]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - fs/dcache.c
Merge tag 'pm-5.4-final' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael...
[mirror_ubuntu-hirsute-kernel.git] / fs / dcache.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * fs/dcache.c
4 *
5 * Complete reimplementation
6 * (C) 1997 Thomas Schoebel-Theuer,
7 * with heavy changes by Linus Torvalds
8 */
9
10 /*
11 * Notes on the allocation strategy:
12 *
13 * The dcache is a master of the icache - whenever a dcache entry
14 * exists, the inode will always exist. "iput()" is done either when
15 * the dcache entry is deleted or garbage collected.
16 */
17
18 #include <linux/ratelimit.h>
19 #include <linux/string.h>
20 #include <linux/mm.h>
21 #include <linux/fs.h>
22 #include <linux/fscrypt.h>
23 #include <linux/fsnotify.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/hash.h>
27 #include <linux/cache.h>
28 #include <linux/export.h>
29 #include <linux/security.h>
30 #include <linux/seqlock.h>
31 #include <linux/memblock.h>
32 #include <linux/bit_spinlock.h>
33 #include <linux/rculist_bl.h>
34 #include <linux/list_lru.h>
35 #include "internal.h"
36 #include "mount.h"
37
38 /*
39 * Usage:
40 * dcache->d_inode->i_lock protects:
41 * - i_dentry, d_u.d_alias, d_inode of aliases
42 * dcache_hash_bucket lock protects:
43 * - the dcache hash table
44 * s_roots bl list spinlock protects:
45 * - the s_roots list (see __d_drop)
46 * dentry->d_sb->s_dentry_lru_lock protects:
47 * - the dcache lru lists and counters
48 * d_lock protects:
49 * - d_flags
50 * - d_name
51 * - d_lru
52 * - d_count
53 * - d_unhashed()
54 * - d_parent and d_subdirs
55 * - childrens' d_child and d_parent
56 * - d_u.d_alias, d_inode
57 *
58 * Ordering:
59 * dentry->d_inode->i_lock
60 * dentry->d_lock
61 * dentry->d_sb->s_dentry_lru_lock
62 * dcache_hash_bucket lock
63 * s_roots lock
64 *
65 * If there is an ancestor relationship:
66 * dentry->d_parent->...->d_parent->d_lock
67 * ...
68 * dentry->d_parent->d_lock
69 * dentry->d_lock
70 *
71 * If no ancestor relationship:
72 * arbitrary, since it's serialized on rename_lock
73 */
74 int sysctl_vfs_cache_pressure __read_mostly = 100;
75 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
76
77 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
78
79 EXPORT_SYMBOL(rename_lock);
80
81 static struct kmem_cache *dentry_cache __read_mostly;
82
83 const struct qstr empty_name = QSTR_INIT("", 0);
84 EXPORT_SYMBOL(empty_name);
85 const struct qstr slash_name = QSTR_INIT("/", 1);
86 EXPORT_SYMBOL(slash_name);
87
88 /*
89 * This is the single most critical data structure when it comes
90 * to the dcache: the hashtable for lookups. Somebody should try
91 * to make this good - I've just made it work.
92 *
93 * This hash-function tries to avoid losing too many bits of hash
94 * information, yet avoid using a prime hash-size or similar.
95 */
96
97 static unsigned int d_hash_shift __read_mostly;
98
99 static struct hlist_bl_head *dentry_hashtable __read_mostly;
100
101 static inline struct hlist_bl_head *d_hash(unsigned int hash)
102 {
103 return dentry_hashtable + (hash >> d_hash_shift);
104 }
105
106 #define IN_LOOKUP_SHIFT 10
107 static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT];
108
109 static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent,
110 unsigned int hash)
111 {
112 hash += (unsigned long) parent / L1_CACHE_BYTES;
113 return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT);
114 }
115
116
117 /* Statistics gathering. */
118 struct dentry_stat_t dentry_stat = {
119 .age_limit = 45,
120 };
121
122 static DEFINE_PER_CPU(long, nr_dentry);
123 static DEFINE_PER_CPU(long, nr_dentry_unused);
124 static DEFINE_PER_CPU(long, nr_dentry_negative);
125
126 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
127
128 /*
129 * Here we resort to our own counters instead of using generic per-cpu counters
130 * for consistency with what the vfs inode code does. We are expected to harvest
131 * better code and performance by having our own specialized counters.
132 *
133 * Please note that the loop is done over all possible CPUs, not over all online
134 * CPUs. The reason for this is that we don't want to play games with CPUs going
135 * on and off. If one of them goes off, we will just keep their counters.
136 *
137 * glommer: See cffbc8a for details, and if you ever intend to change this,
138 * please update all vfs counters to match.
139 */
140 static long get_nr_dentry(void)
141 {
142 int i;
143 long sum = 0;
144 for_each_possible_cpu(i)
145 sum += per_cpu(nr_dentry, i);
146 return sum < 0 ? 0 : sum;
147 }
148
149 static long get_nr_dentry_unused(void)
150 {
151 int i;
152 long sum = 0;
153 for_each_possible_cpu(i)
154 sum += per_cpu(nr_dentry_unused, i);
155 return sum < 0 ? 0 : sum;
156 }
157
158 static long get_nr_dentry_negative(void)
159 {
160 int i;
161 long sum = 0;
162
163 for_each_possible_cpu(i)
164 sum += per_cpu(nr_dentry_negative, i);
165 return sum < 0 ? 0 : sum;
166 }
167
168 int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer,
169 size_t *lenp, loff_t *ppos)
170 {
171 dentry_stat.nr_dentry = get_nr_dentry();
172 dentry_stat.nr_unused = get_nr_dentry_unused();
173 dentry_stat.nr_negative = get_nr_dentry_negative();
174 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
175 }
176 #endif
177
178 /*
179 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
180 * The strings are both count bytes long, and count is non-zero.
181 */
182 #ifdef CONFIG_DCACHE_WORD_ACCESS
183
184 #include <asm/word-at-a-time.h>
185 /*
186 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
187 * aligned allocation for this particular component. We don't
188 * strictly need the load_unaligned_zeropad() safety, but it
189 * doesn't hurt either.
190 *
191 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
192 * need the careful unaligned handling.
193 */
194 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
195 {
196 unsigned long a,b,mask;
197
198 for (;;) {
199 a = read_word_at_a_time(cs);
200 b = load_unaligned_zeropad(ct);
201 if (tcount < sizeof(unsigned long))
202 break;
203 if (unlikely(a != b))
204 return 1;
205 cs += sizeof(unsigned long);
206 ct += sizeof(unsigned long);
207 tcount -= sizeof(unsigned long);
208 if (!tcount)
209 return 0;
210 }
211 mask = bytemask_from_count(tcount);
212 return unlikely(!!((a ^ b) & mask));
213 }
214
215 #else
216
217 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
218 {
219 do {
220 if (*cs != *ct)
221 return 1;
222 cs++;
223 ct++;
224 tcount--;
225 } while (tcount);
226 return 0;
227 }
228
229 #endif
230
231 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
232 {
233 /*
234 * Be careful about RCU walk racing with rename:
235 * use 'READ_ONCE' to fetch the name pointer.
236 *
237 * NOTE! Even if a rename will mean that the length
238 * was not loaded atomically, we don't care. The
239 * RCU walk will check the sequence count eventually,
240 * and catch it. And we won't overrun the buffer,
241 * because we're reading the name pointer atomically,
242 * and a dentry name is guaranteed to be properly
243 * terminated with a NUL byte.
244 *
245 * End result: even if 'len' is wrong, we'll exit
246 * early because the data cannot match (there can
247 * be no NUL in the ct/tcount data)
248 */
249 const unsigned char *cs = READ_ONCE(dentry->d_name.name);
250
251 return dentry_string_cmp(cs, ct, tcount);
252 }
253
254 struct external_name {
255 union {
256 atomic_t count;
257 struct rcu_head head;
258 } u;
259 unsigned char name[];
260 };
261
262 static inline struct external_name *external_name(struct dentry *dentry)
263 {
264 return container_of(dentry->d_name.name, struct external_name, name[0]);
265 }
266
267 static void __d_free(struct rcu_head *head)
268 {
269 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
270
271 kmem_cache_free(dentry_cache, dentry);
272 }
273
274 static void __d_free_external(struct rcu_head *head)
275 {
276 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
277 kfree(external_name(dentry));
278 kmem_cache_free(dentry_cache, dentry);
279 }
280
281 static inline int dname_external(const struct dentry *dentry)
282 {
283 return dentry->d_name.name != dentry->d_iname;
284 }
285
286 void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry)
287 {
288 spin_lock(&dentry->d_lock);
289 name->name = dentry->d_name;
290 if (unlikely(dname_external(dentry))) {
291 atomic_inc(&external_name(dentry)->u.count);
292 } else {
293 memcpy(name->inline_name, dentry->d_iname,
294 dentry->d_name.len + 1);
295 name->name.name = name->inline_name;
296 }
297 spin_unlock(&dentry->d_lock);
298 }
299 EXPORT_SYMBOL(take_dentry_name_snapshot);
300
301 void release_dentry_name_snapshot(struct name_snapshot *name)
302 {
303 if (unlikely(name->name.name != name->inline_name)) {
304 struct external_name *p;
305 p = container_of(name->name.name, struct external_name, name[0]);
306 if (unlikely(atomic_dec_and_test(&p->u.count)))
307 kfree_rcu(p, u.head);
308 }
309 }
310 EXPORT_SYMBOL(release_dentry_name_snapshot);
311
312 static inline void __d_set_inode_and_type(struct dentry *dentry,
313 struct inode *inode,
314 unsigned type_flags)
315 {
316 unsigned flags;
317
318 dentry->d_inode = inode;
319 flags = READ_ONCE(dentry->d_flags);
320 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
321 flags |= type_flags;
322 WRITE_ONCE(dentry->d_flags, flags);
323 }
324
325 static inline void __d_clear_type_and_inode(struct dentry *dentry)
326 {
327 unsigned flags = READ_ONCE(dentry->d_flags);
328
329 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
330 WRITE_ONCE(dentry->d_flags, flags);
331 dentry->d_inode = NULL;
332 if (dentry->d_flags & DCACHE_LRU_LIST)
333 this_cpu_inc(nr_dentry_negative);
334 }
335
336 static void dentry_free(struct dentry *dentry)
337 {
338 WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
339 if (unlikely(dname_external(dentry))) {
340 struct external_name *p = external_name(dentry);
341 if (likely(atomic_dec_and_test(&p->u.count))) {
342 call_rcu(&dentry->d_u.d_rcu, __d_free_external);
343 return;
344 }
345 }
346 /* if dentry was never visible to RCU, immediate free is OK */
347 if (dentry->d_flags & DCACHE_NORCU)
348 __d_free(&dentry->d_u.d_rcu);
349 else
350 call_rcu(&dentry->d_u.d_rcu, __d_free);
351 }
352
353 /*
354 * Release the dentry's inode, using the filesystem
355 * d_iput() operation if defined.
356 */
357 static void dentry_unlink_inode(struct dentry * dentry)
358 __releases(dentry->d_lock)
359 __releases(dentry->d_inode->i_lock)
360 {
361 struct inode *inode = dentry->d_inode;
362
363 raw_write_seqcount_begin(&dentry->d_seq);
364 __d_clear_type_and_inode(dentry);
365 hlist_del_init(&dentry->d_u.d_alias);
366 raw_write_seqcount_end(&dentry->d_seq);
367 spin_unlock(&dentry->d_lock);
368 spin_unlock(&inode->i_lock);
369 if (!inode->i_nlink)
370 fsnotify_inoderemove(inode);
371 if (dentry->d_op && dentry->d_op->d_iput)
372 dentry->d_op->d_iput(dentry, inode);
373 else
374 iput(inode);
375 }
376
377 /*
378 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
379 * is in use - which includes both the "real" per-superblock
380 * LRU list _and_ the DCACHE_SHRINK_LIST use.
381 *
382 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
383 * on the shrink list (ie not on the superblock LRU list).
384 *
385 * The per-cpu "nr_dentry_unused" counters are updated with
386 * the DCACHE_LRU_LIST bit.
387 *
388 * The per-cpu "nr_dentry_negative" counters are only updated
389 * when deleted from or added to the per-superblock LRU list, not
390 * from/to the shrink list. That is to avoid an unneeded dec/inc
391 * pair when moving from LRU to shrink list in select_collect().
392 *
393 * These helper functions make sure we always follow the
394 * rules. d_lock must be held by the caller.
395 */
396 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
397 static void d_lru_add(struct dentry *dentry)
398 {
399 D_FLAG_VERIFY(dentry, 0);
400 dentry->d_flags |= DCACHE_LRU_LIST;
401 this_cpu_inc(nr_dentry_unused);
402 if (d_is_negative(dentry))
403 this_cpu_inc(nr_dentry_negative);
404 WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
405 }
406
407 static void d_lru_del(struct dentry *dentry)
408 {
409 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
410 dentry->d_flags &= ~DCACHE_LRU_LIST;
411 this_cpu_dec(nr_dentry_unused);
412 if (d_is_negative(dentry))
413 this_cpu_dec(nr_dentry_negative);
414 WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
415 }
416
417 static void d_shrink_del(struct dentry *dentry)
418 {
419 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
420 list_del_init(&dentry->d_lru);
421 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
422 this_cpu_dec(nr_dentry_unused);
423 }
424
425 static void d_shrink_add(struct dentry *dentry, struct list_head *list)
426 {
427 D_FLAG_VERIFY(dentry, 0);
428 list_add(&dentry->d_lru, list);
429 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
430 this_cpu_inc(nr_dentry_unused);
431 }
432
433 /*
434 * These can only be called under the global LRU lock, ie during the
435 * callback for freeing the LRU list. "isolate" removes it from the
436 * LRU lists entirely, while shrink_move moves it to the indicated
437 * private list.
438 */
439 static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
440 {
441 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
442 dentry->d_flags &= ~DCACHE_LRU_LIST;
443 this_cpu_dec(nr_dentry_unused);
444 if (d_is_negative(dentry))
445 this_cpu_dec(nr_dentry_negative);
446 list_lru_isolate(lru, &dentry->d_lru);
447 }
448
449 static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
450 struct list_head *list)
451 {
452 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
453 dentry->d_flags |= DCACHE_SHRINK_LIST;
454 if (d_is_negative(dentry))
455 this_cpu_dec(nr_dentry_negative);
456 list_lru_isolate_move(lru, &dentry->d_lru, list);
457 }
458
459 /**
460 * d_drop - drop a dentry
461 * @dentry: dentry to drop
462 *
463 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
464 * be found through a VFS lookup any more. Note that this is different from
465 * deleting the dentry - d_delete will try to mark the dentry negative if
466 * possible, giving a successful _negative_ lookup, while d_drop will
467 * just make the cache lookup fail.
468 *
469 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
470 * reason (NFS timeouts or autofs deletes).
471 *
472 * __d_drop requires dentry->d_lock
473 * ___d_drop doesn't mark dentry as "unhashed"
474 * (dentry->d_hash.pprev will be LIST_POISON2, not NULL).
475 */
476 static void ___d_drop(struct dentry *dentry)
477 {
478 struct hlist_bl_head *b;
479 /*
480 * Hashed dentries are normally on the dentry hashtable,
481 * with the exception of those newly allocated by
482 * d_obtain_root, which are always IS_ROOT:
483 */
484 if (unlikely(IS_ROOT(dentry)))
485 b = &dentry->d_sb->s_roots;
486 else
487 b = d_hash(dentry->d_name.hash);
488
489 hlist_bl_lock(b);
490 __hlist_bl_del(&dentry->d_hash);
491 hlist_bl_unlock(b);
492 }
493
494 void __d_drop(struct dentry *dentry)
495 {
496 if (!d_unhashed(dentry)) {
497 ___d_drop(dentry);
498 dentry->d_hash.pprev = NULL;
499 write_seqcount_invalidate(&dentry->d_seq);
500 }
501 }
502 EXPORT_SYMBOL(__d_drop);
503
504 void d_drop(struct dentry *dentry)
505 {
506 spin_lock(&dentry->d_lock);
507 __d_drop(dentry);
508 spin_unlock(&dentry->d_lock);
509 }
510 EXPORT_SYMBOL(d_drop);
511
512 static inline void dentry_unlist(struct dentry *dentry, struct dentry *parent)
513 {
514 struct dentry *next;
515 /*
516 * Inform d_walk() and shrink_dentry_list() that we are no longer
517 * attached to the dentry tree
518 */
519 dentry->d_flags |= DCACHE_DENTRY_KILLED;
520 if (unlikely(list_empty(&dentry->d_child)))
521 return;
522 __list_del_entry(&dentry->d_child);
523 /*
524 * Cursors can move around the list of children. While we'd been
525 * a normal list member, it didn't matter - ->d_child.next would've
526 * been updated. However, from now on it won't be and for the
527 * things like d_walk() it might end up with a nasty surprise.
528 * Normally d_walk() doesn't care about cursors moving around -
529 * ->d_lock on parent prevents that and since a cursor has no children
530 * of its own, we get through it without ever unlocking the parent.
531 * There is one exception, though - if we ascend from a child that
532 * gets killed as soon as we unlock it, the next sibling is found
533 * using the value left in its ->d_child.next. And if _that_
534 * pointed to a cursor, and cursor got moved (e.g. by lseek())
535 * before d_walk() regains parent->d_lock, we'll end up skipping
536 * everything the cursor had been moved past.
537 *
538 * Solution: make sure that the pointer left behind in ->d_child.next
539 * points to something that won't be moving around. I.e. skip the
540 * cursors.
541 */
542 while (dentry->d_child.next != &parent->d_subdirs) {
543 next = list_entry(dentry->d_child.next, struct dentry, d_child);
544 if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR)))
545 break;
546 dentry->d_child.next = next->d_child.next;
547 }
548 }
549
550 static void __dentry_kill(struct dentry *dentry)
551 {
552 struct dentry *parent = NULL;
553 bool can_free = true;
554 if (!IS_ROOT(dentry))
555 parent = dentry->d_parent;
556
557 /*
558 * The dentry is now unrecoverably dead to the world.
559 */
560 lockref_mark_dead(&dentry->d_lockref);
561
562 /*
563 * inform the fs via d_prune that this dentry is about to be
564 * unhashed and destroyed.
565 */
566 if (dentry->d_flags & DCACHE_OP_PRUNE)
567 dentry->d_op->d_prune(dentry);
568
569 if (dentry->d_flags & DCACHE_LRU_LIST) {
570 if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
571 d_lru_del(dentry);
572 }
573 /* if it was on the hash then remove it */
574 __d_drop(dentry);
575 dentry_unlist(dentry, parent);
576 if (parent)
577 spin_unlock(&parent->d_lock);
578 if (dentry->d_inode)
579 dentry_unlink_inode(dentry);
580 else
581 spin_unlock(&dentry->d_lock);
582 this_cpu_dec(nr_dentry);
583 if (dentry->d_op && dentry->d_op->d_release)
584 dentry->d_op->d_release(dentry);
585
586 spin_lock(&dentry->d_lock);
587 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
588 dentry->d_flags |= DCACHE_MAY_FREE;
589 can_free = false;
590 }
591 spin_unlock(&dentry->d_lock);
592 if (likely(can_free))
593 dentry_free(dentry);
594 cond_resched();
595 }
596
597 static struct dentry *__lock_parent(struct dentry *dentry)
598 {
599 struct dentry *parent;
600 rcu_read_lock();
601 spin_unlock(&dentry->d_lock);
602 again:
603 parent = READ_ONCE(dentry->d_parent);
604 spin_lock(&parent->d_lock);
605 /*
606 * We can't blindly lock dentry until we are sure
607 * that we won't violate the locking order.
608 * Any changes of dentry->d_parent must have
609 * been done with parent->d_lock held, so
610 * spin_lock() above is enough of a barrier
611 * for checking if it's still our child.
612 */
613 if (unlikely(parent != dentry->d_parent)) {
614 spin_unlock(&parent->d_lock);
615 goto again;
616 }
617 rcu_read_unlock();
618 if (parent != dentry)
619 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
620 else
621 parent = NULL;
622 return parent;
623 }
624
625 static inline struct dentry *lock_parent(struct dentry *dentry)
626 {
627 struct dentry *parent = dentry->d_parent;
628 if (IS_ROOT(dentry))
629 return NULL;
630 if (likely(spin_trylock(&parent->d_lock)))
631 return parent;
632 return __lock_parent(dentry);
633 }
634
635 static inline bool retain_dentry(struct dentry *dentry)
636 {
637 WARN_ON(d_in_lookup(dentry));
638
639 /* Unreachable? Get rid of it */
640 if (unlikely(d_unhashed(dentry)))
641 return false;
642
643 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
644 return false;
645
646 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
647 if (dentry->d_op->d_delete(dentry))
648 return false;
649 }
650 /* retain; LRU fodder */
651 dentry->d_lockref.count--;
652 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
653 d_lru_add(dentry);
654 else if (unlikely(!(dentry->d_flags & DCACHE_REFERENCED)))
655 dentry->d_flags |= DCACHE_REFERENCED;
656 return true;
657 }
658
659 /*
660 * Finish off a dentry we've decided to kill.
661 * dentry->d_lock must be held, returns with it unlocked.
662 * Returns dentry requiring refcount drop, or NULL if we're done.
663 */
664 static struct dentry *dentry_kill(struct dentry *dentry)
665 __releases(dentry->d_lock)
666 {
667 struct inode *inode = dentry->d_inode;
668 struct dentry *parent = NULL;
669
670 if (inode && unlikely(!spin_trylock(&inode->i_lock)))
671 goto slow_positive;
672
673 if (!IS_ROOT(dentry)) {
674 parent = dentry->d_parent;
675 if (unlikely(!spin_trylock(&parent->d_lock))) {
676 parent = __lock_parent(dentry);
677 if (likely(inode || !dentry->d_inode))
678 goto got_locks;
679 /* negative that became positive */
680 if (parent)
681 spin_unlock(&parent->d_lock);
682 inode = dentry->d_inode;
683 goto slow_positive;
684 }
685 }
686 __dentry_kill(dentry);
687 return parent;
688
689 slow_positive:
690 spin_unlock(&dentry->d_lock);
691 spin_lock(&inode->i_lock);
692 spin_lock(&dentry->d_lock);
693 parent = lock_parent(dentry);
694 got_locks:
695 if (unlikely(dentry->d_lockref.count != 1)) {
696 dentry->d_lockref.count--;
697 } else if (likely(!retain_dentry(dentry))) {
698 __dentry_kill(dentry);
699 return parent;
700 }
701 /* we are keeping it, after all */
702 if (inode)
703 spin_unlock(&inode->i_lock);
704 if (parent)
705 spin_unlock(&parent->d_lock);
706 spin_unlock(&dentry->d_lock);
707 return NULL;
708 }
709
710 /*
711 * Try to do a lockless dput(), and return whether that was successful.
712 *
713 * If unsuccessful, we return false, having already taken the dentry lock.
714 *
715 * The caller needs to hold the RCU read lock, so that the dentry is
716 * guaranteed to stay around even if the refcount goes down to zero!
717 */
718 static inline bool fast_dput(struct dentry *dentry)
719 {
720 int ret;
721 unsigned int d_flags;
722
723 /*
724 * If we have a d_op->d_delete() operation, we sould not
725 * let the dentry count go to zero, so use "put_or_lock".
726 */
727 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE))
728 return lockref_put_or_lock(&dentry->d_lockref);
729
730 /*
731 * .. otherwise, we can try to just decrement the
732 * lockref optimistically.
733 */
734 ret = lockref_put_return(&dentry->d_lockref);
735
736 /*
737 * If the lockref_put_return() failed due to the lock being held
738 * by somebody else, the fast path has failed. We will need to
739 * get the lock, and then check the count again.
740 */
741 if (unlikely(ret < 0)) {
742 spin_lock(&dentry->d_lock);
743 if (dentry->d_lockref.count > 1) {
744 dentry->d_lockref.count--;
745 spin_unlock(&dentry->d_lock);
746 return true;
747 }
748 return false;
749 }
750
751 /*
752 * If we weren't the last ref, we're done.
753 */
754 if (ret)
755 return true;
756
757 /*
758 * Careful, careful. The reference count went down
759 * to zero, but we don't hold the dentry lock, so
760 * somebody else could get it again, and do another
761 * dput(), and we need to not race with that.
762 *
763 * However, there is a very special and common case
764 * where we don't care, because there is nothing to
765 * do: the dentry is still hashed, it does not have
766 * a 'delete' op, and it's referenced and already on
767 * the LRU list.
768 *
769 * NOTE! Since we aren't locked, these values are
770 * not "stable". However, it is sufficient that at
771 * some point after we dropped the reference the
772 * dentry was hashed and the flags had the proper
773 * value. Other dentry users may have re-gotten
774 * a reference to the dentry and change that, but
775 * our work is done - we can leave the dentry
776 * around with a zero refcount.
777 */
778 smp_rmb();
779 d_flags = READ_ONCE(dentry->d_flags);
780 d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST | DCACHE_DISCONNECTED;
781
782 /* Nothing to do? Dropping the reference was all we needed? */
783 if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry))
784 return true;
785
786 /*
787 * Not the fast normal case? Get the lock. We've already decremented
788 * the refcount, but we'll need to re-check the situation after
789 * getting the lock.
790 */
791 spin_lock(&dentry->d_lock);
792
793 /*
794 * Did somebody else grab a reference to it in the meantime, and
795 * we're no longer the last user after all? Alternatively, somebody
796 * else could have killed it and marked it dead. Either way, we
797 * don't need to do anything else.
798 */
799 if (dentry->d_lockref.count) {
800 spin_unlock(&dentry->d_lock);
801 return true;
802 }
803
804 /*
805 * Re-get the reference we optimistically dropped. We hold the
806 * lock, and we just tested that it was zero, so we can just
807 * set it to 1.
808 */
809 dentry->d_lockref.count = 1;
810 return false;
811 }
812
813
814 /*
815 * This is dput
816 *
817 * This is complicated by the fact that we do not want to put
818 * dentries that are no longer on any hash chain on the unused
819 * list: we'd much rather just get rid of them immediately.
820 *
821 * However, that implies that we have to traverse the dentry
822 * tree upwards to the parents which might _also_ now be
823 * scheduled for deletion (it may have been only waiting for
824 * its last child to go away).
825 *
826 * This tail recursion is done by hand as we don't want to depend
827 * on the compiler to always get this right (gcc generally doesn't).
828 * Real recursion would eat up our stack space.
829 */
830
831 /*
832 * dput - release a dentry
833 * @dentry: dentry to release
834 *
835 * Release a dentry. This will drop the usage count and if appropriate
836 * call the dentry unlink method as well as removing it from the queues and
837 * releasing its resources. If the parent dentries were scheduled for release
838 * they too may now get deleted.
839 */
840 void dput(struct dentry *dentry)
841 {
842 while (dentry) {
843 might_sleep();
844
845 rcu_read_lock();
846 if (likely(fast_dput(dentry))) {
847 rcu_read_unlock();
848 return;
849 }
850
851 /* Slow case: now with the dentry lock held */
852 rcu_read_unlock();
853
854 if (likely(retain_dentry(dentry))) {
855 spin_unlock(&dentry->d_lock);
856 return;
857 }
858
859 dentry = dentry_kill(dentry);
860 }
861 }
862 EXPORT_SYMBOL(dput);
863
864 static void __dput_to_list(struct dentry *dentry, struct list_head *list)
865 __must_hold(&dentry->d_lock)
866 {
867 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
868 /* let the owner of the list it's on deal with it */
869 --dentry->d_lockref.count;
870 } else {
871 if (dentry->d_flags & DCACHE_LRU_LIST)
872 d_lru_del(dentry);
873 if (!--dentry->d_lockref.count)
874 d_shrink_add(dentry, list);
875 }
876 }
877
878 void dput_to_list(struct dentry *dentry, struct list_head *list)
879 {
880 rcu_read_lock();
881 if (likely(fast_dput(dentry))) {
882 rcu_read_unlock();
883 return;
884 }
885 rcu_read_unlock();
886 if (!retain_dentry(dentry))
887 __dput_to_list(dentry, list);
888 spin_unlock(&dentry->d_lock);
889 }
890
891 /* This must be called with d_lock held */
892 static inline void __dget_dlock(struct dentry *dentry)
893 {
894 dentry->d_lockref.count++;
895 }
896
897 static inline void __dget(struct dentry *dentry)
898 {
899 lockref_get(&dentry->d_lockref);
900 }
901
902 struct dentry *dget_parent(struct dentry *dentry)
903 {
904 int gotref;
905 struct dentry *ret;
906
907 /*
908 * Do optimistic parent lookup without any
909 * locking.
910 */
911 rcu_read_lock();
912 ret = READ_ONCE(dentry->d_parent);
913 gotref = lockref_get_not_zero(&ret->d_lockref);
914 rcu_read_unlock();
915 if (likely(gotref)) {
916 if (likely(ret == READ_ONCE(dentry->d_parent)))
917 return ret;
918 dput(ret);
919 }
920
921 repeat:
922 /*
923 * Don't need rcu_dereference because we re-check it was correct under
924 * the lock.
925 */
926 rcu_read_lock();
927 ret = dentry->d_parent;
928 spin_lock(&ret->d_lock);
929 if (unlikely(ret != dentry->d_parent)) {
930 spin_unlock(&ret->d_lock);
931 rcu_read_unlock();
932 goto repeat;
933 }
934 rcu_read_unlock();
935 BUG_ON(!ret->d_lockref.count);
936 ret->d_lockref.count++;
937 spin_unlock(&ret->d_lock);
938 return ret;
939 }
940 EXPORT_SYMBOL(dget_parent);
941
942 static struct dentry * __d_find_any_alias(struct inode *inode)
943 {
944 struct dentry *alias;
945
946 if (hlist_empty(&inode->i_dentry))
947 return NULL;
948 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
949 __dget(alias);
950 return alias;
951 }
952
953 /**
954 * d_find_any_alias - find any alias for a given inode
955 * @inode: inode to find an alias for
956 *
957 * If any aliases exist for the given inode, take and return a
958 * reference for one of them. If no aliases exist, return %NULL.
959 */
960 struct dentry *d_find_any_alias(struct inode *inode)
961 {
962 struct dentry *de;
963
964 spin_lock(&inode->i_lock);
965 de = __d_find_any_alias(inode);
966 spin_unlock(&inode->i_lock);
967 return de;
968 }
969 EXPORT_SYMBOL(d_find_any_alias);
970
971 /**
972 * d_find_alias - grab a hashed alias of inode
973 * @inode: inode in question
974 *
975 * If inode has a hashed alias, or is a directory and has any alias,
976 * acquire the reference to alias and return it. Otherwise return NULL.
977 * Notice that if inode is a directory there can be only one alias and
978 * it can be unhashed only if it has no children, or if it is the root
979 * of a filesystem, or if the directory was renamed and d_revalidate
980 * was the first vfs operation to notice.
981 *
982 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
983 * any other hashed alias over that one.
984 */
985 static struct dentry *__d_find_alias(struct inode *inode)
986 {
987 struct dentry *alias;
988
989 if (S_ISDIR(inode->i_mode))
990 return __d_find_any_alias(inode);
991
992 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
993 spin_lock(&alias->d_lock);
994 if (!d_unhashed(alias)) {
995 __dget_dlock(alias);
996 spin_unlock(&alias->d_lock);
997 return alias;
998 }
999 spin_unlock(&alias->d_lock);
1000 }
1001 return NULL;
1002 }
1003
1004 struct dentry *d_find_alias(struct inode *inode)
1005 {
1006 struct dentry *de = NULL;
1007
1008 if (!hlist_empty(&inode->i_dentry)) {
1009 spin_lock(&inode->i_lock);
1010 de = __d_find_alias(inode);
1011 spin_unlock(&inode->i_lock);
1012 }
1013 return de;
1014 }
1015 EXPORT_SYMBOL(d_find_alias);
1016
1017 /*
1018 * Try to kill dentries associated with this inode.
1019 * WARNING: you must own a reference to inode.
1020 */
1021 void d_prune_aliases(struct inode *inode)
1022 {
1023 struct dentry *dentry;
1024 restart:
1025 spin_lock(&inode->i_lock);
1026 hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
1027 spin_lock(&dentry->d_lock);
1028 if (!dentry->d_lockref.count) {
1029 struct dentry *parent = lock_parent(dentry);
1030 if (likely(!dentry->d_lockref.count)) {
1031 __dentry_kill(dentry);
1032 dput(parent);
1033 goto restart;
1034 }
1035 if (parent)
1036 spin_unlock(&parent->d_lock);
1037 }
1038 spin_unlock(&dentry->d_lock);
1039 }
1040 spin_unlock(&inode->i_lock);
1041 }
1042 EXPORT_SYMBOL(d_prune_aliases);
1043
1044 /*
1045 * Lock a dentry from shrink list.
1046 * Called under rcu_read_lock() and dentry->d_lock; the former
1047 * guarantees that nothing we access will be freed under us.
1048 * Note that dentry is *not* protected from concurrent dentry_kill(),
1049 * d_delete(), etc.
1050 *
1051 * Return false if dentry has been disrupted or grabbed, leaving
1052 * the caller to kick it off-list. Otherwise, return true and have
1053 * that dentry's inode and parent both locked.
1054 */
1055 static bool shrink_lock_dentry(struct dentry *dentry)
1056 {
1057 struct inode *inode;
1058 struct dentry *parent;
1059
1060 if (dentry->d_lockref.count)
1061 return false;
1062
1063 inode = dentry->d_inode;
1064 if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
1065 spin_unlock(&dentry->d_lock);
1066 spin_lock(&inode->i_lock);
1067 spin_lock(&dentry->d_lock);
1068 if (unlikely(dentry->d_lockref.count))
1069 goto out;
1070 /* changed inode means that somebody had grabbed it */
1071 if (unlikely(inode != dentry->d_inode))
1072 goto out;
1073 }
1074
1075 parent = dentry->d_parent;
1076 if (IS_ROOT(dentry) || likely(spin_trylock(&parent->d_lock)))
1077 return true;
1078
1079 spin_unlock(&dentry->d_lock);
1080 spin_lock(&parent->d_lock);
1081 if (unlikely(parent != dentry->d_parent)) {
1082 spin_unlock(&parent->d_lock);
1083 spin_lock(&dentry->d_lock);
1084 goto out;
1085 }
1086 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1087 if (likely(!dentry->d_lockref.count))
1088 return true;
1089 spin_unlock(&parent->d_lock);
1090 out:
1091 if (inode)
1092 spin_unlock(&inode->i_lock);
1093 return false;
1094 }
1095
1096 void shrink_dentry_list(struct list_head *list)
1097 {
1098 while (!list_empty(list)) {
1099 struct dentry *dentry, *parent;
1100
1101 dentry = list_entry(list->prev, struct dentry, d_lru);
1102 spin_lock(&dentry->d_lock);
1103 rcu_read_lock();
1104 if (!shrink_lock_dentry(dentry)) {
1105 bool can_free = false;
1106 rcu_read_unlock();
1107 d_shrink_del(dentry);
1108 if (dentry->d_lockref.count < 0)
1109 can_free = dentry->d_flags & DCACHE_MAY_FREE;
1110 spin_unlock(&dentry->d_lock);
1111 if (can_free)
1112 dentry_free(dentry);
1113 continue;
1114 }
1115 rcu_read_unlock();
1116 d_shrink_del(dentry);
1117 parent = dentry->d_parent;
1118 if (parent != dentry)
1119 __dput_to_list(parent, list);
1120 __dentry_kill(dentry);
1121 }
1122 }
1123
1124 static enum lru_status dentry_lru_isolate(struct list_head *item,
1125 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1126 {
1127 struct list_head *freeable = arg;
1128 struct dentry *dentry = container_of(item, struct dentry, d_lru);
1129
1130
1131 /*
1132 * we are inverting the lru lock/dentry->d_lock here,
1133 * so use a trylock. If we fail to get the lock, just skip
1134 * it
1135 */
1136 if (!spin_trylock(&dentry->d_lock))
1137 return LRU_SKIP;
1138
1139 /*
1140 * Referenced dentries are still in use. If they have active
1141 * counts, just remove them from the LRU. Otherwise give them
1142 * another pass through the LRU.
1143 */
1144 if (dentry->d_lockref.count) {
1145 d_lru_isolate(lru, dentry);
1146 spin_unlock(&dentry->d_lock);
1147 return LRU_REMOVED;
1148 }
1149
1150 if (dentry->d_flags & DCACHE_REFERENCED) {
1151 dentry->d_flags &= ~DCACHE_REFERENCED;
1152 spin_unlock(&dentry->d_lock);
1153
1154 /*
1155 * The list move itself will be made by the common LRU code. At
1156 * this point, we've dropped the dentry->d_lock but keep the
1157 * lru lock. This is safe to do, since every list movement is
1158 * protected by the lru lock even if both locks are held.
1159 *
1160 * This is guaranteed by the fact that all LRU management
1161 * functions are intermediated by the LRU API calls like
1162 * list_lru_add and list_lru_del. List movement in this file
1163 * only ever occur through this functions or through callbacks
1164 * like this one, that are called from the LRU API.
1165 *
1166 * The only exceptions to this are functions like
1167 * shrink_dentry_list, and code that first checks for the
1168 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be
1169 * operating only with stack provided lists after they are
1170 * properly isolated from the main list. It is thus, always a
1171 * local access.
1172 */
1173 return LRU_ROTATE;
1174 }
1175
1176 d_lru_shrink_move(lru, dentry, freeable);
1177 spin_unlock(&dentry->d_lock);
1178
1179 return LRU_REMOVED;
1180 }
1181
1182 /**
1183 * prune_dcache_sb - shrink the dcache
1184 * @sb: superblock
1185 * @sc: shrink control, passed to list_lru_shrink_walk()
1186 *
1187 * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1188 * is done when we need more memory and called from the superblock shrinker
1189 * function.
1190 *
1191 * This function may fail to free any resources if all the dentries are in
1192 * use.
1193 */
1194 long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
1195 {
1196 LIST_HEAD(dispose);
1197 long freed;
1198
1199 freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1200 dentry_lru_isolate, &dispose);
1201 shrink_dentry_list(&dispose);
1202 return freed;
1203 }
1204
1205 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
1206 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1207 {
1208 struct list_head *freeable = arg;
1209 struct dentry *dentry = container_of(item, struct dentry, d_lru);
1210
1211 /*
1212 * we are inverting the lru lock/dentry->d_lock here,
1213 * so use a trylock. If we fail to get the lock, just skip
1214 * it
1215 */
1216 if (!spin_trylock(&dentry->d_lock))
1217 return LRU_SKIP;
1218
1219 d_lru_shrink_move(lru, dentry, freeable);
1220 spin_unlock(&dentry->d_lock);
1221
1222 return LRU_REMOVED;
1223 }
1224
1225
1226 /**
1227 * shrink_dcache_sb - shrink dcache for a superblock
1228 * @sb: superblock
1229 *
1230 * Shrink the dcache for the specified super block. This is used to free
1231 * the dcache before unmounting a file system.
1232 */
1233 void shrink_dcache_sb(struct super_block *sb)
1234 {
1235 do {
1236 LIST_HEAD(dispose);
1237
1238 list_lru_walk(&sb->s_dentry_lru,
1239 dentry_lru_isolate_shrink, &dispose, 1024);
1240 shrink_dentry_list(&dispose);
1241 } while (list_lru_count(&sb->s_dentry_lru) > 0);
1242 }
1243 EXPORT_SYMBOL(shrink_dcache_sb);
1244
1245 /**
1246 * enum d_walk_ret - action to talke during tree walk
1247 * @D_WALK_CONTINUE: contrinue walk
1248 * @D_WALK_QUIT: quit walk
1249 * @D_WALK_NORETRY: quit when retry is needed
1250 * @D_WALK_SKIP: skip this dentry and its children
1251 */
1252 enum d_walk_ret {
1253 D_WALK_CONTINUE,
1254 D_WALK_QUIT,
1255 D_WALK_NORETRY,
1256 D_WALK_SKIP,
1257 };
1258
1259 /**
1260 * d_walk - walk the dentry tree
1261 * @parent: start of walk
1262 * @data: data passed to @enter() and @finish()
1263 * @enter: callback when first entering the dentry
1264 *
1265 * The @enter() callbacks are called with d_lock held.
1266 */
1267 static void d_walk(struct dentry *parent, void *data,
1268 enum d_walk_ret (*enter)(void *, struct dentry *))
1269 {
1270 struct dentry *this_parent;
1271 struct list_head *next;
1272 unsigned seq = 0;
1273 enum d_walk_ret ret;
1274 bool retry = true;
1275
1276 again:
1277 read_seqbegin_or_lock(&rename_lock, &seq);
1278 this_parent = parent;
1279 spin_lock(&this_parent->d_lock);
1280
1281 ret = enter(data, this_parent);
1282 switch (ret) {
1283 case D_WALK_CONTINUE:
1284 break;
1285 case D_WALK_QUIT:
1286 case D_WALK_SKIP:
1287 goto out_unlock;
1288 case D_WALK_NORETRY:
1289 retry = false;
1290 break;
1291 }
1292 repeat:
1293 next = this_parent->d_subdirs.next;
1294 resume:
1295 while (next != &this_parent->d_subdirs) {
1296 struct list_head *tmp = next;
1297 struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1298 next = tmp->next;
1299
1300 if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR))
1301 continue;
1302
1303 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1304
1305 ret = enter(data, dentry);
1306 switch (ret) {
1307 case D_WALK_CONTINUE:
1308 break;
1309 case D_WALK_QUIT:
1310 spin_unlock(&dentry->d_lock);
1311 goto out_unlock;
1312 case D_WALK_NORETRY:
1313 retry = false;
1314 break;
1315 case D_WALK_SKIP:
1316 spin_unlock(&dentry->d_lock);
1317 continue;
1318 }
1319
1320 if (!list_empty(&dentry->d_subdirs)) {
1321 spin_unlock(&this_parent->d_lock);
1322 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1323 this_parent = dentry;
1324 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1325 goto repeat;
1326 }
1327 spin_unlock(&dentry->d_lock);
1328 }
1329 /*
1330 * All done at this level ... ascend and resume the search.
1331 */
1332 rcu_read_lock();
1333 ascend:
1334 if (this_parent != parent) {
1335 struct dentry *child = this_parent;
1336 this_parent = child->d_parent;
1337
1338 spin_unlock(&child->d_lock);
1339 spin_lock(&this_parent->d_lock);
1340
1341 /* might go back up the wrong parent if we have had a rename. */
1342 if (need_seqretry(&rename_lock, seq))
1343 goto rename_retry;
1344 /* go into the first sibling still alive */
1345 do {
1346 next = child->d_child.next;
1347 if (next == &this_parent->d_subdirs)
1348 goto ascend;
1349 child = list_entry(next, struct dentry, d_child);
1350 } while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED));
1351 rcu_read_unlock();
1352 goto resume;
1353 }
1354 if (need_seqretry(&rename_lock, seq))
1355 goto rename_retry;
1356 rcu_read_unlock();
1357
1358 out_unlock:
1359 spin_unlock(&this_parent->d_lock);
1360 done_seqretry(&rename_lock, seq);
1361 return;
1362
1363 rename_retry:
1364 spin_unlock(&this_parent->d_lock);
1365 rcu_read_unlock();
1366 BUG_ON(seq & 1);
1367 if (!retry)
1368 return;
1369 seq = 1;
1370 goto again;
1371 }
1372
1373 struct check_mount {
1374 struct vfsmount *mnt;
1375 unsigned int mounted;
1376 };
1377
1378 static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry)
1379 {
1380 struct check_mount *info = data;
1381 struct path path = { .mnt = info->mnt, .dentry = dentry };
1382
1383 if (likely(!d_mountpoint(dentry)))
1384 return D_WALK_CONTINUE;
1385 if (__path_is_mountpoint(&path)) {
1386 info->mounted = 1;
1387 return D_WALK_QUIT;
1388 }
1389 return D_WALK_CONTINUE;
1390 }
1391
1392 /**
1393 * path_has_submounts - check for mounts over a dentry in the
1394 * current namespace.
1395 * @parent: path to check.
1396 *
1397 * Return true if the parent or its subdirectories contain
1398 * a mount point in the current namespace.
1399 */
1400 int path_has_submounts(const struct path *parent)
1401 {
1402 struct check_mount data = { .mnt = parent->mnt, .mounted = 0 };
1403
1404 read_seqlock_excl(&mount_lock);
1405 d_walk(parent->dentry, &data, path_check_mount);
1406 read_sequnlock_excl(&mount_lock);
1407
1408 return data.mounted;
1409 }
1410 EXPORT_SYMBOL(path_has_submounts);
1411
1412 /*
1413 * Called by mount code to set a mountpoint and check if the mountpoint is
1414 * reachable (e.g. NFS can unhash a directory dentry and then the complete
1415 * subtree can become unreachable).
1416 *
1417 * Only one of d_invalidate() and d_set_mounted() must succeed. For
1418 * this reason take rename_lock and d_lock on dentry and ancestors.
1419 */
1420 int d_set_mounted(struct dentry *dentry)
1421 {
1422 struct dentry *p;
1423 int ret = -ENOENT;
1424 write_seqlock(&rename_lock);
1425 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1426 /* Need exclusion wrt. d_invalidate() */
1427 spin_lock(&p->d_lock);
1428 if (unlikely(d_unhashed(p))) {
1429 spin_unlock(&p->d_lock);
1430 goto out;
1431 }
1432 spin_unlock(&p->d_lock);
1433 }
1434 spin_lock(&dentry->d_lock);
1435 if (!d_unlinked(dentry)) {
1436 ret = -EBUSY;
1437 if (!d_mountpoint(dentry)) {
1438 dentry->d_flags |= DCACHE_MOUNTED;
1439 ret = 0;
1440 }
1441 }
1442 spin_unlock(&dentry->d_lock);
1443 out:
1444 write_sequnlock(&rename_lock);
1445 return ret;
1446 }
1447
1448 /*
1449 * Search the dentry child list of the specified parent,
1450 * and move any unused dentries to the end of the unused
1451 * list for prune_dcache(). We descend to the next level
1452 * whenever the d_subdirs list is non-empty and continue
1453 * searching.
1454 *
1455 * It returns zero iff there are no unused children,
1456 * otherwise it returns the number of children moved to
1457 * the end of the unused list. This may not be the total
1458 * number of unused children, because select_parent can
1459 * drop the lock and return early due to latency
1460 * constraints.
1461 */
1462
1463 struct select_data {
1464 struct dentry *start;
1465 union {
1466 long found;
1467 struct dentry *victim;
1468 };
1469 struct list_head dispose;
1470 };
1471
1472 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1473 {
1474 struct select_data *data = _data;
1475 enum d_walk_ret ret = D_WALK_CONTINUE;
1476
1477 if (data->start == dentry)
1478 goto out;
1479
1480 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1481 data->found++;
1482 } else {
1483 if (dentry->d_flags & DCACHE_LRU_LIST)
1484 d_lru_del(dentry);
1485 if (!dentry->d_lockref.count) {
1486 d_shrink_add(dentry, &data->dispose);
1487 data->found++;
1488 }
1489 }
1490 /*
1491 * We can return to the caller if we have found some (this
1492 * ensures forward progress). We'll be coming back to find
1493 * the rest.
1494 */
1495 if (!list_empty(&data->dispose))
1496 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1497 out:
1498 return ret;
1499 }
1500
1501 static enum d_walk_ret select_collect2(void *_data, struct dentry *dentry)
1502 {
1503 struct select_data *data = _data;
1504 enum d_walk_ret ret = D_WALK_CONTINUE;
1505
1506 if (data->start == dentry)
1507 goto out;
1508
1509 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1510 if (!dentry->d_lockref.count) {
1511 rcu_read_lock();
1512 data->victim = dentry;
1513 return D_WALK_QUIT;
1514 }
1515 } else {
1516 if (dentry->d_flags & DCACHE_LRU_LIST)
1517 d_lru_del(dentry);
1518 if (!dentry->d_lockref.count)
1519 d_shrink_add(dentry, &data->dispose);
1520 }
1521 /*
1522 * We can return to the caller if we have found some (this
1523 * ensures forward progress). We'll be coming back to find
1524 * the rest.
1525 */
1526 if (!list_empty(&data->dispose))
1527 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1528 out:
1529 return ret;
1530 }
1531
1532 /**
1533 * shrink_dcache_parent - prune dcache
1534 * @parent: parent of entries to prune
1535 *
1536 * Prune the dcache to remove unused children of the parent dentry.
1537 */
1538 void shrink_dcache_parent(struct dentry *parent)
1539 {
1540 for (;;) {
1541 struct select_data data = {.start = parent};
1542
1543 INIT_LIST_HEAD(&data.dispose);
1544 d_walk(parent, &data, select_collect);
1545
1546 if (!list_empty(&data.dispose)) {
1547 shrink_dentry_list(&data.dispose);
1548 continue;
1549 }
1550
1551 cond_resched();
1552 if (!data.found)
1553 break;
1554 data.victim = NULL;
1555 d_walk(parent, &data, select_collect2);
1556 if (data.victim) {
1557 struct dentry *parent;
1558 spin_lock(&data.victim->d_lock);
1559 if (!shrink_lock_dentry(data.victim)) {
1560 spin_unlock(&data.victim->d_lock);
1561 rcu_read_unlock();
1562 } else {
1563 rcu_read_unlock();
1564 parent = data.victim->d_parent;
1565 if (parent != data.victim)
1566 __dput_to_list(parent, &data.dispose);
1567 __dentry_kill(data.victim);
1568 }
1569 }
1570 if (!list_empty(&data.dispose))
1571 shrink_dentry_list(&data.dispose);
1572 }
1573 }
1574 EXPORT_SYMBOL(shrink_dcache_parent);
1575
1576 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
1577 {
1578 /* it has busy descendents; complain about those instead */
1579 if (!list_empty(&dentry->d_subdirs))
1580 return D_WALK_CONTINUE;
1581
1582 /* root with refcount 1 is fine */
1583 if (dentry == _data && dentry->d_lockref.count == 1)
1584 return D_WALK_CONTINUE;
1585
1586 printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1587 " still in use (%d) [unmount of %s %s]\n",
1588 dentry,
1589 dentry->d_inode ?
1590 dentry->d_inode->i_ino : 0UL,
1591 dentry,
1592 dentry->d_lockref.count,
1593 dentry->d_sb->s_type->name,
1594 dentry->d_sb->s_id);
1595 WARN_ON(1);
1596 return D_WALK_CONTINUE;
1597 }
1598
1599 static void do_one_tree(struct dentry *dentry)
1600 {
1601 shrink_dcache_parent(dentry);
1602 d_walk(dentry, dentry, umount_check);
1603 d_drop(dentry);
1604 dput(dentry);
1605 }
1606
1607 /*
1608 * destroy the dentries attached to a superblock on unmounting
1609 */
1610 void shrink_dcache_for_umount(struct super_block *sb)
1611 {
1612 struct dentry *dentry;
1613
1614 WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
1615
1616 dentry = sb->s_root;
1617 sb->s_root = NULL;
1618 do_one_tree(dentry);
1619
1620 while (!hlist_bl_empty(&sb->s_roots)) {
1621 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_roots), struct dentry, d_hash));
1622 do_one_tree(dentry);
1623 }
1624 }
1625
1626 static enum d_walk_ret find_submount(void *_data, struct dentry *dentry)
1627 {
1628 struct dentry **victim = _data;
1629 if (d_mountpoint(dentry)) {
1630 __dget_dlock(dentry);
1631 *victim = dentry;
1632 return D_WALK_QUIT;
1633 }
1634 return D_WALK_CONTINUE;
1635 }
1636
1637 /**
1638 * d_invalidate - detach submounts, prune dcache, and drop
1639 * @dentry: dentry to invalidate (aka detach, prune and drop)
1640 */
1641 void d_invalidate(struct dentry *dentry)
1642 {
1643 bool had_submounts = false;
1644 spin_lock(&dentry->d_lock);
1645 if (d_unhashed(dentry)) {
1646 spin_unlock(&dentry->d_lock);
1647 return;
1648 }
1649 __d_drop(dentry);
1650 spin_unlock(&dentry->d_lock);
1651
1652 /* Negative dentries can be dropped without further checks */
1653 if (!dentry->d_inode)
1654 return;
1655
1656 shrink_dcache_parent(dentry);
1657 for (;;) {
1658 struct dentry *victim = NULL;
1659 d_walk(dentry, &victim, find_submount);
1660 if (!victim) {
1661 if (had_submounts)
1662 shrink_dcache_parent(dentry);
1663 return;
1664 }
1665 had_submounts = true;
1666 detach_mounts(victim);
1667 dput(victim);
1668 }
1669 }
1670 EXPORT_SYMBOL(d_invalidate);
1671
1672 /**
1673 * __d_alloc - allocate a dcache entry
1674 * @sb: filesystem it will belong to
1675 * @name: qstr of the name
1676 *
1677 * Allocates a dentry. It returns %NULL if there is insufficient memory
1678 * available. On a success the dentry is returned. The name passed in is
1679 * copied and the copy passed in may be reused after this call.
1680 */
1681
1682 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1683 {
1684 struct dentry *dentry;
1685 char *dname;
1686 int err;
1687
1688 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1689 if (!dentry)
1690 return NULL;
1691
1692 /*
1693 * We guarantee that the inline name is always NUL-terminated.
1694 * This way the memcpy() done by the name switching in rename
1695 * will still always have a NUL at the end, even if we might
1696 * be overwriting an internal NUL character
1697 */
1698 dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1699 if (unlikely(!name)) {
1700 name = &slash_name;
1701 dname = dentry->d_iname;
1702 } else if (name->len > DNAME_INLINE_LEN-1) {
1703 size_t size = offsetof(struct external_name, name[1]);
1704 struct external_name *p = kmalloc(size + name->len,
1705 GFP_KERNEL_ACCOUNT |
1706 __GFP_RECLAIMABLE);
1707 if (!p) {
1708 kmem_cache_free(dentry_cache, dentry);
1709 return NULL;
1710 }
1711 atomic_set(&p->u.count, 1);
1712 dname = p->name;
1713 } else {
1714 dname = dentry->d_iname;
1715 }
1716
1717 dentry->d_name.len = name->len;
1718 dentry->d_name.hash = name->hash;
1719 memcpy(dname, name->name, name->len);
1720 dname[name->len] = 0;
1721
1722 /* Make sure we always see the terminating NUL character */
1723 smp_store_release(&dentry->d_name.name, dname); /* ^^^ */
1724
1725 dentry->d_lockref.count = 1;
1726 dentry->d_flags = 0;
1727 spin_lock_init(&dentry->d_lock);
1728 seqcount_init(&dentry->d_seq);
1729 dentry->d_inode = NULL;
1730 dentry->d_parent = dentry;
1731 dentry->d_sb = sb;
1732 dentry->d_op = NULL;
1733 dentry->d_fsdata = NULL;
1734 INIT_HLIST_BL_NODE(&dentry->d_hash);
1735 INIT_LIST_HEAD(&dentry->d_lru);
1736 INIT_LIST_HEAD(&dentry->d_subdirs);
1737 INIT_HLIST_NODE(&dentry->d_u.d_alias);
1738 INIT_LIST_HEAD(&dentry->d_child);
1739 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1740
1741 if (dentry->d_op && dentry->d_op->d_init) {
1742 err = dentry->d_op->d_init(dentry);
1743 if (err) {
1744 if (dname_external(dentry))
1745 kfree(external_name(dentry));
1746 kmem_cache_free(dentry_cache, dentry);
1747 return NULL;
1748 }
1749 }
1750
1751 this_cpu_inc(nr_dentry);
1752
1753 return dentry;
1754 }
1755
1756 /**
1757 * d_alloc - allocate a dcache entry
1758 * @parent: parent of entry to allocate
1759 * @name: qstr of the name
1760 *
1761 * Allocates a dentry. It returns %NULL if there is insufficient memory
1762 * available. On a success the dentry is returned. The name passed in is
1763 * copied and the copy passed in may be reused after this call.
1764 */
1765 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1766 {
1767 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1768 if (!dentry)
1769 return NULL;
1770 spin_lock(&parent->d_lock);
1771 /*
1772 * don't need child lock because it is not subject
1773 * to concurrency here
1774 */
1775 __dget_dlock(parent);
1776 dentry->d_parent = parent;
1777 list_add(&dentry->d_child, &parent->d_subdirs);
1778 spin_unlock(&parent->d_lock);
1779
1780 return dentry;
1781 }
1782 EXPORT_SYMBOL(d_alloc);
1783
1784 struct dentry *d_alloc_anon(struct super_block *sb)
1785 {
1786 return __d_alloc(sb, NULL);
1787 }
1788 EXPORT_SYMBOL(d_alloc_anon);
1789
1790 struct dentry *d_alloc_cursor(struct dentry * parent)
1791 {
1792 struct dentry *dentry = d_alloc_anon(parent->d_sb);
1793 if (dentry) {
1794 dentry->d_flags |= DCACHE_DENTRY_CURSOR;
1795 dentry->d_parent = dget(parent);
1796 }
1797 return dentry;
1798 }
1799
1800 /**
1801 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1802 * @sb: the superblock
1803 * @name: qstr of the name
1804 *
1805 * For a filesystem that just pins its dentries in memory and never
1806 * performs lookups at all, return an unhashed IS_ROOT dentry.
1807 * This is used for pipes, sockets et.al. - the stuff that should
1808 * never be anyone's children or parents. Unlike all other
1809 * dentries, these will not have RCU delay between dropping the
1810 * last reference and freeing them.
1811 *
1812 * The only user is alloc_file_pseudo() and that's what should
1813 * be considered a public interface. Don't use directly.
1814 */
1815 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1816 {
1817 struct dentry *dentry = __d_alloc(sb, name);
1818 if (likely(dentry))
1819 dentry->d_flags |= DCACHE_NORCU;
1820 return dentry;
1821 }
1822
1823 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1824 {
1825 struct qstr q;
1826
1827 q.name = name;
1828 q.hash_len = hashlen_string(parent, name);
1829 return d_alloc(parent, &q);
1830 }
1831 EXPORT_SYMBOL(d_alloc_name);
1832
1833 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1834 {
1835 WARN_ON_ONCE(dentry->d_op);
1836 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
1837 DCACHE_OP_COMPARE |
1838 DCACHE_OP_REVALIDATE |
1839 DCACHE_OP_WEAK_REVALIDATE |
1840 DCACHE_OP_DELETE |
1841 DCACHE_OP_REAL));
1842 dentry->d_op = op;
1843 if (!op)
1844 return;
1845 if (op->d_hash)
1846 dentry->d_flags |= DCACHE_OP_HASH;
1847 if (op->d_compare)
1848 dentry->d_flags |= DCACHE_OP_COMPARE;
1849 if (op->d_revalidate)
1850 dentry->d_flags |= DCACHE_OP_REVALIDATE;
1851 if (op->d_weak_revalidate)
1852 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1853 if (op->d_delete)
1854 dentry->d_flags |= DCACHE_OP_DELETE;
1855 if (op->d_prune)
1856 dentry->d_flags |= DCACHE_OP_PRUNE;
1857 if (op->d_real)
1858 dentry->d_flags |= DCACHE_OP_REAL;
1859
1860 }
1861 EXPORT_SYMBOL(d_set_d_op);
1862
1863
1864 /*
1865 * d_set_fallthru - Mark a dentry as falling through to a lower layer
1866 * @dentry - The dentry to mark
1867 *
1868 * Mark a dentry as falling through to the lower layer (as set with
1869 * d_pin_lower()). This flag may be recorded on the medium.
1870 */
1871 void d_set_fallthru(struct dentry *dentry)
1872 {
1873 spin_lock(&dentry->d_lock);
1874 dentry->d_flags |= DCACHE_FALLTHRU;
1875 spin_unlock(&dentry->d_lock);
1876 }
1877 EXPORT_SYMBOL(d_set_fallthru);
1878
1879 static unsigned d_flags_for_inode(struct inode *inode)
1880 {
1881 unsigned add_flags = DCACHE_REGULAR_TYPE;
1882
1883 if (!inode)
1884 return DCACHE_MISS_TYPE;
1885
1886 if (S_ISDIR(inode->i_mode)) {
1887 add_flags = DCACHE_DIRECTORY_TYPE;
1888 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1889 if (unlikely(!inode->i_op->lookup))
1890 add_flags = DCACHE_AUTODIR_TYPE;
1891 else
1892 inode->i_opflags |= IOP_LOOKUP;
1893 }
1894 goto type_determined;
1895 }
1896
1897 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1898 if (unlikely(inode->i_op->get_link)) {
1899 add_flags = DCACHE_SYMLINK_TYPE;
1900 goto type_determined;
1901 }
1902 inode->i_opflags |= IOP_NOFOLLOW;
1903 }
1904
1905 if (unlikely(!S_ISREG(inode->i_mode)))
1906 add_flags = DCACHE_SPECIAL_TYPE;
1907
1908 type_determined:
1909 if (unlikely(IS_AUTOMOUNT(inode)))
1910 add_flags |= DCACHE_NEED_AUTOMOUNT;
1911 return add_flags;
1912 }
1913
1914 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1915 {
1916 unsigned add_flags = d_flags_for_inode(inode);
1917 WARN_ON(d_in_lookup(dentry));
1918
1919 spin_lock(&dentry->d_lock);
1920 /*
1921 * Decrement negative dentry count if it was in the LRU list.
1922 */
1923 if (dentry->d_flags & DCACHE_LRU_LIST)
1924 this_cpu_dec(nr_dentry_negative);
1925 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
1926 raw_write_seqcount_begin(&dentry->d_seq);
1927 __d_set_inode_and_type(dentry, inode, add_flags);
1928 raw_write_seqcount_end(&dentry->d_seq);
1929 fsnotify_update_flags(dentry);
1930 spin_unlock(&dentry->d_lock);
1931 }
1932
1933 /**
1934 * d_instantiate - fill in inode information for a dentry
1935 * @entry: dentry to complete
1936 * @inode: inode to attach to this dentry
1937 *
1938 * Fill in inode information in the entry.
1939 *
1940 * This turns negative dentries into productive full members
1941 * of society.
1942 *
1943 * NOTE! This assumes that the inode count has been incremented
1944 * (or otherwise set) by the caller to indicate that it is now
1945 * in use by the dcache.
1946 */
1947
1948 void d_instantiate(struct dentry *entry, struct inode * inode)
1949 {
1950 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1951 if (inode) {
1952 security_d_instantiate(entry, inode);
1953 spin_lock(&inode->i_lock);
1954 __d_instantiate(entry, inode);
1955 spin_unlock(&inode->i_lock);
1956 }
1957 }
1958 EXPORT_SYMBOL(d_instantiate);
1959
1960 /*
1961 * This should be equivalent to d_instantiate() + unlock_new_inode(),
1962 * with lockdep-related part of unlock_new_inode() done before
1963 * anything else. Use that instead of open-coding d_instantiate()/
1964 * unlock_new_inode() combinations.
1965 */
1966 void d_instantiate_new(struct dentry *entry, struct inode *inode)
1967 {
1968 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1969 BUG_ON(!inode);
1970 lockdep_annotate_inode_mutex_key(inode);
1971 security_d_instantiate(entry, inode);
1972 spin_lock(&inode->i_lock);
1973 __d_instantiate(entry, inode);
1974 WARN_ON(!(inode->i_state & I_NEW));
1975 inode->i_state &= ~I_NEW & ~I_CREATING;
1976 smp_mb();
1977 wake_up_bit(&inode->i_state, __I_NEW);
1978 spin_unlock(&inode->i_lock);
1979 }
1980 EXPORT_SYMBOL(d_instantiate_new);
1981
1982 struct dentry *d_make_root(struct inode *root_inode)
1983 {
1984 struct dentry *res = NULL;
1985
1986 if (root_inode) {
1987 res = d_alloc_anon(root_inode->i_sb);
1988 if (res)
1989 d_instantiate(res, root_inode);
1990 else
1991 iput(root_inode);
1992 }
1993 return res;
1994 }
1995 EXPORT_SYMBOL(d_make_root);
1996
1997 static struct dentry *__d_instantiate_anon(struct dentry *dentry,
1998 struct inode *inode,
1999 bool disconnected)
2000 {
2001 struct dentry *res;
2002 unsigned add_flags;
2003
2004 security_d_instantiate(dentry, inode);
2005 spin_lock(&inode->i_lock);
2006 res = __d_find_any_alias(inode);
2007 if (res) {
2008 spin_unlock(&inode->i_lock);
2009 dput(dentry);
2010 goto out_iput;
2011 }
2012
2013 /* attach a disconnected dentry */
2014 add_flags = d_flags_for_inode(inode);
2015
2016 if (disconnected)
2017 add_flags |= DCACHE_DISCONNECTED;
2018
2019 spin_lock(&dentry->d_lock);
2020 __d_set_inode_and_type(dentry, inode, add_flags);
2021 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2022 if (!disconnected) {
2023 hlist_bl_lock(&dentry->d_sb->s_roots);
2024 hlist_bl_add_head(&dentry->d_hash, &dentry->d_sb->s_roots);
2025 hlist_bl_unlock(&dentry->d_sb->s_roots);
2026 }
2027 spin_unlock(&dentry->d_lock);
2028 spin_unlock(&inode->i_lock);
2029
2030 return dentry;
2031
2032 out_iput:
2033 iput(inode);
2034 return res;
2035 }
2036
2037 struct dentry *d_instantiate_anon(struct dentry *dentry, struct inode *inode)
2038 {
2039 return __d_instantiate_anon(dentry, inode, true);
2040 }
2041 EXPORT_SYMBOL(d_instantiate_anon);
2042
2043 static struct dentry *__d_obtain_alias(struct inode *inode, bool disconnected)
2044 {
2045 struct dentry *tmp;
2046 struct dentry *res;
2047
2048 if (!inode)
2049 return ERR_PTR(-ESTALE);
2050 if (IS_ERR(inode))
2051 return ERR_CAST(inode);
2052
2053 res = d_find_any_alias(inode);
2054 if (res)
2055 goto out_iput;
2056
2057 tmp = d_alloc_anon(inode->i_sb);
2058 if (!tmp) {
2059 res = ERR_PTR(-ENOMEM);
2060 goto out_iput;
2061 }
2062
2063 return __d_instantiate_anon(tmp, inode, disconnected);
2064
2065 out_iput:
2066 iput(inode);
2067 return res;
2068 }
2069
2070 /**
2071 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
2072 * @inode: inode to allocate the dentry for
2073 *
2074 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
2075 * similar open by handle operations. The returned dentry may be anonymous,
2076 * or may have a full name (if the inode was already in the cache).
2077 *
2078 * When called on a directory inode, we must ensure that the inode only ever
2079 * has one dentry. If a dentry is found, that is returned instead of
2080 * allocating a new one.
2081 *
2082 * On successful return, the reference to the inode has been transferred
2083 * to the dentry. In case of an error the reference on the inode is released.
2084 * To make it easier to use in export operations a %NULL or IS_ERR inode may
2085 * be passed in and the error will be propagated to the return value,
2086 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
2087 */
2088 struct dentry *d_obtain_alias(struct inode *inode)
2089 {
2090 return __d_obtain_alias(inode, true);
2091 }
2092 EXPORT_SYMBOL(d_obtain_alias);
2093
2094 /**
2095 * d_obtain_root - find or allocate a dentry for a given inode
2096 * @inode: inode to allocate the dentry for
2097 *
2098 * Obtain an IS_ROOT dentry for the root of a filesystem.
2099 *
2100 * We must ensure that directory inodes only ever have one dentry. If a
2101 * dentry is found, that is returned instead of allocating a new one.
2102 *
2103 * On successful return, the reference to the inode has been transferred
2104 * to the dentry. In case of an error the reference on the inode is
2105 * released. A %NULL or IS_ERR inode may be passed in and will be the
2106 * error will be propagate to the return value, with a %NULL @inode
2107 * replaced by ERR_PTR(-ESTALE).
2108 */
2109 struct dentry *d_obtain_root(struct inode *inode)
2110 {
2111 return __d_obtain_alias(inode, false);
2112 }
2113 EXPORT_SYMBOL(d_obtain_root);
2114
2115 /**
2116 * d_add_ci - lookup or allocate new dentry with case-exact name
2117 * @inode: the inode case-insensitive lookup has found
2118 * @dentry: the negative dentry that was passed to the parent's lookup func
2119 * @name: the case-exact name to be associated with the returned dentry
2120 *
2121 * This is to avoid filling the dcache with case-insensitive names to the
2122 * same inode, only the actual correct case is stored in the dcache for
2123 * case-insensitive filesystems.
2124 *
2125 * For a case-insensitive lookup match and if the the case-exact dentry
2126 * already exists in in the dcache, use it and return it.
2127 *
2128 * If no entry exists with the exact case name, allocate new dentry with
2129 * the exact case, and return the spliced entry.
2130 */
2131 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
2132 struct qstr *name)
2133 {
2134 struct dentry *found, *res;
2135
2136 /*
2137 * First check if a dentry matching the name already exists,
2138 * if not go ahead and create it now.
2139 */
2140 found = d_hash_and_lookup(dentry->d_parent, name);
2141 if (found) {
2142 iput(inode);
2143 return found;
2144 }
2145 if (d_in_lookup(dentry)) {
2146 found = d_alloc_parallel(dentry->d_parent, name,
2147 dentry->d_wait);
2148 if (IS_ERR(found) || !d_in_lookup(found)) {
2149 iput(inode);
2150 return found;
2151 }
2152 } else {
2153 found = d_alloc(dentry->d_parent, name);
2154 if (!found) {
2155 iput(inode);
2156 return ERR_PTR(-ENOMEM);
2157 }
2158 }
2159 res = d_splice_alias(inode, found);
2160 if (res) {
2161 dput(found);
2162 return res;
2163 }
2164 return found;
2165 }
2166 EXPORT_SYMBOL(d_add_ci);
2167
2168
2169 static inline bool d_same_name(const struct dentry *dentry,
2170 const struct dentry *parent,
2171 const struct qstr *name)
2172 {
2173 if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) {
2174 if (dentry->d_name.len != name->len)
2175 return false;
2176 return dentry_cmp(dentry, name->name, name->len) == 0;
2177 }
2178 return parent->d_op->d_compare(dentry,
2179 dentry->d_name.len, dentry->d_name.name,
2180 name) == 0;
2181 }
2182
2183 /**
2184 * __d_lookup_rcu - search for a dentry (racy, store-free)
2185 * @parent: parent dentry
2186 * @name: qstr of name we wish to find
2187 * @seqp: returns d_seq value at the point where the dentry was found
2188 * Returns: dentry, or NULL
2189 *
2190 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2191 * resolution (store-free path walking) design described in
2192 * Documentation/filesystems/path-lookup.txt.
2193 *
2194 * This is not to be used outside core vfs.
2195 *
2196 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2197 * held, and rcu_read_lock held. The returned dentry must not be stored into
2198 * without taking d_lock and checking d_seq sequence count against @seq
2199 * returned here.
2200 *
2201 * A refcount may be taken on the found dentry with the d_rcu_to_refcount
2202 * function.
2203 *
2204 * Alternatively, __d_lookup_rcu may be called again to look up the child of
2205 * the returned dentry, so long as its parent's seqlock is checked after the
2206 * child is looked up. Thus, an interlocking stepping of sequence lock checks
2207 * is formed, giving integrity down the path walk.
2208 *
2209 * NOTE! The caller *has* to check the resulting dentry against the sequence
2210 * number we've returned before using any of the resulting dentry state!
2211 */
2212 struct dentry *__d_lookup_rcu(const struct dentry *parent,
2213 const struct qstr *name,
2214 unsigned *seqp)
2215 {
2216 u64 hashlen = name->hash_len;
2217 const unsigned char *str = name->name;
2218 struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen));
2219 struct hlist_bl_node *node;
2220 struct dentry *dentry;
2221
2222 /*
2223 * Note: There is significant duplication with __d_lookup_rcu which is
2224 * required to prevent single threaded performance regressions
2225 * especially on architectures where smp_rmb (in seqcounts) are costly.
2226 * Keep the two functions in sync.
2227 */
2228
2229 /*
2230 * The hash list is protected using RCU.
2231 *
2232 * Carefully use d_seq when comparing a candidate dentry, to avoid
2233 * races with d_move().
2234 *
2235 * It is possible that concurrent renames can mess up our list
2236 * walk here and result in missing our dentry, resulting in the
2237 * false-negative result. d_lookup() protects against concurrent
2238 * renames using rename_lock seqlock.
2239 *
2240 * See Documentation/filesystems/path-lookup.txt for more details.
2241 */
2242 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2243 unsigned seq;
2244
2245 seqretry:
2246 /*
2247 * The dentry sequence count protects us from concurrent
2248 * renames, and thus protects parent and name fields.
2249 *
2250 * The caller must perform a seqcount check in order
2251 * to do anything useful with the returned dentry.
2252 *
2253 * NOTE! We do a "raw" seqcount_begin here. That means that
2254 * we don't wait for the sequence count to stabilize if it
2255 * is in the middle of a sequence change. If we do the slow
2256 * dentry compare, we will do seqretries until it is stable,
2257 * and if we end up with a successful lookup, we actually
2258 * want to exit RCU lookup anyway.
2259 *
2260 * Note that raw_seqcount_begin still *does* smp_rmb(), so
2261 * we are still guaranteed NUL-termination of ->d_name.name.
2262 */
2263 seq = raw_seqcount_begin(&dentry->d_seq);
2264 if (dentry->d_parent != parent)
2265 continue;
2266 if (d_unhashed(dentry))
2267 continue;
2268
2269 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
2270 int tlen;
2271 const char *tname;
2272 if (dentry->d_name.hash != hashlen_hash(hashlen))
2273 continue;
2274 tlen = dentry->d_name.len;
2275 tname = dentry->d_name.name;
2276 /* we want a consistent (name,len) pair */
2277 if (read_seqcount_retry(&dentry->d_seq, seq)) {
2278 cpu_relax();
2279 goto seqretry;
2280 }
2281 if (parent->d_op->d_compare(dentry,
2282 tlen, tname, name) != 0)
2283 continue;
2284 } else {
2285 if (dentry->d_name.hash_len != hashlen)
2286 continue;
2287 if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0)
2288 continue;
2289 }
2290 *seqp = seq;
2291 return dentry;
2292 }
2293 return NULL;
2294 }
2295
2296 /**
2297 * d_lookup - search for a dentry
2298 * @parent: parent dentry
2299 * @name: qstr of name we wish to find
2300 * Returns: dentry, or NULL
2301 *
2302 * d_lookup searches the children of the parent dentry for the name in
2303 * question. If the dentry is found its reference count is incremented and the
2304 * dentry is returned. The caller must use dput to free the entry when it has
2305 * finished using it. %NULL is returned if the dentry does not exist.
2306 */
2307 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2308 {
2309 struct dentry *dentry;
2310 unsigned seq;
2311
2312 do {
2313 seq = read_seqbegin(&rename_lock);
2314 dentry = __d_lookup(parent, name);
2315 if (dentry)
2316 break;
2317 } while (read_seqretry(&rename_lock, seq));
2318 return dentry;
2319 }
2320 EXPORT_SYMBOL(d_lookup);
2321
2322 /**
2323 * __d_lookup - search for a dentry (racy)
2324 * @parent: parent dentry
2325 * @name: qstr of name we wish to find
2326 * Returns: dentry, or NULL
2327 *
2328 * __d_lookup is like d_lookup, however it may (rarely) return a
2329 * false-negative result due to unrelated rename activity.
2330 *
2331 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2332 * however it must be used carefully, eg. with a following d_lookup in
2333 * the case of failure.
2334 *
2335 * __d_lookup callers must be commented.
2336 */
2337 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2338 {
2339 unsigned int hash = name->hash;
2340 struct hlist_bl_head *b = d_hash(hash);
2341 struct hlist_bl_node *node;
2342 struct dentry *found = NULL;
2343 struct dentry *dentry;
2344
2345 /*
2346 * Note: There is significant duplication with __d_lookup_rcu which is
2347 * required to prevent single threaded performance regressions
2348 * especially on architectures where smp_rmb (in seqcounts) are costly.
2349 * Keep the two functions in sync.
2350 */
2351
2352 /*
2353 * The hash list is protected using RCU.
2354 *
2355 * Take d_lock when comparing a candidate dentry, to avoid races
2356 * with d_move().
2357 *
2358 * It is possible that concurrent renames can mess up our list
2359 * walk here and result in missing our dentry, resulting in the
2360 * false-negative result. d_lookup() protects against concurrent
2361 * renames using rename_lock seqlock.
2362 *
2363 * See Documentation/filesystems/path-lookup.txt for more details.
2364 */
2365 rcu_read_lock();
2366
2367 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2368
2369 if (dentry->d_name.hash != hash)
2370 continue;
2371
2372 spin_lock(&dentry->d_lock);
2373 if (dentry->d_parent != parent)
2374 goto next;
2375 if (d_unhashed(dentry))
2376 goto next;
2377
2378 if (!d_same_name(dentry, parent, name))
2379 goto next;
2380
2381 dentry->d_lockref.count++;
2382 found = dentry;
2383 spin_unlock(&dentry->d_lock);
2384 break;
2385 next:
2386 spin_unlock(&dentry->d_lock);
2387 }
2388 rcu_read_unlock();
2389
2390 return found;
2391 }
2392
2393 /**
2394 * d_hash_and_lookup - hash the qstr then search for a dentry
2395 * @dir: Directory to search in
2396 * @name: qstr of name we wish to find
2397 *
2398 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2399 */
2400 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2401 {
2402 /*
2403 * Check for a fs-specific hash function. Note that we must
2404 * calculate the standard hash first, as the d_op->d_hash()
2405 * routine may choose to leave the hash value unchanged.
2406 */
2407 name->hash = full_name_hash(dir, name->name, name->len);
2408 if (dir->d_flags & DCACHE_OP_HASH) {
2409 int err = dir->d_op->d_hash(dir, name);
2410 if (unlikely(err < 0))
2411 return ERR_PTR(err);
2412 }
2413 return d_lookup(dir, name);
2414 }
2415 EXPORT_SYMBOL(d_hash_and_lookup);
2416
2417 /*
2418 * When a file is deleted, we have two options:
2419 * - turn this dentry into a negative dentry
2420 * - unhash this dentry and free it.
2421 *
2422 * Usually, we want to just turn this into
2423 * a negative dentry, but if anybody else is
2424 * currently using the dentry or the inode
2425 * we can't do that and we fall back on removing
2426 * it from the hash queues and waiting for
2427 * it to be deleted later when it has no users
2428 */
2429
2430 /**
2431 * d_delete - delete a dentry
2432 * @dentry: The dentry to delete
2433 *
2434 * Turn the dentry into a negative dentry if possible, otherwise
2435 * remove it from the hash queues so it can be deleted later
2436 */
2437
2438 void d_delete(struct dentry * dentry)
2439 {
2440 struct inode *inode = dentry->d_inode;
2441
2442 spin_lock(&inode->i_lock);
2443 spin_lock(&dentry->d_lock);
2444 /*
2445 * Are we the only user?
2446 */
2447 if (dentry->d_lockref.count == 1) {
2448 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2449 dentry_unlink_inode(dentry);
2450 } else {
2451 __d_drop(dentry);
2452 spin_unlock(&dentry->d_lock);
2453 spin_unlock(&inode->i_lock);
2454 }
2455 }
2456 EXPORT_SYMBOL(d_delete);
2457
2458 static void __d_rehash(struct dentry *entry)
2459 {
2460 struct hlist_bl_head *b = d_hash(entry->d_name.hash);
2461
2462 hlist_bl_lock(b);
2463 hlist_bl_add_head_rcu(&entry->d_hash, b);
2464 hlist_bl_unlock(b);
2465 }
2466
2467 /**
2468 * d_rehash - add an entry back to the hash
2469 * @entry: dentry to add to the hash
2470 *
2471 * Adds a dentry to the hash according to its name.
2472 */
2473
2474 void d_rehash(struct dentry * entry)
2475 {
2476 spin_lock(&entry->d_lock);
2477 __d_rehash(entry);
2478 spin_unlock(&entry->d_lock);
2479 }
2480 EXPORT_SYMBOL(d_rehash);
2481
2482 static inline unsigned start_dir_add(struct inode *dir)
2483 {
2484
2485 for (;;) {
2486 unsigned n = dir->i_dir_seq;
2487 if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n)
2488 return n;
2489 cpu_relax();
2490 }
2491 }
2492
2493 static inline void end_dir_add(struct inode *dir, unsigned n)
2494 {
2495 smp_store_release(&dir->i_dir_seq, n + 2);
2496 }
2497
2498 static void d_wait_lookup(struct dentry *dentry)
2499 {
2500 if (d_in_lookup(dentry)) {
2501 DECLARE_WAITQUEUE(wait, current);
2502 add_wait_queue(dentry->d_wait, &wait);
2503 do {
2504 set_current_state(TASK_UNINTERRUPTIBLE);
2505 spin_unlock(&dentry->d_lock);
2506 schedule();
2507 spin_lock(&dentry->d_lock);
2508 } while (d_in_lookup(dentry));
2509 }
2510 }
2511
2512 struct dentry *d_alloc_parallel(struct dentry *parent,
2513 const struct qstr *name,
2514 wait_queue_head_t *wq)
2515 {
2516 unsigned int hash = name->hash;
2517 struct hlist_bl_head *b = in_lookup_hash(parent, hash);
2518 struct hlist_bl_node *node;
2519 struct dentry *new = d_alloc(parent, name);
2520 struct dentry *dentry;
2521 unsigned seq, r_seq, d_seq;
2522
2523 if (unlikely(!new))
2524 return ERR_PTR(-ENOMEM);
2525
2526 retry:
2527 rcu_read_lock();
2528 seq = smp_load_acquire(&parent->d_inode->i_dir_seq);
2529 r_seq = read_seqbegin(&rename_lock);
2530 dentry = __d_lookup_rcu(parent, name, &d_seq);
2531 if (unlikely(dentry)) {
2532 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2533 rcu_read_unlock();
2534 goto retry;
2535 }
2536 if (read_seqcount_retry(&dentry->d_seq, d_seq)) {
2537 rcu_read_unlock();
2538 dput(dentry);
2539 goto retry;
2540 }
2541 rcu_read_unlock();
2542 dput(new);
2543 return dentry;
2544 }
2545 if (unlikely(read_seqretry(&rename_lock, r_seq))) {
2546 rcu_read_unlock();
2547 goto retry;
2548 }
2549
2550 if (unlikely(seq & 1)) {
2551 rcu_read_unlock();
2552 goto retry;
2553 }
2554
2555 hlist_bl_lock(b);
2556 if (unlikely(READ_ONCE(parent->d_inode->i_dir_seq) != seq)) {
2557 hlist_bl_unlock(b);
2558 rcu_read_unlock();
2559 goto retry;
2560 }
2561 /*
2562 * No changes for the parent since the beginning of d_lookup().
2563 * Since all removals from the chain happen with hlist_bl_lock(),
2564 * any potential in-lookup matches are going to stay here until
2565 * we unlock the chain. All fields are stable in everything
2566 * we encounter.
2567 */
2568 hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) {
2569 if (dentry->d_name.hash != hash)
2570 continue;
2571 if (dentry->d_parent != parent)
2572 continue;
2573 if (!d_same_name(dentry, parent, name))
2574 continue;
2575 hlist_bl_unlock(b);
2576 /* now we can try to grab a reference */
2577 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2578 rcu_read_unlock();
2579 goto retry;
2580 }
2581
2582 rcu_read_unlock();
2583 /*
2584 * somebody is likely to be still doing lookup for it;
2585 * wait for them to finish
2586 */
2587 spin_lock(&dentry->d_lock);
2588 d_wait_lookup(dentry);
2589 /*
2590 * it's not in-lookup anymore; in principle we should repeat
2591 * everything from dcache lookup, but it's likely to be what
2592 * d_lookup() would've found anyway. If it is, just return it;
2593 * otherwise we really have to repeat the whole thing.
2594 */
2595 if (unlikely(dentry->d_name.hash != hash))
2596 goto mismatch;
2597 if (unlikely(dentry->d_parent != parent))
2598 goto mismatch;
2599 if (unlikely(d_unhashed(dentry)))
2600 goto mismatch;
2601 if (unlikely(!d_same_name(dentry, parent, name)))
2602 goto mismatch;
2603 /* OK, it *is* a hashed match; return it */
2604 spin_unlock(&dentry->d_lock);
2605 dput(new);
2606 return dentry;
2607 }
2608 rcu_read_unlock();
2609 /* we can't take ->d_lock here; it's OK, though. */
2610 new->d_flags |= DCACHE_PAR_LOOKUP;
2611 new->d_wait = wq;
2612 hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b);
2613 hlist_bl_unlock(b);
2614 return new;
2615 mismatch:
2616 spin_unlock(&dentry->d_lock);
2617 dput(dentry);
2618 goto retry;
2619 }
2620 EXPORT_SYMBOL(d_alloc_parallel);
2621
2622 void __d_lookup_done(struct dentry *dentry)
2623 {
2624 struct hlist_bl_head *b = in_lookup_hash(dentry->d_parent,
2625 dentry->d_name.hash);
2626 hlist_bl_lock(b);
2627 dentry->d_flags &= ~DCACHE_PAR_LOOKUP;
2628 __hlist_bl_del(&dentry->d_u.d_in_lookup_hash);
2629 wake_up_all(dentry->d_wait);
2630 dentry->d_wait = NULL;
2631 hlist_bl_unlock(b);
2632 INIT_HLIST_NODE(&dentry->d_u.d_alias);
2633 INIT_LIST_HEAD(&dentry->d_lru);
2634 }
2635 EXPORT_SYMBOL(__d_lookup_done);
2636
2637 /* inode->i_lock held if inode is non-NULL */
2638
2639 static inline void __d_add(struct dentry *dentry, struct inode *inode)
2640 {
2641 struct inode *dir = NULL;
2642 unsigned n;
2643 spin_lock(&dentry->d_lock);
2644 if (unlikely(d_in_lookup(dentry))) {
2645 dir = dentry->d_parent->d_inode;
2646 n = start_dir_add(dir);
2647 __d_lookup_done(dentry);
2648 }
2649 if (inode) {
2650 unsigned add_flags = d_flags_for_inode(inode);
2651 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2652 raw_write_seqcount_begin(&dentry->d_seq);
2653 __d_set_inode_and_type(dentry, inode, add_flags);
2654 raw_write_seqcount_end(&dentry->d_seq);
2655 fsnotify_update_flags(dentry);
2656 }
2657 __d_rehash(dentry);
2658 if (dir)
2659 end_dir_add(dir, n);
2660 spin_unlock(&dentry->d_lock);
2661 if (inode)
2662 spin_unlock(&inode->i_lock);
2663 }
2664
2665 /**
2666 * d_add - add dentry to hash queues
2667 * @entry: dentry to add
2668 * @inode: The inode to attach to this dentry
2669 *
2670 * This adds the entry to the hash queues and initializes @inode.
2671 * The entry was actually filled in earlier during d_alloc().
2672 */
2673
2674 void d_add(struct dentry *entry, struct inode *inode)
2675 {
2676 if (inode) {
2677 security_d_instantiate(entry, inode);
2678 spin_lock(&inode->i_lock);
2679 }
2680 __d_add(entry, inode);
2681 }
2682 EXPORT_SYMBOL(d_add);
2683
2684 /**
2685 * d_exact_alias - find and hash an exact unhashed alias
2686 * @entry: dentry to add
2687 * @inode: The inode to go with this dentry
2688 *
2689 * If an unhashed dentry with the same name/parent and desired
2690 * inode already exists, hash and return it. Otherwise, return
2691 * NULL.
2692 *
2693 * Parent directory should be locked.
2694 */
2695 struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode)
2696 {
2697 struct dentry *alias;
2698 unsigned int hash = entry->d_name.hash;
2699
2700 spin_lock(&inode->i_lock);
2701 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
2702 /*
2703 * Don't need alias->d_lock here, because aliases with
2704 * d_parent == entry->d_parent are not subject to name or
2705 * parent changes, because the parent inode i_mutex is held.
2706 */
2707 if (alias->d_name.hash != hash)
2708 continue;
2709 if (alias->d_parent != entry->d_parent)
2710 continue;
2711 if (!d_same_name(alias, entry->d_parent, &entry->d_name))
2712 continue;
2713 spin_lock(&alias->d_lock);
2714 if (!d_unhashed(alias)) {
2715 spin_unlock(&alias->d_lock);
2716 alias = NULL;
2717 } else {
2718 __dget_dlock(alias);
2719 __d_rehash(alias);
2720 spin_unlock(&alias->d_lock);
2721 }
2722 spin_unlock(&inode->i_lock);
2723 return alias;
2724 }
2725 spin_unlock(&inode->i_lock);
2726 return NULL;
2727 }
2728 EXPORT_SYMBOL(d_exact_alias);
2729
2730 static void swap_names(struct dentry *dentry, struct dentry *target)
2731 {
2732 if (unlikely(dname_external(target))) {
2733 if (unlikely(dname_external(dentry))) {
2734 /*
2735 * Both external: swap the pointers
2736 */
2737 swap(target->d_name.name, dentry->d_name.name);
2738 } else {
2739 /*
2740 * dentry:internal, target:external. Steal target's
2741 * storage and make target internal.
2742 */
2743 memcpy(target->d_iname, dentry->d_name.name,
2744 dentry->d_name.len + 1);
2745 dentry->d_name.name = target->d_name.name;
2746 target->d_name.name = target->d_iname;
2747 }
2748 } else {
2749 if (unlikely(dname_external(dentry))) {
2750 /*
2751 * dentry:external, target:internal. Give dentry's
2752 * storage to target and make dentry internal
2753 */
2754 memcpy(dentry->d_iname, target->d_name.name,
2755 target->d_name.len + 1);
2756 target->d_name.name = dentry->d_name.name;
2757 dentry->d_name.name = dentry->d_iname;
2758 } else {
2759 /*
2760 * Both are internal.
2761 */
2762 unsigned int i;
2763 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2764 for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2765 swap(((long *) &dentry->d_iname)[i],
2766 ((long *) &target->d_iname)[i]);
2767 }
2768 }
2769 }
2770 swap(dentry->d_name.hash_len, target->d_name.hash_len);
2771 }
2772
2773 static void copy_name(struct dentry *dentry, struct dentry *target)
2774 {
2775 struct external_name *old_name = NULL;
2776 if (unlikely(dname_external(dentry)))
2777 old_name = external_name(dentry);
2778 if (unlikely(dname_external(target))) {
2779 atomic_inc(&external_name(target)->u.count);
2780 dentry->d_name = target->d_name;
2781 } else {
2782 memcpy(dentry->d_iname, target->d_name.name,
2783 target->d_name.len + 1);
2784 dentry->d_name.name = dentry->d_iname;
2785 dentry->d_name.hash_len = target->d_name.hash_len;
2786 }
2787 if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2788 kfree_rcu(old_name, u.head);
2789 }
2790
2791 /*
2792 * __d_move - move a dentry
2793 * @dentry: entry to move
2794 * @target: new dentry
2795 * @exchange: exchange the two dentries
2796 *
2797 * Update the dcache to reflect the move of a file name. Negative
2798 * dcache entries should not be moved in this way. Caller must hold
2799 * rename_lock, the i_mutex of the source and target directories,
2800 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2801 */
2802 static void __d_move(struct dentry *dentry, struct dentry *target,
2803 bool exchange)
2804 {
2805 struct dentry *old_parent, *p;
2806 struct inode *dir = NULL;
2807 unsigned n;
2808
2809 WARN_ON(!dentry->d_inode);
2810 if (WARN_ON(dentry == target))
2811 return;
2812
2813 BUG_ON(d_ancestor(target, dentry));
2814 old_parent = dentry->d_parent;
2815 p = d_ancestor(old_parent, target);
2816 if (IS_ROOT(dentry)) {
2817 BUG_ON(p);
2818 spin_lock(&target->d_parent->d_lock);
2819 } else if (!p) {
2820 /* target is not a descendent of dentry->d_parent */
2821 spin_lock(&target->d_parent->d_lock);
2822 spin_lock_nested(&old_parent->d_lock, DENTRY_D_LOCK_NESTED);
2823 } else {
2824 BUG_ON(p == dentry);
2825 spin_lock(&old_parent->d_lock);
2826 if (p != target)
2827 spin_lock_nested(&target->d_parent->d_lock,
2828 DENTRY_D_LOCK_NESTED);
2829 }
2830 spin_lock_nested(&dentry->d_lock, 2);
2831 spin_lock_nested(&target->d_lock, 3);
2832
2833 if (unlikely(d_in_lookup(target))) {
2834 dir = target->d_parent->d_inode;
2835 n = start_dir_add(dir);
2836 __d_lookup_done(target);
2837 }
2838
2839 write_seqcount_begin(&dentry->d_seq);
2840 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
2841
2842 /* unhash both */
2843 if (!d_unhashed(dentry))
2844 ___d_drop(dentry);
2845 if (!d_unhashed(target))
2846 ___d_drop(target);
2847
2848 /* ... and switch them in the tree */
2849 dentry->d_parent = target->d_parent;
2850 if (!exchange) {
2851 copy_name(dentry, target);
2852 target->d_hash.pprev = NULL;
2853 dentry->d_parent->d_lockref.count++;
2854 if (dentry != old_parent) /* wasn't IS_ROOT */
2855 WARN_ON(!--old_parent->d_lockref.count);
2856 } else {
2857 target->d_parent = old_parent;
2858 swap_names(dentry, target);
2859 list_move(&target->d_child, &target->d_parent->d_subdirs);
2860 __d_rehash(target);
2861 fsnotify_update_flags(target);
2862 }
2863 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2864 __d_rehash(dentry);
2865 fsnotify_update_flags(dentry);
2866 fscrypt_handle_d_move(dentry);
2867
2868 write_seqcount_end(&target->d_seq);
2869 write_seqcount_end(&dentry->d_seq);
2870
2871 if (dir)
2872 end_dir_add(dir, n);
2873
2874 if (dentry->d_parent != old_parent)
2875 spin_unlock(&dentry->d_parent->d_lock);
2876 if (dentry != old_parent)
2877 spin_unlock(&old_parent->d_lock);
2878 spin_unlock(&target->d_lock);
2879 spin_unlock(&dentry->d_lock);
2880 }
2881
2882 /*
2883 * d_move - move a dentry
2884 * @dentry: entry to move
2885 * @target: new dentry
2886 *
2887 * Update the dcache to reflect the move of a file name. Negative
2888 * dcache entries should not be moved in this way. See the locking
2889 * requirements for __d_move.
2890 */
2891 void d_move(struct dentry *dentry, struct dentry *target)
2892 {
2893 write_seqlock(&rename_lock);
2894 __d_move(dentry, target, false);
2895 write_sequnlock(&rename_lock);
2896 }
2897 EXPORT_SYMBOL(d_move);
2898
2899 /*
2900 * d_exchange - exchange two dentries
2901 * @dentry1: first dentry
2902 * @dentry2: second dentry
2903 */
2904 void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2905 {
2906 write_seqlock(&rename_lock);
2907
2908 WARN_ON(!dentry1->d_inode);
2909 WARN_ON(!dentry2->d_inode);
2910 WARN_ON(IS_ROOT(dentry1));
2911 WARN_ON(IS_ROOT(dentry2));
2912
2913 __d_move(dentry1, dentry2, true);
2914
2915 write_sequnlock(&rename_lock);
2916 }
2917
2918 /**
2919 * d_ancestor - search for an ancestor
2920 * @p1: ancestor dentry
2921 * @p2: child dentry
2922 *
2923 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2924 * an ancestor of p2, else NULL.
2925 */
2926 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2927 {
2928 struct dentry *p;
2929
2930 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2931 if (p->d_parent == p1)
2932 return p;
2933 }
2934 return NULL;
2935 }
2936
2937 /*
2938 * This helper attempts to cope with remotely renamed directories
2939 *
2940 * It assumes that the caller is already holding
2941 * dentry->d_parent->d_inode->i_mutex, and rename_lock
2942 *
2943 * Note: If ever the locking in lock_rename() changes, then please
2944 * remember to update this too...
2945 */
2946 static int __d_unalias(struct inode *inode,
2947 struct dentry *dentry, struct dentry *alias)
2948 {
2949 struct mutex *m1 = NULL;
2950 struct rw_semaphore *m2 = NULL;
2951 int ret = -ESTALE;
2952
2953 /* If alias and dentry share a parent, then no extra locks required */
2954 if (alias->d_parent == dentry->d_parent)
2955 goto out_unalias;
2956
2957 /* See lock_rename() */
2958 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2959 goto out_err;
2960 m1 = &dentry->d_sb->s_vfs_rename_mutex;
2961 if (!inode_trylock_shared(alias->d_parent->d_inode))
2962 goto out_err;
2963 m2 = &alias->d_parent->d_inode->i_rwsem;
2964 out_unalias:
2965 __d_move(alias, dentry, false);
2966 ret = 0;
2967 out_err:
2968 if (m2)
2969 up_read(m2);
2970 if (m1)
2971 mutex_unlock(m1);
2972 return ret;
2973 }
2974
2975 /**
2976 * d_splice_alias - splice a disconnected dentry into the tree if one exists
2977 * @inode: the inode which may have a disconnected dentry
2978 * @dentry: a negative dentry which we want to point to the inode.
2979 *
2980 * If inode is a directory and has an IS_ROOT alias, then d_move that in
2981 * place of the given dentry and return it, else simply d_add the inode
2982 * to the dentry and return NULL.
2983 *
2984 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
2985 * we should error out: directories can't have multiple aliases.
2986 *
2987 * This is needed in the lookup routine of any filesystem that is exportable
2988 * (via knfsd) so that we can build dcache paths to directories effectively.
2989 *
2990 * If a dentry was found and moved, then it is returned. Otherwise NULL
2991 * is returned. This matches the expected return value of ->lookup.
2992 *
2993 * Cluster filesystems may call this function with a negative, hashed dentry.
2994 * In that case, we know that the inode will be a regular file, and also this
2995 * will only occur during atomic_open. So we need to check for the dentry
2996 * being already hashed only in the final case.
2997 */
2998 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
2999 {
3000 if (IS_ERR(inode))
3001 return ERR_CAST(inode);
3002
3003 BUG_ON(!d_unhashed(dentry));
3004
3005 if (!inode)
3006 goto out;
3007
3008 security_d_instantiate(dentry, inode);
3009 spin_lock(&inode->i_lock);
3010 if (S_ISDIR(inode->i_mode)) {
3011 struct dentry *new = __d_find_any_alias(inode);
3012 if (unlikely(new)) {
3013 /* The reference to new ensures it remains an alias */
3014 spin_unlock(&inode->i_lock);
3015 write_seqlock(&rename_lock);
3016 if (unlikely(d_ancestor(new, dentry))) {
3017 write_sequnlock(&rename_lock);
3018 dput(new);
3019 new = ERR_PTR(-ELOOP);
3020 pr_warn_ratelimited(
3021 "VFS: Lookup of '%s' in %s %s"
3022 " would have caused loop\n",
3023 dentry->d_name.name,
3024 inode->i_sb->s_type->name,
3025 inode->i_sb->s_id);
3026 } else if (!IS_ROOT(new)) {
3027 struct dentry *old_parent = dget(new->d_parent);
3028 int err = __d_unalias(inode, dentry, new);
3029 write_sequnlock(&rename_lock);
3030 if (err) {
3031 dput(new);
3032 new = ERR_PTR(err);
3033 }
3034 dput(old_parent);
3035 } else {
3036 __d_move(new, dentry, false);
3037 write_sequnlock(&rename_lock);
3038 }
3039 iput(inode);
3040 return new;
3041 }
3042 }
3043 out:
3044 __d_add(dentry, inode);
3045 return NULL;
3046 }
3047 EXPORT_SYMBOL(d_splice_alias);
3048
3049 /*
3050 * Test whether new_dentry is a subdirectory of old_dentry.
3051 *
3052 * Trivially implemented using the dcache structure
3053 */
3054
3055 /**
3056 * is_subdir - is new dentry a subdirectory of old_dentry
3057 * @new_dentry: new dentry
3058 * @old_dentry: old dentry
3059 *
3060 * Returns true if new_dentry is a subdirectory of the parent (at any depth).
3061 * Returns false otherwise.
3062 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3063 */
3064
3065 bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
3066 {
3067 bool result;
3068 unsigned seq;
3069
3070 if (new_dentry == old_dentry)
3071 return true;
3072
3073 do {
3074 /* for restarting inner loop in case of seq retry */
3075 seq = read_seqbegin(&rename_lock);
3076 /*
3077 * Need rcu_readlock to protect against the d_parent trashing
3078 * due to d_move
3079 */
3080 rcu_read_lock();
3081 if (d_ancestor(old_dentry, new_dentry))
3082 result = true;
3083 else
3084 result = false;
3085 rcu_read_unlock();
3086 } while (read_seqretry(&rename_lock, seq));
3087
3088 return result;
3089 }
3090 EXPORT_SYMBOL(is_subdir);
3091
3092 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
3093 {
3094 struct dentry *root = data;
3095 if (dentry != root) {
3096 if (d_unhashed(dentry) || !dentry->d_inode)
3097 return D_WALK_SKIP;
3098
3099 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3100 dentry->d_flags |= DCACHE_GENOCIDE;
3101 dentry->d_lockref.count--;
3102 }
3103 }
3104 return D_WALK_CONTINUE;
3105 }
3106
3107 void d_genocide(struct dentry *parent)
3108 {
3109 d_walk(parent, parent, d_genocide_kill);
3110 }
3111
3112 EXPORT_SYMBOL(d_genocide);
3113
3114 void d_tmpfile(struct dentry *dentry, struct inode *inode)
3115 {
3116 inode_dec_link_count(inode);
3117 BUG_ON(dentry->d_name.name != dentry->d_iname ||
3118 !hlist_unhashed(&dentry->d_u.d_alias) ||
3119 !d_unlinked(dentry));
3120 spin_lock(&dentry->d_parent->d_lock);
3121 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3122 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3123 (unsigned long long)inode->i_ino);
3124 spin_unlock(&dentry->d_lock);
3125 spin_unlock(&dentry->d_parent->d_lock);
3126 d_instantiate(dentry, inode);
3127 }
3128 EXPORT_SYMBOL(d_tmpfile);
3129
3130 static __initdata unsigned long dhash_entries;
3131 static int __init set_dhash_entries(char *str)
3132 {
3133 if (!str)
3134 return 0;
3135 dhash_entries = simple_strtoul(str, &str, 0);
3136 return 1;
3137 }
3138 __setup("dhash_entries=", set_dhash_entries);
3139
3140 static void __init dcache_init_early(void)
3141 {
3142 /* If hashes are distributed across NUMA nodes, defer
3143 * hash allocation until vmalloc space is available.
3144 */
3145 if (hashdist)
3146 return;
3147
3148 dentry_hashtable =
3149 alloc_large_system_hash("Dentry cache",
3150 sizeof(struct hlist_bl_head),
3151 dhash_entries,
3152 13,
3153 HASH_EARLY | HASH_ZERO,
3154 &d_hash_shift,
3155 NULL,
3156 0,
3157 0);
3158 d_hash_shift = 32 - d_hash_shift;
3159 }
3160
3161 static void __init dcache_init(void)
3162 {
3163 /*
3164 * A constructor could be added for stable state like the lists,
3165 * but it is probably not worth it because of the cache nature
3166 * of the dcache.
3167 */
3168 dentry_cache = KMEM_CACHE_USERCOPY(dentry,
3169 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT,
3170 d_iname);
3171
3172 /* Hash may have been set up in dcache_init_early */
3173 if (!hashdist)
3174 return;
3175
3176 dentry_hashtable =
3177 alloc_large_system_hash("Dentry cache",
3178 sizeof(struct hlist_bl_head),
3179 dhash_entries,
3180 13,
3181 HASH_ZERO,
3182 &d_hash_shift,
3183 NULL,
3184 0,
3185 0);
3186 d_hash_shift = 32 - d_hash_shift;
3187 }
3188
3189 /* SLAB cache for __getname() consumers */
3190 struct kmem_cache *names_cachep __read_mostly;
3191 EXPORT_SYMBOL(names_cachep);
3192
3193 void __init vfs_caches_init_early(void)
3194 {
3195 int i;
3196
3197 for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++)
3198 INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]);
3199
3200 dcache_init_early();
3201 inode_init_early();
3202 }
3203
3204 void __init vfs_caches_init(void)
3205 {
3206 names_cachep = kmem_cache_create_usercopy("names_cache", PATH_MAX, 0,
3207 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 0, PATH_MAX, NULL);
3208
3209 dcache_init();
3210 inode_init();
3211 files_init();
3212 files_maxfiles_init();
3213 mnt_init();
3214 bdev_cache_init();
3215 chrdev_init();
3216 }