]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - fs/dcache.c
Merge tag 'pinctrl-v4.1-1' of git://git.kernel.org/pub/scm/linux/kernel/git/linusw...
[mirror_ubuntu-zesty-kernel.git] / fs / dcache.c
1 /*
2 * fs/dcache.c
3 *
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
8
9 /*
10 * Notes on the allocation strategy:
11 *
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
15 */
16
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/export.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <asm/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/rculist_bl.h>
38 #include <linux/prefetch.h>
39 #include <linux/ratelimit.h>
40 #include <linux/list_lru.h>
41 #include <linux/kasan.h>
42
43 #include "internal.h"
44 #include "mount.h"
45
46 /*
47 * Usage:
48 * dcache->d_inode->i_lock protects:
49 * - i_dentry, d_u.d_alias, d_inode of aliases
50 * dcache_hash_bucket lock protects:
51 * - the dcache hash table
52 * s_anon bl list spinlock protects:
53 * - the s_anon list (see __d_drop)
54 * dentry->d_sb->s_dentry_lru_lock protects:
55 * - the dcache lru lists and counters
56 * d_lock protects:
57 * - d_flags
58 * - d_name
59 * - d_lru
60 * - d_count
61 * - d_unhashed()
62 * - d_parent and d_subdirs
63 * - childrens' d_child and d_parent
64 * - d_u.d_alias, d_inode
65 *
66 * Ordering:
67 * dentry->d_inode->i_lock
68 * dentry->d_lock
69 * dentry->d_sb->s_dentry_lru_lock
70 * dcache_hash_bucket lock
71 * s_anon lock
72 *
73 * If there is an ancestor relationship:
74 * dentry->d_parent->...->d_parent->d_lock
75 * ...
76 * dentry->d_parent->d_lock
77 * dentry->d_lock
78 *
79 * If no ancestor relationship:
80 * if (dentry1 < dentry2)
81 * dentry1->d_lock
82 * dentry2->d_lock
83 */
84 int sysctl_vfs_cache_pressure __read_mostly = 100;
85 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
86
87 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
88
89 EXPORT_SYMBOL(rename_lock);
90
91 static struct kmem_cache *dentry_cache __read_mostly;
92
93 /*
94 * This is the single most critical data structure when it comes
95 * to the dcache: the hashtable for lookups. Somebody should try
96 * to make this good - I've just made it work.
97 *
98 * This hash-function tries to avoid losing too many bits of hash
99 * information, yet avoid using a prime hash-size or similar.
100 */
101
102 static unsigned int d_hash_mask __read_mostly;
103 static unsigned int d_hash_shift __read_mostly;
104
105 static struct hlist_bl_head *dentry_hashtable __read_mostly;
106
107 static inline struct hlist_bl_head *d_hash(const struct dentry *parent,
108 unsigned int hash)
109 {
110 hash += (unsigned long) parent / L1_CACHE_BYTES;
111 return dentry_hashtable + hash_32(hash, d_hash_shift);
112 }
113
114 /* Statistics gathering. */
115 struct dentry_stat_t dentry_stat = {
116 .age_limit = 45,
117 };
118
119 static DEFINE_PER_CPU(long, nr_dentry);
120 static DEFINE_PER_CPU(long, nr_dentry_unused);
121
122 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
123
124 /*
125 * Here we resort to our own counters instead of using generic per-cpu counters
126 * for consistency with what the vfs inode code does. We are expected to harvest
127 * better code and performance by having our own specialized counters.
128 *
129 * Please note that the loop is done over all possible CPUs, not over all online
130 * CPUs. The reason for this is that we don't want to play games with CPUs going
131 * on and off. If one of them goes off, we will just keep their counters.
132 *
133 * glommer: See cffbc8a for details, and if you ever intend to change this,
134 * please update all vfs counters to match.
135 */
136 static long get_nr_dentry(void)
137 {
138 int i;
139 long sum = 0;
140 for_each_possible_cpu(i)
141 sum += per_cpu(nr_dentry, i);
142 return sum < 0 ? 0 : sum;
143 }
144
145 static long get_nr_dentry_unused(void)
146 {
147 int i;
148 long sum = 0;
149 for_each_possible_cpu(i)
150 sum += per_cpu(nr_dentry_unused, i);
151 return sum < 0 ? 0 : sum;
152 }
153
154 int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer,
155 size_t *lenp, loff_t *ppos)
156 {
157 dentry_stat.nr_dentry = get_nr_dentry();
158 dentry_stat.nr_unused = get_nr_dentry_unused();
159 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
160 }
161 #endif
162
163 /*
164 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
165 * The strings are both count bytes long, and count is non-zero.
166 */
167 #ifdef CONFIG_DCACHE_WORD_ACCESS
168
169 #include <asm/word-at-a-time.h>
170 /*
171 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
172 * aligned allocation for this particular component. We don't
173 * strictly need the load_unaligned_zeropad() safety, but it
174 * doesn't hurt either.
175 *
176 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
177 * need the careful unaligned handling.
178 */
179 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
180 {
181 unsigned long a,b,mask;
182
183 for (;;) {
184 a = *(unsigned long *)cs;
185 b = load_unaligned_zeropad(ct);
186 if (tcount < sizeof(unsigned long))
187 break;
188 if (unlikely(a != b))
189 return 1;
190 cs += sizeof(unsigned long);
191 ct += sizeof(unsigned long);
192 tcount -= sizeof(unsigned long);
193 if (!tcount)
194 return 0;
195 }
196 mask = bytemask_from_count(tcount);
197 return unlikely(!!((a ^ b) & mask));
198 }
199
200 #else
201
202 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
203 {
204 do {
205 if (*cs != *ct)
206 return 1;
207 cs++;
208 ct++;
209 tcount--;
210 } while (tcount);
211 return 0;
212 }
213
214 #endif
215
216 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
217 {
218 const unsigned char *cs;
219 /*
220 * Be careful about RCU walk racing with rename:
221 * use ACCESS_ONCE to fetch the name pointer.
222 *
223 * NOTE! Even if a rename will mean that the length
224 * was not loaded atomically, we don't care. The
225 * RCU walk will check the sequence count eventually,
226 * and catch it. And we won't overrun the buffer,
227 * because we're reading the name pointer atomically,
228 * and a dentry name is guaranteed to be properly
229 * terminated with a NUL byte.
230 *
231 * End result: even if 'len' is wrong, we'll exit
232 * early because the data cannot match (there can
233 * be no NUL in the ct/tcount data)
234 */
235 cs = ACCESS_ONCE(dentry->d_name.name);
236 smp_read_barrier_depends();
237 return dentry_string_cmp(cs, ct, tcount);
238 }
239
240 struct external_name {
241 union {
242 atomic_t count;
243 struct rcu_head head;
244 } u;
245 unsigned char name[];
246 };
247
248 static inline struct external_name *external_name(struct dentry *dentry)
249 {
250 return container_of(dentry->d_name.name, struct external_name, name[0]);
251 }
252
253 static void __d_free(struct rcu_head *head)
254 {
255 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
256
257 kmem_cache_free(dentry_cache, dentry);
258 }
259
260 static void __d_free_external(struct rcu_head *head)
261 {
262 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
263 kfree(external_name(dentry));
264 kmem_cache_free(dentry_cache, dentry);
265 }
266
267 static inline int dname_external(const struct dentry *dentry)
268 {
269 return dentry->d_name.name != dentry->d_iname;
270 }
271
272 static void dentry_free(struct dentry *dentry)
273 {
274 WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
275 if (unlikely(dname_external(dentry))) {
276 struct external_name *p = external_name(dentry);
277 if (likely(atomic_dec_and_test(&p->u.count))) {
278 call_rcu(&dentry->d_u.d_rcu, __d_free_external);
279 return;
280 }
281 }
282 /* if dentry was never visible to RCU, immediate free is OK */
283 if (!(dentry->d_flags & DCACHE_RCUACCESS))
284 __d_free(&dentry->d_u.d_rcu);
285 else
286 call_rcu(&dentry->d_u.d_rcu, __d_free);
287 }
288
289 /**
290 * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
291 * @dentry: the target dentry
292 * After this call, in-progress rcu-walk path lookup will fail. This
293 * should be called after unhashing, and after changing d_inode (if
294 * the dentry has not already been unhashed).
295 */
296 static inline void dentry_rcuwalk_barrier(struct dentry *dentry)
297 {
298 assert_spin_locked(&dentry->d_lock);
299 /* Go through a barrier */
300 write_seqcount_barrier(&dentry->d_seq);
301 }
302
303 /*
304 * Release the dentry's inode, using the filesystem
305 * d_iput() operation if defined. Dentry has no refcount
306 * and is unhashed.
307 */
308 static void dentry_iput(struct dentry * dentry)
309 __releases(dentry->d_lock)
310 __releases(dentry->d_inode->i_lock)
311 {
312 struct inode *inode = dentry->d_inode;
313 if (inode) {
314 dentry->d_inode = NULL;
315 hlist_del_init(&dentry->d_u.d_alias);
316 spin_unlock(&dentry->d_lock);
317 spin_unlock(&inode->i_lock);
318 if (!inode->i_nlink)
319 fsnotify_inoderemove(inode);
320 if (dentry->d_op && dentry->d_op->d_iput)
321 dentry->d_op->d_iput(dentry, inode);
322 else
323 iput(inode);
324 } else {
325 spin_unlock(&dentry->d_lock);
326 }
327 }
328
329 /*
330 * Release the dentry's inode, using the filesystem
331 * d_iput() operation if defined. dentry remains in-use.
332 */
333 static void dentry_unlink_inode(struct dentry * dentry)
334 __releases(dentry->d_lock)
335 __releases(dentry->d_inode->i_lock)
336 {
337 struct inode *inode = dentry->d_inode;
338 __d_clear_type(dentry);
339 dentry->d_inode = NULL;
340 hlist_del_init(&dentry->d_u.d_alias);
341 dentry_rcuwalk_barrier(dentry);
342 spin_unlock(&dentry->d_lock);
343 spin_unlock(&inode->i_lock);
344 if (!inode->i_nlink)
345 fsnotify_inoderemove(inode);
346 if (dentry->d_op && dentry->d_op->d_iput)
347 dentry->d_op->d_iput(dentry, inode);
348 else
349 iput(inode);
350 }
351
352 /*
353 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
354 * is in use - which includes both the "real" per-superblock
355 * LRU list _and_ the DCACHE_SHRINK_LIST use.
356 *
357 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
358 * on the shrink list (ie not on the superblock LRU list).
359 *
360 * The per-cpu "nr_dentry_unused" counters are updated with
361 * the DCACHE_LRU_LIST bit.
362 *
363 * These helper functions make sure we always follow the
364 * rules. d_lock must be held by the caller.
365 */
366 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
367 static void d_lru_add(struct dentry *dentry)
368 {
369 D_FLAG_VERIFY(dentry, 0);
370 dentry->d_flags |= DCACHE_LRU_LIST;
371 this_cpu_inc(nr_dentry_unused);
372 WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
373 }
374
375 static void d_lru_del(struct dentry *dentry)
376 {
377 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
378 dentry->d_flags &= ~DCACHE_LRU_LIST;
379 this_cpu_dec(nr_dentry_unused);
380 WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
381 }
382
383 static void d_shrink_del(struct dentry *dentry)
384 {
385 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
386 list_del_init(&dentry->d_lru);
387 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
388 this_cpu_dec(nr_dentry_unused);
389 }
390
391 static void d_shrink_add(struct dentry *dentry, struct list_head *list)
392 {
393 D_FLAG_VERIFY(dentry, 0);
394 list_add(&dentry->d_lru, list);
395 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
396 this_cpu_inc(nr_dentry_unused);
397 }
398
399 /*
400 * These can only be called under the global LRU lock, ie during the
401 * callback for freeing the LRU list. "isolate" removes it from the
402 * LRU lists entirely, while shrink_move moves it to the indicated
403 * private list.
404 */
405 static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
406 {
407 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
408 dentry->d_flags &= ~DCACHE_LRU_LIST;
409 this_cpu_dec(nr_dentry_unused);
410 list_lru_isolate(lru, &dentry->d_lru);
411 }
412
413 static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
414 struct list_head *list)
415 {
416 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
417 dentry->d_flags |= DCACHE_SHRINK_LIST;
418 list_lru_isolate_move(lru, &dentry->d_lru, list);
419 }
420
421 /*
422 * dentry_lru_(add|del)_list) must be called with d_lock held.
423 */
424 static void dentry_lru_add(struct dentry *dentry)
425 {
426 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
427 d_lru_add(dentry);
428 }
429
430 /**
431 * d_drop - drop a dentry
432 * @dentry: dentry to drop
433 *
434 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
435 * be found through a VFS lookup any more. Note that this is different from
436 * deleting the dentry - d_delete will try to mark the dentry negative if
437 * possible, giving a successful _negative_ lookup, while d_drop will
438 * just make the cache lookup fail.
439 *
440 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
441 * reason (NFS timeouts or autofs deletes).
442 *
443 * __d_drop requires dentry->d_lock.
444 */
445 void __d_drop(struct dentry *dentry)
446 {
447 if (!d_unhashed(dentry)) {
448 struct hlist_bl_head *b;
449 /*
450 * Hashed dentries are normally on the dentry hashtable,
451 * with the exception of those newly allocated by
452 * d_obtain_alias, which are always IS_ROOT:
453 */
454 if (unlikely(IS_ROOT(dentry)))
455 b = &dentry->d_sb->s_anon;
456 else
457 b = d_hash(dentry->d_parent, dentry->d_name.hash);
458
459 hlist_bl_lock(b);
460 __hlist_bl_del(&dentry->d_hash);
461 dentry->d_hash.pprev = NULL;
462 hlist_bl_unlock(b);
463 dentry_rcuwalk_barrier(dentry);
464 }
465 }
466 EXPORT_SYMBOL(__d_drop);
467
468 void d_drop(struct dentry *dentry)
469 {
470 spin_lock(&dentry->d_lock);
471 __d_drop(dentry);
472 spin_unlock(&dentry->d_lock);
473 }
474 EXPORT_SYMBOL(d_drop);
475
476 static void __dentry_kill(struct dentry *dentry)
477 {
478 struct dentry *parent = NULL;
479 bool can_free = true;
480 if (!IS_ROOT(dentry))
481 parent = dentry->d_parent;
482
483 /*
484 * The dentry is now unrecoverably dead to the world.
485 */
486 lockref_mark_dead(&dentry->d_lockref);
487
488 /*
489 * inform the fs via d_prune that this dentry is about to be
490 * unhashed and destroyed.
491 */
492 if (dentry->d_flags & DCACHE_OP_PRUNE)
493 dentry->d_op->d_prune(dentry);
494
495 if (dentry->d_flags & DCACHE_LRU_LIST) {
496 if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
497 d_lru_del(dentry);
498 }
499 /* if it was on the hash then remove it */
500 __d_drop(dentry);
501 __list_del_entry(&dentry->d_child);
502 /*
503 * Inform d_walk() that we are no longer attached to the
504 * dentry tree
505 */
506 dentry->d_flags |= DCACHE_DENTRY_KILLED;
507 if (parent)
508 spin_unlock(&parent->d_lock);
509 dentry_iput(dentry);
510 /*
511 * dentry_iput drops the locks, at which point nobody (except
512 * transient RCU lookups) can reach this dentry.
513 */
514 BUG_ON(dentry->d_lockref.count > 0);
515 this_cpu_dec(nr_dentry);
516 if (dentry->d_op && dentry->d_op->d_release)
517 dentry->d_op->d_release(dentry);
518
519 spin_lock(&dentry->d_lock);
520 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
521 dentry->d_flags |= DCACHE_MAY_FREE;
522 can_free = false;
523 }
524 spin_unlock(&dentry->d_lock);
525 if (likely(can_free))
526 dentry_free(dentry);
527 }
528
529 /*
530 * Finish off a dentry we've decided to kill.
531 * dentry->d_lock must be held, returns with it unlocked.
532 * If ref is non-zero, then decrement the refcount too.
533 * Returns dentry requiring refcount drop, or NULL if we're done.
534 */
535 static struct dentry *dentry_kill(struct dentry *dentry)
536 __releases(dentry->d_lock)
537 {
538 struct inode *inode = dentry->d_inode;
539 struct dentry *parent = NULL;
540
541 if (inode && unlikely(!spin_trylock(&inode->i_lock)))
542 goto failed;
543
544 if (!IS_ROOT(dentry)) {
545 parent = dentry->d_parent;
546 if (unlikely(!spin_trylock(&parent->d_lock))) {
547 if (inode)
548 spin_unlock(&inode->i_lock);
549 goto failed;
550 }
551 }
552
553 __dentry_kill(dentry);
554 return parent;
555
556 failed:
557 spin_unlock(&dentry->d_lock);
558 cpu_relax();
559 return dentry; /* try again with same dentry */
560 }
561
562 static inline struct dentry *lock_parent(struct dentry *dentry)
563 {
564 struct dentry *parent = dentry->d_parent;
565 if (IS_ROOT(dentry))
566 return NULL;
567 if (unlikely(dentry->d_lockref.count < 0))
568 return NULL;
569 if (likely(spin_trylock(&parent->d_lock)))
570 return parent;
571 rcu_read_lock();
572 spin_unlock(&dentry->d_lock);
573 again:
574 parent = ACCESS_ONCE(dentry->d_parent);
575 spin_lock(&parent->d_lock);
576 /*
577 * We can't blindly lock dentry until we are sure
578 * that we won't violate the locking order.
579 * Any changes of dentry->d_parent must have
580 * been done with parent->d_lock held, so
581 * spin_lock() above is enough of a barrier
582 * for checking if it's still our child.
583 */
584 if (unlikely(parent != dentry->d_parent)) {
585 spin_unlock(&parent->d_lock);
586 goto again;
587 }
588 rcu_read_unlock();
589 if (parent != dentry)
590 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
591 else
592 parent = NULL;
593 return parent;
594 }
595
596 /*
597 * Try to do a lockless dput(), and return whether that was successful.
598 *
599 * If unsuccessful, we return false, having already taken the dentry lock.
600 *
601 * The caller needs to hold the RCU read lock, so that the dentry is
602 * guaranteed to stay around even if the refcount goes down to zero!
603 */
604 static inline bool fast_dput(struct dentry *dentry)
605 {
606 int ret;
607 unsigned int d_flags;
608
609 /*
610 * If we have a d_op->d_delete() operation, we sould not
611 * let the dentry count go to zero, so use "put__or_lock".
612 */
613 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE))
614 return lockref_put_or_lock(&dentry->d_lockref);
615
616 /*
617 * .. otherwise, we can try to just decrement the
618 * lockref optimistically.
619 */
620 ret = lockref_put_return(&dentry->d_lockref);
621
622 /*
623 * If the lockref_put_return() failed due to the lock being held
624 * by somebody else, the fast path has failed. We will need to
625 * get the lock, and then check the count again.
626 */
627 if (unlikely(ret < 0)) {
628 spin_lock(&dentry->d_lock);
629 if (dentry->d_lockref.count > 1) {
630 dentry->d_lockref.count--;
631 spin_unlock(&dentry->d_lock);
632 return 1;
633 }
634 return 0;
635 }
636
637 /*
638 * If we weren't the last ref, we're done.
639 */
640 if (ret)
641 return 1;
642
643 /*
644 * Careful, careful. The reference count went down
645 * to zero, but we don't hold the dentry lock, so
646 * somebody else could get it again, and do another
647 * dput(), and we need to not race with that.
648 *
649 * However, there is a very special and common case
650 * where we don't care, because there is nothing to
651 * do: the dentry is still hashed, it does not have
652 * a 'delete' op, and it's referenced and already on
653 * the LRU list.
654 *
655 * NOTE! Since we aren't locked, these values are
656 * not "stable". However, it is sufficient that at
657 * some point after we dropped the reference the
658 * dentry was hashed and the flags had the proper
659 * value. Other dentry users may have re-gotten
660 * a reference to the dentry and change that, but
661 * our work is done - we can leave the dentry
662 * around with a zero refcount.
663 */
664 smp_rmb();
665 d_flags = ACCESS_ONCE(dentry->d_flags);
666 d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST;
667
668 /* Nothing to do? Dropping the reference was all we needed? */
669 if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry))
670 return 1;
671
672 /*
673 * Not the fast normal case? Get the lock. We've already decremented
674 * the refcount, but we'll need to re-check the situation after
675 * getting the lock.
676 */
677 spin_lock(&dentry->d_lock);
678
679 /*
680 * Did somebody else grab a reference to it in the meantime, and
681 * we're no longer the last user after all? Alternatively, somebody
682 * else could have killed it and marked it dead. Either way, we
683 * don't need to do anything else.
684 */
685 if (dentry->d_lockref.count) {
686 spin_unlock(&dentry->d_lock);
687 return 1;
688 }
689
690 /*
691 * Re-get the reference we optimistically dropped. We hold the
692 * lock, and we just tested that it was zero, so we can just
693 * set it to 1.
694 */
695 dentry->d_lockref.count = 1;
696 return 0;
697 }
698
699
700 /*
701 * This is dput
702 *
703 * This is complicated by the fact that we do not want to put
704 * dentries that are no longer on any hash chain on the unused
705 * list: we'd much rather just get rid of them immediately.
706 *
707 * However, that implies that we have to traverse the dentry
708 * tree upwards to the parents which might _also_ now be
709 * scheduled for deletion (it may have been only waiting for
710 * its last child to go away).
711 *
712 * This tail recursion is done by hand as we don't want to depend
713 * on the compiler to always get this right (gcc generally doesn't).
714 * Real recursion would eat up our stack space.
715 */
716
717 /*
718 * dput - release a dentry
719 * @dentry: dentry to release
720 *
721 * Release a dentry. This will drop the usage count and if appropriate
722 * call the dentry unlink method as well as removing it from the queues and
723 * releasing its resources. If the parent dentries were scheduled for release
724 * they too may now get deleted.
725 */
726 void dput(struct dentry *dentry)
727 {
728 if (unlikely(!dentry))
729 return;
730
731 repeat:
732 rcu_read_lock();
733 if (likely(fast_dput(dentry))) {
734 rcu_read_unlock();
735 return;
736 }
737
738 /* Slow case: now with the dentry lock held */
739 rcu_read_unlock();
740
741 /* Unreachable? Get rid of it */
742 if (unlikely(d_unhashed(dentry)))
743 goto kill_it;
744
745 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
746 if (dentry->d_op->d_delete(dentry))
747 goto kill_it;
748 }
749
750 if (!(dentry->d_flags & DCACHE_REFERENCED))
751 dentry->d_flags |= DCACHE_REFERENCED;
752 dentry_lru_add(dentry);
753
754 dentry->d_lockref.count--;
755 spin_unlock(&dentry->d_lock);
756 return;
757
758 kill_it:
759 dentry = dentry_kill(dentry);
760 if (dentry)
761 goto repeat;
762 }
763 EXPORT_SYMBOL(dput);
764
765
766 /* This must be called with d_lock held */
767 static inline void __dget_dlock(struct dentry *dentry)
768 {
769 dentry->d_lockref.count++;
770 }
771
772 static inline void __dget(struct dentry *dentry)
773 {
774 lockref_get(&dentry->d_lockref);
775 }
776
777 struct dentry *dget_parent(struct dentry *dentry)
778 {
779 int gotref;
780 struct dentry *ret;
781
782 /*
783 * Do optimistic parent lookup without any
784 * locking.
785 */
786 rcu_read_lock();
787 ret = ACCESS_ONCE(dentry->d_parent);
788 gotref = lockref_get_not_zero(&ret->d_lockref);
789 rcu_read_unlock();
790 if (likely(gotref)) {
791 if (likely(ret == ACCESS_ONCE(dentry->d_parent)))
792 return ret;
793 dput(ret);
794 }
795
796 repeat:
797 /*
798 * Don't need rcu_dereference because we re-check it was correct under
799 * the lock.
800 */
801 rcu_read_lock();
802 ret = dentry->d_parent;
803 spin_lock(&ret->d_lock);
804 if (unlikely(ret != dentry->d_parent)) {
805 spin_unlock(&ret->d_lock);
806 rcu_read_unlock();
807 goto repeat;
808 }
809 rcu_read_unlock();
810 BUG_ON(!ret->d_lockref.count);
811 ret->d_lockref.count++;
812 spin_unlock(&ret->d_lock);
813 return ret;
814 }
815 EXPORT_SYMBOL(dget_parent);
816
817 /**
818 * d_find_alias - grab a hashed alias of inode
819 * @inode: inode in question
820 *
821 * If inode has a hashed alias, or is a directory and has any alias,
822 * acquire the reference to alias and return it. Otherwise return NULL.
823 * Notice that if inode is a directory there can be only one alias and
824 * it can be unhashed only if it has no children, or if it is the root
825 * of a filesystem, or if the directory was renamed and d_revalidate
826 * was the first vfs operation to notice.
827 *
828 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
829 * any other hashed alias over that one.
830 */
831 static struct dentry *__d_find_alias(struct inode *inode)
832 {
833 struct dentry *alias, *discon_alias;
834
835 again:
836 discon_alias = NULL;
837 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
838 spin_lock(&alias->d_lock);
839 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
840 if (IS_ROOT(alias) &&
841 (alias->d_flags & DCACHE_DISCONNECTED)) {
842 discon_alias = alias;
843 } else {
844 __dget_dlock(alias);
845 spin_unlock(&alias->d_lock);
846 return alias;
847 }
848 }
849 spin_unlock(&alias->d_lock);
850 }
851 if (discon_alias) {
852 alias = discon_alias;
853 spin_lock(&alias->d_lock);
854 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
855 __dget_dlock(alias);
856 spin_unlock(&alias->d_lock);
857 return alias;
858 }
859 spin_unlock(&alias->d_lock);
860 goto again;
861 }
862 return NULL;
863 }
864
865 struct dentry *d_find_alias(struct inode *inode)
866 {
867 struct dentry *de = NULL;
868
869 if (!hlist_empty(&inode->i_dentry)) {
870 spin_lock(&inode->i_lock);
871 de = __d_find_alias(inode);
872 spin_unlock(&inode->i_lock);
873 }
874 return de;
875 }
876 EXPORT_SYMBOL(d_find_alias);
877
878 /*
879 * Try to kill dentries associated with this inode.
880 * WARNING: you must own a reference to inode.
881 */
882 void d_prune_aliases(struct inode *inode)
883 {
884 struct dentry *dentry;
885 restart:
886 spin_lock(&inode->i_lock);
887 hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
888 spin_lock(&dentry->d_lock);
889 if (!dentry->d_lockref.count) {
890 struct dentry *parent = lock_parent(dentry);
891 if (likely(!dentry->d_lockref.count)) {
892 __dentry_kill(dentry);
893 dput(parent);
894 goto restart;
895 }
896 if (parent)
897 spin_unlock(&parent->d_lock);
898 }
899 spin_unlock(&dentry->d_lock);
900 }
901 spin_unlock(&inode->i_lock);
902 }
903 EXPORT_SYMBOL(d_prune_aliases);
904
905 static void shrink_dentry_list(struct list_head *list)
906 {
907 struct dentry *dentry, *parent;
908
909 while (!list_empty(list)) {
910 struct inode *inode;
911 dentry = list_entry(list->prev, struct dentry, d_lru);
912 spin_lock(&dentry->d_lock);
913 parent = lock_parent(dentry);
914
915 /*
916 * The dispose list is isolated and dentries are not accounted
917 * to the LRU here, so we can simply remove it from the list
918 * here regardless of whether it is referenced or not.
919 */
920 d_shrink_del(dentry);
921
922 /*
923 * We found an inuse dentry which was not removed from
924 * the LRU because of laziness during lookup. Do not free it.
925 */
926 if (dentry->d_lockref.count > 0) {
927 spin_unlock(&dentry->d_lock);
928 if (parent)
929 spin_unlock(&parent->d_lock);
930 continue;
931 }
932
933
934 if (unlikely(dentry->d_flags & DCACHE_DENTRY_KILLED)) {
935 bool can_free = dentry->d_flags & DCACHE_MAY_FREE;
936 spin_unlock(&dentry->d_lock);
937 if (parent)
938 spin_unlock(&parent->d_lock);
939 if (can_free)
940 dentry_free(dentry);
941 continue;
942 }
943
944 inode = dentry->d_inode;
945 if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
946 d_shrink_add(dentry, list);
947 spin_unlock(&dentry->d_lock);
948 if (parent)
949 spin_unlock(&parent->d_lock);
950 continue;
951 }
952
953 __dentry_kill(dentry);
954
955 /*
956 * We need to prune ancestors too. This is necessary to prevent
957 * quadratic behavior of shrink_dcache_parent(), but is also
958 * expected to be beneficial in reducing dentry cache
959 * fragmentation.
960 */
961 dentry = parent;
962 while (dentry && !lockref_put_or_lock(&dentry->d_lockref)) {
963 parent = lock_parent(dentry);
964 if (dentry->d_lockref.count != 1) {
965 dentry->d_lockref.count--;
966 spin_unlock(&dentry->d_lock);
967 if (parent)
968 spin_unlock(&parent->d_lock);
969 break;
970 }
971 inode = dentry->d_inode; /* can't be NULL */
972 if (unlikely(!spin_trylock(&inode->i_lock))) {
973 spin_unlock(&dentry->d_lock);
974 if (parent)
975 spin_unlock(&parent->d_lock);
976 cpu_relax();
977 continue;
978 }
979 __dentry_kill(dentry);
980 dentry = parent;
981 }
982 }
983 }
984
985 static enum lru_status dentry_lru_isolate(struct list_head *item,
986 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
987 {
988 struct list_head *freeable = arg;
989 struct dentry *dentry = container_of(item, struct dentry, d_lru);
990
991
992 /*
993 * we are inverting the lru lock/dentry->d_lock here,
994 * so use a trylock. If we fail to get the lock, just skip
995 * it
996 */
997 if (!spin_trylock(&dentry->d_lock))
998 return LRU_SKIP;
999
1000 /*
1001 * Referenced dentries are still in use. If they have active
1002 * counts, just remove them from the LRU. Otherwise give them
1003 * another pass through the LRU.
1004 */
1005 if (dentry->d_lockref.count) {
1006 d_lru_isolate(lru, dentry);
1007 spin_unlock(&dentry->d_lock);
1008 return LRU_REMOVED;
1009 }
1010
1011 if (dentry->d_flags & DCACHE_REFERENCED) {
1012 dentry->d_flags &= ~DCACHE_REFERENCED;
1013 spin_unlock(&dentry->d_lock);
1014
1015 /*
1016 * The list move itself will be made by the common LRU code. At
1017 * this point, we've dropped the dentry->d_lock but keep the
1018 * lru lock. This is safe to do, since every list movement is
1019 * protected by the lru lock even if both locks are held.
1020 *
1021 * This is guaranteed by the fact that all LRU management
1022 * functions are intermediated by the LRU API calls like
1023 * list_lru_add and list_lru_del. List movement in this file
1024 * only ever occur through this functions or through callbacks
1025 * like this one, that are called from the LRU API.
1026 *
1027 * The only exceptions to this are functions like
1028 * shrink_dentry_list, and code that first checks for the
1029 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be
1030 * operating only with stack provided lists after they are
1031 * properly isolated from the main list. It is thus, always a
1032 * local access.
1033 */
1034 return LRU_ROTATE;
1035 }
1036
1037 d_lru_shrink_move(lru, dentry, freeable);
1038 spin_unlock(&dentry->d_lock);
1039
1040 return LRU_REMOVED;
1041 }
1042
1043 /**
1044 * prune_dcache_sb - shrink the dcache
1045 * @sb: superblock
1046 * @sc: shrink control, passed to list_lru_shrink_walk()
1047 *
1048 * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1049 * is done when we need more memory and called from the superblock shrinker
1050 * function.
1051 *
1052 * This function may fail to free any resources if all the dentries are in
1053 * use.
1054 */
1055 long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
1056 {
1057 LIST_HEAD(dispose);
1058 long freed;
1059
1060 freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1061 dentry_lru_isolate, &dispose);
1062 shrink_dentry_list(&dispose);
1063 return freed;
1064 }
1065
1066 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
1067 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1068 {
1069 struct list_head *freeable = arg;
1070 struct dentry *dentry = container_of(item, struct dentry, d_lru);
1071
1072 /*
1073 * we are inverting the lru lock/dentry->d_lock here,
1074 * so use a trylock. If we fail to get the lock, just skip
1075 * it
1076 */
1077 if (!spin_trylock(&dentry->d_lock))
1078 return LRU_SKIP;
1079
1080 d_lru_shrink_move(lru, dentry, freeable);
1081 spin_unlock(&dentry->d_lock);
1082
1083 return LRU_REMOVED;
1084 }
1085
1086
1087 /**
1088 * shrink_dcache_sb - shrink dcache for a superblock
1089 * @sb: superblock
1090 *
1091 * Shrink the dcache for the specified super block. This is used to free
1092 * the dcache before unmounting a file system.
1093 */
1094 void shrink_dcache_sb(struct super_block *sb)
1095 {
1096 long freed;
1097
1098 do {
1099 LIST_HEAD(dispose);
1100
1101 freed = list_lru_walk(&sb->s_dentry_lru,
1102 dentry_lru_isolate_shrink, &dispose, UINT_MAX);
1103
1104 this_cpu_sub(nr_dentry_unused, freed);
1105 shrink_dentry_list(&dispose);
1106 } while (freed > 0);
1107 }
1108 EXPORT_SYMBOL(shrink_dcache_sb);
1109
1110 /**
1111 * enum d_walk_ret - action to talke during tree walk
1112 * @D_WALK_CONTINUE: contrinue walk
1113 * @D_WALK_QUIT: quit walk
1114 * @D_WALK_NORETRY: quit when retry is needed
1115 * @D_WALK_SKIP: skip this dentry and its children
1116 */
1117 enum d_walk_ret {
1118 D_WALK_CONTINUE,
1119 D_WALK_QUIT,
1120 D_WALK_NORETRY,
1121 D_WALK_SKIP,
1122 };
1123
1124 /**
1125 * d_walk - walk the dentry tree
1126 * @parent: start of walk
1127 * @data: data passed to @enter() and @finish()
1128 * @enter: callback when first entering the dentry
1129 * @finish: callback when successfully finished the walk
1130 *
1131 * The @enter() and @finish() callbacks are called with d_lock held.
1132 */
1133 static void d_walk(struct dentry *parent, void *data,
1134 enum d_walk_ret (*enter)(void *, struct dentry *),
1135 void (*finish)(void *))
1136 {
1137 struct dentry *this_parent;
1138 struct list_head *next;
1139 unsigned seq = 0;
1140 enum d_walk_ret ret;
1141 bool retry = true;
1142
1143 again:
1144 read_seqbegin_or_lock(&rename_lock, &seq);
1145 this_parent = parent;
1146 spin_lock(&this_parent->d_lock);
1147
1148 ret = enter(data, this_parent);
1149 switch (ret) {
1150 case D_WALK_CONTINUE:
1151 break;
1152 case D_WALK_QUIT:
1153 case D_WALK_SKIP:
1154 goto out_unlock;
1155 case D_WALK_NORETRY:
1156 retry = false;
1157 break;
1158 }
1159 repeat:
1160 next = this_parent->d_subdirs.next;
1161 resume:
1162 while (next != &this_parent->d_subdirs) {
1163 struct list_head *tmp = next;
1164 struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1165 next = tmp->next;
1166
1167 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1168
1169 ret = enter(data, dentry);
1170 switch (ret) {
1171 case D_WALK_CONTINUE:
1172 break;
1173 case D_WALK_QUIT:
1174 spin_unlock(&dentry->d_lock);
1175 goto out_unlock;
1176 case D_WALK_NORETRY:
1177 retry = false;
1178 break;
1179 case D_WALK_SKIP:
1180 spin_unlock(&dentry->d_lock);
1181 continue;
1182 }
1183
1184 if (!list_empty(&dentry->d_subdirs)) {
1185 spin_unlock(&this_parent->d_lock);
1186 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1187 this_parent = dentry;
1188 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1189 goto repeat;
1190 }
1191 spin_unlock(&dentry->d_lock);
1192 }
1193 /*
1194 * All done at this level ... ascend and resume the search.
1195 */
1196 rcu_read_lock();
1197 ascend:
1198 if (this_parent != parent) {
1199 struct dentry *child = this_parent;
1200 this_parent = child->d_parent;
1201
1202 spin_unlock(&child->d_lock);
1203 spin_lock(&this_parent->d_lock);
1204
1205 /* might go back up the wrong parent if we have had a rename. */
1206 if (need_seqretry(&rename_lock, seq))
1207 goto rename_retry;
1208 next = child->d_child.next;
1209 while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED)) {
1210 if (next == &this_parent->d_subdirs)
1211 goto ascend;
1212 child = list_entry(next, struct dentry, d_child);
1213 next = next->next;
1214 }
1215 rcu_read_unlock();
1216 goto resume;
1217 }
1218 if (need_seqretry(&rename_lock, seq))
1219 goto rename_retry;
1220 rcu_read_unlock();
1221 if (finish)
1222 finish(data);
1223
1224 out_unlock:
1225 spin_unlock(&this_parent->d_lock);
1226 done_seqretry(&rename_lock, seq);
1227 return;
1228
1229 rename_retry:
1230 spin_unlock(&this_parent->d_lock);
1231 rcu_read_unlock();
1232 BUG_ON(seq & 1);
1233 if (!retry)
1234 return;
1235 seq = 1;
1236 goto again;
1237 }
1238
1239 /*
1240 * Search for at least 1 mount point in the dentry's subdirs.
1241 * We descend to the next level whenever the d_subdirs
1242 * list is non-empty and continue searching.
1243 */
1244
1245 static enum d_walk_ret check_mount(void *data, struct dentry *dentry)
1246 {
1247 int *ret = data;
1248 if (d_mountpoint(dentry)) {
1249 *ret = 1;
1250 return D_WALK_QUIT;
1251 }
1252 return D_WALK_CONTINUE;
1253 }
1254
1255 /**
1256 * have_submounts - check for mounts over a dentry
1257 * @parent: dentry to check.
1258 *
1259 * Return true if the parent or its subdirectories contain
1260 * a mount point
1261 */
1262 int have_submounts(struct dentry *parent)
1263 {
1264 int ret = 0;
1265
1266 d_walk(parent, &ret, check_mount, NULL);
1267
1268 return ret;
1269 }
1270 EXPORT_SYMBOL(have_submounts);
1271
1272 /*
1273 * Called by mount code to set a mountpoint and check if the mountpoint is
1274 * reachable (e.g. NFS can unhash a directory dentry and then the complete
1275 * subtree can become unreachable).
1276 *
1277 * Only one of d_invalidate() and d_set_mounted() must succeed. For
1278 * this reason take rename_lock and d_lock on dentry and ancestors.
1279 */
1280 int d_set_mounted(struct dentry *dentry)
1281 {
1282 struct dentry *p;
1283 int ret = -ENOENT;
1284 write_seqlock(&rename_lock);
1285 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1286 /* Need exclusion wrt. d_invalidate() */
1287 spin_lock(&p->d_lock);
1288 if (unlikely(d_unhashed(p))) {
1289 spin_unlock(&p->d_lock);
1290 goto out;
1291 }
1292 spin_unlock(&p->d_lock);
1293 }
1294 spin_lock(&dentry->d_lock);
1295 if (!d_unlinked(dentry)) {
1296 dentry->d_flags |= DCACHE_MOUNTED;
1297 ret = 0;
1298 }
1299 spin_unlock(&dentry->d_lock);
1300 out:
1301 write_sequnlock(&rename_lock);
1302 return ret;
1303 }
1304
1305 /*
1306 * Search the dentry child list of the specified parent,
1307 * and move any unused dentries to the end of the unused
1308 * list for prune_dcache(). We descend to the next level
1309 * whenever the d_subdirs list is non-empty and continue
1310 * searching.
1311 *
1312 * It returns zero iff there are no unused children,
1313 * otherwise it returns the number of children moved to
1314 * the end of the unused list. This may not be the total
1315 * number of unused children, because select_parent can
1316 * drop the lock and return early due to latency
1317 * constraints.
1318 */
1319
1320 struct select_data {
1321 struct dentry *start;
1322 struct list_head dispose;
1323 int found;
1324 };
1325
1326 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1327 {
1328 struct select_data *data = _data;
1329 enum d_walk_ret ret = D_WALK_CONTINUE;
1330
1331 if (data->start == dentry)
1332 goto out;
1333
1334 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1335 data->found++;
1336 } else {
1337 if (dentry->d_flags & DCACHE_LRU_LIST)
1338 d_lru_del(dentry);
1339 if (!dentry->d_lockref.count) {
1340 d_shrink_add(dentry, &data->dispose);
1341 data->found++;
1342 }
1343 }
1344 /*
1345 * We can return to the caller if we have found some (this
1346 * ensures forward progress). We'll be coming back to find
1347 * the rest.
1348 */
1349 if (!list_empty(&data->dispose))
1350 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1351 out:
1352 return ret;
1353 }
1354
1355 /**
1356 * shrink_dcache_parent - prune dcache
1357 * @parent: parent of entries to prune
1358 *
1359 * Prune the dcache to remove unused children of the parent dentry.
1360 */
1361 void shrink_dcache_parent(struct dentry *parent)
1362 {
1363 for (;;) {
1364 struct select_data data;
1365
1366 INIT_LIST_HEAD(&data.dispose);
1367 data.start = parent;
1368 data.found = 0;
1369
1370 d_walk(parent, &data, select_collect, NULL);
1371 if (!data.found)
1372 break;
1373
1374 shrink_dentry_list(&data.dispose);
1375 cond_resched();
1376 }
1377 }
1378 EXPORT_SYMBOL(shrink_dcache_parent);
1379
1380 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
1381 {
1382 /* it has busy descendents; complain about those instead */
1383 if (!list_empty(&dentry->d_subdirs))
1384 return D_WALK_CONTINUE;
1385
1386 /* root with refcount 1 is fine */
1387 if (dentry == _data && dentry->d_lockref.count == 1)
1388 return D_WALK_CONTINUE;
1389
1390 printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1391 " still in use (%d) [unmount of %s %s]\n",
1392 dentry,
1393 dentry->d_inode ?
1394 dentry->d_inode->i_ino : 0UL,
1395 dentry,
1396 dentry->d_lockref.count,
1397 dentry->d_sb->s_type->name,
1398 dentry->d_sb->s_id);
1399 WARN_ON(1);
1400 return D_WALK_CONTINUE;
1401 }
1402
1403 static void do_one_tree(struct dentry *dentry)
1404 {
1405 shrink_dcache_parent(dentry);
1406 d_walk(dentry, dentry, umount_check, NULL);
1407 d_drop(dentry);
1408 dput(dentry);
1409 }
1410
1411 /*
1412 * destroy the dentries attached to a superblock on unmounting
1413 */
1414 void shrink_dcache_for_umount(struct super_block *sb)
1415 {
1416 struct dentry *dentry;
1417
1418 WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
1419
1420 dentry = sb->s_root;
1421 sb->s_root = NULL;
1422 do_one_tree(dentry);
1423
1424 while (!hlist_bl_empty(&sb->s_anon)) {
1425 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash));
1426 do_one_tree(dentry);
1427 }
1428 }
1429
1430 struct detach_data {
1431 struct select_data select;
1432 struct dentry *mountpoint;
1433 };
1434 static enum d_walk_ret detach_and_collect(void *_data, struct dentry *dentry)
1435 {
1436 struct detach_data *data = _data;
1437
1438 if (d_mountpoint(dentry)) {
1439 __dget_dlock(dentry);
1440 data->mountpoint = dentry;
1441 return D_WALK_QUIT;
1442 }
1443
1444 return select_collect(&data->select, dentry);
1445 }
1446
1447 static void check_and_drop(void *_data)
1448 {
1449 struct detach_data *data = _data;
1450
1451 if (!data->mountpoint && !data->select.found)
1452 __d_drop(data->select.start);
1453 }
1454
1455 /**
1456 * d_invalidate - detach submounts, prune dcache, and drop
1457 * @dentry: dentry to invalidate (aka detach, prune and drop)
1458 *
1459 * no dcache lock.
1460 *
1461 * The final d_drop is done as an atomic operation relative to
1462 * rename_lock ensuring there are no races with d_set_mounted. This
1463 * ensures there are no unhashed dentries on the path to a mountpoint.
1464 */
1465 void d_invalidate(struct dentry *dentry)
1466 {
1467 /*
1468 * If it's already been dropped, return OK.
1469 */
1470 spin_lock(&dentry->d_lock);
1471 if (d_unhashed(dentry)) {
1472 spin_unlock(&dentry->d_lock);
1473 return;
1474 }
1475 spin_unlock(&dentry->d_lock);
1476
1477 /* Negative dentries can be dropped without further checks */
1478 if (!dentry->d_inode) {
1479 d_drop(dentry);
1480 return;
1481 }
1482
1483 for (;;) {
1484 struct detach_data data;
1485
1486 data.mountpoint = NULL;
1487 INIT_LIST_HEAD(&data.select.dispose);
1488 data.select.start = dentry;
1489 data.select.found = 0;
1490
1491 d_walk(dentry, &data, detach_and_collect, check_and_drop);
1492
1493 if (data.select.found)
1494 shrink_dentry_list(&data.select.dispose);
1495
1496 if (data.mountpoint) {
1497 detach_mounts(data.mountpoint);
1498 dput(data.mountpoint);
1499 }
1500
1501 if (!data.mountpoint && !data.select.found)
1502 break;
1503
1504 cond_resched();
1505 }
1506 }
1507 EXPORT_SYMBOL(d_invalidate);
1508
1509 /**
1510 * __d_alloc - allocate a dcache entry
1511 * @sb: filesystem it will belong to
1512 * @name: qstr of the name
1513 *
1514 * Allocates a dentry. It returns %NULL if there is insufficient memory
1515 * available. On a success the dentry is returned. The name passed in is
1516 * copied and the copy passed in may be reused after this call.
1517 */
1518
1519 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1520 {
1521 struct dentry *dentry;
1522 char *dname;
1523
1524 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1525 if (!dentry)
1526 return NULL;
1527
1528 /*
1529 * We guarantee that the inline name is always NUL-terminated.
1530 * This way the memcpy() done by the name switching in rename
1531 * will still always have a NUL at the end, even if we might
1532 * be overwriting an internal NUL character
1533 */
1534 dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1535 if (name->len > DNAME_INLINE_LEN-1) {
1536 size_t size = offsetof(struct external_name, name[1]);
1537 struct external_name *p = kmalloc(size + name->len, GFP_KERNEL);
1538 if (!p) {
1539 kmem_cache_free(dentry_cache, dentry);
1540 return NULL;
1541 }
1542 atomic_set(&p->u.count, 1);
1543 dname = p->name;
1544 if (IS_ENABLED(CONFIG_DCACHE_WORD_ACCESS))
1545 kasan_unpoison_shadow(dname,
1546 round_up(name->len + 1, sizeof(unsigned long)));
1547 } else {
1548 dname = dentry->d_iname;
1549 }
1550
1551 dentry->d_name.len = name->len;
1552 dentry->d_name.hash = name->hash;
1553 memcpy(dname, name->name, name->len);
1554 dname[name->len] = 0;
1555
1556 /* Make sure we always see the terminating NUL character */
1557 smp_wmb();
1558 dentry->d_name.name = dname;
1559
1560 dentry->d_lockref.count = 1;
1561 dentry->d_flags = 0;
1562 spin_lock_init(&dentry->d_lock);
1563 seqcount_init(&dentry->d_seq);
1564 dentry->d_inode = NULL;
1565 dentry->d_parent = dentry;
1566 dentry->d_sb = sb;
1567 dentry->d_op = NULL;
1568 dentry->d_fsdata = NULL;
1569 INIT_HLIST_BL_NODE(&dentry->d_hash);
1570 INIT_LIST_HEAD(&dentry->d_lru);
1571 INIT_LIST_HEAD(&dentry->d_subdirs);
1572 INIT_HLIST_NODE(&dentry->d_u.d_alias);
1573 INIT_LIST_HEAD(&dentry->d_child);
1574 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1575
1576 this_cpu_inc(nr_dentry);
1577
1578 return dentry;
1579 }
1580
1581 /**
1582 * d_alloc - allocate a dcache entry
1583 * @parent: parent of entry to allocate
1584 * @name: qstr of the name
1585 *
1586 * Allocates a dentry. It returns %NULL if there is insufficient memory
1587 * available. On a success the dentry is returned. The name passed in is
1588 * copied and the copy passed in may be reused after this call.
1589 */
1590 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1591 {
1592 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1593 if (!dentry)
1594 return NULL;
1595
1596 spin_lock(&parent->d_lock);
1597 /*
1598 * don't need child lock because it is not subject
1599 * to concurrency here
1600 */
1601 __dget_dlock(parent);
1602 dentry->d_parent = parent;
1603 list_add(&dentry->d_child, &parent->d_subdirs);
1604 spin_unlock(&parent->d_lock);
1605
1606 return dentry;
1607 }
1608 EXPORT_SYMBOL(d_alloc);
1609
1610 /**
1611 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1612 * @sb: the superblock
1613 * @name: qstr of the name
1614 *
1615 * For a filesystem that just pins its dentries in memory and never
1616 * performs lookups at all, return an unhashed IS_ROOT dentry.
1617 */
1618 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1619 {
1620 return __d_alloc(sb, name);
1621 }
1622 EXPORT_SYMBOL(d_alloc_pseudo);
1623
1624 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1625 {
1626 struct qstr q;
1627
1628 q.name = name;
1629 q.len = strlen(name);
1630 q.hash = full_name_hash(q.name, q.len);
1631 return d_alloc(parent, &q);
1632 }
1633 EXPORT_SYMBOL(d_alloc_name);
1634
1635 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1636 {
1637 WARN_ON_ONCE(dentry->d_op);
1638 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
1639 DCACHE_OP_COMPARE |
1640 DCACHE_OP_REVALIDATE |
1641 DCACHE_OP_WEAK_REVALIDATE |
1642 DCACHE_OP_DELETE ));
1643 dentry->d_op = op;
1644 if (!op)
1645 return;
1646 if (op->d_hash)
1647 dentry->d_flags |= DCACHE_OP_HASH;
1648 if (op->d_compare)
1649 dentry->d_flags |= DCACHE_OP_COMPARE;
1650 if (op->d_revalidate)
1651 dentry->d_flags |= DCACHE_OP_REVALIDATE;
1652 if (op->d_weak_revalidate)
1653 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1654 if (op->d_delete)
1655 dentry->d_flags |= DCACHE_OP_DELETE;
1656 if (op->d_prune)
1657 dentry->d_flags |= DCACHE_OP_PRUNE;
1658
1659 }
1660 EXPORT_SYMBOL(d_set_d_op);
1661
1662
1663 /*
1664 * d_set_fallthru - Mark a dentry as falling through to a lower layer
1665 * @dentry - The dentry to mark
1666 *
1667 * Mark a dentry as falling through to the lower layer (as set with
1668 * d_pin_lower()). This flag may be recorded on the medium.
1669 */
1670 void d_set_fallthru(struct dentry *dentry)
1671 {
1672 spin_lock(&dentry->d_lock);
1673 dentry->d_flags |= DCACHE_FALLTHRU;
1674 spin_unlock(&dentry->d_lock);
1675 }
1676 EXPORT_SYMBOL(d_set_fallthru);
1677
1678 static unsigned d_flags_for_inode(struct inode *inode)
1679 {
1680 unsigned add_flags = DCACHE_REGULAR_TYPE;
1681
1682 if (!inode)
1683 return DCACHE_MISS_TYPE;
1684
1685 if (S_ISDIR(inode->i_mode)) {
1686 add_flags = DCACHE_DIRECTORY_TYPE;
1687 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1688 if (unlikely(!inode->i_op->lookup))
1689 add_flags = DCACHE_AUTODIR_TYPE;
1690 else
1691 inode->i_opflags |= IOP_LOOKUP;
1692 }
1693 goto type_determined;
1694 }
1695
1696 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1697 if (unlikely(inode->i_op->follow_link)) {
1698 add_flags = DCACHE_SYMLINK_TYPE;
1699 goto type_determined;
1700 }
1701 inode->i_opflags |= IOP_NOFOLLOW;
1702 }
1703
1704 if (unlikely(!S_ISREG(inode->i_mode)))
1705 add_flags = DCACHE_SPECIAL_TYPE;
1706
1707 type_determined:
1708 if (unlikely(IS_AUTOMOUNT(inode)))
1709 add_flags |= DCACHE_NEED_AUTOMOUNT;
1710 return add_flags;
1711 }
1712
1713 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1714 {
1715 unsigned add_flags = d_flags_for_inode(inode);
1716
1717 spin_lock(&dentry->d_lock);
1718 dentry->d_flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
1719 dentry->d_flags |= add_flags;
1720 if (inode)
1721 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
1722 dentry->d_inode = inode;
1723 dentry_rcuwalk_barrier(dentry);
1724 spin_unlock(&dentry->d_lock);
1725 fsnotify_d_instantiate(dentry, inode);
1726 }
1727
1728 /**
1729 * d_instantiate - fill in inode information for a dentry
1730 * @entry: dentry to complete
1731 * @inode: inode to attach to this dentry
1732 *
1733 * Fill in inode information in the entry.
1734 *
1735 * This turns negative dentries into productive full members
1736 * of society.
1737 *
1738 * NOTE! This assumes that the inode count has been incremented
1739 * (or otherwise set) by the caller to indicate that it is now
1740 * in use by the dcache.
1741 */
1742
1743 void d_instantiate(struct dentry *entry, struct inode * inode)
1744 {
1745 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1746 if (inode)
1747 spin_lock(&inode->i_lock);
1748 __d_instantiate(entry, inode);
1749 if (inode)
1750 spin_unlock(&inode->i_lock);
1751 security_d_instantiate(entry, inode);
1752 }
1753 EXPORT_SYMBOL(d_instantiate);
1754
1755 /**
1756 * d_instantiate_unique - instantiate a non-aliased dentry
1757 * @entry: dentry to instantiate
1758 * @inode: inode to attach to this dentry
1759 *
1760 * Fill in inode information in the entry. On success, it returns NULL.
1761 * If an unhashed alias of "entry" already exists, then we return the
1762 * aliased dentry instead and drop one reference to inode.
1763 *
1764 * Note that in order to avoid conflicts with rename() etc, the caller
1765 * had better be holding the parent directory semaphore.
1766 *
1767 * This also assumes that the inode count has been incremented
1768 * (or otherwise set) by the caller to indicate that it is now
1769 * in use by the dcache.
1770 */
1771 static struct dentry *__d_instantiate_unique(struct dentry *entry,
1772 struct inode *inode)
1773 {
1774 struct dentry *alias;
1775 int len = entry->d_name.len;
1776 const char *name = entry->d_name.name;
1777 unsigned int hash = entry->d_name.hash;
1778
1779 if (!inode) {
1780 __d_instantiate(entry, NULL);
1781 return NULL;
1782 }
1783
1784 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
1785 /*
1786 * Don't need alias->d_lock here, because aliases with
1787 * d_parent == entry->d_parent are not subject to name or
1788 * parent changes, because the parent inode i_mutex is held.
1789 */
1790 if (alias->d_name.hash != hash)
1791 continue;
1792 if (alias->d_parent != entry->d_parent)
1793 continue;
1794 if (alias->d_name.len != len)
1795 continue;
1796 if (dentry_cmp(alias, name, len))
1797 continue;
1798 __dget(alias);
1799 return alias;
1800 }
1801
1802 __d_instantiate(entry, inode);
1803 return NULL;
1804 }
1805
1806 struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1807 {
1808 struct dentry *result;
1809
1810 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1811
1812 if (inode)
1813 spin_lock(&inode->i_lock);
1814 result = __d_instantiate_unique(entry, inode);
1815 if (inode)
1816 spin_unlock(&inode->i_lock);
1817
1818 if (!result) {
1819 security_d_instantiate(entry, inode);
1820 return NULL;
1821 }
1822
1823 BUG_ON(!d_unhashed(result));
1824 iput(inode);
1825 return result;
1826 }
1827
1828 EXPORT_SYMBOL(d_instantiate_unique);
1829
1830 /**
1831 * d_instantiate_no_diralias - instantiate a non-aliased dentry
1832 * @entry: dentry to complete
1833 * @inode: inode to attach to this dentry
1834 *
1835 * Fill in inode information in the entry. If a directory alias is found, then
1836 * return an error (and drop inode). Together with d_materialise_unique() this
1837 * guarantees that a directory inode may never have more than one alias.
1838 */
1839 int d_instantiate_no_diralias(struct dentry *entry, struct inode *inode)
1840 {
1841 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1842
1843 spin_lock(&inode->i_lock);
1844 if (S_ISDIR(inode->i_mode) && !hlist_empty(&inode->i_dentry)) {
1845 spin_unlock(&inode->i_lock);
1846 iput(inode);
1847 return -EBUSY;
1848 }
1849 __d_instantiate(entry, inode);
1850 spin_unlock(&inode->i_lock);
1851 security_d_instantiate(entry, inode);
1852
1853 return 0;
1854 }
1855 EXPORT_SYMBOL(d_instantiate_no_diralias);
1856
1857 struct dentry *d_make_root(struct inode *root_inode)
1858 {
1859 struct dentry *res = NULL;
1860
1861 if (root_inode) {
1862 static const struct qstr name = QSTR_INIT("/", 1);
1863
1864 res = __d_alloc(root_inode->i_sb, &name);
1865 if (res)
1866 d_instantiate(res, root_inode);
1867 else
1868 iput(root_inode);
1869 }
1870 return res;
1871 }
1872 EXPORT_SYMBOL(d_make_root);
1873
1874 static struct dentry * __d_find_any_alias(struct inode *inode)
1875 {
1876 struct dentry *alias;
1877
1878 if (hlist_empty(&inode->i_dentry))
1879 return NULL;
1880 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
1881 __dget(alias);
1882 return alias;
1883 }
1884
1885 /**
1886 * d_find_any_alias - find any alias for a given inode
1887 * @inode: inode to find an alias for
1888 *
1889 * If any aliases exist for the given inode, take and return a
1890 * reference for one of them. If no aliases exist, return %NULL.
1891 */
1892 struct dentry *d_find_any_alias(struct inode *inode)
1893 {
1894 struct dentry *de;
1895
1896 spin_lock(&inode->i_lock);
1897 de = __d_find_any_alias(inode);
1898 spin_unlock(&inode->i_lock);
1899 return de;
1900 }
1901 EXPORT_SYMBOL(d_find_any_alias);
1902
1903 static struct dentry *__d_obtain_alias(struct inode *inode, int disconnected)
1904 {
1905 static const struct qstr anonstring = QSTR_INIT("/", 1);
1906 struct dentry *tmp;
1907 struct dentry *res;
1908 unsigned add_flags;
1909
1910 if (!inode)
1911 return ERR_PTR(-ESTALE);
1912 if (IS_ERR(inode))
1913 return ERR_CAST(inode);
1914
1915 res = d_find_any_alias(inode);
1916 if (res)
1917 goto out_iput;
1918
1919 tmp = __d_alloc(inode->i_sb, &anonstring);
1920 if (!tmp) {
1921 res = ERR_PTR(-ENOMEM);
1922 goto out_iput;
1923 }
1924
1925 spin_lock(&inode->i_lock);
1926 res = __d_find_any_alias(inode);
1927 if (res) {
1928 spin_unlock(&inode->i_lock);
1929 dput(tmp);
1930 goto out_iput;
1931 }
1932
1933 /* attach a disconnected dentry */
1934 add_flags = d_flags_for_inode(inode);
1935
1936 if (disconnected)
1937 add_flags |= DCACHE_DISCONNECTED;
1938
1939 spin_lock(&tmp->d_lock);
1940 tmp->d_inode = inode;
1941 tmp->d_flags |= add_flags;
1942 hlist_add_head(&tmp->d_u.d_alias, &inode->i_dentry);
1943 hlist_bl_lock(&tmp->d_sb->s_anon);
1944 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1945 hlist_bl_unlock(&tmp->d_sb->s_anon);
1946 spin_unlock(&tmp->d_lock);
1947 spin_unlock(&inode->i_lock);
1948 security_d_instantiate(tmp, inode);
1949
1950 return tmp;
1951
1952 out_iput:
1953 if (res && !IS_ERR(res))
1954 security_d_instantiate(res, inode);
1955 iput(inode);
1956 return res;
1957 }
1958
1959 /**
1960 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
1961 * @inode: inode to allocate the dentry for
1962 *
1963 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1964 * similar open by handle operations. The returned dentry may be anonymous,
1965 * or may have a full name (if the inode was already in the cache).
1966 *
1967 * When called on a directory inode, we must ensure that the inode only ever
1968 * has one dentry. If a dentry is found, that is returned instead of
1969 * allocating a new one.
1970 *
1971 * On successful return, the reference to the inode has been transferred
1972 * to the dentry. In case of an error the reference on the inode is released.
1973 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1974 * be passed in and the error will be propagated to the return value,
1975 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1976 */
1977 struct dentry *d_obtain_alias(struct inode *inode)
1978 {
1979 return __d_obtain_alias(inode, 1);
1980 }
1981 EXPORT_SYMBOL(d_obtain_alias);
1982
1983 /**
1984 * d_obtain_root - find or allocate a dentry for a given inode
1985 * @inode: inode to allocate the dentry for
1986 *
1987 * Obtain an IS_ROOT dentry for the root of a filesystem.
1988 *
1989 * We must ensure that directory inodes only ever have one dentry. If a
1990 * dentry is found, that is returned instead of allocating a new one.
1991 *
1992 * On successful return, the reference to the inode has been transferred
1993 * to the dentry. In case of an error the reference on the inode is
1994 * released. A %NULL or IS_ERR inode may be passed in and will be the
1995 * error will be propagate to the return value, with a %NULL @inode
1996 * replaced by ERR_PTR(-ESTALE).
1997 */
1998 struct dentry *d_obtain_root(struct inode *inode)
1999 {
2000 return __d_obtain_alias(inode, 0);
2001 }
2002 EXPORT_SYMBOL(d_obtain_root);
2003
2004 /**
2005 * d_add_ci - lookup or allocate new dentry with case-exact name
2006 * @inode: the inode case-insensitive lookup has found
2007 * @dentry: the negative dentry that was passed to the parent's lookup func
2008 * @name: the case-exact name to be associated with the returned dentry
2009 *
2010 * This is to avoid filling the dcache with case-insensitive names to the
2011 * same inode, only the actual correct case is stored in the dcache for
2012 * case-insensitive filesystems.
2013 *
2014 * For a case-insensitive lookup match and if the the case-exact dentry
2015 * already exists in in the dcache, use it and return it.
2016 *
2017 * If no entry exists with the exact case name, allocate new dentry with
2018 * the exact case, and return the spliced entry.
2019 */
2020 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
2021 struct qstr *name)
2022 {
2023 struct dentry *found;
2024 struct dentry *new;
2025
2026 /*
2027 * First check if a dentry matching the name already exists,
2028 * if not go ahead and create it now.
2029 */
2030 found = d_hash_and_lookup(dentry->d_parent, name);
2031 if (!found) {
2032 new = d_alloc(dentry->d_parent, name);
2033 if (!new) {
2034 found = ERR_PTR(-ENOMEM);
2035 } else {
2036 found = d_splice_alias(inode, new);
2037 if (found) {
2038 dput(new);
2039 return found;
2040 }
2041 return new;
2042 }
2043 }
2044 iput(inode);
2045 return found;
2046 }
2047 EXPORT_SYMBOL(d_add_ci);
2048
2049 /*
2050 * Do the slow-case of the dentry name compare.
2051 *
2052 * Unlike the dentry_cmp() function, we need to atomically
2053 * load the name and length information, so that the
2054 * filesystem can rely on them, and can use the 'name' and
2055 * 'len' information without worrying about walking off the
2056 * end of memory etc.
2057 *
2058 * Thus the read_seqcount_retry() and the "duplicate" info
2059 * in arguments (the low-level filesystem should not look
2060 * at the dentry inode or name contents directly, since
2061 * rename can change them while we're in RCU mode).
2062 */
2063 enum slow_d_compare {
2064 D_COMP_OK,
2065 D_COMP_NOMATCH,
2066 D_COMP_SEQRETRY,
2067 };
2068
2069 static noinline enum slow_d_compare slow_dentry_cmp(
2070 const struct dentry *parent,
2071 struct dentry *dentry,
2072 unsigned int seq,
2073 const struct qstr *name)
2074 {
2075 int tlen = dentry->d_name.len;
2076 const char *tname = dentry->d_name.name;
2077
2078 if (read_seqcount_retry(&dentry->d_seq, seq)) {
2079 cpu_relax();
2080 return D_COMP_SEQRETRY;
2081 }
2082 if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
2083 return D_COMP_NOMATCH;
2084 return D_COMP_OK;
2085 }
2086
2087 /**
2088 * __d_lookup_rcu - search for a dentry (racy, store-free)
2089 * @parent: parent dentry
2090 * @name: qstr of name we wish to find
2091 * @seqp: returns d_seq value at the point where the dentry was found
2092 * Returns: dentry, or NULL
2093 *
2094 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2095 * resolution (store-free path walking) design described in
2096 * Documentation/filesystems/path-lookup.txt.
2097 *
2098 * This is not to be used outside core vfs.
2099 *
2100 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2101 * held, and rcu_read_lock held. The returned dentry must not be stored into
2102 * without taking d_lock and checking d_seq sequence count against @seq
2103 * returned here.
2104 *
2105 * A refcount may be taken on the found dentry with the d_rcu_to_refcount
2106 * function.
2107 *
2108 * Alternatively, __d_lookup_rcu may be called again to look up the child of
2109 * the returned dentry, so long as its parent's seqlock is checked after the
2110 * child is looked up. Thus, an interlocking stepping of sequence lock checks
2111 * is formed, giving integrity down the path walk.
2112 *
2113 * NOTE! The caller *has* to check the resulting dentry against the sequence
2114 * number we've returned before using any of the resulting dentry state!
2115 */
2116 struct dentry *__d_lookup_rcu(const struct dentry *parent,
2117 const struct qstr *name,
2118 unsigned *seqp)
2119 {
2120 u64 hashlen = name->hash_len;
2121 const unsigned char *str = name->name;
2122 struct hlist_bl_head *b = d_hash(parent, hashlen_hash(hashlen));
2123 struct hlist_bl_node *node;
2124 struct dentry *dentry;
2125
2126 /*
2127 * Note: There is significant duplication with __d_lookup_rcu which is
2128 * required to prevent single threaded performance regressions
2129 * especially on architectures where smp_rmb (in seqcounts) are costly.
2130 * Keep the two functions in sync.
2131 */
2132
2133 /*
2134 * The hash list is protected using RCU.
2135 *
2136 * Carefully use d_seq when comparing a candidate dentry, to avoid
2137 * races with d_move().
2138 *
2139 * It is possible that concurrent renames can mess up our list
2140 * walk here and result in missing our dentry, resulting in the
2141 * false-negative result. d_lookup() protects against concurrent
2142 * renames using rename_lock seqlock.
2143 *
2144 * See Documentation/filesystems/path-lookup.txt for more details.
2145 */
2146 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2147 unsigned seq;
2148
2149 seqretry:
2150 /*
2151 * The dentry sequence count protects us from concurrent
2152 * renames, and thus protects parent and name fields.
2153 *
2154 * The caller must perform a seqcount check in order
2155 * to do anything useful with the returned dentry.
2156 *
2157 * NOTE! We do a "raw" seqcount_begin here. That means that
2158 * we don't wait for the sequence count to stabilize if it
2159 * is in the middle of a sequence change. If we do the slow
2160 * dentry compare, we will do seqretries until it is stable,
2161 * and if we end up with a successful lookup, we actually
2162 * want to exit RCU lookup anyway.
2163 */
2164 seq = raw_seqcount_begin(&dentry->d_seq);
2165 if (dentry->d_parent != parent)
2166 continue;
2167 if (d_unhashed(dentry))
2168 continue;
2169
2170 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
2171 if (dentry->d_name.hash != hashlen_hash(hashlen))
2172 continue;
2173 *seqp = seq;
2174 switch (slow_dentry_cmp(parent, dentry, seq, name)) {
2175 case D_COMP_OK:
2176 return dentry;
2177 case D_COMP_NOMATCH:
2178 continue;
2179 default:
2180 goto seqretry;
2181 }
2182 }
2183
2184 if (dentry->d_name.hash_len != hashlen)
2185 continue;
2186 *seqp = seq;
2187 if (!dentry_cmp(dentry, str, hashlen_len(hashlen)))
2188 return dentry;
2189 }
2190 return NULL;
2191 }
2192
2193 /**
2194 * d_lookup - search for a dentry
2195 * @parent: parent dentry
2196 * @name: qstr of name we wish to find
2197 * Returns: dentry, or NULL
2198 *
2199 * d_lookup searches the children of the parent dentry for the name in
2200 * question. If the dentry is found its reference count is incremented and the
2201 * dentry is returned. The caller must use dput to free the entry when it has
2202 * finished using it. %NULL is returned if the dentry does not exist.
2203 */
2204 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2205 {
2206 struct dentry *dentry;
2207 unsigned seq;
2208
2209 do {
2210 seq = read_seqbegin(&rename_lock);
2211 dentry = __d_lookup(parent, name);
2212 if (dentry)
2213 break;
2214 } while (read_seqretry(&rename_lock, seq));
2215 return dentry;
2216 }
2217 EXPORT_SYMBOL(d_lookup);
2218
2219 /**
2220 * __d_lookup - search for a dentry (racy)
2221 * @parent: parent dentry
2222 * @name: qstr of name we wish to find
2223 * Returns: dentry, or NULL
2224 *
2225 * __d_lookup is like d_lookup, however it may (rarely) return a
2226 * false-negative result due to unrelated rename activity.
2227 *
2228 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2229 * however it must be used carefully, eg. with a following d_lookup in
2230 * the case of failure.
2231 *
2232 * __d_lookup callers must be commented.
2233 */
2234 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2235 {
2236 unsigned int len = name->len;
2237 unsigned int hash = name->hash;
2238 const unsigned char *str = name->name;
2239 struct hlist_bl_head *b = d_hash(parent, hash);
2240 struct hlist_bl_node *node;
2241 struct dentry *found = NULL;
2242 struct dentry *dentry;
2243
2244 /*
2245 * Note: There is significant duplication with __d_lookup_rcu which is
2246 * required to prevent single threaded performance regressions
2247 * especially on architectures where smp_rmb (in seqcounts) are costly.
2248 * Keep the two functions in sync.
2249 */
2250
2251 /*
2252 * The hash list is protected using RCU.
2253 *
2254 * Take d_lock when comparing a candidate dentry, to avoid races
2255 * with d_move().
2256 *
2257 * It is possible that concurrent renames can mess up our list
2258 * walk here and result in missing our dentry, resulting in the
2259 * false-negative result. d_lookup() protects against concurrent
2260 * renames using rename_lock seqlock.
2261 *
2262 * See Documentation/filesystems/path-lookup.txt for more details.
2263 */
2264 rcu_read_lock();
2265
2266 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2267
2268 if (dentry->d_name.hash != hash)
2269 continue;
2270
2271 spin_lock(&dentry->d_lock);
2272 if (dentry->d_parent != parent)
2273 goto next;
2274 if (d_unhashed(dentry))
2275 goto next;
2276
2277 /*
2278 * It is safe to compare names since d_move() cannot
2279 * change the qstr (protected by d_lock).
2280 */
2281 if (parent->d_flags & DCACHE_OP_COMPARE) {
2282 int tlen = dentry->d_name.len;
2283 const char *tname = dentry->d_name.name;
2284 if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
2285 goto next;
2286 } else {
2287 if (dentry->d_name.len != len)
2288 goto next;
2289 if (dentry_cmp(dentry, str, len))
2290 goto next;
2291 }
2292
2293 dentry->d_lockref.count++;
2294 found = dentry;
2295 spin_unlock(&dentry->d_lock);
2296 break;
2297 next:
2298 spin_unlock(&dentry->d_lock);
2299 }
2300 rcu_read_unlock();
2301
2302 return found;
2303 }
2304
2305 /**
2306 * d_hash_and_lookup - hash the qstr then search for a dentry
2307 * @dir: Directory to search in
2308 * @name: qstr of name we wish to find
2309 *
2310 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2311 */
2312 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2313 {
2314 /*
2315 * Check for a fs-specific hash function. Note that we must
2316 * calculate the standard hash first, as the d_op->d_hash()
2317 * routine may choose to leave the hash value unchanged.
2318 */
2319 name->hash = full_name_hash(name->name, name->len);
2320 if (dir->d_flags & DCACHE_OP_HASH) {
2321 int err = dir->d_op->d_hash(dir, name);
2322 if (unlikely(err < 0))
2323 return ERR_PTR(err);
2324 }
2325 return d_lookup(dir, name);
2326 }
2327 EXPORT_SYMBOL(d_hash_and_lookup);
2328
2329 /*
2330 * When a file is deleted, we have two options:
2331 * - turn this dentry into a negative dentry
2332 * - unhash this dentry and free it.
2333 *
2334 * Usually, we want to just turn this into
2335 * a negative dentry, but if anybody else is
2336 * currently using the dentry or the inode
2337 * we can't do that and we fall back on removing
2338 * it from the hash queues and waiting for
2339 * it to be deleted later when it has no users
2340 */
2341
2342 /**
2343 * d_delete - delete a dentry
2344 * @dentry: The dentry to delete
2345 *
2346 * Turn the dentry into a negative dentry if possible, otherwise
2347 * remove it from the hash queues so it can be deleted later
2348 */
2349
2350 void d_delete(struct dentry * dentry)
2351 {
2352 struct inode *inode;
2353 int isdir = 0;
2354 /*
2355 * Are we the only user?
2356 */
2357 again:
2358 spin_lock(&dentry->d_lock);
2359 inode = dentry->d_inode;
2360 isdir = S_ISDIR(inode->i_mode);
2361 if (dentry->d_lockref.count == 1) {
2362 if (!spin_trylock(&inode->i_lock)) {
2363 spin_unlock(&dentry->d_lock);
2364 cpu_relax();
2365 goto again;
2366 }
2367 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2368 dentry_unlink_inode(dentry);
2369 fsnotify_nameremove(dentry, isdir);
2370 return;
2371 }
2372
2373 if (!d_unhashed(dentry))
2374 __d_drop(dentry);
2375
2376 spin_unlock(&dentry->d_lock);
2377
2378 fsnotify_nameremove(dentry, isdir);
2379 }
2380 EXPORT_SYMBOL(d_delete);
2381
2382 static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b)
2383 {
2384 BUG_ON(!d_unhashed(entry));
2385 hlist_bl_lock(b);
2386 entry->d_flags |= DCACHE_RCUACCESS;
2387 hlist_bl_add_head_rcu(&entry->d_hash, b);
2388 hlist_bl_unlock(b);
2389 }
2390
2391 static void _d_rehash(struct dentry * entry)
2392 {
2393 __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
2394 }
2395
2396 /**
2397 * d_rehash - add an entry back to the hash
2398 * @entry: dentry to add to the hash
2399 *
2400 * Adds a dentry to the hash according to its name.
2401 */
2402
2403 void d_rehash(struct dentry * entry)
2404 {
2405 spin_lock(&entry->d_lock);
2406 _d_rehash(entry);
2407 spin_unlock(&entry->d_lock);
2408 }
2409 EXPORT_SYMBOL(d_rehash);
2410
2411 /**
2412 * dentry_update_name_case - update case insensitive dentry with a new name
2413 * @dentry: dentry to be updated
2414 * @name: new name
2415 *
2416 * Update a case insensitive dentry with new case of name.
2417 *
2418 * dentry must have been returned by d_lookup with name @name. Old and new
2419 * name lengths must match (ie. no d_compare which allows mismatched name
2420 * lengths).
2421 *
2422 * Parent inode i_mutex must be held over d_lookup and into this call (to
2423 * keep renames and concurrent inserts, and readdir(2) away).
2424 */
2425 void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
2426 {
2427 BUG_ON(!mutex_is_locked(&dentry->d_parent->d_inode->i_mutex));
2428 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2429
2430 spin_lock(&dentry->d_lock);
2431 write_seqcount_begin(&dentry->d_seq);
2432 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
2433 write_seqcount_end(&dentry->d_seq);
2434 spin_unlock(&dentry->d_lock);
2435 }
2436 EXPORT_SYMBOL(dentry_update_name_case);
2437
2438 static void swap_names(struct dentry *dentry, struct dentry *target)
2439 {
2440 if (unlikely(dname_external(target))) {
2441 if (unlikely(dname_external(dentry))) {
2442 /*
2443 * Both external: swap the pointers
2444 */
2445 swap(target->d_name.name, dentry->d_name.name);
2446 } else {
2447 /*
2448 * dentry:internal, target:external. Steal target's
2449 * storage and make target internal.
2450 */
2451 memcpy(target->d_iname, dentry->d_name.name,
2452 dentry->d_name.len + 1);
2453 dentry->d_name.name = target->d_name.name;
2454 target->d_name.name = target->d_iname;
2455 }
2456 } else {
2457 if (unlikely(dname_external(dentry))) {
2458 /*
2459 * dentry:external, target:internal. Give dentry's
2460 * storage to target and make dentry internal
2461 */
2462 memcpy(dentry->d_iname, target->d_name.name,
2463 target->d_name.len + 1);
2464 target->d_name.name = dentry->d_name.name;
2465 dentry->d_name.name = dentry->d_iname;
2466 } else {
2467 /*
2468 * Both are internal.
2469 */
2470 unsigned int i;
2471 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2472 kmemcheck_mark_initialized(dentry->d_iname, DNAME_INLINE_LEN);
2473 kmemcheck_mark_initialized(target->d_iname, DNAME_INLINE_LEN);
2474 for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2475 swap(((long *) &dentry->d_iname)[i],
2476 ((long *) &target->d_iname)[i]);
2477 }
2478 }
2479 }
2480 swap(dentry->d_name.hash_len, target->d_name.hash_len);
2481 }
2482
2483 static void copy_name(struct dentry *dentry, struct dentry *target)
2484 {
2485 struct external_name *old_name = NULL;
2486 if (unlikely(dname_external(dentry)))
2487 old_name = external_name(dentry);
2488 if (unlikely(dname_external(target))) {
2489 atomic_inc(&external_name(target)->u.count);
2490 dentry->d_name = target->d_name;
2491 } else {
2492 memcpy(dentry->d_iname, target->d_name.name,
2493 target->d_name.len + 1);
2494 dentry->d_name.name = dentry->d_iname;
2495 dentry->d_name.hash_len = target->d_name.hash_len;
2496 }
2497 if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2498 kfree_rcu(old_name, u.head);
2499 }
2500
2501 static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2502 {
2503 /*
2504 * XXXX: do we really need to take target->d_lock?
2505 */
2506 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2507 spin_lock(&target->d_parent->d_lock);
2508 else {
2509 if (d_ancestor(dentry->d_parent, target->d_parent)) {
2510 spin_lock(&dentry->d_parent->d_lock);
2511 spin_lock_nested(&target->d_parent->d_lock,
2512 DENTRY_D_LOCK_NESTED);
2513 } else {
2514 spin_lock(&target->d_parent->d_lock);
2515 spin_lock_nested(&dentry->d_parent->d_lock,
2516 DENTRY_D_LOCK_NESTED);
2517 }
2518 }
2519 if (target < dentry) {
2520 spin_lock_nested(&target->d_lock, 2);
2521 spin_lock_nested(&dentry->d_lock, 3);
2522 } else {
2523 spin_lock_nested(&dentry->d_lock, 2);
2524 spin_lock_nested(&target->d_lock, 3);
2525 }
2526 }
2527
2528 static void dentry_unlock_for_move(struct dentry *dentry, struct dentry *target)
2529 {
2530 if (target->d_parent != dentry->d_parent)
2531 spin_unlock(&dentry->d_parent->d_lock);
2532 if (target->d_parent != target)
2533 spin_unlock(&target->d_parent->d_lock);
2534 spin_unlock(&target->d_lock);
2535 spin_unlock(&dentry->d_lock);
2536 }
2537
2538 /*
2539 * When switching names, the actual string doesn't strictly have to
2540 * be preserved in the target - because we're dropping the target
2541 * anyway. As such, we can just do a simple memcpy() to copy over
2542 * the new name before we switch, unless we are going to rehash
2543 * it. Note that if we *do* unhash the target, we are not allowed
2544 * to rehash it without giving it a new name/hash key - whether
2545 * we swap or overwrite the names here, resulting name won't match
2546 * the reality in filesystem; it's only there for d_path() purposes.
2547 * Note that all of this is happening under rename_lock, so the
2548 * any hash lookup seeing it in the middle of manipulations will
2549 * be discarded anyway. So we do not care what happens to the hash
2550 * key in that case.
2551 */
2552 /*
2553 * __d_move - move a dentry
2554 * @dentry: entry to move
2555 * @target: new dentry
2556 * @exchange: exchange the two dentries
2557 *
2558 * Update the dcache to reflect the move of a file name. Negative
2559 * dcache entries should not be moved in this way. Caller must hold
2560 * rename_lock, the i_mutex of the source and target directories,
2561 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2562 */
2563 static void __d_move(struct dentry *dentry, struct dentry *target,
2564 bool exchange)
2565 {
2566 if (!dentry->d_inode)
2567 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2568
2569 BUG_ON(d_ancestor(dentry, target));
2570 BUG_ON(d_ancestor(target, dentry));
2571
2572 dentry_lock_for_move(dentry, target);
2573
2574 write_seqcount_begin(&dentry->d_seq);
2575 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
2576
2577 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2578
2579 /*
2580 * Move the dentry to the target hash queue. Don't bother checking
2581 * for the same hash queue because of how unlikely it is.
2582 */
2583 __d_drop(dentry);
2584 __d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
2585
2586 /*
2587 * Unhash the target (d_delete() is not usable here). If exchanging
2588 * the two dentries, then rehash onto the other's hash queue.
2589 */
2590 __d_drop(target);
2591 if (exchange) {
2592 __d_rehash(target,
2593 d_hash(dentry->d_parent, dentry->d_name.hash));
2594 }
2595
2596 /* Switch the names.. */
2597 if (exchange)
2598 swap_names(dentry, target);
2599 else
2600 copy_name(dentry, target);
2601
2602 /* ... and switch them in the tree */
2603 if (IS_ROOT(dentry)) {
2604 /* splicing a tree */
2605 dentry->d_parent = target->d_parent;
2606 target->d_parent = target;
2607 list_del_init(&target->d_child);
2608 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2609 } else {
2610 /* swapping two dentries */
2611 swap(dentry->d_parent, target->d_parent);
2612 list_move(&target->d_child, &target->d_parent->d_subdirs);
2613 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2614 if (exchange)
2615 fsnotify_d_move(target);
2616 fsnotify_d_move(dentry);
2617 }
2618
2619 write_seqcount_end(&target->d_seq);
2620 write_seqcount_end(&dentry->d_seq);
2621
2622 dentry_unlock_for_move(dentry, target);
2623 }
2624
2625 /*
2626 * d_move - move a dentry
2627 * @dentry: entry to move
2628 * @target: new dentry
2629 *
2630 * Update the dcache to reflect the move of a file name. Negative
2631 * dcache entries should not be moved in this way. See the locking
2632 * requirements for __d_move.
2633 */
2634 void d_move(struct dentry *dentry, struct dentry *target)
2635 {
2636 write_seqlock(&rename_lock);
2637 __d_move(dentry, target, false);
2638 write_sequnlock(&rename_lock);
2639 }
2640 EXPORT_SYMBOL(d_move);
2641
2642 /*
2643 * d_exchange - exchange two dentries
2644 * @dentry1: first dentry
2645 * @dentry2: second dentry
2646 */
2647 void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2648 {
2649 write_seqlock(&rename_lock);
2650
2651 WARN_ON(!dentry1->d_inode);
2652 WARN_ON(!dentry2->d_inode);
2653 WARN_ON(IS_ROOT(dentry1));
2654 WARN_ON(IS_ROOT(dentry2));
2655
2656 __d_move(dentry1, dentry2, true);
2657
2658 write_sequnlock(&rename_lock);
2659 }
2660
2661 /**
2662 * d_ancestor - search for an ancestor
2663 * @p1: ancestor dentry
2664 * @p2: child dentry
2665 *
2666 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2667 * an ancestor of p2, else NULL.
2668 */
2669 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2670 {
2671 struct dentry *p;
2672
2673 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2674 if (p->d_parent == p1)
2675 return p;
2676 }
2677 return NULL;
2678 }
2679
2680 /*
2681 * This helper attempts to cope with remotely renamed directories
2682 *
2683 * It assumes that the caller is already holding
2684 * dentry->d_parent->d_inode->i_mutex, inode->i_lock and rename_lock
2685 *
2686 * Note: If ever the locking in lock_rename() changes, then please
2687 * remember to update this too...
2688 */
2689 static int __d_unalias(struct inode *inode,
2690 struct dentry *dentry, struct dentry *alias)
2691 {
2692 struct mutex *m1 = NULL, *m2 = NULL;
2693 int ret = -ESTALE;
2694
2695 /* If alias and dentry share a parent, then no extra locks required */
2696 if (alias->d_parent == dentry->d_parent)
2697 goto out_unalias;
2698
2699 /* See lock_rename() */
2700 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2701 goto out_err;
2702 m1 = &dentry->d_sb->s_vfs_rename_mutex;
2703 if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
2704 goto out_err;
2705 m2 = &alias->d_parent->d_inode->i_mutex;
2706 out_unalias:
2707 __d_move(alias, dentry, false);
2708 ret = 0;
2709 out_err:
2710 spin_unlock(&inode->i_lock);
2711 if (m2)
2712 mutex_unlock(m2);
2713 if (m1)
2714 mutex_unlock(m1);
2715 return ret;
2716 }
2717
2718 /**
2719 * d_splice_alias - splice a disconnected dentry into the tree if one exists
2720 * @inode: the inode which may have a disconnected dentry
2721 * @dentry: a negative dentry which we want to point to the inode.
2722 *
2723 * If inode is a directory and has an IS_ROOT alias, then d_move that in
2724 * place of the given dentry and return it, else simply d_add the inode
2725 * to the dentry and return NULL.
2726 *
2727 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
2728 * we should error out: directories can't have multiple aliases.
2729 *
2730 * This is needed in the lookup routine of any filesystem that is exportable
2731 * (via knfsd) so that we can build dcache paths to directories effectively.
2732 *
2733 * If a dentry was found and moved, then it is returned. Otherwise NULL
2734 * is returned. This matches the expected return value of ->lookup.
2735 *
2736 * Cluster filesystems may call this function with a negative, hashed dentry.
2737 * In that case, we know that the inode will be a regular file, and also this
2738 * will only occur during atomic_open. So we need to check for the dentry
2739 * being already hashed only in the final case.
2740 */
2741 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
2742 {
2743 if (IS_ERR(inode))
2744 return ERR_CAST(inode);
2745
2746 BUG_ON(!d_unhashed(dentry));
2747
2748 if (!inode) {
2749 __d_instantiate(dentry, NULL);
2750 goto out;
2751 }
2752 spin_lock(&inode->i_lock);
2753 if (S_ISDIR(inode->i_mode)) {
2754 struct dentry *new = __d_find_any_alias(inode);
2755 if (unlikely(new)) {
2756 write_seqlock(&rename_lock);
2757 if (unlikely(d_ancestor(new, dentry))) {
2758 write_sequnlock(&rename_lock);
2759 spin_unlock(&inode->i_lock);
2760 dput(new);
2761 new = ERR_PTR(-ELOOP);
2762 pr_warn_ratelimited(
2763 "VFS: Lookup of '%s' in %s %s"
2764 " would have caused loop\n",
2765 dentry->d_name.name,
2766 inode->i_sb->s_type->name,
2767 inode->i_sb->s_id);
2768 } else if (!IS_ROOT(new)) {
2769 int err = __d_unalias(inode, dentry, new);
2770 write_sequnlock(&rename_lock);
2771 if (err) {
2772 dput(new);
2773 new = ERR_PTR(err);
2774 }
2775 } else {
2776 __d_move(new, dentry, false);
2777 write_sequnlock(&rename_lock);
2778 spin_unlock(&inode->i_lock);
2779 security_d_instantiate(new, inode);
2780 }
2781 iput(inode);
2782 return new;
2783 }
2784 }
2785 /* already taking inode->i_lock, so d_add() by hand */
2786 __d_instantiate(dentry, inode);
2787 spin_unlock(&inode->i_lock);
2788 out:
2789 security_d_instantiate(dentry, inode);
2790 d_rehash(dentry);
2791 return NULL;
2792 }
2793 EXPORT_SYMBOL(d_splice_alias);
2794
2795 static int prepend(char **buffer, int *buflen, const char *str, int namelen)
2796 {
2797 *buflen -= namelen;
2798 if (*buflen < 0)
2799 return -ENAMETOOLONG;
2800 *buffer -= namelen;
2801 memcpy(*buffer, str, namelen);
2802 return 0;
2803 }
2804
2805 /**
2806 * prepend_name - prepend a pathname in front of current buffer pointer
2807 * @buffer: buffer pointer
2808 * @buflen: allocated length of the buffer
2809 * @name: name string and length qstr structure
2810 *
2811 * With RCU path tracing, it may race with d_move(). Use ACCESS_ONCE() to
2812 * make sure that either the old or the new name pointer and length are
2813 * fetched. However, there may be mismatch between length and pointer.
2814 * The length cannot be trusted, we need to copy it byte-by-byte until
2815 * the length is reached or a null byte is found. It also prepends "/" at
2816 * the beginning of the name. The sequence number check at the caller will
2817 * retry it again when a d_move() does happen. So any garbage in the buffer
2818 * due to mismatched pointer and length will be discarded.
2819 *
2820 * Data dependency barrier is needed to make sure that we see that terminating
2821 * NUL. Alpha strikes again, film at 11...
2822 */
2823 static int prepend_name(char **buffer, int *buflen, struct qstr *name)
2824 {
2825 const char *dname = ACCESS_ONCE(name->name);
2826 u32 dlen = ACCESS_ONCE(name->len);
2827 char *p;
2828
2829 smp_read_barrier_depends();
2830
2831 *buflen -= dlen + 1;
2832 if (*buflen < 0)
2833 return -ENAMETOOLONG;
2834 p = *buffer -= dlen + 1;
2835 *p++ = '/';
2836 while (dlen--) {
2837 char c = *dname++;
2838 if (!c)
2839 break;
2840 *p++ = c;
2841 }
2842 return 0;
2843 }
2844
2845 /**
2846 * prepend_path - Prepend path string to a buffer
2847 * @path: the dentry/vfsmount to report
2848 * @root: root vfsmnt/dentry
2849 * @buffer: pointer to the end of the buffer
2850 * @buflen: pointer to buffer length
2851 *
2852 * The function will first try to write out the pathname without taking any
2853 * lock other than the RCU read lock to make sure that dentries won't go away.
2854 * It only checks the sequence number of the global rename_lock as any change
2855 * in the dentry's d_seq will be preceded by changes in the rename_lock
2856 * sequence number. If the sequence number had been changed, it will restart
2857 * the whole pathname back-tracing sequence again by taking the rename_lock.
2858 * In this case, there is no need to take the RCU read lock as the recursive
2859 * parent pointer references will keep the dentry chain alive as long as no
2860 * rename operation is performed.
2861 */
2862 static int prepend_path(const struct path *path,
2863 const struct path *root,
2864 char **buffer, int *buflen)
2865 {
2866 struct dentry *dentry;
2867 struct vfsmount *vfsmnt;
2868 struct mount *mnt;
2869 int error = 0;
2870 unsigned seq, m_seq = 0;
2871 char *bptr;
2872 int blen;
2873
2874 rcu_read_lock();
2875 restart_mnt:
2876 read_seqbegin_or_lock(&mount_lock, &m_seq);
2877 seq = 0;
2878 rcu_read_lock();
2879 restart:
2880 bptr = *buffer;
2881 blen = *buflen;
2882 error = 0;
2883 dentry = path->dentry;
2884 vfsmnt = path->mnt;
2885 mnt = real_mount(vfsmnt);
2886 read_seqbegin_or_lock(&rename_lock, &seq);
2887 while (dentry != root->dentry || vfsmnt != root->mnt) {
2888 struct dentry * parent;
2889
2890 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
2891 struct mount *parent = ACCESS_ONCE(mnt->mnt_parent);
2892 /* Global root? */
2893 if (mnt != parent) {
2894 dentry = ACCESS_ONCE(mnt->mnt_mountpoint);
2895 mnt = parent;
2896 vfsmnt = &mnt->mnt;
2897 continue;
2898 }
2899 /*
2900 * Filesystems needing to implement special "root names"
2901 * should do so with ->d_dname()
2902 */
2903 if (IS_ROOT(dentry) &&
2904 (dentry->d_name.len != 1 ||
2905 dentry->d_name.name[0] != '/')) {
2906 WARN(1, "Root dentry has weird name <%.*s>\n",
2907 (int) dentry->d_name.len,
2908 dentry->d_name.name);
2909 }
2910 if (!error)
2911 error = is_mounted(vfsmnt) ? 1 : 2;
2912 break;
2913 }
2914 parent = dentry->d_parent;
2915 prefetch(parent);
2916 error = prepend_name(&bptr, &blen, &dentry->d_name);
2917 if (error)
2918 break;
2919
2920 dentry = parent;
2921 }
2922 if (!(seq & 1))
2923 rcu_read_unlock();
2924 if (need_seqretry(&rename_lock, seq)) {
2925 seq = 1;
2926 goto restart;
2927 }
2928 done_seqretry(&rename_lock, seq);
2929
2930 if (!(m_seq & 1))
2931 rcu_read_unlock();
2932 if (need_seqretry(&mount_lock, m_seq)) {
2933 m_seq = 1;
2934 goto restart_mnt;
2935 }
2936 done_seqretry(&mount_lock, m_seq);
2937
2938 if (error >= 0 && bptr == *buffer) {
2939 if (--blen < 0)
2940 error = -ENAMETOOLONG;
2941 else
2942 *--bptr = '/';
2943 }
2944 *buffer = bptr;
2945 *buflen = blen;
2946 return error;
2947 }
2948
2949 /**
2950 * __d_path - return the path of a dentry
2951 * @path: the dentry/vfsmount to report
2952 * @root: root vfsmnt/dentry
2953 * @buf: buffer to return value in
2954 * @buflen: buffer length
2955 *
2956 * Convert a dentry into an ASCII path name.
2957 *
2958 * Returns a pointer into the buffer or an error code if the
2959 * path was too long.
2960 *
2961 * "buflen" should be positive.
2962 *
2963 * If the path is not reachable from the supplied root, return %NULL.
2964 */
2965 char *__d_path(const struct path *path,
2966 const struct path *root,
2967 char *buf, int buflen)
2968 {
2969 char *res = buf + buflen;
2970 int error;
2971
2972 prepend(&res, &buflen, "\0", 1);
2973 error = prepend_path(path, root, &res, &buflen);
2974
2975 if (error < 0)
2976 return ERR_PTR(error);
2977 if (error > 0)
2978 return NULL;
2979 return res;
2980 }
2981
2982 char *d_absolute_path(const struct path *path,
2983 char *buf, int buflen)
2984 {
2985 struct path root = {};
2986 char *res = buf + buflen;
2987 int error;
2988
2989 prepend(&res, &buflen, "\0", 1);
2990 error = prepend_path(path, &root, &res, &buflen);
2991
2992 if (error > 1)
2993 error = -EINVAL;
2994 if (error < 0)
2995 return ERR_PTR(error);
2996 return res;
2997 }
2998
2999 /*
3000 * same as __d_path but appends "(deleted)" for unlinked files.
3001 */
3002 static int path_with_deleted(const struct path *path,
3003 const struct path *root,
3004 char **buf, int *buflen)
3005 {
3006 prepend(buf, buflen, "\0", 1);
3007 if (d_unlinked(path->dentry)) {
3008 int error = prepend(buf, buflen, " (deleted)", 10);
3009 if (error)
3010 return error;
3011 }
3012
3013 return prepend_path(path, root, buf, buflen);
3014 }
3015
3016 static int prepend_unreachable(char **buffer, int *buflen)
3017 {
3018 return prepend(buffer, buflen, "(unreachable)", 13);
3019 }
3020
3021 static void get_fs_root_rcu(struct fs_struct *fs, struct path *root)
3022 {
3023 unsigned seq;
3024
3025 do {
3026 seq = read_seqcount_begin(&fs->seq);
3027 *root = fs->root;
3028 } while (read_seqcount_retry(&fs->seq, seq));
3029 }
3030
3031 /**
3032 * d_path - return the path of a dentry
3033 * @path: path to report
3034 * @buf: buffer to return value in
3035 * @buflen: buffer length
3036 *
3037 * Convert a dentry into an ASCII path name. If the entry has been deleted
3038 * the string " (deleted)" is appended. Note that this is ambiguous.
3039 *
3040 * Returns a pointer into the buffer or an error code if the path was
3041 * too long. Note: Callers should use the returned pointer, not the passed
3042 * in buffer, to use the name! The implementation often starts at an offset
3043 * into the buffer, and may leave 0 bytes at the start.
3044 *
3045 * "buflen" should be positive.
3046 */
3047 char *d_path(const struct path *path, char *buf, int buflen)
3048 {
3049 char *res = buf + buflen;
3050 struct path root;
3051 int error;
3052
3053 /*
3054 * We have various synthetic filesystems that never get mounted. On
3055 * these filesystems dentries are never used for lookup purposes, and
3056 * thus don't need to be hashed. They also don't need a name until a
3057 * user wants to identify the object in /proc/pid/fd/. The little hack
3058 * below allows us to generate a name for these objects on demand:
3059 *
3060 * Some pseudo inodes are mountable. When they are mounted
3061 * path->dentry == path->mnt->mnt_root. In that case don't call d_dname
3062 * and instead have d_path return the mounted path.
3063 */
3064 if (path->dentry->d_op && path->dentry->d_op->d_dname &&
3065 (!IS_ROOT(path->dentry) || path->dentry != path->mnt->mnt_root))
3066 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
3067
3068 rcu_read_lock();
3069 get_fs_root_rcu(current->fs, &root);
3070 error = path_with_deleted(path, &root, &res, &buflen);
3071 rcu_read_unlock();
3072
3073 if (error < 0)
3074 res = ERR_PTR(error);
3075 return res;
3076 }
3077 EXPORT_SYMBOL(d_path);
3078
3079 /*
3080 * Helper function for dentry_operations.d_dname() members
3081 */
3082 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
3083 const char *fmt, ...)
3084 {
3085 va_list args;
3086 char temp[64];
3087 int sz;
3088
3089 va_start(args, fmt);
3090 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
3091 va_end(args);
3092
3093 if (sz > sizeof(temp) || sz > buflen)
3094 return ERR_PTR(-ENAMETOOLONG);
3095
3096 buffer += buflen - sz;
3097 return memcpy(buffer, temp, sz);
3098 }
3099
3100 char *simple_dname(struct dentry *dentry, char *buffer, int buflen)
3101 {
3102 char *end = buffer + buflen;
3103 /* these dentries are never renamed, so d_lock is not needed */
3104 if (prepend(&end, &buflen, " (deleted)", 11) ||
3105 prepend(&end, &buflen, dentry->d_name.name, dentry->d_name.len) ||
3106 prepend(&end, &buflen, "/", 1))
3107 end = ERR_PTR(-ENAMETOOLONG);
3108 return end;
3109 }
3110 EXPORT_SYMBOL(simple_dname);
3111
3112 /*
3113 * Write full pathname from the root of the filesystem into the buffer.
3114 */
3115 static char *__dentry_path(struct dentry *d, char *buf, int buflen)
3116 {
3117 struct dentry *dentry;
3118 char *end, *retval;
3119 int len, seq = 0;
3120 int error = 0;
3121
3122 if (buflen < 2)
3123 goto Elong;
3124
3125 rcu_read_lock();
3126 restart:
3127 dentry = d;
3128 end = buf + buflen;
3129 len = buflen;
3130 prepend(&end, &len, "\0", 1);
3131 /* Get '/' right */
3132 retval = end-1;
3133 *retval = '/';
3134 read_seqbegin_or_lock(&rename_lock, &seq);
3135 while (!IS_ROOT(dentry)) {
3136 struct dentry *parent = dentry->d_parent;
3137
3138 prefetch(parent);
3139 error = prepend_name(&end, &len, &dentry->d_name);
3140 if (error)
3141 break;
3142
3143 retval = end;
3144 dentry = parent;
3145 }
3146 if (!(seq & 1))
3147 rcu_read_unlock();
3148 if (need_seqretry(&rename_lock, seq)) {
3149 seq = 1;
3150 goto restart;
3151 }
3152 done_seqretry(&rename_lock, seq);
3153 if (error)
3154 goto Elong;
3155 return retval;
3156 Elong:
3157 return ERR_PTR(-ENAMETOOLONG);
3158 }
3159
3160 char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
3161 {
3162 return __dentry_path(dentry, buf, buflen);
3163 }
3164 EXPORT_SYMBOL(dentry_path_raw);
3165
3166 char *dentry_path(struct dentry *dentry, char *buf, int buflen)
3167 {
3168 char *p = NULL;
3169 char *retval;
3170
3171 if (d_unlinked(dentry)) {
3172 p = buf + buflen;
3173 if (prepend(&p, &buflen, "//deleted", 10) != 0)
3174 goto Elong;
3175 buflen++;
3176 }
3177 retval = __dentry_path(dentry, buf, buflen);
3178 if (!IS_ERR(retval) && p)
3179 *p = '/'; /* restore '/' overriden with '\0' */
3180 return retval;
3181 Elong:
3182 return ERR_PTR(-ENAMETOOLONG);
3183 }
3184
3185 static void get_fs_root_and_pwd_rcu(struct fs_struct *fs, struct path *root,
3186 struct path *pwd)
3187 {
3188 unsigned seq;
3189
3190 do {
3191 seq = read_seqcount_begin(&fs->seq);
3192 *root = fs->root;
3193 *pwd = fs->pwd;
3194 } while (read_seqcount_retry(&fs->seq, seq));
3195 }
3196
3197 /*
3198 * NOTE! The user-level library version returns a
3199 * character pointer. The kernel system call just
3200 * returns the length of the buffer filled (which
3201 * includes the ending '\0' character), or a negative
3202 * error value. So libc would do something like
3203 *
3204 * char *getcwd(char * buf, size_t size)
3205 * {
3206 * int retval;
3207 *
3208 * retval = sys_getcwd(buf, size);
3209 * if (retval >= 0)
3210 * return buf;
3211 * errno = -retval;
3212 * return NULL;
3213 * }
3214 */
3215 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
3216 {
3217 int error;
3218 struct path pwd, root;
3219 char *page = __getname();
3220
3221 if (!page)
3222 return -ENOMEM;
3223
3224 rcu_read_lock();
3225 get_fs_root_and_pwd_rcu(current->fs, &root, &pwd);
3226
3227 error = -ENOENT;
3228 if (!d_unlinked(pwd.dentry)) {
3229 unsigned long len;
3230 char *cwd = page + PATH_MAX;
3231 int buflen = PATH_MAX;
3232
3233 prepend(&cwd, &buflen, "\0", 1);
3234 error = prepend_path(&pwd, &root, &cwd, &buflen);
3235 rcu_read_unlock();
3236
3237 if (error < 0)
3238 goto out;
3239
3240 /* Unreachable from current root */
3241 if (error > 0) {
3242 error = prepend_unreachable(&cwd, &buflen);
3243 if (error)
3244 goto out;
3245 }
3246
3247 error = -ERANGE;
3248 len = PATH_MAX + page - cwd;
3249 if (len <= size) {
3250 error = len;
3251 if (copy_to_user(buf, cwd, len))
3252 error = -EFAULT;
3253 }
3254 } else {
3255 rcu_read_unlock();
3256 }
3257
3258 out:
3259 __putname(page);
3260 return error;
3261 }
3262
3263 /*
3264 * Test whether new_dentry is a subdirectory of old_dentry.
3265 *
3266 * Trivially implemented using the dcache structure
3267 */
3268
3269 /**
3270 * is_subdir - is new dentry a subdirectory of old_dentry
3271 * @new_dentry: new dentry
3272 * @old_dentry: old dentry
3273 *
3274 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
3275 * Returns 0 otherwise.
3276 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3277 */
3278
3279 int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
3280 {
3281 int result;
3282 unsigned seq;
3283
3284 if (new_dentry == old_dentry)
3285 return 1;
3286
3287 do {
3288 /* for restarting inner loop in case of seq retry */
3289 seq = read_seqbegin(&rename_lock);
3290 /*
3291 * Need rcu_readlock to protect against the d_parent trashing
3292 * due to d_move
3293 */
3294 rcu_read_lock();
3295 if (d_ancestor(old_dentry, new_dentry))
3296 result = 1;
3297 else
3298 result = 0;
3299 rcu_read_unlock();
3300 } while (read_seqretry(&rename_lock, seq));
3301
3302 return result;
3303 }
3304
3305 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
3306 {
3307 struct dentry *root = data;
3308 if (dentry != root) {
3309 if (d_unhashed(dentry) || !dentry->d_inode)
3310 return D_WALK_SKIP;
3311
3312 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3313 dentry->d_flags |= DCACHE_GENOCIDE;
3314 dentry->d_lockref.count--;
3315 }
3316 }
3317 return D_WALK_CONTINUE;
3318 }
3319
3320 void d_genocide(struct dentry *parent)
3321 {
3322 d_walk(parent, parent, d_genocide_kill, NULL);
3323 }
3324
3325 void d_tmpfile(struct dentry *dentry, struct inode *inode)
3326 {
3327 inode_dec_link_count(inode);
3328 BUG_ON(dentry->d_name.name != dentry->d_iname ||
3329 !hlist_unhashed(&dentry->d_u.d_alias) ||
3330 !d_unlinked(dentry));
3331 spin_lock(&dentry->d_parent->d_lock);
3332 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3333 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3334 (unsigned long long)inode->i_ino);
3335 spin_unlock(&dentry->d_lock);
3336 spin_unlock(&dentry->d_parent->d_lock);
3337 d_instantiate(dentry, inode);
3338 }
3339 EXPORT_SYMBOL(d_tmpfile);
3340
3341 static __initdata unsigned long dhash_entries;
3342 static int __init set_dhash_entries(char *str)
3343 {
3344 if (!str)
3345 return 0;
3346 dhash_entries = simple_strtoul(str, &str, 0);
3347 return 1;
3348 }
3349 __setup("dhash_entries=", set_dhash_entries);
3350
3351 static void __init dcache_init_early(void)
3352 {
3353 unsigned int loop;
3354
3355 /* If hashes are distributed across NUMA nodes, defer
3356 * hash allocation until vmalloc space is available.
3357 */
3358 if (hashdist)
3359 return;
3360
3361 dentry_hashtable =
3362 alloc_large_system_hash("Dentry cache",
3363 sizeof(struct hlist_bl_head),
3364 dhash_entries,
3365 13,
3366 HASH_EARLY,
3367 &d_hash_shift,
3368 &d_hash_mask,
3369 0,
3370 0);
3371
3372 for (loop = 0; loop < (1U << d_hash_shift); loop++)
3373 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3374 }
3375
3376 static void __init dcache_init(void)
3377 {
3378 unsigned int loop;
3379
3380 /*
3381 * A constructor could be added for stable state like the lists,
3382 * but it is probably not worth it because of the cache nature
3383 * of the dcache.
3384 */
3385 dentry_cache = KMEM_CACHE(dentry,
3386 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
3387
3388 /* Hash may have been set up in dcache_init_early */
3389 if (!hashdist)
3390 return;
3391
3392 dentry_hashtable =
3393 alloc_large_system_hash("Dentry cache",
3394 sizeof(struct hlist_bl_head),
3395 dhash_entries,
3396 13,
3397 0,
3398 &d_hash_shift,
3399 &d_hash_mask,
3400 0,
3401 0);
3402
3403 for (loop = 0; loop < (1U << d_hash_shift); loop++)
3404 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3405 }
3406
3407 /* SLAB cache for __getname() consumers */
3408 struct kmem_cache *names_cachep __read_mostly;
3409 EXPORT_SYMBOL(names_cachep);
3410
3411 EXPORT_SYMBOL(d_genocide);
3412
3413 void __init vfs_caches_init_early(void)
3414 {
3415 dcache_init_early();
3416 inode_init_early();
3417 }
3418
3419 void __init vfs_caches_init(unsigned long mempages)
3420 {
3421 unsigned long reserve;
3422
3423 /* Base hash sizes on available memory, with a reserve equal to
3424 150% of current kernel size */
3425
3426 reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
3427 mempages -= reserve;
3428
3429 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
3430 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3431
3432 dcache_init();
3433 inode_init();
3434 files_init(mempages);
3435 mnt_init();
3436 bdev_cache_init();
3437 chrdev_init();
3438 }