]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/dcache.c
fs/dcache.c: avoid soft-lockup in dput()
[mirror_ubuntu-bionic-kernel.git] / fs / dcache.c
1 /*
2 * fs/dcache.c
3 *
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
8
9 /*
10 * Notes on the allocation strategy:
11 *
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
15 */
16
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/export.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <asm/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/rculist_bl.h>
38 #include <linux/prefetch.h>
39 #include <linux/ratelimit.h>
40 #include <linux/list_lru.h>
41 #include <linux/kasan.h>
42
43 #include "internal.h"
44 #include "mount.h"
45
46 /*
47 * Usage:
48 * dcache->d_inode->i_lock protects:
49 * - i_dentry, d_u.d_alias, d_inode of aliases
50 * dcache_hash_bucket lock protects:
51 * - the dcache hash table
52 * s_anon bl list spinlock protects:
53 * - the s_anon list (see __d_drop)
54 * dentry->d_sb->s_dentry_lru_lock protects:
55 * - the dcache lru lists and counters
56 * d_lock protects:
57 * - d_flags
58 * - d_name
59 * - d_lru
60 * - d_count
61 * - d_unhashed()
62 * - d_parent and d_subdirs
63 * - childrens' d_child and d_parent
64 * - d_u.d_alias, d_inode
65 *
66 * Ordering:
67 * dentry->d_inode->i_lock
68 * dentry->d_lock
69 * dentry->d_sb->s_dentry_lru_lock
70 * dcache_hash_bucket lock
71 * s_anon lock
72 *
73 * If there is an ancestor relationship:
74 * dentry->d_parent->...->d_parent->d_lock
75 * ...
76 * dentry->d_parent->d_lock
77 * dentry->d_lock
78 *
79 * If no ancestor relationship:
80 * if (dentry1 < dentry2)
81 * dentry1->d_lock
82 * dentry2->d_lock
83 */
84 int sysctl_vfs_cache_pressure __read_mostly = 100;
85 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
86
87 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
88
89 EXPORT_SYMBOL(rename_lock);
90
91 static struct kmem_cache *dentry_cache __read_mostly;
92
93 /*
94 * This is the single most critical data structure when it comes
95 * to the dcache: the hashtable for lookups. Somebody should try
96 * to make this good - I've just made it work.
97 *
98 * This hash-function tries to avoid losing too many bits of hash
99 * information, yet avoid using a prime hash-size or similar.
100 */
101
102 static unsigned int d_hash_mask __read_mostly;
103 static unsigned int d_hash_shift __read_mostly;
104
105 static struct hlist_bl_head *dentry_hashtable __read_mostly;
106
107 static inline struct hlist_bl_head *d_hash(const struct dentry *parent,
108 unsigned int hash)
109 {
110 hash += (unsigned long) parent / L1_CACHE_BYTES;
111 return dentry_hashtable + hash_32(hash, d_hash_shift);
112 }
113
114 #define IN_LOOKUP_SHIFT 10
115 static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT];
116
117 static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent,
118 unsigned int hash)
119 {
120 hash += (unsigned long) parent / L1_CACHE_BYTES;
121 return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT);
122 }
123
124
125 /* Statistics gathering. */
126 struct dentry_stat_t dentry_stat = {
127 .age_limit = 45,
128 };
129
130 static DEFINE_PER_CPU(long, nr_dentry);
131 static DEFINE_PER_CPU(long, nr_dentry_unused);
132
133 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
134
135 /*
136 * Here we resort to our own counters instead of using generic per-cpu counters
137 * for consistency with what the vfs inode code does. We are expected to harvest
138 * better code and performance by having our own specialized counters.
139 *
140 * Please note that the loop is done over all possible CPUs, not over all online
141 * CPUs. The reason for this is that we don't want to play games with CPUs going
142 * on and off. If one of them goes off, we will just keep their counters.
143 *
144 * glommer: See cffbc8a for details, and if you ever intend to change this,
145 * please update all vfs counters to match.
146 */
147 static long get_nr_dentry(void)
148 {
149 int i;
150 long sum = 0;
151 for_each_possible_cpu(i)
152 sum += per_cpu(nr_dentry, i);
153 return sum < 0 ? 0 : sum;
154 }
155
156 static long get_nr_dentry_unused(void)
157 {
158 int i;
159 long sum = 0;
160 for_each_possible_cpu(i)
161 sum += per_cpu(nr_dentry_unused, i);
162 return sum < 0 ? 0 : sum;
163 }
164
165 int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer,
166 size_t *lenp, loff_t *ppos)
167 {
168 dentry_stat.nr_dentry = get_nr_dentry();
169 dentry_stat.nr_unused = get_nr_dentry_unused();
170 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
171 }
172 #endif
173
174 /*
175 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
176 * The strings are both count bytes long, and count is non-zero.
177 */
178 #ifdef CONFIG_DCACHE_WORD_ACCESS
179
180 #include <asm/word-at-a-time.h>
181 /*
182 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
183 * aligned allocation for this particular component. We don't
184 * strictly need the load_unaligned_zeropad() safety, but it
185 * doesn't hurt either.
186 *
187 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
188 * need the careful unaligned handling.
189 */
190 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
191 {
192 unsigned long a,b,mask;
193
194 for (;;) {
195 a = *(unsigned long *)cs;
196 b = load_unaligned_zeropad(ct);
197 if (tcount < sizeof(unsigned long))
198 break;
199 if (unlikely(a != b))
200 return 1;
201 cs += sizeof(unsigned long);
202 ct += sizeof(unsigned long);
203 tcount -= sizeof(unsigned long);
204 if (!tcount)
205 return 0;
206 }
207 mask = bytemask_from_count(tcount);
208 return unlikely(!!((a ^ b) & mask));
209 }
210
211 #else
212
213 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
214 {
215 do {
216 if (*cs != *ct)
217 return 1;
218 cs++;
219 ct++;
220 tcount--;
221 } while (tcount);
222 return 0;
223 }
224
225 #endif
226
227 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
228 {
229 /*
230 * Be careful about RCU walk racing with rename:
231 * use 'lockless_dereference' to fetch the name pointer.
232 *
233 * NOTE! Even if a rename will mean that the length
234 * was not loaded atomically, we don't care. The
235 * RCU walk will check the sequence count eventually,
236 * and catch it. And we won't overrun the buffer,
237 * because we're reading the name pointer atomically,
238 * and a dentry name is guaranteed to be properly
239 * terminated with a NUL byte.
240 *
241 * End result: even if 'len' is wrong, we'll exit
242 * early because the data cannot match (there can
243 * be no NUL in the ct/tcount data)
244 */
245 const unsigned char *cs = lockless_dereference(dentry->d_name.name);
246
247 return dentry_string_cmp(cs, ct, tcount);
248 }
249
250 struct external_name {
251 union {
252 atomic_t count;
253 struct rcu_head head;
254 } u;
255 unsigned char name[];
256 };
257
258 static inline struct external_name *external_name(struct dentry *dentry)
259 {
260 return container_of(dentry->d_name.name, struct external_name, name[0]);
261 }
262
263 static void __d_free(struct rcu_head *head)
264 {
265 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
266
267 kmem_cache_free(dentry_cache, dentry);
268 }
269
270 static void __d_free_external(struct rcu_head *head)
271 {
272 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
273 kfree(external_name(dentry));
274 kmem_cache_free(dentry_cache, dentry);
275 }
276
277 static inline int dname_external(const struct dentry *dentry)
278 {
279 return dentry->d_name.name != dentry->d_iname;
280 }
281
282 static inline void __d_set_inode_and_type(struct dentry *dentry,
283 struct inode *inode,
284 unsigned type_flags)
285 {
286 unsigned flags;
287
288 dentry->d_inode = inode;
289 flags = READ_ONCE(dentry->d_flags);
290 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
291 flags |= type_flags;
292 WRITE_ONCE(dentry->d_flags, flags);
293 }
294
295 static inline void __d_clear_type_and_inode(struct dentry *dentry)
296 {
297 unsigned flags = READ_ONCE(dentry->d_flags);
298
299 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
300 WRITE_ONCE(dentry->d_flags, flags);
301 dentry->d_inode = NULL;
302 }
303
304 static void dentry_free(struct dentry *dentry)
305 {
306 WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
307 if (unlikely(dname_external(dentry))) {
308 struct external_name *p = external_name(dentry);
309 if (likely(atomic_dec_and_test(&p->u.count))) {
310 call_rcu(&dentry->d_u.d_rcu, __d_free_external);
311 return;
312 }
313 }
314 /* if dentry was never visible to RCU, immediate free is OK */
315 if (!(dentry->d_flags & DCACHE_RCUACCESS))
316 __d_free(&dentry->d_u.d_rcu);
317 else
318 call_rcu(&dentry->d_u.d_rcu, __d_free);
319 }
320
321 /**
322 * dentry_rcuwalk_invalidate - invalidate in-progress rcu-walk lookups
323 * @dentry: the target dentry
324 * After this call, in-progress rcu-walk path lookup will fail. This
325 * should be called after unhashing, and after changing d_inode (if
326 * the dentry has not already been unhashed).
327 */
328 static inline void dentry_rcuwalk_invalidate(struct dentry *dentry)
329 {
330 lockdep_assert_held(&dentry->d_lock);
331 /* Go through am invalidation barrier */
332 write_seqcount_invalidate(&dentry->d_seq);
333 }
334
335 /*
336 * Release the dentry's inode, using the filesystem
337 * d_iput() operation if defined.
338 */
339 static void dentry_unlink_inode(struct dentry * dentry)
340 __releases(dentry->d_lock)
341 __releases(dentry->d_inode->i_lock)
342 {
343 struct inode *inode = dentry->d_inode;
344 bool hashed = !d_unhashed(dentry);
345
346 if (hashed)
347 raw_write_seqcount_begin(&dentry->d_seq);
348 __d_clear_type_and_inode(dentry);
349 hlist_del_init(&dentry->d_u.d_alias);
350 if (hashed)
351 raw_write_seqcount_end(&dentry->d_seq);
352 spin_unlock(&dentry->d_lock);
353 spin_unlock(&inode->i_lock);
354 if (!inode->i_nlink)
355 fsnotify_inoderemove(inode);
356 if (dentry->d_op && dentry->d_op->d_iput)
357 dentry->d_op->d_iput(dentry, inode);
358 else
359 iput(inode);
360 }
361
362 /*
363 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
364 * is in use - which includes both the "real" per-superblock
365 * LRU list _and_ the DCACHE_SHRINK_LIST use.
366 *
367 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
368 * on the shrink list (ie not on the superblock LRU list).
369 *
370 * The per-cpu "nr_dentry_unused" counters are updated with
371 * the DCACHE_LRU_LIST bit.
372 *
373 * These helper functions make sure we always follow the
374 * rules. d_lock must be held by the caller.
375 */
376 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
377 static void d_lru_add(struct dentry *dentry)
378 {
379 D_FLAG_VERIFY(dentry, 0);
380 dentry->d_flags |= DCACHE_LRU_LIST;
381 this_cpu_inc(nr_dentry_unused);
382 WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
383 }
384
385 static void d_lru_del(struct dentry *dentry)
386 {
387 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
388 dentry->d_flags &= ~DCACHE_LRU_LIST;
389 this_cpu_dec(nr_dentry_unused);
390 WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
391 }
392
393 static void d_shrink_del(struct dentry *dentry)
394 {
395 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
396 list_del_init(&dentry->d_lru);
397 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
398 this_cpu_dec(nr_dentry_unused);
399 }
400
401 static void d_shrink_add(struct dentry *dentry, struct list_head *list)
402 {
403 D_FLAG_VERIFY(dentry, 0);
404 list_add(&dentry->d_lru, list);
405 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
406 this_cpu_inc(nr_dentry_unused);
407 }
408
409 /*
410 * These can only be called under the global LRU lock, ie during the
411 * callback for freeing the LRU list. "isolate" removes it from the
412 * LRU lists entirely, while shrink_move moves it to the indicated
413 * private list.
414 */
415 static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
416 {
417 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
418 dentry->d_flags &= ~DCACHE_LRU_LIST;
419 this_cpu_dec(nr_dentry_unused);
420 list_lru_isolate(lru, &dentry->d_lru);
421 }
422
423 static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
424 struct list_head *list)
425 {
426 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
427 dentry->d_flags |= DCACHE_SHRINK_LIST;
428 list_lru_isolate_move(lru, &dentry->d_lru, list);
429 }
430
431 /*
432 * dentry_lru_(add|del)_list) must be called with d_lock held.
433 */
434 static void dentry_lru_add(struct dentry *dentry)
435 {
436 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
437 d_lru_add(dentry);
438 }
439
440 /**
441 * d_drop - drop a dentry
442 * @dentry: dentry to drop
443 *
444 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
445 * be found through a VFS lookup any more. Note that this is different from
446 * deleting the dentry - d_delete will try to mark the dentry negative if
447 * possible, giving a successful _negative_ lookup, while d_drop will
448 * just make the cache lookup fail.
449 *
450 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
451 * reason (NFS timeouts or autofs deletes).
452 *
453 * __d_drop requires dentry->d_lock.
454 */
455 void __d_drop(struct dentry *dentry)
456 {
457 if (!d_unhashed(dentry)) {
458 struct hlist_bl_head *b;
459 /*
460 * Hashed dentries are normally on the dentry hashtable,
461 * with the exception of those newly allocated by
462 * d_obtain_alias, which are always IS_ROOT:
463 */
464 if (unlikely(IS_ROOT(dentry)))
465 b = &dentry->d_sb->s_anon;
466 else
467 b = d_hash(dentry->d_parent, dentry->d_name.hash);
468
469 hlist_bl_lock(b);
470 __hlist_bl_del(&dentry->d_hash);
471 dentry->d_hash.pprev = NULL;
472 hlist_bl_unlock(b);
473 dentry_rcuwalk_invalidate(dentry);
474 }
475 }
476 EXPORT_SYMBOL(__d_drop);
477
478 void d_drop(struct dentry *dentry)
479 {
480 spin_lock(&dentry->d_lock);
481 __d_drop(dentry);
482 spin_unlock(&dentry->d_lock);
483 }
484 EXPORT_SYMBOL(d_drop);
485
486 static inline void dentry_unlist(struct dentry *dentry, struct dentry *parent)
487 {
488 struct dentry *next;
489 /*
490 * Inform d_walk() and shrink_dentry_list() that we are no longer
491 * attached to the dentry tree
492 */
493 dentry->d_flags |= DCACHE_DENTRY_KILLED;
494 if (unlikely(list_empty(&dentry->d_child)))
495 return;
496 __list_del_entry(&dentry->d_child);
497 /*
498 * Cursors can move around the list of children. While we'd been
499 * a normal list member, it didn't matter - ->d_child.next would've
500 * been updated. However, from now on it won't be and for the
501 * things like d_walk() it might end up with a nasty surprise.
502 * Normally d_walk() doesn't care about cursors moving around -
503 * ->d_lock on parent prevents that and since a cursor has no children
504 * of its own, we get through it without ever unlocking the parent.
505 * There is one exception, though - if we ascend from a child that
506 * gets killed as soon as we unlock it, the next sibling is found
507 * using the value left in its ->d_child.next. And if _that_
508 * pointed to a cursor, and cursor got moved (e.g. by lseek())
509 * before d_walk() regains parent->d_lock, we'll end up skipping
510 * everything the cursor had been moved past.
511 *
512 * Solution: make sure that the pointer left behind in ->d_child.next
513 * points to something that won't be moving around. I.e. skip the
514 * cursors.
515 */
516 while (dentry->d_child.next != &parent->d_subdirs) {
517 next = list_entry(dentry->d_child.next, struct dentry, d_child);
518 if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR)))
519 break;
520 dentry->d_child.next = next->d_child.next;
521 }
522 }
523
524 static void __dentry_kill(struct dentry *dentry)
525 {
526 struct dentry *parent = NULL;
527 bool can_free = true;
528 if (!IS_ROOT(dentry))
529 parent = dentry->d_parent;
530
531 /*
532 * The dentry is now unrecoverably dead to the world.
533 */
534 lockref_mark_dead(&dentry->d_lockref);
535
536 /*
537 * inform the fs via d_prune that this dentry is about to be
538 * unhashed and destroyed.
539 */
540 if (dentry->d_flags & DCACHE_OP_PRUNE)
541 dentry->d_op->d_prune(dentry);
542
543 if (dentry->d_flags & DCACHE_LRU_LIST) {
544 if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
545 d_lru_del(dentry);
546 }
547 /* if it was on the hash then remove it */
548 __d_drop(dentry);
549 dentry_unlist(dentry, parent);
550 if (parent)
551 spin_unlock(&parent->d_lock);
552 if (dentry->d_inode)
553 dentry_unlink_inode(dentry);
554 else
555 spin_unlock(&dentry->d_lock);
556 this_cpu_dec(nr_dentry);
557 if (dentry->d_op && dentry->d_op->d_release)
558 dentry->d_op->d_release(dentry);
559
560 spin_lock(&dentry->d_lock);
561 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
562 dentry->d_flags |= DCACHE_MAY_FREE;
563 can_free = false;
564 }
565 spin_unlock(&dentry->d_lock);
566 if (likely(can_free))
567 dentry_free(dentry);
568 }
569
570 /*
571 * Finish off a dentry we've decided to kill.
572 * dentry->d_lock must be held, returns with it unlocked.
573 * If ref is non-zero, then decrement the refcount too.
574 * Returns dentry requiring refcount drop, or NULL if we're done.
575 */
576 static struct dentry *dentry_kill(struct dentry *dentry)
577 __releases(dentry->d_lock)
578 {
579 struct inode *inode = dentry->d_inode;
580 struct dentry *parent = NULL;
581
582 if (inode && unlikely(!spin_trylock(&inode->i_lock)))
583 goto failed;
584
585 if (!IS_ROOT(dentry)) {
586 parent = dentry->d_parent;
587 if (unlikely(!spin_trylock(&parent->d_lock))) {
588 if (inode)
589 spin_unlock(&inode->i_lock);
590 goto failed;
591 }
592 }
593
594 __dentry_kill(dentry);
595 return parent;
596
597 failed:
598 spin_unlock(&dentry->d_lock);
599 return dentry; /* try again with same dentry */
600 }
601
602 static inline struct dentry *lock_parent(struct dentry *dentry)
603 {
604 struct dentry *parent = dentry->d_parent;
605 if (IS_ROOT(dentry))
606 return NULL;
607 if (unlikely(dentry->d_lockref.count < 0))
608 return NULL;
609 if (likely(spin_trylock(&parent->d_lock)))
610 return parent;
611 rcu_read_lock();
612 spin_unlock(&dentry->d_lock);
613 again:
614 parent = ACCESS_ONCE(dentry->d_parent);
615 spin_lock(&parent->d_lock);
616 /*
617 * We can't blindly lock dentry until we are sure
618 * that we won't violate the locking order.
619 * Any changes of dentry->d_parent must have
620 * been done with parent->d_lock held, so
621 * spin_lock() above is enough of a barrier
622 * for checking if it's still our child.
623 */
624 if (unlikely(parent != dentry->d_parent)) {
625 spin_unlock(&parent->d_lock);
626 goto again;
627 }
628 rcu_read_unlock();
629 if (parent != dentry)
630 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
631 else
632 parent = NULL;
633 return parent;
634 }
635
636 /*
637 * Try to do a lockless dput(), and return whether that was successful.
638 *
639 * If unsuccessful, we return false, having already taken the dentry lock.
640 *
641 * The caller needs to hold the RCU read lock, so that the dentry is
642 * guaranteed to stay around even if the refcount goes down to zero!
643 */
644 static inline bool fast_dput(struct dentry *dentry)
645 {
646 int ret;
647 unsigned int d_flags;
648
649 /*
650 * If we have a d_op->d_delete() operation, we sould not
651 * let the dentry count go to zero, so use "put_or_lock".
652 */
653 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE))
654 return lockref_put_or_lock(&dentry->d_lockref);
655
656 /*
657 * .. otherwise, we can try to just decrement the
658 * lockref optimistically.
659 */
660 ret = lockref_put_return(&dentry->d_lockref);
661
662 /*
663 * If the lockref_put_return() failed due to the lock being held
664 * by somebody else, the fast path has failed. We will need to
665 * get the lock, and then check the count again.
666 */
667 if (unlikely(ret < 0)) {
668 spin_lock(&dentry->d_lock);
669 if (dentry->d_lockref.count > 1) {
670 dentry->d_lockref.count--;
671 spin_unlock(&dentry->d_lock);
672 return 1;
673 }
674 return 0;
675 }
676
677 /*
678 * If we weren't the last ref, we're done.
679 */
680 if (ret)
681 return 1;
682
683 /*
684 * Careful, careful. The reference count went down
685 * to zero, but we don't hold the dentry lock, so
686 * somebody else could get it again, and do another
687 * dput(), and we need to not race with that.
688 *
689 * However, there is a very special and common case
690 * where we don't care, because there is nothing to
691 * do: the dentry is still hashed, it does not have
692 * a 'delete' op, and it's referenced and already on
693 * the LRU list.
694 *
695 * NOTE! Since we aren't locked, these values are
696 * not "stable". However, it is sufficient that at
697 * some point after we dropped the reference the
698 * dentry was hashed and the flags had the proper
699 * value. Other dentry users may have re-gotten
700 * a reference to the dentry and change that, but
701 * our work is done - we can leave the dentry
702 * around with a zero refcount.
703 */
704 smp_rmb();
705 d_flags = ACCESS_ONCE(dentry->d_flags);
706 d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST | DCACHE_DISCONNECTED;
707
708 /* Nothing to do? Dropping the reference was all we needed? */
709 if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry))
710 return 1;
711
712 /*
713 * Not the fast normal case? Get the lock. We've already decremented
714 * the refcount, but we'll need to re-check the situation after
715 * getting the lock.
716 */
717 spin_lock(&dentry->d_lock);
718
719 /*
720 * Did somebody else grab a reference to it in the meantime, and
721 * we're no longer the last user after all? Alternatively, somebody
722 * else could have killed it and marked it dead. Either way, we
723 * don't need to do anything else.
724 */
725 if (dentry->d_lockref.count) {
726 spin_unlock(&dentry->d_lock);
727 return 1;
728 }
729
730 /*
731 * Re-get the reference we optimistically dropped. We hold the
732 * lock, and we just tested that it was zero, so we can just
733 * set it to 1.
734 */
735 dentry->d_lockref.count = 1;
736 return 0;
737 }
738
739
740 /*
741 * This is dput
742 *
743 * This is complicated by the fact that we do not want to put
744 * dentries that are no longer on any hash chain on the unused
745 * list: we'd much rather just get rid of them immediately.
746 *
747 * However, that implies that we have to traverse the dentry
748 * tree upwards to the parents which might _also_ now be
749 * scheduled for deletion (it may have been only waiting for
750 * its last child to go away).
751 *
752 * This tail recursion is done by hand as we don't want to depend
753 * on the compiler to always get this right (gcc generally doesn't).
754 * Real recursion would eat up our stack space.
755 */
756
757 /*
758 * dput - release a dentry
759 * @dentry: dentry to release
760 *
761 * Release a dentry. This will drop the usage count and if appropriate
762 * call the dentry unlink method as well as removing it from the queues and
763 * releasing its resources. If the parent dentries were scheduled for release
764 * they too may now get deleted.
765 */
766 void dput(struct dentry *dentry)
767 {
768 if (unlikely(!dentry))
769 return;
770
771 repeat:
772 might_sleep();
773
774 rcu_read_lock();
775 if (likely(fast_dput(dentry))) {
776 rcu_read_unlock();
777 return;
778 }
779
780 /* Slow case: now with the dentry lock held */
781 rcu_read_unlock();
782
783 WARN_ON(d_in_lookup(dentry));
784
785 /* Unreachable? Get rid of it */
786 if (unlikely(d_unhashed(dentry)))
787 goto kill_it;
788
789 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
790 goto kill_it;
791
792 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
793 if (dentry->d_op->d_delete(dentry))
794 goto kill_it;
795 }
796
797 if (!(dentry->d_flags & DCACHE_REFERENCED))
798 dentry->d_flags |= DCACHE_REFERENCED;
799 dentry_lru_add(dentry);
800
801 dentry->d_lockref.count--;
802 spin_unlock(&dentry->d_lock);
803 return;
804
805 kill_it:
806 dentry = dentry_kill(dentry);
807 if (dentry) {
808 cond_resched();
809 goto repeat;
810 }
811 }
812 EXPORT_SYMBOL(dput);
813
814
815 /* This must be called with d_lock held */
816 static inline void __dget_dlock(struct dentry *dentry)
817 {
818 dentry->d_lockref.count++;
819 }
820
821 static inline void __dget(struct dentry *dentry)
822 {
823 lockref_get(&dentry->d_lockref);
824 }
825
826 struct dentry *dget_parent(struct dentry *dentry)
827 {
828 int gotref;
829 struct dentry *ret;
830
831 /*
832 * Do optimistic parent lookup without any
833 * locking.
834 */
835 rcu_read_lock();
836 ret = ACCESS_ONCE(dentry->d_parent);
837 gotref = lockref_get_not_zero(&ret->d_lockref);
838 rcu_read_unlock();
839 if (likely(gotref)) {
840 if (likely(ret == ACCESS_ONCE(dentry->d_parent)))
841 return ret;
842 dput(ret);
843 }
844
845 repeat:
846 /*
847 * Don't need rcu_dereference because we re-check it was correct under
848 * the lock.
849 */
850 rcu_read_lock();
851 ret = dentry->d_parent;
852 spin_lock(&ret->d_lock);
853 if (unlikely(ret != dentry->d_parent)) {
854 spin_unlock(&ret->d_lock);
855 rcu_read_unlock();
856 goto repeat;
857 }
858 rcu_read_unlock();
859 BUG_ON(!ret->d_lockref.count);
860 ret->d_lockref.count++;
861 spin_unlock(&ret->d_lock);
862 return ret;
863 }
864 EXPORT_SYMBOL(dget_parent);
865
866 /**
867 * d_find_alias - grab a hashed alias of inode
868 * @inode: inode in question
869 *
870 * If inode has a hashed alias, or is a directory and has any alias,
871 * acquire the reference to alias and return it. Otherwise return NULL.
872 * Notice that if inode is a directory there can be only one alias and
873 * it can be unhashed only if it has no children, or if it is the root
874 * of a filesystem, or if the directory was renamed and d_revalidate
875 * was the first vfs operation to notice.
876 *
877 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
878 * any other hashed alias over that one.
879 */
880 static struct dentry *__d_find_alias(struct inode *inode)
881 {
882 struct dentry *alias, *discon_alias;
883
884 again:
885 discon_alias = NULL;
886 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
887 spin_lock(&alias->d_lock);
888 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
889 if (IS_ROOT(alias) &&
890 (alias->d_flags & DCACHE_DISCONNECTED)) {
891 discon_alias = alias;
892 } else {
893 __dget_dlock(alias);
894 spin_unlock(&alias->d_lock);
895 return alias;
896 }
897 }
898 spin_unlock(&alias->d_lock);
899 }
900 if (discon_alias) {
901 alias = discon_alias;
902 spin_lock(&alias->d_lock);
903 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
904 __dget_dlock(alias);
905 spin_unlock(&alias->d_lock);
906 return alias;
907 }
908 spin_unlock(&alias->d_lock);
909 goto again;
910 }
911 return NULL;
912 }
913
914 struct dentry *d_find_alias(struct inode *inode)
915 {
916 struct dentry *de = NULL;
917
918 if (!hlist_empty(&inode->i_dentry)) {
919 spin_lock(&inode->i_lock);
920 de = __d_find_alias(inode);
921 spin_unlock(&inode->i_lock);
922 }
923 return de;
924 }
925 EXPORT_SYMBOL(d_find_alias);
926
927 /*
928 * Try to kill dentries associated with this inode.
929 * WARNING: you must own a reference to inode.
930 */
931 void d_prune_aliases(struct inode *inode)
932 {
933 struct dentry *dentry;
934 restart:
935 spin_lock(&inode->i_lock);
936 hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
937 spin_lock(&dentry->d_lock);
938 if (!dentry->d_lockref.count) {
939 struct dentry *parent = lock_parent(dentry);
940 if (likely(!dentry->d_lockref.count)) {
941 __dentry_kill(dentry);
942 dput(parent);
943 goto restart;
944 }
945 if (parent)
946 spin_unlock(&parent->d_lock);
947 }
948 spin_unlock(&dentry->d_lock);
949 }
950 spin_unlock(&inode->i_lock);
951 }
952 EXPORT_SYMBOL(d_prune_aliases);
953
954 static void shrink_dentry_list(struct list_head *list)
955 {
956 struct dentry *dentry, *parent;
957
958 while (!list_empty(list)) {
959 struct inode *inode;
960 dentry = list_entry(list->prev, struct dentry, d_lru);
961 spin_lock(&dentry->d_lock);
962 parent = lock_parent(dentry);
963
964 /*
965 * The dispose list is isolated and dentries are not accounted
966 * to the LRU here, so we can simply remove it from the list
967 * here regardless of whether it is referenced or not.
968 */
969 d_shrink_del(dentry);
970
971 /*
972 * We found an inuse dentry which was not removed from
973 * the LRU because of laziness during lookup. Do not free it.
974 */
975 if (dentry->d_lockref.count > 0) {
976 spin_unlock(&dentry->d_lock);
977 if (parent)
978 spin_unlock(&parent->d_lock);
979 continue;
980 }
981
982
983 if (unlikely(dentry->d_flags & DCACHE_DENTRY_KILLED)) {
984 bool can_free = dentry->d_flags & DCACHE_MAY_FREE;
985 spin_unlock(&dentry->d_lock);
986 if (parent)
987 spin_unlock(&parent->d_lock);
988 if (can_free)
989 dentry_free(dentry);
990 continue;
991 }
992
993 inode = dentry->d_inode;
994 if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
995 d_shrink_add(dentry, list);
996 spin_unlock(&dentry->d_lock);
997 if (parent)
998 spin_unlock(&parent->d_lock);
999 continue;
1000 }
1001
1002 __dentry_kill(dentry);
1003
1004 /*
1005 * We need to prune ancestors too. This is necessary to prevent
1006 * quadratic behavior of shrink_dcache_parent(), but is also
1007 * expected to be beneficial in reducing dentry cache
1008 * fragmentation.
1009 */
1010 dentry = parent;
1011 while (dentry && !lockref_put_or_lock(&dentry->d_lockref)) {
1012 parent = lock_parent(dentry);
1013 if (dentry->d_lockref.count != 1) {
1014 dentry->d_lockref.count--;
1015 spin_unlock(&dentry->d_lock);
1016 if (parent)
1017 spin_unlock(&parent->d_lock);
1018 break;
1019 }
1020 inode = dentry->d_inode; /* can't be NULL */
1021 if (unlikely(!spin_trylock(&inode->i_lock))) {
1022 spin_unlock(&dentry->d_lock);
1023 if (parent)
1024 spin_unlock(&parent->d_lock);
1025 cpu_relax();
1026 continue;
1027 }
1028 __dentry_kill(dentry);
1029 dentry = parent;
1030 }
1031 }
1032 }
1033
1034 static enum lru_status dentry_lru_isolate(struct list_head *item,
1035 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1036 {
1037 struct list_head *freeable = arg;
1038 struct dentry *dentry = container_of(item, struct dentry, d_lru);
1039
1040
1041 /*
1042 * we are inverting the lru lock/dentry->d_lock here,
1043 * so use a trylock. If we fail to get the lock, just skip
1044 * it
1045 */
1046 if (!spin_trylock(&dentry->d_lock))
1047 return LRU_SKIP;
1048
1049 /*
1050 * Referenced dentries are still in use. If they have active
1051 * counts, just remove them from the LRU. Otherwise give them
1052 * another pass through the LRU.
1053 */
1054 if (dentry->d_lockref.count) {
1055 d_lru_isolate(lru, dentry);
1056 spin_unlock(&dentry->d_lock);
1057 return LRU_REMOVED;
1058 }
1059
1060 if (dentry->d_flags & DCACHE_REFERENCED) {
1061 dentry->d_flags &= ~DCACHE_REFERENCED;
1062 spin_unlock(&dentry->d_lock);
1063
1064 /*
1065 * The list move itself will be made by the common LRU code. At
1066 * this point, we've dropped the dentry->d_lock but keep the
1067 * lru lock. This is safe to do, since every list movement is
1068 * protected by the lru lock even if both locks are held.
1069 *
1070 * This is guaranteed by the fact that all LRU management
1071 * functions are intermediated by the LRU API calls like
1072 * list_lru_add and list_lru_del. List movement in this file
1073 * only ever occur through this functions or through callbacks
1074 * like this one, that are called from the LRU API.
1075 *
1076 * The only exceptions to this are functions like
1077 * shrink_dentry_list, and code that first checks for the
1078 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be
1079 * operating only with stack provided lists after they are
1080 * properly isolated from the main list. It is thus, always a
1081 * local access.
1082 */
1083 return LRU_ROTATE;
1084 }
1085
1086 d_lru_shrink_move(lru, dentry, freeable);
1087 spin_unlock(&dentry->d_lock);
1088
1089 return LRU_REMOVED;
1090 }
1091
1092 /**
1093 * prune_dcache_sb - shrink the dcache
1094 * @sb: superblock
1095 * @sc: shrink control, passed to list_lru_shrink_walk()
1096 *
1097 * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1098 * is done when we need more memory and called from the superblock shrinker
1099 * function.
1100 *
1101 * This function may fail to free any resources if all the dentries are in
1102 * use.
1103 */
1104 long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
1105 {
1106 LIST_HEAD(dispose);
1107 long freed;
1108
1109 freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1110 dentry_lru_isolate, &dispose);
1111 shrink_dentry_list(&dispose);
1112 return freed;
1113 }
1114
1115 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
1116 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1117 {
1118 struct list_head *freeable = arg;
1119 struct dentry *dentry = container_of(item, struct dentry, d_lru);
1120
1121 /*
1122 * we are inverting the lru lock/dentry->d_lock here,
1123 * so use a trylock. If we fail to get the lock, just skip
1124 * it
1125 */
1126 if (!spin_trylock(&dentry->d_lock))
1127 return LRU_SKIP;
1128
1129 d_lru_shrink_move(lru, dentry, freeable);
1130 spin_unlock(&dentry->d_lock);
1131
1132 return LRU_REMOVED;
1133 }
1134
1135
1136 /**
1137 * shrink_dcache_sb - shrink dcache for a superblock
1138 * @sb: superblock
1139 *
1140 * Shrink the dcache for the specified super block. This is used to free
1141 * the dcache before unmounting a file system.
1142 */
1143 void shrink_dcache_sb(struct super_block *sb)
1144 {
1145 long freed;
1146
1147 do {
1148 LIST_HEAD(dispose);
1149
1150 freed = list_lru_walk(&sb->s_dentry_lru,
1151 dentry_lru_isolate_shrink, &dispose, UINT_MAX);
1152
1153 this_cpu_sub(nr_dentry_unused, freed);
1154 shrink_dentry_list(&dispose);
1155 } while (freed > 0);
1156 }
1157 EXPORT_SYMBOL(shrink_dcache_sb);
1158
1159 /**
1160 * enum d_walk_ret - action to talke during tree walk
1161 * @D_WALK_CONTINUE: contrinue walk
1162 * @D_WALK_QUIT: quit walk
1163 * @D_WALK_NORETRY: quit when retry is needed
1164 * @D_WALK_SKIP: skip this dentry and its children
1165 */
1166 enum d_walk_ret {
1167 D_WALK_CONTINUE,
1168 D_WALK_QUIT,
1169 D_WALK_NORETRY,
1170 D_WALK_SKIP,
1171 };
1172
1173 /**
1174 * d_walk - walk the dentry tree
1175 * @parent: start of walk
1176 * @data: data passed to @enter() and @finish()
1177 * @enter: callback when first entering the dentry
1178 * @finish: callback when successfully finished the walk
1179 *
1180 * The @enter() and @finish() callbacks are called with d_lock held.
1181 */
1182 static void d_walk(struct dentry *parent, void *data,
1183 enum d_walk_ret (*enter)(void *, struct dentry *),
1184 void (*finish)(void *))
1185 {
1186 struct dentry *this_parent;
1187 struct list_head *next;
1188 unsigned seq = 0;
1189 enum d_walk_ret ret;
1190 bool retry = true;
1191
1192 again:
1193 read_seqbegin_or_lock(&rename_lock, &seq);
1194 this_parent = parent;
1195 spin_lock(&this_parent->d_lock);
1196
1197 ret = enter(data, this_parent);
1198 switch (ret) {
1199 case D_WALK_CONTINUE:
1200 break;
1201 case D_WALK_QUIT:
1202 case D_WALK_SKIP:
1203 goto out_unlock;
1204 case D_WALK_NORETRY:
1205 retry = false;
1206 break;
1207 }
1208 repeat:
1209 next = this_parent->d_subdirs.next;
1210 resume:
1211 while (next != &this_parent->d_subdirs) {
1212 struct list_head *tmp = next;
1213 struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1214 next = tmp->next;
1215
1216 if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR))
1217 continue;
1218
1219 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1220
1221 ret = enter(data, dentry);
1222 switch (ret) {
1223 case D_WALK_CONTINUE:
1224 break;
1225 case D_WALK_QUIT:
1226 spin_unlock(&dentry->d_lock);
1227 goto out_unlock;
1228 case D_WALK_NORETRY:
1229 retry = false;
1230 break;
1231 case D_WALK_SKIP:
1232 spin_unlock(&dentry->d_lock);
1233 continue;
1234 }
1235
1236 if (!list_empty(&dentry->d_subdirs)) {
1237 spin_unlock(&this_parent->d_lock);
1238 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1239 this_parent = dentry;
1240 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1241 goto repeat;
1242 }
1243 spin_unlock(&dentry->d_lock);
1244 }
1245 /*
1246 * All done at this level ... ascend and resume the search.
1247 */
1248 rcu_read_lock();
1249 ascend:
1250 if (this_parent != parent) {
1251 struct dentry *child = this_parent;
1252 this_parent = child->d_parent;
1253
1254 spin_unlock(&child->d_lock);
1255 spin_lock(&this_parent->d_lock);
1256
1257 /* might go back up the wrong parent if we have had a rename. */
1258 if (need_seqretry(&rename_lock, seq))
1259 goto rename_retry;
1260 /* go into the first sibling still alive */
1261 do {
1262 next = child->d_child.next;
1263 if (next == &this_parent->d_subdirs)
1264 goto ascend;
1265 child = list_entry(next, struct dentry, d_child);
1266 } while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED));
1267 rcu_read_unlock();
1268 goto resume;
1269 }
1270 if (need_seqretry(&rename_lock, seq))
1271 goto rename_retry;
1272 rcu_read_unlock();
1273 if (finish)
1274 finish(data);
1275
1276 out_unlock:
1277 spin_unlock(&this_parent->d_lock);
1278 done_seqretry(&rename_lock, seq);
1279 return;
1280
1281 rename_retry:
1282 spin_unlock(&this_parent->d_lock);
1283 rcu_read_unlock();
1284 BUG_ON(seq & 1);
1285 if (!retry)
1286 return;
1287 seq = 1;
1288 goto again;
1289 }
1290
1291 /*
1292 * Search for at least 1 mount point in the dentry's subdirs.
1293 * We descend to the next level whenever the d_subdirs
1294 * list is non-empty and continue searching.
1295 */
1296
1297 static enum d_walk_ret check_mount(void *data, struct dentry *dentry)
1298 {
1299 int *ret = data;
1300 if (d_mountpoint(dentry)) {
1301 *ret = 1;
1302 return D_WALK_QUIT;
1303 }
1304 return D_WALK_CONTINUE;
1305 }
1306
1307 /**
1308 * have_submounts - check for mounts over a dentry
1309 * @parent: dentry to check.
1310 *
1311 * Return true if the parent or its subdirectories contain
1312 * a mount point
1313 */
1314 int have_submounts(struct dentry *parent)
1315 {
1316 int ret = 0;
1317
1318 d_walk(parent, &ret, check_mount, NULL);
1319
1320 return ret;
1321 }
1322 EXPORT_SYMBOL(have_submounts);
1323
1324 /*
1325 * Called by mount code to set a mountpoint and check if the mountpoint is
1326 * reachable (e.g. NFS can unhash a directory dentry and then the complete
1327 * subtree can become unreachable).
1328 *
1329 * Only one of d_invalidate() and d_set_mounted() must succeed. For
1330 * this reason take rename_lock and d_lock on dentry and ancestors.
1331 */
1332 int d_set_mounted(struct dentry *dentry)
1333 {
1334 struct dentry *p;
1335 int ret = -ENOENT;
1336 write_seqlock(&rename_lock);
1337 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1338 /* Need exclusion wrt. d_invalidate() */
1339 spin_lock(&p->d_lock);
1340 if (unlikely(d_unhashed(p))) {
1341 spin_unlock(&p->d_lock);
1342 goto out;
1343 }
1344 spin_unlock(&p->d_lock);
1345 }
1346 spin_lock(&dentry->d_lock);
1347 if (!d_unlinked(dentry)) {
1348 dentry->d_flags |= DCACHE_MOUNTED;
1349 ret = 0;
1350 }
1351 spin_unlock(&dentry->d_lock);
1352 out:
1353 write_sequnlock(&rename_lock);
1354 return ret;
1355 }
1356
1357 /*
1358 * Search the dentry child list of the specified parent,
1359 * and move any unused dentries to the end of the unused
1360 * list for prune_dcache(). We descend to the next level
1361 * whenever the d_subdirs list is non-empty and continue
1362 * searching.
1363 *
1364 * It returns zero iff there are no unused children,
1365 * otherwise it returns the number of children moved to
1366 * the end of the unused list. This may not be the total
1367 * number of unused children, because select_parent can
1368 * drop the lock and return early due to latency
1369 * constraints.
1370 */
1371
1372 struct select_data {
1373 struct dentry *start;
1374 struct list_head dispose;
1375 int found;
1376 };
1377
1378 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1379 {
1380 struct select_data *data = _data;
1381 enum d_walk_ret ret = D_WALK_CONTINUE;
1382
1383 if (data->start == dentry)
1384 goto out;
1385
1386 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1387 data->found++;
1388 } else {
1389 if (dentry->d_flags & DCACHE_LRU_LIST)
1390 d_lru_del(dentry);
1391 if (!dentry->d_lockref.count) {
1392 d_shrink_add(dentry, &data->dispose);
1393 data->found++;
1394 }
1395 }
1396 /*
1397 * We can return to the caller if we have found some (this
1398 * ensures forward progress). We'll be coming back to find
1399 * the rest.
1400 */
1401 if (!list_empty(&data->dispose))
1402 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1403 out:
1404 return ret;
1405 }
1406
1407 /**
1408 * shrink_dcache_parent - prune dcache
1409 * @parent: parent of entries to prune
1410 *
1411 * Prune the dcache to remove unused children of the parent dentry.
1412 */
1413 void shrink_dcache_parent(struct dentry *parent)
1414 {
1415 for (;;) {
1416 struct select_data data;
1417
1418 INIT_LIST_HEAD(&data.dispose);
1419 data.start = parent;
1420 data.found = 0;
1421
1422 d_walk(parent, &data, select_collect, NULL);
1423 if (!data.found)
1424 break;
1425
1426 shrink_dentry_list(&data.dispose);
1427 cond_resched();
1428 }
1429 }
1430 EXPORT_SYMBOL(shrink_dcache_parent);
1431
1432 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
1433 {
1434 /* it has busy descendents; complain about those instead */
1435 if (!list_empty(&dentry->d_subdirs))
1436 return D_WALK_CONTINUE;
1437
1438 /* root with refcount 1 is fine */
1439 if (dentry == _data && dentry->d_lockref.count == 1)
1440 return D_WALK_CONTINUE;
1441
1442 printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1443 " still in use (%d) [unmount of %s %s]\n",
1444 dentry,
1445 dentry->d_inode ?
1446 dentry->d_inode->i_ino : 0UL,
1447 dentry,
1448 dentry->d_lockref.count,
1449 dentry->d_sb->s_type->name,
1450 dentry->d_sb->s_id);
1451 WARN_ON(1);
1452 return D_WALK_CONTINUE;
1453 }
1454
1455 static void do_one_tree(struct dentry *dentry)
1456 {
1457 shrink_dcache_parent(dentry);
1458 d_walk(dentry, dentry, umount_check, NULL);
1459 d_drop(dentry);
1460 dput(dentry);
1461 }
1462
1463 /*
1464 * destroy the dentries attached to a superblock on unmounting
1465 */
1466 void shrink_dcache_for_umount(struct super_block *sb)
1467 {
1468 struct dentry *dentry;
1469
1470 WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
1471
1472 dentry = sb->s_root;
1473 sb->s_root = NULL;
1474 do_one_tree(dentry);
1475
1476 while (!hlist_bl_empty(&sb->s_anon)) {
1477 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash));
1478 do_one_tree(dentry);
1479 }
1480 }
1481
1482 struct detach_data {
1483 struct select_data select;
1484 struct dentry *mountpoint;
1485 };
1486 static enum d_walk_ret detach_and_collect(void *_data, struct dentry *dentry)
1487 {
1488 struct detach_data *data = _data;
1489
1490 if (d_mountpoint(dentry)) {
1491 __dget_dlock(dentry);
1492 data->mountpoint = dentry;
1493 return D_WALK_QUIT;
1494 }
1495
1496 return select_collect(&data->select, dentry);
1497 }
1498
1499 static void check_and_drop(void *_data)
1500 {
1501 struct detach_data *data = _data;
1502
1503 if (!data->mountpoint && !data->select.found)
1504 __d_drop(data->select.start);
1505 }
1506
1507 /**
1508 * d_invalidate - detach submounts, prune dcache, and drop
1509 * @dentry: dentry to invalidate (aka detach, prune and drop)
1510 *
1511 * no dcache lock.
1512 *
1513 * The final d_drop is done as an atomic operation relative to
1514 * rename_lock ensuring there are no races with d_set_mounted. This
1515 * ensures there are no unhashed dentries on the path to a mountpoint.
1516 */
1517 void d_invalidate(struct dentry *dentry)
1518 {
1519 /*
1520 * If it's already been dropped, return OK.
1521 */
1522 spin_lock(&dentry->d_lock);
1523 if (d_unhashed(dentry)) {
1524 spin_unlock(&dentry->d_lock);
1525 return;
1526 }
1527 spin_unlock(&dentry->d_lock);
1528
1529 /* Negative dentries can be dropped without further checks */
1530 if (!dentry->d_inode) {
1531 d_drop(dentry);
1532 return;
1533 }
1534
1535 for (;;) {
1536 struct detach_data data;
1537
1538 data.mountpoint = NULL;
1539 INIT_LIST_HEAD(&data.select.dispose);
1540 data.select.start = dentry;
1541 data.select.found = 0;
1542
1543 d_walk(dentry, &data, detach_and_collect, check_and_drop);
1544
1545 if (data.select.found)
1546 shrink_dentry_list(&data.select.dispose);
1547
1548 if (data.mountpoint) {
1549 detach_mounts(data.mountpoint);
1550 dput(data.mountpoint);
1551 }
1552
1553 if (!data.mountpoint && !data.select.found)
1554 break;
1555
1556 cond_resched();
1557 }
1558 }
1559 EXPORT_SYMBOL(d_invalidate);
1560
1561 /**
1562 * __d_alloc - allocate a dcache entry
1563 * @sb: filesystem it will belong to
1564 * @name: qstr of the name
1565 *
1566 * Allocates a dentry. It returns %NULL if there is insufficient memory
1567 * available. On a success the dentry is returned. The name passed in is
1568 * copied and the copy passed in may be reused after this call.
1569 */
1570
1571 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1572 {
1573 struct dentry *dentry;
1574 char *dname;
1575 int err;
1576
1577 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1578 if (!dentry)
1579 return NULL;
1580
1581 /*
1582 * We guarantee that the inline name is always NUL-terminated.
1583 * This way the memcpy() done by the name switching in rename
1584 * will still always have a NUL at the end, even if we might
1585 * be overwriting an internal NUL character
1586 */
1587 dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1588 if (unlikely(!name)) {
1589 static const struct qstr anon = QSTR_INIT("/", 1);
1590 name = &anon;
1591 dname = dentry->d_iname;
1592 } else if (name->len > DNAME_INLINE_LEN-1) {
1593 size_t size = offsetof(struct external_name, name[1]);
1594 struct external_name *p = kmalloc(size + name->len,
1595 GFP_KERNEL_ACCOUNT);
1596 if (!p) {
1597 kmem_cache_free(dentry_cache, dentry);
1598 return NULL;
1599 }
1600 atomic_set(&p->u.count, 1);
1601 dname = p->name;
1602 if (IS_ENABLED(CONFIG_DCACHE_WORD_ACCESS))
1603 kasan_unpoison_shadow(dname,
1604 round_up(name->len + 1, sizeof(unsigned long)));
1605 } else {
1606 dname = dentry->d_iname;
1607 }
1608
1609 dentry->d_name.len = name->len;
1610 dentry->d_name.hash = name->hash;
1611 memcpy(dname, name->name, name->len);
1612 dname[name->len] = 0;
1613
1614 /* Make sure we always see the terminating NUL character */
1615 smp_wmb();
1616 dentry->d_name.name = dname;
1617
1618 dentry->d_lockref.count = 1;
1619 dentry->d_flags = 0;
1620 spin_lock_init(&dentry->d_lock);
1621 seqcount_init(&dentry->d_seq);
1622 dentry->d_inode = NULL;
1623 dentry->d_parent = dentry;
1624 dentry->d_sb = sb;
1625 dentry->d_op = NULL;
1626 dentry->d_fsdata = NULL;
1627 INIT_HLIST_BL_NODE(&dentry->d_hash);
1628 INIT_LIST_HEAD(&dentry->d_lru);
1629 INIT_LIST_HEAD(&dentry->d_subdirs);
1630 INIT_HLIST_NODE(&dentry->d_u.d_alias);
1631 INIT_LIST_HEAD(&dentry->d_child);
1632 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1633
1634 if (dentry->d_op && dentry->d_op->d_init) {
1635 err = dentry->d_op->d_init(dentry);
1636 if (err) {
1637 if (dname_external(dentry))
1638 kfree(external_name(dentry));
1639 kmem_cache_free(dentry_cache, dentry);
1640 return NULL;
1641 }
1642 }
1643
1644 this_cpu_inc(nr_dentry);
1645
1646 return dentry;
1647 }
1648
1649 /**
1650 * d_alloc - allocate a dcache entry
1651 * @parent: parent of entry to allocate
1652 * @name: qstr of the name
1653 *
1654 * Allocates a dentry. It returns %NULL if there is insufficient memory
1655 * available. On a success the dentry is returned. The name passed in is
1656 * copied and the copy passed in may be reused after this call.
1657 */
1658 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1659 {
1660 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1661 if (!dentry)
1662 return NULL;
1663 dentry->d_flags |= DCACHE_RCUACCESS;
1664 spin_lock(&parent->d_lock);
1665 /*
1666 * don't need child lock because it is not subject
1667 * to concurrency here
1668 */
1669 __dget_dlock(parent);
1670 dentry->d_parent = parent;
1671 list_add(&dentry->d_child, &parent->d_subdirs);
1672 spin_unlock(&parent->d_lock);
1673
1674 return dentry;
1675 }
1676 EXPORT_SYMBOL(d_alloc);
1677
1678 struct dentry *d_alloc_cursor(struct dentry * parent)
1679 {
1680 struct dentry *dentry = __d_alloc(parent->d_sb, NULL);
1681 if (dentry) {
1682 dentry->d_flags |= DCACHE_RCUACCESS | DCACHE_DENTRY_CURSOR;
1683 dentry->d_parent = dget(parent);
1684 }
1685 return dentry;
1686 }
1687
1688 /**
1689 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1690 * @sb: the superblock
1691 * @name: qstr of the name
1692 *
1693 * For a filesystem that just pins its dentries in memory and never
1694 * performs lookups at all, return an unhashed IS_ROOT dentry.
1695 */
1696 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1697 {
1698 return __d_alloc(sb, name);
1699 }
1700 EXPORT_SYMBOL(d_alloc_pseudo);
1701
1702 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1703 {
1704 struct qstr q;
1705
1706 q.name = name;
1707 q.hash_len = hashlen_string(name);
1708 return d_alloc(parent, &q);
1709 }
1710 EXPORT_SYMBOL(d_alloc_name);
1711
1712 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1713 {
1714 WARN_ON_ONCE(dentry->d_op);
1715 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
1716 DCACHE_OP_COMPARE |
1717 DCACHE_OP_REVALIDATE |
1718 DCACHE_OP_WEAK_REVALIDATE |
1719 DCACHE_OP_DELETE |
1720 DCACHE_OP_REAL));
1721 dentry->d_op = op;
1722 if (!op)
1723 return;
1724 if (op->d_hash)
1725 dentry->d_flags |= DCACHE_OP_HASH;
1726 if (op->d_compare)
1727 dentry->d_flags |= DCACHE_OP_COMPARE;
1728 if (op->d_revalidate)
1729 dentry->d_flags |= DCACHE_OP_REVALIDATE;
1730 if (op->d_weak_revalidate)
1731 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1732 if (op->d_delete)
1733 dentry->d_flags |= DCACHE_OP_DELETE;
1734 if (op->d_prune)
1735 dentry->d_flags |= DCACHE_OP_PRUNE;
1736 if (op->d_real)
1737 dentry->d_flags |= DCACHE_OP_REAL;
1738
1739 }
1740 EXPORT_SYMBOL(d_set_d_op);
1741
1742
1743 /*
1744 * d_set_fallthru - Mark a dentry as falling through to a lower layer
1745 * @dentry - The dentry to mark
1746 *
1747 * Mark a dentry as falling through to the lower layer (as set with
1748 * d_pin_lower()). This flag may be recorded on the medium.
1749 */
1750 void d_set_fallthru(struct dentry *dentry)
1751 {
1752 spin_lock(&dentry->d_lock);
1753 dentry->d_flags |= DCACHE_FALLTHRU;
1754 spin_unlock(&dentry->d_lock);
1755 }
1756 EXPORT_SYMBOL(d_set_fallthru);
1757
1758 static unsigned d_flags_for_inode(struct inode *inode)
1759 {
1760 unsigned add_flags = DCACHE_REGULAR_TYPE;
1761
1762 if (!inode)
1763 return DCACHE_MISS_TYPE;
1764
1765 if (S_ISDIR(inode->i_mode)) {
1766 add_flags = DCACHE_DIRECTORY_TYPE;
1767 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1768 if (unlikely(!inode->i_op->lookup))
1769 add_flags = DCACHE_AUTODIR_TYPE;
1770 else
1771 inode->i_opflags |= IOP_LOOKUP;
1772 }
1773 goto type_determined;
1774 }
1775
1776 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1777 if (unlikely(inode->i_op->get_link)) {
1778 add_flags = DCACHE_SYMLINK_TYPE;
1779 goto type_determined;
1780 }
1781 inode->i_opflags |= IOP_NOFOLLOW;
1782 }
1783
1784 if (unlikely(!S_ISREG(inode->i_mode)))
1785 add_flags = DCACHE_SPECIAL_TYPE;
1786
1787 type_determined:
1788 if (unlikely(IS_AUTOMOUNT(inode)))
1789 add_flags |= DCACHE_NEED_AUTOMOUNT;
1790 return add_flags;
1791 }
1792
1793 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1794 {
1795 unsigned add_flags = d_flags_for_inode(inode);
1796 WARN_ON(d_in_lookup(dentry));
1797
1798 spin_lock(&dentry->d_lock);
1799 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
1800 raw_write_seqcount_begin(&dentry->d_seq);
1801 __d_set_inode_and_type(dentry, inode, add_flags);
1802 raw_write_seqcount_end(&dentry->d_seq);
1803 fsnotify_update_flags(dentry);
1804 spin_unlock(&dentry->d_lock);
1805 }
1806
1807 /**
1808 * d_instantiate - fill in inode information for a dentry
1809 * @entry: dentry to complete
1810 * @inode: inode to attach to this dentry
1811 *
1812 * Fill in inode information in the entry.
1813 *
1814 * This turns negative dentries into productive full members
1815 * of society.
1816 *
1817 * NOTE! This assumes that the inode count has been incremented
1818 * (or otherwise set) by the caller to indicate that it is now
1819 * in use by the dcache.
1820 */
1821
1822 void d_instantiate(struct dentry *entry, struct inode * inode)
1823 {
1824 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1825 if (inode) {
1826 security_d_instantiate(entry, inode);
1827 spin_lock(&inode->i_lock);
1828 __d_instantiate(entry, inode);
1829 spin_unlock(&inode->i_lock);
1830 }
1831 }
1832 EXPORT_SYMBOL(d_instantiate);
1833
1834 /**
1835 * d_instantiate_no_diralias - instantiate a non-aliased dentry
1836 * @entry: dentry to complete
1837 * @inode: inode to attach to this dentry
1838 *
1839 * Fill in inode information in the entry. If a directory alias is found, then
1840 * return an error (and drop inode). Together with d_materialise_unique() this
1841 * guarantees that a directory inode may never have more than one alias.
1842 */
1843 int d_instantiate_no_diralias(struct dentry *entry, struct inode *inode)
1844 {
1845 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1846
1847 security_d_instantiate(entry, inode);
1848 spin_lock(&inode->i_lock);
1849 if (S_ISDIR(inode->i_mode) && !hlist_empty(&inode->i_dentry)) {
1850 spin_unlock(&inode->i_lock);
1851 iput(inode);
1852 return -EBUSY;
1853 }
1854 __d_instantiate(entry, inode);
1855 spin_unlock(&inode->i_lock);
1856
1857 return 0;
1858 }
1859 EXPORT_SYMBOL(d_instantiate_no_diralias);
1860
1861 struct dentry *d_make_root(struct inode *root_inode)
1862 {
1863 struct dentry *res = NULL;
1864
1865 if (root_inode) {
1866 res = __d_alloc(root_inode->i_sb, NULL);
1867 if (res)
1868 d_instantiate(res, root_inode);
1869 else
1870 iput(root_inode);
1871 }
1872 return res;
1873 }
1874 EXPORT_SYMBOL(d_make_root);
1875
1876 static struct dentry * __d_find_any_alias(struct inode *inode)
1877 {
1878 struct dentry *alias;
1879
1880 if (hlist_empty(&inode->i_dentry))
1881 return NULL;
1882 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
1883 __dget(alias);
1884 return alias;
1885 }
1886
1887 /**
1888 * d_find_any_alias - find any alias for a given inode
1889 * @inode: inode to find an alias for
1890 *
1891 * If any aliases exist for the given inode, take and return a
1892 * reference for one of them. If no aliases exist, return %NULL.
1893 */
1894 struct dentry *d_find_any_alias(struct inode *inode)
1895 {
1896 struct dentry *de;
1897
1898 spin_lock(&inode->i_lock);
1899 de = __d_find_any_alias(inode);
1900 spin_unlock(&inode->i_lock);
1901 return de;
1902 }
1903 EXPORT_SYMBOL(d_find_any_alias);
1904
1905 static struct dentry *__d_obtain_alias(struct inode *inode, int disconnected)
1906 {
1907 struct dentry *tmp;
1908 struct dentry *res;
1909 unsigned add_flags;
1910
1911 if (!inode)
1912 return ERR_PTR(-ESTALE);
1913 if (IS_ERR(inode))
1914 return ERR_CAST(inode);
1915
1916 res = d_find_any_alias(inode);
1917 if (res)
1918 goto out_iput;
1919
1920 tmp = __d_alloc(inode->i_sb, NULL);
1921 if (!tmp) {
1922 res = ERR_PTR(-ENOMEM);
1923 goto out_iput;
1924 }
1925
1926 security_d_instantiate(tmp, inode);
1927 spin_lock(&inode->i_lock);
1928 res = __d_find_any_alias(inode);
1929 if (res) {
1930 spin_unlock(&inode->i_lock);
1931 dput(tmp);
1932 goto out_iput;
1933 }
1934
1935 /* attach a disconnected dentry */
1936 add_flags = d_flags_for_inode(inode);
1937
1938 if (disconnected)
1939 add_flags |= DCACHE_DISCONNECTED;
1940
1941 spin_lock(&tmp->d_lock);
1942 __d_set_inode_and_type(tmp, inode, add_flags);
1943 hlist_add_head(&tmp->d_u.d_alias, &inode->i_dentry);
1944 hlist_bl_lock(&tmp->d_sb->s_anon);
1945 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1946 hlist_bl_unlock(&tmp->d_sb->s_anon);
1947 spin_unlock(&tmp->d_lock);
1948 spin_unlock(&inode->i_lock);
1949
1950 return tmp;
1951
1952 out_iput:
1953 iput(inode);
1954 return res;
1955 }
1956
1957 /**
1958 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
1959 * @inode: inode to allocate the dentry for
1960 *
1961 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1962 * similar open by handle operations. The returned dentry may be anonymous,
1963 * or may have a full name (if the inode was already in the cache).
1964 *
1965 * When called on a directory inode, we must ensure that the inode only ever
1966 * has one dentry. If a dentry is found, that is returned instead of
1967 * allocating a new one.
1968 *
1969 * On successful return, the reference to the inode has been transferred
1970 * to the dentry. In case of an error the reference on the inode is released.
1971 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1972 * be passed in and the error will be propagated to the return value,
1973 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1974 */
1975 struct dentry *d_obtain_alias(struct inode *inode)
1976 {
1977 return __d_obtain_alias(inode, 1);
1978 }
1979 EXPORT_SYMBOL(d_obtain_alias);
1980
1981 /**
1982 * d_obtain_root - find or allocate a dentry for a given inode
1983 * @inode: inode to allocate the dentry for
1984 *
1985 * Obtain an IS_ROOT dentry for the root of a filesystem.
1986 *
1987 * We must ensure that directory inodes only ever have one dentry. If a
1988 * dentry is found, that is returned instead of allocating a new one.
1989 *
1990 * On successful return, the reference to the inode has been transferred
1991 * to the dentry. In case of an error the reference on the inode is
1992 * released. A %NULL or IS_ERR inode may be passed in and will be the
1993 * error will be propagate to the return value, with a %NULL @inode
1994 * replaced by ERR_PTR(-ESTALE).
1995 */
1996 struct dentry *d_obtain_root(struct inode *inode)
1997 {
1998 return __d_obtain_alias(inode, 0);
1999 }
2000 EXPORT_SYMBOL(d_obtain_root);
2001
2002 /**
2003 * d_add_ci - lookup or allocate new dentry with case-exact name
2004 * @inode: the inode case-insensitive lookup has found
2005 * @dentry: the negative dentry that was passed to the parent's lookup func
2006 * @name: the case-exact name to be associated with the returned dentry
2007 *
2008 * This is to avoid filling the dcache with case-insensitive names to the
2009 * same inode, only the actual correct case is stored in the dcache for
2010 * case-insensitive filesystems.
2011 *
2012 * For a case-insensitive lookup match and if the the case-exact dentry
2013 * already exists in in the dcache, use it and return it.
2014 *
2015 * If no entry exists with the exact case name, allocate new dentry with
2016 * the exact case, and return the spliced entry.
2017 */
2018 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
2019 struct qstr *name)
2020 {
2021 struct dentry *found, *res;
2022
2023 /*
2024 * First check if a dentry matching the name already exists,
2025 * if not go ahead and create it now.
2026 */
2027 found = d_hash_and_lookup(dentry->d_parent, name);
2028 if (found) {
2029 iput(inode);
2030 return found;
2031 }
2032 if (d_in_lookup(dentry)) {
2033 found = d_alloc_parallel(dentry->d_parent, name,
2034 dentry->d_wait);
2035 if (IS_ERR(found) || !d_in_lookup(found)) {
2036 iput(inode);
2037 return found;
2038 }
2039 } else {
2040 found = d_alloc(dentry->d_parent, name);
2041 if (!found) {
2042 iput(inode);
2043 return ERR_PTR(-ENOMEM);
2044 }
2045 }
2046 res = d_splice_alias(inode, found);
2047 if (res) {
2048 dput(found);
2049 return res;
2050 }
2051 return found;
2052 }
2053 EXPORT_SYMBOL(d_add_ci);
2054
2055
2056 static inline bool d_same_name(const struct dentry *dentry,
2057 const struct dentry *parent,
2058 const struct qstr *name)
2059 {
2060 if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) {
2061 if (dentry->d_name.len != name->len)
2062 return false;
2063 return dentry_cmp(dentry, name->name, name->len) == 0;
2064 }
2065 return parent->d_op->d_compare(parent, dentry,
2066 dentry->d_name.len, dentry->d_name.name,
2067 name) == 0;
2068 }
2069
2070 /**
2071 * __d_lookup_rcu - search for a dentry (racy, store-free)
2072 * @parent: parent dentry
2073 * @name: qstr of name we wish to find
2074 * @seqp: returns d_seq value at the point where the dentry was found
2075 * Returns: dentry, or NULL
2076 *
2077 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2078 * resolution (store-free path walking) design described in
2079 * Documentation/filesystems/path-lookup.txt.
2080 *
2081 * This is not to be used outside core vfs.
2082 *
2083 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2084 * held, and rcu_read_lock held. The returned dentry must not be stored into
2085 * without taking d_lock and checking d_seq sequence count against @seq
2086 * returned here.
2087 *
2088 * A refcount may be taken on the found dentry with the d_rcu_to_refcount
2089 * function.
2090 *
2091 * Alternatively, __d_lookup_rcu may be called again to look up the child of
2092 * the returned dentry, so long as its parent's seqlock is checked after the
2093 * child is looked up. Thus, an interlocking stepping of sequence lock checks
2094 * is formed, giving integrity down the path walk.
2095 *
2096 * NOTE! The caller *has* to check the resulting dentry against the sequence
2097 * number we've returned before using any of the resulting dentry state!
2098 */
2099 struct dentry *__d_lookup_rcu(const struct dentry *parent,
2100 const struct qstr *name,
2101 unsigned *seqp)
2102 {
2103 u64 hashlen = name->hash_len;
2104 const unsigned char *str = name->name;
2105 struct hlist_bl_head *b = d_hash(parent, hashlen_hash(hashlen));
2106 struct hlist_bl_node *node;
2107 struct dentry *dentry;
2108
2109 /*
2110 * Note: There is significant duplication with __d_lookup_rcu which is
2111 * required to prevent single threaded performance regressions
2112 * especially on architectures where smp_rmb (in seqcounts) are costly.
2113 * Keep the two functions in sync.
2114 */
2115
2116 /*
2117 * The hash list is protected using RCU.
2118 *
2119 * Carefully use d_seq when comparing a candidate dentry, to avoid
2120 * races with d_move().
2121 *
2122 * It is possible that concurrent renames can mess up our list
2123 * walk here and result in missing our dentry, resulting in the
2124 * false-negative result. d_lookup() protects against concurrent
2125 * renames using rename_lock seqlock.
2126 *
2127 * See Documentation/filesystems/path-lookup.txt for more details.
2128 */
2129 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2130 unsigned seq;
2131
2132 seqretry:
2133 /*
2134 * The dentry sequence count protects us from concurrent
2135 * renames, and thus protects parent and name fields.
2136 *
2137 * The caller must perform a seqcount check in order
2138 * to do anything useful with the returned dentry.
2139 *
2140 * NOTE! We do a "raw" seqcount_begin here. That means that
2141 * we don't wait for the sequence count to stabilize if it
2142 * is in the middle of a sequence change. If we do the slow
2143 * dentry compare, we will do seqretries until it is stable,
2144 * and if we end up with a successful lookup, we actually
2145 * want to exit RCU lookup anyway.
2146 *
2147 * Note that raw_seqcount_begin still *does* smp_rmb(), so
2148 * we are still guaranteed NUL-termination of ->d_name.name.
2149 */
2150 seq = raw_seqcount_begin(&dentry->d_seq);
2151 if (dentry->d_parent != parent)
2152 continue;
2153 if (d_unhashed(dentry))
2154 continue;
2155
2156 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
2157 int tlen;
2158 const char *tname;
2159 if (dentry->d_name.hash != hashlen_hash(hashlen))
2160 continue;
2161 tlen = dentry->d_name.len;
2162 tname = dentry->d_name.name;
2163 /* we want a consistent (name,len) pair */
2164 if (read_seqcount_retry(&dentry->d_seq, seq)) {
2165 cpu_relax();
2166 goto seqretry;
2167 }
2168 if (parent->d_op->d_compare(parent, dentry,
2169 tlen, tname, name) != 0)
2170 continue;
2171 } else {
2172 if (dentry->d_name.hash_len != hashlen)
2173 continue;
2174 if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0)
2175 continue;
2176 }
2177 *seqp = seq;
2178 return dentry;
2179 }
2180 return NULL;
2181 }
2182
2183 /**
2184 * d_lookup - search for a dentry
2185 * @parent: parent dentry
2186 * @name: qstr of name we wish to find
2187 * Returns: dentry, or NULL
2188 *
2189 * d_lookup searches the children of the parent dentry for the name in
2190 * question. If the dentry is found its reference count is incremented and the
2191 * dentry is returned. The caller must use dput to free the entry when it has
2192 * finished using it. %NULL is returned if the dentry does not exist.
2193 */
2194 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2195 {
2196 struct dentry *dentry;
2197 unsigned seq;
2198
2199 do {
2200 seq = read_seqbegin(&rename_lock);
2201 dentry = __d_lookup(parent, name);
2202 if (dentry)
2203 break;
2204 } while (read_seqretry(&rename_lock, seq));
2205 return dentry;
2206 }
2207 EXPORT_SYMBOL(d_lookup);
2208
2209 /**
2210 * __d_lookup - search for a dentry (racy)
2211 * @parent: parent dentry
2212 * @name: qstr of name we wish to find
2213 * Returns: dentry, or NULL
2214 *
2215 * __d_lookup is like d_lookup, however it may (rarely) return a
2216 * false-negative result due to unrelated rename activity.
2217 *
2218 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2219 * however it must be used carefully, eg. with a following d_lookup in
2220 * the case of failure.
2221 *
2222 * __d_lookup callers must be commented.
2223 */
2224 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2225 {
2226 unsigned int hash = name->hash;
2227 struct hlist_bl_head *b = d_hash(parent, hash);
2228 struct hlist_bl_node *node;
2229 struct dentry *found = NULL;
2230 struct dentry *dentry;
2231
2232 /*
2233 * Note: There is significant duplication with __d_lookup_rcu which is
2234 * required to prevent single threaded performance regressions
2235 * especially on architectures where smp_rmb (in seqcounts) are costly.
2236 * Keep the two functions in sync.
2237 */
2238
2239 /*
2240 * The hash list is protected using RCU.
2241 *
2242 * Take d_lock when comparing a candidate dentry, to avoid races
2243 * with d_move().
2244 *
2245 * It is possible that concurrent renames can mess up our list
2246 * walk here and result in missing our dentry, resulting in the
2247 * false-negative result. d_lookup() protects against concurrent
2248 * renames using rename_lock seqlock.
2249 *
2250 * See Documentation/filesystems/path-lookup.txt for more details.
2251 */
2252 rcu_read_lock();
2253
2254 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2255
2256 if (dentry->d_name.hash != hash)
2257 continue;
2258
2259 spin_lock(&dentry->d_lock);
2260 if (dentry->d_parent != parent)
2261 goto next;
2262 if (d_unhashed(dentry))
2263 goto next;
2264
2265 if (!d_same_name(dentry, parent, name))
2266 goto next;
2267
2268 dentry->d_lockref.count++;
2269 found = dentry;
2270 spin_unlock(&dentry->d_lock);
2271 break;
2272 next:
2273 spin_unlock(&dentry->d_lock);
2274 }
2275 rcu_read_unlock();
2276
2277 return found;
2278 }
2279
2280 /**
2281 * d_hash_and_lookup - hash the qstr then search for a dentry
2282 * @dir: Directory to search in
2283 * @name: qstr of name we wish to find
2284 *
2285 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2286 */
2287 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2288 {
2289 /*
2290 * Check for a fs-specific hash function. Note that we must
2291 * calculate the standard hash first, as the d_op->d_hash()
2292 * routine may choose to leave the hash value unchanged.
2293 */
2294 name->hash = full_name_hash(name->name, name->len);
2295 if (dir->d_flags & DCACHE_OP_HASH) {
2296 int err = dir->d_op->d_hash(dir, name);
2297 if (unlikely(err < 0))
2298 return ERR_PTR(err);
2299 }
2300 return d_lookup(dir, name);
2301 }
2302 EXPORT_SYMBOL(d_hash_and_lookup);
2303
2304 /*
2305 * When a file is deleted, we have two options:
2306 * - turn this dentry into a negative dentry
2307 * - unhash this dentry and free it.
2308 *
2309 * Usually, we want to just turn this into
2310 * a negative dentry, but if anybody else is
2311 * currently using the dentry or the inode
2312 * we can't do that and we fall back on removing
2313 * it from the hash queues and waiting for
2314 * it to be deleted later when it has no users
2315 */
2316
2317 /**
2318 * d_delete - delete a dentry
2319 * @dentry: The dentry to delete
2320 *
2321 * Turn the dentry into a negative dentry if possible, otherwise
2322 * remove it from the hash queues so it can be deleted later
2323 */
2324
2325 void d_delete(struct dentry * dentry)
2326 {
2327 struct inode *inode;
2328 int isdir = 0;
2329 /*
2330 * Are we the only user?
2331 */
2332 again:
2333 spin_lock(&dentry->d_lock);
2334 inode = dentry->d_inode;
2335 isdir = S_ISDIR(inode->i_mode);
2336 if (dentry->d_lockref.count == 1) {
2337 if (!spin_trylock(&inode->i_lock)) {
2338 spin_unlock(&dentry->d_lock);
2339 cpu_relax();
2340 goto again;
2341 }
2342 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2343 dentry_unlink_inode(dentry);
2344 fsnotify_nameremove(dentry, isdir);
2345 return;
2346 }
2347
2348 if (!d_unhashed(dentry))
2349 __d_drop(dentry);
2350
2351 spin_unlock(&dentry->d_lock);
2352
2353 fsnotify_nameremove(dentry, isdir);
2354 }
2355 EXPORT_SYMBOL(d_delete);
2356
2357 static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b)
2358 {
2359 BUG_ON(!d_unhashed(entry));
2360 hlist_bl_lock(b);
2361 hlist_bl_add_head_rcu(&entry->d_hash, b);
2362 hlist_bl_unlock(b);
2363 }
2364
2365 static void _d_rehash(struct dentry * entry)
2366 {
2367 __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
2368 }
2369
2370 /**
2371 * d_rehash - add an entry back to the hash
2372 * @entry: dentry to add to the hash
2373 *
2374 * Adds a dentry to the hash according to its name.
2375 */
2376
2377 void d_rehash(struct dentry * entry)
2378 {
2379 spin_lock(&entry->d_lock);
2380 _d_rehash(entry);
2381 spin_unlock(&entry->d_lock);
2382 }
2383 EXPORT_SYMBOL(d_rehash);
2384
2385 static inline unsigned start_dir_add(struct inode *dir)
2386 {
2387
2388 for (;;) {
2389 unsigned n = dir->i_dir_seq;
2390 if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n)
2391 return n;
2392 cpu_relax();
2393 }
2394 }
2395
2396 static inline void end_dir_add(struct inode *dir, unsigned n)
2397 {
2398 smp_store_release(&dir->i_dir_seq, n + 2);
2399 }
2400
2401 static void d_wait_lookup(struct dentry *dentry)
2402 {
2403 if (d_in_lookup(dentry)) {
2404 DECLARE_WAITQUEUE(wait, current);
2405 add_wait_queue(dentry->d_wait, &wait);
2406 do {
2407 set_current_state(TASK_UNINTERRUPTIBLE);
2408 spin_unlock(&dentry->d_lock);
2409 schedule();
2410 spin_lock(&dentry->d_lock);
2411 } while (d_in_lookup(dentry));
2412 }
2413 }
2414
2415 struct dentry *d_alloc_parallel(struct dentry *parent,
2416 const struct qstr *name,
2417 wait_queue_head_t *wq)
2418 {
2419 unsigned int hash = name->hash;
2420 struct hlist_bl_head *b = in_lookup_hash(parent, hash);
2421 struct hlist_bl_node *node;
2422 struct dentry *new = d_alloc(parent, name);
2423 struct dentry *dentry;
2424 unsigned seq, r_seq, d_seq;
2425
2426 if (unlikely(!new))
2427 return ERR_PTR(-ENOMEM);
2428
2429 retry:
2430 rcu_read_lock();
2431 seq = smp_load_acquire(&parent->d_inode->i_dir_seq) & ~1;
2432 r_seq = read_seqbegin(&rename_lock);
2433 dentry = __d_lookup_rcu(parent, name, &d_seq);
2434 if (unlikely(dentry)) {
2435 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2436 rcu_read_unlock();
2437 goto retry;
2438 }
2439 if (read_seqcount_retry(&dentry->d_seq, d_seq)) {
2440 rcu_read_unlock();
2441 dput(dentry);
2442 goto retry;
2443 }
2444 rcu_read_unlock();
2445 dput(new);
2446 return dentry;
2447 }
2448 if (unlikely(read_seqretry(&rename_lock, r_seq))) {
2449 rcu_read_unlock();
2450 goto retry;
2451 }
2452 hlist_bl_lock(b);
2453 if (unlikely(parent->d_inode->i_dir_seq != seq)) {
2454 hlist_bl_unlock(b);
2455 rcu_read_unlock();
2456 goto retry;
2457 }
2458 /*
2459 * No changes for the parent since the beginning of d_lookup().
2460 * Since all removals from the chain happen with hlist_bl_lock(),
2461 * any potential in-lookup matches are going to stay here until
2462 * we unlock the chain. All fields are stable in everything
2463 * we encounter.
2464 */
2465 hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) {
2466 if (dentry->d_name.hash != hash)
2467 continue;
2468 if (dentry->d_parent != parent)
2469 continue;
2470 if (!d_same_name(dentry, parent, name))
2471 continue;
2472 hlist_bl_unlock(b);
2473 /* now we can try to grab a reference */
2474 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2475 rcu_read_unlock();
2476 goto retry;
2477 }
2478
2479 rcu_read_unlock();
2480 /*
2481 * somebody is likely to be still doing lookup for it;
2482 * wait for them to finish
2483 */
2484 spin_lock(&dentry->d_lock);
2485 d_wait_lookup(dentry);
2486 /*
2487 * it's not in-lookup anymore; in principle we should repeat
2488 * everything from dcache lookup, but it's likely to be what
2489 * d_lookup() would've found anyway. If it is, just return it;
2490 * otherwise we really have to repeat the whole thing.
2491 */
2492 if (unlikely(dentry->d_name.hash != hash))
2493 goto mismatch;
2494 if (unlikely(dentry->d_parent != parent))
2495 goto mismatch;
2496 if (unlikely(d_unhashed(dentry)))
2497 goto mismatch;
2498 if (unlikely(!d_same_name(dentry, parent, name)))
2499 goto mismatch;
2500 /* OK, it *is* a hashed match; return it */
2501 spin_unlock(&dentry->d_lock);
2502 dput(new);
2503 return dentry;
2504 }
2505 rcu_read_unlock();
2506 /* we can't take ->d_lock here; it's OK, though. */
2507 new->d_flags |= DCACHE_PAR_LOOKUP;
2508 new->d_wait = wq;
2509 hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b);
2510 hlist_bl_unlock(b);
2511 return new;
2512 mismatch:
2513 spin_unlock(&dentry->d_lock);
2514 dput(dentry);
2515 goto retry;
2516 }
2517 EXPORT_SYMBOL(d_alloc_parallel);
2518
2519 void __d_lookup_done(struct dentry *dentry)
2520 {
2521 struct hlist_bl_head *b = in_lookup_hash(dentry->d_parent,
2522 dentry->d_name.hash);
2523 hlist_bl_lock(b);
2524 dentry->d_flags &= ~DCACHE_PAR_LOOKUP;
2525 __hlist_bl_del(&dentry->d_u.d_in_lookup_hash);
2526 wake_up_all(dentry->d_wait);
2527 dentry->d_wait = NULL;
2528 hlist_bl_unlock(b);
2529 INIT_HLIST_NODE(&dentry->d_u.d_alias);
2530 INIT_LIST_HEAD(&dentry->d_lru);
2531 }
2532 EXPORT_SYMBOL(__d_lookup_done);
2533
2534 /* inode->i_lock held if inode is non-NULL */
2535
2536 static inline void __d_add(struct dentry *dentry, struct inode *inode)
2537 {
2538 struct inode *dir = NULL;
2539 unsigned n;
2540 spin_lock(&dentry->d_lock);
2541 if (unlikely(d_in_lookup(dentry))) {
2542 dir = dentry->d_parent->d_inode;
2543 n = start_dir_add(dir);
2544 __d_lookup_done(dentry);
2545 }
2546 if (inode) {
2547 unsigned add_flags = d_flags_for_inode(inode);
2548 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2549 raw_write_seqcount_begin(&dentry->d_seq);
2550 __d_set_inode_and_type(dentry, inode, add_flags);
2551 raw_write_seqcount_end(&dentry->d_seq);
2552 fsnotify_update_flags(dentry);
2553 }
2554 _d_rehash(dentry);
2555 if (dir)
2556 end_dir_add(dir, n);
2557 spin_unlock(&dentry->d_lock);
2558 if (inode)
2559 spin_unlock(&inode->i_lock);
2560 }
2561
2562 /**
2563 * d_add - add dentry to hash queues
2564 * @entry: dentry to add
2565 * @inode: The inode to attach to this dentry
2566 *
2567 * This adds the entry to the hash queues and initializes @inode.
2568 * The entry was actually filled in earlier during d_alloc().
2569 */
2570
2571 void d_add(struct dentry *entry, struct inode *inode)
2572 {
2573 if (inode) {
2574 security_d_instantiate(entry, inode);
2575 spin_lock(&inode->i_lock);
2576 }
2577 __d_add(entry, inode);
2578 }
2579 EXPORT_SYMBOL(d_add);
2580
2581 /**
2582 * d_exact_alias - find and hash an exact unhashed alias
2583 * @entry: dentry to add
2584 * @inode: The inode to go with this dentry
2585 *
2586 * If an unhashed dentry with the same name/parent and desired
2587 * inode already exists, hash and return it. Otherwise, return
2588 * NULL.
2589 *
2590 * Parent directory should be locked.
2591 */
2592 struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode)
2593 {
2594 struct dentry *alias;
2595 unsigned int hash = entry->d_name.hash;
2596
2597 spin_lock(&inode->i_lock);
2598 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
2599 /*
2600 * Don't need alias->d_lock here, because aliases with
2601 * d_parent == entry->d_parent are not subject to name or
2602 * parent changes, because the parent inode i_mutex is held.
2603 */
2604 if (alias->d_name.hash != hash)
2605 continue;
2606 if (alias->d_parent != entry->d_parent)
2607 continue;
2608 if (!d_same_name(alias, entry->d_parent, &entry->d_name))
2609 continue;
2610 spin_lock(&alias->d_lock);
2611 if (!d_unhashed(alias)) {
2612 spin_unlock(&alias->d_lock);
2613 alias = NULL;
2614 } else {
2615 __dget_dlock(alias);
2616 _d_rehash(alias);
2617 spin_unlock(&alias->d_lock);
2618 }
2619 spin_unlock(&inode->i_lock);
2620 return alias;
2621 }
2622 spin_unlock(&inode->i_lock);
2623 return NULL;
2624 }
2625 EXPORT_SYMBOL(d_exact_alias);
2626
2627 /**
2628 * dentry_update_name_case - update case insensitive dentry with a new name
2629 * @dentry: dentry to be updated
2630 * @name: new name
2631 *
2632 * Update a case insensitive dentry with new case of name.
2633 *
2634 * dentry must have been returned by d_lookup with name @name. Old and new
2635 * name lengths must match (ie. no d_compare which allows mismatched name
2636 * lengths).
2637 *
2638 * Parent inode i_mutex must be held over d_lookup and into this call (to
2639 * keep renames and concurrent inserts, and readdir(2) away).
2640 */
2641 void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
2642 {
2643 BUG_ON(!inode_is_locked(dentry->d_parent->d_inode));
2644 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2645
2646 spin_lock(&dentry->d_lock);
2647 write_seqcount_begin(&dentry->d_seq);
2648 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
2649 write_seqcount_end(&dentry->d_seq);
2650 spin_unlock(&dentry->d_lock);
2651 }
2652 EXPORT_SYMBOL(dentry_update_name_case);
2653
2654 static void swap_names(struct dentry *dentry, struct dentry *target)
2655 {
2656 if (unlikely(dname_external(target))) {
2657 if (unlikely(dname_external(dentry))) {
2658 /*
2659 * Both external: swap the pointers
2660 */
2661 swap(target->d_name.name, dentry->d_name.name);
2662 } else {
2663 /*
2664 * dentry:internal, target:external. Steal target's
2665 * storage and make target internal.
2666 */
2667 memcpy(target->d_iname, dentry->d_name.name,
2668 dentry->d_name.len + 1);
2669 dentry->d_name.name = target->d_name.name;
2670 target->d_name.name = target->d_iname;
2671 }
2672 } else {
2673 if (unlikely(dname_external(dentry))) {
2674 /*
2675 * dentry:external, target:internal. Give dentry's
2676 * storage to target and make dentry internal
2677 */
2678 memcpy(dentry->d_iname, target->d_name.name,
2679 target->d_name.len + 1);
2680 target->d_name.name = dentry->d_name.name;
2681 dentry->d_name.name = dentry->d_iname;
2682 } else {
2683 /*
2684 * Both are internal.
2685 */
2686 unsigned int i;
2687 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2688 kmemcheck_mark_initialized(dentry->d_iname, DNAME_INLINE_LEN);
2689 kmemcheck_mark_initialized(target->d_iname, DNAME_INLINE_LEN);
2690 for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2691 swap(((long *) &dentry->d_iname)[i],
2692 ((long *) &target->d_iname)[i]);
2693 }
2694 }
2695 }
2696 swap(dentry->d_name.hash_len, target->d_name.hash_len);
2697 }
2698
2699 static void copy_name(struct dentry *dentry, struct dentry *target)
2700 {
2701 struct external_name *old_name = NULL;
2702 if (unlikely(dname_external(dentry)))
2703 old_name = external_name(dentry);
2704 if (unlikely(dname_external(target))) {
2705 atomic_inc(&external_name(target)->u.count);
2706 dentry->d_name = target->d_name;
2707 } else {
2708 memcpy(dentry->d_iname, target->d_name.name,
2709 target->d_name.len + 1);
2710 dentry->d_name.name = dentry->d_iname;
2711 dentry->d_name.hash_len = target->d_name.hash_len;
2712 }
2713 if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2714 kfree_rcu(old_name, u.head);
2715 }
2716
2717 static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2718 {
2719 /*
2720 * XXXX: do we really need to take target->d_lock?
2721 */
2722 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2723 spin_lock(&target->d_parent->d_lock);
2724 else {
2725 if (d_ancestor(dentry->d_parent, target->d_parent)) {
2726 spin_lock(&dentry->d_parent->d_lock);
2727 spin_lock_nested(&target->d_parent->d_lock,
2728 DENTRY_D_LOCK_NESTED);
2729 } else {
2730 spin_lock(&target->d_parent->d_lock);
2731 spin_lock_nested(&dentry->d_parent->d_lock,
2732 DENTRY_D_LOCK_NESTED);
2733 }
2734 }
2735 if (target < dentry) {
2736 spin_lock_nested(&target->d_lock, 2);
2737 spin_lock_nested(&dentry->d_lock, 3);
2738 } else {
2739 spin_lock_nested(&dentry->d_lock, 2);
2740 spin_lock_nested(&target->d_lock, 3);
2741 }
2742 }
2743
2744 static void dentry_unlock_for_move(struct dentry *dentry, struct dentry *target)
2745 {
2746 if (target->d_parent != dentry->d_parent)
2747 spin_unlock(&dentry->d_parent->d_lock);
2748 if (target->d_parent != target)
2749 spin_unlock(&target->d_parent->d_lock);
2750 spin_unlock(&target->d_lock);
2751 spin_unlock(&dentry->d_lock);
2752 }
2753
2754 /*
2755 * When switching names, the actual string doesn't strictly have to
2756 * be preserved in the target - because we're dropping the target
2757 * anyway. As such, we can just do a simple memcpy() to copy over
2758 * the new name before we switch, unless we are going to rehash
2759 * it. Note that if we *do* unhash the target, we are not allowed
2760 * to rehash it without giving it a new name/hash key - whether
2761 * we swap or overwrite the names here, resulting name won't match
2762 * the reality in filesystem; it's only there for d_path() purposes.
2763 * Note that all of this is happening under rename_lock, so the
2764 * any hash lookup seeing it in the middle of manipulations will
2765 * be discarded anyway. So we do not care what happens to the hash
2766 * key in that case.
2767 */
2768 /*
2769 * __d_move - move a dentry
2770 * @dentry: entry to move
2771 * @target: new dentry
2772 * @exchange: exchange the two dentries
2773 *
2774 * Update the dcache to reflect the move of a file name. Negative
2775 * dcache entries should not be moved in this way. Caller must hold
2776 * rename_lock, the i_mutex of the source and target directories,
2777 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2778 */
2779 static void __d_move(struct dentry *dentry, struct dentry *target,
2780 bool exchange)
2781 {
2782 struct inode *dir = NULL;
2783 unsigned n;
2784 if (!dentry->d_inode)
2785 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2786
2787 BUG_ON(d_ancestor(dentry, target));
2788 BUG_ON(d_ancestor(target, dentry));
2789
2790 dentry_lock_for_move(dentry, target);
2791 if (unlikely(d_in_lookup(target))) {
2792 dir = target->d_parent->d_inode;
2793 n = start_dir_add(dir);
2794 __d_lookup_done(target);
2795 }
2796
2797 write_seqcount_begin(&dentry->d_seq);
2798 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
2799
2800 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2801
2802 /*
2803 * Move the dentry to the target hash queue. Don't bother checking
2804 * for the same hash queue because of how unlikely it is.
2805 */
2806 __d_drop(dentry);
2807 __d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
2808
2809 /*
2810 * Unhash the target (d_delete() is not usable here). If exchanging
2811 * the two dentries, then rehash onto the other's hash queue.
2812 */
2813 __d_drop(target);
2814 if (exchange) {
2815 __d_rehash(target,
2816 d_hash(dentry->d_parent, dentry->d_name.hash));
2817 }
2818
2819 /* Switch the names.. */
2820 if (exchange)
2821 swap_names(dentry, target);
2822 else
2823 copy_name(dentry, target);
2824
2825 /* ... and switch them in the tree */
2826 if (IS_ROOT(dentry)) {
2827 /* splicing a tree */
2828 dentry->d_flags |= DCACHE_RCUACCESS;
2829 dentry->d_parent = target->d_parent;
2830 target->d_parent = target;
2831 list_del_init(&target->d_child);
2832 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2833 } else {
2834 /* swapping two dentries */
2835 swap(dentry->d_parent, target->d_parent);
2836 list_move(&target->d_child, &target->d_parent->d_subdirs);
2837 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2838 if (exchange)
2839 fsnotify_update_flags(target);
2840 fsnotify_update_flags(dentry);
2841 }
2842
2843 write_seqcount_end(&target->d_seq);
2844 write_seqcount_end(&dentry->d_seq);
2845
2846 if (dir)
2847 end_dir_add(dir, n);
2848 dentry_unlock_for_move(dentry, target);
2849 }
2850
2851 /*
2852 * d_move - move a dentry
2853 * @dentry: entry to move
2854 * @target: new dentry
2855 *
2856 * Update the dcache to reflect the move of a file name. Negative
2857 * dcache entries should not be moved in this way. See the locking
2858 * requirements for __d_move.
2859 */
2860 void d_move(struct dentry *dentry, struct dentry *target)
2861 {
2862 write_seqlock(&rename_lock);
2863 __d_move(dentry, target, false);
2864 write_sequnlock(&rename_lock);
2865 }
2866 EXPORT_SYMBOL(d_move);
2867
2868 /*
2869 * d_exchange - exchange two dentries
2870 * @dentry1: first dentry
2871 * @dentry2: second dentry
2872 */
2873 void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2874 {
2875 write_seqlock(&rename_lock);
2876
2877 WARN_ON(!dentry1->d_inode);
2878 WARN_ON(!dentry2->d_inode);
2879 WARN_ON(IS_ROOT(dentry1));
2880 WARN_ON(IS_ROOT(dentry2));
2881
2882 __d_move(dentry1, dentry2, true);
2883
2884 write_sequnlock(&rename_lock);
2885 }
2886
2887 /**
2888 * d_ancestor - search for an ancestor
2889 * @p1: ancestor dentry
2890 * @p2: child dentry
2891 *
2892 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2893 * an ancestor of p2, else NULL.
2894 */
2895 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2896 {
2897 struct dentry *p;
2898
2899 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2900 if (p->d_parent == p1)
2901 return p;
2902 }
2903 return NULL;
2904 }
2905
2906 /*
2907 * This helper attempts to cope with remotely renamed directories
2908 *
2909 * It assumes that the caller is already holding
2910 * dentry->d_parent->d_inode->i_mutex, and rename_lock
2911 *
2912 * Note: If ever the locking in lock_rename() changes, then please
2913 * remember to update this too...
2914 */
2915 static int __d_unalias(struct inode *inode,
2916 struct dentry *dentry, struct dentry *alias)
2917 {
2918 struct mutex *m1 = NULL;
2919 struct rw_semaphore *m2 = NULL;
2920 int ret = -ESTALE;
2921
2922 /* If alias and dentry share a parent, then no extra locks required */
2923 if (alias->d_parent == dentry->d_parent)
2924 goto out_unalias;
2925
2926 /* See lock_rename() */
2927 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2928 goto out_err;
2929 m1 = &dentry->d_sb->s_vfs_rename_mutex;
2930 if (!inode_trylock_shared(alias->d_parent->d_inode))
2931 goto out_err;
2932 m2 = &alias->d_parent->d_inode->i_rwsem;
2933 out_unalias:
2934 __d_move(alias, dentry, false);
2935 ret = 0;
2936 out_err:
2937 if (m2)
2938 up_read(m2);
2939 if (m1)
2940 mutex_unlock(m1);
2941 return ret;
2942 }
2943
2944 /**
2945 * d_splice_alias - splice a disconnected dentry into the tree if one exists
2946 * @inode: the inode which may have a disconnected dentry
2947 * @dentry: a negative dentry which we want to point to the inode.
2948 *
2949 * If inode is a directory and has an IS_ROOT alias, then d_move that in
2950 * place of the given dentry and return it, else simply d_add the inode
2951 * to the dentry and return NULL.
2952 *
2953 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
2954 * we should error out: directories can't have multiple aliases.
2955 *
2956 * This is needed in the lookup routine of any filesystem that is exportable
2957 * (via knfsd) so that we can build dcache paths to directories effectively.
2958 *
2959 * If a dentry was found and moved, then it is returned. Otherwise NULL
2960 * is returned. This matches the expected return value of ->lookup.
2961 *
2962 * Cluster filesystems may call this function with a negative, hashed dentry.
2963 * In that case, we know that the inode will be a regular file, and also this
2964 * will only occur during atomic_open. So we need to check for the dentry
2965 * being already hashed only in the final case.
2966 */
2967 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
2968 {
2969 if (IS_ERR(inode))
2970 return ERR_CAST(inode);
2971
2972 BUG_ON(!d_unhashed(dentry));
2973
2974 if (!inode)
2975 goto out;
2976
2977 security_d_instantiate(dentry, inode);
2978 spin_lock(&inode->i_lock);
2979 if (S_ISDIR(inode->i_mode)) {
2980 struct dentry *new = __d_find_any_alias(inode);
2981 if (unlikely(new)) {
2982 /* The reference to new ensures it remains an alias */
2983 spin_unlock(&inode->i_lock);
2984 write_seqlock(&rename_lock);
2985 if (unlikely(d_ancestor(new, dentry))) {
2986 write_sequnlock(&rename_lock);
2987 dput(new);
2988 new = ERR_PTR(-ELOOP);
2989 pr_warn_ratelimited(
2990 "VFS: Lookup of '%s' in %s %s"
2991 " would have caused loop\n",
2992 dentry->d_name.name,
2993 inode->i_sb->s_type->name,
2994 inode->i_sb->s_id);
2995 } else if (!IS_ROOT(new)) {
2996 int err = __d_unalias(inode, dentry, new);
2997 write_sequnlock(&rename_lock);
2998 if (err) {
2999 dput(new);
3000 new = ERR_PTR(err);
3001 }
3002 } else {
3003 __d_move(new, dentry, false);
3004 write_sequnlock(&rename_lock);
3005 }
3006 iput(inode);
3007 return new;
3008 }
3009 }
3010 out:
3011 __d_add(dentry, inode);
3012 return NULL;
3013 }
3014 EXPORT_SYMBOL(d_splice_alias);
3015
3016 static int prepend(char **buffer, int *buflen, const char *str, int namelen)
3017 {
3018 *buflen -= namelen;
3019 if (*buflen < 0)
3020 return -ENAMETOOLONG;
3021 *buffer -= namelen;
3022 memcpy(*buffer, str, namelen);
3023 return 0;
3024 }
3025
3026 /**
3027 * prepend_name - prepend a pathname in front of current buffer pointer
3028 * @buffer: buffer pointer
3029 * @buflen: allocated length of the buffer
3030 * @name: name string and length qstr structure
3031 *
3032 * With RCU path tracing, it may race with d_move(). Use ACCESS_ONCE() to
3033 * make sure that either the old or the new name pointer and length are
3034 * fetched. However, there may be mismatch between length and pointer.
3035 * The length cannot be trusted, we need to copy it byte-by-byte until
3036 * the length is reached or a null byte is found. It also prepends "/" at
3037 * the beginning of the name. The sequence number check at the caller will
3038 * retry it again when a d_move() does happen. So any garbage in the buffer
3039 * due to mismatched pointer and length will be discarded.
3040 *
3041 * Data dependency barrier is needed to make sure that we see that terminating
3042 * NUL. Alpha strikes again, film at 11...
3043 */
3044 static int prepend_name(char **buffer, int *buflen, struct qstr *name)
3045 {
3046 const char *dname = ACCESS_ONCE(name->name);
3047 u32 dlen = ACCESS_ONCE(name->len);
3048 char *p;
3049
3050 smp_read_barrier_depends();
3051
3052 *buflen -= dlen + 1;
3053 if (*buflen < 0)
3054 return -ENAMETOOLONG;
3055 p = *buffer -= dlen + 1;
3056 *p++ = '/';
3057 while (dlen--) {
3058 char c = *dname++;
3059 if (!c)
3060 break;
3061 *p++ = c;
3062 }
3063 return 0;
3064 }
3065
3066 /**
3067 * prepend_path - Prepend path string to a buffer
3068 * @path: the dentry/vfsmount to report
3069 * @root: root vfsmnt/dentry
3070 * @buffer: pointer to the end of the buffer
3071 * @buflen: pointer to buffer length
3072 *
3073 * The function will first try to write out the pathname without taking any
3074 * lock other than the RCU read lock to make sure that dentries won't go away.
3075 * It only checks the sequence number of the global rename_lock as any change
3076 * in the dentry's d_seq will be preceded by changes in the rename_lock
3077 * sequence number. If the sequence number had been changed, it will restart
3078 * the whole pathname back-tracing sequence again by taking the rename_lock.
3079 * In this case, there is no need to take the RCU read lock as the recursive
3080 * parent pointer references will keep the dentry chain alive as long as no
3081 * rename operation is performed.
3082 */
3083 static int prepend_path(const struct path *path,
3084 const struct path *root,
3085 char **buffer, int *buflen)
3086 {
3087 struct dentry *dentry;
3088 struct vfsmount *vfsmnt;
3089 struct mount *mnt;
3090 int error = 0;
3091 unsigned seq, m_seq = 0;
3092 char *bptr;
3093 int blen;
3094
3095 rcu_read_lock();
3096 restart_mnt:
3097 read_seqbegin_or_lock(&mount_lock, &m_seq);
3098 seq = 0;
3099 rcu_read_lock();
3100 restart:
3101 bptr = *buffer;
3102 blen = *buflen;
3103 error = 0;
3104 dentry = path->dentry;
3105 vfsmnt = path->mnt;
3106 mnt = real_mount(vfsmnt);
3107 read_seqbegin_or_lock(&rename_lock, &seq);
3108 while (dentry != root->dentry || vfsmnt != root->mnt) {
3109 struct dentry * parent;
3110
3111 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
3112 struct mount *parent = ACCESS_ONCE(mnt->mnt_parent);
3113 /* Escaped? */
3114 if (dentry != vfsmnt->mnt_root) {
3115 bptr = *buffer;
3116 blen = *buflen;
3117 error = 3;
3118 break;
3119 }
3120 /* Global root? */
3121 if (mnt != parent) {
3122 dentry = ACCESS_ONCE(mnt->mnt_mountpoint);
3123 mnt = parent;
3124 vfsmnt = &mnt->mnt;
3125 continue;
3126 }
3127 if (!error)
3128 error = is_mounted(vfsmnt) ? 1 : 2;
3129 break;
3130 }
3131 parent = dentry->d_parent;
3132 prefetch(parent);
3133 error = prepend_name(&bptr, &blen, &dentry->d_name);
3134 if (error)
3135 break;
3136
3137 dentry = parent;
3138 }
3139 if (!(seq & 1))
3140 rcu_read_unlock();
3141 if (need_seqretry(&rename_lock, seq)) {
3142 seq = 1;
3143 goto restart;
3144 }
3145 done_seqretry(&rename_lock, seq);
3146
3147 if (!(m_seq & 1))
3148 rcu_read_unlock();
3149 if (need_seqretry(&mount_lock, m_seq)) {
3150 m_seq = 1;
3151 goto restart_mnt;
3152 }
3153 done_seqretry(&mount_lock, m_seq);
3154
3155 if (error >= 0 && bptr == *buffer) {
3156 if (--blen < 0)
3157 error = -ENAMETOOLONG;
3158 else
3159 *--bptr = '/';
3160 }
3161 *buffer = bptr;
3162 *buflen = blen;
3163 return error;
3164 }
3165
3166 /**
3167 * __d_path - return the path of a dentry
3168 * @path: the dentry/vfsmount to report
3169 * @root: root vfsmnt/dentry
3170 * @buf: buffer to return value in
3171 * @buflen: buffer length
3172 *
3173 * Convert a dentry into an ASCII path name.
3174 *
3175 * Returns a pointer into the buffer or an error code if the
3176 * path was too long.
3177 *
3178 * "buflen" should be positive.
3179 *
3180 * If the path is not reachable from the supplied root, return %NULL.
3181 */
3182 char *__d_path(const struct path *path,
3183 const struct path *root,
3184 char *buf, int buflen)
3185 {
3186 char *res = buf + buflen;
3187 int error;
3188
3189 prepend(&res, &buflen, "\0", 1);
3190 error = prepend_path(path, root, &res, &buflen);
3191
3192 if (error < 0)
3193 return ERR_PTR(error);
3194 if (error > 0)
3195 return NULL;
3196 return res;
3197 }
3198
3199 char *d_absolute_path(const struct path *path,
3200 char *buf, int buflen)
3201 {
3202 struct path root = {};
3203 char *res = buf + buflen;
3204 int error;
3205
3206 prepend(&res, &buflen, "\0", 1);
3207 error = prepend_path(path, &root, &res, &buflen);
3208
3209 if (error > 1)
3210 error = -EINVAL;
3211 if (error < 0)
3212 return ERR_PTR(error);
3213 return res;
3214 }
3215
3216 /*
3217 * same as __d_path but appends "(deleted)" for unlinked files.
3218 */
3219 static int path_with_deleted(const struct path *path,
3220 const struct path *root,
3221 char **buf, int *buflen)
3222 {
3223 prepend(buf, buflen, "\0", 1);
3224 if (d_unlinked(path->dentry)) {
3225 int error = prepend(buf, buflen, " (deleted)", 10);
3226 if (error)
3227 return error;
3228 }
3229
3230 return prepend_path(path, root, buf, buflen);
3231 }
3232
3233 static int prepend_unreachable(char **buffer, int *buflen)
3234 {
3235 return prepend(buffer, buflen, "(unreachable)", 13);
3236 }
3237
3238 static void get_fs_root_rcu(struct fs_struct *fs, struct path *root)
3239 {
3240 unsigned seq;
3241
3242 do {
3243 seq = read_seqcount_begin(&fs->seq);
3244 *root = fs->root;
3245 } while (read_seqcount_retry(&fs->seq, seq));
3246 }
3247
3248 /**
3249 * d_path - return the path of a dentry
3250 * @path: path to report
3251 * @buf: buffer to return value in
3252 * @buflen: buffer length
3253 *
3254 * Convert a dentry into an ASCII path name. If the entry has been deleted
3255 * the string " (deleted)" is appended. Note that this is ambiguous.
3256 *
3257 * Returns a pointer into the buffer or an error code if the path was
3258 * too long. Note: Callers should use the returned pointer, not the passed
3259 * in buffer, to use the name! The implementation often starts at an offset
3260 * into the buffer, and may leave 0 bytes at the start.
3261 *
3262 * "buflen" should be positive.
3263 */
3264 char *d_path(const struct path *path, char *buf, int buflen)
3265 {
3266 char *res = buf + buflen;
3267 struct path root;
3268 int error;
3269
3270 /*
3271 * We have various synthetic filesystems that never get mounted. On
3272 * these filesystems dentries are never used for lookup purposes, and
3273 * thus don't need to be hashed. They also don't need a name until a
3274 * user wants to identify the object in /proc/pid/fd/. The little hack
3275 * below allows us to generate a name for these objects on demand:
3276 *
3277 * Some pseudo inodes are mountable. When they are mounted
3278 * path->dentry == path->mnt->mnt_root. In that case don't call d_dname
3279 * and instead have d_path return the mounted path.
3280 */
3281 if (path->dentry->d_op && path->dentry->d_op->d_dname &&
3282 (!IS_ROOT(path->dentry) || path->dentry != path->mnt->mnt_root))
3283 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
3284
3285 rcu_read_lock();
3286 get_fs_root_rcu(current->fs, &root);
3287 error = path_with_deleted(path, &root, &res, &buflen);
3288 rcu_read_unlock();
3289
3290 if (error < 0)
3291 res = ERR_PTR(error);
3292 return res;
3293 }
3294 EXPORT_SYMBOL(d_path);
3295
3296 /*
3297 * Helper function for dentry_operations.d_dname() members
3298 */
3299 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
3300 const char *fmt, ...)
3301 {
3302 va_list args;
3303 char temp[64];
3304 int sz;
3305
3306 va_start(args, fmt);
3307 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
3308 va_end(args);
3309
3310 if (sz > sizeof(temp) || sz > buflen)
3311 return ERR_PTR(-ENAMETOOLONG);
3312
3313 buffer += buflen - sz;
3314 return memcpy(buffer, temp, sz);
3315 }
3316
3317 char *simple_dname(struct dentry *dentry, char *buffer, int buflen)
3318 {
3319 char *end = buffer + buflen;
3320 /* these dentries are never renamed, so d_lock is not needed */
3321 if (prepend(&end, &buflen, " (deleted)", 11) ||
3322 prepend(&end, &buflen, dentry->d_name.name, dentry->d_name.len) ||
3323 prepend(&end, &buflen, "/", 1))
3324 end = ERR_PTR(-ENAMETOOLONG);
3325 return end;
3326 }
3327 EXPORT_SYMBOL(simple_dname);
3328
3329 /*
3330 * Write full pathname from the root of the filesystem into the buffer.
3331 */
3332 static char *__dentry_path(struct dentry *d, char *buf, int buflen)
3333 {
3334 struct dentry *dentry;
3335 char *end, *retval;
3336 int len, seq = 0;
3337 int error = 0;
3338
3339 if (buflen < 2)
3340 goto Elong;
3341
3342 rcu_read_lock();
3343 restart:
3344 dentry = d;
3345 end = buf + buflen;
3346 len = buflen;
3347 prepend(&end, &len, "\0", 1);
3348 /* Get '/' right */
3349 retval = end-1;
3350 *retval = '/';
3351 read_seqbegin_or_lock(&rename_lock, &seq);
3352 while (!IS_ROOT(dentry)) {
3353 struct dentry *parent = dentry->d_parent;
3354
3355 prefetch(parent);
3356 error = prepend_name(&end, &len, &dentry->d_name);
3357 if (error)
3358 break;
3359
3360 retval = end;
3361 dentry = parent;
3362 }
3363 if (!(seq & 1))
3364 rcu_read_unlock();
3365 if (need_seqretry(&rename_lock, seq)) {
3366 seq = 1;
3367 goto restart;
3368 }
3369 done_seqretry(&rename_lock, seq);
3370 if (error)
3371 goto Elong;
3372 return retval;
3373 Elong:
3374 return ERR_PTR(-ENAMETOOLONG);
3375 }
3376
3377 char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
3378 {
3379 return __dentry_path(dentry, buf, buflen);
3380 }
3381 EXPORT_SYMBOL(dentry_path_raw);
3382
3383 char *dentry_path(struct dentry *dentry, char *buf, int buflen)
3384 {
3385 char *p = NULL;
3386 char *retval;
3387
3388 if (d_unlinked(dentry)) {
3389 p = buf + buflen;
3390 if (prepend(&p, &buflen, "//deleted", 10) != 0)
3391 goto Elong;
3392 buflen++;
3393 }
3394 retval = __dentry_path(dentry, buf, buflen);
3395 if (!IS_ERR(retval) && p)
3396 *p = '/'; /* restore '/' overriden with '\0' */
3397 return retval;
3398 Elong:
3399 return ERR_PTR(-ENAMETOOLONG);
3400 }
3401
3402 static void get_fs_root_and_pwd_rcu(struct fs_struct *fs, struct path *root,
3403 struct path *pwd)
3404 {
3405 unsigned seq;
3406
3407 do {
3408 seq = read_seqcount_begin(&fs->seq);
3409 *root = fs->root;
3410 *pwd = fs->pwd;
3411 } while (read_seqcount_retry(&fs->seq, seq));
3412 }
3413
3414 /*
3415 * NOTE! The user-level library version returns a
3416 * character pointer. The kernel system call just
3417 * returns the length of the buffer filled (which
3418 * includes the ending '\0' character), or a negative
3419 * error value. So libc would do something like
3420 *
3421 * char *getcwd(char * buf, size_t size)
3422 * {
3423 * int retval;
3424 *
3425 * retval = sys_getcwd(buf, size);
3426 * if (retval >= 0)
3427 * return buf;
3428 * errno = -retval;
3429 * return NULL;
3430 * }
3431 */
3432 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
3433 {
3434 int error;
3435 struct path pwd, root;
3436 char *page = __getname();
3437
3438 if (!page)
3439 return -ENOMEM;
3440
3441 rcu_read_lock();
3442 get_fs_root_and_pwd_rcu(current->fs, &root, &pwd);
3443
3444 error = -ENOENT;
3445 if (!d_unlinked(pwd.dentry)) {
3446 unsigned long len;
3447 char *cwd = page + PATH_MAX;
3448 int buflen = PATH_MAX;
3449
3450 prepend(&cwd, &buflen, "\0", 1);
3451 error = prepend_path(&pwd, &root, &cwd, &buflen);
3452 rcu_read_unlock();
3453
3454 if (error < 0)
3455 goto out;
3456
3457 /* Unreachable from current root */
3458 if (error > 0) {
3459 error = prepend_unreachable(&cwd, &buflen);
3460 if (error)
3461 goto out;
3462 }
3463
3464 error = -ERANGE;
3465 len = PATH_MAX + page - cwd;
3466 if (len <= size) {
3467 error = len;
3468 if (copy_to_user(buf, cwd, len))
3469 error = -EFAULT;
3470 }
3471 } else {
3472 rcu_read_unlock();
3473 }
3474
3475 out:
3476 __putname(page);
3477 return error;
3478 }
3479
3480 /*
3481 * Test whether new_dentry is a subdirectory of old_dentry.
3482 *
3483 * Trivially implemented using the dcache structure
3484 */
3485
3486 /**
3487 * is_subdir - is new dentry a subdirectory of old_dentry
3488 * @new_dentry: new dentry
3489 * @old_dentry: old dentry
3490 *
3491 * Returns true if new_dentry is a subdirectory of the parent (at any depth).
3492 * Returns false otherwise.
3493 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3494 */
3495
3496 bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
3497 {
3498 bool result;
3499 unsigned seq;
3500
3501 if (new_dentry == old_dentry)
3502 return true;
3503
3504 do {
3505 /* for restarting inner loop in case of seq retry */
3506 seq = read_seqbegin(&rename_lock);
3507 /*
3508 * Need rcu_readlock to protect against the d_parent trashing
3509 * due to d_move
3510 */
3511 rcu_read_lock();
3512 if (d_ancestor(old_dentry, new_dentry))
3513 result = true;
3514 else
3515 result = false;
3516 rcu_read_unlock();
3517 } while (read_seqretry(&rename_lock, seq));
3518
3519 return result;
3520 }
3521
3522 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
3523 {
3524 struct dentry *root = data;
3525 if (dentry != root) {
3526 if (d_unhashed(dentry) || !dentry->d_inode)
3527 return D_WALK_SKIP;
3528
3529 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3530 dentry->d_flags |= DCACHE_GENOCIDE;
3531 dentry->d_lockref.count--;
3532 }
3533 }
3534 return D_WALK_CONTINUE;
3535 }
3536
3537 void d_genocide(struct dentry *parent)
3538 {
3539 d_walk(parent, parent, d_genocide_kill, NULL);
3540 }
3541
3542 void d_tmpfile(struct dentry *dentry, struct inode *inode)
3543 {
3544 inode_dec_link_count(inode);
3545 BUG_ON(dentry->d_name.name != dentry->d_iname ||
3546 !hlist_unhashed(&dentry->d_u.d_alias) ||
3547 !d_unlinked(dentry));
3548 spin_lock(&dentry->d_parent->d_lock);
3549 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3550 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3551 (unsigned long long)inode->i_ino);
3552 spin_unlock(&dentry->d_lock);
3553 spin_unlock(&dentry->d_parent->d_lock);
3554 d_instantiate(dentry, inode);
3555 }
3556 EXPORT_SYMBOL(d_tmpfile);
3557
3558 static __initdata unsigned long dhash_entries;
3559 static int __init set_dhash_entries(char *str)
3560 {
3561 if (!str)
3562 return 0;
3563 dhash_entries = simple_strtoul(str, &str, 0);
3564 return 1;
3565 }
3566 __setup("dhash_entries=", set_dhash_entries);
3567
3568 static void __init dcache_init_early(void)
3569 {
3570 unsigned int loop;
3571
3572 /* If hashes are distributed across NUMA nodes, defer
3573 * hash allocation until vmalloc space is available.
3574 */
3575 if (hashdist)
3576 return;
3577
3578 dentry_hashtable =
3579 alloc_large_system_hash("Dentry cache",
3580 sizeof(struct hlist_bl_head),
3581 dhash_entries,
3582 13,
3583 HASH_EARLY,
3584 &d_hash_shift,
3585 &d_hash_mask,
3586 0,
3587 0);
3588
3589 for (loop = 0; loop < (1U << d_hash_shift); loop++)
3590 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3591 }
3592
3593 static void __init dcache_init(void)
3594 {
3595 unsigned int loop;
3596
3597 /*
3598 * A constructor could be added for stable state like the lists,
3599 * but it is probably not worth it because of the cache nature
3600 * of the dcache.
3601 */
3602 dentry_cache = KMEM_CACHE(dentry,
3603 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT);
3604
3605 /* Hash may have been set up in dcache_init_early */
3606 if (!hashdist)
3607 return;
3608
3609 dentry_hashtable =
3610 alloc_large_system_hash("Dentry cache",
3611 sizeof(struct hlist_bl_head),
3612 dhash_entries,
3613 13,
3614 0,
3615 &d_hash_shift,
3616 &d_hash_mask,
3617 0,
3618 0);
3619
3620 for (loop = 0; loop < (1U << d_hash_shift); loop++)
3621 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3622 }
3623
3624 /* SLAB cache for __getname() consumers */
3625 struct kmem_cache *names_cachep __read_mostly;
3626 EXPORT_SYMBOL(names_cachep);
3627
3628 EXPORT_SYMBOL(d_genocide);
3629
3630 void __init vfs_caches_init_early(void)
3631 {
3632 dcache_init_early();
3633 inode_init_early();
3634 }
3635
3636 void __init vfs_caches_init(void)
3637 {
3638 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
3639 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3640
3641 dcache_init();
3642 inode_init();
3643 files_init();
3644 files_maxfiles_init();
3645 mnt_init();
3646 bdev_cache_init();
3647 chrdev_init();
3648 }