name->name, name->len);
2291 if (dir->d_flags & DCACHE_OP_HASH) {
2292 int err = dir->d_op->d_hash(dir, name);
2293 if (unlikely(err < 0))
2294 return ERR_PTR(err);
2295 }
2296 return d_lookup(dir, name);
2297 }
2298 EXPORT_SYMBOL(d_hash_and_lookup);
2299
2300 /*
2301 * When a file is deleted, we have two options:
2302 * - turn this dentry into a negative dentry
2303 * - unhash this dentry and free it.
2304 *
2305 * Usually, we want to just turn this into
2306 * a negative dentry, but if anybody else is
2307 * currently using the dentry or the inode
2308 * we can't do that and we fall back on removing
2309 * it from the hash queues and waiting for
2310 * it to be deleted later when it has no users
2311 */
2312
2313 /**
2314 * d_delete - delete a dentry
2315 * @dentry: The dentry to delete
2316 *
2317 * Turn the dentry into a negative dentry if possible, otherwise
2318 * remove it from the hash queues so it can be deleted later
2319 */
2320
2321 void d_delete(struct dentry * dentry)
2322 {
2323 struct inode *inode;
2324 int isdir = 0;
2325 /*
2326 * Are we the only user?
2327 */
2328 again:
2329 spin_lock(&dentry->d_lock);
2330 inode = dentry->d_inode;
2331 isdir = S_ISDIR(inode->i_mode);
2332 if (dentry->d_lockref.count == 1) {
2333 if (!spin_trylock(&inode->i_lock)) {
2334 spin_unlock(&dentry->d_lock);
2335 cpu_relax();
2336 goto again;
2337 }
2338 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2339 dentry_unlink_inode(dentry);
2340 fsnotify_nameremove(dentry, isdir);
2341 return;
2342 }
2343
2344 if (!d_unhashed(dentry))
2345 __d_drop(dentry);
2346
2347 spin_unlock(&dentry->d_lock);
2348
2349 fsnotify_nameremove(dentry, isdir);
2350 }
2351 EXPORT_SYMBOL(d_delete);
2352
2353 static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b)
2354 {
2355 BUG_ON(!d_unhashed(entry));
2356 hlist_bl_lock(b);
2357 entry->d_flags |= DCACHE_RCUACCESS;
2358 hlist_bl_add_head_rcu(&entry->d_hash, b);
2359 hlist_bl_unlock(b);
2360 }
2361
2362 static void _d_rehash(struct dentry * entry)
2363 {
2364 __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
2365 }
2366
2367 /**
2368 * d_rehash - add an entry back to the hash
2369 * @entry: dentry to add to the hash
2370 *
2371 * Adds a dentry to the hash according to its name.
2372 */
2373
2374 void d_rehash(struct dentry * entry)
2375 {
2376 spin_lock(&entry->d_lock);
2377 _d_rehash(entry);
2378 spin_unlock(&entry->d_lock);
2379 }
2380 EXPORT_SYMBOL(d_rehash);
2381
2382 /**
2383 * dentry_update_name_case - update case insensitive dentry with a new name
2384 * @dentry: dentry to be updated
2385 * @name: new name
2386 *
2387 * Update a case insensitive dentry with new case of name.
2388 *
2389 * dentry must have been returned by d_lookup with name @name. Old and new
2390 * name lengths must match (ie. no d_compare which allows mismatched name
2391 * lengths).
2392 *
2393 * Parent inode i_mutex must be held over d_lookup and into this call (to
2394 * keep renames and concurrent inserts, and readdir(2) away).
2395 */
2396 void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
2397 {
2398 BUG_ON(!mutex_is_locked(&dentry->d_parent->d_inode->i_mutex));
2399 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2400
2401 spin_lock(&dentry->d_lock);
2402 write_seqcount_begin(&dentry->d_seq);
2403 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
2404 write_seqcount_end(&dentry->d_seq);
2405 spin_unlock(&dentry->d_lock);
2406 }
2407 EXPORT_SYMBOL(dentry_update_name_case);
2408
2409 static void swap_names(struct dentry *dentry, struct dentry *target)
2410 {
2411 if (unlikely(dname_external(target))) {
2412 if (unlikely(dname_external(dentry))) {
2413 /*
2414 * Both external: swap the pointers
2415 */
2416 swap(target->d_name.name, dentry->d_name.name);
2417 } else {
2418 /*
2419 * dentry:internal, target:external. Steal target's
2420 * storage and make target internal.
2421 */
2422 memcpy(target->d_iname, dentry->d_name.name,
2423 dentry->d_name.len + 1);
2424 dentry->d_name.name = target->d_name.name;
2425 target->d_name.name = target->d_iname;
2426 }
2427 } else {
2428 if (unlikely(dname_external(dentry))) {
2429 /*
2430 * dentry:external, target:internal. Give dentry's
2431 * storage to target and make dentry internal
2432 */
2433 memcpy(dentry->d_iname, target->d_name.name,
2434 target->d_name.len + 1);
2435 target->d_name.name = dentry->d_name.name;
2436 dentry->d_name.name = dentry->d_iname;
2437 } else {
2438 /*
2439 * Both are internal.
2440 */
2441 unsigned int i;
2442 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2443 kmemcheck_mark_initialized(dentry->d_iname, DNAME_INLINE_LEN);
2444 kmemcheck_mark_initialized(target->d_iname, DNAME_INLINE_LEN);
2445 for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2446 swap(((long *) &dentry->d_iname)[i],
2447 ((long *) &target->d_iname)[i]);
2448 }
2449 }
2450 }
2451 swap(dentry->d_name.hash_len, target->d_name.hash_len);
2452 }
2453
2454 static void copy_name(struct dentry *dentry, struct dentry *target)
2455 {
2456 struct external_name *old_name = NULL;
2457 if (unlikely(dname_external(dentry)))
2458 old_name = external_name(dentry);
2459 if (unlikely(dname_external(target))) {
2460 atomic_inc(&external_name(target)->u.count);
2461 dentry->d_name = target->d_name;
2462 } else {
2463 memcpy(dentry->d_iname, target->d_name.name,
2464 target->d_name.len + 1);
2465 dentry->d_name.name = dentry->d_iname;
2466 dentry->d_name.hash_len = target->d_name.hash_len;
2467 }
2468 if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2469 kfree_rcu(old_name, u.head);
2470 }
2471
2472 static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2473 {
2474 /*
2475 * XXXX: do we really need to take target->d_lock?
2476 */
2477 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2478 spin_lock(&target->d_parent->d_lock);
2479 else {
2480 if (d_ancestor(dentry->d_parent, target->d_parent)) {
2481 spin_lock(&dentry->d_parent->d_lock);
2482 spin_lock_nested(&target->d_parent->d_lock,
2483 DENTRY_D_LOCK_NESTED);
2484 } else {
2485 spin_lock(&target->d_parent->d_lock);
2486 spin_lock_nested(&dentry->d_parent->d_lock,
2487 DENTRY_D_LOCK_NESTED);
2488 }
2489 }
2490 if (target < dentry) {
2491 spin_lock_nested(&target->d_lock, 2);
2492 spin_lock_nested(&dentry->d_lock, 3);
2493 } else {
2494 spin_lock_nested(&dentry->d_lock, 2);
2495 spin_lock_nested(&target->d_lock, 3);
2496 }
2497 }
2498
2499 static void dentry_unlock_for_move(struct dentry *dentry, struct dentry *target)
2500 {
2501 if (target->d_parent != dentry->d_parent)
2502 spin_unlock(&dentry->d_parent->d_lock);
2503 if (target->d_parent != target)
2504 spin_unlock(&target->d_parent->d_lock);
2505 spin_unlock(&target->d_lock);
2506 spin_unlock(&dentry->d_lock);
2507 }
2508
2509 /*
2510 * When switching names, the actual string doesn't strictly have to
2511 * be preserved in the target - because we're dropping the target
2512 * anyway. As such, we can just do a simple memcpy() to copy over
2513 * the new name before we switch, unless we are going to rehash
2514 * it. Note that if we *do* unhash the target, we are not allowed
2515 * to rehash it without giving it a new name/hash key - whether
2516 * we swap or overwrite the names here, resulting name won't match
2517 * the reality in filesystem; it's only there for d_path() purposes.
2518 * Note that all of this is happening under rename_lock, so the
2519 * any hash lookup seeing it in the middle of manipulations will
2520 * be discarded anyway. So we do not care what happens to the hash
2521 * key in that case.
2522 */
2523 /*
2524 * __d_move - move a dentry
2525 * @dentry: entry to move
2526 * @target: new dentry
2527 * @exchange: exchange the two dentries
2528 *
2529 * Update the dcache to reflect the move of a file name. Negative
2530 * dcache entries should not be moved in this way. Caller must hold
2531 * rename_lock, the i_mutex of the source and target directories,
2532 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2533 */
2534 static void __d_move(struct dentry *dentry, struct dentry *target,
2535 bool exchange)
2536 {
2537 if (!dentry->d_inode)
2538 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2539
2540 BUG_ON(d_ancestor(dentry, target));
2541 BUG_ON(d_ancestor(target, dentry));
2542
2543 dentry_lock_for_move(dentry, target);
2544
2545 write_seqcount_begin(&dentry->d_seq);
2546 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
2547
2548 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2549
2550 /*
2551 * Move the dentry to the target hash queue. Don't bother checking
2552 * for the same hash queue because of how unlikely it is.
2553 */
2554 __d_drop(dentry);
2555 __d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
2556
2557 /*
2558 * Unhash the target (d_delete() is not usable here). If exchanging
2559 * the two dentries, then rehash onto the other's hash queue.
2560 */
2561 __d_drop(target);
2562 if (exchange) {
2563 __d_rehash(target,
2564 d_hash(dentry->d_parent, dentry->d_name.hash));
2565 }
2566
2567 /* Switch the names.. */
2568 if (exchange)
2569 swap_names(dentry, target);
2570 else
2571 copy_name(dentry, target);
2572
2573 /* ... and switch them in the tree */
2574 if (IS_ROOT(dentry)) {
2575 /* splicing a tree */
2576 dentry->d_parent = target->d_parent;
2577 target->d_parent = target;
2578 list_del_init(&target->d_child);
2579 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2580 } else {
2581 /* swapping two dentries */
2582 swap(dentry->d_parent, target->d_parent);
2583 list_move(&target->d_child, &target->d_parent->d_subdirs);
2584 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2585 if (exchange)
2586 fsnotify_d_move(target);
2587 fsnotify_d_move(dentry);
2588 }
2589
2590 write_seqcount_end(&target->d_seq);
2591 write_seqcount_end(&dentry->d_seq);
2592
2593 dentry_unlock_for_move(dentry, target);
2594 }
2595
2596 /*
2597 * d_move - move a dentry
2598 * @dentry: entry to move
2599 * @target: new dentry
2600 *
2601 * Update the dcache to reflect the move of a file name. Negative
2602 * dcache entries should not be moved in this way. See the locking
2603 * requirements for __d_move.
2604 */
2605 void d_move(struct dentry *dentry, struct dentry *target)
2606 {
2607 write_seqlock(&rename_lock);
2608 __d_move(dentry, target, false);
2609 write_sequnlock(&rename_lock);
2610 }
2611 EXPORT_SYMBOL(d_move);
2612
2613 /*
2614 * d_exchange - exchange two dentries
2615 * @dentry1: first dentry
2616 * @dentry2: second dentry
2617 */
2618 void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2619 {
2620 write_seqlock(&rename_lock);
2621
2622 WARN_ON(!dentry1->d_inode);
2623 WARN_ON(!dentry2->d_inode);
2624 WARN_ON(IS_ROOT(dentry1));
2625 WARN_ON(IS_ROOT(dentry2));
2626
2627 __d_move(dentry1, dentry2, true);
2628
2629 write_sequnlock(&rename_lock);
2630 }
2631
2632 /**
2633 * d_ancestor - search for an ancestor
2634 * @p1: ancestor dentry
2635 * @p2: child dentry
2636 *
2637 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2638 * an ancestor of p2, else NULL.
2639 */
2640 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2641 {
2642 struct dentry *p;
2643
2644 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2645 if (p->d_parent == p1)
2646 return p;
2647 }
2648 return NULL;
2649 }
2650
2651 /*
2652 * This helper attempts to cope with remotely renamed directories
2653 *
2654 * It assumes that the caller is already holding
2655 * dentry->d_parent->d_inode->i_mutex, inode->i_lock and rename_lock
2656 *
2657 * Note: If ever the locking in lock_rename() changes, then please
2658 * remember to update this too...
2659 */
2660 static int __d_unalias(struct inode *inode,
2661 struct dentry *dentry, struct dentry *alias)
2662 {
2663 struct mutex *m1 = NULL, *m2 = NULL;
2664 int ret = -EBUSY;
2665
2666 /* If alias and dentry share a parent, then no extra locks required */
2667 if (alias->d_parent == dentry->d_parent)
2668 goto out_unalias;
2669
2670 /* See lock_rename() */
2671 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2672 goto out_err;
2673 m1 = &dentry->d_sb->s_vfs_rename_mutex;
2674 if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
2675 goto out_err;
2676 m2 = &alias->d_parent->d_inode->i_mutex;
2677 out_unalias:
2678 __d_move(alias, dentry, false);
2679 ret = 0;
2680 out_err:
2681 spin_unlock(&inode->i_lock);
2682 if (m2)
2683 mutex_unlock(m2);
2684 if (m1)
2685 mutex_unlock(m1);
2686 return ret;
2687 }
2688
2689 /**
2690 * d_splice_alias - splice a disconnected dentry into the tree if one exists
2691 * @inode: the inode which may have a disconnected dentry
2692 * @dentry: a negative dentry which we want to point to the inode.
2693 *
2694 * If inode is a directory and has an IS_ROOT alias, then d_move that in
2695 * place of the given dentry and return it, else simply d_add the inode
2696 * to the dentry and return NULL.
2697 *
2698 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
2699 * we should error out: directories can't have multiple aliases.
2700 *
2701 * This is needed in the lookup routine of any filesystem that is exportable
2702 * (via knfsd) so that we can build dcache paths to directories effectively.
2703 *
2704 * If a dentry was found and moved, then it is returned. Otherwise NULL
2705 * is returned. This matches the expected return value of ->lookup.
2706 *
2707 * Cluster filesystems may call this function with a negative, hashed dentry.
2708 * In that case, we know that the inode will be a regular file, and also this
2709 * will only occur during atomic_open. So we need to check for the dentry
2710 * being already hashed only in the final case.
2711 */
2712 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
2713 {
2714 if (IS_ERR(inode))
2715 return ERR_CAST(inode);
2716
2717 BUG_ON(!d_unhashed(dentry));
2718
2719 if (!inode) {
2720 __d_instantiate(dentry, NULL);
2721 goto out;
2722 }
2723 spin_lock(&inode->i_lock);
2724 if (S_ISDIR(inode->i_mode)) {
2725 struct dentry *new = __d_find_any_alias(inode);
2726 if (unlikely(new)) {
2727 write_seqlock(&rename_lock);
2728 if (unlikely(d_ancestor(new, dentry))) {
2729 write_sequnlock(&rename_lock);
2730 spin_unlock(&inode->i_lock);
2731 dput(new);
2732 new = ERR_PTR(-ELOOP);
2733 pr_warn_ratelimited(
2734 "VFS: Lookup of '%s' in %s %s"
2735 " would have caused loop\n",
2736 dentry->d_name.name,
2737 inode->i_sb->s_type->name,
2738 inode->i_sb->s_id);
2739 } else if (!IS_ROOT(new)) {
2740 int err = __d_unalias(inode, dentry, new);
2741 write_sequnlock(&rename_lock);
2742 if (err) {
2743 dput(new);
2744 new = ERR_PTR(err);
2745 }
2746 } else {
2747 __d_move(new, dentry, false);
2748 write_sequnlock(&rename_lock);
2749 spin_unlock(&inode->i_lock);
2750 security_d_instantiate(new, inode);
2751 }
2752 iput(inode);
2753 return new;
2754 }
2755 }
2756 /* already taking inode->i_lock, so d_add() by hand */
2757 __d_instantiate(dentry, inode);
2758 spin_unlock(&inode->i_lock);
2759 out:
2760 security_d_instantiate(dentry, inode);
2761 d_rehash(dentry);
2762 return NULL;
2763 }
2764 EXPORT_SYMBOL(d_splice_alias);
2765
2766 static int prepend(char **buffer, int *buflen, const char *str, int namelen)
2767 {
2768 *buflen -= namelen;
2769 if (*buflen < 0)
2770 return -ENAMETOOLONG;
2771 *buffer -= namelen;
2772 memcpy(*buffer, str, namelen);
2773 return 0;
2774 }
2775
2776 /**
2777 * prepend_name - prepend a pathname in front of current buffer pointer
2778 * @buffer: buffer pointer
2779 * @buflen: allocated length of the buffer
2780 * @name: name string and length qstr structure
2781 *
2782 * With RCU path tracing, it may race with d_move(). Use ACCESS_ONCE() to
2783 * make sure that either the old or the new name pointer and length are
2784 * fetched. However, there may be mismatch between length and pointer.
2785 * The length cannot be trusted, we need to copy it byte-by-byte until
2786 * the length is reached or a null byte is found. It also prepends "/" at
2787 * the beginning of the name. The sequence number check at the caller will
2788 * retry it again when a d_move() does happen. So any garbage in the buffer
2789 * due to mismatched pointer and length will be discarded.
2790 *
2791 * Data dependency barrier is needed to make sure that we see that terminating
2792 * NUL. Alpha strikes again, film at 11...
2793 */
2794 static int prepend_name(char **buffer, int *buflen, struct qstr *name)
2795 {
2796 const char *dname = ACCESS_ONCE(name->name);
2797 u32 dlen = ACCESS_ONCE(name->len);
2798 char *p;
2799
2800 smp_read_barrier_depends();
2801
2802 *buflen -= dlen + 1;
2803 if (*buflen < 0)
2804 return -ENAMETOOLONG;
2805 p = *buffer -= dlen + 1;
2806 *p++ = '/';
2807 while (dlen--) {
2808 char c = *dname++;
2809 if (!c)
2810 break;
2811 *p++ = c;
2812 }
2813 return 0;
2814 }
2815
2816 /**
2817 * prepend_path - Prepend path string to a buffer
2818 * @path: the dentry/vfsmount to report
2819 * @root: root vfsmnt/dentry
2820 * @buffer: pointer to the end of the buffer
2821 * @buflen: pointer to buffer length
2822 *
2823 * The function will first try to write out the pathname without taking any
2824 * lock other than the RCU read lock to make sure that dentries won't go away.
2825 * It only checks the sequence number of the global rename_lock as any change
2826 * in the dentry's d_seq will be preceded by changes in the rename_lock
2827 * sequence number. If the sequence number had been changed, it will restart
2828 * the whole pathname back-tracing sequence again by taking the rename_lock.
2829 * In this case, there is no need to take the RCU read lock as the recursive
2830 * parent pointer references will keep the dentry chain alive as long as no
2831 * rename operation is performed.
2832 */
2833 static int prepend_path(const struct path *path,
2834 const struct path *root,
2835 char **buffer, int *buflen)
2836 {
2837 struct dentry *dentry;
2838 struct vfsmount *vfsmnt;
2839 struct mount *mnt;
2840 int error = 0;
2841 unsigned seq, m_seq = 0;
2842 char *bptr;
2843 int blen;
2844
2845 rcu_read_lock();
2846 restart_mnt:
2847 read_seqbegin_or_lock(&mount_lock, &m_seq);
2848 seq = 0;
2849 rcu_read_lock();
2850 restart:
2851 bptr = *buffer;
2852 blen = *buflen;
2853 error = 0;
2854 dentry = path->dentry;
2855 vfsmnt = path->mnt;
2856 mnt = real_mount(vfsmnt);
2857 read_seqbegin_or_lock(&rename_lock, &seq);
2858 while (dentry != root->dentry || vfsmnt != root->mnt) {
2859 struct dentry * parent;
2860
2861 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
2862 struct mount *parent = ACCESS_ONCE(mnt->mnt_parent);
2863 /* Global root? */
2864 if (mnt != parent) {
2865 dentry = ACCESS_ONCE(mnt->mnt_mountpoint);
2866 mnt = parent;
2867 vfsmnt = &mnt->mnt;
2868 continue;
2869 }
2870 /*
2871 * Filesystems needing to implement special "root names"
2872 * should do so with ->d_dname()
2873 */
2874 if (IS_ROOT(dentry) &&
2875 (dentry->d_name.len != 1 ||
2876 dentry->d_name.name[0] != '/')) {
2877 WARN(1, "Root dentry has weird name <%.*s>\n",
2878 (int) dentry->d_name.len,
2879 dentry->d_name.name);
2880 }
2881 if (!error)
2882 error = is_mounted(vfsmnt) ? 1 : 2;
2883 break;
2884 }
2885 parent = dentry->d_parent;
2886 prefetch(parent);
2887 error = prepend_name(&bptr, &blen, &dentry->d_name);
2888 if (error)
2889 break;
2890
2891 dentry = parent;
2892 }
2893 if (!(seq & 1))
2894 rcu_read_unlock();
2895 if (need_seqretry(&rename_lock, seq)) {
2896 seq = 1;
2897 goto restart;
2898 }
2899 done_seqretry(&rename_lock, seq);
2900
2901 if (!(m_seq & 1))
2902 rcu_read_unlock();
2903 if (need_seqretry(&mount_lock, m_seq)) {
2904 m_seq = 1;
2905 goto restart_mnt;
2906 }
2907 done_seqretry(&mount_lock, m_seq);
2908
2909 if (error >= 0 && bptr == *buffer) {
2910 if (--blen < 0)
2911 error = -ENAMETOOLONG;
2912 else
2913 *--bptr = '/';
2914 }
2915 *buffer = bptr;
2916 *buflen = blen;
2917 return error;
2918 }
2919
2920 /**
2921 * __d_path - return the path of a dentry
2922 * @path: the dentry/vfsmount to report
2923 * @root: root vfsmnt/dentry
2924 * @buf: buffer to return value in
2925 * @buflen: buffer length
2926 *
2927 * Convert a dentry into an ASCII path name.
2928 *
2929 * Returns a pointer into the buffer or an error code if the
2930 * path was too long.
2931 *
2932 * "buflen" should be positive.
2933 *
2934 * If the path is not reachable from the supplied root, return %NULL.
2935 */
2936 char *__d_path(const struct path *path,
2937 const struct path *root,
2938 char *buf, int buflen)
2939 {
2940 char *res = buf + buflen;
2941 int error;
2942
2943 prepend(&res, &buflen, "\0", 1);
2944 error = prepend_path(path, root, &res, &buflen);
2945
2946 if (error < 0)
2947 return ERR_PTR(error);
2948 if (error > 0)
2949 return NULL;
2950 return res;
2951 }
2952
2953 char *d_absolute_path(const struct path *path,
2954 char *buf, int buflen)
2955 {
2956 struct path root = {};
2957 char *res = buf + buflen;
2958 int error;
2959
2960 prepend(&res, &buflen, "\0", 1);
2961 error = prepend_path(path, &root, &res, &buflen);
2962
2963 if (error > 1)
2964 error = -EINVAL;
2965 if (error < 0)
2966 return ERR_PTR(error);
2967 return res;
2968 }
2969
2970 /*
2971 * same as __d_path but appends "(deleted)" for unlinked files.
2972 */
2973 static int path_with_deleted(const struct path *path,
2974 const struct path *root,
2975 char **buf, int *buflen)
2976 {
2977 prepend(buf, buflen, "\0", 1);
2978 if (d_unlinked(path->dentry)) {
2979 int error = prepend(buf, buflen, " (deleted)", 10);
2980 if (error)
2981 return error;
2982 }
2983
2984 return prepend_path(path, root, buf, buflen);
2985 }
2986
2987 static int prepend_unreachable(char **buffer, int *buflen)
2988 {
2989 return prepend(buffer, buflen, "(unreachable)", 13);
2990 }
2991
2992 static void get_fs_root_rcu(struct fs_struct *fs, struct path *root)
2993 {
2994 unsigned seq;
2995
2996 do {
2997 seq = read_seqcount_begin(&fs->seq);
2998 *root = fs->root;
2999 } while (read_seqcount_retry(&fs->seq, seq));
3000 }
3001
3002 /**
3003 * d_path - return the path of a dentry
3004 * @path: path to report
3005 * @buf: buffer to return value in
3006 * @buflen: buffer length
3007 *
3008 * Convert a dentry into an ASCII path name. If the entry has been deleted
3009 * the string " (deleted)" is appended. Note that this is ambiguous.
3010 *
3011 * Returns a pointer into the buffer or an error code if the path was
3012 * too long. Note: Callers should use the returned pointer, not the passed
3013 * in buffer, to use the name! The implementation often starts at an offset
3014 * into the buffer, and may leave 0 bytes at the start.
3015 *
3016 * "buflen" should be positive.
3017 */
3018 char *d_path(const struct path *path, char *buf, int buflen)
3019 {
3020 char *res = buf + buflen;
3021 struct path root;
3022 int error;
3023
3024 /*
3025 * We have various synthetic filesystems that never get mounted. On
3026 * these filesystems dentries are never used for lookup purposes, and
3027 * thus don't need to be hashed. They also don't need a name until a
3028 * user wants to identify the object in /proc/pid/fd/. The little hack
3029 * below allows us to generate a name for these objects on demand:
3030 *
3031 * Some pseudo inodes are mountable. When they are mounted
3032 * path->dentry == path->mnt->mnt_root. In that case don't call d_dname
3033 * and instead have d_path return the mounted path.
3034 */
3035 if (path->dentry->d_op && path->dentry->d_op->d_dname &&
3036 (!IS_ROOT(path->dentry) || path->dentry != path->mnt->mnt_root))
3037 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
3038
3039 rcu_read_lock();
3040 get_fs_root_rcu(current->fs, &root);
3041 error = path_with_deleted(path, &root, &res, &buflen);
3042 rcu_read_unlock();
3043
3044 if (error < 0)
3045 res = ERR_PTR(error);
3046 return res;
3047 }
3048 EXPORT_SYMBOL(d_path);
3049
3050 /*
3051 * Helper function for dentry_operations.d_dname() members
3052 */
3053 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
3054 const char *fmt, ...)
3055 {
3056 va_list args;
3057 char temp[64];
3058 int sz;
3059
3060 va_start(args, fmt);
3061 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
3062 va_end(args);
3063
3064 if (sz > sizeof(temp) || sz > buflen)
3065 return ERR_PTR(-ENAMETOOLONG);
3066
3067 buffer += buflen - sz;
3068 return memcpy(buffer, temp, sz);
3069 }
3070
3071 char *simple_dname(struct dentry *dentry, char *buffer, int buflen)
3072 {
3073 char *end = buffer + buflen;
3074 /* these dentries are never renamed, so d_lock is not needed */
3075 if (prepend(&end, &buflen, " (deleted)", 11) ||
3076 prepend(&end, &buflen, dentry->d_name.name, dentry->d_name.len) ||
3077 prepend(&end, &buflen, "/", 1))
3078 end = ERR_PTR(-ENAMETOOLONG);
3079 return end;
3080 }
3081 EXPORT_SYMBOL(simple_dname);
3082
3083 /*
3084 * Write full pathname from the root of the filesystem into the buffer.
3085 */
3086 static char *__dentry_path(struct dentry *d, char *buf, int buflen)
3087 {
3088 struct dentry *dentry;
3089 char *end, *retval;
3090 int len, seq = 0;
3091 int error = 0;
3092
3093 if (buflen < 2)
3094 goto Elong;
3095
3096 rcu_read_lock();
3097 restart:
3098 dentry = d;
3099 end = buf + buflen;
3100 len = buflen;
3101 prepend(&end, &len, "\0", 1);
3102 /* Get '/' right */
3103 retval = end-1;
3104 *retval = '/';
3105 read_seqbegin_or_lock(&rename_lock, &seq);
3106 while (!IS_ROOT(dentry)) {
3107 struct dentry *parent = dentry->d_parent;
3108
3109 prefetch(parent);
3110 error = prepend_name(&end, &len, &dentry->d_name);
3111 if (error)
3112 break;
3113
3114 retval = end;
3115 dentry = parent;
3116 }
3117 if (!(seq & 1))
3118 rcu_read_unlock();
3119 if (need_seqretry(&rename_lock, seq)) {
3120 seq = 1;
3121 goto restart;
3122 }
3123 done_seqretry(&rename_lock, seq);
3124 if (error)
3125 goto Elong;
3126 return retval;
3127 Elong:
3128 return ERR_PTR(-ENAMETOOLONG);
3129 }
3130
3131 char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
3132 {
3133 return __dentry_path(dentry, buf, buflen);
3134 }
3135 EXPORT_SYMBOL(dentry_path_raw);
3136
3137 char *dentry_path(struct dentry *dentry, char *buf, int buflen)
3138 {
3139 char *p = NULL;
3140 char *retval;
3141
3142 if (d_unlinked(dentry)) {
3143 p = buf + buflen;
3144 if (prepend(&p, &buflen, "//deleted", 10) != 0)
3145 goto Elong;
3146 buflen++;
3147 }
3148 retval = __dentry_path(dentry, buf, buflen);
3149 if (!IS_ERR(retval) && p)
3150 *p = '/'; /* restore '/' overriden with '\0' */
3151 return retval;
3152 Elong:
3153 return ERR_PTR(-ENAMETOOLONG);
3154 }
3155
3156 static void get_fs_root_and_pwd_rcu(struct fs_struct *fs, struct path *root,
3157 struct path *pwd)
3158 {
3159 unsigned seq;
3160
3161 do {
3162 seq = read_seqcount_begin(&fs->seq);
3163 *root = fs->root;
3164 *pwd = fs->pwd;
3165 } while (read_seqcount_retry(&fs->seq, seq));
3166 }
3167
3168 /*
3169 * NOTE! The user-level library version returns a
3170 * character pointer. The kernel system call just
3171 * returns the length of the buffer filled (which
3172 * includes the ending '\0' character), or a negative
3173 * error value. So libc would do something like
3174 *
3175 * char *getcwd(char * buf, size_t size)
3176 * {
3177 * int retval;
3178 *
3179 * retval = sys_getcwd(buf, size);
3180 * if (retval >= 0)
3181 * return buf;
3182 * errno = -retval;
3183 * return NULL;
3184 * }
3185 */
3186 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
3187 {
3188 int error;
3189 struct path pwd, root;
3190 char *page = __getname();
3191
3192 if (!page)
3193 return -ENOMEM;
3194
3195 rcu_read_lock();
3196 get_fs_root_and_pwd_rcu(current->fs, &root, &pwd);
3197
3198 error = -ENOENT;
3199 if (!d_unlinked(pwd.dentry)) {
3200 unsigned long len;
3201 char *cwd = page + PATH_MAX;
3202 int buflen = PATH_MAX;
3203
3204 prepend(&cwd, &buflen, "\0", 1);
3205 error = prepend_path(&pwd, &root, &cwd, &buflen);
3206 rcu_read_unlock();
3207
3208 if (error < 0)
3209 goto out;
3210
3211 /* Unreachable from current root */
3212 if (error > 0) {
3213 error = prepend_unreachable(&cwd, &buflen);
3214 if (error)
3215 goto out;
3216 }
3217
3218 error = -ERANGE;
3219 len = PATH_MAX + page - cwd;
3220 if (len <= size) {
3221 error = len;
3222 if (copy_to_user(buf, cwd, len))
3223 error = -EFAULT;
3224 }
3225 } else {
3226 rcu_read_unlock();
3227 }
3228
3229 out:
3230 __putname(page);
3231 return error;
3232 }
3233
3234 /*
3235 * Test whether new_dentry is a subdirectory of old_dentry.
3236 *
3237 * Trivially implemented using the dcache structure
3238 */
3239
3240 /**
3241 * is_subdir - is new dentry a subdirectory of old_dentry
3242 * @new_dentry: new dentry
3243 * @old_dentry: old dentry
3244 *
3245 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
3246 * Returns 0 otherwise.
3247 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3248 */
3249
3250 int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
3251 {
3252 int result;
3253 unsigned seq;
3254
3255 if (new_dentry == old_dentry)
3256 return 1;
3257
3258 do {
3259 /* for restarting inner loop in case of seq retry */
3260 seq = read_seqbegin(&rename_lock);
3261 /*
3262 * Need rcu_readlock to protect against the d_parent trashing
3263 * due to d_move
3264 */
3265 rcu_read_lock();
3266 if (d_ancestor(old_dentry, new_dentry))
3267 result = 1;
3268 else
3269 result = 0;
3270 rcu_read_unlock();
3271 } while (read_seqretry(&rename_lock, seq));
3272
3273 return result;
3274 }
3275
3276 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
3277 {
3278 struct dentry *root = data;
3279 if (dentry != root) {
3280 if (d_unhashed(dentry) || !dentry->d_inode)
3281 return D_WALK_SKIP;
3282
3283 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3284 dentry->d_flags |= DCACHE_GENOCIDE;
3285 dentry->d_lockref.count--;
3286 }
3287 }
3288 return D_WALK_CONTINUE;
3289 }
3290
3291 void d_genocide(struct dentry *parent)
3292 {
3293 d_walk(parent, parent, d_genocide_kill, NULL);
3294 }
3295
3296 void d_tmpfile(struct dentry *dentry, struct inode *inode)
3297 {
3298 inode_dec_link_count(inode);
3299 BUG_ON(dentry->d_name.name != dentry->d_iname ||
3300 !hlist_unhashed(&dentry->d_u.d_alias) ||
3301 !d_unlinked(dentry));
3302 spin_lock(&dentry->d_parent->d_lock);
3303 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3304 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3305 (unsigned long long)inode->i_ino);
3306 spin_unlock(&dentry->d_lock);
3307 spin_unlock(&dentry->d_parent->d_lock);
3308 d_instantiate(dentry, inode);
3309 }
3310 EXPORT_SYMBOL(d_tmpfile);
3311
3312 static __initdata unsigned long dhash_entries;
3313 static int __init set_dhash_entries(char *str)
3314 {
3315 if (!str)
3316 return 0;
3317 dhash_entries = simple_strtoul(str, &str, 0);
3318 return 1;
3319 }
3320 __setup("dhash_entries=", set_dhash_entries);
3321
3322 static void __init dcache_init_early(void)
3323 {
3324 unsigned int loop;
3325
3326 /* If hashes are distributed across NUMA nodes, defer
3327 * hash allocation until vmalloc space is available.
3328 */
3329 if (hashdist)
3330 return;
3331
3332 dentry_hashtable =
3333 alloc_large_system_hash("Dentry cache",
3334 sizeof(struct hlist_bl_head),
3335 dhash_entries,
3336 13,
3337 HASH_EARLY,
3338 &d_hash_shift,
3339 &d_hash_mask,
3340 0,
3341 0);
3342
3343 for (loop = 0; loop < (1U << d_hash_shift); loop++)
3344 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3345 }
3346
3347 static void __init dcache_init(void)
3348 {
3349 unsigned int loop;
3350
3351 /*
3352 * A constructor could be added for stable state like the lists,
3353 * but it is probably not worth it because of the cache nature
3354 * of the dcache.
3355 */
3356 dentry_cache = KMEM_CACHE(dentry,
3357 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
3358
3359 /* Hash may have been set up in dcache_init_early */
3360 if (!hashdist)
3361 return;
3362
3363 dentry_hashtable =
3364 alloc_large_system_hash("Dentry cache",
3365 sizeof(struct hlist_bl_head),
3366 dhash_entries,
3367 13,
3368 0,
3369 &d_hash_shift,
3370 &d_hash_mask,
3371 0,
3372 0);
3373
3374 for (loop = 0; loop < (1U << d_hash_shift); loop++)
3375 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3376 }
3377
3378 /* SLAB cache for __getname() consumers */
3379 struct kmem_cache *names_cachep __read_mostly;
3380 EXPORT_SYMBOL(names_cachep);
3381
3382 EXPORT_SYMBOL(d_genocide);
3383
3384 void __init vfs_caches_init_early(void)
3385 {
3386 dcache_init_early();
3387 inode_init_early();
3388 }
3389
3390 void __init vfs_caches_init(unsigned long mempages)
3391 {
3392 unsigned long reserve;
3393
3394 /* Base hash sizes on available memory, with a reserve equal to
3395 150% of current kernel size */
3396
3397 reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
3398 mempages -= reserve;
3399
3400 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
3401 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3402
3403 dcache_init();
3404 inode_init();
3405 files_init(mempages);
3406 mnt_init();
3407 bdev_cache_init();
3408 chrdev_init();
3409 }