]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/dcache.c
fs/dcache.c: fix kmemcheck splat at take_dentry_name_snapshot()
[mirror_ubuntu-bionic-kernel.git] / fs / dcache.c
1 /*
2 * fs/dcache.c
3 *
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
8
9 /*
10 * Notes on the allocation strategy:
11 *
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
15 */
16
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/export.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <linux/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/rculist_bl.h>
38 #include <linux/prefetch.h>
39 #include <linux/ratelimit.h>
40 #include <linux/list_lru.h>
41 #include <linux/kasan.h>
42
43 #include "internal.h"
44 #include "mount.h"
45
46 /*
47 * Usage:
48 * dcache->d_inode->i_lock protects:
49 * - i_dentry, d_u.d_alias, d_inode of aliases
50 * dcache_hash_bucket lock protects:
51 * - the dcache hash table
52 * s_anon bl list spinlock protects:
53 * - the s_anon list (see __d_drop)
54 * dentry->d_sb->s_dentry_lru_lock protects:
55 * - the dcache lru lists and counters
56 * d_lock protects:
57 * - d_flags
58 * - d_name
59 * - d_lru
60 * - d_count
61 * - d_unhashed()
62 * - d_parent and d_subdirs
63 * - childrens' d_child and d_parent
64 * - d_u.d_alias, d_inode
65 *
66 * Ordering:
67 * dentry->d_inode->i_lock
68 * dentry->d_lock
69 * dentry->d_sb->s_dentry_lru_lock
70 * dcache_hash_bucket lock
71 * s_anon lock
72 *
73 * If there is an ancestor relationship:
74 * dentry->d_parent->...->d_parent->d_lock
75 * ...
76 * dentry->d_parent->d_lock
77 * dentry->d_lock
78 *
79 * If no ancestor relationship:
80 * if (dentry1 < dentry2)
81 * dentry1->d_lock
82 * dentry2->d_lock
83 */
84 int sysctl_vfs_cache_pressure __read_mostly = 100;
85 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
86
87 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
88
89 EXPORT_SYMBOL(rename_lock);
90
91 static struct kmem_cache *dentry_cache __read_mostly;
92
93 const struct qstr empty_name = QSTR_INIT("", 0);
94 EXPORT_SYMBOL(empty_name);
95 const struct qstr slash_name = QSTR_INIT("/", 1);
96 EXPORT_SYMBOL(slash_name);
97
98 /*
99 * This is the single most critical data structure when it comes
100 * to the dcache: the hashtable for lookups. Somebody should try
101 * to make this good - I've just made it work.
102 *
103 * This hash-function tries to avoid losing too many bits of hash
104 * information, yet avoid using a prime hash-size or similar.
105 */
106
107 static unsigned int d_hash_mask __read_mostly;
108 static unsigned int d_hash_shift __read_mostly;
109
110 static struct hlist_bl_head *dentry_hashtable __read_mostly;
111
112 static inline struct hlist_bl_head *d_hash(unsigned int hash)
113 {
114 return dentry_hashtable + (hash >> (32 - d_hash_shift));
115 }
116
117 #define IN_LOOKUP_SHIFT 10
118 static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT];
119
120 static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent,
121 unsigned int hash)
122 {
123 hash += (unsigned long) parent / L1_CACHE_BYTES;
124 return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT);
125 }
126
127
128 /* Statistics gathering. */
129 struct dentry_stat_t dentry_stat = {
130 .age_limit = 45,
131 };
132
133 static DEFINE_PER_CPU(long, nr_dentry);
134 static DEFINE_PER_CPU(long, nr_dentry_unused);
135
136 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
137
138 /*
139 * Here we resort to our own counters instead of using generic per-cpu counters
140 * for consistency with what the vfs inode code does. We are expected to harvest
141 * better code and performance by having our own specialized counters.
142 *
143 * Please note that the loop is done over all possible CPUs, not over all online
144 * CPUs. The reason for this is that we don't want to play games with CPUs going
145 * on and off. If one of them goes off, we will just keep their counters.
146 *
147 * glommer: See cffbc8a for details, and if you ever intend to change this,
148 * please update all vfs counters to match.
149 */
150 static long get_nr_dentry(void)
151 {
152 int i;
153 long sum = 0;
154 for_each_possible_cpu(i)
155 sum += per_cpu(nr_dentry, i);
156 return sum < 0 ? 0 : sum;
157 }
158
159 static long get_nr_dentry_unused(void)
160 {
161 int i;
162 long sum = 0;
163 for_each_possible_cpu(i)
164 sum += per_cpu(nr_dentry_unused, i);
165 return sum < 0 ? 0 : sum;
166 }
167
168 int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer,
169 size_t *lenp, loff_t *ppos)
170 {
171 dentry_stat.nr_dentry = get_nr_dentry();
172 dentry_stat.nr_unused = get_nr_dentry_unused();
173 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
174 }
175 #endif
176
177 /*
178 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
179 * The strings are both count bytes long, and count is non-zero.
180 */
181 #ifdef CONFIG_DCACHE_WORD_ACCESS
182
183 #include <asm/word-at-a-time.h>
184 /*
185 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
186 * aligned allocation for this particular component. We don't
187 * strictly need the load_unaligned_zeropad() safety, but it
188 * doesn't hurt either.
189 *
190 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
191 * need the careful unaligned handling.
192 */
193 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
194 {
195 unsigned long a,b,mask;
196
197 for (;;) {
198 a = *(unsigned long *)cs;
199 b = load_unaligned_zeropad(ct);
200 if (tcount < sizeof(unsigned long))
201 break;
202 if (unlikely(a != b))
203 return 1;
204 cs += sizeof(unsigned long);
205 ct += sizeof(unsigned long);
206 tcount -= sizeof(unsigned long);
207 if (!tcount)
208 return 0;
209 }
210 mask = bytemask_from_count(tcount);
211 return unlikely(!!((a ^ b) & mask));
212 }
213
214 #else
215
216 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
217 {
218 do {
219 if (*cs != *ct)
220 return 1;
221 cs++;
222 ct++;
223 tcount--;
224 } while (tcount);
225 return 0;
226 }
227
228 #endif
229
230 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
231 {
232 /*
233 * Be careful about RCU walk racing with rename:
234 * use 'READ_ONCE' to fetch the name pointer.
235 *
236 * NOTE! Even if a rename will mean that the length
237 * was not loaded atomically, we don't care. The
238 * RCU walk will check the sequence count eventually,
239 * and catch it. And we won't overrun the buffer,
240 * because we're reading the name pointer atomically,
241 * and a dentry name is guaranteed to be properly
242 * terminated with a NUL byte.
243 *
244 * End result: even if 'len' is wrong, we'll exit
245 * early because the data cannot match (there can
246 * be no NUL in the ct/tcount data)
247 */
248 const unsigned char *cs = READ_ONCE(dentry->d_name.name);
249
250 return dentry_string_cmp(cs, ct, tcount);
251 }
252
253 struct external_name {
254 union {
255 atomic_t count;
256 struct rcu_head head;
257 } u;
258 unsigned char name[];
259 };
260
261 static inline struct external_name *external_name(struct dentry *dentry)
262 {
263 return container_of(dentry->d_name.name, struct external_name, name[0]);
264 }
265
266 static void __d_free(struct rcu_head *head)
267 {
268 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
269
270 kmem_cache_free(dentry_cache, dentry);
271 }
272
273 static void __d_free_external(struct rcu_head *head)
274 {
275 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
276 kfree(external_name(dentry));
277 kmem_cache_free(dentry_cache, dentry);
278 }
279
280 static inline int dname_external(const struct dentry *dentry)
281 {
282 return dentry->d_name.name != dentry->d_iname;
283 }
284
285 void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry)
286 {
287 spin_lock(&dentry->d_lock);
288 if (unlikely(dname_external(dentry))) {
289 struct external_name *p = external_name(dentry);
290 atomic_inc(&p->u.count);
291 spin_unlock(&dentry->d_lock);
292 name->name = p->name;
293 } else {
294 memcpy(name->inline_name, dentry->d_iname,
295 dentry->d_name.len + 1);
296 spin_unlock(&dentry->d_lock);
297 name->name = name->inline_name;
298 }
299 }
300 EXPORT_SYMBOL(take_dentry_name_snapshot);
301
302 void release_dentry_name_snapshot(struct name_snapshot *name)
303 {
304 if (unlikely(name->name != name->inline_name)) {
305 struct external_name *p;
306 p = container_of(name->name, struct external_name, name[0]);
307 if (unlikely(atomic_dec_and_test(&p->u.count)))
308 kfree_rcu(p, u.head);
309 }
310 }
311 EXPORT_SYMBOL(release_dentry_name_snapshot);
312
313 static inline void __d_set_inode_and_type(struct dentry *dentry,
314 struct inode *inode,
315 unsigned type_flags)
316 {
317 unsigned flags;
318
319 dentry->d_inode = inode;
320 flags = READ_ONCE(dentry->d_flags);
321 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
322 flags |= type_flags;
323 WRITE_ONCE(dentry->d_flags, flags);
324 }
325
326 static inline void __d_clear_type_and_inode(struct dentry *dentry)
327 {
328 unsigned flags = READ_ONCE(dentry->d_flags);
329
330 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
331 WRITE_ONCE(dentry->d_flags, flags);
332 dentry->d_inode = NULL;
333 }
334
335 static void dentry_free(struct dentry *dentry)
336 {
337 WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
338 if (unlikely(dname_external(dentry))) {
339 struct external_name *p = external_name(dentry);
340 if (likely(atomic_dec_and_test(&p->u.count))) {
341 call_rcu(&dentry->d_u.d_rcu, __d_free_external);
342 return;
343 }
344 }
345 /* if dentry was never visible to RCU, immediate free is OK */
346 if (!(dentry->d_flags & DCACHE_RCUACCESS))
347 __d_free(&dentry->d_u.d_rcu);
348 else
349 call_rcu(&dentry->d_u.d_rcu, __d_free);
350 }
351
352 /*
353 * Release the dentry's inode, using the filesystem
354 * d_iput() operation if defined.
355 */
356 static void dentry_unlink_inode(struct dentry * dentry)
357 __releases(dentry->d_lock)
358 __releases(dentry->d_inode->i_lock)
359 {
360 struct inode *inode = dentry->d_inode;
361
362 raw_write_seqcount_begin(&dentry->d_seq);
363 __d_clear_type_and_inode(dentry);
364 hlist_del_init(&dentry->d_u.d_alias);
365 raw_write_seqcount_end(&dentry->d_seq);
366 spin_unlock(&dentry->d_lock);
367 spin_unlock(&inode->i_lock);
368 if (!inode->i_nlink)
369 fsnotify_inoderemove(inode);
370 if (dentry->d_op && dentry->d_op->d_iput)
371 dentry->d_op->d_iput(dentry, inode);
372 else
373 iput(inode);
374 }
375
376 /*
377 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
378 * is in use - which includes both the "real" per-superblock
379 * LRU list _and_ the DCACHE_SHRINK_LIST use.
380 *
381 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
382 * on the shrink list (ie not on the superblock LRU list).
383 *
384 * The per-cpu "nr_dentry_unused" counters are updated with
385 * the DCACHE_LRU_LIST bit.
386 *
387 * These helper functions make sure we always follow the
388 * rules. d_lock must be held by the caller.
389 */
390 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
391 static void d_lru_add(struct dentry *dentry)
392 {
393 D_FLAG_VERIFY(dentry, 0);
394 dentry->d_flags |= DCACHE_LRU_LIST;
395 this_cpu_inc(nr_dentry_unused);
396 WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
397 }
398
399 static void d_lru_del(struct dentry *dentry)
400 {
401 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
402 dentry->d_flags &= ~DCACHE_LRU_LIST;
403 this_cpu_dec(nr_dentry_unused);
404 WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
405 }
406
407 static void d_shrink_del(struct dentry *dentry)
408 {
409 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
410 list_del_init(&dentry->d_lru);
411 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
412 this_cpu_dec(nr_dentry_unused);
413 }
414
415 static void d_shrink_add(struct dentry *dentry, struct list_head *list)
416 {
417 D_FLAG_VERIFY(dentry, 0);
418 list_add(&dentry->d_lru, list);
419 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
420 this_cpu_inc(nr_dentry_unused);
421 }
422
423 /*
424 * These can only be called under the global LRU lock, ie during the
425 * callback for freeing the LRU list. "isolate" removes it from the
426 * LRU lists entirely, while shrink_move moves it to the indicated
427 * private list.
428 */
429 static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
430 {
431 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
432 dentry->d_flags &= ~DCACHE_LRU_LIST;
433 this_cpu_dec(nr_dentry_unused);
434 list_lru_isolate(lru, &dentry->d_lru);
435 }
436
437 static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
438 struct list_head *list)
439 {
440 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
441 dentry->d_flags |= DCACHE_SHRINK_LIST;
442 list_lru_isolate_move(lru, &dentry->d_lru, list);
443 }
444
445 /*
446 * dentry_lru_(add|del)_list) must be called with d_lock held.
447 */
448 static void dentry_lru_add(struct dentry *dentry)
449 {
450 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
451 d_lru_add(dentry);
452 else if (unlikely(!(dentry->d_flags & DCACHE_REFERENCED)))
453 dentry->d_flags |= DCACHE_REFERENCED;
454 }
455
456 /**
457 * d_drop - drop a dentry
458 * @dentry: dentry to drop
459 *
460 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
461 * be found through a VFS lookup any more. Note that this is different from
462 * deleting the dentry - d_delete will try to mark the dentry negative if
463 * possible, giving a successful _negative_ lookup, while d_drop will
464 * just make the cache lookup fail.
465 *
466 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
467 * reason (NFS timeouts or autofs deletes).
468 *
469 * __d_drop requires dentry->d_lock
470 * ___d_drop doesn't mark dentry as "unhashed"
471 * (dentry->d_hash.pprev will be LIST_POISON2, not NULL).
472 */
473 static void ___d_drop(struct dentry *dentry)
474 {
475 if (!d_unhashed(dentry)) {
476 struct hlist_bl_head *b;
477 /*
478 * Hashed dentries are normally on the dentry hashtable,
479 * with the exception of those newly allocated by
480 * d_obtain_alias, which are always IS_ROOT:
481 */
482 if (unlikely(IS_ROOT(dentry)))
483 b = &dentry->d_sb->s_anon;
484 else
485 b = d_hash(dentry->d_name.hash);
486
487 hlist_bl_lock(b);
488 __hlist_bl_del(&dentry->d_hash);
489 hlist_bl_unlock(b);
490 /* After this call, in-progress rcu-walk path lookup will fail. */
491 write_seqcount_invalidate(&dentry->d_seq);
492 }
493 }
494
495 void __d_drop(struct dentry *dentry)
496 {
497 ___d_drop(dentry);
498 dentry->d_hash.pprev = NULL;
499 }
500 EXPORT_SYMBOL(__d_drop);
501
502 void d_drop(struct dentry *dentry)
503 {
504 spin_lock(&dentry->d_lock);
505 __d_drop(dentry);
506 spin_unlock(&dentry->d_lock);
507 }
508 EXPORT_SYMBOL(d_drop);
509
510 static inline void dentry_unlist(struct dentry *dentry, struct dentry *parent)
511 {
512 struct dentry *next;
513 /*
514 * Inform d_walk() and shrink_dentry_list() that we are no longer
515 * attached to the dentry tree
516 */
517 dentry->d_flags |= DCACHE_DENTRY_KILLED;
518 if (unlikely(list_empty(&dentry->d_child)))
519 return;
520 __list_del_entry(&dentry->d_child);
521 /*
522 * Cursors can move around the list of children. While we'd been
523 * a normal list member, it didn't matter - ->d_child.next would've
524 * been updated. However, from now on it won't be and for the
525 * things like d_walk() it might end up with a nasty surprise.
526 * Normally d_walk() doesn't care about cursors moving around -
527 * ->d_lock on parent prevents that and since a cursor has no children
528 * of its own, we get through it without ever unlocking the parent.
529 * There is one exception, though - if we ascend from a child that
530 * gets killed as soon as we unlock it, the next sibling is found
531 * using the value left in its ->d_child.next. And if _that_
532 * pointed to a cursor, and cursor got moved (e.g. by lseek())
533 * before d_walk() regains parent->d_lock, we'll end up skipping
534 * everything the cursor had been moved past.
535 *
536 * Solution: make sure that the pointer left behind in ->d_child.next
537 * points to something that won't be moving around. I.e. skip the
538 * cursors.
539 */
540 while (dentry->d_child.next != &parent->d_subdirs) {
541 next = list_entry(dentry->d_child.next, struct dentry, d_child);
542 if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR)))
543 break;
544 dentry->d_child.next = next->d_child.next;
545 }
546 }
547
548 static void __dentry_kill(struct dentry *dentry)
549 {
550 struct dentry *parent = NULL;
551 bool can_free = true;
552 if (!IS_ROOT(dentry))
553 parent = dentry->d_parent;
554
555 /*
556 * The dentry is now unrecoverably dead to the world.
557 */
558 lockref_mark_dead(&dentry->d_lockref);
559
560 /*
561 * inform the fs via d_prune that this dentry is about to be
562 * unhashed and destroyed.
563 */
564 if (dentry->d_flags & DCACHE_OP_PRUNE)
565 dentry->d_op->d_prune(dentry);
566
567 if (dentry->d_flags & DCACHE_LRU_LIST) {
568 if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
569 d_lru_del(dentry);
570 }
571 /* if it was on the hash then remove it */
572 __d_drop(dentry);
573 dentry_unlist(dentry, parent);
574 if (parent)
575 spin_unlock(&parent->d_lock);
576 if (dentry->d_inode)
577 dentry_unlink_inode(dentry);
578 else
579 spin_unlock(&dentry->d_lock);
580 this_cpu_dec(nr_dentry);
581 if (dentry->d_op && dentry->d_op->d_release)
582 dentry->d_op->d_release(dentry);
583
584 spin_lock(&dentry->d_lock);
585 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
586 dentry->d_flags |= DCACHE_MAY_FREE;
587 can_free = false;
588 }
589 spin_unlock(&dentry->d_lock);
590 if (likely(can_free))
591 dentry_free(dentry);
592 }
593
594 /*
595 * Finish off a dentry we've decided to kill.
596 * dentry->d_lock must be held, returns with it unlocked.
597 * If ref is non-zero, then decrement the refcount too.
598 * Returns dentry requiring refcount drop, or NULL if we're done.
599 */
600 static struct dentry *dentry_kill(struct dentry *dentry)
601 __releases(dentry->d_lock)
602 {
603 struct inode *inode = dentry->d_inode;
604 struct dentry *parent = NULL;
605
606 if (inode && unlikely(!spin_trylock(&inode->i_lock)))
607 goto failed;
608
609 if (!IS_ROOT(dentry)) {
610 parent = dentry->d_parent;
611 if (unlikely(!spin_trylock(&parent->d_lock))) {
612 if (inode)
613 spin_unlock(&inode->i_lock);
614 goto failed;
615 }
616 }
617
618 __dentry_kill(dentry);
619 return parent;
620
621 failed:
622 spin_unlock(&dentry->d_lock);
623 return dentry; /* try again with same dentry */
624 }
625
626 static inline struct dentry *lock_parent(struct dentry *dentry)
627 {
628 struct dentry *parent = dentry->d_parent;
629 if (IS_ROOT(dentry))
630 return NULL;
631 if (unlikely(dentry->d_lockref.count < 0))
632 return NULL;
633 if (likely(spin_trylock(&parent->d_lock)))
634 return parent;
635 rcu_read_lock();
636 spin_unlock(&dentry->d_lock);
637 again:
638 parent = READ_ONCE(dentry->d_parent);
639 spin_lock(&parent->d_lock);
640 /*
641 * We can't blindly lock dentry until we are sure
642 * that we won't violate the locking order.
643 * Any changes of dentry->d_parent must have
644 * been done with parent->d_lock held, so
645 * spin_lock() above is enough of a barrier
646 * for checking if it's still our child.
647 */
648 if (unlikely(parent != dentry->d_parent)) {
649 spin_unlock(&parent->d_lock);
650 goto again;
651 }
652 if (parent != dentry) {
653 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
654 if (unlikely(dentry->d_lockref.count < 0)) {
655 spin_unlock(&parent->d_lock);
656 parent = NULL;
657 }
658 } else {
659 parent = NULL;
660 }
661 rcu_read_unlock();
662 return parent;
663 }
664
665 /*
666 * Try to do a lockless dput(), and return whether that was successful.
667 *
668 * If unsuccessful, we return false, having already taken the dentry lock.
669 *
670 * The caller needs to hold the RCU read lock, so that the dentry is
671 * guaranteed to stay around even if the refcount goes down to zero!
672 */
673 static inline bool fast_dput(struct dentry *dentry)
674 {
675 int ret;
676 unsigned int d_flags;
677
678 /*
679 * If we have a d_op->d_delete() operation, we sould not
680 * let the dentry count go to zero, so use "put_or_lock".
681 */
682 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE))
683 return lockref_put_or_lock(&dentry->d_lockref);
684
685 /*
686 * .. otherwise, we can try to just decrement the
687 * lockref optimistically.
688 */
689 ret = lockref_put_return(&dentry->d_lockref);
690
691 /*
692 * If the lockref_put_return() failed due to the lock being held
693 * by somebody else, the fast path has failed. We will need to
694 * get the lock, and then check the count again.
695 */
696 if (unlikely(ret < 0)) {
697 spin_lock(&dentry->d_lock);
698 if (dentry->d_lockref.count > 1) {
699 dentry->d_lockref.count--;
700 spin_unlock(&dentry->d_lock);
701 return 1;
702 }
703 return 0;
704 }
705
706 /*
707 * If we weren't the last ref, we're done.
708 */
709 if (ret)
710 return 1;
711
712 /*
713 * Careful, careful. The reference count went down
714 * to zero, but we don't hold the dentry lock, so
715 * somebody else could get it again, and do another
716 * dput(), and we need to not race with that.
717 *
718 * However, there is a very special and common case
719 * where we don't care, because there is nothing to
720 * do: the dentry is still hashed, it does not have
721 * a 'delete' op, and it's referenced and already on
722 * the LRU list.
723 *
724 * NOTE! Since we aren't locked, these values are
725 * not "stable". However, it is sufficient that at
726 * some point after we dropped the reference the
727 * dentry was hashed and the flags had the proper
728 * value. Other dentry users may have re-gotten
729 * a reference to the dentry and change that, but
730 * our work is done - we can leave the dentry
731 * around with a zero refcount.
732 */
733 smp_rmb();
734 d_flags = READ_ONCE(dentry->d_flags);
735 d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST | DCACHE_DISCONNECTED;
736
737 /* Nothing to do? Dropping the reference was all we needed? */
738 if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry))
739 return 1;
740
741 /*
742 * Not the fast normal case? Get the lock. We've already decremented
743 * the refcount, but we'll need to re-check the situation after
744 * getting the lock.
745 */
746 spin_lock(&dentry->d_lock);
747
748 /*
749 * Did somebody else grab a reference to it in the meantime, and
750 * we're no longer the last user after all? Alternatively, somebody
751 * else could have killed it and marked it dead. Either way, we
752 * don't need to do anything else.
753 */
754 if (dentry->d_lockref.count) {
755 spin_unlock(&dentry->d_lock);
756 return 1;
757 }
758
759 /*
760 * Re-get the reference we optimistically dropped. We hold the
761 * lock, and we just tested that it was zero, so we can just
762 * set it to 1.
763 */
764 dentry->d_lockref.count = 1;
765 return 0;
766 }
767
768
769 /*
770 * This is dput
771 *
772 * This is complicated by the fact that we do not want to put
773 * dentries that are no longer on any hash chain on the unused
774 * list: we'd much rather just get rid of them immediately.
775 *
776 * However, that implies that we have to traverse the dentry
777 * tree upwards to the parents which might _also_ now be
778 * scheduled for deletion (it may have been only waiting for
779 * its last child to go away).
780 *
781 * This tail recursion is done by hand as we don't want to depend
782 * on the compiler to always get this right (gcc generally doesn't).
783 * Real recursion would eat up our stack space.
784 */
785
786 /*
787 * dput - release a dentry
788 * @dentry: dentry to release
789 *
790 * Release a dentry. This will drop the usage count and if appropriate
791 * call the dentry unlink method as well as removing it from the queues and
792 * releasing its resources. If the parent dentries were scheduled for release
793 * they too may now get deleted.
794 */
795 void dput(struct dentry *dentry)
796 {
797 if (unlikely(!dentry))
798 return;
799
800 repeat:
801 might_sleep();
802
803 rcu_read_lock();
804 if (likely(fast_dput(dentry))) {
805 rcu_read_unlock();
806 return;
807 }
808
809 /* Slow case: now with the dentry lock held */
810 rcu_read_unlock();
811
812 WARN_ON(d_in_lookup(dentry));
813
814 /* Unreachable? Get rid of it */
815 if (unlikely(d_unhashed(dentry)))
816 goto kill_it;
817
818 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
819 goto kill_it;
820
821 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
822 if (dentry->d_op->d_delete(dentry))
823 goto kill_it;
824 }
825
826 dentry_lru_add(dentry);
827
828 dentry->d_lockref.count--;
829 spin_unlock(&dentry->d_lock);
830 return;
831
832 kill_it:
833 dentry = dentry_kill(dentry);
834 if (dentry) {
835 cond_resched();
836 goto repeat;
837 }
838 }
839 EXPORT_SYMBOL(dput);
840
841
842 /* This must be called with d_lock held */
843 static inline void __dget_dlock(struct dentry *dentry)
844 {
845 dentry->d_lockref.count++;
846 }
847
848 static inline void __dget(struct dentry *dentry)
849 {
850 lockref_get(&dentry->d_lockref);
851 }
852
853 struct dentry *dget_parent(struct dentry *dentry)
854 {
855 int gotref;
856 struct dentry *ret;
857
858 /*
859 * Do optimistic parent lookup without any
860 * locking.
861 */
862 rcu_read_lock();
863 ret = READ_ONCE(dentry->d_parent);
864 gotref = lockref_get_not_zero(&ret->d_lockref);
865 rcu_read_unlock();
866 if (likely(gotref)) {
867 if (likely(ret == READ_ONCE(dentry->d_parent)))
868 return ret;
869 dput(ret);
870 }
871
872 repeat:
873 /*
874 * Don't need rcu_dereference because we re-check it was correct under
875 * the lock.
876 */
877 rcu_read_lock();
878 ret = dentry->d_parent;
879 spin_lock(&ret->d_lock);
880 if (unlikely(ret != dentry->d_parent)) {
881 spin_unlock(&ret->d_lock);
882 rcu_read_unlock();
883 goto repeat;
884 }
885 rcu_read_unlock();
886 BUG_ON(!ret->d_lockref.count);
887 ret->d_lockref.count++;
888 spin_unlock(&ret->d_lock);
889 return ret;
890 }
891 EXPORT_SYMBOL(dget_parent);
892
893 /**
894 * d_find_alias - grab a hashed alias of inode
895 * @inode: inode in question
896 *
897 * If inode has a hashed alias, or is a directory and has any alias,
898 * acquire the reference to alias and return it. Otherwise return NULL.
899 * Notice that if inode is a directory there can be only one alias and
900 * it can be unhashed only if it has no children, or if it is the root
901 * of a filesystem, or if the directory was renamed and d_revalidate
902 * was the first vfs operation to notice.
903 *
904 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
905 * any other hashed alias over that one.
906 */
907 static struct dentry *__d_find_alias(struct inode *inode)
908 {
909 struct dentry *alias, *discon_alias;
910
911 again:
912 discon_alias = NULL;
913 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
914 spin_lock(&alias->d_lock);
915 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
916 if (IS_ROOT(alias) &&
917 (alias->d_flags & DCACHE_DISCONNECTED)) {
918 discon_alias = alias;
919 } else {
920 __dget_dlock(alias);
921 spin_unlock(&alias->d_lock);
922 return alias;
923 }
924 }
925 spin_unlock(&alias->d_lock);
926 }
927 if (discon_alias) {
928 alias = discon_alias;
929 spin_lock(&alias->d_lock);
930 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
931 __dget_dlock(alias);
932 spin_unlock(&alias->d_lock);
933 return alias;
934 }
935 spin_unlock(&alias->d_lock);
936 goto again;
937 }
938 return NULL;
939 }
940
941 struct dentry *d_find_alias(struct inode *inode)
942 {
943 struct dentry *de = NULL;
944
945 if (!hlist_empty(&inode->i_dentry)) {
946 spin_lock(&inode->i_lock);
947 de = __d_find_alias(inode);
948 spin_unlock(&inode->i_lock);
949 }
950 return de;
951 }
952 EXPORT_SYMBOL(d_find_alias);
953
954 /*
955 * Try to kill dentries associated with this inode.
956 * WARNING: you must own a reference to inode.
957 */
958 void d_prune_aliases(struct inode *inode)
959 {
960 struct dentry *dentry;
961 restart:
962 spin_lock(&inode->i_lock);
963 hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
964 spin_lock(&dentry->d_lock);
965 if (!dentry->d_lockref.count) {
966 struct dentry *parent = lock_parent(dentry);
967 if (likely(!dentry->d_lockref.count)) {
968 __dentry_kill(dentry);
969 dput(parent);
970 goto restart;
971 }
972 if (parent)
973 spin_unlock(&parent->d_lock);
974 }
975 spin_unlock(&dentry->d_lock);
976 }
977 spin_unlock(&inode->i_lock);
978 }
979 EXPORT_SYMBOL(d_prune_aliases);
980
981 static void shrink_dentry_list(struct list_head *list)
982 {
983 struct dentry *dentry, *parent;
984
985 while (!list_empty(list)) {
986 struct inode *inode;
987 dentry = list_entry(list->prev, struct dentry, d_lru);
988 spin_lock(&dentry->d_lock);
989 parent = lock_parent(dentry);
990
991 /*
992 * The dispose list is isolated and dentries are not accounted
993 * to the LRU here, so we can simply remove it from the list
994 * here regardless of whether it is referenced or not.
995 */
996 d_shrink_del(dentry);
997
998 /*
999 * We found an inuse dentry which was not removed from
1000 * the LRU because of laziness during lookup. Do not free it.
1001 */
1002 if (dentry->d_lockref.count > 0) {
1003 spin_unlock(&dentry->d_lock);
1004 if (parent)
1005 spin_unlock(&parent->d_lock);
1006 continue;
1007 }
1008
1009
1010 if (unlikely(dentry->d_flags & DCACHE_DENTRY_KILLED)) {
1011 bool can_free = dentry->d_flags & DCACHE_MAY_FREE;
1012 spin_unlock(&dentry->d_lock);
1013 if (parent)
1014 spin_unlock(&parent->d_lock);
1015 if (can_free)
1016 dentry_free(dentry);
1017 continue;
1018 }
1019
1020 inode = dentry->d_inode;
1021 if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
1022 d_shrink_add(dentry, list);
1023 spin_unlock(&dentry->d_lock);
1024 if (parent)
1025 spin_unlock(&parent->d_lock);
1026 continue;
1027 }
1028
1029 __dentry_kill(dentry);
1030
1031 /*
1032 * We need to prune ancestors too. This is necessary to prevent
1033 * quadratic behavior of shrink_dcache_parent(), but is also
1034 * expected to be beneficial in reducing dentry cache
1035 * fragmentation.
1036 */
1037 dentry = parent;
1038 while (dentry && !lockref_put_or_lock(&dentry->d_lockref)) {
1039 parent = lock_parent(dentry);
1040 if (dentry->d_lockref.count != 1) {
1041 dentry->d_lockref.count--;
1042 spin_unlock(&dentry->d_lock);
1043 if (parent)
1044 spin_unlock(&parent->d_lock);
1045 break;
1046 }
1047 inode = dentry->d_inode; /* can't be NULL */
1048 if (unlikely(!spin_trylock(&inode->i_lock))) {
1049 spin_unlock(&dentry->d_lock);
1050 if (parent)
1051 spin_unlock(&parent->d_lock);
1052 cpu_relax();
1053 continue;
1054 }
1055 __dentry_kill(dentry);
1056 dentry = parent;
1057 }
1058 }
1059 }
1060
1061 static enum lru_status dentry_lru_isolate(struct list_head *item,
1062 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1063 {
1064 struct list_head *freeable = arg;
1065 struct dentry *dentry = container_of(item, struct dentry, d_lru);
1066
1067
1068 /*
1069 * we are inverting the lru lock/dentry->d_lock here,
1070 * so use a trylock. If we fail to get the lock, just skip
1071 * it
1072 */
1073 if (!spin_trylock(&dentry->d_lock))
1074 return LRU_SKIP;
1075
1076 /*
1077 * Referenced dentries are still in use. If they have active
1078 * counts, just remove them from the LRU. Otherwise give them
1079 * another pass through the LRU.
1080 */
1081 if (dentry->d_lockref.count) {
1082 d_lru_isolate(lru, dentry);
1083 spin_unlock(&dentry->d_lock);
1084 return LRU_REMOVED;
1085 }
1086
1087 if (dentry->d_flags & DCACHE_REFERENCED) {
1088 dentry->d_flags &= ~DCACHE_REFERENCED;
1089 spin_unlock(&dentry->d_lock);
1090
1091 /*
1092 * The list move itself will be made by the common LRU code. At
1093 * this point, we've dropped the dentry->d_lock but keep the
1094 * lru lock. This is safe to do, since every list movement is
1095 * protected by the lru lock even if both locks are held.
1096 *
1097 * This is guaranteed by the fact that all LRU management
1098 * functions are intermediated by the LRU API calls like
1099 * list_lru_add and list_lru_del. List movement in this file
1100 * only ever occur through this functions or through callbacks
1101 * like this one, that are called from the LRU API.
1102 *
1103 * The only exceptions to this are functions like
1104 * shrink_dentry_list, and code that first checks for the
1105 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be
1106 * operating only with stack provided lists after they are
1107 * properly isolated from the main list. It is thus, always a
1108 * local access.
1109 */
1110 return LRU_ROTATE;
1111 }
1112
1113 d_lru_shrink_move(lru, dentry, freeable);
1114 spin_unlock(&dentry->d_lock);
1115
1116 return LRU_REMOVED;
1117 }
1118
1119 /**
1120 * prune_dcache_sb - shrink the dcache
1121 * @sb: superblock
1122 * @sc: shrink control, passed to list_lru_shrink_walk()
1123 *
1124 * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1125 * is done when we need more memory and called from the superblock shrinker
1126 * function.
1127 *
1128 * This function may fail to free any resources if all the dentries are in
1129 * use.
1130 */
1131 long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
1132 {
1133 LIST_HEAD(dispose);
1134 long freed;
1135
1136 freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1137 dentry_lru_isolate, &dispose);
1138 shrink_dentry_list(&dispose);
1139 return freed;
1140 }
1141
1142 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
1143 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1144 {
1145 struct list_head *freeable = arg;
1146 struct dentry *dentry = container_of(item, struct dentry, d_lru);
1147
1148 /*
1149 * we are inverting the lru lock/dentry->d_lock here,
1150 * so use a trylock. If we fail to get the lock, just skip
1151 * it
1152 */
1153 if (!spin_trylock(&dentry->d_lock))
1154 return LRU_SKIP;
1155
1156 d_lru_shrink_move(lru, dentry, freeable);
1157 spin_unlock(&dentry->d_lock);
1158
1159 return LRU_REMOVED;
1160 }
1161
1162
1163 /**
1164 * shrink_dcache_sb - shrink dcache for a superblock
1165 * @sb: superblock
1166 *
1167 * Shrink the dcache for the specified super block. This is used to free
1168 * the dcache before unmounting a file system.
1169 */
1170 void shrink_dcache_sb(struct super_block *sb)
1171 {
1172 long freed;
1173
1174 do {
1175 LIST_HEAD(dispose);
1176
1177 freed = list_lru_walk(&sb->s_dentry_lru,
1178 dentry_lru_isolate_shrink, &dispose, 1024);
1179
1180 this_cpu_sub(nr_dentry_unused, freed);
1181 shrink_dentry_list(&dispose);
1182 cond_resched();
1183 } while (list_lru_count(&sb->s_dentry_lru) > 0);
1184 }
1185 EXPORT_SYMBOL(shrink_dcache_sb);
1186
1187 /**
1188 * enum d_walk_ret - action to talke during tree walk
1189 * @D_WALK_CONTINUE: contrinue walk
1190 * @D_WALK_QUIT: quit walk
1191 * @D_WALK_NORETRY: quit when retry is needed
1192 * @D_WALK_SKIP: skip this dentry and its children
1193 */
1194 enum d_walk_ret {
1195 D_WALK_CONTINUE,
1196 D_WALK_QUIT,
1197 D_WALK_NORETRY,
1198 D_WALK_SKIP,
1199 };
1200
1201 /**
1202 * d_walk - walk the dentry tree
1203 * @parent: start of walk
1204 * @data: data passed to @enter() and @finish()
1205 * @enter: callback when first entering the dentry
1206 * @finish: callback when successfully finished the walk
1207 *
1208 * The @enter() and @finish() callbacks are called with d_lock held.
1209 */
1210 void d_walk(struct dentry *parent, void *data,
1211 enum d_walk_ret (*enter)(void *, struct dentry *),
1212 void (*finish)(void *))
1213 {
1214 struct dentry *this_parent;
1215 struct list_head *next;
1216 unsigned seq = 0;
1217 enum d_walk_ret ret;
1218 bool retry = true;
1219
1220 again:
1221 read_seqbegin_or_lock(&rename_lock, &seq);
1222 this_parent = parent;
1223 spin_lock(&this_parent->d_lock);
1224
1225 ret = enter(data, this_parent);
1226 switch (ret) {
1227 case D_WALK_CONTINUE:
1228 break;
1229 case D_WALK_QUIT:
1230 case D_WALK_SKIP:
1231 goto out_unlock;
1232 case D_WALK_NORETRY:
1233 retry = false;
1234 break;
1235 }
1236 repeat:
1237 next = this_parent->d_subdirs.next;
1238 resume:
1239 while (next != &this_parent->d_subdirs) {
1240 struct list_head *tmp = next;
1241 struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1242 next = tmp->next;
1243
1244 if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR))
1245 continue;
1246
1247 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1248
1249 ret = enter(data, dentry);
1250 switch (ret) {
1251 case D_WALK_CONTINUE:
1252 break;
1253 case D_WALK_QUIT:
1254 spin_unlock(&dentry->d_lock);
1255 goto out_unlock;
1256 case D_WALK_NORETRY:
1257 retry = false;
1258 break;
1259 case D_WALK_SKIP:
1260 spin_unlock(&dentry->d_lock);
1261 continue;
1262 }
1263
1264 if (!list_empty(&dentry->d_subdirs)) {
1265 spin_unlock(&this_parent->d_lock);
1266 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1267 this_parent = dentry;
1268 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1269 goto repeat;
1270 }
1271 spin_unlock(&dentry->d_lock);
1272 }
1273 /*
1274 * All done at this level ... ascend and resume the search.
1275 */
1276 rcu_read_lock();
1277 ascend:
1278 if (this_parent != parent) {
1279 struct dentry *child = this_parent;
1280 this_parent = child->d_parent;
1281
1282 spin_unlock(&child->d_lock);
1283 spin_lock(&this_parent->d_lock);
1284
1285 /* might go back up the wrong parent if we have had a rename. */
1286 if (need_seqretry(&rename_lock, seq))
1287 goto rename_retry;
1288 /* go into the first sibling still alive */
1289 do {
1290 next = child->d_child.next;
1291 if (next == &this_parent->d_subdirs)
1292 goto ascend;
1293 child = list_entry(next, struct dentry, d_child);
1294 } while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED));
1295 rcu_read_unlock();
1296 goto resume;
1297 }
1298 if (need_seqretry(&rename_lock, seq))
1299 goto rename_retry;
1300 rcu_read_unlock();
1301 if (finish)
1302 finish(data);
1303
1304 out_unlock:
1305 spin_unlock(&this_parent->d_lock);
1306 done_seqretry(&rename_lock, seq);
1307 return;
1308
1309 rename_retry:
1310 spin_unlock(&this_parent->d_lock);
1311 rcu_read_unlock();
1312 BUG_ON(seq & 1);
1313 if (!retry)
1314 return;
1315 seq = 1;
1316 goto again;
1317 }
1318 EXPORT_SYMBOL_GPL(d_walk);
1319
1320 struct check_mount {
1321 struct vfsmount *mnt;
1322 unsigned int mounted;
1323 };
1324
1325 static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry)
1326 {
1327 struct check_mount *info = data;
1328 struct path path = { .mnt = info->mnt, .dentry = dentry };
1329
1330 if (likely(!d_mountpoint(dentry)))
1331 return D_WALK_CONTINUE;
1332 if (__path_is_mountpoint(&path)) {
1333 info->mounted = 1;
1334 return D_WALK_QUIT;
1335 }
1336 return D_WALK_CONTINUE;
1337 }
1338
1339 /**
1340 * path_has_submounts - check for mounts over a dentry in the
1341 * current namespace.
1342 * @parent: path to check.
1343 *
1344 * Return true if the parent or its subdirectories contain
1345 * a mount point in the current namespace.
1346 */
1347 int path_has_submounts(const struct path *parent)
1348 {
1349 struct check_mount data = { .mnt = parent->mnt, .mounted = 0 };
1350
1351 read_seqlock_excl(&mount_lock);
1352 d_walk(parent->dentry, &data, path_check_mount, NULL);
1353 read_sequnlock_excl(&mount_lock);
1354
1355 return data.mounted;
1356 }
1357 EXPORT_SYMBOL(path_has_submounts);
1358
1359 /*
1360 * Called by mount code to set a mountpoint and check if the mountpoint is
1361 * reachable (e.g. NFS can unhash a directory dentry and then the complete
1362 * subtree can become unreachable).
1363 *
1364 * Only one of d_invalidate() and d_set_mounted() must succeed. For
1365 * this reason take rename_lock and d_lock on dentry and ancestors.
1366 */
1367 int d_set_mounted(struct dentry *dentry)
1368 {
1369 struct dentry *p;
1370 int ret = -ENOENT;
1371 write_seqlock(&rename_lock);
1372 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1373 /* Need exclusion wrt. d_invalidate() */
1374 spin_lock(&p->d_lock);
1375 if (unlikely(d_unhashed(p))) {
1376 spin_unlock(&p->d_lock);
1377 goto out;
1378 }
1379 spin_unlock(&p->d_lock);
1380 }
1381 spin_lock(&dentry->d_lock);
1382 if (!d_unlinked(dentry)) {
1383 ret = -EBUSY;
1384 if (!d_mountpoint(dentry)) {
1385 dentry->d_flags |= DCACHE_MOUNTED;
1386 ret = 0;
1387 }
1388 }
1389 spin_unlock(&dentry->d_lock);
1390 out:
1391 write_sequnlock(&rename_lock);
1392 return ret;
1393 }
1394
1395 /*
1396 * Search the dentry child list of the specified parent,
1397 * and move any unused dentries to the end of the unused
1398 * list for prune_dcache(). We descend to the next level
1399 * whenever the d_subdirs list is non-empty and continue
1400 * searching.
1401 *
1402 * It returns zero iff there are no unused children,
1403 * otherwise it returns the number of children moved to
1404 * the end of the unused list. This may not be the total
1405 * number of unused children, because select_parent can
1406 * drop the lock and return early due to latency
1407 * constraints.
1408 */
1409
1410 struct select_data {
1411 struct dentry *start;
1412 struct list_head dispose;
1413 int found;
1414 };
1415
1416 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1417 {
1418 struct select_data *data = _data;
1419 enum d_walk_ret ret = D_WALK_CONTINUE;
1420
1421 if (data->start == dentry)
1422 goto out;
1423
1424 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1425 data->found++;
1426 } else {
1427 if (dentry->d_flags & DCACHE_LRU_LIST)
1428 d_lru_del(dentry);
1429 if (!dentry->d_lockref.count) {
1430 d_shrink_add(dentry, &data->dispose);
1431 data->found++;
1432 }
1433 }
1434 /*
1435 * We can return to the caller if we have found some (this
1436 * ensures forward progress). We'll be coming back to find
1437 * the rest.
1438 */
1439 if (!list_empty(&data->dispose))
1440 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1441 out:
1442 return ret;
1443 }
1444
1445 /**
1446 * shrink_dcache_parent - prune dcache
1447 * @parent: parent of entries to prune
1448 *
1449 * Prune the dcache to remove unused children of the parent dentry.
1450 */
1451 void shrink_dcache_parent(struct dentry *parent)
1452 {
1453 for (;;) {
1454 struct select_data data;
1455
1456 INIT_LIST_HEAD(&data.dispose);
1457 data.start = parent;
1458 data.found = 0;
1459
1460 d_walk(parent, &data, select_collect, NULL);
1461 if (!data.found)
1462 break;
1463
1464 shrink_dentry_list(&data.dispose);
1465 cond_resched();
1466 }
1467 }
1468 EXPORT_SYMBOL(shrink_dcache_parent);
1469
1470 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
1471 {
1472 /* it has busy descendents; complain about those instead */
1473 if (!list_empty(&dentry->d_subdirs))
1474 return D_WALK_CONTINUE;
1475
1476 /* root with refcount 1 is fine */
1477 if (dentry == _data && dentry->d_lockref.count == 1)
1478 return D_WALK_CONTINUE;
1479
1480 printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1481 " still in use (%d) [unmount of %s %s]\n",
1482 dentry,
1483 dentry->d_inode ?
1484 dentry->d_inode->i_ino : 0UL,
1485 dentry,
1486 dentry->d_lockref.count,
1487 dentry->d_sb->s_type->name,
1488 dentry->d_sb->s_id);
1489 WARN_ON(1);
1490 return D_WALK_CONTINUE;
1491 }
1492
1493 static void do_one_tree(struct dentry *dentry)
1494 {
1495 shrink_dcache_parent(dentry);
1496 d_walk(dentry, dentry, umount_check, NULL);
1497 d_drop(dentry);
1498 dput(dentry);
1499 }
1500
1501 /*
1502 * destroy the dentries attached to a superblock on unmounting
1503 */
1504 void shrink_dcache_for_umount(struct super_block *sb)
1505 {
1506 struct dentry *dentry;
1507
1508 WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
1509
1510 dentry = sb->s_root;
1511 sb->s_root = NULL;
1512 do_one_tree(dentry);
1513
1514 while (!hlist_bl_empty(&sb->s_anon)) {
1515 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash));
1516 do_one_tree(dentry);
1517 }
1518 }
1519
1520 struct detach_data {
1521 struct select_data select;
1522 struct dentry *mountpoint;
1523 };
1524 static enum d_walk_ret detach_and_collect(void *_data, struct dentry *dentry)
1525 {
1526 struct detach_data *data = _data;
1527
1528 if (d_mountpoint(dentry)) {
1529 __dget_dlock(dentry);
1530 data->mountpoint = dentry;
1531 return D_WALK_QUIT;
1532 }
1533
1534 return select_collect(&data->select, dentry);
1535 }
1536
1537 static void check_and_drop(void *_data)
1538 {
1539 struct detach_data *data = _data;
1540
1541 if (!data->mountpoint && list_empty(&data->select.dispose))
1542 __d_drop(data->select.start);
1543 }
1544
1545 /**
1546 * d_invalidate - detach submounts, prune dcache, and drop
1547 * @dentry: dentry to invalidate (aka detach, prune and drop)
1548 *
1549 * no dcache lock.
1550 *
1551 * The final d_drop is done as an atomic operation relative to
1552 * rename_lock ensuring there are no races with d_set_mounted. This
1553 * ensures there are no unhashed dentries on the path to a mountpoint.
1554 */
1555 void d_invalidate(struct dentry *dentry)
1556 {
1557 /*
1558 * If it's already been dropped, return OK.
1559 */
1560 spin_lock(&dentry->d_lock);
1561 if (d_unhashed(dentry)) {
1562 spin_unlock(&dentry->d_lock);
1563 return;
1564 }
1565 spin_unlock(&dentry->d_lock);
1566
1567 /* Negative dentries can be dropped without further checks */
1568 if (!dentry->d_inode) {
1569 d_drop(dentry);
1570 return;
1571 }
1572
1573 for (;;) {
1574 struct detach_data data;
1575
1576 data.mountpoint = NULL;
1577 INIT_LIST_HEAD(&data.select.dispose);
1578 data.select.start = dentry;
1579 data.select.found = 0;
1580
1581 d_walk(dentry, &data, detach_and_collect, check_and_drop);
1582
1583 if (!list_empty(&data.select.dispose))
1584 shrink_dentry_list(&data.select.dispose);
1585 else if (!data.mountpoint)
1586 return;
1587
1588 if (data.mountpoint) {
1589 detach_mounts(data.mountpoint);
1590 dput(data.mountpoint);
1591 }
1592 cond_resched();
1593 }
1594 }
1595 EXPORT_SYMBOL(d_invalidate);
1596
1597 /**
1598 * __d_alloc - allocate a dcache entry
1599 * @sb: filesystem it will belong to
1600 * @name: qstr of the name
1601 *
1602 * Allocates a dentry. It returns %NULL if there is insufficient memory
1603 * available. On a success the dentry is returned. The name passed in is
1604 * copied and the copy passed in may be reused after this call.
1605 */
1606
1607 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1608 {
1609 struct dentry *dentry;
1610 char *dname;
1611 int err;
1612
1613 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1614 if (!dentry)
1615 return NULL;
1616
1617 /*
1618 * We guarantee that the inline name is always NUL-terminated.
1619 * This way the memcpy() done by the name switching in rename
1620 * will still always have a NUL at the end, even if we might
1621 * be overwriting an internal NUL character
1622 */
1623 dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1624 if (unlikely(!name)) {
1625 name = &slash_name;
1626 dname = dentry->d_iname;
1627 } else if (name->len > DNAME_INLINE_LEN-1) {
1628 size_t size = offsetof(struct external_name, name[1]);
1629 struct external_name *p = kmalloc(size + name->len,
1630 GFP_KERNEL_ACCOUNT);
1631 if (!p) {
1632 kmem_cache_free(dentry_cache, dentry);
1633 return NULL;
1634 }
1635 atomic_set(&p->u.count, 1);
1636 dname = p->name;
1637 if (IS_ENABLED(CONFIG_DCACHE_WORD_ACCESS))
1638 kasan_unpoison_shadow(dname,
1639 round_up(name->len + 1, sizeof(unsigned long)));
1640 } else {
1641 dname = dentry->d_iname;
1642 }
1643
1644 dentry->d_name.len = name->len;
1645 dentry->d_name.hash = name->hash;
1646 memcpy(dname, name->name, name->len);
1647 dname[name->len] = 0;
1648
1649 /* Make sure we always see the terminating NUL character */
1650 smp_wmb();
1651 dentry->d_name.name = dname;
1652
1653 dentry->d_lockref.count = 1;
1654 dentry->d_flags = 0;
1655 spin_lock_init(&dentry->d_lock);
1656 seqcount_init(&dentry->d_seq);
1657 dentry->d_inode = NULL;
1658 dentry->d_parent = dentry;
1659 dentry->d_sb = sb;
1660 dentry->d_op = NULL;
1661 dentry->d_fsdata = NULL;
1662 INIT_HLIST_BL_NODE(&dentry->d_hash);
1663 INIT_LIST_HEAD(&dentry->d_lru);
1664 INIT_LIST_HEAD(&dentry->d_subdirs);
1665 INIT_HLIST_NODE(&dentry->d_u.d_alias);
1666 INIT_LIST_HEAD(&dentry->d_child);
1667 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1668
1669 if (dentry->d_op && dentry->d_op->d_init) {
1670 err = dentry->d_op->d_init(dentry);
1671 if (err) {
1672 if (dname_external(dentry))
1673 kfree(external_name(dentry));
1674 kmem_cache_free(dentry_cache, dentry);
1675 return NULL;
1676 }
1677 }
1678
1679 this_cpu_inc(nr_dentry);
1680
1681 return dentry;
1682 }
1683
1684 /**
1685 * d_alloc - allocate a dcache entry
1686 * @parent: parent of entry to allocate
1687 * @name: qstr of the name
1688 *
1689 * Allocates a dentry. It returns %NULL if there is insufficient memory
1690 * available. On a success the dentry is returned. The name passed in is
1691 * copied and the copy passed in may be reused after this call.
1692 */
1693 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1694 {
1695 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1696 if (!dentry)
1697 return NULL;
1698 dentry->d_flags |= DCACHE_RCUACCESS;
1699 spin_lock(&parent->d_lock);
1700 /*
1701 * don't need child lock because it is not subject
1702 * to concurrency here
1703 */
1704 __dget_dlock(parent);
1705 dentry->d_parent = parent;
1706 list_add(&dentry->d_child, &parent->d_subdirs);
1707 spin_unlock(&parent->d_lock);
1708
1709 return dentry;
1710 }
1711 EXPORT_SYMBOL(d_alloc);
1712
1713 struct dentry *d_alloc_cursor(struct dentry * parent)
1714 {
1715 struct dentry *dentry = __d_alloc(parent->d_sb, NULL);
1716 if (dentry) {
1717 dentry->d_flags |= DCACHE_RCUACCESS | DCACHE_DENTRY_CURSOR;
1718 dentry->d_parent = dget(parent);
1719 }
1720 return dentry;
1721 }
1722
1723 /**
1724 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1725 * @sb: the superblock
1726 * @name: qstr of the name
1727 *
1728 * For a filesystem that just pins its dentries in memory and never
1729 * performs lookups at all, return an unhashed IS_ROOT dentry.
1730 */
1731 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1732 {
1733 return __d_alloc(sb, name);
1734 }
1735 EXPORT_SYMBOL(d_alloc_pseudo);
1736
1737 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1738 {
1739 struct qstr q;
1740
1741 q.name = name;
1742 q.hash_len = hashlen_string(parent, name);
1743 return d_alloc(parent, &q);
1744 }
1745 EXPORT_SYMBOL(d_alloc_name);
1746
1747 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1748 {
1749 WARN_ON_ONCE(dentry->d_op);
1750 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
1751 DCACHE_OP_COMPARE |
1752 DCACHE_OP_REVALIDATE |
1753 DCACHE_OP_WEAK_REVALIDATE |
1754 DCACHE_OP_DELETE |
1755 DCACHE_OP_REAL));
1756 dentry->d_op = op;
1757 if (!op)
1758 return;
1759 if (op->d_hash)
1760 dentry->d_flags |= DCACHE_OP_HASH;
1761 if (op->d_compare)
1762 dentry->d_flags |= DCACHE_OP_COMPARE;
1763 if (op->d_revalidate)
1764 dentry->d_flags |= DCACHE_OP_REVALIDATE;
1765 if (op->d_weak_revalidate)
1766 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1767 if (op->d_delete)
1768 dentry->d_flags |= DCACHE_OP_DELETE;
1769 if (op->d_prune)
1770 dentry->d_flags |= DCACHE_OP_PRUNE;
1771 if (op->d_real)
1772 dentry->d_flags |= DCACHE_OP_REAL;
1773
1774 }
1775 EXPORT_SYMBOL(d_set_d_op);
1776
1777
1778 /*
1779 * d_set_fallthru - Mark a dentry as falling through to a lower layer
1780 * @dentry - The dentry to mark
1781 *
1782 * Mark a dentry as falling through to the lower layer (as set with
1783 * d_pin_lower()). This flag may be recorded on the medium.
1784 */
1785 void d_set_fallthru(struct dentry *dentry)
1786 {
1787 spin_lock(&dentry->d_lock);
1788 dentry->d_flags |= DCACHE_FALLTHRU;
1789 spin_unlock(&dentry->d_lock);
1790 }
1791 EXPORT_SYMBOL(d_set_fallthru);
1792
1793 static unsigned d_flags_for_inode(struct inode *inode)
1794 {
1795 unsigned add_flags = DCACHE_REGULAR_TYPE;
1796
1797 if (!inode)
1798 return DCACHE_MISS_TYPE;
1799
1800 if (S_ISDIR(inode->i_mode)) {
1801 add_flags = DCACHE_DIRECTORY_TYPE;
1802 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1803 if (unlikely(!inode->i_op->lookup))
1804 add_flags = DCACHE_AUTODIR_TYPE;
1805 else
1806 inode->i_opflags |= IOP_LOOKUP;
1807 }
1808 goto type_determined;
1809 }
1810
1811 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1812 if (unlikely(inode->i_op->get_link)) {
1813 add_flags = DCACHE_SYMLINK_TYPE;
1814 goto type_determined;
1815 }
1816 inode->i_opflags |= IOP_NOFOLLOW;
1817 }
1818
1819 if (unlikely(!S_ISREG(inode->i_mode)))
1820 add_flags = DCACHE_SPECIAL_TYPE;
1821
1822 type_determined:
1823 if (unlikely(IS_AUTOMOUNT(inode)))
1824 add_flags |= DCACHE_NEED_AUTOMOUNT;
1825 return add_flags;
1826 }
1827
1828 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1829 {
1830 unsigned add_flags = d_flags_for_inode(inode);
1831 WARN_ON(d_in_lookup(dentry));
1832
1833 spin_lock(&dentry->d_lock);
1834 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
1835 raw_write_seqcount_begin(&dentry->d_seq);
1836 __d_set_inode_and_type(dentry, inode, add_flags);
1837 raw_write_seqcount_end(&dentry->d_seq);
1838 fsnotify_update_flags(dentry);
1839 spin_unlock(&dentry->d_lock);
1840 }
1841
1842 /**
1843 * d_instantiate - fill in inode information for a dentry
1844 * @entry: dentry to complete
1845 * @inode: inode to attach to this dentry
1846 *
1847 * Fill in inode information in the entry.
1848 *
1849 * This turns negative dentries into productive full members
1850 * of society.
1851 *
1852 * NOTE! This assumes that the inode count has been incremented
1853 * (or otherwise set) by the caller to indicate that it is now
1854 * in use by the dcache.
1855 */
1856
1857 void d_instantiate(struct dentry *entry, struct inode * inode)
1858 {
1859 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1860 if (inode) {
1861 security_d_instantiate(entry, inode);
1862 spin_lock(&inode->i_lock);
1863 __d_instantiate(entry, inode);
1864 spin_unlock(&inode->i_lock);
1865 }
1866 }
1867 EXPORT_SYMBOL(d_instantiate);
1868
1869 /*
1870 * This should be equivalent to d_instantiate() + unlock_new_inode(),
1871 * with lockdep-related part of unlock_new_inode() done before
1872 * anything else. Use that instead of open-coding d_instantiate()/
1873 * unlock_new_inode() combinations.
1874 */
1875 void d_instantiate_new(struct dentry *entry, struct inode *inode)
1876 {
1877 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1878 BUG_ON(!inode);
1879 lockdep_annotate_inode_mutex_key(inode);
1880 security_d_instantiate(entry, inode);
1881 spin_lock(&inode->i_lock);
1882 __d_instantiate(entry, inode);
1883 WARN_ON(!(inode->i_state & I_NEW));
1884 inode->i_state &= ~I_NEW;
1885 smp_mb();
1886 wake_up_bit(&inode->i_state, __I_NEW);
1887 spin_unlock(&inode->i_lock);
1888 }
1889 EXPORT_SYMBOL(d_instantiate_new);
1890
1891 /**
1892 * d_instantiate_no_diralias - instantiate a non-aliased dentry
1893 * @entry: dentry to complete
1894 * @inode: inode to attach to this dentry
1895 *
1896 * Fill in inode information in the entry. If a directory alias is found, then
1897 * return an error (and drop inode). Together with d_materialise_unique() this
1898 * guarantees that a directory inode may never have more than one alias.
1899 */
1900 int d_instantiate_no_diralias(struct dentry *entry, struct inode *inode)
1901 {
1902 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1903
1904 security_d_instantiate(entry, inode);
1905 spin_lock(&inode->i_lock);
1906 if (S_ISDIR(inode->i_mode) && !hlist_empty(&inode->i_dentry)) {
1907 spin_unlock(&inode->i_lock);
1908 iput(inode);
1909 return -EBUSY;
1910 }
1911 __d_instantiate(entry, inode);
1912 spin_unlock(&inode->i_lock);
1913
1914 return 0;
1915 }
1916 EXPORT_SYMBOL(d_instantiate_no_diralias);
1917
1918 struct dentry *d_make_root(struct inode *root_inode)
1919 {
1920 struct dentry *res = NULL;
1921
1922 if (root_inode) {
1923 res = __d_alloc(root_inode->i_sb, NULL);
1924 if (res) {
1925 res->d_flags |= DCACHE_RCUACCESS;
1926 d_instantiate(res, root_inode);
1927 } else {
1928 iput(root_inode);
1929 }
1930 }
1931 return res;
1932 }
1933 EXPORT_SYMBOL(d_make_root);
1934
1935 static struct dentry * __d_find_any_alias(struct inode *inode)
1936 {
1937 struct dentry *alias;
1938
1939 if (hlist_empty(&inode->i_dentry))
1940 return NULL;
1941 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
1942 __dget(alias);
1943 return alias;
1944 }
1945
1946 /**
1947 * d_find_any_alias - find any alias for a given inode
1948 * @inode: inode to find an alias for
1949 *
1950 * If any aliases exist for the given inode, take and return a
1951 * reference for one of them. If no aliases exist, return %NULL.
1952 */
1953 struct dentry *d_find_any_alias(struct inode *inode)
1954 {
1955 struct dentry *de;
1956
1957 spin_lock(&inode->i_lock);
1958 de = __d_find_any_alias(inode);
1959 spin_unlock(&inode->i_lock);
1960 return de;
1961 }
1962 EXPORT_SYMBOL(d_find_any_alias);
1963
1964 static struct dentry *__d_obtain_alias(struct inode *inode, int disconnected)
1965 {
1966 struct dentry *tmp;
1967 struct dentry *res;
1968 unsigned add_flags;
1969
1970 if (!inode)
1971 return ERR_PTR(-ESTALE);
1972 if (IS_ERR(inode))
1973 return ERR_CAST(inode);
1974
1975 res = d_find_any_alias(inode);
1976 if (res)
1977 goto out_iput;
1978
1979 tmp = __d_alloc(inode->i_sb, NULL);
1980 if (!tmp) {
1981 res = ERR_PTR(-ENOMEM);
1982 goto out_iput;
1983 }
1984
1985 security_d_instantiate(tmp, inode);
1986 spin_lock(&inode->i_lock);
1987 res = __d_find_any_alias(inode);
1988 if (res) {
1989 spin_unlock(&inode->i_lock);
1990 dput(tmp);
1991 goto out_iput;
1992 }
1993
1994 /* attach a disconnected dentry */
1995 add_flags = d_flags_for_inode(inode);
1996
1997 if (disconnected)
1998 add_flags |= DCACHE_DISCONNECTED;
1999
2000 spin_lock(&tmp->d_lock);
2001 __d_set_inode_and_type(tmp, inode, add_flags);
2002 hlist_add_head(&tmp->d_u.d_alias, &inode->i_dentry);
2003 hlist_bl_lock(&tmp->d_sb->s_anon);
2004 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
2005 hlist_bl_unlock(&tmp->d_sb->s_anon);
2006 spin_unlock(&tmp->d_lock);
2007 spin_unlock(&inode->i_lock);
2008
2009 return tmp;
2010
2011 out_iput:
2012 iput(inode);
2013 return res;
2014 }
2015
2016 /**
2017 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
2018 * @inode: inode to allocate the dentry for
2019 *
2020 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
2021 * similar open by handle operations. The returned dentry may be anonymous,
2022 * or may have a full name (if the inode was already in the cache).
2023 *
2024 * When called on a directory inode, we must ensure that the inode only ever
2025 * has one dentry. If a dentry is found, that is returned instead of
2026 * allocating a new one.
2027 *
2028 * On successful return, the reference to the inode has been transferred
2029 * to the dentry. In case of an error the reference on the inode is released.
2030 * To make it easier to use in export operations a %NULL or IS_ERR inode may
2031 * be passed in and the error will be propagated to the return value,
2032 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
2033 */
2034 struct dentry *d_obtain_alias(struct inode *inode)
2035 {
2036 return __d_obtain_alias(inode, 1);
2037 }
2038 EXPORT_SYMBOL(d_obtain_alias);
2039
2040 /**
2041 * d_obtain_root - find or allocate a dentry for a given inode
2042 * @inode: inode to allocate the dentry for
2043 *
2044 * Obtain an IS_ROOT dentry for the root of a filesystem.
2045 *
2046 * We must ensure that directory inodes only ever have one dentry. If a
2047 * dentry is found, that is returned instead of allocating a new one.
2048 *
2049 * On successful return, the reference to the inode has been transferred
2050 * to the dentry. In case of an error the reference on the inode is
2051 * released. A %NULL or IS_ERR inode may be passed in and will be the
2052 * error will be propagate to the return value, with a %NULL @inode
2053 * replaced by ERR_PTR(-ESTALE).
2054 */
2055 struct dentry *d_obtain_root(struct inode *inode)
2056 {
2057 return __d_obtain_alias(inode, 0);
2058 }
2059 EXPORT_SYMBOL(d_obtain_root);
2060
2061 /**
2062 * d_add_ci - lookup or allocate new dentry with case-exact name
2063 * @inode: the inode case-insensitive lookup has found
2064 * @dentry: the negative dentry that was passed to the parent's lookup func
2065 * @name: the case-exact name to be associated with the returned dentry
2066 *
2067 * This is to avoid filling the dcache with case-insensitive names to the
2068 * same inode, only the actual correct case is stored in the dcache for
2069 * case-insensitive filesystems.
2070 *
2071 * For a case-insensitive lookup match and if the the case-exact dentry
2072 * already exists in in the dcache, use it and return it.
2073 *
2074 * If no entry exists with the exact case name, allocate new dentry with
2075 * the exact case, and return the spliced entry.
2076 */
2077 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
2078 struct qstr *name)
2079 {
2080 struct dentry *found, *res;
2081
2082 /*
2083 * First check if a dentry matching the name already exists,
2084 * if not go ahead and create it now.
2085 */
2086 found = d_hash_and_lookup(dentry->d_parent, name);
2087 if (found) {
2088 iput(inode);
2089 return found;
2090 }
2091 if (d_in_lookup(dentry)) {
2092 found = d_alloc_parallel(dentry->d_parent, name,
2093 dentry->d_wait);
2094 if (IS_ERR(found) || !d_in_lookup(found)) {
2095 iput(inode);
2096 return found;
2097 }
2098 } else {
2099 found = d_alloc(dentry->d_parent, name);
2100 if (!found) {
2101 iput(inode);
2102 return ERR_PTR(-ENOMEM);
2103 }
2104 }
2105 res = d_splice_alias(inode, found);
2106 if (res) {
2107 dput(found);
2108 return res;
2109 }
2110 return found;
2111 }
2112 EXPORT_SYMBOL(d_add_ci);
2113
2114
2115 static inline bool d_same_name(const struct dentry *dentry,
2116 const struct dentry *parent,
2117 const struct qstr *name)
2118 {
2119 if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) {
2120 if (dentry->d_name.len != name->len)
2121 return false;
2122 return dentry_cmp(dentry, name->name, name->len) == 0;
2123 }
2124 return parent->d_op->d_compare(dentry,
2125 dentry->d_name.len, dentry->d_name.name,
2126 name) == 0;
2127 }
2128
2129 /**
2130 * __d_lookup_rcu - search for a dentry (racy, store-free)
2131 * @parent: parent dentry
2132 * @name: qstr of name we wish to find
2133 * @seqp: returns d_seq value at the point where the dentry was found
2134 * Returns: dentry, or NULL
2135 *
2136 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2137 * resolution (store-free path walking) design described in
2138 * Documentation/filesystems/path-lookup.txt.
2139 *
2140 * This is not to be used outside core vfs.
2141 *
2142 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2143 * held, and rcu_read_lock held. The returned dentry must not be stored into
2144 * without taking d_lock and checking d_seq sequence count against @seq
2145 * returned here.
2146 *
2147 * A refcount may be taken on the found dentry with the d_rcu_to_refcount
2148 * function.
2149 *
2150 * Alternatively, __d_lookup_rcu may be called again to look up the child of
2151 * the returned dentry, so long as its parent's seqlock is checked after the
2152 * child is looked up. Thus, an interlocking stepping of sequence lock checks
2153 * is formed, giving integrity down the path walk.
2154 *
2155 * NOTE! The caller *has* to check the resulting dentry against the sequence
2156 * number we've returned before using any of the resulting dentry state!
2157 */
2158 struct dentry *__d_lookup_rcu(const struct dentry *parent,
2159 const struct qstr *name,
2160 unsigned *seqp)
2161 {
2162 u64 hashlen = name->hash_len;
2163 const unsigned char *str = name->name;
2164 struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen));
2165 struct hlist_bl_node *node;
2166 struct dentry *dentry;
2167
2168 /*
2169 * Note: There is significant duplication with __d_lookup_rcu which is
2170 * required to prevent single threaded performance regressions
2171 * especially on architectures where smp_rmb (in seqcounts) are costly.
2172 * Keep the two functions in sync.
2173 */
2174
2175 /*
2176 * The hash list is protected using RCU.
2177 *
2178 * Carefully use d_seq when comparing a candidate dentry, to avoid
2179 * races with d_move().
2180 *
2181 * It is possible that concurrent renames can mess up our list
2182 * walk here and result in missing our dentry, resulting in the
2183 * false-negative result. d_lookup() protects against concurrent
2184 * renames using rename_lock seqlock.
2185 *
2186 * See Documentation/filesystems/path-lookup.txt for more details.
2187 */
2188 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2189 unsigned seq;
2190
2191 seqretry:
2192 /*
2193 * The dentry sequence count protects us from concurrent
2194 * renames, and thus protects parent and name fields.
2195 *
2196 * The caller must perform a seqcount check in order
2197 * to do anything useful with the returned dentry.
2198 *
2199 * NOTE! We do a "raw" seqcount_begin here. That means that
2200 * we don't wait for the sequence count to stabilize if it
2201 * is in the middle of a sequence change. If we do the slow
2202 * dentry compare, we will do seqretries until it is stable,
2203 * and if we end up with a successful lookup, we actually
2204 * want to exit RCU lookup anyway.
2205 *
2206 * Note that raw_seqcount_begin still *does* smp_rmb(), so
2207 * we are still guaranteed NUL-termination of ->d_name.name.
2208 */
2209 seq = raw_seqcount_begin(&dentry->d_seq);
2210 if (dentry->d_parent != parent)
2211 continue;
2212 if (d_unhashed(dentry))
2213 continue;
2214
2215 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
2216 int tlen;
2217 const char *tname;
2218 if (dentry->d_name.hash != hashlen_hash(hashlen))
2219 continue;
2220 tlen = dentry->d_name.len;
2221 tname = dentry->d_name.name;
2222 /* we want a consistent (name,len) pair */
2223 if (read_seqcount_retry(&dentry->d_seq, seq)) {
2224 cpu_relax();
2225 goto seqretry;
2226 }
2227 if (parent->d_op->d_compare(dentry,
2228 tlen, tname, name) != 0)
2229 continue;
2230 } else {
2231 if (dentry->d_name.hash_len != hashlen)
2232 continue;
2233 if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0)
2234 continue;
2235 }
2236 *seqp = seq;
2237 return dentry;
2238 }
2239 return NULL;
2240 }
2241
2242 /**
2243 * d_lookup - search for a dentry
2244 * @parent: parent dentry
2245 * @name: qstr of name we wish to find
2246 * Returns: dentry, or NULL
2247 *
2248 * d_lookup searches the children of the parent dentry for the name in
2249 * question. If the dentry is found its reference count is incremented and the
2250 * dentry is returned. The caller must use dput to free the entry when it has
2251 * finished using it. %NULL is returned if the dentry does not exist.
2252 */
2253 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2254 {
2255 struct dentry *dentry;
2256 unsigned seq;
2257
2258 do {
2259 seq = read_seqbegin(&rename_lock);
2260 dentry = __d_lookup(parent, name);
2261 if (dentry)
2262 break;
2263 } while (read_seqretry(&rename_lock, seq));
2264 return dentry;
2265 }
2266 EXPORT_SYMBOL(d_lookup);
2267
2268 /**
2269 * __d_lookup - search for a dentry (racy)
2270 * @parent: parent dentry
2271 * @name: qstr of name we wish to find
2272 * Returns: dentry, or NULL
2273 *
2274 * __d_lookup is like d_lookup, however it may (rarely) return a
2275 * false-negative result due to unrelated rename activity.
2276 *
2277 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2278 * however it must be used carefully, eg. with a following d_lookup in
2279 * the case of failure.
2280 *
2281 * __d_lookup callers must be commented.
2282 */
2283 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2284 {
2285 unsigned int hash = name->hash;
2286 struct hlist_bl_head *b = d_hash(hash);
2287 struct hlist_bl_node *node;
2288 struct dentry *found = NULL;
2289 struct dentry *dentry;
2290
2291 /*
2292 * Note: There is significant duplication with __d_lookup_rcu which is
2293 * required to prevent single threaded performance regressions
2294 * especially on architectures where smp_rmb (in seqcounts) are costly.
2295 * Keep the two functions in sync.
2296 */
2297
2298 /*
2299 * The hash list is protected using RCU.
2300 *
2301 * Take d_lock when comparing a candidate dentry, to avoid races
2302 * with d_move().
2303 *
2304 * It is possible that concurrent renames can mess up our list
2305 * walk here and result in missing our dentry, resulting in the
2306 * false-negative result. d_lookup() protects against concurrent
2307 * renames using rename_lock seqlock.
2308 *
2309 * See Documentation/filesystems/path-lookup.txt for more details.
2310 */
2311 rcu_read_lock();
2312
2313 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2314
2315 if (dentry->d_name.hash != hash)
2316 continue;
2317
2318 spin_lock(&dentry->d_lock);
2319 if (dentry->d_parent != parent)
2320 goto next;
2321 if (d_unhashed(dentry))
2322 goto next;
2323
2324 if (!d_same_name(dentry, parent, name))
2325 goto next;
2326
2327 dentry->d_lockref.count++;
2328 found = dentry;
2329 spin_unlock(&dentry->d_lock);
2330 break;
2331 next:
2332 spin_unlock(&dentry->d_lock);
2333 }
2334 rcu_read_unlock();
2335
2336 return found;
2337 }
2338
2339 /**
2340 * d_hash_and_lookup - hash the qstr then search for a dentry
2341 * @dir: Directory to search in
2342 * @name: qstr of name we wish to find
2343 *
2344 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2345 */
2346 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2347 {
2348 /*
2349 * Check for a fs-specific hash function. Note that we must
2350 * calculate the standard hash first, as the d_op->d_hash()
2351 * routine may choose to leave the hash value unchanged.
2352 */
2353 name->hash = full_name_hash(dir, name->name, name->len);
2354 if (dir->d_flags & DCACHE_OP_HASH) {
2355 int err = dir->d_op->d_hash(dir, name);
2356 if (unlikely(err < 0))
2357 return ERR_PTR(err);
2358 }
2359 return d_lookup(dir, name);
2360 }
2361 EXPORT_SYMBOL(d_hash_and_lookup);
2362
2363 /*
2364 * When a file is deleted, we have two options:
2365 * - turn this dentry into a negative dentry
2366 * - unhash this dentry and free it.
2367 *
2368 * Usually, we want to just turn this into
2369 * a negative dentry, but if anybody else is
2370 * currently using the dentry or the inode
2371 * we can't do that and we fall back on removing
2372 * it from the hash queues and waiting for
2373 * it to be deleted later when it has no users
2374 */
2375
2376 /**
2377 * d_delete - delete a dentry
2378 * @dentry: The dentry to delete
2379 *
2380 * Turn the dentry into a negative dentry if possible, otherwise
2381 * remove it from the hash queues so it can be deleted later
2382 */
2383
2384 void d_delete(struct dentry * dentry)
2385 {
2386 struct inode *inode;
2387 int isdir = 0;
2388 /*
2389 * Are we the only user?
2390 */
2391 again:
2392 spin_lock(&dentry->d_lock);
2393 inode = dentry->d_inode;
2394 isdir = S_ISDIR(inode->i_mode);
2395 if (dentry->d_lockref.count == 1) {
2396 if (!spin_trylock(&inode->i_lock)) {
2397 spin_unlock(&dentry->d_lock);
2398 cpu_relax();
2399 goto again;
2400 }
2401 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2402 dentry_unlink_inode(dentry);
2403 fsnotify_nameremove(dentry, isdir);
2404 return;
2405 }
2406
2407 if (!d_unhashed(dentry))
2408 __d_drop(dentry);
2409
2410 spin_unlock(&dentry->d_lock);
2411
2412 fsnotify_nameremove(dentry, isdir);
2413 }
2414 EXPORT_SYMBOL(d_delete);
2415
2416 static void __d_rehash(struct dentry *entry)
2417 {
2418 struct hlist_bl_head *b = d_hash(entry->d_name.hash);
2419
2420 hlist_bl_lock(b);
2421 hlist_bl_add_head_rcu(&entry->d_hash, b);
2422 hlist_bl_unlock(b);
2423 }
2424
2425 /**
2426 * d_rehash - add an entry back to the hash
2427 * @entry: dentry to add to the hash
2428 *
2429 * Adds a dentry to the hash according to its name.
2430 */
2431
2432 void d_rehash(struct dentry * entry)
2433 {
2434 spin_lock(&entry->d_lock);
2435 __d_rehash(entry);
2436 spin_unlock(&entry->d_lock);
2437 }
2438 EXPORT_SYMBOL(d_rehash);
2439
2440 static inline unsigned start_dir_add(struct inode *dir)
2441 {
2442
2443 for (;;) {
2444 unsigned n = dir->i_dir_seq;
2445 if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n)
2446 return n;
2447 cpu_relax();
2448 }
2449 }
2450
2451 static inline void end_dir_add(struct inode *dir, unsigned n)
2452 {
2453 smp_store_release(&dir->i_dir_seq, n + 2);
2454 }
2455
2456 static void d_wait_lookup(struct dentry *dentry)
2457 {
2458 if (d_in_lookup(dentry)) {
2459 DECLARE_WAITQUEUE(wait, current);
2460 add_wait_queue(dentry->d_wait, &wait);
2461 do {
2462 set_current_state(TASK_UNINTERRUPTIBLE);
2463 spin_unlock(&dentry->d_lock);
2464 schedule();
2465 spin_lock(&dentry->d_lock);
2466 } while (d_in_lookup(dentry));
2467 }
2468 }
2469
2470 struct dentry *d_alloc_parallel(struct dentry *parent,
2471 const struct qstr *name,
2472 wait_queue_head_t *wq)
2473 {
2474 unsigned int hash = name->hash;
2475 struct hlist_bl_head *b = in_lookup_hash(parent, hash);
2476 struct hlist_bl_node *node;
2477 struct dentry *new = d_alloc(parent, name);
2478 struct dentry *dentry;
2479 unsigned seq, r_seq, d_seq;
2480
2481 if (unlikely(!new))
2482 return ERR_PTR(-ENOMEM);
2483
2484 retry:
2485 rcu_read_lock();
2486 seq = smp_load_acquire(&parent->d_inode->i_dir_seq);
2487 r_seq = read_seqbegin(&rename_lock);
2488 dentry = __d_lookup_rcu(parent, name, &d_seq);
2489 if (unlikely(dentry)) {
2490 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2491 rcu_read_unlock();
2492 goto retry;
2493 }
2494 if (read_seqcount_retry(&dentry->d_seq, d_seq)) {
2495 rcu_read_unlock();
2496 dput(dentry);
2497 goto retry;
2498 }
2499 rcu_read_unlock();
2500 dput(new);
2501 return dentry;
2502 }
2503 if (unlikely(read_seqretry(&rename_lock, r_seq))) {
2504 rcu_read_unlock();
2505 goto retry;
2506 }
2507
2508 if (unlikely(seq & 1)) {
2509 rcu_read_unlock();
2510 goto retry;
2511 }
2512
2513 hlist_bl_lock(b);
2514 if (unlikely(READ_ONCE(parent->d_inode->i_dir_seq) != seq)) {
2515 hlist_bl_unlock(b);
2516 rcu_read_unlock();
2517 goto retry;
2518 }
2519 /*
2520 * No changes for the parent since the beginning of d_lookup().
2521 * Since all removals from the chain happen with hlist_bl_lock(),
2522 * any potential in-lookup matches are going to stay here until
2523 * we unlock the chain. All fields are stable in everything
2524 * we encounter.
2525 */
2526 hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) {
2527 if (dentry->d_name.hash != hash)
2528 continue;
2529 if (dentry->d_parent != parent)
2530 continue;
2531 if (!d_same_name(dentry, parent, name))
2532 continue;
2533 hlist_bl_unlock(b);
2534 /* now we can try to grab a reference */
2535 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2536 rcu_read_unlock();
2537 goto retry;
2538 }
2539
2540 rcu_read_unlock();
2541 /*
2542 * somebody is likely to be still doing lookup for it;
2543 * wait for them to finish
2544 */
2545 spin_lock(&dentry->d_lock);
2546 d_wait_lookup(dentry);
2547 /*
2548 * it's not in-lookup anymore; in principle we should repeat
2549 * everything from dcache lookup, but it's likely to be what
2550 * d_lookup() would've found anyway. If it is, just return it;
2551 * otherwise we really have to repeat the whole thing.
2552 */
2553 if (unlikely(dentry->d_name.hash != hash))
2554 goto mismatch;
2555 if (unlikely(dentry->d_parent != parent))
2556 goto mismatch;
2557 if (unlikely(d_unhashed(dentry)))
2558 goto mismatch;
2559 if (unlikely(!d_same_name(dentry, parent, name)))
2560 goto mismatch;
2561 /* OK, it *is* a hashed match; return it */
2562 spin_unlock(&dentry->d_lock);
2563 dput(new);
2564 return dentry;
2565 }
2566 rcu_read_unlock();
2567 /* we can't take ->d_lock here; it's OK, though. */
2568 new->d_flags |= DCACHE_PAR_LOOKUP;
2569 new->d_wait = wq;
2570 hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b);
2571 hlist_bl_unlock(b);
2572 return new;
2573 mismatch:
2574 spin_unlock(&dentry->d_lock);
2575 dput(dentry);
2576 goto retry;
2577 }
2578 EXPORT_SYMBOL(d_alloc_parallel);
2579
2580 void __d_lookup_done(struct dentry *dentry)
2581 {
2582 struct hlist_bl_head *b = in_lookup_hash(dentry->d_parent,
2583 dentry->d_name.hash);
2584 hlist_bl_lock(b);
2585 dentry->d_flags &= ~DCACHE_PAR_LOOKUP;
2586 __hlist_bl_del(&dentry->d_u.d_in_lookup_hash);
2587 wake_up_all(dentry->d_wait);
2588 dentry->d_wait = NULL;
2589 hlist_bl_unlock(b);
2590 INIT_HLIST_NODE(&dentry->d_u.d_alias);
2591 INIT_LIST_HEAD(&dentry->d_lru);
2592 }
2593 EXPORT_SYMBOL(__d_lookup_done);
2594
2595 /* inode->i_lock held if inode is non-NULL */
2596
2597 static inline void __d_add(struct dentry *dentry, struct inode *inode)
2598 {
2599 struct inode *dir = NULL;
2600 unsigned n;
2601 spin_lock(&dentry->d_lock);
2602 if (unlikely(d_in_lookup(dentry))) {
2603 dir = dentry->d_parent->d_inode;
2604 n = start_dir_add(dir);
2605 __d_lookup_done(dentry);
2606 }
2607 if (inode) {
2608 unsigned add_flags = d_flags_for_inode(inode);
2609 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2610 raw_write_seqcount_begin(&dentry->d_seq);
2611 __d_set_inode_and_type(dentry, inode, add_flags);
2612 raw_write_seqcount_end(&dentry->d_seq);
2613 fsnotify_update_flags(dentry);
2614 }
2615 __d_rehash(dentry);
2616 if (dir)
2617 end_dir_add(dir, n);
2618 spin_unlock(&dentry->d_lock);
2619 if (inode)
2620 spin_unlock(&inode->i_lock);
2621 }
2622
2623 /**
2624 * d_add - add dentry to hash queues
2625 * @entry: dentry to add
2626 * @inode: The inode to attach to this dentry
2627 *
2628 * This adds the entry to the hash queues and initializes @inode.
2629 * The entry was actually filled in earlier during d_alloc().
2630 */
2631
2632 void d_add(struct dentry *entry, struct inode *inode)
2633 {
2634 if (inode) {
2635 security_d_instantiate(entry, inode);
2636 spin_lock(&inode->i_lock);
2637 }
2638 __d_add(entry, inode);
2639 }
2640 EXPORT_SYMBOL(d_add);
2641
2642 /**
2643 * d_exact_alias - find and hash an exact unhashed alias
2644 * @entry: dentry to add
2645 * @inode: The inode to go with this dentry
2646 *
2647 * If an unhashed dentry with the same name/parent and desired
2648 * inode already exists, hash and return it. Otherwise, return
2649 * NULL.
2650 *
2651 * Parent directory should be locked.
2652 */
2653 struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode)
2654 {
2655 struct dentry *alias;
2656 unsigned int hash = entry->d_name.hash;
2657
2658 spin_lock(&inode->i_lock);
2659 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
2660 /*
2661 * Don't need alias->d_lock here, because aliases with
2662 * d_parent == entry->d_parent are not subject to name or
2663 * parent changes, because the parent inode i_mutex is held.
2664 */
2665 if (alias->d_name.hash != hash)
2666 continue;
2667 if (alias->d_parent != entry->d_parent)
2668 continue;
2669 if (!d_same_name(alias, entry->d_parent, &entry->d_name))
2670 continue;
2671 spin_lock(&alias->d_lock);
2672 if (!d_unhashed(alias)) {
2673 spin_unlock(&alias->d_lock);
2674 alias = NULL;
2675 } else {
2676 __dget_dlock(alias);
2677 __d_rehash(alias);
2678 spin_unlock(&alias->d_lock);
2679 }
2680 spin_unlock(&inode->i_lock);
2681 return alias;
2682 }
2683 spin_unlock(&inode->i_lock);
2684 return NULL;
2685 }
2686 EXPORT_SYMBOL(d_exact_alias);
2687
2688 /**
2689 * dentry_update_name_case - update case insensitive dentry with a new name
2690 * @dentry: dentry to be updated
2691 * @name: new name
2692 *
2693 * Update a case insensitive dentry with new case of name.
2694 *
2695 * dentry must have been returned by d_lookup with name @name. Old and new
2696 * name lengths must match (ie. no d_compare which allows mismatched name
2697 * lengths).
2698 *
2699 * Parent inode i_mutex must be held over d_lookup and into this call (to
2700 * keep renames and concurrent inserts, and readdir(2) away).
2701 */
2702 void dentry_update_name_case(struct dentry *dentry, const struct qstr *name)
2703 {
2704 BUG_ON(!inode_is_locked(dentry->d_parent->d_inode));
2705 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2706
2707 spin_lock(&dentry->d_lock);
2708 write_seqcount_begin(&dentry->d_seq);
2709 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
2710 write_seqcount_end(&dentry->d_seq);
2711 spin_unlock(&dentry->d_lock);
2712 }
2713 EXPORT_SYMBOL(dentry_update_name_case);
2714
2715 static void swap_names(struct dentry *dentry, struct dentry *target)
2716 {
2717 if (unlikely(dname_external(target))) {
2718 if (unlikely(dname_external(dentry))) {
2719 /*
2720 * Both external: swap the pointers
2721 */
2722 swap(target->d_name.name, dentry->d_name.name);
2723 } else {
2724 /*
2725 * dentry:internal, target:external. Steal target's
2726 * storage and make target internal.
2727 */
2728 memcpy(target->d_iname, dentry->d_name.name,
2729 dentry->d_name.len + 1);
2730 dentry->d_name.name = target->d_name.name;
2731 target->d_name.name = target->d_iname;
2732 }
2733 } else {
2734 if (unlikely(dname_external(dentry))) {
2735 /*
2736 * dentry:external, target:internal. Give dentry's
2737 * storage to target and make dentry internal
2738 */
2739 memcpy(dentry->d_iname, target->d_name.name,
2740 target->d_name.len + 1);
2741 target->d_name.name = dentry->d_name.name;
2742 dentry->d_name.name = dentry->d_iname;
2743 } else {
2744 /*
2745 * Both are internal.
2746 */
2747 unsigned int i;
2748 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2749 for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2750 swap(((long *) &dentry->d_iname)[i],
2751 ((long *) &target->d_iname)[i]);
2752 }
2753 }
2754 }
2755 swap(dentry->d_name.hash_len, target->d_name.hash_len);
2756 }
2757
2758 static void copy_name(struct dentry *dentry, struct dentry *target)
2759 {
2760 struct external_name *old_name = NULL;
2761 if (unlikely(dname_external(dentry)))
2762 old_name = external_name(dentry);
2763 if (unlikely(dname_external(target))) {
2764 atomic_inc(&external_name(target)->u.count);
2765 dentry->d_name = target->d_name;
2766 } else {
2767 memcpy(dentry->d_iname, target->d_name.name,
2768 target->d_name.len + 1);
2769 dentry->d_name.name = dentry->d_iname;
2770 dentry->d_name.hash_len = target->d_name.hash_len;
2771 }
2772 if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2773 kfree_rcu(old_name, u.head);
2774 }
2775
2776 static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2777 {
2778 /*
2779 * XXXX: do we really need to take target->d_lock?
2780 */
2781 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2782 spin_lock(&target->d_parent->d_lock);
2783 else {
2784 if (d_ancestor(dentry->d_parent, target->d_parent)) {
2785 spin_lock(&dentry->d_parent->d_lock);
2786 spin_lock_nested(&target->d_parent->d_lock,
2787 DENTRY_D_LOCK_NESTED);
2788 } else {
2789 spin_lock(&target->d_parent->d_lock);
2790 spin_lock_nested(&dentry->d_parent->d_lock,
2791 DENTRY_D_LOCK_NESTED);
2792 }
2793 }
2794 if (target < dentry) {
2795 spin_lock_nested(&target->d_lock, 2);
2796 spin_lock_nested(&dentry->d_lock, 3);
2797 } else {
2798 spin_lock_nested(&dentry->d_lock, 2);
2799 spin_lock_nested(&target->d_lock, 3);
2800 }
2801 }
2802
2803 static void dentry_unlock_for_move(struct dentry *dentry, struct dentry *target)
2804 {
2805 if (target->d_parent != dentry->d_parent)
2806 spin_unlock(&dentry->d_parent->d_lock);
2807 if (target->d_parent != target)
2808 spin_unlock(&target->d_parent->d_lock);
2809 spin_unlock(&target->d_lock);
2810 spin_unlock(&dentry->d_lock);
2811 }
2812
2813 /*
2814 * When switching names, the actual string doesn't strictly have to
2815 * be preserved in the target - because we're dropping the target
2816 * anyway. As such, we can just do a simple memcpy() to copy over
2817 * the new name before we switch, unless we are going to rehash
2818 * it. Note that if we *do* unhash the target, we are not allowed
2819 * to rehash it without giving it a new name/hash key - whether
2820 * we swap or overwrite the names here, resulting name won't match
2821 * the reality in filesystem; it's only there for d_path() purposes.
2822 * Note that all of this is happening under rename_lock, so the
2823 * any hash lookup seeing it in the middle of manipulations will
2824 * be discarded anyway. So we do not care what happens to the hash
2825 * key in that case.
2826 */
2827 /*
2828 * __d_move - move a dentry
2829 * @dentry: entry to move
2830 * @target: new dentry
2831 * @exchange: exchange the two dentries
2832 *
2833 * Update the dcache to reflect the move of a file name. Negative
2834 * dcache entries should not be moved in this way. Caller must hold
2835 * rename_lock, the i_mutex of the source and target directories,
2836 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2837 */
2838 static void __d_move(struct dentry *dentry, struct dentry *target,
2839 bool exchange)
2840 {
2841 struct inode *dir = NULL;
2842 unsigned n;
2843 if (!dentry->d_inode)
2844 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2845
2846 BUG_ON(d_ancestor(dentry, target));
2847 BUG_ON(d_ancestor(target, dentry));
2848
2849 dentry_lock_for_move(dentry, target);
2850 if (unlikely(d_in_lookup(target))) {
2851 dir = target->d_parent->d_inode;
2852 n = start_dir_add(dir);
2853 __d_lookup_done(target);
2854 }
2855
2856 write_seqcount_begin(&dentry->d_seq);
2857 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
2858
2859 /* unhash both */
2860 /* ___d_drop does write_seqcount_barrier, but they're OK to nest. */
2861 ___d_drop(dentry);
2862 ___d_drop(target);
2863
2864 /* Switch the names.. */
2865 if (exchange)
2866 swap_names(dentry, target);
2867 else
2868 copy_name(dentry, target);
2869
2870 /* rehash in new place(s) */
2871 __d_rehash(dentry);
2872 if (exchange)
2873 __d_rehash(target);
2874 else
2875 target->d_hash.pprev = NULL;
2876
2877 /* ... and switch them in the tree */
2878 if (IS_ROOT(dentry)) {
2879 /* splicing a tree */
2880 dentry->d_flags |= DCACHE_RCUACCESS;
2881 dentry->d_parent = target->d_parent;
2882 target->d_parent = target;
2883 list_del_init(&target->d_child);
2884 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2885 } else {
2886 /* swapping two dentries */
2887 swap(dentry->d_parent, target->d_parent);
2888 list_move(&target->d_child, &target->d_parent->d_subdirs);
2889 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2890 if (exchange)
2891 fsnotify_update_flags(target);
2892 fsnotify_update_flags(dentry);
2893 }
2894
2895 write_seqcount_end(&target->d_seq);
2896 write_seqcount_end(&dentry->d_seq);
2897
2898 if (dir)
2899 end_dir_add(dir, n);
2900 dentry_unlock_for_move(dentry, target);
2901 }
2902
2903 /*
2904 * d_move - move a dentry
2905 * @dentry: entry to move
2906 * @target: new dentry
2907 *
2908 * Update the dcache to reflect the move of a file name. Negative
2909 * dcache entries should not be moved in this way. See the locking
2910 * requirements for __d_move.
2911 */
2912 void d_move(struct dentry *dentry, struct dentry *target)
2913 {
2914 write_seqlock(&rename_lock);
2915 __d_move(dentry, target, false);
2916 write_sequnlock(&rename_lock);
2917 }
2918 EXPORT_SYMBOL(d_move);
2919
2920 /*
2921 * d_exchange - exchange two dentries
2922 * @dentry1: first dentry
2923 * @dentry2: second dentry
2924 */
2925 void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2926 {
2927 write_seqlock(&rename_lock);
2928
2929 WARN_ON(!dentry1->d_inode);
2930 WARN_ON(!dentry2->d_inode);
2931 WARN_ON(IS_ROOT(dentry1));
2932 WARN_ON(IS_ROOT(dentry2));
2933
2934 __d_move(dentry1, dentry2, true);
2935
2936 write_sequnlock(&rename_lock);
2937 }
2938 EXPORT_SYMBOL_GPL(d_exchange);
2939
2940 /**
2941 * d_ancestor - search for an ancestor
2942 * @p1: ancestor dentry
2943 * @p2: child dentry
2944 *
2945 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2946 * an ancestor of p2, else NULL.
2947 */
2948 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2949 {
2950 struct dentry *p;
2951
2952 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2953 if (p->d_parent == p1)
2954 return p;
2955 }
2956 return NULL;
2957 }
2958
2959 /*
2960 * This helper attempts to cope with remotely renamed directories
2961 *
2962 * It assumes that the caller is already holding
2963 * dentry->d_parent->d_inode->i_mutex, and rename_lock
2964 *
2965 * Note: If ever the locking in lock_rename() changes, then please
2966 * remember to update this too...
2967 */
2968 static int __d_unalias(struct inode *inode,
2969 struct dentry *dentry, struct dentry *alias)
2970 {
2971 struct mutex *m1 = NULL;
2972 struct rw_semaphore *m2 = NULL;
2973 int ret = -ESTALE;
2974
2975 /* If alias and dentry share a parent, then no extra locks required */
2976 if (alias->d_parent == dentry->d_parent)
2977 goto out_unalias;
2978
2979 /* See lock_rename() */
2980 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2981 goto out_err;
2982 m1 = &dentry->d_sb->s_vfs_rename_mutex;
2983 if (!inode_trylock_shared(alias->d_parent->d_inode))
2984 goto out_err;
2985 m2 = &alias->d_parent->d_inode->i_rwsem;
2986 out_unalias:
2987 __d_move(alias, dentry, false);
2988 ret = 0;
2989 out_err:
2990 if (m2)
2991 up_read(m2);
2992 if (m1)
2993 mutex_unlock(m1);
2994 return ret;
2995 }
2996
2997 /**
2998 * d_splice_alias - splice a disconnected dentry into the tree if one exists
2999 * @inode: the inode which may have a disconnected dentry
3000 * @dentry: a negative dentry which we want to point to the inode.
3001 *
3002 * If inode is a directory and has an IS_ROOT alias, then d_move that in
3003 * place of the given dentry and return it, else simply d_add the inode
3004 * to the dentry and return NULL.
3005 *
3006 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
3007 * we should error out: directories can't have multiple aliases.
3008 *
3009 * This is needed in the lookup routine of any filesystem that is exportable
3010 * (via knfsd) so that we can build dcache paths to directories effectively.
3011 *
3012 * If a dentry was found and moved, then it is returned. Otherwise NULL
3013 * is returned. This matches the expected return value of ->lookup.
3014 *
3015 * Cluster filesystems may call this function with a negative, hashed dentry.
3016 * In that case, we know that the inode will be a regular file, and also this
3017 * will only occur during atomic_open. So we need to check for the dentry
3018 * being already hashed only in the final case.
3019 */
3020 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
3021 {
3022 if (IS_ERR(inode))
3023 return ERR_CAST(inode);
3024
3025 BUG_ON(!d_unhashed(dentry));
3026
3027 if (!inode)
3028 goto out;
3029
3030 security_d_instantiate(dentry, inode);
3031 spin_lock(&inode->i_lock);
3032 if (S_ISDIR(inode->i_mode)) {
3033 struct dentry *new = __d_find_any_alias(inode);
3034 if (unlikely(new)) {
3035 /* The reference to new ensures it remains an alias */
3036 spin_unlock(&inode->i_lock);
3037 write_seqlock(&rename_lock);
3038 if (unlikely(d_ancestor(new, dentry))) {
3039 write_sequnlock(&rename_lock);
3040 dput(new);
3041 new = ERR_PTR(-ELOOP);
3042 pr_warn_ratelimited(
3043 "VFS: Lookup of '%s' in %s %s"
3044 " would have caused loop\n",
3045 dentry->d_name.name,
3046 inode->i_sb->s_type->name,
3047 inode->i_sb->s_id);
3048 } else if (!IS_ROOT(new)) {
3049 int err = __d_unalias(inode, dentry, new);
3050 write_sequnlock(&rename_lock);
3051 if (err) {
3052 dput(new);
3053 new = ERR_PTR(err);
3054 }
3055 } else {
3056 __d_move(new, dentry, false);
3057 write_sequnlock(&rename_lock);
3058 }
3059 iput(inode);
3060 return new;
3061 }
3062 }
3063 out:
3064 __d_add(dentry, inode);
3065 return NULL;
3066 }
3067 EXPORT_SYMBOL(d_splice_alias);
3068
3069 static int prepend(char **buffer, int *buflen, const char *str, int namelen)
3070 {
3071 *buflen -= namelen;
3072 if (*buflen < 0)
3073 return -ENAMETOOLONG;
3074 *buffer -= namelen;
3075 memcpy(*buffer, str, namelen);
3076 return 0;
3077 }
3078
3079 /**
3080 * prepend_name - prepend a pathname in front of current buffer pointer
3081 * @buffer: buffer pointer
3082 * @buflen: allocated length of the buffer
3083 * @name: name string and length qstr structure
3084 *
3085 * With RCU path tracing, it may race with d_move(). Use READ_ONCE() to
3086 * make sure that either the old or the new name pointer and length are
3087 * fetched. However, there may be mismatch between length and pointer.
3088 * The length cannot be trusted, we need to copy it byte-by-byte until
3089 * the length is reached or a null byte is found. It also prepends "/" at
3090 * the beginning of the name. The sequence number check at the caller will
3091 * retry it again when a d_move() does happen. So any garbage in the buffer
3092 * due to mismatched pointer and length will be discarded.
3093 *
3094 * Data dependency barrier is needed to make sure that we see that terminating
3095 * NUL. Alpha strikes again, film at 11...
3096 */
3097 static int prepend_name(char **buffer, int *buflen, const struct qstr *name)
3098 {
3099 const char *dname = READ_ONCE(name->name);
3100 u32 dlen = READ_ONCE(name->len);
3101 char *p;
3102
3103 smp_read_barrier_depends();
3104
3105 *buflen -= dlen + 1;
3106 if (*buflen < 0)
3107 return -ENAMETOOLONG;
3108 p = *buffer -= dlen + 1;
3109 *p++ = '/';
3110 while (dlen--) {
3111 char c = *dname++;
3112 if (!c)
3113 break;
3114 *p++ = c;
3115 }
3116 return 0;
3117 }
3118
3119 /**
3120 * prepend_path - Prepend path string to a buffer
3121 * @path: the dentry/vfsmount to report
3122 * @root: root vfsmnt/dentry
3123 * @buffer: pointer to the end of the buffer
3124 * @buflen: pointer to buffer length
3125 *
3126 * The function will first try to write out the pathname without taking any
3127 * lock other than the RCU read lock to make sure that dentries won't go away.
3128 * It only checks the sequence number of the global rename_lock as any change
3129 * in the dentry's d_seq will be preceded by changes in the rename_lock
3130 * sequence number. If the sequence number had been changed, it will restart
3131 * the whole pathname back-tracing sequence again by taking the rename_lock.
3132 * In this case, there is no need to take the RCU read lock as the recursive
3133 * parent pointer references will keep the dentry chain alive as long as no
3134 * rename operation is performed.
3135 */
3136 static int prepend_path(const struct path *path,
3137 const struct path *root,
3138 char **buffer, int *buflen)
3139 {
3140 struct dentry *dentry;
3141 struct vfsmount *vfsmnt;
3142 struct mount *mnt;
3143 int error = 0;
3144 unsigned seq, m_seq = 0;
3145 char *bptr;
3146 int blen;
3147
3148 rcu_read_lock();
3149 restart_mnt:
3150 read_seqbegin_or_lock(&mount_lock, &m_seq);
3151 seq = 0;
3152 rcu_read_lock();
3153 restart:
3154 bptr = *buffer;
3155 blen = *buflen;
3156 error = 0;
3157 dentry = path->dentry;
3158 vfsmnt = path->mnt;
3159 mnt = real_mount(vfsmnt);
3160 read_seqbegin_or_lock(&rename_lock, &seq);
3161 while (dentry != root->dentry || vfsmnt != root->mnt) {
3162 struct dentry * parent;
3163
3164 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
3165 struct mount *parent = READ_ONCE(mnt->mnt_parent);
3166 /* Escaped? */
3167 if (dentry != vfsmnt->mnt_root) {
3168 bptr = *buffer;
3169 blen = *buflen;
3170 error = 3;
3171 break;
3172 }
3173 /* Global root? */
3174 if (mnt != parent) {
3175 dentry = READ_ONCE(mnt->mnt_mountpoint);
3176 mnt = parent;
3177 vfsmnt = &mnt->mnt;
3178 continue;
3179 }
3180 if (!error)
3181 error = is_mounted(vfsmnt) ? 1 : 2;
3182 break;
3183 }
3184 parent = dentry->d_parent;
3185 prefetch(parent);
3186 error = prepend_name(&bptr, &blen, &dentry->d_name);
3187 if (error)
3188 break;
3189
3190 dentry = parent;
3191 }
3192 if (!(seq & 1))
3193 rcu_read_unlock();
3194 if (need_seqretry(&rename_lock, seq)) {
3195 seq = 1;
3196 goto restart;
3197 }
3198 done_seqretry(&rename_lock, seq);
3199
3200 if (!(m_seq & 1))
3201 rcu_read_unlock();
3202 if (need_seqretry(&mount_lock, m_seq)) {
3203 m_seq = 1;
3204 goto restart_mnt;
3205 }
3206 done_seqretry(&mount_lock, m_seq);
3207
3208 if (error >= 0 && bptr == *buffer) {
3209 if (--blen < 0)
3210 error = -ENAMETOOLONG;
3211 else
3212 *--bptr = '/';
3213 }
3214 *buffer = bptr;
3215 *buflen = blen;
3216 return error;
3217 }
3218
3219 /**
3220 * __d_path - return the path of a dentry
3221 * @path: the dentry/vfsmount to report
3222 * @root: root vfsmnt/dentry
3223 * @buf: buffer to return value in
3224 * @buflen: buffer length
3225 *
3226 * Convert a dentry into an ASCII path name.
3227 *
3228 * Returns a pointer into the buffer or an error code if the
3229 * path was too long.
3230 *
3231 * "buflen" should be positive.
3232 *
3233 * If the path is not reachable from the supplied root, return %NULL.
3234 */
3235 char *__d_path(const struct path *path,
3236 const struct path *root,
3237 char *buf, int buflen)
3238 {
3239 char *res = buf + buflen;
3240 int error;
3241
3242 prepend(&res, &buflen, "\0", 1);
3243 error = prepend_path(path, root, &res, &buflen);
3244
3245 if (error < 0)
3246 return ERR_PTR(error);
3247 if (error > 0)
3248 return NULL;
3249 return res;
3250 }
3251
3252 char *d_absolute_path(const struct path *path,
3253 char *buf, int buflen)
3254 {
3255 struct path root = {};
3256 char *res = buf + buflen;
3257 int error;
3258
3259 prepend(&res, &buflen, "\0", 1);
3260 error = prepend_path(path, &root, &res, &buflen);
3261
3262 if (error > 1)
3263 error = -EINVAL;
3264 if (error < 0)
3265 return ERR_PTR(error);
3266 return res;
3267 }
3268
3269 /*
3270 * same as __d_path but appends "(deleted)" for unlinked files.
3271 */
3272 static int path_with_deleted(const struct path *path,
3273 const struct path *root,
3274 char **buf, int *buflen)
3275 {
3276 prepend(buf, buflen, "\0", 1);
3277 if (d_unlinked(path->dentry)) {
3278 int error = prepend(buf, buflen, " (deleted)", 10);
3279 if (error)
3280 return error;
3281 }
3282
3283 return prepend_path(path, root, buf, buflen);
3284 }
3285
3286 static int prepend_unreachable(char **buffer, int *buflen)
3287 {
3288 return prepend(buffer, buflen, "(unreachable)", 13);
3289 }
3290
3291 static void get_fs_root_rcu(struct fs_struct *fs, struct path *root)
3292 {
3293 unsigned seq;
3294
3295 do {
3296 seq = read_seqcount_begin(&fs->seq);
3297 *root = fs->root;
3298 } while (read_seqcount_retry(&fs->seq, seq));
3299 }
3300
3301 /**
3302 * d_path - return the path of a dentry
3303 * @path: path to report
3304 * @buf: buffer to return value in
3305 * @buflen: buffer length
3306 *
3307 * Convert a dentry into an ASCII path name. If the entry has been deleted
3308 * the string " (deleted)" is appended. Note that this is ambiguous.
3309 *
3310 * Returns a pointer into the buffer or an error code if the path was
3311 * too long. Note: Callers should use the returned pointer, not the passed
3312 * in buffer, to use the name! The implementation often starts at an offset
3313 * into the buffer, and may leave 0 bytes at the start.
3314 *
3315 * "buflen" should be positive.
3316 */
3317 char *d_path(const struct path *path, char *buf, int buflen)
3318 {
3319 char *res = buf + buflen;
3320 struct path root;
3321 int error;
3322
3323 /*
3324 * We have various synthetic filesystems that never get mounted. On
3325 * these filesystems dentries are never used for lookup purposes, and
3326 * thus don't need to be hashed. They also don't need a name until a
3327 * user wants to identify the object in /proc/pid/fd/. The little hack
3328 * below allows us to generate a name for these objects on demand:
3329 *
3330 * Some pseudo inodes are mountable. When they are mounted
3331 * path->dentry == path->mnt->mnt_root. In that case don't call d_dname
3332 * and instead have d_path return the mounted path.
3333 */
3334 if (path->dentry->d_op && path->dentry->d_op->d_dname &&
3335 (!IS_ROOT(path->dentry) || path->dentry != path->mnt->mnt_root))
3336 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
3337
3338 rcu_read_lock();
3339 get_fs_root_rcu(current->fs, &root);
3340 error = path_with_deleted(path, &root, &res, &buflen);
3341 rcu_read_unlock();
3342
3343 if (error < 0)
3344 res = ERR_PTR(error);
3345 return res;
3346 }
3347 EXPORT_SYMBOL(d_path);
3348
3349 /*
3350 * Helper function for dentry_operations.d_dname() members
3351 */
3352 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
3353 const char *fmt, ...)
3354 {
3355 va_list args;
3356 char temp[64];
3357 int sz;
3358
3359 va_start(args, fmt);
3360 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
3361 va_end(args);
3362
3363 if (sz > sizeof(temp) || sz > buflen)
3364 return ERR_PTR(-ENAMETOOLONG);
3365
3366 buffer += buflen - sz;
3367 return memcpy(buffer, temp, sz);
3368 }
3369
3370 char *simple_dname(struct dentry *dentry, char *buffer, int buflen)
3371 {
3372 char *end = buffer + buflen;
3373 /* these dentries are never renamed, so d_lock is not needed */
3374 if (prepend(&end, &buflen, " (deleted)", 11) ||
3375 prepend(&end, &buflen, dentry->d_name.name, dentry->d_name.len) ||
3376 prepend(&end, &buflen, "/", 1))
3377 end = ERR_PTR(-ENAMETOOLONG);
3378 return end;
3379 }
3380 EXPORT_SYMBOL(simple_dname);
3381
3382 /*
3383 * Write full pathname from the root of the filesystem into the buffer.
3384 */
3385 static char *__dentry_path(struct dentry *d, char *buf, int buflen)
3386 {
3387 struct dentry *dentry;
3388 char *end, *retval;
3389 int len, seq = 0;
3390 int error = 0;
3391
3392 if (buflen < 2)
3393 goto Elong;
3394
3395 rcu_read_lock();
3396 restart:
3397 dentry = d;
3398 end = buf + buflen;
3399 len = buflen;
3400 prepend(&end, &len, "\0", 1);
3401 /* Get '/' right */
3402 retval = end-1;
3403 *retval = '/';
3404 read_seqbegin_or_lock(&rename_lock, &seq);
3405 while (!IS_ROOT(dentry)) {
3406 struct dentry *parent = dentry->d_parent;
3407
3408 prefetch(parent);
3409 error = prepend_name(&end, &len, &dentry->d_name);
3410 if (error)
3411 break;
3412
3413 retval = end;
3414 dentry = parent;
3415 }
3416 if (!(seq & 1))
3417 rcu_read_unlock();
3418 if (need_seqretry(&rename_lock, seq)) {
3419 seq = 1;
3420 goto restart;
3421 }
3422 done_seqretry(&rename_lock, seq);
3423 if (error)
3424 goto Elong;
3425 return retval;
3426 Elong:
3427 return ERR_PTR(-ENAMETOOLONG);
3428 }
3429
3430 char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
3431 {
3432 return __dentry_path(dentry, buf, buflen);
3433 }
3434 EXPORT_SYMBOL(dentry_path_raw);
3435
3436 char *dentry_path(struct dentry *dentry, char *buf, int buflen)
3437 {
3438 char *p = NULL;
3439 char *retval;
3440
3441 if (d_unlinked(dentry)) {
3442 p = buf + buflen;
3443 if (prepend(&p, &buflen, "//deleted", 10) != 0)
3444 goto Elong;
3445 buflen++;
3446 }
3447 retval = __dentry_path(dentry, buf, buflen);
3448 if (!IS_ERR(retval) && p)
3449 *p = '/'; /* restore '/' overriden with '\0' */
3450 return retval;
3451 Elong:
3452 return ERR_PTR(-ENAMETOOLONG);
3453 }
3454
3455 static void get_fs_root_and_pwd_rcu(struct fs_struct *fs, struct path *root,
3456 struct path *pwd)
3457 {
3458 unsigned seq;
3459
3460 do {
3461 seq = read_seqcount_begin(&fs->seq);
3462 *root = fs->root;
3463 *pwd = fs->pwd;
3464 } while (read_seqcount_retry(&fs->seq, seq));
3465 }
3466
3467 /*
3468 * NOTE! The user-level library version returns a
3469 * character pointer. The kernel system call just
3470 * returns the length of the buffer filled (which
3471 * includes the ending '\0' character), or a negative
3472 * error value. So libc would do something like
3473 *
3474 * char *getcwd(char * buf, size_t size)
3475 * {
3476 * int retval;
3477 *
3478 * retval = sys_getcwd(buf, size);
3479 * if (retval >= 0)
3480 * return buf;
3481 * errno = -retval;
3482 * return NULL;
3483 * }
3484 */
3485 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
3486 {
3487 int error;
3488 struct path pwd, root;
3489 char *page = __getname();
3490
3491 if (!page)
3492 return -ENOMEM;
3493
3494 rcu_read_lock();
3495 get_fs_root_and_pwd_rcu(current->fs, &root, &pwd);
3496
3497 error = -ENOENT;
3498 if (!d_unlinked(pwd.dentry)) {
3499 unsigned long len;
3500 char *cwd = page + PATH_MAX;
3501 int buflen = PATH_MAX;
3502
3503 prepend(&cwd, &buflen, "\0", 1);
3504 error = prepend_path(&pwd, &root, &cwd, &buflen);
3505 rcu_read_unlock();
3506
3507 if (error < 0)
3508 goto out;
3509
3510 /* Unreachable from current root */
3511 if (error > 0) {
3512 error = prepend_unreachable(&cwd, &buflen);
3513 if (error)
3514 goto out;
3515 }
3516
3517 error = -ERANGE;
3518 len = PATH_MAX + page - cwd;
3519 if (len <= size) {
3520 error = len;
3521 if (copy_to_user(buf, cwd, len))
3522 error = -EFAULT;
3523 }
3524 } else {
3525 rcu_read_unlock();
3526 }
3527
3528 out:
3529 __putname(page);
3530 return error;
3531 }
3532
3533 /*
3534 * Test whether new_dentry is a subdirectory of old_dentry.
3535 *
3536 * Trivially implemented using the dcache structure
3537 */
3538
3539 /**
3540 * is_subdir - is new dentry a subdirectory of old_dentry
3541 * @new_dentry: new dentry
3542 * @old_dentry: old dentry
3543 *
3544 * Returns true if new_dentry is a subdirectory of the parent (at any depth).
3545 * Returns false otherwise.
3546 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3547 */
3548
3549 bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
3550 {
3551 bool result;
3552 unsigned seq;
3553
3554 if (new_dentry == old_dentry)
3555 return true;
3556
3557 do {
3558 /* for restarting inner loop in case of seq retry */
3559 seq = read_seqbegin(&rename_lock);
3560 /*
3561 * Need rcu_readlock to protect against the d_parent trashing
3562 * due to d_move
3563 */
3564 rcu_read_lock();
3565 if (d_ancestor(old_dentry, new_dentry))
3566 result = true;
3567 else
3568 result = false;
3569 rcu_read_unlock();
3570 } while (read_seqretry(&rename_lock, seq));
3571
3572 return result;
3573 }
3574
3575 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
3576 {
3577 struct dentry *root = data;
3578 if (dentry != root) {
3579 if (d_unhashed(dentry) || !dentry->d_inode)
3580 return D_WALK_SKIP;
3581
3582 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3583 dentry->d_flags |= DCACHE_GENOCIDE;
3584 dentry->d_lockref.count--;
3585 }
3586 }
3587 return D_WALK_CONTINUE;
3588 }
3589
3590 void d_genocide(struct dentry *parent)
3591 {
3592 d_walk(parent, parent, d_genocide_kill, NULL);
3593 }
3594
3595 void d_tmpfile(struct dentry *dentry, struct inode *inode)
3596 {
3597 inode_dec_link_count(inode);
3598 BUG_ON(dentry->d_name.name != dentry->d_iname ||
3599 !hlist_unhashed(&dentry->d_u.d_alias) ||
3600 !d_unlinked(dentry));
3601 spin_lock(&dentry->d_parent->d_lock);
3602 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3603 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3604 (unsigned long long)inode->i_ino);
3605 spin_unlock(&dentry->d_lock);
3606 spin_unlock(&dentry->d_parent->d_lock);
3607 d_instantiate(dentry, inode);
3608 }
3609 EXPORT_SYMBOL(d_tmpfile);
3610
3611 static __initdata unsigned long dhash_entries;
3612 static int __init set_dhash_entries(char *str)
3613 {
3614 if (!str)
3615 return 0;
3616 dhash_entries = simple_strtoul(str, &str, 0);
3617 return 1;
3618 }
3619 __setup("dhash_entries=", set_dhash_entries);
3620
3621 static void __init dcache_init_early(void)
3622 {
3623 /* If hashes are distributed across NUMA nodes, defer
3624 * hash allocation until vmalloc space is available.
3625 */
3626 if (hashdist)
3627 return;
3628
3629 dentry_hashtable =
3630 alloc_large_system_hash("Dentry cache",
3631 sizeof(struct hlist_bl_head),
3632 dhash_entries,
3633 13,
3634 HASH_EARLY | HASH_ZERO,
3635 &d_hash_shift,
3636 &d_hash_mask,
3637 0,
3638 0);
3639 }
3640
3641 static void __init dcache_init(void)
3642 {
3643 /*
3644 * A constructor could be added for stable state like the lists,
3645 * but it is probably not worth it because of the cache nature
3646 * of the dcache.
3647 */
3648 dentry_cache = KMEM_CACHE(dentry,
3649 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT);
3650
3651 /* Hash may have been set up in dcache_init_early */
3652 if (!hashdist)
3653 return;
3654
3655 dentry_hashtable =
3656 alloc_large_system_hash("Dentry cache",
3657 sizeof(struct hlist_bl_head),
3658 dhash_entries,
3659 13,
3660 HASH_ZERO,
3661 &d_hash_shift,
3662 &d_hash_mask,
3663 0,
3664 0);
3665 }
3666
3667 /* SLAB cache for __getname() consumers */
3668 struct kmem_cache *names_cachep __read_mostly;
3669 EXPORT_SYMBOL(names_cachep);
3670
3671 EXPORT_SYMBOL(d_genocide);
3672
3673 void __init vfs_caches_init_early(void)
3674 {
3675 int i;
3676
3677 for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++)
3678 INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]);
3679
3680 dcache_init_early();
3681 inode_init_early();
3682 }
3683
3684 void __init vfs_caches_init(void)
3685 {
3686 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
3687 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3688
3689 dcache_init();
3690 inode_init();
3691 files_init();
3692 files_maxfiles_init();
3693 mnt_init();
3694 bdev_cache_init();
3695 chrdev_init();
3696 }