]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - fs/dcache.c
drm/amdgpu: check alignment on CPU page for bo map
[mirror_ubuntu-focal-kernel.git] / fs / dcache.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * fs/dcache.c
4 *
5 * Complete reimplementation
6 * (C) 1997 Thomas Schoebel-Theuer,
7 * with heavy changes by Linus Torvalds
8 */
9
10 /*
11 * Notes on the allocation strategy:
12 *
13 * The dcache is a master of the icache - whenever a dcache entry
14 * exists, the inode will always exist. "iput()" is done either when
15 * the dcache entry is deleted or garbage collected.
16 */
17
18 #include <linux/ratelimit.h>
19 #include <linux/string.h>
20 #include <linux/mm.h>
21 #include <linux/fs.h>
22 #include <linux/fscrypt.h>
23 #include <linux/fsnotify.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/hash.h>
27 #include <linux/cache.h>
28 #include <linux/export.h>
29 #include <linux/security.h>
30 #include <linux/seqlock.h>
31 #include <linux/memblock.h>
32 #include <linux/bit_spinlock.h>
33 #include <linux/rculist_bl.h>
34 #include <linux/list_lru.h>
35 #include "internal.h"
36 #include "mount.h"
37
38 /*
39 * Usage:
40 * dcache->d_inode->i_lock protects:
41 * - i_dentry, d_u.d_alias, d_inode of aliases
42 * dcache_hash_bucket lock protects:
43 * - the dcache hash table
44 * s_roots bl list spinlock protects:
45 * - the s_roots list (see __d_drop)
46 * dentry->d_sb->s_dentry_lru_lock protects:
47 * - the dcache lru lists and counters
48 * d_lock protects:
49 * - d_flags
50 * - d_name
51 * - d_lru
52 * - d_count
53 * - d_unhashed()
54 * - d_parent and d_subdirs
55 * - childrens' d_child and d_parent
56 * - d_u.d_alias, d_inode
57 *
58 * Ordering:
59 * dentry->d_inode->i_lock
60 * dentry->d_lock
61 * dentry->d_sb->s_dentry_lru_lock
62 * dcache_hash_bucket lock
63 * s_roots lock
64 *
65 * If there is an ancestor relationship:
66 * dentry->d_parent->...->d_parent->d_lock
67 * ...
68 * dentry->d_parent->d_lock
69 * dentry->d_lock
70 *
71 * If no ancestor relationship:
72 * arbitrary, since it's serialized on rename_lock
73 */
74 int sysctl_vfs_cache_pressure __read_mostly = 100;
75 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
76
77 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
78
79 EXPORT_SYMBOL(rename_lock);
80
81 static struct kmem_cache *dentry_cache __read_mostly;
82
83 const struct qstr empty_name = QSTR_INIT("", 0);
84 EXPORT_SYMBOL(empty_name);
85 const struct qstr slash_name = QSTR_INIT("/", 1);
86 EXPORT_SYMBOL(slash_name);
87
88 /*
89 * This is the single most critical data structure when it comes
90 * to the dcache: the hashtable for lookups. Somebody should try
91 * to make this good - I've just made it work.
92 *
93 * This hash-function tries to avoid losing too many bits of hash
94 * information, yet avoid using a prime hash-size or similar.
95 */
96
97 static unsigned int d_hash_shift __read_mostly;
98
99 static struct hlist_bl_head *dentry_hashtable __read_mostly;
100
101 static inline struct hlist_bl_head *d_hash(unsigned int hash)
102 {
103 return dentry_hashtable + (hash >> d_hash_shift);
104 }
105
106 #define IN_LOOKUP_SHIFT 10
107 static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT];
108
109 static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent,
110 unsigned int hash)
111 {
112 hash += (unsigned long) parent / L1_CACHE_BYTES;
113 return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT);
114 }
115
116
117 /* Statistics gathering. */
118 struct dentry_stat_t dentry_stat = {
119 .age_limit = 45,
120 };
121
122 static DEFINE_PER_CPU(long, nr_dentry);
123 static DEFINE_PER_CPU(long, nr_dentry_unused);
124 static DEFINE_PER_CPU(long, nr_dentry_negative);
125
126 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
127
128 /*
129 * Here we resort to our own counters instead of using generic per-cpu counters
130 * for consistency with what the vfs inode code does. We are expected to harvest
131 * better code and performance by having our own specialized counters.
132 *
133 * Please note that the loop is done over all possible CPUs, not over all online
134 * CPUs. The reason for this is that we don't want to play games with CPUs going
135 * on and off. If one of them goes off, we will just keep their counters.
136 *
137 * glommer: See cffbc8a for details, and if you ever intend to change this,
138 * please update all vfs counters to match.
139 */
140 static long get_nr_dentry(void)
141 {
142 int i;
143 long sum = 0;
144 for_each_possible_cpu(i)
145 sum += per_cpu(nr_dentry, i);
146 return sum < 0 ? 0 : sum;
147 }
148
149 static long get_nr_dentry_unused(void)
150 {
151 int i;
152 long sum = 0;
153 for_each_possible_cpu(i)
154 sum += per_cpu(nr_dentry_unused, i);
155 return sum < 0 ? 0 : sum;
156 }
157
158 static long get_nr_dentry_negative(void)
159 {
160 int i;
161 long sum = 0;
162
163 for_each_possible_cpu(i)
164 sum += per_cpu(nr_dentry_negative, i);
165 return sum < 0 ? 0 : sum;
166 }
167
168 int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer,
169 size_t *lenp, loff_t *ppos)
170 {
171 dentry_stat.nr_dentry = get_nr_dentry();
172 dentry_stat.nr_unused = get_nr_dentry_unused();
173 dentry_stat.nr_negative = get_nr_dentry_negative();
174 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
175 }
176 #endif
177
178 /*
179 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
180 * The strings are both count bytes long, and count is non-zero.
181 */
182 #ifdef CONFIG_DCACHE_WORD_ACCESS
183
184 #include <asm/word-at-a-time.h>
185 /*
186 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
187 * aligned allocation for this particular component. We don't
188 * strictly need the load_unaligned_zeropad() safety, but it
189 * doesn't hurt either.
190 *
191 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
192 * need the careful unaligned handling.
193 */
194 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
195 {
196 unsigned long a,b,mask;
197
198 for (;;) {
199 a = read_word_at_a_time(cs);
200 b = load_unaligned_zeropad(ct);
201 if (tcount < sizeof(unsigned long))
202 break;
203 if (unlikely(a != b))
204 return 1;
205 cs += sizeof(unsigned long);
206 ct += sizeof(unsigned long);
207 tcount -= sizeof(unsigned long);
208 if (!tcount)
209 return 0;
210 }
211 mask = bytemask_from_count(tcount);
212 return unlikely(!!((a ^ b) & mask));
213 }
214
215 #else
216
217 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
218 {
219 do {
220 if (*cs != *ct)
221 return 1;
222 cs++;
223 ct++;
224 tcount--;
225 } while (tcount);
226 return 0;
227 }
228
229 #endif
230
231 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
232 {
233 /*
234 * Be careful about RCU walk racing with rename:
235 * use 'READ_ONCE' to fetch the name pointer.
236 *
237 * NOTE! Even if a rename will mean that the length
238 * was not loaded atomically, we don't care. The
239 * RCU walk will check the sequence count eventually,
240 * and catch it. And we won't overrun the buffer,
241 * because we're reading the name pointer atomically,
242 * and a dentry name is guaranteed to be properly
243 * terminated with a NUL byte.
244 *
245 * End result: even if 'len' is wrong, we'll exit
246 * early because the data cannot match (there can
247 * be no NUL in the ct/tcount data)
248 */
249 const unsigned char *cs = READ_ONCE(dentry->d_name.name);
250
251 return dentry_string_cmp(cs, ct, tcount);
252 }
253
254 struct external_name {
255 union {
256 atomic_t count;
257 struct rcu_head head;
258 } u;
259 unsigned char name[];
260 };
261
262 static inline struct external_name *external_name(struct dentry *dentry)
263 {
264 return container_of(dentry->d_name.name, struct external_name, name[0]);
265 }
266
267 static void __d_free(struct rcu_head *head)
268 {
269 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
270
271 kmem_cache_free(dentry_cache, dentry);
272 }
273
274 static void __d_free_external(struct rcu_head *head)
275 {
276 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
277 kfree(external_name(dentry));
278 kmem_cache_free(dentry_cache, dentry);
279 }
280
281 static inline int dname_external(const struct dentry *dentry)
282 {
283 return dentry->d_name.name != dentry->d_iname;
284 }
285
286 void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry)
287 {
288 spin_lock(&dentry->d_lock);
289 name->name = dentry->d_name;
290 if (unlikely(dname_external(dentry))) {
291 atomic_inc(&external_name(dentry)->u.count);
292 } else {
293 memcpy(name->inline_name, dentry->d_iname,
294 dentry->d_name.len + 1);
295 name->name.name = name->inline_name;
296 }
297 spin_unlock(&dentry->d_lock);
298 }
299 EXPORT_SYMBOL(take_dentry_name_snapshot);
300
301 void release_dentry_name_snapshot(struct name_snapshot *name)
302 {
303 if (unlikely(name->name.name != name->inline_name)) {
304 struct external_name *p;
305 p = container_of(name->name.name, struct external_name, name[0]);
306 if (unlikely(atomic_dec_and_test(&p->u.count)))
307 kfree_rcu(p, u.head);
308 }
309 }
310 EXPORT_SYMBOL(release_dentry_name_snapshot);
311
312 static inline void __d_set_inode_and_type(struct dentry *dentry,
313 struct inode *inode,
314 unsigned type_flags)
315 {
316 unsigned flags;
317
318 dentry->d_inode = inode;
319 flags = READ_ONCE(dentry->d_flags);
320 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
321 flags |= type_flags;
322 WRITE_ONCE(dentry->d_flags, flags);
323 }
324
325 static inline void __d_clear_type_and_inode(struct dentry *dentry)
326 {
327 unsigned flags = READ_ONCE(dentry->d_flags);
328
329 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
330 WRITE_ONCE(dentry->d_flags, flags);
331 dentry->d_inode = NULL;
332 if (dentry->d_flags & DCACHE_LRU_LIST)
333 this_cpu_inc(nr_dentry_negative);
334 }
335
336 static void dentry_free(struct dentry *dentry)
337 {
338 WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
339 if (unlikely(dname_external(dentry))) {
340 struct external_name *p = external_name(dentry);
341 if (likely(atomic_dec_and_test(&p->u.count))) {
342 call_rcu(&dentry->d_u.d_rcu, __d_free_external);
343 return;
344 }
345 }
346 /* if dentry was never visible to RCU, immediate free is OK */
347 if (dentry->d_flags & DCACHE_NORCU)
348 __d_free(&dentry->d_u.d_rcu);
349 else
350 call_rcu(&dentry->d_u.d_rcu, __d_free);
351 }
352
353 /*
354 * Release the dentry's inode, using the filesystem
355 * d_iput() operation if defined.
356 */
357 static void dentry_unlink_inode(struct dentry * dentry)
358 __releases(dentry->d_lock)
359 __releases(dentry->d_inode->i_lock)
360 {
361 struct inode *inode = dentry->d_inode;
362
363 raw_write_seqcount_begin(&dentry->d_seq);
364 __d_clear_type_and_inode(dentry);
365 hlist_del_init(&dentry->d_u.d_alias);
366 raw_write_seqcount_end(&dentry->d_seq);
367 spin_unlock(&dentry->d_lock);
368 spin_unlock(&inode->i_lock);
369 if (!inode->i_nlink)
370 fsnotify_inoderemove(inode);
371 if (dentry->d_op && dentry->d_op->d_iput)
372 dentry->d_op->d_iput(dentry, inode);
373 else
374 iput(inode);
375 }
376
377 /*
378 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
379 * is in use - which includes both the "real" per-superblock
380 * LRU list _and_ the DCACHE_SHRINK_LIST use.
381 *
382 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
383 * on the shrink list (ie not on the superblock LRU list).
384 *
385 * The per-cpu "nr_dentry_unused" counters are updated with
386 * the DCACHE_LRU_LIST bit.
387 *
388 * The per-cpu "nr_dentry_negative" counters are only updated
389 * when deleted from or added to the per-superblock LRU list, not
390 * from/to the shrink list. That is to avoid an unneeded dec/inc
391 * pair when moving from LRU to shrink list in select_collect().
392 *
393 * These helper functions make sure we always follow the
394 * rules. d_lock must be held by the caller.
395 */
396 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
397 static void d_lru_add(struct dentry *dentry)
398 {
399 D_FLAG_VERIFY(dentry, 0);
400 dentry->d_flags |= DCACHE_LRU_LIST;
401 this_cpu_inc(nr_dentry_unused);
402 if (d_is_negative(dentry))
403 this_cpu_inc(nr_dentry_negative);
404 WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
405 }
406
407 static void d_lru_del(struct dentry *dentry)
408 {
409 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
410 dentry->d_flags &= ~DCACHE_LRU_LIST;
411 this_cpu_dec(nr_dentry_unused);
412 if (d_is_negative(dentry))
413 this_cpu_dec(nr_dentry_negative);
414 WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
415 }
416
417 static void d_shrink_del(struct dentry *dentry)
418 {
419 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
420 list_del_init(&dentry->d_lru);
421 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
422 this_cpu_dec(nr_dentry_unused);
423 }
424
425 static void d_shrink_add(struct dentry *dentry, struct list_head *list)
426 {
427 D_FLAG_VERIFY(dentry, 0);
428 list_add(&dentry->d_lru, list);
429 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
430 this_cpu_inc(nr_dentry_unused);
431 }
432
433 /*
434 * These can only be called under the global LRU lock, ie during the
435 * callback for freeing the LRU list. "isolate" removes it from the
436 * LRU lists entirely, while shrink_move moves it to the indicated
437 * private list.
438 */
439 static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
440 {
441 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
442 dentry->d_flags &= ~DCACHE_LRU_LIST;
443 this_cpu_dec(nr_dentry_unused);
444 if (d_is_negative(dentry))
445 this_cpu_dec(nr_dentry_negative);
446 list_lru_isolate(lru, &dentry->d_lru);
447 }
448
449 static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
450 struct list_head *list)
451 {
452 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
453 dentry->d_flags |= DCACHE_SHRINK_LIST;
454 if (d_is_negative(dentry))
455 this_cpu_dec(nr_dentry_negative);
456 list_lru_isolate_move(lru, &dentry->d_lru, list);
457 }
458
459 /**
460 * d_drop - drop a dentry
461 * @dentry: dentry to drop
462 *
463 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
464 * be found through a VFS lookup any more. Note that this is different from
465 * deleting the dentry - d_delete will try to mark the dentry negative if
466 * possible, giving a successful _negative_ lookup, while d_drop will
467 * just make the cache lookup fail.
468 *
469 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
470 * reason (NFS timeouts or autofs deletes).
471 *
472 * __d_drop requires dentry->d_lock
473 * ___d_drop doesn't mark dentry as "unhashed"
474 * (dentry->d_hash.pprev will be LIST_POISON2, not NULL).
475 */
476 static void ___d_drop(struct dentry *dentry)
477 {
478 struct hlist_bl_head *b;
479 /*
480 * Hashed dentries are normally on the dentry hashtable,
481 * with the exception of those newly allocated by
482 * d_obtain_root, which are always IS_ROOT:
483 */
484 if (unlikely(IS_ROOT(dentry)))
485 b = &dentry->d_sb->s_roots;
486 else
487 b = d_hash(dentry->d_name.hash);
488
489 hlist_bl_lock(b);
490 __hlist_bl_del(&dentry->d_hash);
491 hlist_bl_unlock(b);
492 }
493
494 void __d_drop(struct dentry *dentry)
495 {
496 if (!d_unhashed(dentry)) {
497 ___d_drop(dentry);
498 dentry->d_hash.pprev = NULL;
499 write_seqcount_invalidate(&dentry->d_seq);
500 }
501 }
502 EXPORT_SYMBOL(__d_drop);
503
504 void d_drop(struct dentry *dentry)
505 {
506 spin_lock(&dentry->d_lock);
507 __d_drop(dentry);
508 spin_unlock(&dentry->d_lock);
509 }
510 EXPORT_SYMBOL(d_drop);
511
512 static inline void dentry_unlist(struct dentry *dentry, struct dentry *parent)
513 {
514 struct dentry *next;
515 /*
516 * Inform d_walk() and shrink_dentry_list() that we are no longer
517 * attached to the dentry tree
518 */
519 dentry->d_flags |= DCACHE_DENTRY_KILLED;
520 if (unlikely(list_empty(&dentry->d_child)))
521 return;
522 __list_del_entry(&dentry->d_child);
523 /*
524 * Cursors can move around the list of children. While we'd been
525 * a normal list member, it didn't matter - ->d_child.next would've
526 * been updated. However, from now on it won't be and for the
527 * things like d_walk() it might end up with a nasty surprise.
528 * Normally d_walk() doesn't care about cursors moving around -
529 * ->d_lock on parent prevents that and since a cursor has no children
530 * of its own, we get through it without ever unlocking the parent.
531 * There is one exception, though - if we ascend from a child that
532 * gets killed as soon as we unlock it, the next sibling is found
533 * using the value left in its ->d_child.next. And if _that_
534 * pointed to a cursor, and cursor got moved (e.g. by lseek())
535 * before d_walk() regains parent->d_lock, we'll end up skipping
536 * everything the cursor had been moved past.
537 *
538 * Solution: make sure that the pointer left behind in ->d_child.next
539 * points to something that won't be moving around. I.e. skip the
540 * cursors.
541 */
542 while (dentry->d_child.next != &parent->d_subdirs) {
543 next = list_entry(dentry->d_child.next, struct dentry, d_child);
544 if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR)))
545 break;
546 dentry->d_child.next = next->d_child.next;
547 }
548 }
549
550 static void __dentry_kill(struct dentry *dentry)
551 {
552 struct dentry *parent = NULL;
553 bool can_free = true;
554 if (!IS_ROOT(dentry))
555 parent = dentry->d_parent;
556
557 /*
558 * The dentry is now unrecoverably dead to the world.
559 */
560 lockref_mark_dead(&dentry->d_lockref);
561
562 /*
563 * inform the fs via d_prune that this dentry is about to be
564 * unhashed and destroyed.
565 */
566 if (dentry->d_flags & DCACHE_OP_PRUNE)
567 dentry->d_op->d_prune(dentry);
568
569 if (dentry->d_flags & DCACHE_LRU_LIST) {
570 if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
571 d_lru_del(dentry);
572 }
573 /* if it was on the hash then remove it */
574 __d_drop(dentry);
575 dentry_unlist(dentry, parent);
576 if (parent)
577 spin_unlock(&parent->d_lock);
578 if (dentry->d_inode)
579 dentry_unlink_inode(dentry);
580 else
581 spin_unlock(&dentry->d_lock);
582 this_cpu_dec(nr_dentry);
583 if (dentry->d_op && dentry->d_op->d_release)
584 dentry->d_op->d_release(dentry);
585
586 spin_lock(&dentry->d_lock);
587 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
588 dentry->d_flags |= DCACHE_MAY_FREE;
589 can_free = false;
590 }
591 spin_unlock(&dentry->d_lock);
592 if (likely(can_free))
593 dentry_free(dentry);
594 cond_resched();
595 }
596
597 static struct dentry *__lock_parent(struct dentry *dentry)
598 {
599 struct dentry *parent;
600 rcu_read_lock();
601 spin_unlock(&dentry->d_lock);
602 again:
603 parent = READ_ONCE(dentry->d_parent);
604 spin_lock(&parent->d_lock);
605 /*
606 * We can't blindly lock dentry until we are sure
607 * that we won't violate the locking order.
608 * Any changes of dentry->d_parent must have
609 * been done with parent->d_lock held, so
610 * spin_lock() above is enough of a barrier
611 * for checking if it's still our child.
612 */
613 if (unlikely(parent != dentry->d_parent)) {
614 spin_unlock(&parent->d_lock);
615 goto again;
616 }
617 rcu_read_unlock();
618 if (parent != dentry)
619 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
620 else
621 parent = NULL;
622 return parent;
623 }
624
625 static inline struct dentry *lock_parent(struct dentry *dentry)
626 {
627 struct dentry *parent = dentry->d_parent;
628 if (IS_ROOT(dentry))
629 return NULL;
630 if (likely(spin_trylock(&parent->d_lock)))
631 return parent;
632 return __lock_parent(dentry);
633 }
634
635 static inline bool retain_dentry(struct dentry *dentry)
636 {
637 WARN_ON(d_in_lookup(dentry));
638
639 /* Unreachable? Get rid of it */
640 if (unlikely(d_unhashed(dentry)))
641 return false;
642
643 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
644 return false;
645
646 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
647 if (dentry->d_op->d_delete(dentry))
648 return false;
649 }
650 /* retain; LRU fodder */
651 dentry->d_lockref.count--;
652 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
653 d_lru_add(dentry);
654 else if (unlikely(!(dentry->d_flags & DCACHE_REFERENCED)))
655 dentry->d_flags |= DCACHE_REFERENCED;
656 return true;
657 }
658
659 /*
660 * Finish off a dentry we've decided to kill.
661 * dentry->d_lock must be held, returns with it unlocked.
662 * Returns dentry requiring refcount drop, or NULL if we're done.
663 */
664 static struct dentry *dentry_kill(struct dentry *dentry)
665 __releases(dentry->d_lock)
666 {
667 struct inode *inode = dentry->d_inode;
668 struct dentry *parent = NULL;
669
670 if (inode && unlikely(!spin_trylock(&inode->i_lock)))
671 goto slow_positive;
672
673 if (!IS_ROOT(dentry)) {
674 parent = dentry->d_parent;
675 if (unlikely(!spin_trylock(&parent->d_lock))) {
676 parent = __lock_parent(dentry);
677 if (likely(inode || !dentry->d_inode))
678 goto got_locks;
679 /* negative that became positive */
680 if (parent)
681 spin_unlock(&parent->d_lock);
682 inode = dentry->d_inode;
683 goto slow_positive;
684 }
685 }
686 __dentry_kill(dentry);
687 return parent;
688
689 slow_positive:
690 spin_unlock(&dentry->d_lock);
691 spin_lock(&inode->i_lock);
692 spin_lock(&dentry->d_lock);
693 parent = lock_parent(dentry);
694 got_locks:
695 if (unlikely(dentry->d_lockref.count != 1)) {
696 dentry->d_lockref.count--;
697 } else if (likely(!retain_dentry(dentry))) {
698 __dentry_kill(dentry);
699 return parent;
700 }
701 /* we are keeping it, after all */
702 if (inode)
703 spin_unlock(&inode->i_lock);
704 if (parent)
705 spin_unlock(&parent->d_lock);
706 spin_unlock(&dentry->d_lock);
707 return NULL;
708 }
709
710 /*
711 * Try to do a lockless dput(), and return whether that was successful.
712 *
713 * If unsuccessful, we return false, having already taken the dentry lock.
714 *
715 * The caller needs to hold the RCU read lock, so that the dentry is
716 * guaranteed to stay around even if the refcount goes down to zero!
717 */
718 static inline bool fast_dput(struct dentry *dentry)
719 {
720 int ret;
721 unsigned int d_flags;
722
723 /*
724 * If we have a d_op->d_delete() operation, we sould not
725 * let the dentry count go to zero, so use "put_or_lock".
726 */
727 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE))
728 return lockref_put_or_lock(&dentry->d_lockref);
729
730 /*
731 * .. otherwise, we can try to just decrement the
732 * lockref optimistically.
733 */
734 ret = lockref_put_return(&dentry->d_lockref);
735
736 /*
737 * If the lockref_put_return() failed due to the lock being held
738 * by somebody else, the fast path has failed. We will need to
739 * get the lock, and then check the count again.
740 */
741 if (unlikely(ret < 0)) {
742 spin_lock(&dentry->d_lock);
743 if (dentry->d_lockref.count > 1) {
744 dentry->d_lockref.count--;
745 spin_unlock(&dentry->d_lock);
746 return true;
747 }
748 return false;
749 }
750
751 /*
752 * If we weren't the last ref, we're done.
753 */
754 if (ret)
755 return true;
756
757 /*
758 * Careful, careful. The reference count went down
759 * to zero, but we don't hold the dentry lock, so
760 * somebody else could get it again, and do another
761 * dput(), and we need to not race with that.
762 *
763 * However, there is a very special and common case
764 * where we don't care, because there is nothing to
765 * do: the dentry is still hashed, it does not have
766 * a 'delete' op, and it's referenced and already on
767 * the LRU list.
768 *
769 * NOTE! Since we aren't locked, these values are
770 * not "stable". However, it is sufficient that at
771 * some point after we dropped the reference the
772 * dentry was hashed and the flags had the proper
773 * value. Other dentry users may have re-gotten
774 * a reference to the dentry and change that, but
775 * our work is done - we can leave the dentry
776 * around with a zero refcount.
777 */
778 smp_rmb();
779 d_flags = READ_ONCE(dentry->d_flags);
780 d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST | DCACHE_DISCONNECTED;
781
782 /* Nothing to do? Dropping the reference was all we needed? */
783 if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry))
784 return true;
785
786 /*
787 * Not the fast normal case? Get the lock. We've already decremented
788 * the refcount, but we'll need to re-check the situation after
789 * getting the lock.
790 */
791 spin_lock(&dentry->d_lock);
792
793 /*
794 * Did somebody else grab a reference to it in the meantime, and
795 * we're no longer the last user after all? Alternatively, somebody
796 * else could have killed it and marked it dead. Either way, we
797 * don't need to do anything else.
798 */
799 if (dentry->d_lockref.count) {
800 spin_unlock(&dentry->d_lock);
801 return true;
802 }
803
804 /*
805 * Re-get the reference we optimistically dropped. We hold the
806 * lock, and we just tested that it was zero, so we can just
807 * set it to 1.
808 */
809 dentry->d_lockref.count = 1;
810 return false;
811 }
812
813
814 /*
815 * This is dput
816 *
817 * This is complicated by the fact that we do not want to put
818 * dentries that are no longer on any hash chain on the unused
819 * list: we'd much rather just get rid of them immediately.
820 *
821 * However, that implies that we have to traverse the dentry
822 * tree upwards to the parents which might _also_ now be
823 * scheduled for deletion (it may have been only waiting for
824 * its last child to go away).
825 *
826 * This tail recursion is done by hand as we don't want to depend
827 * on the compiler to always get this right (gcc generally doesn't).
828 * Real recursion would eat up our stack space.
829 */
830
831 /*
832 * dput - release a dentry
833 * @dentry: dentry to release
834 *
835 * Release a dentry. This will drop the usage count and if appropriate
836 * call the dentry unlink method as well as removing it from the queues and
837 * releasing its resources. If the parent dentries were scheduled for release
838 * they too may now get deleted.
839 */
840 void dput(struct dentry *dentry)
841 {
842 while (dentry) {
843 might_sleep();
844
845 rcu_read_lock();
846 if (likely(fast_dput(dentry))) {
847 rcu_read_unlock();
848 return;
849 }
850
851 /* Slow case: now with the dentry lock held */
852 rcu_read_unlock();
853
854 if (likely(retain_dentry(dentry))) {
855 spin_unlock(&dentry->d_lock);
856 return;
857 }
858
859 dentry = dentry_kill(dentry);
860 }
861 }
862 EXPORT_SYMBOL(dput);
863
864 static void __dput_to_list(struct dentry *dentry, struct list_head *list)
865 __must_hold(&dentry->d_lock)
866 {
867 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
868 /* let the owner of the list it's on deal with it */
869 --dentry->d_lockref.count;
870 } else {
871 if (dentry->d_flags & DCACHE_LRU_LIST)
872 d_lru_del(dentry);
873 if (!--dentry->d_lockref.count)
874 d_shrink_add(dentry, list);
875 }
876 }
877
878 void dput_to_list(struct dentry *dentry, struct list_head *list)
879 {
880 rcu_read_lock();
881 if (likely(fast_dput(dentry))) {
882 rcu_read_unlock();
883 return;
884 }
885 rcu_read_unlock();
886 if (!retain_dentry(dentry))
887 __dput_to_list(dentry, list);
888 spin_unlock(&dentry->d_lock);
889 }
890
891 /* This must be called with d_lock held */
892 static inline void __dget_dlock(struct dentry *dentry)
893 {
894 dentry->d_lockref.count++;
895 }
896
897 static inline void __dget(struct dentry *dentry)
898 {
899 lockref_get(&dentry->d_lockref);
900 }
901
902 struct dentry *dget_parent(struct dentry *dentry)
903 {
904 int gotref;
905 struct dentry *ret;
906 unsigned seq;
907
908 /*
909 * Do optimistic parent lookup without any
910 * locking.
911 */
912 rcu_read_lock();
913 seq = raw_seqcount_begin(&dentry->d_seq);
914 ret = READ_ONCE(dentry->d_parent);
915 gotref = lockref_get_not_zero(&ret->d_lockref);
916 rcu_read_unlock();
917 if (likely(gotref)) {
918 if (!read_seqcount_retry(&dentry->d_seq, seq))
919 return ret;
920 dput(ret);
921 }
922
923 repeat:
924 /*
925 * Don't need rcu_dereference because we re-check it was correct under
926 * the lock.
927 */
928 rcu_read_lock();
929 ret = dentry->d_parent;
930 spin_lock(&ret->d_lock);
931 if (unlikely(ret != dentry->d_parent)) {
932 spin_unlock(&ret->d_lock);
933 rcu_read_unlock();
934 goto repeat;
935 }
936 rcu_read_unlock();
937 BUG_ON(!ret->d_lockref.count);
938 ret->d_lockref.count++;
939 spin_unlock(&ret->d_lock);
940 return ret;
941 }
942 EXPORT_SYMBOL(dget_parent);
943
944 static struct dentry * __d_find_any_alias(struct inode *inode)
945 {
946 struct dentry *alias;
947
948 if (hlist_empty(&inode->i_dentry))
949 return NULL;
950 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
951 __dget(alias);
952 return alias;
953 }
954
955 /**
956 * d_find_any_alias - find any alias for a given inode
957 * @inode: inode to find an alias for
958 *
959 * If any aliases exist for the given inode, take and return a
960 * reference for one of them. If no aliases exist, return %NULL.
961 */
962 struct dentry *d_find_any_alias(struct inode *inode)
963 {
964 struct dentry *de;
965
966 spin_lock(&inode->i_lock);
967 de = __d_find_any_alias(inode);
968 spin_unlock(&inode->i_lock);
969 return de;
970 }
971 EXPORT_SYMBOL(d_find_any_alias);
972
973 /**
974 * d_find_alias - grab a hashed alias of inode
975 * @inode: inode in question
976 *
977 * If inode has a hashed alias, or is a directory and has any alias,
978 * acquire the reference to alias and return it. Otherwise return NULL.
979 * Notice that if inode is a directory there can be only one alias and
980 * it can be unhashed only if it has no children, or if it is the root
981 * of a filesystem, or if the directory was renamed and d_revalidate
982 * was the first vfs operation to notice.
983 *
984 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
985 * any other hashed alias over that one.
986 */
987 static struct dentry *__d_find_alias(struct inode *inode)
988 {
989 struct dentry *alias;
990
991 if (S_ISDIR(inode->i_mode))
992 return __d_find_any_alias(inode);
993
994 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
995 spin_lock(&alias->d_lock);
996 if (!d_unhashed(alias)) {
997 __dget_dlock(alias);
998 spin_unlock(&alias->d_lock);
999 return alias;
1000 }
1001 spin_unlock(&alias->d_lock);
1002 }
1003 return NULL;
1004 }
1005
1006 struct dentry *d_find_alias(struct inode *inode)
1007 {
1008 struct dentry *de = NULL;
1009
1010 if (!hlist_empty(&inode->i_dentry)) {
1011 spin_lock(&inode->i_lock);
1012 de = __d_find_alias(inode);
1013 spin_unlock(&inode->i_lock);
1014 }
1015 return de;
1016 }
1017 EXPORT_SYMBOL(d_find_alias);
1018
1019 /*
1020 * Try to kill dentries associated with this inode.
1021 * WARNING: you must own a reference to inode.
1022 */
1023 void d_prune_aliases(struct inode *inode)
1024 {
1025 struct dentry *dentry;
1026 restart:
1027 spin_lock(&inode->i_lock);
1028 hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
1029 spin_lock(&dentry->d_lock);
1030 if (!dentry->d_lockref.count) {
1031 struct dentry *parent = lock_parent(dentry);
1032 if (likely(!dentry->d_lockref.count)) {
1033 __dentry_kill(dentry);
1034 dput(parent);
1035 goto restart;
1036 }
1037 if (parent)
1038 spin_unlock(&parent->d_lock);
1039 }
1040 spin_unlock(&dentry->d_lock);
1041 }
1042 spin_unlock(&inode->i_lock);
1043 }
1044 EXPORT_SYMBOL(d_prune_aliases);
1045
1046 /*
1047 * Lock a dentry from shrink list.
1048 * Called under rcu_read_lock() and dentry->d_lock; the former
1049 * guarantees that nothing we access will be freed under us.
1050 * Note that dentry is *not* protected from concurrent dentry_kill(),
1051 * d_delete(), etc.
1052 *
1053 * Return false if dentry has been disrupted or grabbed, leaving
1054 * the caller to kick it off-list. Otherwise, return true and have
1055 * that dentry's inode and parent both locked.
1056 */
1057 static bool shrink_lock_dentry(struct dentry *dentry)
1058 {
1059 struct inode *inode;
1060 struct dentry *parent;
1061
1062 if (dentry->d_lockref.count)
1063 return false;
1064
1065 inode = dentry->d_inode;
1066 if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
1067 spin_unlock(&dentry->d_lock);
1068 spin_lock(&inode->i_lock);
1069 spin_lock(&dentry->d_lock);
1070 if (unlikely(dentry->d_lockref.count))
1071 goto out;
1072 /* changed inode means that somebody had grabbed it */
1073 if (unlikely(inode != dentry->d_inode))
1074 goto out;
1075 }
1076
1077 parent = dentry->d_parent;
1078 if (IS_ROOT(dentry) || likely(spin_trylock(&parent->d_lock)))
1079 return true;
1080
1081 spin_unlock(&dentry->d_lock);
1082 spin_lock(&parent->d_lock);
1083 if (unlikely(parent != dentry->d_parent)) {
1084 spin_unlock(&parent->d_lock);
1085 spin_lock(&dentry->d_lock);
1086 goto out;
1087 }
1088 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1089 if (likely(!dentry->d_lockref.count))
1090 return true;
1091 spin_unlock(&parent->d_lock);
1092 out:
1093 if (inode)
1094 spin_unlock(&inode->i_lock);
1095 return false;
1096 }
1097
1098 void shrink_dentry_list(struct list_head *list)
1099 {
1100 while (!list_empty(list)) {
1101 struct dentry *dentry, *parent;
1102
1103 dentry = list_entry(list->prev, struct dentry, d_lru);
1104 spin_lock(&dentry->d_lock);
1105 rcu_read_lock();
1106 if (!shrink_lock_dentry(dentry)) {
1107 bool can_free = false;
1108 rcu_read_unlock();
1109 d_shrink_del(dentry);
1110 if (dentry->d_lockref.count < 0)
1111 can_free = dentry->d_flags & DCACHE_MAY_FREE;
1112 spin_unlock(&dentry->d_lock);
1113 if (can_free)
1114 dentry_free(dentry);
1115 continue;
1116 }
1117 rcu_read_unlock();
1118 d_shrink_del(dentry);
1119 parent = dentry->d_parent;
1120 if (parent != dentry)
1121 __dput_to_list(parent, list);
1122 __dentry_kill(dentry);
1123 }
1124 }
1125
1126 static enum lru_status dentry_lru_isolate(struct list_head *item,
1127 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1128 {
1129 struct list_head *freeable = arg;
1130 struct dentry *dentry = container_of(item, struct dentry, d_lru);
1131
1132
1133 /*
1134 * we are inverting the lru lock/dentry->d_lock here,
1135 * so use a trylock. If we fail to get the lock, just skip
1136 * it
1137 */
1138 if (!spin_trylock(&dentry->d_lock))
1139 return LRU_SKIP;
1140
1141 /*
1142 * Referenced dentries are still in use. If they have active
1143 * counts, just remove them from the LRU. Otherwise give them
1144 * another pass through the LRU.
1145 */
1146 if (dentry->d_lockref.count) {
1147 d_lru_isolate(lru, dentry);
1148 spin_unlock(&dentry->d_lock);
1149 return LRU_REMOVED;
1150 }
1151
1152 if (dentry->d_flags & DCACHE_REFERENCED) {
1153 dentry->d_flags &= ~DCACHE_REFERENCED;
1154 spin_unlock(&dentry->d_lock);
1155
1156 /*
1157 * The list move itself will be made by the common LRU code. At
1158 * this point, we've dropped the dentry->d_lock but keep the
1159 * lru lock. This is safe to do, since every list movement is
1160 * protected by the lru lock even if both locks are held.
1161 *
1162 * This is guaranteed by the fact that all LRU management
1163 * functions are intermediated by the LRU API calls like
1164 * list_lru_add and list_lru_del. List movement in this file
1165 * only ever occur through this functions or through callbacks
1166 * like this one, that are called from the LRU API.
1167 *
1168 * The only exceptions to this are functions like
1169 * shrink_dentry_list, and code that first checks for the
1170 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be
1171 * operating only with stack provided lists after they are
1172 * properly isolated from the main list. It is thus, always a
1173 * local access.
1174 */
1175 return LRU_ROTATE;
1176 }
1177
1178 d_lru_shrink_move(lru, dentry, freeable);
1179 spin_unlock(&dentry->d_lock);
1180
1181 return LRU_REMOVED;
1182 }
1183
1184 /**
1185 * prune_dcache_sb - shrink the dcache
1186 * @sb: superblock
1187 * @sc: shrink control, passed to list_lru_shrink_walk()
1188 *
1189 * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1190 * is done when we need more memory and called from the superblock shrinker
1191 * function.
1192 *
1193 * This function may fail to free any resources if all the dentries are in
1194 * use.
1195 */
1196 long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
1197 {
1198 LIST_HEAD(dispose);
1199 long freed;
1200
1201 freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1202 dentry_lru_isolate, &dispose);
1203 shrink_dentry_list(&dispose);
1204 return freed;
1205 }
1206
1207 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
1208 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1209 {
1210 struct list_head *freeable = arg;
1211 struct dentry *dentry = container_of(item, struct dentry, d_lru);
1212
1213 /*
1214 * we are inverting the lru lock/dentry->d_lock here,
1215 * so use a trylock. If we fail to get the lock, just skip
1216 * it
1217 */
1218 if (!spin_trylock(&dentry->d_lock))
1219 return LRU_SKIP;
1220
1221 d_lru_shrink_move(lru, dentry, freeable);
1222 spin_unlock(&dentry->d_lock);
1223
1224 return LRU_REMOVED;
1225 }
1226
1227
1228 /**
1229 * shrink_dcache_sb - shrink dcache for a superblock
1230 * @sb: superblock
1231 *
1232 * Shrink the dcache for the specified super block. This is used to free
1233 * the dcache before unmounting a file system.
1234 */
1235 void shrink_dcache_sb(struct super_block *sb)
1236 {
1237 do {
1238 LIST_HEAD(dispose);
1239
1240 list_lru_walk(&sb->s_dentry_lru,
1241 dentry_lru_isolate_shrink, &dispose, 1024);
1242 shrink_dentry_list(&dispose);
1243 } while (list_lru_count(&sb->s_dentry_lru) > 0);
1244 }
1245 EXPORT_SYMBOL(shrink_dcache_sb);
1246
1247 /**
1248 * enum d_walk_ret - action to talke during tree walk
1249 * @D_WALK_CONTINUE: contrinue walk
1250 * @D_WALK_QUIT: quit walk
1251 * @D_WALK_NORETRY: quit when retry is needed
1252 * @D_WALK_SKIP: skip this dentry and its children
1253 */
1254 enum d_walk_ret {
1255 D_WALK_CONTINUE,
1256 D_WALK_QUIT,
1257 D_WALK_NORETRY,
1258 D_WALK_SKIP,
1259 };
1260
1261 /**
1262 * d_walk - walk the dentry tree
1263 * @parent: start of walk
1264 * @data: data passed to @enter() and @finish()
1265 * @enter: callback when first entering the dentry
1266 *
1267 * The @enter() callbacks are called with d_lock held.
1268 */
1269 void d_walk(struct dentry *parent, void *data,
1270 enum d_walk_ret (*enter)(void *, struct dentry *))
1271 {
1272 struct dentry *this_parent;
1273 struct list_head *next;
1274 unsigned seq = 0;
1275 enum d_walk_ret ret;
1276 bool retry = true;
1277
1278 again:
1279 read_seqbegin_or_lock(&rename_lock, &seq);
1280 this_parent = parent;
1281 spin_lock(&this_parent->d_lock);
1282
1283 ret = enter(data, this_parent);
1284 switch (ret) {
1285 case D_WALK_CONTINUE:
1286 break;
1287 case D_WALK_QUIT:
1288 case D_WALK_SKIP:
1289 goto out_unlock;
1290 case D_WALK_NORETRY:
1291 retry = false;
1292 break;
1293 }
1294 repeat:
1295 next = this_parent->d_subdirs.next;
1296 resume:
1297 while (next != &this_parent->d_subdirs) {
1298 struct list_head *tmp = next;
1299 struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1300 next = tmp->next;
1301
1302 if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR))
1303 continue;
1304
1305 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1306
1307 ret = enter(data, dentry);
1308 switch (ret) {
1309 case D_WALK_CONTINUE:
1310 break;
1311 case D_WALK_QUIT:
1312 spin_unlock(&dentry->d_lock);
1313 goto out_unlock;
1314 case D_WALK_NORETRY:
1315 retry = false;
1316 break;
1317 case D_WALK_SKIP:
1318 spin_unlock(&dentry->d_lock);
1319 continue;
1320 }
1321
1322 if (!list_empty(&dentry->d_subdirs)) {
1323 spin_unlock(&this_parent->d_lock);
1324 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1325 this_parent = dentry;
1326 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1327 goto repeat;
1328 }
1329 spin_unlock(&dentry->d_lock);
1330 }
1331 /*
1332 * All done at this level ... ascend and resume the search.
1333 */
1334 rcu_read_lock();
1335 ascend:
1336 if (this_parent != parent) {
1337 struct dentry *child = this_parent;
1338 this_parent = child->d_parent;
1339
1340 spin_unlock(&child->d_lock);
1341 spin_lock(&this_parent->d_lock);
1342
1343 /* might go back up the wrong parent if we have had a rename. */
1344 if (need_seqretry(&rename_lock, seq))
1345 goto rename_retry;
1346 /* go into the first sibling still alive */
1347 do {
1348 next = child->d_child.next;
1349 if (next == &this_parent->d_subdirs)
1350 goto ascend;
1351 child = list_entry(next, struct dentry, d_child);
1352 } while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED));
1353 rcu_read_unlock();
1354 goto resume;
1355 }
1356 if (need_seqretry(&rename_lock, seq))
1357 goto rename_retry;
1358 rcu_read_unlock();
1359
1360 out_unlock:
1361 spin_unlock(&this_parent->d_lock);
1362 done_seqretry(&rename_lock, seq);
1363 return;
1364
1365 rename_retry:
1366 spin_unlock(&this_parent->d_lock);
1367 rcu_read_unlock();
1368 BUG_ON(seq & 1);
1369 if (!retry)
1370 return;
1371 seq = 1;
1372 goto again;
1373 }
1374 EXPORT_SYMBOL_GPL(d_walk);
1375
1376 struct check_mount {
1377 struct vfsmount *mnt;
1378 unsigned int mounted;
1379 };
1380
1381 static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry)
1382 {
1383 struct check_mount *info = data;
1384 struct path path = { .mnt = info->mnt, .dentry = dentry };
1385
1386 if (likely(!d_mountpoint(dentry)))
1387 return D_WALK_CONTINUE;
1388 if (__path_is_mountpoint(&path)) {
1389 info->mounted = 1;
1390 return D_WALK_QUIT;
1391 }
1392 return D_WALK_CONTINUE;
1393 }
1394
1395 /**
1396 * path_has_submounts - check for mounts over a dentry in the
1397 * current namespace.
1398 * @parent: path to check.
1399 *
1400 * Return true if the parent or its subdirectories contain
1401 * a mount point in the current namespace.
1402 */
1403 int path_has_submounts(const struct path *parent)
1404 {
1405 struct check_mount data = { .mnt = parent->mnt, .mounted = 0 };
1406
1407 read_seqlock_excl(&mount_lock);
1408 d_walk(parent->dentry, &data, path_check_mount);
1409 read_sequnlock_excl(&mount_lock);
1410
1411 return data.mounted;
1412 }
1413 EXPORT_SYMBOL(path_has_submounts);
1414
1415 /*
1416 * Called by mount code to set a mountpoint and check if the mountpoint is
1417 * reachable (e.g. NFS can unhash a directory dentry and then the complete
1418 * subtree can become unreachable).
1419 *
1420 * Only one of d_invalidate() and d_set_mounted() must succeed. For
1421 * this reason take rename_lock and d_lock on dentry and ancestors.
1422 */
1423 int d_set_mounted(struct dentry *dentry)
1424 {
1425 struct dentry *p;
1426 int ret = -ENOENT;
1427 write_seqlock(&rename_lock);
1428 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1429 /* Need exclusion wrt. d_invalidate() */
1430 spin_lock(&p->d_lock);
1431 if (unlikely(d_unhashed(p))) {
1432 spin_unlock(&p->d_lock);
1433 goto out;
1434 }
1435 spin_unlock(&p->d_lock);
1436 }
1437 spin_lock(&dentry->d_lock);
1438 if (!d_unlinked(dentry)) {
1439 ret = -EBUSY;
1440 if (!d_mountpoint(dentry)) {
1441 dentry->d_flags |= DCACHE_MOUNTED;
1442 ret = 0;
1443 }
1444 }
1445 spin_unlock(&dentry->d_lock);
1446 out:
1447 write_sequnlock(&rename_lock);
1448 return ret;
1449 }
1450
1451 /*
1452 * Search the dentry child list of the specified parent,
1453 * and move any unused dentries to the end of the unused
1454 * list for prune_dcache(). We descend to the next level
1455 * whenever the d_subdirs list is non-empty and continue
1456 * searching.
1457 *
1458 * It returns zero iff there are no unused children,
1459 * otherwise it returns the number of children moved to
1460 * the end of the unused list. This may not be the total
1461 * number of unused children, because select_parent can
1462 * drop the lock and return early due to latency
1463 * constraints.
1464 */
1465
1466 struct select_data {
1467 struct dentry *start;
1468 union {
1469 long found;
1470 struct dentry *victim;
1471 };
1472 struct list_head dispose;
1473 };
1474
1475 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1476 {
1477 struct select_data *data = _data;
1478 enum d_walk_ret ret = D_WALK_CONTINUE;
1479
1480 if (data->start == dentry)
1481 goto out;
1482
1483 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1484 data->found++;
1485 } else {
1486 if (dentry->d_flags & DCACHE_LRU_LIST)
1487 d_lru_del(dentry);
1488 if (!dentry->d_lockref.count) {
1489 d_shrink_add(dentry, &data->dispose);
1490 data->found++;
1491 }
1492 }
1493 /*
1494 * We can return to the caller if we have found some (this
1495 * ensures forward progress). We'll be coming back to find
1496 * the rest.
1497 */
1498 if (!list_empty(&data->dispose))
1499 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1500 out:
1501 return ret;
1502 }
1503
1504 static enum d_walk_ret select_collect2(void *_data, struct dentry *dentry)
1505 {
1506 struct select_data *data = _data;
1507 enum d_walk_ret ret = D_WALK_CONTINUE;
1508
1509 if (data->start == dentry)
1510 goto out;
1511
1512 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1513 if (!dentry->d_lockref.count) {
1514 rcu_read_lock();
1515 data->victim = dentry;
1516 return D_WALK_QUIT;
1517 }
1518 } else {
1519 if (dentry->d_flags & DCACHE_LRU_LIST)
1520 d_lru_del(dentry);
1521 if (!dentry->d_lockref.count)
1522 d_shrink_add(dentry, &data->dispose);
1523 }
1524 /*
1525 * We can return to the caller if we have found some (this
1526 * ensures forward progress). We'll be coming back to find
1527 * the rest.
1528 */
1529 if (!list_empty(&data->dispose))
1530 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1531 out:
1532 return ret;
1533 }
1534
1535 /**
1536 * shrink_dcache_parent - prune dcache
1537 * @parent: parent of entries to prune
1538 *
1539 * Prune the dcache to remove unused children of the parent dentry.
1540 */
1541 void shrink_dcache_parent(struct dentry *parent)
1542 {
1543 for (;;) {
1544 struct select_data data = {.start = parent};
1545
1546 INIT_LIST_HEAD(&data.dispose);
1547 d_walk(parent, &data, select_collect);
1548
1549 if (!list_empty(&data.dispose)) {
1550 shrink_dentry_list(&data.dispose);
1551 continue;
1552 }
1553
1554 cond_resched();
1555 if (!data.found)
1556 break;
1557 data.victim = NULL;
1558 d_walk(parent, &data, select_collect2);
1559 if (data.victim) {
1560 struct dentry *parent;
1561 spin_lock(&data.victim->d_lock);
1562 if (!shrink_lock_dentry(data.victim)) {
1563 spin_unlock(&data.victim->d_lock);
1564 rcu_read_unlock();
1565 } else {
1566 rcu_read_unlock();
1567 parent = data.victim->d_parent;
1568 if (parent != data.victim)
1569 __dput_to_list(parent, &data.dispose);
1570 __dentry_kill(data.victim);
1571 }
1572 }
1573 if (!list_empty(&data.dispose))
1574 shrink_dentry_list(&data.dispose);
1575 }
1576 }
1577 EXPORT_SYMBOL(shrink_dcache_parent);
1578
1579 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
1580 {
1581 /* it has busy descendents; complain about those instead */
1582 if (!list_empty(&dentry->d_subdirs))
1583 return D_WALK_CONTINUE;
1584
1585 /* root with refcount 1 is fine */
1586 if (dentry == _data && dentry->d_lockref.count == 1)
1587 return D_WALK_CONTINUE;
1588
1589 printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1590 " still in use (%d) [unmount of %s %s]\n",
1591 dentry,
1592 dentry->d_inode ?
1593 dentry->d_inode->i_ino : 0UL,
1594 dentry,
1595 dentry->d_lockref.count,
1596 dentry->d_sb->s_type->name,
1597 dentry->d_sb->s_id);
1598 WARN_ON(1);
1599 return D_WALK_CONTINUE;
1600 }
1601
1602 static void do_one_tree(struct dentry *dentry)
1603 {
1604 shrink_dcache_parent(dentry);
1605 d_walk(dentry, dentry, umount_check);
1606 d_drop(dentry);
1607 dput(dentry);
1608 }
1609
1610 /*
1611 * destroy the dentries attached to a superblock on unmounting
1612 */
1613 void shrink_dcache_for_umount(struct super_block *sb)
1614 {
1615 struct dentry *dentry;
1616
1617 WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
1618
1619 dentry = sb->s_root;
1620 sb->s_root = NULL;
1621 do_one_tree(dentry);
1622
1623 while (!hlist_bl_empty(&sb->s_roots)) {
1624 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_roots), struct dentry, d_hash));
1625 do_one_tree(dentry);
1626 }
1627 }
1628
1629 static enum d_walk_ret find_submount(void *_data, struct dentry *dentry)
1630 {
1631 struct dentry **victim = _data;
1632 if (d_mountpoint(dentry)) {
1633 __dget_dlock(dentry);
1634 *victim = dentry;
1635 return D_WALK_QUIT;
1636 }
1637 return D_WALK_CONTINUE;
1638 }
1639
1640 /**
1641 * d_invalidate - detach submounts, prune dcache, and drop
1642 * @dentry: dentry to invalidate (aka detach, prune and drop)
1643 */
1644 void d_invalidate(struct dentry *dentry)
1645 {
1646 bool had_submounts = false;
1647 spin_lock(&dentry->d_lock);
1648 if (d_unhashed(dentry)) {
1649 spin_unlock(&dentry->d_lock);
1650 return;
1651 }
1652 __d_drop(dentry);
1653 spin_unlock(&dentry->d_lock);
1654
1655 /* Negative dentries can be dropped without further checks */
1656 if (!dentry->d_inode)
1657 return;
1658
1659 shrink_dcache_parent(dentry);
1660 for (;;) {
1661 struct dentry *victim = NULL;
1662 d_walk(dentry, &victim, find_submount);
1663 if (!victim) {
1664 if (had_submounts)
1665 shrink_dcache_parent(dentry);
1666 return;
1667 }
1668 had_submounts = true;
1669 detach_mounts(victim);
1670 dput(victim);
1671 }
1672 }
1673 EXPORT_SYMBOL(d_invalidate);
1674
1675 /**
1676 * __d_alloc - allocate a dcache entry
1677 * @sb: filesystem it will belong to
1678 * @name: qstr of the name
1679 *
1680 * Allocates a dentry. It returns %NULL if there is insufficient memory
1681 * available. On a success the dentry is returned. The name passed in is
1682 * copied and the copy passed in may be reused after this call.
1683 */
1684
1685 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1686 {
1687 struct dentry *dentry;
1688 char *dname;
1689 int err;
1690
1691 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1692 if (!dentry)
1693 return NULL;
1694
1695 /*
1696 * We guarantee that the inline name is always NUL-terminated.
1697 * This way the memcpy() done by the name switching in rename
1698 * will still always have a NUL at the end, even if we might
1699 * be overwriting an internal NUL character
1700 */
1701 dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1702 if (unlikely(!name)) {
1703 name = &slash_name;
1704 dname = dentry->d_iname;
1705 } else if (name->len > DNAME_INLINE_LEN-1) {
1706 size_t size = offsetof(struct external_name, name[1]);
1707 struct external_name *p = kmalloc(size + name->len,
1708 GFP_KERNEL_ACCOUNT |
1709 __GFP_RECLAIMABLE);
1710 if (!p) {
1711 kmem_cache_free(dentry_cache, dentry);
1712 return NULL;
1713 }
1714 atomic_set(&p->u.count, 1);
1715 dname = p->name;
1716 } else {
1717 dname = dentry->d_iname;
1718 }
1719
1720 dentry->d_name.len = name->len;
1721 dentry->d_name.hash = name->hash;
1722 memcpy(dname, name->name, name->len);
1723 dname[name->len] = 0;
1724
1725 /* Make sure we always see the terminating NUL character */
1726 smp_store_release(&dentry->d_name.name, dname); /* ^^^ */
1727
1728 dentry->d_lockref.count = 1;
1729 dentry->d_flags = 0;
1730 spin_lock_init(&dentry->d_lock);
1731 seqcount_init(&dentry->d_seq);
1732 dentry->d_inode = NULL;
1733 dentry->d_parent = dentry;
1734 dentry->d_sb = sb;
1735 dentry->d_op = NULL;
1736 dentry->d_fsdata = NULL;
1737 INIT_HLIST_BL_NODE(&dentry->d_hash);
1738 INIT_LIST_HEAD(&dentry->d_lru);
1739 INIT_LIST_HEAD(&dentry->d_subdirs);
1740 INIT_HLIST_NODE(&dentry->d_u.d_alias);
1741 INIT_LIST_HEAD(&dentry->d_child);
1742 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1743
1744 if (dentry->d_op && dentry->d_op->d_init) {
1745 err = dentry->d_op->d_init(dentry);
1746 if (err) {
1747 if (dname_external(dentry))
1748 kfree(external_name(dentry));
1749 kmem_cache_free(dentry_cache, dentry);
1750 return NULL;
1751 }
1752 }
1753
1754 this_cpu_inc(nr_dentry);
1755
1756 return dentry;
1757 }
1758
1759 /**
1760 * d_alloc - allocate a dcache entry
1761 * @parent: parent of entry to allocate
1762 * @name: qstr of the name
1763 *
1764 * Allocates a dentry. It returns %NULL if there is insufficient memory
1765 * available. On a success the dentry is returned. The name passed in is
1766 * copied and the copy passed in may be reused after this call.
1767 */
1768 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1769 {
1770 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1771 if (!dentry)
1772 return NULL;
1773 spin_lock(&parent->d_lock);
1774 /*
1775 * don't need child lock because it is not subject
1776 * to concurrency here
1777 */
1778 __dget_dlock(parent);
1779 dentry->d_parent = parent;
1780 list_add(&dentry->d_child, &parent->d_subdirs);
1781 spin_unlock(&parent->d_lock);
1782
1783 return dentry;
1784 }
1785 EXPORT_SYMBOL(d_alloc);
1786
1787 struct dentry *d_alloc_anon(struct super_block *sb)
1788 {
1789 return __d_alloc(sb, NULL);
1790 }
1791 EXPORT_SYMBOL(d_alloc_anon);
1792
1793 struct dentry *d_alloc_cursor(struct dentry * parent)
1794 {
1795 struct dentry *dentry = d_alloc_anon(parent->d_sb);
1796 if (dentry) {
1797 dentry->d_flags |= DCACHE_DENTRY_CURSOR;
1798 dentry->d_parent = dget(parent);
1799 }
1800 return dentry;
1801 }
1802
1803 /**
1804 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1805 * @sb: the superblock
1806 * @name: qstr of the name
1807 *
1808 * For a filesystem that just pins its dentries in memory and never
1809 * performs lookups at all, return an unhashed IS_ROOT dentry.
1810 * This is used for pipes, sockets et.al. - the stuff that should
1811 * never be anyone's children or parents. Unlike all other
1812 * dentries, these will not have RCU delay between dropping the
1813 * last reference and freeing them.
1814 *
1815 * The only user is alloc_file_pseudo() and that's what should
1816 * be considered a public interface. Don't use directly.
1817 */
1818 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1819 {
1820 struct dentry *dentry = __d_alloc(sb, name);
1821 if (likely(dentry))
1822 dentry->d_flags |= DCACHE_NORCU;
1823 return dentry;
1824 }
1825
1826 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1827 {
1828 struct qstr q;
1829
1830 q.name = name;
1831 q.hash_len = hashlen_string(parent, name);
1832 return d_alloc(parent, &q);
1833 }
1834 EXPORT_SYMBOL(d_alloc_name);
1835
1836 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1837 {
1838 WARN_ON_ONCE(dentry->d_op);
1839 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
1840 DCACHE_OP_COMPARE |
1841 DCACHE_OP_REVALIDATE |
1842 DCACHE_OP_WEAK_REVALIDATE |
1843 DCACHE_OP_DELETE |
1844 DCACHE_OP_REAL));
1845 dentry->d_op = op;
1846 if (!op)
1847 return;
1848 if (op->d_hash)
1849 dentry->d_flags |= DCACHE_OP_HASH;
1850 if (op->d_compare)
1851 dentry->d_flags |= DCACHE_OP_COMPARE;
1852 if (op->d_revalidate)
1853 dentry->d_flags |= DCACHE_OP_REVALIDATE;
1854 if (op->d_weak_revalidate)
1855 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1856 if (op->d_delete)
1857 dentry->d_flags |= DCACHE_OP_DELETE;
1858 if (op->d_prune)
1859 dentry->d_flags |= DCACHE_OP_PRUNE;
1860 if (op->d_real)
1861 dentry->d_flags |= DCACHE_OP_REAL;
1862
1863 }
1864 EXPORT_SYMBOL(d_set_d_op);
1865
1866
1867 /*
1868 * d_set_fallthru - Mark a dentry as falling through to a lower layer
1869 * @dentry - The dentry to mark
1870 *
1871 * Mark a dentry as falling through to the lower layer (as set with
1872 * d_pin_lower()). This flag may be recorded on the medium.
1873 */
1874 void d_set_fallthru(struct dentry *dentry)
1875 {
1876 spin_lock(&dentry->d_lock);
1877 dentry->d_flags |= DCACHE_FALLTHRU;
1878 spin_unlock(&dentry->d_lock);
1879 }
1880 EXPORT_SYMBOL(d_set_fallthru);
1881
1882 static unsigned d_flags_for_inode(struct inode *inode)
1883 {
1884 unsigned add_flags = DCACHE_REGULAR_TYPE;
1885
1886 if (!inode)
1887 return DCACHE_MISS_TYPE;
1888
1889 if (S_ISDIR(inode->i_mode)) {
1890 add_flags = DCACHE_DIRECTORY_TYPE;
1891 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1892 if (unlikely(!inode->i_op->lookup))
1893 add_flags = DCACHE_AUTODIR_TYPE;
1894 else
1895 inode->i_opflags |= IOP_LOOKUP;
1896 }
1897 goto type_determined;
1898 }
1899
1900 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1901 if (unlikely(inode->i_op->get_link)) {
1902 add_flags = DCACHE_SYMLINK_TYPE;
1903 goto type_determined;
1904 }
1905 inode->i_opflags |= IOP_NOFOLLOW;
1906 }
1907
1908 if (unlikely(!S_ISREG(inode->i_mode)))
1909 add_flags = DCACHE_SPECIAL_TYPE;
1910
1911 type_determined:
1912 if (unlikely(IS_AUTOMOUNT(inode)))
1913 add_flags |= DCACHE_NEED_AUTOMOUNT;
1914 return add_flags;
1915 }
1916
1917 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1918 {
1919 unsigned add_flags = d_flags_for_inode(inode);
1920 WARN_ON(d_in_lookup(dentry));
1921
1922 spin_lock(&dentry->d_lock);
1923 /*
1924 * Decrement negative dentry count if it was in the LRU list.
1925 */
1926 if (dentry->d_flags & DCACHE_LRU_LIST)
1927 this_cpu_dec(nr_dentry_negative);
1928 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
1929 raw_write_seqcount_begin(&dentry->d_seq);
1930 __d_set_inode_and_type(dentry, inode, add_flags);
1931 raw_write_seqcount_end(&dentry->d_seq);
1932 fsnotify_update_flags(dentry);
1933 spin_unlock(&dentry->d_lock);
1934 }
1935
1936 /**
1937 * d_instantiate - fill in inode information for a dentry
1938 * @entry: dentry to complete
1939 * @inode: inode to attach to this dentry
1940 *
1941 * Fill in inode information in the entry.
1942 *
1943 * This turns negative dentries into productive full members
1944 * of society.
1945 *
1946 * NOTE! This assumes that the inode count has been incremented
1947 * (or otherwise set) by the caller to indicate that it is now
1948 * in use by the dcache.
1949 */
1950
1951 void d_instantiate(struct dentry *entry, struct inode * inode)
1952 {
1953 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1954 if (inode) {
1955 security_d_instantiate(entry, inode);
1956 spin_lock(&inode->i_lock);
1957 __d_instantiate(entry, inode);
1958 spin_unlock(&inode->i_lock);
1959 }
1960 }
1961 EXPORT_SYMBOL(d_instantiate);
1962
1963 /*
1964 * This should be equivalent to d_instantiate() + unlock_new_inode(),
1965 * with lockdep-related part of unlock_new_inode() done before
1966 * anything else. Use that instead of open-coding d_instantiate()/
1967 * unlock_new_inode() combinations.
1968 */
1969 void d_instantiate_new(struct dentry *entry, struct inode *inode)
1970 {
1971 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1972 BUG_ON(!inode);
1973 lockdep_annotate_inode_mutex_key(inode);
1974 security_d_instantiate(entry, inode);
1975 spin_lock(&inode->i_lock);
1976 __d_instantiate(entry, inode);
1977 WARN_ON(!(inode->i_state & I_NEW));
1978 inode->i_state &= ~I_NEW & ~I_CREATING;
1979 smp_mb();
1980 wake_up_bit(&inode->i_state, __I_NEW);
1981 spin_unlock(&inode->i_lock);
1982 }
1983 EXPORT_SYMBOL(d_instantiate_new);
1984
1985 struct dentry *d_make_root(struct inode *root_inode)
1986 {
1987 struct dentry *res = NULL;
1988
1989 if (root_inode) {
1990 res = d_alloc_anon(root_inode->i_sb);
1991 if (res)
1992 d_instantiate(res, root_inode);
1993 else
1994 iput(root_inode);
1995 }
1996 return res;
1997 }
1998 EXPORT_SYMBOL(d_make_root);
1999
2000 static struct dentry *__d_instantiate_anon(struct dentry *dentry,
2001 struct inode *inode,
2002 bool disconnected)
2003 {
2004 struct dentry *res;
2005 unsigned add_flags;
2006
2007 security_d_instantiate(dentry, inode);
2008 spin_lock(&inode->i_lock);
2009 res = __d_find_any_alias(inode);
2010 if (res) {
2011 spin_unlock(&inode->i_lock);
2012 dput(dentry);
2013 goto out_iput;
2014 }
2015
2016 /* attach a disconnected dentry */
2017 add_flags = d_flags_for_inode(inode);
2018
2019 if (disconnected)
2020 add_flags |= DCACHE_DISCONNECTED;
2021
2022 spin_lock(&dentry->d_lock);
2023 __d_set_inode_and_type(dentry, inode, add_flags);
2024 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2025 if (!disconnected) {
2026 hlist_bl_lock(&dentry->d_sb->s_roots);
2027 hlist_bl_add_head(&dentry->d_hash, &dentry->d_sb->s_roots);
2028 hlist_bl_unlock(&dentry->d_sb->s_roots);
2029 }
2030 spin_unlock(&dentry->d_lock);
2031 spin_unlock(&inode->i_lock);
2032
2033 return dentry;
2034
2035 out_iput:
2036 iput(inode);
2037 return res;
2038 }
2039
2040 struct dentry *d_instantiate_anon(struct dentry *dentry, struct inode *inode)
2041 {
2042 return __d_instantiate_anon(dentry, inode, true);
2043 }
2044 EXPORT_SYMBOL(d_instantiate_anon);
2045
2046 static struct dentry *__d_obtain_alias(struct inode *inode, bool disconnected)
2047 {
2048 struct dentry *tmp;
2049 struct dentry *res;
2050
2051 if (!inode)
2052 return ERR_PTR(-ESTALE);
2053 if (IS_ERR(inode))
2054 return ERR_CAST(inode);
2055
2056 res = d_find_any_alias(inode);
2057 if (res)
2058 goto out_iput;
2059
2060 tmp = d_alloc_anon(inode->i_sb);
2061 if (!tmp) {
2062 res = ERR_PTR(-ENOMEM);
2063 goto out_iput;
2064 }
2065
2066 return __d_instantiate_anon(tmp, inode, disconnected);
2067
2068 out_iput:
2069 iput(inode);
2070 return res;
2071 }
2072
2073 /**
2074 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
2075 * @inode: inode to allocate the dentry for
2076 *
2077 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
2078 * similar open by handle operations. The returned dentry may be anonymous,
2079 * or may have a full name (if the inode was already in the cache).
2080 *
2081 * When called on a directory inode, we must ensure that the inode only ever
2082 * has one dentry. If a dentry is found, that is returned instead of
2083 * allocating a new one.
2084 *
2085 * On successful return, the reference to the inode has been transferred
2086 * to the dentry. In case of an error the reference on the inode is released.
2087 * To make it easier to use in export operations a %NULL or IS_ERR inode may
2088 * be passed in and the error will be propagated to the return value,
2089 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
2090 */
2091 struct dentry *d_obtain_alias(struct inode *inode)
2092 {
2093 return __d_obtain_alias(inode, true);
2094 }
2095 EXPORT_SYMBOL(d_obtain_alias);
2096
2097 /**
2098 * d_obtain_root - find or allocate a dentry for a given inode
2099 * @inode: inode to allocate the dentry for
2100 *
2101 * Obtain an IS_ROOT dentry for the root of a filesystem.
2102 *
2103 * We must ensure that directory inodes only ever have one dentry. If a
2104 * dentry is found, that is returned instead of allocating a new one.
2105 *
2106 * On successful return, the reference to the inode has been transferred
2107 * to the dentry. In case of an error the reference on the inode is
2108 * released. A %NULL or IS_ERR inode may be passed in and will be the
2109 * error will be propagate to the return value, with a %NULL @inode
2110 * replaced by ERR_PTR(-ESTALE).
2111 */
2112 struct dentry *d_obtain_root(struct inode *inode)
2113 {
2114 return __d_obtain_alias(inode, false);
2115 }
2116 EXPORT_SYMBOL(d_obtain_root);
2117
2118 /**
2119 * d_add_ci - lookup or allocate new dentry with case-exact name
2120 * @inode: the inode case-insensitive lookup has found
2121 * @dentry: the negative dentry that was passed to the parent's lookup func
2122 * @name: the case-exact name to be associated with the returned dentry
2123 *
2124 * This is to avoid filling the dcache with case-insensitive names to the
2125 * same inode, only the actual correct case is stored in the dcache for
2126 * case-insensitive filesystems.
2127 *
2128 * For a case-insensitive lookup match and if the the case-exact dentry
2129 * already exists in in the dcache, use it and return it.
2130 *
2131 * If no entry exists with the exact case name, allocate new dentry with
2132 * the exact case, and return the spliced entry.
2133 */
2134 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
2135 struct qstr *name)
2136 {
2137 struct dentry *found, *res;
2138
2139 /*
2140 * First check if a dentry matching the name already exists,
2141 * if not go ahead and create it now.
2142 */
2143 found = d_hash_and_lookup(dentry->d_parent, name);
2144 if (found) {
2145 iput(inode);
2146 return found;
2147 }
2148 if (d_in_lookup(dentry)) {
2149 found = d_alloc_parallel(dentry->d_parent, name,
2150 dentry->d_wait);
2151 if (IS_ERR(found) || !d_in_lookup(found)) {
2152 iput(inode);
2153 return found;
2154 }
2155 } else {
2156 found = d_alloc(dentry->d_parent, name);
2157 if (!found) {
2158 iput(inode);
2159 return ERR_PTR(-ENOMEM);
2160 }
2161 }
2162 res = d_splice_alias(inode, found);
2163 if (res) {
2164 dput(found);
2165 return res;
2166 }
2167 return found;
2168 }
2169 EXPORT_SYMBOL(d_add_ci);
2170
2171
2172 static inline bool d_same_name(const struct dentry *dentry,
2173 const struct dentry *parent,
2174 const struct qstr *name)
2175 {
2176 if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) {
2177 if (dentry->d_name.len != name->len)
2178 return false;
2179 return dentry_cmp(dentry, name->name, name->len) == 0;
2180 }
2181 return parent->d_op->d_compare(dentry,
2182 dentry->d_name.len, dentry->d_name.name,
2183 name) == 0;
2184 }
2185
2186 /**
2187 * __d_lookup_rcu - search for a dentry (racy, store-free)
2188 * @parent: parent dentry
2189 * @name: qstr of name we wish to find
2190 * @seqp: returns d_seq value at the point where the dentry was found
2191 * Returns: dentry, or NULL
2192 *
2193 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2194 * resolution (store-free path walking) design described in
2195 * Documentation/filesystems/path-lookup.txt.
2196 *
2197 * This is not to be used outside core vfs.
2198 *
2199 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2200 * held, and rcu_read_lock held. The returned dentry must not be stored into
2201 * without taking d_lock and checking d_seq sequence count against @seq
2202 * returned here.
2203 *
2204 * A refcount may be taken on the found dentry with the d_rcu_to_refcount
2205 * function.
2206 *
2207 * Alternatively, __d_lookup_rcu may be called again to look up the child of
2208 * the returned dentry, so long as its parent's seqlock is checked after the
2209 * child is looked up. Thus, an interlocking stepping of sequence lock checks
2210 * is formed, giving integrity down the path walk.
2211 *
2212 * NOTE! The caller *has* to check the resulting dentry against the sequence
2213 * number we've returned before using any of the resulting dentry state!
2214 */
2215 struct dentry *__d_lookup_rcu(const struct dentry *parent,
2216 const struct qstr *name,
2217 unsigned *seqp)
2218 {
2219 u64 hashlen = name->hash_len;
2220 const unsigned char *str = name->name;
2221 struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen));
2222 struct hlist_bl_node *node;
2223 struct dentry *dentry;
2224
2225 /*
2226 * Note: There is significant duplication with __d_lookup_rcu which is
2227 * required to prevent single threaded performance regressions
2228 * especially on architectures where smp_rmb (in seqcounts) are costly.
2229 * Keep the two functions in sync.
2230 */
2231
2232 /*
2233 * The hash list is protected using RCU.
2234 *
2235 * Carefully use d_seq when comparing a candidate dentry, to avoid
2236 * races with d_move().
2237 *
2238 * It is possible that concurrent renames can mess up our list
2239 * walk here and result in missing our dentry, resulting in the
2240 * false-negative result. d_lookup() protects against concurrent
2241 * renames using rename_lock seqlock.
2242 *
2243 * See Documentation/filesystems/path-lookup.txt for more details.
2244 */
2245 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2246 unsigned seq;
2247
2248 seqretry:
2249 /*
2250 * The dentry sequence count protects us from concurrent
2251 * renames, and thus protects parent and name fields.
2252 *
2253 * The caller must perform a seqcount check in order
2254 * to do anything useful with the returned dentry.
2255 *
2256 * NOTE! We do a "raw" seqcount_begin here. That means that
2257 * we don't wait for the sequence count to stabilize if it
2258 * is in the middle of a sequence change. If we do the slow
2259 * dentry compare, we will do seqretries until it is stable,
2260 * and if we end up with a successful lookup, we actually
2261 * want to exit RCU lookup anyway.
2262 *
2263 * Note that raw_seqcount_begin still *does* smp_rmb(), so
2264 * we are still guaranteed NUL-termination of ->d_name.name.
2265 */
2266 seq = raw_seqcount_begin(&dentry->d_seq);
2267 if (dentry->d_parent != parent)
2268 continue;
2269 if (d_unhashed(dentry))
2270 continue;
2271
2272 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
2273 int tlen;
2274 const char *tname;
2275 if (dentry->d_name.hash != hashlen_hash(hashlen))
2276 continue;
2277 tlen = dentry->d_name.len;
2278 tname = dentry->d_name.name;
2279 /* we want a consistent (name,len) pair */
2280 if (read_seqcount_retry(&dentry->d_seq, seq)) {
2281 cpu_relax();
2282 goto seqretry;
2283 }
2284 if (parent->d_op->d_compare(dentry,
2285 tlen, tname, name) != 0)
2286 continue;
2287 } else {
2288 if (dentry->d_name.hash_len != hashlen)
2289 continue;
2290 if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0)
2291 continue;
2292 }
2293 *seqp = seq;
2294 return dentry;
2295 }
2296 return NULL;
2297 }
2298
2299 /**
2300 * d_lookup - search for a dentry
2301 * @parent: parent dentry
2302 * @name: qstr of name we wish to find
2303 * Returns: dentry, or NULL
2304 *
2305 * d_lookup searches the children of the parent dentry for the name in
2306 * question. If the dentry is found its reference count is incremented and the
2307 * dentry is returned. The caller must use dput to free the entry when it has
2308 * finished using it. %NULL is returned if the dentry does not exist.
2309 */
2310 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2311 {
2312 struct dentry *dentry;
2313 unsigned seq;
2314
2315 do {
2316 seq = read_seqbegin(&rename_lock);
2317 dentry = __d_lookup(parent, name);
2318 if (dentry)
2319 break;
2320 } while (read_seqretry(&rename_lock, seq));
2321 return dentry;
2322 }
2323 EXPORT_SYMBOL(d_lookup);
2324
2325 /**
2326 * __d_lookup - search for a dentry (racy)
2327 * @parent: parent dentry
2328 * @name: qstr of name we wish to find
2329 * Returns: dentry, or NULL
2330 *
2331 * __d_lookup is like d_lookup, however it may (rarely) return a
2332 * false-negative result due to unrelated rename activity.
2333 *
2334 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2335 * however it must be used carefully, eg. with a following d_lookup in
2336 * the case of failure.
2337 *
2338 * __d_lookup callers must be commented.
2339 */
2340 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2341 {
2342 unsigned int hash = name->hash;
2343 struct hlist_bl_head *b = d_hash(hash);
2344 struct hlist_bl_node *node;
2345 struct dentry *found = NULL;
2346 struct dentry *dentry;
2347
2348 /*
2349 * Note: There is significant duplication with __d_lookup_rcu which is
2350 * required to prevent single threaded performance regressions
2351 * especially on architectures where smp_rmb (in seqcounts) are costly.
2352 * Keep the two functions in sync.
2353 */
2354
2355 /*
2356 * The hash list is protected using RCU.
2357 *
2358 * Take d_lock when comparing a candidate dentry, to avoid races
2359 * with d_move().
2360 *
2361 * It is possible that concurrent renames can mess up our list
2362 * walk here and result in missing our dentry, resulting in the
2363 * false-negative result. d_lookup() protects against concurrent
2364 * renames using rename_lock seqlock.
2365 *
2366 * See Documentation/filesystems/path-lookup.txt for more details.
2367 */
2368 rcu_read_lock();
2369
2370 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2371
2372 if (dentry->d_name.hash != hash)
2373 continue;
2374
2375 spin_lock(&dentry->d_lock);
2376 if (dentry->d_parent != parent)
2377 goto next;
2378 if (d_unhashed(dentry))
2379 goto next;
2380
2381 if (!d_same_name(dentry, parent, name))
2382 goto next;
2383
2384 dentry->d_lockref.count++;
2385 found = dentry;
2386 spin_unlock(&dentry->d_lock);
2387 break;
2388 next:
2389 spin_unlock(&dentry->d_lock);
2390 }
2391 rcu_read_unlock();
2392
2393 return found;
2394 }
2395
2396 /**
2397 * d_hash_and_lookup - hash the qstr then search for a dentry
2398 * @dir: Directory to search in
2399 * @name: qstr of name we wish to find
2400 *
2401 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2402 */
2403 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2404 {
2405 /*
2406 * Check for a fs-specific hash function. Note that we must
2407 * calculate the standard hash first, as the d_op->d_hash()
2408 * routine may choose to leave the hash value unchanged.
2409 */
2410 name->hash = full_name_hash(dir, name->name, name->len);
2411 if (dir->d_flags & DCACHE_OP_HASH) {
2412 int err = dir->d_op->d_hash(dir, name);
2413 if (unlikely(err < 0))
2414 return ERR_PTR(err);
2415 }
2416 return d_lookup(dir, name);
2417 }
2418 EXPORT_SYMBOL(d_hash_and_lookup);
2419
2420 /*
2421 * When a file is deleted, we have two options:
2422 * - turn this dentry into a negative dentry
2423 * - unhash this dentry and free it.
2424 *
2425 * Usually, we want to just turn this into
2426 * a negative dentry, but if anybody else is
2427 * currently using the dentry or the inode
2428 * we can't do that and we fall back on removing
2429 * it from the hash queues and waiting for
2430 * it to be deleted later when it has no users
2431 */
2432
2433 /**
2434 * d_delete - delete a dentry
2435 * @dentry: The dentry to delete
2436 *
2437 * Turn the dentry into a negative dentry if possible, otherwise
2438 * remove it from the hash queues so it can be deleted later
2439 */
2440
2441 void d_delete(struct dentry * dentry)
2442 {
2443 struct inode *inode = dentry->d_inode;
2444
2445 spin_lock(&inode->i_lock);
2446 spin_lock(&dentry->d_lock);
2447 /*
2448 * Are we the only user?
2449 */
2450 if (dentry->d_lockref.count == 1) {
2451 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2452 dentry_unlink_inode(dentry);
2453 } else {
2454 __d_drop(dentry);
2455 spin_unlock(&dentry->d_lock);
2456 spin_unlock(&inode->i_lock);
2457 }
2458 }
2459 EXPORT_SYMBOL(d_delete);
2460
2461 static void __d_rehash(struct dentry *entry)
2462 {
2463 struct hlist_bl_head *b = d_hash(entry->d_name.hash);
2464
2465 hlist_bl_lock(b);
2466 hlist_bl_add_head_rcu(&entry->d_hash, b);
2467 hlist_bl_unlock(b);
2468 }
2469
2470 /**
2471 * d_rehash - add an entry back to the hash
2472 * @entry: dentry to add to the hash
2473 *
2474 * Adds a dentry to the hash according to its name.
2475 */
2476
2477 void d_rehash(struct dentry * entry)
2478 {
2479 spin_lock(&entry->d_lock);
2480 __d_rehash(entry);
2481 spin_unlock(&entry->d_lock);
2482 }
2483 EXPORT_SYMBOL(d_rehash);
2484
2485 static inline unsigned start_dir_add(struct inode *dir)
2486 {
2487
2488 for (;;) {
2489 unsigned n = dir->i_dir_seq;
2490 if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n)
2491 return n;
2492 cpu_relax();
2493 }
2494 }
2495
2496 static inline void end_dir_add(struct inode *dir, unsigned n)
2497 {
2498 smp_store_release(&dir->i_dir_seq, n + 2);
2499 }
2500
2501 static void d_wait_lookup(struct dentry *dentry)
2502 {
2503 if (d_in_lookup(dentry)) {
2504 DECLARE_WAITQUEUE(wait, current);
2505 add_wait_queue(dentry->d_wait, &wait);
2506 do {
2507 set_current_state(TASK_UNINTERRUPTIBLE);
2508 spin_unlock(&dentry->d_lock);
2509 schedule();
2510 spin_lock(&dentry->d_lock);
2511 } while (d_in_lookup(dentry));
2512 }
2513 }
2514
2515 struct dentry *d_alloc_parallel(struct dentry *parent,
2516 const struct qstr *name,
2517 wait_queue_head_t *wq)
2518 {
2519 unsigned int hash = name->hash;
2520 struct hlist_bl_head *b = in_lookup_hash(parent, hash);
2521 struct hlist_bl_node *node;
2522 struct dentry *new = d_alloc(parent, name);
2523 struct dentry *dentry;
2524 unsigned seq, r_seq, d_seq;
2525
2526 if (unlikely(!new))
2527 return ERR_PTR(-ENOMEM);
2528
2529 retry:
2530 rcu_read_lock();
2531 seq = smp_load_acquire(&parent->d_inode->i_dir_seq);
2532 r_seq = read_seqbegin(&rename_lock);
2533 dentry = __d_lookup_rcu(parent, name, &d_seq);
2534 if (unlikely(dentry)) {
2535 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2536 rcu_read_unlock();
2537 goto retry;
2538 }
2539 if (read_seqcount_retry(&dentry->d_seq, d_seq)) {
2540 rcu_read_unlock();
2541 dput(dentry);
2542 goto retry;
2543 }
2544 rcu_read_unlock();
2545 dput(new);
2546 return dentry;
2547 }
2548 if (unlikely(read_seqretry(&rename_lock, r_seq))) {
2549 rcu_read_unlock();
2550 goto retry;
2551 }
2552
2553 if (unlikely(seq & 1)) {
2554 rcu_read_unlock();
2555 goto retry;
2556 }
2557
2558 hlist_bl_lock(b);
2559 if (unlikely(READ_ONCE(parent->d_inode->i_dir_seq) != seq)) {
2560 hlist_bl_unlock(b);
2561 rcu_read_unlock();
2562 goto retry;
2563 }
2564 /*
2565 * No changes for the parent since the beginning of d_lookup().
2566 * Since all removals from the chain happen with hlist_bl_lock(),
2567 * any potential in-lookup matches are going to stay here until
2568 * we unlock the chain. All fields are stable in everything
2569 * we encounter.
2570 */
2571 hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) {
2572 if (dentry->d_name.hash != hash)
2573 continue;
2574 if (dentry->d_parent != parent)
2575 continue;
2576 if (!d_same_name(dentry, parent, name))
2577 continue;
2578 hlist_bl_unlock(b);
2579 /* now we can try to grab a reference */
2580 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2581 rcu_read_unlock();
2582 goto retry;
2583 }
2584
2585 rcu_read_unlock();
2586 /*
2587 * somebody is likely to be still doing lookup for it;
2588 * wait for them to finish
2589 */
2590 spin_lock(&dentry->d_lock);
2591 d_wait_lookup(dentry);
2592 /*
2593 * it's not in-lookup anymore; in principle we should repeat
2594 * everything from dcache lookup, but it's likely to be what
2595 * d_lookup() would've found anyway. If it is, just return it;
2596 * otherwise we really have to repeat the whole thing.
2597 */
2598 if (unlikely(dentry->d_name.hash != hash))
2599 goto mismatch;
2600 if (unlikely(dentry->d_parent != parent))
2601 goto mismatch;
2602 if (unlikely(d_unhashed(dentry)))
2603 goto mismatch;
2604 if (unlikely(!d_same_name(dentry, parent, name)))
2605 goto mismatch;
2606 /* OK, it *is* a hashed match; return it */
2607 spin_unlock(&dentry->d_lock);
2608 dput(new);
2609 return dentry;
2610 }
2611 rcu_read_unlock();
2612 /* we can't take ->d_lock here; it's OK, though. */
2613 new->d_flags |= DCACHE_PAR_LOOKUP;
2614 new->d_wait = wq;
2615 hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b);
2616 hlist_bl_unlock(b);
2617 return new;
2618 mismatch:
2619 spin_unlock(&dentry->d_lock);
2620 dput(dentry);
2621 goto retry;
2622 }
2623 EXPORT_SYMBOL(d_alloc_parallel);
2624
2625 void __d_lookup_done(struct dentry *dentry)
2626 {
2627 struct hlist_bl_head *b = in_lookup_hash(dentry->d_parent,
2628 dentry->d_name.hash);
2629 hlist_bl_lock(b);
2630 dentry->d_flags &= ~DCACHE_PAR_LOOKUP;
2631 __hlist_bl_del(&dentry->d_u.d_in_lookup_hash);
2632 wake_up_all(dentry->d_wait);
2633 dentry->d_wait = NULL;
2634 hlist_bl_unlock(b);
2635 INIT_HLIST_NODE(&dentry->d_u.d_alias);
2636 INIT_LIST_HEAD(&dentry->d_lru);
2637 }
2638 EXPORT_SYMBOL(__d_lookup_done);
2639
2640 /* inode->i_lock held if inode is non-NULL */
2641
2642 static inline void __d_add(struct dentry *dentry, struct inode *inode)
2643 {
2644 struct inode *dir = NULL;
2645 unsigned n;
2646 spin_lock(&dentry->d_lock);
2647 if (unlikely(d_in_lookup(dentry))) {
2648 dir = dentry->d_parent->d_inode;
2649 n = start_dir_add(dir);
2650 __d_lookup_done(dentry);
2651 }
2652 if (inode) {
2653 unsigned add_flags = d_flags_for_inode(inode);
2654 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2655 raw_write_seqcount_begin(&dentry->d_seq);
2656 __d_set_inode_and_type(dentry, inode, add_flags);
2657 raw_write_seqcount_end(&dentry->d_seq);
2658 fsnotify_update_flags(dentry);
2659 }
2660 __d_rehash(dentry);
2661 if (dir)
2662 end_dir_add(dir, n);
2663 spin_unlock(&dentry->d_lock);
2664 if (inode)
2665 spin_unlock(&inode->i_lock);
2666 }
2667
2668 /**
2669 * d_add - add dentry to hash queues
2670 * @entry: dentry to add
2671 * @inode: The inode to attach to this dentry
2672 *
2673 * This adds the entry to the hash queues and initializes @inode.
2674 * The entry was actually filled in earlier during d_alloc().
2675 */
2676
2677 void d_add(struct dentry *entry, struct inode *inode)
2678 {
2679 if (inode) {
2680 security_d_instantiate(entry, inode);
2681 spin_lock(&inode->i_lock);
2682 }
2683 __d_add(entry, inode);
2684 }
2685 EXPORT_SYMBOL(d_add);
2686
2687 /**
2688 * d_exact_alias - find and hash an exact unhashed alias
2689 * @entry: dentry to add
2690 * @inode: The inode to go with this dentry
2691 *
2692 * If an unhashed dentry with the same name/parent and desired
2693 * inode already exists, hash and return it. Otherwise, return
2694 * NULL.
2695 *
2696 * Parent directory should be locked.
2697 */
2698 struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode)
2699 {
2700 struct dentry *alias;
2701 unsigned int hash = entry->d_name.hash;
2702
2703 spin_lock(&inode->i_lock);
2704 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
2705 /*
2706 * Don't need alias->d_lock here, because aliases with
2707 * d_parent == entry->d_parent are not subject to name or
2708 * parent changes, because the parent inode i_mutex is held.
2709 */
2710 if (alias->d_name.hash != hash)
2711 continue;
2712 if (alias->d_parent != entry->d_parent)
2713 continue;
2714 if (!d_same_name(alias, entry->d_parent, &entry->d_name))
2715 continue;
2716 spin_lock(&alias->d_lock);
2717 if (!d_unhashed(alias)) {
2718 spin_unlock(&alias->d_lock);
2719 alias = NULL;
2720 } else {
2721 __dget_dlock(alias);
2722 __d_rehash(alias);
2723 spin_unlock(&alias->d_lock);
2724 }
2725 spin_unlock(&inode->i_lock);
2726 return alias;
2727 }
2728 spin_unlock(&inode->i_lock);
2729 return NULL;
2730 }
2731 EXPORT_SYMBOL(d_exact_alias);
2732
2733 static void swap_names(struct dentry *dentry, struct dentry *target)
2734 {
2735 if (unlikely(dname_external(target))) {
2736 if (unlikely(dname_external(dentry))) {
2737 /*
2738 * Both external: swap the pointers
2739 */
2740 swap(target->d_name.name, dentry->d_name.name);
2741 } else {
2742 /*
2743 * dentry:internal, target:external. Steal target's
2744 * storage and make target internal.
2745 */
2746 memcpy(target->d_iname, dentry->d_name.name,
2747 dentry->d_name.len + 1);
2748 dentry->d_name.name = target->d_name.name;
2749 target->d_name.name = target->d_iname;
2750 }
2751 } else {
2752 if (unlikely(dname_external(dentry))) {
2753 /*
2754 * dentry:external, target:internal. Give dentry's
2755 * storage to target and make dentry internal
2756 */
2757 memcpy(dentry->d_iname, target->d_name.name,
2758 target->d_name.len + 1);
2759 target->d_name.name = dentry->d_name.name;
2760 dentry->d_name.name = dentry->d_iname;
2761 } else {
2762 /*
2763 * Both are internal.
2764 */
2765 unsigned int i;
2766 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2767 for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2768 swap(((long *) &dentry->d_iname)[i],
2769 ((long *) &target->d_iname)[i]);
2770 }
2771 }
2772 }
2773 swap(dentry->d_name.hash_len, target->d_name.hash_len);
2774 }
2775
2776 static void copy_name(struct dentry *dentry, struct dentry *target)
2777 {
2778 struct external_name *old_name = NULL;
2779 if (unlikely(dname_external(dentry)))
2780 old_name = external_name(dentry);
2781 if (unlikely(dname_external(target))) {
2782 atomic_inc(&external_name(target)->u.count);
2783 dentry->d_name = target->d_name;
2784 } else {
2785 memcpy(dentry->d_iname, target->d_name.name,
2786 target->d_name.len + 1);
2787 dentry->d_name.name = dentry->d_iname;
2788 dentry->d_name.hash_len = target->d_name.hash_len;
2789 }
2790 if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2791 kfree_rcu(old_name, u.head);
2792 }
2793
2794 /*
2795 * __d_move - move a dentry
2796 * @dentry: entry to move
2797 * @target: new dentry
2798 * @exchange: exchange the two dentries
2799 *
2800 * Update the dcache to reflect the move of a file name. Negative
2801 * dcache entries should not be moved in this way. Caller must hold
2802 * rename_lock, the i_mutex of the source and target directories,
2803 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2804 */
2805 static void __d_move(struct dentry *dentry, struct dentry *target,
2806 bool exchange)
2807 {
2808 struct dentry *old_parent, *p;
2809 struct inode *dir = NULL;
2810 unsigned n;
2811
2812 WARN_ON(!dentry->d_inode);
2813 if (WARN_ON(dentry == target))
2814 return;
2815
2816 BUG_ON(d_ancestor(target, dentry));
2817 old_parent = dentry->d_parent;
2818 p = d_ancestor(old_parent, target);
2819 if (IS_ROOT(dentry)) {
2820 BUG_ON(p);
2821 spin_lock(&target->d_parent->d_lock);
2822 } else if (!p) {
2823 /* target is not a descendent of dentry->d_parent */
2824 spin_lock(&target->d_parent->d_lock);
2825 spin_lock_nested(&old_parent->d_lock, DENTRY_D_LOCK_NESTED);
2826 } else {
2827 BUG_ON(p == dentry);
2828 spin_lock(&old_parent->d_lock);
2829 if (p != target)
2830 spin_lock_nested(&target->d_parent->d_lock,
2831 DENTRY_D_LOCK_NESTED);
2832 }
2833 spin_lock_nested(&dentry->d_lock, 2);
2834 spin_lock_nested(&target->d_lock, 3);
2835
2836 if (unlikely(d_in_lookup(target))) {
2837 dir = target->d_parent->d_inode;
2838 n = start_dir_add(dir);
2839 __d_lookup_done(target);
2840 }
2841
2842 write_seqcount_begin(&dentry->d_seq);
2843 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
2844
2845 /* unhash both */
2846 if (!d_unhashed(dentry))
2847 ___d_drop(dentry);
2848 if (!d_unhashed(target))
2849 ___d_drop(target);
2850
2851 /* ... and switch them in the tree */
2852 dentry->d_parent = target->d_parent;
2853 if (!exchange) {
2854 copy_name(dentry, target);
2855 target->d_hash.pprev = NULL;
2856 dentry->d_parent->d_lockref.count++;
2857 if (dentry != old_parent) /* wasn't IS_ROOT */
2858 WARN_ON(!--old_parent->d_lockref.count);
2859 } else {
2860 target->d_parent = old_parent;
2861 swap_names(dentry, target);
2862 list_move(&target->d_child, &target->d_parent->d_subdirs);
2863 __d_rehash(target);
2864 fsnotify_update_flags(target);
2865 }
2866 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2867 __d_rehash(dentry);
2868 fsnotify_update_flags(dentry);
2869 fscrypt_handle_d_move(dentry);
2870
2871 write_seqcount_end(&target->d_seq);
2872 write_seqcount_end(&dentry->d_seq);
2873
2874 if (dir)
2875 end_dir_add(dir, n);
2876
2877 if (dentry->d_parent != old_parent)
2878 spin_unlock(&dentry->d_parent->d_lock);
2879 if (dentry != old_parent)
2880 spin_unlock(&old_parent->d_lock);
2881 spin_unlock(&target->d_lock);
2882 spin_unlock(&dentry->d_lock);
2883 }
2884
2885 /*
2886 * d_move - move a dentry
2887 * @dentry: entry to move
2888 * @target: new dentry
2889 *
2890 * Update the dcache to reflect the move of a file name. Negative
2891 * dcache entries should not be moved in this way. See the locking
2892 * requirements for __d_move.
2893 */
2894 void d_move(struct dentry *dentry, struct dentry *target)
2895 {
2896 write_seqlock(&rename_lock);
2897 __d_move(dentry, target, false);
2898 write_sequnlock(&rename_lock);
2899 }
2900 EXPORT_SYMBOL(d_move);
2901
2902 /*
2903 * d_exchange - exchange two dentries
2904 * @dentry1: first dentry
2905 * @dentry2: second dentry
2906 */
2907 void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2908 {
2909 write_seqlock(&rename_lock);
2910
2911 WARN_ON(!dentry1->d_inode);
2912 WARN_ON(!dentry2->d_inode);
2913 WARN_ON(IS_ROOT(dentry1));
2914 WARN_ON(IS_ROOT(dentry2));
2915
2916 __d_move(dentry1, dentry2, true);
2917
2918 write_sequnlock(&rename_lock);
2919 }
2920 EXPORT_SYMBOL_GPL(d_exchange);
2921
2922 /**
2923 * d_ancestor - search for an ancestor
2924 * @p1: ancestor dentry
2925 * @p2: child dentry
2926 *
2927 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2928 * an ancestor of p2, else NULL.
2929 */
2930 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2931 {
2932 struct dentry *p;
2933
2934 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2935 if (p->d_parent == p1)
2936 return p;
2937 }
2938 return NULL;
2939 }
2940
2941 /*
2942 * This helper attempts to cope with remotely renamed directories
2943 *
2944 * It assumes that the caller is already holding
2945 * dentry->d_parent->d_inode->i_mutex, and rename_lock
2946 *
2947 * Note: If ever the locking in lock_rename() changes, then please
2948 * remember to update this too...
2949 */
2950 static int __d_unalias(struct inode *inode,
2951 struct dentry *dentry, struct dentry *alias)
2952 {
2953 struct mutex *m1 = NULL;
2954 struct rw_semaphore *m2 = NULL;
2955 int ret = -ESTALE;
2956
2957 /* If alias and dentry share a parent, then no extra locks required */
2958 if (alias->d_parent == dentry->d_parent)
2959 goto out_unalias;
2960
2961 /* See lock_rename() */
2962 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2963 goto out_err;
2964 m1 = &dentry->d_sb->s_vfs_rename_mutex;
2965 if (!inode_trylock_shared(alias->d_parent->d_inode))
2966 goto out_err;
2967 m2 = &alias->d_parent->d_inode->i_rwsem;
2968 out_unalias:
2969 __d_move(alias, dentry, false);
2970 ret = 0;
2971 out_err:
2972 if (m2)
2973 up_read(m2);
2974 if (m1)
2975 mutex_unlock(m1);
2976 return ret;
2977 }
2978
2979 /**
2980 * d_splice_alias - splice a disconnected dentry into the tree if one exists
2981 * @inode: the inode which may have a disconnected dentry
2982 * @dentry: a negative dentry which we want to point to the inode.
2983 *
2984 * If inode is a directory and has an IS_ROOT alias, then d_move that in
2985 * place of the given dentry and return it, else simply d_add the inode
2986 * to the dentry and return NULL.
2987 *
2988 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
2989 * we should error out: directories can't have multiple aliases.
2990 *
2991 * This is needed in the lookup routine of any filesystem that is exportable
2992 * (via knfsd) so that we can build dcache paths to directories effectively.
2993 *
2994 * If a dentry was found and moved, then it is returned. Otherwise NULL
2995 * is returned. This matches the expected return value of ->lookup.
2996 *
2997 * Cluster filesystems may call this function with a negative, hashed dentry.
2998 * In that case, we know that the inode will be a regular file, and also this
2999 * will only occur during atomic_open. So we need to check for the dentry
3000 * being already hashed only in the final case.
3001 */
3002 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
3003 {
3004 if (IS_ERR(inode))
3005 return ERR_CAST(inode);
3006
3007 BUG_ON(!d_unhashed(dentry));
3008
3009 if (!inode)
3010 goto out;
3011
3012 security_d_instantiate(dentry, inode);
3013 spin_lock(&inode->i_lock);
3014 if (S_ISDIR(inode->i_mode)) {
3015 struct dentry *new = __d_find_any_alias(inode);
3016 if (unlikely(new)) {
3017 /* The reference to new ensures it remains an alias */
3018 spin_unlock(&inode->i_lock);
3019 write_seqlock(&rename_lock);
3020 if (unlikely(d_ancestor(new, dentry))) {
3021 write_sequnlock(&rename_lock);
3022 dput(new);
3023 new = ERR_PTR(-ELOOP);
3024 pr_warn_ratelimited(
3025 "VFS: Lookup of '%s' in %s %s"
3026 " would have caused loop\n",
3027 dentry->d_name.name,
3028 inode->i_sb->s_type->name,
3029 inode->i_sb->s_id);
3030 } else if (!IS_ROOT(new)) {
3031 struct dentry *old_parent = dget(new->d_parent);
3032 int err = __d_unalias(inode, dentry, new);
3033 write_sequnlock(&rename_lock);
3034 if (err) {
3035 dput(new);
3036 new = ERR_PTR(err);
3037 }
3038 dput(old_parent);
3039 } else {
3040 __d_move(new, dentry, false);
3041 write_sequnlock(&rename_lock);
3042 }
3043 iput(inode);
3044 return new;
3045 }
3046 }
3047 out:
3048 __d_add(dentry, inode);
3049 return NULL;
3050 }
3051 EXPORT_SYMBOL(d_splice_alias);
3052
3053 /*
3054 * Test whether new_dentry is a subdirectory of old_dentry.
3055 *
3056 * Trivially implemented using the dcache structure
3057 */
3058
3059 /**
3060 * is_subdir - is new dentry a subdirectory of old_dentry
3061 * @new_dentry: new dentry
3062 * @old_dentry: old dentry
3063 *
3064 * Returns true if new_dentry is a subdirectory of the parent (at any depth).
3065 * Returns false otherwise.
3066 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3067 */
3068
3069 bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
3070 {
3071 bool result;
3072 unsigned seq;
3073
3074 if (new_dentry == old_dentry)
3075 return true;
3076
3077 do {
3078 /* for restarting inner loop in case of seq retry */
3079 seq = read_seqbegin(&rename_lock);
3080 /*
3081 * Need rcu_readlock to protect against the d_parent trashing
3082 * due to d_move
3083 */
3084 rcu_read_lock();
3085 if (d_ancestor(old_dentry, new_dentry))
3086 result = true;
3087 else
3088 result = false;
3089 rcu_read_unlock();
3090 } while (read_seqretry(&rename_lock, seq));
3091
3092 return result;
3093 }
3094 EXPORT_SYMBOL(is_subdir);
3095
3096 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
3097 {
3098 struct dentry *root = data;
3099 if (dentry != root) {
3100 if (d_unhashed(dentry) || !dentry->d_inode)
3101 return D_WALK_SKIP;
3102
3103 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3104 dentry->d_flags |= DCACHE_GENOCIDE;
3105 dentry->d_lockref.count--;
3106 }
3107 }
3108 return D_WALK_CONTINUE;
3109 }
3110
3111 void d_genocide(struct dentry *parent)
3112 {
3113 d_walk(parent, parent, d_genocide_kill);
3114 }
3115
3116 EXPORT_SYMBOL(d_genocide);
3117
3118 void d_tmpfile(struct dentry *dentry, struct inode *inode)
3119 {
3120 inode_dec_link_count(inode);
3121 BUG_ON(dentry->d_name.name != dentry->d_iname ||
3122 !hlist_unhashed(&dentry->d_u.d_alias) ||
3123 !d_unlinked(dentry));
3124 spin_lock(&dentry->d_parent->d_lock);
3125 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3126 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3127 (unsigned long long)inode->i_ino);
3128 spin_unlock(&dentry->d_lock);
3129 spin_unlock(&dentry->d_parent->d_lock);
3130 d_instantiate(dentry, inode);
3131 }
3132 EXPORT_SYMBOL(d_tmpfile);
3133
3134 static __initdata unsigned long dhash_entries;
3135 static int __init set_dhash_entries(char *str)
3136 {
3137 if (!str)
3138 return 0;
3139 dhash_entries = simple_strtoul(str, &str, 0);
3140 return 1;
3141 }
3142 __setup("dhash_entries=", set_dhash_entries);
3143
3144 static void __init dcache_init_early(void)
3145 {
3146 /* If hashes are distributed across NUMA nodes, defer
3147 * hash allocation until vmalloc space is available.
3148 */
3149 if (hashdist)
3150 return;
3151
3152 dentry_hashtable =
3153 alloc_large_system_hash("Dentry cache",
3154 sizeof(struct hlist_bl_head),
3155 dhash_entries,
3156 13,
3157 HASH_EARLY | HASH_ZERO,
3158 &d_hash_shift,
3159 NULL,
3160 0,
3161 0);
3162 d_hash_shift = 32 - d_hash_shift;
3163 }
3164
3165 static void __init dcache_init(void)
3166 {
3167 /*
3168 * A constructor could be added for stable state like the lists,
3169 * but it is probably not worth it because of the cache nature
3170 * of the dcache.
3171 */
3172 dentry_cache = KMEM_CACHE_USERCOPY(dentry,
3173 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT,
3174 d_iname);
3175
3176 /* Hash may have been set up in dcache_init_early */
3177 if (!hashdist)
3178 return;
3179
3180 dentry_hashtable =
3181 alloc_large_system_hash("Dentry cache",
3182 sizeof(struct hlist_bl_head),
3183 dhash_entries,
3184 13,
3185 HASH_ZERO,
3186 &d_hash_shift,
3187 NULL,
3188 0,
3189 0);
3190 d_hash_shift = 32 - d_hash_shift;
3191 }
3192
3193 /* SLAB cache for __getname() consumers */
3194 struct kmem_cache *names_cachep __read_mostly;
3195 EXPORT_SYMBOL(names_cachep);
3196
3197 void __init vfs_caches_init_early(void)
3198 {
3199 int i;
3200
3201 for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++)
3202 INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]);
3203
3204 dcache_init_early();
3205 inode_init_early();
3206 }
3207
3208 void __init vfs_caches_init(void)
3209 {
3210 names_cachep = kmem_cache_create_usercopy("names_cache", PATH_MAX, 0,
3211 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 0, PATH_MAX, NULL);
3212
3213 dcache_init();
3214 inode_init();
3215 files_init();
3216 files_maxfiles_init();
3217 mnt_init();
3218 bdev_cache_init();
3219 chrdev_init();
3220 }