]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - fs/dcache.c
Merge remote-tracking branch 'asoc/fix/component' into asoc-linus
[mirror_ubuntu-zesty-kernel.git] / fs / dcache.c
1 /*
2 * fs/dcache.c
3 *
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
8
9 /*
10 * Notes on the allocation strategy:
11 *
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
15 */
16
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/export.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <linux/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/rculist_bl.h>
38 #include <linux/prefetch.h>
39 #include <linux/ratelimit.h>
40 #include <linux/list_lru.h>
41 #include <linux/kasan.h>
42
43 #include "internal.h"
44 #include "mount.h"
45
46 /*
47 * Usage:
48 * dcache->d_inode->i_lock protects:
49 * - i_dentry, d_u.d_alias, d_inode of aliases
50 * dcache_hash_bucket lock protects:
51 * - the dcache hash table
52 * s_anon bl list spinlock protects:
53 * - the s_anon list (see __d_drop)
54 * dentry->d_sb->s_dentry_lru_lock protects:
55 * - the dcache lru lists and counters
56 * d_lock protects:
57 * - d_flags
58 * - d_name
59 * - d_lru
60 * - d_count
61 * - d_unhashed()
62 * - d_parent and d_subdirs
63 * - childrens' d_child and d_parent
64 * - d_u.d_alias, d_inode
65 *
66 * Ordering:
67 * dentry->d_inode->i_lock
68 * dentry->d_lock
69 * dentry->d_sb->s_dentry_lru_lock
70 * dcache_hash_bucket lock
71 * s_anon lock
72 *
73 * If there is an ancestor relationship:
74 * dentry->d_parent->...->d_parent->d_lock
75 * ...
76 * dentry->d_parent->d_lock
77 * dentry->d_lock
78 *
79 * If no ancestor relationship:
80 * if (dentry1 < dentry2)
81 * dentry1->d_lock
82 * dentry2->d_lock
83 */
84 int sysctl_vfs_cache_pressure __read_mostly = 100;
85 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
86
87 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
88
89 EXPORT_SYMBOL(rename_lock);
90
91 static struct kmem_cache *dentry_cache __read_mostly;
92
93 /*
94 * This is the single most critical data structure when it comes
95 * to the dcache: the hashtable for lookups. Somebody should try
96 * to make this good - I've just made it work.
97 *
98 * This hash-function tries to avoid losing too many bits of hash
99 * information, yet avoid using a prime hash-size or similar.
100 */
101
102 static unsigned int d_hash_mask __read_mostly;
103 static unsigned int d_hash_shift __read_mostly;
104
105 static struct hlist_bl_head *dentry_hashtable __read_mostly;
106
107 static inline struct hlist_bl_head *d_hash(unsigned int hash)
108 {
109 return dentry_hashtable + (hash >> (32 - d_hash_shift));
110 }
111
112 #define IN_LOOKUP_SHIFT 10
113 static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT];
114
115 static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent,
116 unsigned int hash)
117 {
118 hash += (unsigned long) parent / L1_CACHE_BYTES;
119 return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT);
120 }
121
122
123 /* Statistics gathering. */
124 struct dentry_stat_t dentry_stat = {
125 .age_limit = 45,
126 };
127
128 static DEFINE_PER_CPU(long, nr_dentry);
129 static DEFINE_PER_CPU(long, nr_dentry_unused);
130
131 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
132
133 /*
134 * Here we resort to our own counters instead of using generic per-cpu counters
135 * for consistency with what the vfs inode code does. We are expected to harvest
136 * better code and performance by having our own specialized counters.
137 *
138 * Please note that the loop is done over all possible CPUs, not over all online
139 * CPUs. The reason for this is that we don't want to play games with CPUs going
140 * on and off. If one of them goes off, we will just keep their counters.
141 *
142 * glommer: See cffbc8a for details, and if you ever intend to change this,
143 * please update all vfs counters to match.
144 */
145 static long get_nr_dentry(void)
146 {
147 int i;
148 long sum = 0;
149 for_each_possible_cpu(i)
150 sum += per_cpu(nr_dentry, i);
151 return sum < 0 ? 0 : sum;
152 }
153
154 static long get_nr_dentry_unused(void)
155 {
156 int i;
157 long sum = 0;
158 for_each_possible_cpu(i)
159 sum += per_cpu(nr_dentry_unused, i);
160 return sum < 0 ? 0 : sum;
161 }
162
163 int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer,
164 size_t *lenp, loff_t *ppos)
165 {
166 dentry_stat.nr_dentry = get_nr_dentry();
167 dentry_stat.nr_unused = get_nr_dentry_unused();
168 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
169 }
170 #endif
171
172 /*
173 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
174 * The strings are both count bytes long, and count is non-zero.
175 */
176 #ifdef CONFIG_DCACHE_WORD_ACCESS
177
178 #include <asm/word-at-a-time.h>
179 /*
180 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
181 * aligned allocation for this particular component. We don't
182 * strictly need the load_unaligned_zeropad() safety, but it
183 * doesn't hurt either.
184 *
185 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
186 * need the careful unaligned handling.
187 */
188 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
189 {
190 unsigned long a,b,mask;
191
192 for (;;) {
193 a = *(unsigned long *)cs;
194 b = load_unaligned_zeropad(ct);
195 if (tcount < sizeof(unsigned long))
196 break;
197 if (unlikely(a != b))
198 return 1;
199 cs += sizeof(unsigned long);
200 ct += sizeof(unsigned long);
201 tcount -= sizeof(unsigned long);
202 if (!tcount)
203 return 0;
204 }
205 mask = bytemask_from_count(tcount);
206 return unlikely(!!((a ^ b) & mask));
207 }
208
209 #else
210
211 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
212 {
213 do {
214 if (*cs != *ct)
215 return 1;
216 cs++;
217 ct++;
218 tcount--;
219 } while (tcount);
220 return 0;
221 }
222
223 #endif
224
225 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
226 {
227 /*
228 * Be careful about RCU walk racing with rename:
229 * use 'lockless_dereference' to fetch the name pointer.
230 *
231 * NOTE! Even if a rename will mean that the length
232 * was not loaded atomically, we don't care. The
233 * RCU walk will check the sequence count eventually,
234 * and catch it. And we won't overrun the buffer,
235 * because we're reading the name pointer atomically,
236 * and a dentry name is guaranteed to be properly
237 * terminated with a NUL byte.
238 *
239 * End result: even if 'len' is wrong, we'll exit
240 * early because the data cannot match (there can
241 * be no NUL in the ct/tcount data)
242 */
243 const unsigned char *cs = lockless_dereference(dentry->d_name.name);
244
245 return dentry_string_cmp(cs, ct, tcount);
246 }
247
248 struct external_name {
249 union {
250 atomic_t count;
251 struct rcu_head head;
252 } u;
253 unsigned char name[];
254 };
255
256 static inline struct external_name *external_name(struct dentry *dentry)
257 {
258 return container_of(dentry->d_name.name, struct external_name, name[0]);
259 }
260
261 static void __d_free(struct rcu_head *head)
262 {
263 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
264
265 kmem_cache_free(dentry_cache, dentry);
266 }
267
268 static void __d_free_external(struct rcu_head *head)
269 {
270 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
271 kfree(external_name(dentry));
272 kmem_cache_free(dentry_cache, dentry);
273 }
274
275 static inline int dname_external(const struct dentry *dentry)
276 {
277 return dentry->d_name.name != dentry->d_iname;
278 }
279
280 static inline void __d_set_inode_and_type(struct dentry *dentry,
281 struct inode *inode,
282 unsigned type_flags)
283 {
284 unsigned flags;
285
286 dentry->d_inode = inode;
287 flags = READ_ONCE(dentry->d_flags);
288 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
289 flags |= type_flags;
290 WRITE_ONCE(dentry->d_flags, flags);
291 }
292
293 static inline void __d_clear_type_and_inode(struct dentry *dentry)
294 {
295 unsigned flags = READ_ONCE(dentry->d_flags);
296
297 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
298 WRITE_ONCE(dentry->d_flags, flags);
299 dentry->d_inode = NULL;
300 }
301
302 static void dentry_free(struct dentry *dentry)
303 {
304 WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
305 if (unlikely(dname_external(dentry))) {
306 struct external_name *p = external_name(dentry);
307 if (likely(atomic_dec_and_test(&p->u.count))) {
308 call_rcu(&dentry->d_u.d_rcu, __d_free_external);
309 return;
310 }
311 }
312 /* if dentry was never visible to RCU, immediate free is OK */
313 if (!(dentry->d_flags & DCACHE_RCUACCESS))
314 __d_free(&dentry->d_u.d_rcu);
315 else
316 call_rcu(&dentry->d_u.d_rcu, __d_free);
317 }
318
319 /*
320 * Release the dentry's inode, using the filesystem
321 * d_iput() operation if defined.
322 */
323 static void dentry_unlink_inode(struct dentry * dentry)
324 __releases(dentry->d_lock)
325 __releases(dentry->d_inode->i_lock)
326 {
327 struct inode *inode = dentry->d_inode;
328 bool hashed = !d_unhashed(dentry);
329
330 if (hashed)
331 raw_write_seqcount_begin(&dentry->d_seq);
332 __d_clear_type_and_inode(dentry);
333 hlist_del_init(&dentry->d_u.d_alias);
334 if (hashed)
335 raw_write_seqcount_end(&dentry->d_seq);
336 spin_unlock(&dentry->d_lock);
337 spin_unlock(&inode->i_lock);
338 if (!inode->i_nlink)
339 fsnotify_inoderemove(inode);
340 if (dentry->d_op && dentry->d_op->d_iput)
341 dentry->d_op->d_iput(dentry, inode);
342 else
343 iput(inode);
344 }
345
346 /*
347 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
348 * is in use - which includes both the "real" per-superblock
349 * LRU list _and_ the DCACHE_SHRINK_LIST use.
350 *
351 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
352 * on the shrink list (ie not on the superblock LRU list).
353 *
354 * The per-cpu "nr_dentry_unused" counters are updated with
355 * the DCACHE_LRU_LIST bit.
356 *
357 * These helper functions make sure we always follow the
358 * rules. d_lock must be held by the caller.
359 */
360 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
361 static void d_lru_add(struct dentry *dentry)
362 {
363 D_FLAG_VERIFY(dentry, 0);
364 dentry->d_flags |= DCACHE_LRU_LIST;
365 this_cpu_inc(nr_dentry_unused);
366 WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
367 }
368
369 static void d_lru_del(struct dentry *dentry)
370 {
371 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
372 dentry->d_flags &= ~DCACHE_LRU_LIST;
373 this_cpu_dec(nr_dentry_unused);
374 WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
375 }
376
377 static void d_shrink_del(struct dentry *dentry)
378 {
379 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
380 list_del_init(&dentry->d_lru);
381 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
382 this_cpu_dec(nr_dentry_unused);
383 }
384
385 static void d_shrink_add(struct dentry *dentry, struct list_head *list)
386 {
387 D_FLAG_VERIFY(dentry, 0);
388 list_add(&dentry->d_lru, list);
389 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
390 this_cpu_inc(nr_dentry_unused);
391 }
392
393 /*
394 * These can only be called under the global LRU lock, ie during the
395 * callback for freeing the LRU list. "isolate" removes it from the
396 * LRU lists entirely, while shrink_move moves it to the indicated
397 * private list.
398 */
399 static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
400 {
401 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
402 dentry->d_flags &= ~DCACHE_LRU_LIST;
403 this_cpu_dec(nr_dentry_unused);
404 list_lru_isolate(lru, &dentry->d_lru);
405 }
406
407 static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
408 struct list_head *list)
409 {
410 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
411 dentry->d_flags |= DCACHE_SHRINK_LIST;
412 list_lru_isolate_move(lru, &dentry->d_lru, list);
413 }
414
415 /*
416 * dentry_lru_(add|del)_list) must be called with d_lock held.
417 */
418 static void dentry_lru_add(struct dentry *dentry)
419 {
420 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
421 d_lru_add(dentry);
422 }
423
424 /**
425 * d_drop - drop a dentry
426 * @dentry: dentry to drop
427 *
428 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
429 * be found through a VFS lookup any more. Note that this is different from
430 * deleting the dentry - d_delete will try to mark the dentry negative if
431 * possible, giving a successful _negative_ lookup, while d_drop will
432 * just make the cache lookup fail.
433 *
434 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
435 * reason (NFS timeouts or autofs deletes).
436 *
437 * __d_drop requires dentry->d_lock.
438 */
439 void __d_drop(struct dentry *dentry)
440 {
441 if (!d_unhashed(dentry)) {
442 struct hlist_bl_head *b;
443 /*
444 * Hashed dentries are normally on the dentry hashtable,
445 * with the exception of those newly allocated by
446 * d_obtain_alias, which are always IS_ROOT:
447 */
448 if (unlikely(IS_ROOT(dentry)))
449 b = &dentry->d_sb->s_anon;
450 else
451 b = d_hash(dentry->d_name.hash);
452
453 hlist_bl_lock(b);
454 __hlist_bl_del(&dentry->d_hash);
455 dentry->d_hash.pprev = NULL;
456 hlist_bl_unlock(b);
457 /* After this call, in-progress rcu-walk path lookup will fail. */
458 write_seqcount_invalidate(&dentry->d_seq);
459 }
460 }
461 EXPORT_SYMBOL(__d_drop);
462
463 void d_drop(struct dentry *dentry)
464 {
465 spin_lock(&dentry->d_lock);
466 __d_drop(dentry);
467 spin_unlock(&dentry->d_lock);
468 }
469 EXPORT_SYMBOL(d_drop);
470
471 static inline void dentry_unlist(struct dentry *dentry, struct dentry *parent)
472 {
473 struct dentry *next;
474 /*
475 * Inform d_walk() and shrink_dentry_list() that we are no longer
476 * attached to the dentry tree
477 */
478 dentry->d_flags |= DCACHE_DENTRY_KILLED;
479 if (unlikely(list_empty(&dentry->d_child)))
480 return;
481 __list_del_entry(&dentry->d_child);
482 /*
483 * Cursors can move around the list of children. While we'd been
484 * a normal list member, it didn't matter - ->d_child.next would've
485 * been updated. However, from now on it won't be and for the
486 * things like d_walk() it might end up with a nasty surprise.
487 * Normally d_walk() doesn't care about cursors moving around -
488 * ->d_lock on parent prevents that and since a cursor has no children
489 * of its own, we get through it without ever unlocking the parent.
490 * There is one exception, though - if we ascend from a child that
491 * gets killed as soon as we unlock it, the next sibling is found
492 * using the value left in its ->d_child.next. And if _that_
493 * pointed to a cursor, and cursor got moved (e.g. by lseek())
494 * before d_walk() regains parent->d_lock, we'll end up skipping
495 * everything the cursor had been moved past.
496 *
497 * Solution: make sure that the pointer left behind in ->d_child.next
498 * points to something that won't be moving around. I.e. skip the
499 * cursors.
500 */
501 while (dentry->d_child.next != &parent->d_subdirs) {
502 next = list_entry(dentry->d_child.next, struct dentry, d_child);
503 if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR)))
504 break;
505 dentry->d_child.next = next->d_child.next;
506 }
507 }
508
509 static void __dentry_kill(struct dentry *dentry)
510 {
511 struct dentry *parent = NULL;
512 bool can_free = true;
513 if (!IS_ROOT(dentry))
514 parent = dentry->d_parent;
515
516 /*
517 * The dentry is now unrecoverably dead to the world.
518 */
519 lockref_mark_dead(&dentry->d_lockref);
520
521 /*
522 * inform the fs via d_prune that this dentry is about to be
523 * unhashed and destroyed.
524 */
525 if (dentry->d_flags & DCACHE_OP_PRUNE)
526 dentry->d_op->d_prune(dentry);
527
528 if (dentry->d_flags & DCACHE_LRU_LIST) {
529 if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
530 d_lru_del(dentry);
531 }
532 /* if it was on the hash then remove it */
533 __d_drop(dentry);
534 dentry_unlist(dentry, parent);
535 if (parent)
536 spin_unlock(&parent->d_lock);
537 if (dentry->d_inode)
538 dentry_unlink_inode(dentry);
539 else
540 spin_unlock(&dentry->d_lock);
541 this_cpu_dec(nr_dentry);
542 if (dentry->d_op && dentry->d_op->d_release)
543 dentry->d_op->d_release(dentry);
544
545 spin_lock(&dentry->d_lock);
546 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
547 dentry->d_flags |= DCACHE_MAY_FREE;
548 can_free = false;
549 }
550 spin_unlock(&dentry->d_lock);
551 if (likely(can_free))
552 dentry_free(dentry);
553 }
554
555 /*
556 * Finish off a dentry we've decided to kill.
557 * dentry->d_lock must be held, returns with it unlocked.
558 * If ref is non-zero, then decrement the refcount too.
559 * Returns dentry requiring refcount drop, or NULL if we're done.
560 */
561 static struct dentry *dentry_kill(struct dentry *dentry)
562 __releases(dentry->d_lock)
563 {
564 struct inode *inode = dentry->d_inode;
565 struct dentry *parent = NULL;
566
567 if (inode && unlikely(!spin_trylock(&inode->i_lock)))
568 goto failed;
569
570 if (!IS_ROOT(dentry)) {
571 parent = dentry->d_parent;
572 if (unlikely(!spin_trylock(&parent->d_lock))) {
573 if (inode)
574 spin_unlock(&inode->i_lock);
575 goto failed;
576 }
577 }
578
579 __dentry_kill(dentry);
580 return parent;
581
582 failed:
583 spin_unlock(&dentry->d_lock);
584 return dentry; /* try again with same dentry */
585 }
586
587 static inline struct dentry *lock_parent(struct dentry *dentry)
588 {
589 struct dentry *parent = dentry->d_parent;
590 if (IS_ROOT(dentry))
591 return NULL;
592 if (unlikely(dentry->d_lockref.count < 0))
593 return NULL;
594 if (likely(spin_trylock(&parent->d_lock)))
595 return parent;
596 rcu_read_lock();
597 spin_unlock(&dentry->d_lock);
598 again:
599 parent = ACCESS_ONCE(dentry->d_parent);
600 spin_lock(&parent->d_lock);
601 /*
602 * We can't blindly lock dentry until we are sure
603 * that we won't violate the locking order.
604 * Any changes of dentry->d_parent must have
605 * been done with parent->d_lock held, so
606 * spin_lock() above is enough of a barrier
607 * for checking if it's still our child.
608 */
609 if (unlikely(parent != dentry->d_parent)) {
610 spin_unlock(&parent->d_lock);
611 goto again;
612 }
613 rcu_read_unlock();
614 if (parent != dentry)
615 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
616 else
617 parent = NULL;
618 return parent;
619 }
620
621 /*
622 * Try to do a lockless dput(), and return whether that was successful.
623 *
624 * If unsuccessful, we return false, having already taken the dentry lock.
625 *
626 * The caller needs to hold the RCU read lock, so that the dentry is
627 * guaranteed to stay around even if the refcount goes down to zero!
628 */
629 static inline bool fast_dput(struct dentry *dentry)
630 {
631 int ret;
632 unsigned int d_flags;
633
634 /*
635 * If we have a d_op->d_delete() operation, we sould not
636 * let the dentry count go to zero, so use "put_or_lock".
637 */
638 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE))
639 return lockref_put_or_lock(&dentry->d_lockref);
640
641 /*
642 * .. otherwise, we can try to just decrement the
643 * lockref optimistically.
644 */
645 ret = lockref_put_return(&dentry->d_lockref);
646
647 /*
648 * If the lockref_put_return() failed due to the lock being held
649 * by somebody else, the fast path has failed. We will need to
650 * get the lock, and then check the count again.
651 */
652 if (unlikely(ret < 0)) {
653 spin_lock(&dentry->d_lock);
654 if (dentry->d_lockref.count > 1) {
655 dentry->d_lockref.count--;
656 spin_unlock(&dentry->d_lock);
657 return 1;
658 }
659 return 0;
660 }
661
662 /*
663 * If we weren't the last ref, we're done.
664 */
665 if (ret)
666 return 1;
667
668 /*
669 * Careful, careful. The reference count went down
670 * to zero, but we don't hold the dentry lock, so
671 * somebody else could get it again, and do another
672 * dput(), and we need to not race with that.
673 *
674 * However, there is a very special and common case
675 * where we don't care, because there is nothing to
676 * do: the dentry is still hashed, it does not have
677 * a 'delete' op, and it's referenced and already on
678 * the LRU list.
679 *
680 * NOTE! Since we aren't locked, these values are
681 * not "stable". However, it is sufficient that at
682 * some point after we dropped the reference the
683 * dentry was hashed and the flags had the proper
684 * value. Other dentry users may have re-gotten
685 * a reference to the dentry and change that, but
686 * our work is done - we can leave the dentry
687 * around with a zero refcount.
688 */
689 smp_rmb();
690 d_flags = ACCESS_ONCE(dentry->d_flags);
691 d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST | DCACHE_DISCONNECTED;
692
693 /* Nothing to do? Dropping the reference was all we needed? */
694 if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry))
695 return 1;
696
697 /*
698 * Not the fast normal case? Get the lock. We've already decremented
699 * the refcount, but we'll need to re-check the situation after
700 * getting the lock.
701 */
702 spin_lock(&dentry->d_lock);
703
704 /*
705 * Did somebody else grab a reference to it in the meantime, and
706 * we're no longer the last user after all? Alternatively, somebody
707 * else could have killed it and marked it dead. Either way, we
708 * don't need to do anything else.
709 */
710 if (dentry->d_lockref.count) {
711 spin_unlock(&dentry->d_lock);
712 return 1;
713 }
714
715 /*
716 * Re-get the reference we optimistically dropped. We hold the
717 * lock, and we just tested that it was zero, so we can just
718 * set it to 1.
719 */
720 dentry->d_lockref.count = 1;
721 return 0;
722 }
723
724
725 /*
726 * This is dput
727 *
728 * This is complicated by the fact that we do not want to put
729 * dentries that are no longer on any hash chain on the unused
730 * list: we'd much rather just get rid of them immediately.
731 *
732 * However, that implies that we have to traverse the dentry
733 * tree upwards to the parents which might _also_ now be
734 * scheduled for deletion (it may have been only waiting for
735 * its last child to go away).
736 *
737 * This tail recursion is done by hand as we don't want to depend
738 * on the compiler to always get this right (gcc generally doesn't).
739 * Real recursion would eat up our stack space.
740 */
741
742 /*
743 * dput - release a dentry
744 * @dentry: dentry to release
745 *
746 * Release a dentry. This will drop the usage count and if appropriate
747 * call the dentry unlink method as well as removing it from the queues and
748 * releasing its resources. If the parent dentries were scheduled for release
749 * they too may now get deleted.
750 */
751 void dput(struct dentry *dentry)
752 {
753 if (unlikely(!dentry))
754 return;
755
756 repeat:
757 might_sleep();
758
759 rcu_read_lock();
760 if (likely(fast_dput(dentry))) {
761 rcu_read_unlock();
762 return;
763 }
764
765 /* Slow case: now with the dentry lock held */
766 rcu_read_unlock();
767
768 WARN_ON(d_in_lookup(dentry));
769
770 /* Unreachable? Get rid of it */
771 if (unlikely(d_unhashed(dentry)))
772 goto kill_it;
773
774 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
775 goto kill_it;
776
777 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
778 if (dentry->d_op->d_delete(dentry))
779 goto kill_it;
780 }
781
782 if (!(dentry->d_flags & DCACHE_REFERENCED))
783 dentry->d_flags |= DCACHE_REFERENCED;
784 dentry_lru_add(dentry);
785
786 dentry->d_lockref.count--;
787 spin_unlock(&dentry->d_lock);
788 return;
789
790 kill_it:
791 dentry = dentry_kill(dentry);
792 if (dentry) {
793 cond_resched();
794 goto repeat;
795 }
796 }
797 EXPORT_SYMBOL(dput);
798
799
800 /* This must be called with d_lock held */
801 static inline void __dget_dlock(struct dentry *dentry)
802 {
803 dentry->d_lockref.count++;
804 }
805
806 static inline void __dget(struct dentry *dentry)
807 {
808 lockref_get(&dentry->d_lockref);
809 }
810
811 struct dentry *dget_parent(struct dentry *dentry)
812 {
813 int gotref;
814 struct dentry *ret;
815
816 /*
817 * Do optimistic parent lookup without any
818 * locking.
819 */
820 rcu_read_lock();
821 ret = ACCESS_ONCE(dentry->d_parent);
822 gotref = lockref_get_not_zero(&ret->d_lockref);
823 rcu_read_unlock();
824 if (likely(gotref)) {
825 if (likely(ret == ACCESS_ONCE(dentry->d_parent)))
826 return ret;
827 dput(ret);
828 }
829
830 repeat:
831 /*
832 * Don't need rcu_dereference because we re-check it was correct under
833 * the lock.
834 */
835 rcu_read_lock();
836 ret = dentry->d_parent;
837 spin_lock(&ret->d_lock);
838 if (unlikely(ret != dentry->d_parent)) {
839 spin_unlock(&ret->d_lock);
840 rcu_read_unlock();
841 goto repeat;
842 }
843 rcu_read_unlock();
844 BUG_ON(!ret->d_lockref.count);
845 ret->d_lockref.count++;
846 spin_unlock(&ret->d_lock);
847 return ret;
848 }
849 EXPORT_SYMBOL(dget_parent);
850
851 /**
852 * d_find_alias - grab a hashed alias of inode
853 * @inode: inode in question
854 *
855 * If inode has a hashed alias, or is a directory and has any alias,
856 * acquire the reference to alias and return it. Otherwise return NULL.
857 * Notice that if inode is a directory there can be only one alias and
858 * it can be unhashed only if it has no children, or if it is the root
859 * of a filesystem, or if the directory was renamed and d_revalidate
860 * was the first vfs operation to notice.
861 *
862 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
863 * any other hashed alias over that one.
864 */
865 static struct dentry *__d_find_alias(struct inode *inode)
866 {
867 struct dentry *alias, *discon_alias;
868
869 again:
870 discon_alias = NULL;
871 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
872 spin_lock(&alias->d_lock);
873 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
874 if (IS_ROOT(alias) &&
875 (alias->d_flags & DCACHE_DISCONNECTED)) {
876 discon_alias = alias;
877 } else {
878 __dget_dlock(alias);
879 spin_unlock(&alias->d_lock);
880 return alias;
881 }
882 }
883 spin_unlock(&alias->d_lock);
884 }
885 if (discon_alias) {
886 alias = discon_alias;
887 spin_lock(&alias->d_lock);
888 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
889 __dget_dlock(alias);
890 spin_unlock(&alias->d_lock);
891 return alias;
892 }
893 spin_unlock(&alias->d_lock);
894 goto again;
895 }
896 return NULL;
897 }
898
899 struct dentry *d_find_alias(struct inode *inode)
900 {
901 struct dentry *de = NULL;
902
903 if (!hlist_empty(&inode->i_dentry)) {
904 spin_lock(&inode->i_lock);
905 de = __d_find_alias(inode);
906 spin_unlock(&inode->i_lock);
907 }
908 return de;
909 }
910 EXPORT_SYMBOL(d_find_alias);
911
912 /*
913 * Try to kill dentries associated with this inode.
914 * WARNING: you must own a reference to inode.
915 */
916 void d_prune_aliases(struct inode *inode)
917 {
918 struct dentry *dentry;
919 restart:
920 spin_lock(&inode->i_lock);
921 hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
922 spin_lock(&dentry->d_lock);
923 if (!dentry->d_lockref.count) {
924 struct dentry *parent = lock_parent(dentry);
925 if (likely(!dentry->d_lockref.count)) {
926 __dentry_kill(dentry);
927 dput(parent);
928 goto restart;
929 }
930 if (parent)
931 spin_unlock(&parent->d_lock);
932 }
933 spin_unlock(&dentry->d_lock);
934 }
935 spin_unlock(&inode->i_lock);
936 }
937 EXPORT_SYMBOL(d_prune_aliases);
938
939 static void shrink_dentry_list(struct list_head *list)
940 {
941 struct dentry *dentry, *parent;
942
943 while (!list_empty(list)) {
944 struct inode *inode;
945 dentry = list_entry(list->prev, struct dentry, d_lru);
946 spin_lock(&dentry->d_lock);
947 parent = lock_parent(dentry);
948
949 /*
950 * The dispose list is isolated and dentries are not accounted
951 * to the LRU here, so we can simply remove it from the list
952 * here regardless of whether it is referenced or not.
953 */
954 d_shrink_del(dentry);
955
956 /*
957 * We found an inuse dentry which was not removed from
958 * the LRU because of laziness during lookup. Do not free it.
959 */
960 if (dentry->d_lockref.count > 0) {
961 spin_unlock(&dentry->d_lock);
962 if (parent)
963 spin_unlock(&parent->d_lock);
964 continue;
965 }
966
967
968 if (unlikely(dentry->d_flags & DCACHE_DENTRY_KILLED)) {
969 bool can_free = dentry->d_flags & DCACHE_MAY_FREE;
970 spin_unlock(&dentry->d_lock);
971 if (parent)
972 spin_unlock(&parent->d_lock);
973 if (can_free)
974 dentry_free(dentry);
975 continue;
976 }
977
978 inode = dentry->d_inode;
979 if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
980 d_shrink_add(dentry, list);
981 spin_unlock(&dentry->d_lock);
982 if (parent)
983 spin_unlock(&parent->d_lock);
984 continue;
985 }
986
987 __dentry_kill(dentry);
988
989 /*
990 * We need to prune ancestors too. This is necessary to prevent
991 * quadratic behavior of shrink_dcache_parent(), but is also
992 * expected to be beneficial in reducing dentry cache
993 * fragmentation.
994 */
995 dentry = parent;
996 while (dentry && !lockref_put_or_lock(&dentry->d_lockref)) {
997 parent = lock_parent(dentry);
998 if (dentry->d_lockref.count != 1) {
999 dentry->d_lockref.count--;
1000 spin_unlock(&dentry->d_lock);
1001 if (parent)
1002 spin_unlock(&parent->d_lock);
1003 break;
1004 }
1005 inode = dentry->d_inode; /* can't be NULL */
1006 if (unlikely(!spin_trylock(&inode->i_lock))) {
1007 spin_unlock(&dentry->d_lock);
1008 if (parent)
1009 spin_unlock(&parent->d_lock);
1010 cpu_relax();
1011 continue;
1012 }
1013 __dentry_kill(dentry);
1014 dentry = parent;
1015 }
1016 }
1017 }
1018
1019 static enum lru_status dentry_lru_isolate(struct list_head *item,
1020 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1021 {
1022 struct list_head *freeable = arg;
1023 struct dentry *dentry = container_of(item, struct dentry, d_lru);
1024
1025
1026 /*
1027 * we are inverting the lru lock/dentry->d_lock here,
1028 * so use a trylock. If we fail to get the lock, just skip
1029 * it
1030 */
1031 if (!spin_trylock(&dentry->d_lock))
1032 return LRU_SKIP;
1033
1034 /*
1035 * Referenced dentries are still in use. If they have active
1036 * counts, just remove them from the LRU. Otherwise give them
1037 * another pass through the LRU.
1038 */
1039 if (dentry->d_lockref.count) {
1040 d_lru_isolate(lru, dentry);
1041 spin_unlock(&dentry->d_lock);
1042 return LRU_REMOVED;
1043 }
1044
1045 if (dentry->d_flags & DCACHE_REFERENCED) {
1046 dentry->d_flags &= ~DCACHE_REFERENCED;
1047 spin_unlock(&dentry->d_lock);
1048
1049 /*
1050 * The list move itself will be made by the common LRU code. At
1051 * this point, we've dropped the dentry->d_lock but keep the
1052 * lru lock. This is safe to do, since every list movement is
1053 * protected by the lru lock even if both locks are held.
1054 *
1055 * This is guaranteed by the fact that all LRU management
1056 * functions are intermediated by the LRU API calls like
1057 * list_lru_add and list_lru_del. List movement in this file
1058 * only ever occur through this functions or through callbacks
1059 * like this one, that are called from the LRU API.
1060 *
1061 * The only exceptions to this are functions like
1062 * shrink_dentry_list, and code that first checks for the
1063 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be
1064 * operating only with stack provided lists after they are
1065 * properly isolated from the main list. It is thus, always a
1066 * local access.
1067 */
1068 return LRU_ROTATE;
1069 }
1070
1071 d_lru_shrink_move(lru, dentry, freeable);
1072 spin_unlock(&dentry->d_lock);
1073
1074 return LRU_REMOVED;
1075 }
1076
1077 /**
1078 * prune_dcache_sb - shrink the dcache
1079 * @sb: superblock
1080 * @sc: shrink control, passed to list_lru_shrink_walk()
1081 *
1082 * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1083 * is done when we need more memory and called from the superblock shrinker
1084 * function.
1085 *
1086 * This function may fail to free any resources if all the dentries are in
1087 * use.
1088 */
1089 long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
1090 {
1091 LIST_HEAD(dispose);
1092 long freed;
1093
1094 freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1095 dentry_lru_isolate, &dispose);
1096 shrink_dentry_list(&dispose);
1097 return freed;
1098 }
1099
1100 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
1101 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1102 {
1103 struct list_head *freeable = arg;
1104 struct dentry *dentry = container_of(item, struct dentry, d_lru);
1105
1106 /*
1107 * we are inverting the lru lock/dentry->d_lock here,
1108 * so use a trylock. If we fail to get the lock, just skip
1109 * it
1110 */
1111 if (!spin_trylock(&dentry->d_lock))
1112 return LRU_SKIP;
1113
1114 d_lru_shrink_move(lru, dentry, freeable);
1115 spin_unlock(&dentry->d_lock);
1116
1117 return LRU_REMOVED;
1118 }
1119
1120
1121 /**
1122 * shrink_dcache_sb - shrink dcache for a superblock
1123 * @sb: superblock
1124 *
1125 * Shrink the dcache for the specified super block. This is used to free
1126 * the dcache before unmounting a file system.
1127 */
1128 void shrink_dcache_sb(struct super_block *sb)
1129 {
1130 long freed;
1131
1132 do {
1133 LIST_HEAD(dispose);
1134
1135 freed = list_lru_walk(&sb->s_dentry_lru,
1136 dentry_lru_isolate_shrink, &dispose, UINT_MAX);
1137
1138 this_cpu_sub(nr_dentry_unused, freed);
1139 shrink_dentry_list(&dispose);
1140 } while (freed > 0);
1141 }
1142 EXPORT_SYMBOL(shrink_dcache_sb);
1143
1144 /**
1145 * enum d_walk_ret - action to talke during tree walk
1146 * @D_WALK_CONTINUE: contrinue walk
1147 * @D_WALK_QUIT: quit walk
1148 * @D_WALK_NORETRY: quit when retry is needed
1149 * @D_WALK_SKIP: skip this dentry and its children
1150 */
1151 enum d_walk_ret {
1152 D_WALK_CONTINUE,
1153 D_WALK_QUIT,
1154 D_WALK_NORETRY,
1155 D_WALK_SKIP,
1156 };
1157
1158 /**
1159 * d_walk - walk the dentry tree
1160 * @parent: start of walk
1161 * @data: data passed to @enter() and @finish()
1162 * @enter: callback when first entering the dentry
1163 * @finish: callback when successfully finished the walk
1164 *
1165 * The @enter() and @finish() callbacks are called with d_lock held.
1166 */
1167 static void d_walk(struct dentry *parent, void *data,
1168 enum d_walk_ret (*enter)(void *, struct dentry *),
1169 void (*finish)(void *))
1170 {
1171 struct dentry *this_parent;
1172 struct list_head *next;
1173 unsigned seq = 0;
1174 enum d_walk_ret ret;
1175 bool retry = true;
1176
1177 again:
1178 read_seqbegin_or_lock(&rename_lock, &seq);
1179 this_parent = parent;
1180 spin_lock(&this_parent->d_lock);
1181
1182 ret = enter(data, this_parent);
1183 switch (ret) {
1184 case D_WALK_CONTINUE:
1185 break;
1186 case D_WALK_QUIT:
1187 case D_WALK_SKIP:
1188 goto out_unlock;
1189 case D_WALK_NORETRY:
1190 retry = false;
1191 break;
1192 }
1193 repeat:
1194 next = this_parent->d_subdirs.next;
1195 resume:
1196 while (next != &this_parent->d_subdirs) {
1197 struct list_head *tmp = next;
1198 struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1199 next = tmp->next;
1200
1201 if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR))
1202 continue;
1203
1204 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1205
1206 ret = enter(data, dentry);
1207 switch (ret) {
1208 case D_WALK_CONTINUE:
1209 break;
1210 case D_WALK_QUIT:
1211 spin_unlock(&dentry->d_lock);
1212 goto out_unlock;
1213 case D_WALK_NORETRY:
1214 retry = false;
1215 break;
1216 case D_WALK_SKIP:
1217 spin_unlock(&dentry->d_lock);
1218 continue;
1219 }
1220
1221 if (!list_empty(&dentry->d_subdirs)) {
1222 spin_unlock(&this_parent->d_lock);
1223 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1224 this_parent = dentry;
1225 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1226 goto repeat;
1227 }
1228 spin_unlock(&dentry->d_lock);
1229 }
1230 /*
1231 * All done at this level ... ascend and resume the search.
1232 */
1233 rcu_read_lock();
1234 ascend:
1235 if (this_parent != parent) {
1236 struct dentry *child = this_parent;
1237 this_parent = child->d_parent;
1238
1239 spin_unlock(&child->d_lock);
1240 spin_lock(&this_parent->d_lock);
1241
1242 /* might go back up the wrong parent if we have had a rename. */
1243 if (need_seqretry(&rename_lock, seq))
1244 goto rename_retry;
1245 /* go into the first sibling still alive */
1246 do {
1247 next = child->d_child.next;
1248 if (next == &this_parent->d_subdirs)
1249 goto ascend;
1250 child = list_entry(next, struct dentry, d_child);
1251 } while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED));
1252 rcu_read_unlock();
1253 goto resume;
1254 }
1255 if (need_seqretry(&rename_lock, seq))
1256 goto rename_retry;
1257 rcu_read_unlock();
1258 if (finish)
1259 finish(data);
1260
1261 out_unlock:
1262 spin_unlock(&this_parent->d_lock);
1263 done_seqretry(&rename_lock, seq);
1264 return;
1265
1266 rename_retry:
1267 spin_unlock(&this_parent->d_lock);
1268 rcu_read_unlock();
1269 BUG_ON(seq & 1);
1270 if (!retry)
1271 return;
1272 seq = 1;
1273 goto again;
1274 }
1275
1276 struct check_mount {
1277 struct vfsmount *mnt;
1278 unsigned int mounted;
1279 };
1280
1281 static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry)
1282 {
1283 struct check_mount *info = data;
1284 struct path path = { .mnt = info->mnt, .dentry = dentry };
1285
1286 if (likely(!d_mountpoint(dentry)))
1287 return D_WALK_CONTINUE;
1288 if (__path_is_mountpoint(&path)) {
1289 info->mounted = 1;
1290 return D_WALK_QUIT;
1291 }
1292 return D_WALK_CONTINUE;
1293 }
1294
1295 /**
1296 * path_has_submounts - check for mounts over a dentry in the
1297 * current namespace.
1298 * @parent: path to check.
1299 *
1300 * Return true if the parent or its subdirectories contain
1301 * a mount point in the current namespace.
1302 */
1303 int path_has_submounts(const struct path *parent)
1304 {
1305 struct check_mount data = { .mnt = parent->mnt, .mounted = 0 };
1306
1307 read_seqlock_excl(&mount_lock);
1308 d_walk(parent->dentry, &data, path_check_mount, NULL);
1309 read_sequnlock_excl(&mount_lock);
1310
1311 return data.mounted;
1312 }
1313 EXPORT_SYMBOL(path_has_submounts);
1314
1315 /*
1316 * Called by mount code to set a mountpoint and check if the mountpoint is
1317 * reachable (e.g. NFS can unhash a directory dentry and then the complete
1318 * subtree can become unreachable).
1319 *
1320 * Only one of d_invalidate() and d_set_mounted() must succeed. For
1321 * this reason take rename_lock and d_lock on dentry and ancestors.
1322 */
1323 int d_set_mounted(struct dentry *dentry)
1324 {
1325 struct dentry *p;
1326 int ret = -ENOENT;
1327 write_seqlock(&rename_lock);
1328 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1329 /* Need exclusion wrt. d_invalidate() */
1330 spin_lock(&p->d_lock);
1331 if (unlikely(d_unhashed(p))) {
1332 spin_unlock(&p->d_lock);
1333 goto out;
1334 }
1335 spin_unlock(&p->d_lock);
1336 }
1337 spin_lock(&dentry->d_lock);
1338 if (!d_unlinked(dentry)) {
1339 dentry->d_flags |= DCACHE_MOUNTED;
1340 ret = 0;
1341 }
1342 spin_unlock(&dentry->d_lock);
1343 out:
1344 write_sequnlock(&rename_lock);
1345 return ret;
1346 }
1347
1348 /*
1349 * Search the dentry child list of the specified parent,
1350 * and move any unused dentries to the end of the unused
1351 * list for prune_dcache(). We descend to the next level
1352 * whenever the d_subdirs list is non-empty and continue
1353 * searching.
1354 *
1355 * It returns zero iff there are no unused children,
1356 * otherwise it returns the number of children moved to
1357 * the end of the unused list. This may not be the total
1358 * number of unused children, because select_parent can
1359 * drop the lock and return early due to latency
1360 * constraints.
1361 */
1362
1363 struct select_data {
1364 struct dentry *start;
1365 struct list_head dispose;
1366 int found;
1367 };
1368
1369 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1370 {
1371 struct select_data *data = _data;
1372 enum d_walk_ret ret = D_WALK_CONTINUE;
1373
1374 if (data->start == dentry)
1375 goto out;
1376
1377 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1378 data->found++;
1379 } else {
1380 if (dentry->d_flags & DCACHE_LRU_LIST)
1381 d_lru_del(dentry);
1382 if (!dentry->d_lockref.count) {
1383 d_shrink_add(dentry, &data->dispose);
1384 data->found++;
1385 }
1386 }
1387 /*
1388 * We can return to the caller if we have found some (this
1389 * ensures forward progress). We'll be coming back to find
1390 * the rest.
1391 */
1392 if (!list_empty(&data->dispose))
1393 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1394 out:
1395 return ret;
1396 }
1397
1398 /**
1399 * shrink_dcache_parent - prune dcache
1400 * @parent: parent of entries to prune
1401 *
1402 * Prune the dcache to remove unused children of the parent dentry.
1403 */
1404 void shrink_dcache_parent(struct dentry *parent)
1405 {
1406 for (;;) {
1407 struct select_data data;
1408
1409 INIT_LIST_HEAD(&data.dispose);
1410 data.start = parent;
1411 data.found = 0;
1412
1413 d_walk(parent, &data, select_collect, NULL);
1414 if (!data.found)
1415 break;
1416
1417 shrink_dentry_list(&data.dispose);
1418 cond_resched();
1419 }
1420 }
1421 EXPORT_SYMBOL(shrink_dcache_parent);
1422
1423 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
1424 {
1425 /* it has busy descendents; complain about those instead */
1426 if (!list_empty(&dentry->d_subdirs))
1427 return D_WALK_CONTINUE;
1428
1429 /* root with refcount 1 is fine */
1430 if (dentry == _data && dentry->d_lockref.count == 1)
1431 return D_WALK_CONTINUE;
1432
1433 printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1434 " still in use (%d) [unmount of %s %s]\n",
1435 dentry,
1436 dentry->d_inode ?
1437 dentry->d_inode->i_ino : 0UL,
1438 dentry,
1439 dentry->d_lockref.count,
1440 dentry->d_sb->s_type->name,
1441 dentry->d_sb->s_id);
1442 WARN_ON(1);
1443 return D_WALK_CONTINUE;
1444 }
1445
1446 static void do_one_tree(struct dentry *dentry)
1447 {
1448 shrink_dcache_parent(dentry);
1449 d_walk(dentry, dentry, umount_check, NULL);
1450 d_drop(dentry);
1451 dput(dentry);
1452 }
1453
1454 /*
1455 * destroy the dentries attached to a superblock on unmounting
1456 */
1457 void shrink_dcache_for_umount(struct super_block *sb)
1458 {
1459 struct dentry *dentry;
1460
1461 WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
1462
1463 dentry = sb->s_root;
1464 sb->s_root = NULL;
1465 do_one_tree(dentry);
1466
1467 while (!hlist_bl_empty(&sb->s_anon)) {
1468 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash));
1469 do_one_tree(dentry);
1470 }
1471 }
1472
1473 struct detach_data {
1474 struct select_data select;
1475 struct dentry *mountpoint;
1476 };
1477 static enum d_walk_ret detach_and_collect(void *_data, struct dentry *dentry)
1478 {
1479 struct detach_data *data = _data;
1480
1481 if (d_mountpoint(dentry)) {
1482 __dget_dlock(dentry);
1483 data->mountpoint = dentry;
1484 return D_WALK_QUIT;
1485 }
1486
1487 return select_collect(&data->select, dentry);
1488 }
1489
1490 static void check_and_drop(void *_data)
1491 {
1492 struct detach_data *data = _data;
1493
1494 if (!data->mountpoint && !data->select.found)
1495 __d_drop(data->select.start);
1496 }
1497
1498 /**
1499 * d_invalidate - detach submounts, prune dcache, and drop
1500 * @dentry: dentry to invalidate (aka detach, prune and drop)
1501 *
1502 * no dcache lock.
1503 *
1504 * The final d_drop is done as an atomic operation relative to
1505 * rename_lock ensuring there are no races with d_set_mounted. This
1506 * ensures there are no unhashed dentries on the path to a mountpoint.
1507 */
1508 void d_invalidate(struct dentry *dentry)
1509 {
1510 /*
1511 * If it's already been dropped, return OK.
1512 */
1513 spin_lock(&dentry->d_lock);
1514 if (d_unhashed(dentry)) {
1515 spin_unlock(&dentry->d_lock);
1516 return;
1517 }
1518 spin_unlock(&dentry->d_lock);
1519
1520 /* Negative dentries can be dropped without further checks */
1521 if (!dentry->d_inode) {
1522 d_drop(dentry);
1523 return;
1524 }
1525
1526 for (;;) {
1527 struct detach_data data;
1528
1529 data.mountpoint = NULL;
1530 INIT_LIST_HEAD(&data.select.dispose);
1531 data.select.start = dentry;
1532 data.select.found = 0;
1533
1534 d_walk(dentry, &data, detach_and_collect, check_and_drop);
1535
1536 if (data.select.found)
1537 shrink_dentry_list(&data.select.dispose);
1538
1539 if (data.mountpoint) {
1540 detach_mounts(data.mountpoint);
1541 dput(data.mountpoint);
1542 }
1543
1544 if (!data.mountpoint && !data.select.found)
1545 break;
1546
1547 cond_resched();
1548 }
1549 }
1550 EXPORT_SYMBOL(d_invalidate);
1551
1552 /**
1553 * __d_alloc - allocate a dcache entry
1554 * @sb: filesystem it will belong to
1555 * @name: qstr of the name
1556 *
1557 * Allocates a dentry. It returns %NULL if there is insufficient memory
1558 * available. On a success the dentry is returned. The name passed in is
1559 * copied and the copy passed in may be reused after this call.
1560 */
1561
1562 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1563 {
1564 struct dentry *dentry;
1565 char *dname;
1566 int err;
1567
1568 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1569 if (!dentry)
1570 return NULL;
1571
1572 /*
1573 * We guarantee that the inline name is always NUL-terminated.
1574 * This way the memcpy() done by the name switching in rename
1575 * will still always have a NUL at the end, even if we might
1576 * be overwriting an internal NUL character
1577 */
1578 dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1579 if (unlikely(!name)) {
1580 static const struct qstr anon = QSTR_INIT("/", 1);
1581 name = &anon;
1582 dname = dentry->d_iname;
1583 } else if (name->len > DNAME_INLINE_LEN-1) {
1584 size_t size = offsetof(struct external_name, name[1]);
1585 struct external_name *p = kmalloc(size + name->len,
1586 GFP_KERNEL_ACCOUNT);
1587 if (!p) {
1588 kmem_cache_free(dentry_cache, dentry);
1589 return NULL;
1590 }
1591 atomic_set(&p->u.count, 1);
1592 dname = p->name;
1593 if (IS_ENABLED(CONFIG_DCACHE_WORD_ACCESS))
1594 kasan_unpoison_shadow(dname,
1595 round_up(name->len + 1, sizeof(unsigned long)));
1596 } else {
1597 dname = dentry->d_iname;
1598 }
1599
1600 dentry->d_name.len = name->len;
1601 dentry->d_name.hash = name->hash;
1602 memcpy(dname, name->name, name->len);
1603 dname[name->len] = 0;
1604
1605 /* Make sure we always see the terminating NUL character */
1606 smp_wmb();
1607 dentry->d_name.name = dname;
1608
1609 dentry->d_lockref.count = 1;
1610 dentry->d_flags = 0;
1611 spin_lock_init(&dentry->d_lock);
1612 seqcount_init(&dentry->d_seq);
1613 dentry->d_inode = NULL;
1614 dentry->d_parent = dentry;
1615 dentry->d_sb = sb;
1616 dentry->d_op = NULL;
1617 dentry->d_fsdata = NULL;
1618 INIT_HLIST_BL_NODE(&dentry->d_hash);
1619 INIT_LIST_HEAD(&dentry->d_lru);
1620 INIT_LIST_HEAD(&dentry->d_subdirs);
1621 INIT_HLIST_NODE(&dentry->d_u.d_alias);
1622 INIT_LIST_HEAD(&dentry->d_child);
1623 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1624
1625 if (dentry->d_op && dentry->d_op->d_init) {
1626 err = dentry->d_op->d_init(dentry);
1627 if (err) {
1628 if (dname_external(dentry))
1629 kfree(external_name(dentry));
1630 kmem_cache_free(dentry_cache, dentry);
1631 return NULL;
1632 }
1633 }
1634
1635 this_cpu_inc(nr_dentry);
1636
1637 return dentry;
1638 }
1639
1640 /**
1641 * d_alloc - allocate a dcache entry
1642 * @parent: parent of entry to allocate
1643 * @name: qstr of the name
1644 *
1645 * Allocates a dentry. It returns %NULL if there is insufficient memory
1646 * available. On a success the dentry is returned. The name passed in is
1647 * copied and the copy passed in may be reused after this call.
1648 */
1649 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1650 {
1651 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1652 if (!dentry)
1653 return NULL;
1654 dentry->d_flags |= DCACHE_RCUACCESS;
1655 spin_lock(&parent->d_lock);
1656 /*
1657 * don't need child lock because it is not subject
1658 * to concurrency here
1659 */
1660 __dget_dlock(parent);
1661 dentry->d_parent = parent;
1662 list_add(&dentry->d_child, &parent->d_subdirs);
1663 spin_unlock(&parent->d_lock);
1664
1665 return dentry;
1666 }
1667 EXPORT_SYMBOL(d_alloc);
1668
1669 struct dentry *d_alloc_cursor(struct dentry * parent)
1670 {
1671 struct dentry *dentry = __d_alloc(parent->d_sb, NULL);
1672 if (dentry) {
1673 dentry->d_flags |= DCACHE_RCUACCESS | DCACHE_DENTRY_CURSOR;
1674 dentry->d_parent = dget(parent);
1675 }
1676 return dentry;
1677 }
1678
1679 /**
1680 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1681 * @sb: the superblock
1682 * @name: qstr of the name
1683 *
1684 * For a filesystem that just pins its dentries in memory and never
1685 * performs lookups at all, return an unhashed IS_ROOT dentry.
1686 */
1687 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1688 {
1689 return __d_alloc(sb, name);
1690 }
1691 EXPORT_SYMBOL(d_alloc_pseudo);
1692
1693 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1694 {
1695 struct qstr q;
1696
1697 q.name = name;
1698 q.hash_len = hashlen_string(parent, name);
1699 return d_alloc(parent, &q);
1700 }
1701 EXPORT_SYMBOL(d_alloc_name);
1702
1703 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1704 {
1705 WARN_ON_ONCE(dentry->d_op);
1706 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
1707 DCACHE_OP_COMPARE |
1708 DCACHE_OP_REVALIDATE |
1709 DCACHE_OP_WEAK_REVALIDATE |
1710 DCACHE_OP_DELETE |
1711 DCACHE_OP_REAL));
1712 dentry->d_op = op;
1713 if (!op)
1714 return;
1715 if (op->d_hash)
1716 dentry->d_flags |= DCACHE_OP_HASH;
1717 if (op->d_compare)
1718 dentry->d_flags |= DCACHE_OP_COMPARE;
1719 if (op->d_revalidate)
1720 dentry->d_flags |= DCACHE_OP_REVALIDATE;
1721 if (op->d_weak_revalidate)
1722 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1723 if (op->d_delete)
1724 dentry->d_flags |= DCACHE_OP_DELETE;
1725 if (op->d_prune)
1726 dentry->d_flags |= DCACHE_OP_PRUNE;
1727 if (op->d_real)
1728 dentry->d_flags |= DCACHE_OP_REAL;
1729
1730 }
1731 EXPORT_SYMBOL(d_set_d_op);
1732
1733
1734 /*
1735 * d_set_fallthru - Mark a dentry as falling through to a lower layer
1736 * @dentry - The dentry to mark
1737 *
1738 * Mark a dentry as falling through to the lower layer (as set with
1739 * d_pin_lower()). This flag may be recorded on the medium.
1740 */
1741 void d_set_fallthru(struct dentry *dentry)
1742 {
1743 spin_lock(&dentry->d_lock);
1744 dentry->d_flags |= DCACHE_FALLTHRU;
1745 spin_unlock(&dentry->d_lock);
1746 }
1747 EXPORT_SYMBOL(d_set_fallthru);
1748
1749 static unsigned d_flags_for_inode(struct inode *inode)
1750 {
1751 unsigned add_flags = DCACHE_REGULAR_TYPE;
1752
1753 if (!inode)
1754 return DCACHE_MISS_TYPE;
1755
1756 if (S_ISDIR(inode->i_mode)) {
1757 add_flags = DCACHE_DIRECTORY_TYPE;
1758 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1759 if (unlikely(!inode->i_op->lookup))
1760 add_flags = DCACHE_AUTODIR_TYPE;
1761 else
1762 inode->i_opflags |= IOP_LOOKUP;
1763 }
1764 goto type_determined;
1765 }
1766
1767 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1768 if (unlikely(inode->i_op->get_link)) {
1769 add_flags = DCACHE_SYMLINK_TYPE;
1770 goto type_determined;
1771 }
1772 inode->i_opflags |= IOP_NOFOLLOW;
1773 }
1774
1775 if (unlikely(!S_ISREG(inode->i_mode)))
1776 add_flags = DCACHE_SPECIAL_TYPE;
1777
1778 type_determined:
1779 if (unlikely(IS_AUTOMOUNT(inode)))
1780 add_flags |= DCACHE_NEED_AUTOMOUNT;
1781 return add_flags;
1782 }
1783
1784 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1785 {
1786 unsigned add_flags = d_flags_for_inode(inode);
1787 WARN_ON(d_in_lookup(dentry));
1788
1789 spin_lock(&dentry->d_lock);
1790 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
1791 raw_write_seqcount_begin(&dentry->d_seq);
1792 __d_set_inode_and_type(dentry, inode, add_flags);
1793 raw_write_seqcount_end(&dentry->d_seq);
1794 fsnotify_update_flags(dentry);
1795 spin_unlock(&dentry->d_lock);
1796 }
1797
1798 /**
1799 * d_instantiate - fill in inode information for a dentry
1800 * @entry: dentry to complete
1801 * @inode: inode to attach to this dentry
1802 *
1803 * Fill in inode information in the entry.
1804 *
1805 * This turns negative dentries into productive full members
1806 * of society.
1807 *
1808 * NOTE! This assumes that the inode count has been incremented
1809 * (or otherwise set) by the caller to indicate that it is now
1810 * in use by the dcache.
1811 */
1812
1813 void d_instantiate(struct dentry *entry, struct inode * inode)
1814 {
1815 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1816 if (inode) {
1817 security_d_instantiate(entry, inode);
1818 spin_lock(&inode->i_lock);
1819 __d_instantiate(entry, inode);
1820 spin_unlock(&inode->i_lock);
1821 }
1822 }
1823 EXPORT_SYMBOL(d_instantiate);
1824
1825 /**
1826 * d_instantiate_no_diralias - instantiate a non-aliased dentry
1827 * @entry: dentry to complete
1828 * @inode: inode to attach to this dentry
1829 *
1830 * Fill in inode information in the entry. If a directory alias is found, then
1831 * return an error (and drop inode). Together with d_materialise_unique() this
1832 * guarantees that a directory inode may never have more than one alias.
1833 */
1834 int d_instantiate_no_diralias(struct dentry *entry, struct inode *inode)
1835 {
1836 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1837
1838 security_d_instantiate(entry, inode);
1839 spin_lock(&inode->i_lock);
1840 if (S_ISDIR(inode->i_mode) && !hlist_empty(&inode->i_dentry)) {
1841 spin_unlock(&inode->i_lock);
1842 iput(inode);
1843 return -EBUSY;
1844 }
1845 __d_instantiate(entry, inode);
1846 spin_unlock(&inode->i_lock);
1847
1848 return 0;
1849 }
1850 EXPORT_SYMBOL(d_instantiate_no_diralias);
1851
1852 struct dentry *d_make_root(struct inode *root_inode)
1853 {
1854 struct dentry *res = NULL;
1855
1856 if (root_inode) {
1857 res = __d_alloc(root_inode->i_sb, NULL);
1858 if (res)
1859 d_instantiate(res, root_inode);
1860 else
1861 iput(root_inode);
1862 }
1863 return res;
1864 }
1865 EXPORT_SYMBOL(d_make_root);
1866
1867 static struct dentry * __d_find_any_alias(struct inode *inode)
1868 {
1869 struct dentry *alias;
1870
1871 if (hlist_empty(&inode->i_dentry))
1872 return NULL;
1873 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
1874 __dget(alias);
1875 return alias;
1876 }
1877
1878 /**
1879 * d_find_any_alias - find any alias for a given inode
1880 * @inode: inode to find an alias for
1881 *
1882 * If any aliases exist for the given inode, take and return a
1883 * reference for one of them. If no aliases exist, return %NULL.
1884 */
1885 struct dentry *d_find_any_alias(struct inode *inode)
1886 {
1887 struct dentry *de;
1888
1889 spin_lock(&inode->i_lock);
1890 de = __d_find_any_alias(inode);
1891 spin_unlock(&inode->i_lock);
1892 return de;
1893 }
1894 EXPORT_SYMBOL(d_find_any_alias);
1895
1896 static struct dentry *__d_obtain_alias(struct inode *inode, int disconnected)
1897 {
1898 struct dentry *tmp;
1899 struct dentry *res;
1900 unsigned add_flags;
1901
1902 if (!inode)
1903 return ERR_PTR(-ESTALE);
1904 if (IS_ERR(inode))
1905 return ERR_CAST(inode);
1906
1907 res = d_find_any_alias(inode);
1908 if (res)
1909 goto out_iput;
1910
1911 tmp = __d_alloc(inode->i_sb, NULL);
1912 if (!tmp) {
1913 res = ERR_PTR(-ENOMEM);
1914 goto out_iput;
1915 }
1916
1917 security_d_instantiate(tmp, inode);
1918 spin_lock(&inode->i_lock);
1919 res = __d_find_any_alias(inode);
1920 if (res) {
1921 spin_unlock(&inode->i_lock);
1922 dput(tmp);
1923 goto out_iput;
1924 }
1925
1926 /* attach a disconnected dentry */
1927 add_flags = d_flags_for_inode(inode);
1928
1929 if (disconnected)
1930 add_flags |= DCACHE_DISCONNECTED;
1931
1932 spin_lock(&tmp->d_lock);
1933 __d_set_inode_and_type(tmp, inode, add_flags);
1934 hlist_add_head(&tmp->d_u.d_alias, &inode->i_dentry);
1935 hlist_bl_lock(&tmp->d_sb->s_anon);
1936 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1937 hlist_bl_unlock(&tmp->d_sb->s_anon);
1938 spin_unlock(&tmp->d_lock);
1939 spin_unlock(&inode->i_lock);
1940
1941 return tmp;
1942
1943 out_iput:
1944 iput(inode);
1945 return res;
1946 }
1947
1948 /**
1949 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
1950 * @inode: inode to allocate the dentry for
1951 *
1952 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1953 * similar open by handle operations. The returned dentry may be anonymous,
1954 * or may have a full name (if the inode was already in the cache).
1955 *
1956 * When called on a directory inode, we must ensure that the inode only ever
1957 * has one dentry. If a dentry is found, that is returned instead of
1958 * allocating a new one.
1959 *
1960 * On successful return, the reference to the inode has been transferred
1961 * to the dentry. In case of an error the reference on the inode is released.
1962 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1963 * be passed in and the error will be propagated to the return value,
1964 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1965 */
1966 struct dentry *d_obtain_alias(struct inode *inode)
1967 {
1968 return __d_obtain_alias(inode, 1);
1969 }
1970 EXPORT_SYMBOL(d_obtain_alias);
1971
1972 /**
1973 * d_obtain_root - find or allocate a dentry for a given inode
1974 * @inode: inode to allocate the dentry for
1975 *
1976 * Obtain an IS_ROOT dentry for the root of a filesystem.
1977 *
1978 * We must ensure that directory inodes only ever have one dentry. If a
1979 * dentry is found, that is returned instead of allocating a new one.
1980 *
1981 * On successful return, the reference to the inode has been transferred
1982 * to the dentry. In case of an error the reference on the inode is
1983 * released. A %NULL or IS_ERR inode may be passed in and will be the
1984 * error will be propagate to the return value, with a %NULL @inode
1985 * replaced by ERR_PTR(-ESTALE).
1986 */
1987 struct dentry *d_obtain_root(struct inode *inode)
1988 {
1989 return __d_obtain_alias(inode, 0);
1990 }
1991 EXPORT_SYMBOL(d_obtain_root);
1992
1993 /**
1994 * d_add_ci - lookup or allocate new dentry with case-exact name
1995 * @inode: the inode case-insensitive lookup has found
1996 * @dentry: the negative dentry that was passed to the parent's lookup func
1997 * @name: the case-exact name to be associated with the returned dentry
1998 *
1999 * This is to avoid filling the dcache with case-insensitive names to the
2000 * same inode, only the actual correct case is stored in the dcache for
2001 * case-insensitive filesystems.
2002 *
2003 * For a case-insensitive lookup match and if the the case-exact dentry
2004 * already exists in in the dcache, use it and return it.
2005 *
2006 * If no entry exists with the exact case name, allocate new dentry with
2007 * the exact case, and return the spliced entry.
2008 */
2009 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
2010 struct qstr *name)
2011 {
2012 struct dentry *found, *res;
2013
2014 /*
2015 * First check if a dentry matching the name already exists,
2016 * if not go ahead and create it now.
2017 */
2018 found = d_hash_and_lookup(dentry->d_parent, name);
2019 if (found) {
2020 iput(inode);
2021 return found;
2022 }
2023 if (d_in_lookup(dentry)) {
2024 found = d_alloc_parallel(dentry->d_parent, name,
2025 dentry->d_wait);
2026 if (IS_ERR(found) || !d_in_lookup(found)) {
2027 iput(inode);
2028 return found;
2029 }
2030 } else {
2031 found = d_alloc(dentry->d_parent, name);
2032 if (!found) {
2033 iput(inode);
2034 return ERR_PTR(-ENOMEM);
2035 }
2036 }
2037 res = d_splice_alias(inode, found);
2038 if (res) {
2039 dput(found);
2040 return res;
2041 }
2042 return found;
2043 }
2044 EXPORT_SYMBOL(d_add_ci);
2045
2046
2047 static inline bool d_same_name(const struct dentry *dentry,
2048 const struct dentry *parent,
2049 const struct qstr *name)
2050 {
2051 if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) {
2052 if (dentry->d_name.len != name->len)
2053 return false;
2054 return dentry_cmp(dentry, name->name, name->len) == 0;
2055 }
2056 return parent->d_op->d_compare(dentry,
2057 dentry->d_name.len, dentry->d_name.name,
2058 name) == 0;
2059 }
2060
2061 /**
2062 * __d_lookup_rcu - search for a dentry (racy, store-free)
2063 * @parent: parent dentry
2064 * @name: qstr of name we wish to find
2065 * @seqp: returns d_seq value at the point where the dentry was found
2066 * Returns: dentry, or NULL
2067 *
2068 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2069 * resolution (store-free path walking) design described in
2070 * Documentation/filesystems/path-lookup.txt.
2071 *
2072 * This is not to be used outside core vfs.
2073 *
2074 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2075 * held, and rcu_read_lock held. The returned dentry must not be stored into
2076 * without taking d_lock and checking d_seq sequence count against @seq
2077 * returned here.
2078 *
2079 * A refcount may be taken on the found dentry with the d_rcu_to_refcount
2080 * function.
2081 *
2082 * Alternatively, __d_lookup_rcu may be called again to look up the child of
2083 * the returned dentry, so long as its parent's seqlock is checked after the
2084 * child is looked up. Thus, an interlocking stepping of sequence lock checks
2085 * is formed, giving integrity down the path walk.
2086 *
2087 * NOTE! The caller *has* to check the resulting dentry against the sequence
2088 * number we've returned before using any of the resulting dentry state!
2089 */
2090 struct dentry *__d_lookup_rcu(const struct dentry *parent,
2091 const struct qstr *name,
2092 unsigned *seqp)
2093 {
2094 u64 hashlen = name->hash_len;
2095 const unsigned char *str = name->name;
2096 struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen));
2097 struct hlist_bl_node *node;
2098 struct dentry *dentry;
2099
2100 /*
2101 * Note: There is significant duplication with __d_lookup_rcu which is
2102 * required to prevent single threaded performance regressions
2103 * especially on architectures where smp_rmb (in seqcounts) are costly.
2104 * Keep the two functions in sync.
2105 */
2106
2107 /*
2108 * The hash list is protected using RCU.
2109 *
2110 * Carefully use d_seq when comparing a candidate dentry, to avoid
2111 * races with d_move().
2112 *
2113 * It is possible that concurrent renames can mess up our list
2114 * walk here and result in missing our dentry, resulting in the
2115 * false-negative result. d_lookup() protects against concurrent
2116 * renames using rename_lock seqlock.
2117 *
2118 * See Documentation/filesystems/path-lookup.txt for more details.
2119 */
2120 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2121 unsigned seq;
2122
2123 seqretry:
2124 /*
2125 * The dentry sequence count protects us from concurrent
2126 * renames, and thus protects parent and name fields.
2127 *
2128 * The caller must perform a seqcount check in order
2129 * to do anything useful with the returned dentry.
2130 *
2131 * NOTE! We do a "raw" seqcount_begin here. That means that
2132 * we don't wait for the sequence count to stabilize if it
2133 * is in the middle of a sequence change. If we do the slow
2134 * dentry compare, we will do seqretries until it is stable,
2135 * and if we end up with a successful lookup, we actually
2136 * want to exit RCU lookup anyway.
2137 *
2138 * Note that raw_seqcount_begin still *does* smp_rmb(), so
2139 * we are still guaranteed NUL-termination of ->d_name.name.
2140 */
2141 seq = raw_seqcount_begin(&dentry->d_seq);
2142 if (dentry->d_parent != parent)
2143 continue;
2144 if (d_unhashed(dentry))
2145 continue;
2146
2147 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
2148 int tlen;
2149 const char *tname;
2150 if (dentry->d_name.hash != hashlen_hash(hashlen))
2151 continue;
2152 tlen = dentry->d_name.len;
2153 tname = dentry->d_name.name;
2154 /* we want a consistent (name,len) pair */
2155 if (read_seqcount_retry(&dentry->d_seq, seq)) {
2156 cpu_relax();
2157 goto seqretry;
2158 }
2159 if (parent->d_op->d_compare(dentry,
2160 tlen, tname, name) != 0)
2161 continue;
2162 } else {
2163 if (dentry->d_name.hash_len != hashlen)
2164 continue;
2165 if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0)
2166 continue;
2167 }
2168 *seqp = seq;
2169 return dentry;
2170 }
2171 return NULL;
2172 }
2173
2174 /**
2175 * d_lookup - search for a dentry
2176 * @parent: parent dentry
2177 * @name: qstr of name we wish to find
2178 * Returns: dentry, or NULL
2179 *
2180 * d_lookup searches the children of the parent dentry for the name in
2181 * question. If the dentry is found its reference count is incremented and the
2182 * dentry is returned. The caller must use dput to free the entry when it has
2183 * finished using it. %NULL is returned if the dentry does not exist.
2184 */
2185 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2186 {
2187 struct dentry *dentry;
2188 unsigned seq;
2189
2190 do {
2191 seq = read_seqbegin(&rename_lock);
2192 dentry = __d_lookup(parent, name);
2193 if (dentry)
2194 break;
2195 } while (read_seqretry(&rename_lock, seq));
2196 return dentry;
2197 }
2198 EXPORT_SYMBOL(d_lookup);
2199
2200 /**
2201 * __d_lookup - search for a dentry (racy)
2202 * @parent: parent dentry
2203 * @name: qstr of name we wish to find
2204 * Returns: dentry, or NULL
2205 *
2206 * __d_lookup is like d_lookup, however it may (rarely) return a
2207 * false-negative result due to unrelated rename activity.
2208 *
2209 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2210 * however it must be used carefully, eg. with a following d_lookup in
2211 * the case of failure.
2212 *
2213 * __d_lookup callers must be commented.
2214 */
2215 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2216 {
2217 unsigned int hash = name->hash;
2218 struct hlist_bl_head *b = d_hash(hash);
2219 struct hlist_bl_node *node;
2220 struct dentry *found = NULL;
2221 struct dentry *dentry;
2222
2223 /*
2224 * Note: There is significant duplication with __d_lookup_rcu which is
2225 * required to prevent single threaded performance regressions
2226 * especially on architectures where smp_rmb (in seqcounts) are costly.
2227 * Keep the two functions in sync.
2228 */
2229
2230 /*
2231 * The hash list is protected using RCU.
2232 *
2233 * Take d_lock when comparing a candidate dentry, to avoid races
2234 * with d_move().
2235 *
2236 * It is possible that concurrent renames can mess up our list
2237 * walk here and result in missing our dentry, resulting in the
2238 * false-negative result. d_lookup() protects against concurrent
2239 * renames using rename_lock seqlock.
2240 *
2241 * See Documentation/filesystems/path-lookup.txt for more details.
2242 */
2243 rcu_read_lock();
2244
2245 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2246
2247 if (dentry->d_name.hash != hash)
2248 continue;
2249
2250 spin_lock(&dentry->d_lock);
2251 if (dentry->d_parent != parent)
2252 goto next;
2253 if (d_unhashed(dentry))
2254 goto next;
2255
2256 if (!d_same_name(dentry, parent, name))
2257 goto next;
2258
2259 dentry->d_lockref.count++;
2260 found = dentry;
2261 spin_unlock(&dentry->d_lock);
2262 break;
2263 next:
2264 spin_unlock(&dentry->d_lock);
2265 }
2266 rcu_read_unlock();
2267
2268 return found;
2269 }
2270
2271 /**
2272 * d_hash_and_lookup - hash the qstr then search for a dentry
2273 * @dir: Directory to search in
2274 * @name: qstr of name we wish to find
2275 *
2276 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2277 */
2278 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2279 {
2280 /*
2281 * Check for a fs-specific hash function. Note that we must
2282 * calculate the standard hash first, as the d_op->d_hash()
2283 * routine may choose to leave the hash value unchanged.
2284 */
2285 name->hash = full_name_hash(dir, name->name, name->len);
2286 if (dir->d_flags & DCACHE_OP_HASH) {
2287 int err = dir->d_op->d_hash(dir, name);
2288 if (unlikely(err < 0))
2289 return ERR_PTR(err);
2290 }
2291 return d_lookup(dir, name);
2292 }
2293 EXPORT_SYMBOL(d_hash_and_lookup);
2294
2295 /*
2296 * When a file is deleted, we have two options:
2297 * - turn this dentry into a negative dentry
2298 * - unhash this dentry and free it.
2299 *
2300 * Usually, we want to just turn this into
2301 * a negative dentry, but if anybody else is
2302 * currently using the dentry or the inode
2303 * we can't do that and we fall back on removing
2304 * it from the hash queues and waiting for
2305 * it to be deleted later when it has no users
2306 */
2307
2308 /**
2309 * d_delete - delete a dentry
2310 * @dentry: The dentry to delete
2311 *
2312 * Turn the dentry into a negative dentry if possible, otherwise
2313 * remove it from the hash queues so it can be deleted later
2314 */
2315
2316 void d_delete(struct dentry * dentry)
2317 {
2318 struct inode *inode;
2319 int isdir = 0;
2320 /*
2321 * Are we the only user?
2322 */
2323 again:
2324 spin_lock(&dentry->d_lock);
2325 inode = dentry->d_inode;
2326 isdir = S_ISDIR(inode->i_mode);
2327 if (dentry->d_lockref.count == 1) {
2328 if (!spin_trylock(&inode->i_lock)) {
2329 spin_unlock(&dentry->d_lock);
2330 cpu_relax();
2331 goto again;
2332 }
2333 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2334 dentry_unlink_inode(dentry);
2335 fsnotify_nameremove(dentry, isdir);
2336 return;
2337 }
2338
2339 if (!d_unhashed(dentry))
2340 __d_drop(dentry);
2341
2342 spin_unlock(&dentry->d_lock);
2343
2344 fsnotify_nameremove(dentry, isdir);
2345 }
2346 EXPORT_SYMBOL(d_delete);
2347
2348 static void __d_rehash(struct dentry *entry)
2349 {
2350 struct hlist_bl_head *b = d_hash(entry->d_name.hash);
2351 BUG_ON(!d_unhashed(entry));
2352 hlist_bl_lock(b);
2353 hlist_bl_add_head_rcu(&entry->d_hash, b);
2354 hlist_bl_unlock(b);
2355 }
2356
2357 /**
2358 * d_rehash - add an entry back to the hash
2359 * @entry: dentry to add to the hash
2360 *
2361 * Adds a dentry to the hash according to its name.
2362 */
2363
2364 void d_rehash(struct dentry * entry)
2365 {
2366 spin_lock(&entry->d_lock);
2367 __d_rehash(entry);
2368 spin_unlock(&entry->d_lock);
2369 }
2370 EXPORT_SYMBOL(d_rehash);
2371
2372 static inline unsigned start_dir_add(struct inode *dir)
2373 {
2374
2375 for (;;) {
2376 unsigned n = dir->i_dir_seq;
2377 if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n)
2378 return n;
2379 cpu_relax();
2380 }
2381 }
2382
2383 static inline void end_dir_add(struct inode *dir, unsigned n)
2384 {
2385 smp_store_release(&dir->i_dir_seq, n + 2);
2386 }
2387
2388 static void d_wait_lookup(struct dentry *dentry)
2389 {
2390 if (d_in_lookup(dentry)) {
2391 DECLARE_WAITQUEUE(wait, current);
2392 add_wait_queue(dentry->d_wait, &wait);
2393 do {
2394 set_current_state(TASK_UNINTERRUPTIBLE);
2395 spin_unlock(&dentry->d_lock);
2396 schedule();
2397 spin_lock(&dentry->d_lock);
2398 } while (d_in_lookup(dentry));
2399 }
2400 }
2401
2402 struct dentry *d_alloc_parallel(struct dentry *parent,
2403 const struct qstr *name,
2404 wait_queue_head_t *wq)
2405 {
2406 unsigned int hash = name->hash;
2407 struct hlist_bl_head *b = in_lookup_hash(parent, hash);
2408 struct hlist_bl_node *node;
2409 struct dentry *new = d_alloc(parent, name);
2410 struct dentry *dentry;
2411 unsigned seq, r_seq, d_seq;
2412
2413 if (unlikely(!new))
2414 return ERR_PTR(-ENOMEM);
2415
2416 retry:
2417 rcu_read_lock();
2418 seq = smp_load_acquire(&parent->d_inode->i_dir_seq) & ~1;
2419 r_seq = read_seqbegin(&rename_lock);
2420 dentry = __d_lookup_rcu(parent, name, &d_seq);
2421 if (unlikely(dentry)) {
2422 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2423 rcu_read_unlock();
2424 goto retry;
2425 }
2426 if (read_seqcount_retry(&dentry->d_seq, d_seq)) {
2427 rcu_read_unlock();
2428 dput(dentry);
2429 goto retry;
2430 }
2431 rcu_read_unlock();
2432 dput(new);
2433 return dentry;
2434 }
2435 if (unlikely(read_seqretry(&rename_lock, r_seq))) {
2436 rcu_read_unlock();
2437 goto retry;
2438 }
2439 hlist_bl_lock(b);
2440 if (unlikely(parent->d_inode->i_dir_seq != seq)) {
2441 hlist_bl_unlock(b);
2442 rcu_read_unlock();
2443 goto retry;
2444 }
2445 /*
2446 * No changes for the parent since the beginning of d_lookup().
2447 * Since all removals from the chain happen with hlist_bl_lock(),
2448 * any potential in-lookup matches are going to stay here until
2449 * we unlock the chain. All fields are stable in everything
2450 * we encounter.
2451 */
2452 hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) {
2453 if (dentry->d_name.hash != hash)
2454 continue;
2455 if (dentry->d_parent != parent)
2456 continue;
2457 if (!d_same_name(dentry, parent, name))
2458 continue;
2459 hlist_bl_unlock(b);
2460 /* now we can try to grab a reference */
2461 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2462 rcu_read_unlock();
2463 goto retry;
2464 }
2465
2466 rcu_read_unlock();
2467 /*
2468 * somebody is likely to be still doing lookup for it;
2469 * wait for them to finish
2470 */
2471 spin_lock(&dentry->d_lock);
2472 d_wait_lookup(dentry);
2473 /*
2474 * it's not in-lookup anymore; in principle we should repeat
2475 * everything from dcache lookup, but it's likely to be what
2476 * d_lookup() would've found anyway. If it is, just return it;
2477 * otherwise we really have to repeat the whole thing.
2478 */
2479 if (unlikely(dentry->d_name.hash != hash))
2480 goto mismatch;
2481 if (unlikely(dentry->d_parent != parent))
2482 goto mismatch;
2483 if (unlikely(d_unhashed(dentry)))
2484 goto mismatch;
2485 if (unlikely(!d_same_name(dentry, parent, name)))
2486 goto mismatch;
2487 /* OK, it *is* a hashed match; return it */
2488 spin_unlock(&dentry->d_lock);
2489 dput(new);
2490 return dentry;
2491 }
2492 rcu_read_unlock();
2493 /* we can't take ->d_lock here; it's OK, though. */
2494 new->d_flags |= DCACHE_PAR_LOOKUP;
2495 new->d_wait = wq;
2496 hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b);
2497 hlist_bl_unlock(b);
2498 return new;
2499 mismatch:
2500 spin_unlock(&dentry->d_lock);
2501 dput(dentry);
2502 goto retry;
2503 }
2504 EXPORT_SYMBOL(d_alloc_parallel);
2505
2506 void __d_lookup_done(struct dentry *dentry)
2507 {
2508 struct hlist_bl_head *b = in_lookup_hash(dentry->d_parent,
2509 dentry->d_name.hash);
2510 hlist_bl_lock(b);
2511 dentry->d_flags &= ~DCACHE_PAR_LOOKUP;
2512 __hlist_bl_del(&dentry->d_u.d_in_lookup_hash);
2513 wake_up_all(dentry->d_wait);
2514 dentry->d_wait = NULL;
2515 hlist_bl_unlock(b);
2516 INIT_HLIST_NODE(&dentry->d_u.d_alias);
2517 INIT_LIST_HEAD(&dentry->d_lru);
2518 }
2519 EXPORT_SYMBOL(__d_lookup_done);
2520
2521 /* inode->i_lock held if inode is non-NULL */
2522
2523 static inline void __d_add(struct dentry *dentry, struct inode *inode)
2524 {
2525 struct inode *dir = NULL;
2526 unsigned n;
2527 spin_lock(&dentry->d_lock);
2528 if (unlikely(d_in_lookup(dentry))) {
2529 dir = dentry->d_parent->d_inode;
2530 n = start_dir_add(dir);
2531 __d_lookup_done(dentry);
2532 }
2533 if (inode) {
2534 unsigned add_flags = d_flags_for_inode(inode);
2535 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2536 raw_write_seqcount_begin(&dentry->d_seq);
2537 __d_set_inode_and_type(dentry, inode, add_flags);
2538 raw_write_seqcount_end(&dentry->d_seq);
2539 fsnotify_update_flags(dentry);
2540 }
2541 __d_rehash(dentry);
2542 if (dir)
2543 end_dir_add(dir, n);
2544 spin_unlock(&dentry->d_lock);
2545 if (inode)
2546 spin_unlock(&inode->i_lock);
2547 }
2548
2549 /**
2550 * d_add - add dentry to hash queues
2551 * @entry: dentry to add
2552 * @inode: The inode to attach to this dentry
2553 *
2554 * This adds the entry to the hash queues and initializes @inode.
2555 * The entry was actually filled in earlier during d_alloc().
2556 */
2557
2558 void d_add(struct dentry *entry, struct inode *inode)
2559 {
2560 if (inode) {
2561 security_d_instantiate(entry, inode);
2562 spin_lock(&inode->i_lock);
2563 }
2564 __d_add(entry, inode);
2565 }
2566 EXPORT_SYMBOL(d_add);
2567
2568 /**
2569 * d_exact_alias - find and hash an exact unhashed alias
2570 * @entry: dentry to add
2571 * @inode: The inode to go with this dentry
2572 *
2573 * If an unhashed dentry with the same name/parent and desired
2574 * inode already exists, hash and return it. Otherwise, return
2575 * NULL.
2576 *
2577 * Parent directory should be locked.
2578 */
2579 struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode)
2580 {
2581 struct dentry *alias;
2582 unsigned int hash = entry->d_name.hash;
2583
2584 spin_lock(&inode->i_lock);
2585 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
2586 /*
2587 * Don't need alias->d_lock here, because aliases with
2588 * d_parent == entry->d_parent are not subject to name or
2589 * parent changes, because the parent inode i_mutex is held.
2590 */
2591 if (alias->d_name.hash != hash)
2592 continue;
2593 if (alias->d_parent != entry->d_parent)
2594 continue;
2595 if (!d_same_name(alias, entry->d_parent, &entry->d_name))
2596 continue;
2597 spin_lock(&alias->d_lock);
2598 if (!d_unhashed(alias)) {
2599 spin_unlock(&alias->d_lock);
2600 alias = NULL;
2601 } else {
2602 __dget_dlock(alias);
2603 __d_rehash(alias);
2604 spin_unlock(&alias->d_lock);
2605 }
2606 spin_unlock(&inode->i_lock);
2607 return alias;
2608 }
2609 spin_unlock(&inode->i_lock);
2610 return NULL;
2611 }
2612 EXPORT_SYMBOL(d_exact_alias);
2613
2614 /**
2615 * dentry_update_name_case - update case insensitive dentry with a new name
2616 * @dentry: dentry to be updated
2617 * @name: new name
2618 *
2619 * Update a case insensitive dentry with new case of name.
2620 *
2621 * dentry must have been returned by d_lookup with name @name. Old and new
2622 * name lengths must match (ie. no d_compare which allows mismatched name
2623 * lengths).
2624 *
2625 * Parent inode i_mutex must be held over d_lookup and into this call (to
2626 * keep renames and concurrent inserts, and readdir(2) away).
2627 */
2628 void dentry_update_name_case(struct dentry *dentry, const struct qstr *name)
2629 {
2630 BUG_ON(!inode_is_locked(dentry->d_parent->d_inode));
2631 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2632
2633 spin_lock(&dentry->d_lock);
2634 write_seqcount_begin(&dentry->d_seq);
2635 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
2636 write_seqcount_end(&dentry->d_seq);
2637 spin_unlock(&dentry->d_lock);
2638 }
2639 EXPORT_SYMBOL(dentry_update_name_case);
2640
2641 static void swap_names(struct dentry *dentry, struct dentry *target)
2642 {
2643 if (unlikely(dname_external(target))) {
2644 if (unlikely(dname_external(dentry))) {
2645 /*
2646 * Both external: swap the pointers
2647 */
2648 swap(target->d_name.name, dentry->d_name.name);
2649 } else {
2650 /*
2651 * dentry:internal, target:external. Steal target's
2652 * storage and make target internal.
2653 */
2654 memcpy(target->d_iname, dentry->d_name.name,
2655 dentry->d_name.len + 1);
2656 dentry->d_name.name = target->d_name.name;
2657 target->d_name.name = target->d_iname;
2658 }
2659 } else {
2660 if (unlikely(dname_external(dentry))) {
2661 /*
2662 * dentry:external, target:internal. Give dentry's
2663 * storage to target and make dentry internal
2664 */
2665 memcpy(dentry->d_iname, target->d_name.name,
2666 target->d_name.len + 1);
2667 target->d_name.name = dentry->d_name.name;
2668 dentry->d_name.name = dentry->d_iname;
2669 } else {
2670 /*
2671 * Both are internal.
2672 */
2673 unsigned int i;
2674 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2675 kmemcheck_mark_initialized(dentry->d_iname, DNAME_INLINE_LEN);
2676 kmemcheck_mark_initialized(target->d_iname, DNAME_INLINE_LEN);
2677 for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2678 swap(((long *) &dentry->d_iname)[i],
2679 ((long *) &target->d_iname)[i]);
2680 }
2681 }
2682 }
2683 swap(dentry->d_name.hash_len, target->d_name.hash_len);
2684 }
2685
2686 static void copy_name(struct dentry *dentry, struct dentry *target)
2687 {
2688 struct external_name *old_name = NULL;
2689 if (unlikely(dname_external(dentry)))
2690 old_name = external_name(dentry);
2691 if (unlikely(dname_external(target))) {
2692 atomic_inc(&external_name(target)->u.count);
2693 dentry->d_name = target->d_name;
2694 } else {
2695 memcpy(dentry->d_iname, target->d_name.name,
2696 target->d_name.len + 1);
2697 dentry->d_name.name = dentry->d_iname;
2698 dentry->d_name.hash_len = target->d_name.hash_len;
2699 }
2700 if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2701 kfree_rcu(old_name, u.head);
2702 }
2703
2704 static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2705 {
2706 /*
2707 * XXXX: do we really need to take target->d_lock?
2708 */
2709 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2710 spin_lock(&target->d_parent->d_lock);
2711 else {
2712 if (d_ancestor(dentry->d_parent, target->d_parent)) {
2713 spin_lock(&dentry->d_parent->d_lock);
2714 spin_lock_nested(&target->d_parent->d_lock,
2715 DENTRY_D_LOCK_NESTED);
2716 } else {
2717 spin_lock(&target->d_parent->d_lock);
2718 spin_lock_nested(&dentry->d_parent->d_lock,
2719 DENTRY_D_LOCK_NESTED);
2720 }
2721 }
2722 if (target < dentry) {
2723 spin_lock_nested(&target->d_lock, 2);
2724 spin_lock_nested(&dentry->d_lock, 3);
2725 } else {
2726 spin_lock_nested(&dentry->d_lock, 2);
2727 spin_lock_nested(&target->d_lock, 3);
2728 }
2729 }
2730
2731 static void dentry_unlock_for_move(struct dentry *dentry, struct dentry *target)
2732 {
2733 if (target->d_parent != dentry->d_parent)
2734 spin_unlock(&dentry->d_parent->d_lock);
2735 if (target->d_parent != target)
2736 spin_unlock(&target->d_parent->d_lock);
2737 spin_unlock(&target->d_lock);
2738 spin_unlock(&dentry->d_lock);
2739 }
2740
2741 /*
2742 * When switching names, the actual string doesn't strictly have to
2743 * be preserved in the target - because we're dropping the target
2744 * anyway. As such, we can just do a simple memcpy() to copy over
2745 * the new name before we switch, unless we are going to rehash
2746 * it. Note that if we *do* unhash the target, we are not allowed
2747 * to rehash it without giving it a new name/hash key - whether
2748 * we swap or overwrite the names here, resulting name won't match
2749 * the reality in filesystem; it's only there for d_path() purposes.
2750 * Note that all of this is happening under rename_lock, so the
2751 * any hash lookup seeing it in the middle of manipulations will
2752 * be discarded anyway. So we do not care what happens to the hash
2753 * key in that case.
2754 */
2755 /*
2756 * __d_move - move a dentry
2757 * @dentry: entry to move
2758 * @target: new dentry
2759 * @exchange: exchange the two dentries
2760 *
2761 * Update the dcache to reflect the move of a file name. Negative
2762 * dcache entries should not be moved in this way. Caller must hold
2763 * rename_lock, the i_mutex of the source and target directories,
2764 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2765 */
2766 static void __d_move(struct dentry *dentry, struct dentry *target,
2767 bool exchange)
2768 {
2769 struct inode *dir = NULL;
2770 unsigned n;
2771 if (!dentry->d_inode)
2772 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2773
2774 BUG_ON(d_ancestor(dentry, target));
2775 BUG_ON(d_ancestor(target, dentry));
2776
2777 dentry_lock_for_move(dentry, target);
2778 if (unlikely(d_in_lookup(target))) {
2779 dir = target->d_parent->d_inode;
2780 n = start_dir_add(dir);
2781 __d_lookup_done(target);
2782 }
2783
2784 write_seqcount_begin(&dentry->d_seq);
2785 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
2786
2787 /* unhash both */
2788 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2789 __d_drop(dentry);
2790 __d_drop(target);
2791
2792 /* Switch the names.. */
2793 if (exchange)
2794 swap_names(dentry, target);
2795 else
2796 copy_name(dentry, target);
2797
2798 /* rehash in new place(s) */
2799 __d_rehash(dentry);
2800 if (exchange)
2801 __d_rehash(target);
2802
2803 /* ... and switch them in the tree */
2804 if (IS_ROOT(dentry)) {
2805 /* splicing a tree */
2806 dentry->d_flags |= DCACHE_RCUACCESS;
2807 dentry->d_parent = target->d_parent;
2808 target->d_parent = target;
2809 list_del_init(&target->d_child);
2810 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2811 } else {
2812 /* swapping two dentries */
2813 swap(dentry->d_parent, target->d_parent);
2814 list_move(&target->d_child, &target->d_parent->d_subdirs);
2815 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2816 if (exchange)
2817 fsnotify_update_flags(target);
2818 fsnotify_update_flags(dentry);
2819 }
2820
2821 write_seqcount_end(&target->d_seq);
2822 write_seqcount_end(&dentry->d_seq);
2823
2824 if (dir)
2825 end_dir_add(dir, n);
2826 dentry_unlock_for_move(dentry, target);
2827 }
2828
2829 /*
2830 * d_move - move a dentry
2831 * @dentry: entry to move
2832 * @target: new dentry
2833 *
2834 * Update the dcache to reflect the move of a file name. Negative
2835 * dcache entries should not be moved in this way. See the locking
2836 * requirements for __d_move.
2837 */
2838 void d_move(struct dentry *dentry, struct dentry *target)
2839 {
2840 write_seqlock(&rename_lock);
2841 __d_move(dentry, target, false);
2842 write_sequnlock(&rename_lock);
2843 }
2844 EXPORT_SYMBOL(d_move);
2845
2846 /*
2847 * d_exchange - exchange two dentries
2848 * @dentry1: first dentry
2849 * @dentry2: second dentry
2850 */
2851 void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2852 {
2853 write_seqlock(&rename_lock);
2854
2855 WARN_ON(!dentry1->d_inode);
2856 WARN_ON(!dentry2->d_inode);
2857 WARN_ON(IS_ROOT(dentry1));
2858 WARN_ON(IS_ROOT(dentry2));
2859
2860 __d_move(dentry1, dentry2, true);
2861
2862 write_sequnlock(&rename_lock);
2863 }
2864
2865 /**
2866 * d_ancestor - search for an ancestor
2867 * @p1: ancestor dentry
2868 * @p2: child dentry
2869 *
2870 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2871 * an ancestor of p2, else NULL.
2872 */
2873 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2874 {
2875 struct dentry *p;
2876
2877 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2878 if (p->d_parent == p1)
2879 return p;
2880 }
2881 return NULL;
2882 }
2883
2884 /*
2885 * This helper attempts to cope with remotely renamed directories
2886 *
2887 * It assumes that the caller is already holding
2888 * dentry->d_parent->d_inode->i_mutex, and rename_lock
2889 *
2890 * Note: If ever the locking in lock_rename() changes, then please
2891 * remember to update this too...
2892 */
2893 static int __d_unalias(struct inode *inode,
2894 struct dentry *dentry, struct dentry *alias)
2895 {
2896 struct mutex *m1 = NULL;
2897 struct rw_semaphore *m2 = NULL;
2898 int ret = -ESTALE;
2899
2900 /* If alias and dentry share a parent, then no extra locks required */
2901 if (alias->d_parent == dentry->d_parent)
2902 goto out_unalias;
2903
2904 /* See lock_rename() */
2905 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2906 goto out_err;
2907 m1 = &dentry->d_sb->s_vfs_rename_mutex;
2908 if (!inode_trylock_shared(alias->d_parent->d_inode))
2909 goto out_err;
2910 m2 = &alias->d_parent->d_inode->i_rwsem;
2911 out_unalias:
2912 __d_move(alias, dentry, false);
2913 ret = 0;
2914 out_err:
2915 if (m2)
2916 up_read(m2);
2917 if (m1)
2918 mutex_unlock(m1);
2919 return ret;
2920 }
2921
2922 /**
2923 * d_splice_alias - splice a disconnected dentry into the tree if one exists
2924 * @inode: the inode which may have a disconnected dentry
2925 * @dentry: a negative dentry which we want to point to the inode.
2926 *
2927 * If inode is a directory and has an IS_ROOT alias, then d_move that in
2928 * place of the given dentry and return it, else simply d_add the inode
2929 * to the dentry and return NULL.
2930 *
2931 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
2932 * we should error out: directories can't have multiple aliases.
2933 *
2934 * This is needed in the lookup routine of any filesystem that is exportable
2935 * (via knfsd) so that we can build dcache paths to directories effectively.
2936 *
2937 * If a dentry was found and moved, then it is returned. Otherwise NULL
2938 * is returned. This matches the expected return value of ->lookup.
2939 *
2940 * Cluster filesystems may call this function with a negative, hashed dentry.
2941 * In that case, we know that the inode will be a regular file, and also this
2942 * will only occur during atomic_open. So we need to check for the dentry
2943 * being already hashed only in the final case.
2944 */
2945 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
2946 {
2947 if (IS_ERR(inode))
2948 return ERR_CAST(inode);
2949
2950 BUG_ON(!d_unhashed(dentry));
2951
2952 if (!inode)
2953 goto out;
2954
2955 security_d_instantiate(dentry, inode);
2956 spin_lock(&inode->i_lock);
2957 if (S_ISDIR(inode->i_mode)) {
2958 struct dentry *new = __d_find_any_alias(inode);
2959 if (unlikely(new)) {
2960 /* The reference to new ensures it remains an alias */
2961 spin_unlock(&inode->i_lock);
2962 write_seqlock(&rename_lock);
2963 if (unlikely(d_ancestor(new, dentry))) {
2964 write_sequnlock(&rename_lock);
2965 dput(new);
2966 new = ERR_PTR(-ELOOP);
2967 pr_warn_ratelimited(
2968 "VFS: Lookup of '%s' in %s %s"
2969 " would have caused loop\n",
2970 dentry->d_name.name,
2971 inode->i_sb->s_type->name,
2972 inode->i_sb->s_id);
2973 } else if (!IS_ROOT(new)) {
2974 int err = __d_unalias(inode, dentry, new);
2975 write_sequnlock(&rename_lock);
2976 if (err) {
2977 dput(new);
2978 new = ERR_PTR(err);
2979 }
2980 } else {
2981 __d_move(new, dentry, false);
2982 write_sequnlock(&rename_lock);
2983 }
2984 iput(inode);
2985 return new;
2986 }
2987 }
2988 out:
2989 __d_add(dentry, inode);
2990 return NULL;
2991 }
2992 EXPORT_SYMBOL(d_splice_alias);
2993
2994 static int prepend(char **buffer, int *buflen, const char *str, int namelen)
2995 {
2996 *buflen -= namelen;
2997 if (*buflen < 0)
2998 return -ENAMETOOLONG;
2999 *buffer -= namelen;
3000 memcpy(*buffer, str, namelen);
3001 return 0;
3002 }
3003
3004 /**
3005 * prepend_name - prepend a pathname in front of current buffer pointer
3006 * @buffer: buffer pointer
3007 * @buflen: allocated length of the buffer
3008 * @name: name string and length qstr structure
3009 *
3010 * With RCU path tracing, it may race with d_move(). Use ACCESS_ONCE() to
3011 * make sure that either the old or the new name pointer and length are
3012 * fetched. However, there may be mismatch between length and pointer.
3013 * The length cannot be trusted, we need to copy it byte-by-byte until
3014 * the length is reached or a null byte is found. It also prepends "/" at
3015 * the beginning of the name. The sequence number check at the caller will
3016 * retry it again when a d_move() does happen. So any garbage in the buffer
3017 * due to mismatched pointer and length will be discarded.
3018 *
3019 * Data dependency barrier is needed to make sure that we see that terminating
3020 * NUL. Alpha strikes again, film at 11...
3021 */
3022 static int prepend_name(char **buffer, int *buflen, const struct qstr *name)
3023 {
3024 const char *dname = ACCESS_ONCE(name->name);
3025 u32 dlen = ACCESS_ONCE(name->len);
3026 char *p;
3027
3028 smp_read_barrier_depends();
3029
3030 *buflen -= dlen + 1;
3031 if (*buflen < 0)
3032 return -ENAMETOOLONG;
3033 p = *buffer -= dlen + 1;
3034 *p++ = '/';
3035 while (dlen--) {
3036 char c = *dname++;
3037 if (!c)
3038 break;
3039 *p++ = c;
3040 }
3041 return 0;
3042 }
3043
3044 /**
3045 * prepend_path - Prepend path string to a buffer
3046 * @path: the dentry/vfsmount to report
3047 * @root: root vfsmnt/dentry
3048 * @buffer: pointer to the end of the buffer
3049 * @buflen: pointer to buffer length
3050 *
3051 * The function will first try to write out the pathname without taking any
3052 * lock other than the RCU read lock to make sure that dentries won't go away.
3053 * It only checks the sequence number of the global rename_lock as any change
3054 * in the dentry's d_seq will be preceded by changes in the rename_lock
3055 * sequence number. If the sequence number had been changed, it will restart
3056 * the whole pathname back-tracing sequence again by taking the rename_lock.
3057 * In this case, there is no need to take the RCU read lock as the recursive
3058 * parent pointer references will keep the dentry chain alive as long as no
3059 * rename operation is performed.
3060 */
3061 static int prepend_path(const struct path *path,
3062 const struct path *root,
3063 char **buffer, int *buflen)
3064 {
3065 struct dentry *dentry;
3066 struct vfsmount *vfsmnt;
3067 struct mount *mnt;
3068 int error = 0;
3069 unsigned seq, m_seq = 0;
3070 char *bptr;
3071 int blen;
3072
3073 rcu_read_lock();
3074 restart_mnt:
3075 read_seqbegin_or_lock(&mount_lock, &m_seq);
3076 seq = 0;
3077 rcu_read_lock();
3078 restart:
3079 bptr = *buffer;
3080 blen = *buflen;
3081 error = 0;
3082 dentry = path->dentry;
3083 vfsmnt = path->mnt;
3084 mnt = real_mount(vfsmnt);
3085 read_seqbegin_or_lock(&rename_lock, &seq);
3086 while (dentry != root->dentry || vfsmnt != root->mnt) {
3087 struct dentry * parent;
3088
3089 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
3090 struct mount *parent = ACCESS_ONCE(mnt->mnt_parent);
3091 /* Escaped? */
3092 if (dentry != vfsmnt->mnt_root) {
3093 bptr = *buffer;
3094 blen = *buflen;
3095 error = 3;
3096 break;
3097 }
3098 /* Global root? */
3099 if (mnt != parent) {
3100 dentry = ACCESS_ONCE(mnt->mnt_mountpoint);
3101 mnt = parent;
3102 vfsmnt = &mnt->mnt;
3103 continue;
3104 }
3105 if (!error)
3106 error = is_mounted(vfsmnt) ? 1 : 2;
3107 break;
3108 }
3109 parent = dentry->d_parent;
3110 prefetch(parent);
3111 error = prepend_name(&bptr, &blen, &dentry->d_name);
3112 if (error)
3113 break;
3114
3115 dentry = parent;
3116 }
3117 if (!(seq & 1))
3118 rcu_read_unlock();
3119 if (need_seqretry(&rename_lock, seq)) {
3120 seq = 1;
3121 goto restart;
3122 }
3123 done_seqretry(&rename_lock, seq);
3124
3125 if (!(m_seq & 1))
3126 rcu_read_unlock();
3127 if (need_seqretry(&mount_lock, m_seq)) {
3128 m_seq = 1;
3129 goto restart_mnt;
3130 }
3131 done_seqretry(&mount_lock, m_seq);
3132
3133 if (error >= 0 && bptr == *buffer) {
3134 if (--blen < 0)
3135 error = -ENAMETOOLONG;
3136 else
3137 *--bptr = '/';
3138 }
3139 *buffer = bptr;
3140 *buflen = blen;
3141 return error;
3142 }
3143
3144 /**
3145 * __d_path - return the path of a dentry
3146 * @path: the dentry/vfsmount to report
3147 * @root: root vfsmnt/dentry
3148 * @buf: buffer to return value in
3149 * @buflen: buffer length
3150 *
3151 * Convert a dentry into an ASCII path name.
3152 *
3153 * Returns a pointer into the buffer or an error code if the
3154 * path was too long.
3155 *
3156 * "buflen" should be positive.
3157 *
3158 * If the path is not reachable from the supplied root, return %NULL.
3159 */
3160 char *__d_path(const struct path *path,
3161 const struct path *root,
3162 char *buf, int buflen)
3163 {
3164 char *res = buf + buflen;
3165 int error;
3166
3167 prepend(&res, &buflen, "\0", 1);
3168 error = prepend_path(path, root, &res, &buflen);
3169
3170 if (error < 0)
3171 return ERR_PTR(error);
3172 if (error > 0)
3173 return NULL;
3174 return res;
3175 }
3176
3177 char *d_absolute_path(const struct path *path,
3178 char *buf, int buflen)
3179 {
3180 struct path root = {};
3181 char *res = buf + buflen;
3182 int error;
3183
3184 prepend(&res, &buflen, "\0", 1);
3185 error = prepend_path(path, &root, &res, &buflen);
3186
3187 if (error > 1)
3188 error = -EINVAL;
3189 if (error < 0)
3190 return ERR_PTR(error);
3191 return res;
3192 }
3193
3194 /*
3195 * same as __d_path but appends "(deleted)" for unlinked files.
3196 */
3197 static int path_with_deleted(const struct path *path,
3198 const struct path *root,
3199 char **buf, int *buflen)
3200 {
3201 prepend(buf, buflen, "\0", 1);
3202 if (d_unlinked(path->dentry)) {
3203 int error = prepend(buf, buflen, " (deleted)", 10);
3204 if (error)
3205 return error;
3206 }
3207
3208 return prepend_path(path, root, buf, buflen);
3209 }
3210
3211 static int prepend_unreachable(char **buffer, int *buflen)
3212 {
3213 return prepend(buffer, buflen, "(unreachable)", 13);
3214 }
3215
3216 static void get_fs_root_rcu(struct fs_struct *fs, struct path *root)
3217 {
3218 unsigned seq;
3219
3220 do {
3221 seq = read_seqcount_begin(&fs->seq);
3222 *root = fs->root;
3223 } while (read_seqcount_retry(&fs->seq, seq));
3224 }
3225
3226 /**
3227 * d_path - return the path of a dentry
3228 * @path: path to report
3229 * @buf: buffer to return value in
3230 * @buflen: buffer length
3231 *
3232 * Convert a dentry into an ASCII path name. If the entry has been deleted
3233 * the string " (deleted)" is appended. Note that this is ambiguous.
3234 *
3235 * Returns a pointer into the buffer or an error code if the path was
3236 * too long. Note: Callers should use the returned pointer, not the passed
3237 * in buffer, to use the name! The implementation often starts at an offset
3238 * into the buffer, and may leave 0 bytes at the start.
3239 *
3240 * "buflen" should be positive.
3241 */
3242 char *d_path(const struct path *path, char *buf, int buflen)
3243 {
3244 char *res = buf + buflen;
3245 struct path root;
3246 int error;
3247
3248 /*
3249 * We have various synthetic filesystems that never get mounted. On
3250 * these filesystems dentries are never used for lookup purposes, and
3251 * thus don't need to be hashed. They also don't need a name until a
3252 * user wants to identify the object in /proc/pid/fd/. The little hack
3253 * below allows us to generate a name for these objects on demand:
3254 *
3255 * Some pseudo inodes are mountable. When they are mounted
3256 * path->dentry == path->mnt->mnt_root. In that case don't call d_dname
3257 * and instead have d_path return the mounted path.
3258 */
3259 if (path->dentry->d_op && path->dentry->d_op->d_dname &&
3260 (!IS_ROOT(path->dentry) || path->dentry != path->mnt->mnt_root))
3261 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
3262
3263 rcu_read_lock();
3264 get_fs_root_rcu(current->fs, &root);
3265 error = path_with_deleted(path, &root, &res, &buflen);
3266 rcu_read_unlock();
3267
3268 if (error < 0)
3269 res = ERR_PTR(error);
3270 return res;
3271 }
3272 EXPORT_SYMBOL(d_path);
3273
3274 /*
3275 * Helper function for dentry_operations.d_dname() members
3276 */
3277 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
3278 const char *fmt, ...)
3279 {
3280 va_list args;
3281 char temp[64];
3282 int sz;
3283
3284 va_start(args, fmt);
3285 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
3286 va_end(args);
3287
3288 if (sz > sizeof(temp) || sz > buflen)
3289 return ERR_PTR(-ENAMETOOLONG);
3290
3291 buffer += buflen - sz;
3292 return memcpy(buffer, temp, sz);
3293 }
3294
3295 char *simple_dname(struct dentry *dentry, char *buffer, int buflen)
3296 {
3297 char *end = buffer + buflen;
3298 /* these dentries are never renamed, so d_lock is not needed */
3299 if (prepend(&end, &buflen, " (deleted)", 11) ||
3300 prepend(&end, &buflen, dentry->d_name.name, dentry->d_name.len) ||
3301 prepend(&end, &buflen, "/", 1))
3302 end = ERR_PTR(-ENAMETOOLONG);
3303 return end;
3304 }
3305 EXPORT_SYMBOL(simple_dname);
3306
3307 /*
3308 * Write full pathname from the root of the filesystem into the buffer.
3309 */
3310 static char *__dentry_path(struct dentry *d, char *buf, int buflen)
3311 {
3312 struct dentry *dentry;
3313 char *end, *retval;
3314 int len, seq = 0;
3315 int error = 0;
3316
3317 if (buflen < 2)
3318 goto Elong;
3319
3320 rcu_read_lock();
3321 restart:
3322 dentry = d;
3323 end = buf + buflen;
3324 len = buflen;
3325 prepend(&end, &len, "\0", 1);
3326 /* Get '/' right */
3327 retval = end-1;
3328 *retval = '/';
3329 read_seqbegin_or_lock(&rename_lock, &seq);
3330 while (!IS_ROOT(dentry)) {
3331 struct dentry *parent = dentry->d_parent;
3332
3333 prefetch(parent);
3334 error = prepend_name(&end, &len, &dentry->d_name);
3335 if (error)
3336 break;
3337
3338 retval = end;
3339 dentry = parent;
3340 }
3341 if (!(seq & 1))
3342 rcu_read_unlock();
3343 if (need_seqretry(&rename_lock, seq)) {
3344 seq = 1;
3345 goto restart;
3346 }
3347 done_seqretry(&rename_lock, seq);
3348 if (error)
3349 goto Elong;
3350 return retval;
3351 Elong:
3352 return ERR_PTR(-ENAMETOOLONG);
3353 }
3354
3355 char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
3356 {
3357 return __dentry_path(dentry, buf, buflen);
3358 }
3359 EXPORT_SYMBOL(dentry_path_raw);
3360
3361 char *dentry_path(struct dentry *dentry, char *buf, int buflen)
3362 {
3363 char *p = NULL;
3364 char *retval;
3365
3366 if (d_unlinked(dentry)) {
3367 p = buf + buflen;
3368 if (prepend(&p, &buflen, "//deleted", 10) != 0)
3369 goto Elong;
3370 buflen++;
3371 }
3372 retval = __dentry_path(dentry, buf, buflen);
3373 if (!IS_ERR(retval) && p)
3374 *p = '/'; /* restore '/' overriden with '\0' */
3375 return retval;
3376 Elong:
3377 return ERR_PTR(-ENAMETOOLONG);
3378 }
3379
3380 static void get_fs_root_and_pwd_rcu(struct fs_struct *fs, struct path *root,
3381 struct path *pwd)
3382 {
3383 unsigned seq;
3384
3385 do {
3386 seq = read_seqcount_begin(&fs->seq);
3387 *root = fs->root;
3388 *pwd = fs->pwd;
3389 } while (read_seqcount_retry(&fs->seq, seq));
3390 }
3391
3392 /*
3393 * NOTE! The user-level library version returns a
3394 * character pointer. The kernel system call just
3395 * returns the length of the buffer filled (which
3396 * includes the ending '\0' character), or a negative
3397 * error value. So libc would do something like
3398 *
3399 * char *getcwd(char * buf, size_t size)
3400 * {
3401 * int retval;
3402 *
3403 * retval = sys_getcwd(buf, size);
3404 * if (retval >= 0)
3405 * return buf;
3406 * errno = -retval;
3407 * return NULL;
3408 * }
3409 */
3410 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
3411 {
3412 int error;
3413 struct path pwd, root;
3414 char *page = __getname();
3415
3416 if (!page)
3417 return -ENOMEM;
3418
3419 rcu_read_lock();
3420 get_fs_root_and_pwd_rcu(current->fs, &root, &pwd);
3421
3422 error = -ENOENT;
3423 if (!d_unlinked(pwd.dentry)) {
3424 unsigned long len;
3425 char *cwd = page + PATH_MAX;
3426 int buflen = PATH_MAX;
3427
3428 prepend(&cwd, &buflen, "\0", 1);
3429 error = prepend_path(&pwd, &root, &cwd, &buflen);
3430 rcu_read_unlock();
3431
3432 if (error < 0)
3433 goto out;
3434
3435 /* Unreachable from current root */
3436 if (error > 0) {
3437 error = prepend_unreachable(&cwd, &buflen);
3438 if (error)
3439 goto out;
3440 }
3441
3442 error = -ERANGE;
3443 len = PATH_MAX + page - cwd;
3444 if (len <= size) {
3445 error = len;
3446 if (copy_to_user(buf, cwd, len))
3447 error = -EFAULT;
3448 }
3449 } else {
3450 rcu_read_unlock();
3451 }
3452
3453 out:
3454 __putname(page);
3455 return error;
3456 }
3457
3458 /*
3459 * Test whether new_dentry is a subdirectory of old_dentry.
3460 *
3461 * Trivially implemented using the dcache structure
3462 */
3463
3464 /**
3465 * is_subdir - is new dentry a subdirectory of old_dentry
3466 * @new_dentry: new dentry
3467 * @old_dentry: old dentry
3468 *
3469 * Returns true if new_dentry is a subdirectory of the parent (at any depth).
3470 * Returns false otherwise.
3471 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3472 */
3473
3474 bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
3475 {
3476 bool result;
3477 unsigned seq;
3478
3479 if (new_dentry == old_dentry)
3480 return true;
3481
3482 do {
3483 /* for restarting inner loop in case of seq retry */
3484 seq = read_seqbegin(&rename_lock);
3485 /*
3486 * Need rcu_readlock to protect against the d_parent trashing
3487 * due to d_move
3488 */
3489 rcu_read_lock();
3490 if (d_ancestor(old_dentry, new_dentry))
3491 result = true;
3492 else
3493 result = false;
3494 rcu_read_unlock();
3495 } while (read_seqretry(&rename_lock, seq));
3496
3497 return result;
3498 }
3499
3500 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
3501 {
3502 struct dentry *root = data;
3503 if (dentry != root) {
3504 if (d_unhashed(dentry) || !dentry->d_inode)
3505 return D_WALK_SKIP;
3506
3507 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3508 dentry->d_flags |= DCACHE_GENOCIDE;
3509 dentry->d_lockref.count--;
3510 }
3511 }
3512 return D_WALK_CONTINUE;
3513 }
3514
3515 void d_genocide(struct dentry *parent)
3516 {
3517 d_walk(parent, parent, d_genocide_kill, NULL);
3518 }
3519
3520 void d_tmpfile(struct dentry *dentry, struct inode *inode)
3521 {
3522 inode_dec_link_count(inode);
3523 BUG_ON(dentry->d_name.name != dentry->d_iname ||
3524 !hlist_unhashed(&dentry->d_u.d_alias) ||
3525 !d_unlinked(dentry));
3526 spin_lock(&dentry->d_parent->d_lock);
3527 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3528 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3529 (unsigned long long)inode->i_ino);
3530 spin_unlock(&dentry->d_lock);
3531 spin_unlock(&dentry->d_parent->d_lock);
3532 d_instantiate(dentry, inode);
3533 }
3534 EXPORT_SYMBOL(d_tmpfile);
3535
3536 static __initdata unsigned long dhash_entries;
3537 static int __init set_dhash_entries(char *str)
3538 {
3539 if (!str)
3540 return 0;
3541 dhash_entries = simple_strtoul(str, &str, 0);
3542 return 1;
3543 }
3544 __setup("dhash_entries=", set_dhash_entries);
3545
3546 static void __init dcache_init_early(void)
3547 {
3548 unsigned int loop;
3549
3550 /* If hashes are distributed across NUMA nodes, defer
3551 * hash allocation until vmalloc space is available.
3552 */
3553 if (hashdist)
3554 return;
3555
3556 dentry_hashtable =
3557 alloc_large_system_hash("Dentry cache",
3558 sizeof(struct hlist_bl_head),
3559 dhash_entries,
3560 13,
3561 HASH_EARLY,
3562 &d_hash_shift,
3563 &d_hash_mask,
3564 0,
3565 0);
3566
3567 for (loop = 0; loop < (1U << d_hash_shift); loop++)
3568 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3569 }
3570
3571 static void __init dcache_init(void)
3572 {
3573 unsigned int loop;
3574
3575 /*
3576 * A constructor could be added for stable state like the lists,
3577 * but it is probably not worth it because of the cache nature
3578 * of the dcache.
3579 */
3580 dentry_cache = KMEM_CACHE(dentry,
3581 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT);
3582
3583 /* Hash may have been set up in dcache_init_early */
3584 if (!hashdist)
3585 return;
3586
3587 dentry_hashtable =
3588 alloc_large_system_hash("Dentry cache",
3589 sizeof(struct hlist_bl_head),
3590 dhash_entries,
3591 13,
3592 0,
3593 &d_hash_shift,
3594 &d_hash_mask,
3595 0,
3596 0);
3597
3598 for (loop = 0; loop < (1U << d_hash_shift); loop++)
3599 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3600 }
3601
3602 /* SLAB cache for __getname() consumers */
3603 struct kmem_cache *names_cachep __read_mostly;
3604 EXPORT_SYMBOL(names_cachep);
3605
3606 EXPORT_SYMBOL(d_genocide);
3607
3608 void __init vfs_caches_init_early(void)
3609 {
3610 dcache_init_early();
3611 inode_init_early();
3612 }
3613
3614 void __init vfs_caches_init(void)
3615 {
3616 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
3617 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3618
3619 dcache_init();
3620 inode_init();
3621 files_init();
3622 files_maxfiles_init();
3623 mnt_init();
3624 bdev_cache_init();
3625 chrdev_init();
3626 }