]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/dcache.c
Merge tag 'acpi-5.12-rc1-3' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael...
[mirror_ubuntu-jammy-kernel.git] / fs / dcache.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * fs/dcache.c
4 *
5 * Complete reimplementation
6 * (C) 1997 Thomas Schoebel-Theuer,
7 * with heavy changes by Linus Torvalds
8 */
9
10 /*
11 * Notes on the allocation strategy:
12 *
13 * The dcache is a master of the icache - whenever a dcache entry
14 * exists, the inode will always exist. "iput()" is done either when
15 * the dcache entry is deleted or garbage collected.
16 */
17
18 #include <linux/ratelimit.h>
19 #include <linux/string.h>
20 #include <linux/mm.h>
21 #include <linux/fs.h>
22 #include <linux/fscrypt.h>
23 #include <linux/fsnotify.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/hash.h>
27 #include <linux/cache.h>
28 #include <linux/export.h>
29 #include <linux/security.h>
30 #include <linux/seqlock.h>
31 #include <linux/memblock.h>
32 #include <linux/bit_spinlock.h>
33 #include <linux/rculist_bl.h>
34 #include <linux/list_lru.h>
35 #include "internal.h"
36 #include "mount.h"
37
38 /*
39 * Usage:
40 * dcache->d_inode->i_lock protects:
41 * - i_dentry, d_u.d_alias, d_inode of aliases
42 * dcache_hash_bucket lock protects:
43 * - the dcache hash table
44 * s_roots bl list spinlock protects:
45 * - the s_roots list (see __d_drop)
46 * dentry->d_sb->s_dentry_lru_lock protects:
47 * - the dcache lru lists and counters
48 * d_lock protects:
49 * - d_flags
50 * - d_name
51 * - d_lru
52 * - d_count
53 * - d_unhashed()
54 * - d_parent and d_subdirs
55 * - childrens' d_child and d_parent
56 * - d_u.d_alias, d_inode
57 *
58 * Ordering:
59 * dentry->d_inode->i_lock
60 * dentry->d_lock
61 * dentry->d_sb->s_dentry_lru_lock
62 * dcache_hash_bucket lock
63 * s_roots lock
64 *
65 * If there is an ancestor relationship:
66 * dentry->d_parent->...->d_parent->d_lock
67 * ...
68 * dentry->d_parent->d_lock
69 * dentry->d_lock
70 *
71 * If no ancestor relationship:
72 * arbitrary, since it's serialized on rename_lock
73 */
74 int sysctl_vfs_cache_pressure __read_mostly = 100;
75 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
76
77 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
78
79 EXPORT_SYMBOL(rename_lock);
80
81 static struct kmem_cache *dentry_cache __read_mostly;
82
83 const struct qstr empty_name = QSTR_INIT("", 0);
84 EXPORT_SYMBOL(empty_name);
85 const struct qstr slash_name = QSTR_INIT("/", 1);
86 EXPORT_SYMBOL(slash_name);
87
88 /*
89 * This is the single most critical data structure when it comes
90 * to the dcache: the hashtable for lookups. Somebody should try
91 * to make this good - I've just made it work.
92 *
93 * This hash-function tries to avoid losing too many bits of hash
94 * information, yet avoid using a prime hash-size or similar.
95 */
96
97 static unsigned int d_hash_shift __read_mostly;
98
99 static struct hlist_bl_head *dentry_hashtable __read_mostly;
100
101 static inline struct hlist_bl_head *d_hash(unsigned int hash)
102 {
103 return dentry_hashtable + (hash >> d_hash_shift);
104 }
105
106 #define IN_LOOKUP_SHIFT 10
107 static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT];
108
109 static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent,
110 unsigned int hash)
111 {
112 hash += (unsigned long) parent / L1_CACHE_BYTES;
113 return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT);
114 }
115
116
117 /* Statistics gathering. */
118 struct dentry_stat_t dentry_stat = {
119 .age_limit = 45,
120 };
121
122 static DEFINE_PER_CPU(long, nr_dentry);
123 static DEFINE_PER_CPU(long, nr_dentry_unused);
124 static DEFINE_PER_CPU(long, nr_dentry_negative);
125
126 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
127
128 /*
129 * Here we resort to our own counters instead of using generic per-cpu counters
130 * for consistency with what the vfs inode code does. We are expected to harvest
131 * better code and performance by having our own specialized counters.
132 *
133 * Please note that the loop is done over all possible CPUs, not over all online
134 * CPUs. The reason for this is that we don't want to play games with CPUs going
135 * on and off. If one of them goes off, we will just keep their counters.
136 *
137 * glommer: See cffbc8a for details, and if you ever intend to change this,
138 * please update all vfs counters to match.
139 */
140 static long get_nr_dentry(void)
141 {
142 int i;
143 long sum = 0;
144 for_each_possible_cpu(i)
145 sum += per_cpu(nr_dentry, i);
146 return sum < 0 ? 0 : sum;
147 }
148
149 static long get_nr_dentry_unused(void)
150 {
151 int i;
152 long sum = 0;
153 for_each_possible_cpu(i)
154 sum += per_cpu(nr_dentry_unused, i);
155 return sum < 0 ? 0 : sum;
156 }
157
158 static long get_nr_dentry_negative(void)
159 {
160 int i;
161 long sum = 0;
162
163 for_each_possible_cpu(i)
164 sum += per_cpu(nr_dentry_negative, i);
165 return sum < 0 ? 0 : sum;
166 }
167
168 int proc_nr_dentry(struct ctl_table *table, int write, void *buffer,
169 size_t *lenp, loff_t *ppos)
170 {
171 dentry_stat.nr_dentry = get_nr_dentry();
172 dentry_stat.nr_unused = get_nr_dentry_unused();
173 dentry_stat.nr_negative = get_nr_dentry_negative();
174 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
175 }
176 #endif
177
178 /*
179 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
180 * The strings are both count bytes long, and count is non-zero.
181 */
182 #ifdef CONFIG_DCACHE_WORD_ACCESS
183
184 #include <asm/word-at-a-time.h>
185 /*
186 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
187 * aligned allocation for this particular component. We don't
188 * strictly need the load_unaligned_zeropad() safety, but it
189 * doesn't hurt either.
190 *
191 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
192 * need the careful unaligned handling.
193 */
194 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
195 {
196 unsigned long a,b,mask;
197
198 for (;;) {
199 a = read_word_at_a_time(cs);
200 b = load_unaligned_zeropad(ct);
201 if (tcount < sizeof(unsigned long))
202 break;
203 if (unlikely(a != b))
204 return 1;
205 cs += sizeof(unsigned long);
206 ct += sizeof(unsigned long);
207 tcount -= sizeof(unsigned long);
208 if (!tcount)
209 return 0;
210 }
211 mask = bytemask_from_count(tcount);
212 return unlikely(!!((a ^ b) & mask));
213 }
214
215 #else
216
217 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
218 {
219 do {
220 if (*cs != *ct)
221 return 1;
222 cs++;
223 ct++;
224 tcount--;
225 } while (tcount);
226 return 0;
227 }
228
229 #endif
230
231 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
232 {
233 /*
234 * Be careful about RCU walk racing with rename:
235 * use 'READ_ONCE' to fetch the name pointer.
236 *
237 * NOTE! Even if a rename will mean that the length
238 * was not loaded atomically, we don't care. The
239 * RCU walk will check the sequence count eventually,
240 * and catch it. And we won't overrun the buffer,
241 * because we're reading the name pointer atomically,
242 * and a dentry name is guaranteed to be properly
243 * terminated with a NUL byte.
244 *
245 * End result: even if 'len' is wrong, we'll exit
246 * early because the data cannot match (there can
247 * be no NUL in the ct/tcount data)
248 */
249 const unsigned char *cs = READ_ONCE(dentry->d_name.name);
250
251 return dentry_string_cmp(cs, ct, tcount);
252 }
253
254 struct external_name {
255 union {
256 atomic_t count;
257 struct rcu_head head;
258 } u;
259 unsigned char name[];
260 };
261
262 static inline struct external_name *external_name(struct dentry *dentry)
263 {
264 return container_of(dentry->d_name.name, struct external_name, name[0]);
265 }
266
267 static void __d_free(struct rcu_head *head)
268 {
269 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
270
271 kmem_cache_free(dentry_cache, dentry);
272 }
273
274 static void __d_free_external(struct rcu_head *head)
275 {
276 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
277 kfree(external_name(dentry));
278 kmem_cache_free(dentry_cache, dentry);
279 }
280
281 static inline int dname_external(const struct dentry *dentry)
282 {
283 return dentry->d_name.name != dentry->d_iname;
284 }
285
286 void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry)
287 {
288 spin_lock(&dentry->d_lock);
289 name->name = dentry->d_name;
290 if (unlikely(dname_external(dentry))) {
291 atomic_inc(&external_name(dentry)->u.count);
292 } else {
293 memcpy(name->inline_name, dentry->d_iname,
294 dentry->d_name.len + 1);
295 name->name.name = name->inline_name;
296 }
297 spin_unlock(&dentry->d_lock);
298 }
299 EXPORT_SYMBOL(take_dentry_name_snapshot);
300
301 void release_dentry_name_snapshot(struct name_snapshot *name)
302 {
303 if (unlikely(name->name.name != name->inline_name)) {
304 struct external_name *p;
305 p = container_of(name->name.name, struct external_name, name[0]);
306 if (unlikely(atomic_dec_and_test(&p->u.count)))
307 kfree_rcu(p, u.head);
308 }
309 }
310 EXPORT_SYMBOL(release_dentry_name_snapshot);
311
312 static inline void __d_set_inode_and_type(struct dentry *dentry,
313 struct inode *inode,
314 unsigned type_flags)
315 {
316 unsigned flags;
317
318 dentry->d_inode = inode;
319 flags = READ_ONCE(dentry->d_flags);
320 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
321 flags |= type_flags;
322 smp_store_release(&dentry->d_flags, flags);
323 }
324
325 static inline void __d_clear_type_and_inode(struct dentry *dentry)
326 {
327 unsigned flags = READ_ONCE(dentry->d_flags);
328
329 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
330 WRITE_ONCE(dentry->d_flags, flags);
331 dentry->d_inode = NULL;
332 if (dentry->d_flags & DCACHE_LRU_LIST)
333 this_cpu_inc(nr_dentry_negative);
334 }
335
336 static void dentry_free(struct dentry *dentry)
337 {
338 WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
339 if (unlikely(dname_external(dentry))) {
340 struct external_name *p = external_name(dentry);
341 if (likely(atomic_dec_and_test(&p->u.count))) {
342 call_rcu(&dentry->d_u.d_rcu, __d_free_external);
343 return;
344 }
345 }
346 /* if dentry was never visible to RCU, immediate free is OK */
347 if (dentry->d_flags & DCACHE_NORCU)
348 __d_free(&dentry->d_u.d_rcu);
349 else
350 call_rcu(&dentry->d_u.d_rcu, __d_free);
351 }
352
353 /*
354 * Release the dentry's inode, using the filesystem
355 * d_iput() operation if defined.
356 */
357 static void dentry_unlink_inode(struct dentry * dentry)
358 __releases(dentry->d_lock)
359 __releases(dentry->d_inode->i_lock)
360 {
361 struct inode *inode = dentry->d_inode;
362
363 raw_write_seqcount_begin(&dentry->d_seq);
364 __d_clear_type_and_inode(dentry);
365 hlist_del_init(&dentry->d_u.d_alias);
366 raw_write_seqcount_end(&dentry->d_seq);
367 spin_unlock(&dentry->d_lock);
368 spin_unlock(&inode->i_lock);
369 if (!inode->i_nlink)
370 fsnotify_inoderemove(inode);
371 if (dentry->d_op && dentry->d_op->d_iput)
372 dentry->d_op->d_iput(dentry, inode);
373 else
374 iput(inode);
375 }
376
377 /*
378 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
379 * is in use - which includes both the "real" per-superblock
380 * LRU list _and_ the DCACHE_SHRINK_LIST use.
381 *
382 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
383 * on the shrink list (ie not on the superblock LRU list).
384 *
385 * The per-cpu "nr_dentry_unused" counters are updated with
386 * the DCACHE_LRU_LIST bit.
387 *
388 * The per-cpu "nr_dentry_negative" counters are only updated
389 * when deleted from or added to the per-superblock LRU list, not
390 * from/to the shrink list. That is to avoid an unneeded dec/inc
391 * pair when moving from LRU to shrink list in select_collect().
392 *
393 * These helper functions make sure we always follow the
394 * rules. d_lock must be held by the caller.
395 */
396 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
397 static void d_lru_add(struct dentry *dentry)
398 {
399 D_FLAG_VERIFY(dentry, 0);
400 dentry->d_flags |= DCACHE_LRU_LIST;
401 this_cpu_inc(nr_dentry_unused);
402 if (d_is_negative(dentry))
403 this_cpu_inc(nr_dentry_negative);
404 WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
405 }
406
407 static void d_lru_del(struct dentry *dentry)
408 {
409 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
410 dentry->d_flags &= ~DCACHE_LRU_LIST;
411 this_cpu_dec(nr_dentry_unused);
412 if (d_is_negative(dentry))
413 this_cpu_dec(nr_dentry_negative);
414 WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
415 }
416
417 static void d_shrink_del(struct dentry *dentry)
418 {
419 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
420 list_del_init(&dentry->d_lru);
421 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
422 this_cpu_dec(nr_dentry_unused);
423 }
424
425 static void d_shrink_add(struct dentry *dentry, struct list_head *list)
426 {
427 D_FLAG_VERIFY(dentry, 0);
428 list_add(&dentry->d_lru, list);
429 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
430 this_cpu_inc(nr_dentry_unused);
431 }
432
433 /*
434 * These can only be called under the global LRU lock, ie during the
435 * callback for freeing the LRU list. "isolate" removes it from the
436 * LRU lists entirely, while shrink_move moves it to the indicated
437 * private list.
438 */
439 static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
440 {
441 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
442 dentry->d_flags &= ~DCACHE_LRU_LIST;
443 this_cpu_dec(nr_dentry_unused);
444 if (d_is_negative(dentry))
445 this_cpu_dec(nr_dentry_negative);
446 list_lru_isolate(lru, &dentry->d_lru);
447 }
448
449 static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
450 struct list_head *list)
451 {
452 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
453 dentry->d_flags |= DCACHE_SHRINK_LIST;
454 if (d_is_negative(dentry))
455 this_cpu_dec(nr_dentry_negative);
456 list_lru_isolate_move(lru, &dentry->d_lru, list);
457 }
458
459 static void ___d_drop(struct dentry *dentry)
460 {
461 struct hlist_bl_head *b;
462 /*
463 * Hashed dentries are normally on the dentry hashtable,
464 * with the exception of those newly allocated by
465 * d_obtain_root, which are always IS_ROOT:
466 */
467 if (unlikely(IS_ROOT(dentry)))
468 b = &dentry->d_sb->s_roots;
469 else
470 b = d_hash(dentry->d_name.hash);
471
472 hlist_bl_lock(b);
473 __hlist_bl_del(&dentry->d_hash);
474 hlist_bl_unlock(b);
475 }
476
477 void __d_drop(struct dentry *dentry)
478 {
479 if (!d_unhashed(dentry)) {
480 ___d_drop(dentry);
481 dentry->d_hash.pprev = NULL;
482 write_seqcount_invalidate(&dentry->d_seq);
483 }
484 }
485 EXPORT_SYMBOL(__d_drop);
486
487 /**
488 * d_drop - drop a dentry
489 * @dentry: dentry to drop
490 *
491 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
492 * be found through a VFS lookup any more. Note that this is different from
493 * deleting the dentry - d_delete will try to mark the dentry negative if
494 * possible, giving a successful _negative_ lookup, while d_drop will
495 * just make the cache lookup fail.
496 *
497 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
498 * reason (NFS timeouts or autofs deletes).
499 *
500 * __d_drop requires dentry->d_lock
501 *
502 * ___d_drop doesn't mark dentry as "unhashed"
503 * (dentry->d_hash.pprev will be LIST_POISON2, not NULL).
504 */
505 void d_drop(struct dentry *dentry)
506 {
507 spin_lock(&dentry->d_lock);
508 __d_drop(dentry);
509 spin_unlock(&dentry->d_lock);
510 }
511 EXPORT_SYMBOL(d_drop);
512
513 static inline void dentry_unlist(struct dentry *dentry, struct dentry *parent)
514 {
515 struct dentry *next;
516 /*
517 * Inform d_walk() and shrink_dentry_list() that we are no longer
518 * attached to the dentry tree
519 */
520 dentry->d_flags |= DCACHE_DENTRY_KILLED;
521 if (unlikely(list_empty(&dentry->d_child)))
522 return;
523 __list_del_entry(&dentry->d_child);
524 /*
525 * Cursors can move around the list of children. While we'd been
526 * a normal list member, it didn't matter - ->d_child.next would've
527 * been updated. However, from now on it won't be and for the
528 * things like d_walk() it might end up with a nasty surprise.
529 * Normally d_walk() doesn't care about cursors moving around -
530 * ->d_lock on parent prevents that and since a cursor has no children
531 * of its own, we get through it without ever unlocking the parent.
532 * There is one exception, though - if we ascend from a child that
533 * gets killed as soon as we unlock it, the next sibling is found
534 * using the value left in its ->d_child.next. And if _that_
535 * pointed to a cursor, and cursor got moved (e.g. by lseek())
536 * before d_walk() regains parent->d_lock, we'll end up skipping
537 * everything the cursor had been moved past.
538 *
539 * Solution: make sure that the pointer left behind in ->d_child.next
540 * points to something that won't be moving around. I.e. skip the
541 * cursors.
542 */
543 while (dentry->d_child.next != &parent->d_subdirs) {
544 next = list_entry(dentry->d_child.next, struct dentry, d_child);
545 if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR)))
546 break;
547 dentry->d_child.next = next->d_child.next;
548 }
549 }
550
551 static void __dentry_kill(struct dentry *dentry)
552 {
553 struct dentry *parent = NULL;
554 bool can_free = true;
555 if (!IS_ROOT(dentry))
556 parent = dentry->d_parent;
557
558 /*
559 * The dentry is now unrecoverably dead to the world.
560 */
561 lockref_mark_dead(&dentry->d_lockref);
562
563 /*
564 * inform the fs via d_prune that this dentry is about to be
565 * unhashed and destroyed.
566 */
567 if (dentry->d_flags & DCACHE_OP_PRUNE)
568 dentry->d_op->d_prune(dentry);
569
570 if (dentry->d_flags & DCACHE_LRU_LIST) {
571 if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
572 d_lru_del(dentry);
573 }
574 /* if it was on the hash then remove it */
575 __d_drop(dentry);
576 dentry_unlist(dentry, parent);
577 if (parent)
578 spin_unlock(&parent->d_lock);
579 if (dentry->d_inode)
580 dentry_unlink_inode(dentry);
581 else
582 spin_unlock(&dentry->d_lock);
583 this_cpu_dec(nr_dentry);
584 if (dentry->d_op && dentry->d_op->d_release)
585 dentry->d_op->d_release(dentry);
586
587 spin_lock(&dentry->d_lock);
588 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
589 dentry->d_flags |= DCACHE_MAY_FREE;
590 can_free = false;
591 }
592 spin_unlock(&dentry->d_lock);
593 if (likely(can_free))
594 dentry_free(dentry);
595 cond_resched();
596 }
597
598 static struct dentry *__lock_parent(struct dentry *dentry)
599 {
600 struct dentry *parent;
601 rcu_read_lock();
602 spin_unlock(&dentry->d_lock);
603 again:
604 parent = READ_ONCE(dentry->d_parent);
605 spin_lock(&parent->d_lock);
606 /*
607 * We can't blindly lock dentry until we are sure
608 * that we won't violate the locking order.
609 * Any changes of dentry->d_parent must have
610 * been done with parent->d_lock held, so
611 * spin_lock() above is enough of a barrier
612 * for checking if it's still our child.
613 */
614 if (unlikely(parent != dentry->d_parent)) {
615 spin_unlock(&parent->d_lock);
616 goto again;
617 }
618 rcu_read_unlock();
619 if (parent != dentry)
620 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
621 else
622 parent = NULL;
623 return parent;
624 }
625
626 static inline struct dentry *lock_parent(struct dentry *dentry)
627 {
628 struct dentry *parent = dentry->d_parent;
629 if (IS_ROOT(dentry))
630 return NULL;
631 if (likely(spin_trylock(&parent->d_lock)))
632 return parent;
633 return __lock_parent(dentry);
634 }
635
636 static inline bool retain_dentry(struct dentry *dentry)
637 {
638 WARN_ON(d_in_lookup(dentry));
639
640 /* Unreachable? Get rid of it */
641 if (unlikely(d_unhashed(dentry)))
642 return false;
643
644 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
645 return false;
646
647 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
648 if (dentry->d_op->d_delete(dentry))
649 return false;
650 }
651
652 if (unlikely(dentry->d_flags & DCACHE_DONTCACHE))
653 return false;
654
655 /* retain; LRU fodder */
656 dentry->d_lockref.count--;
657 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
658 d_lru_add(dentry);
659 else if (unlikely(!(dentry->d_flags & DCACHE_REFERENCED)))
660 dentry->d_flags |= DCACHE_REFERENCED;
661 return true;
662 }
663
664 void d_mark_dontcache(struct inode *inode)
665 {
666 struct dentry *de;
667
668 spin_lock(&inode->i_lock);
669 hlist_for_each_entry(de, &inode->i_dentry, d_u.d_alias) {
670 spin_lock(&de->d_lock);
671 de->d_flags |= DCACHE_DONTCACHE;
672 spin_unlock(&de->d_lock);
673 }
674 inode->i_state |= I_DONTCACHE;
675 spin_unlock(&inode->i_lock);
676 }
677 EXPORT_SYMBOL(d_mark_dontcache);
678
679 /*
680 * Finish off a dentry we've decided to kill.
681 * dentry->d_lock must be held, returns with it unlocked.
682 * Returns dentry requiring refcount drop, or NULL if we're done.
683 */
684 static struct dentry *dentry_kill(struct dentry *dentry)
685 __releases(dentry->d_lock)
686 {
687 struct inode *inode = dentry->d_inode;
688 struct dentry *parent = NULL;
689
690 if (inode && unlikely(!spin_trylock(&inode->i_lock)))
691 goto slow_positive;
692
693 if (!IS_ROOT(dentry)) {
694 parent = dentry->d_parent;
695 if (unlikely(!spin_trylock(&parent->d_lock))) {
696 parent = __lock_parent(dentry);
697 if (likely(inode || !dentry->d_inode))
698 goto got_locks;
699 /* negative that became positive */
700 if (parent)
701 spin_unlock(&parent->d_lock);
702 inode = dentry->d_inode;
703 goto slow_positive;
704 }
705 }
706 __dentry_kill(dentry);
707 return parent;
708
709 slow_positive:
710 spin_unlock(&dentry->d_lock);
711 spin_lock(&inode->i_lock);
712 spin_lock(&dentry->d_lock);
713 parent = lock_parent(dentry);
714 got_locks:
715 if (unlikely(dentry->d_lockref.count != 1)) {
716 dentry->d_lockref.count--;
717 } else if (likely(!retain_dentry(dentry))) {
718 __dentry_kill(dentry);
719 return parent;
720 }
721 /* we are keeping it, after all */
722 if (inode)
723 spin_unlock(&inode->i_lock);
724 if (parent)
725 spin_unlock(&parent->d_lock);
726 spin_unlock(&dentry->d_lock);
727 return NULL;
728 }
729
730 /*
731 * Try to do a lockless dput(), and return whether that was successful.
732 *
733 * If unsuccessful, we return false, having already taken the dentry lock.
734 *
735 * The caller needs to hold the RCU read lock, so that the dentry is
736 * guaranteed to stay around even if the refcount goes down to zero!
737 */
738 static inline bool fast_dput(struct dentry *dentry)
739 {
740 int ret;
741 unsigned int d_flags;
742
743 /*
744 * If we have a d_op->d_delete() operation, we sould not
745 * let the dentry count go to zero, so use "put_or_lock".
746 */
747 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE))
748 return lockref_put_or_lock(&dentry->d_lockref);
749
750 /*
751 * .. otherwise, we can try to just decrement the
752 * lockref optimistically.
753 */
754 ret = lockref_put_return(&dentry->d_lockref);
755
756 /*
757 * If the lockref_put_return() failed due to the lock being held
758 * by somebody else, the fast path has failed. We will need to
759 * get the lock, and then check the count again.
760 */
761 if (unlikely(ret < 0)) {
762 spin_lock(&dentry->d_lock);
763 if (dentry->d_lockref.count > 1) {
764 dentry->d_lockref.count--;
765 spin_unlock(&dentry->d_lock);
766 return true;
767 }
768 return false;
769 }
770
771 /*
772 * If we weren't the last ref, we're done.
773 */
774 if (ret)
775 return true;
776
777 /*
778 * Careful, careful. The reference count went down
779 * to zero, but we don't hold the dentry lock, so
780 * somebody else could get it again, and do another
781 * dput(), and we need to not race with that.
782 *
783 * However, there is a very special and common case
784 * where we don't care, because there is nothing to
785 * do: the dentry is still hashed, it does not have
786 * a 'delete' op, and it's referenced and already on
787 * the LRU list.
788 *
789 * NOTE! Since we aren't locked, these values are
790 * not "stable". However, it is sufficient that at
791 * some point after we dropped the reference the
792 * dentry was hashed and the flags had the proper
793 * value. Other dentry users may have re-gotten
794 * a reference to the dentry and change that, but
795 * our work is done - we can leave the dentry
796 * around with a zero refcount.
797 *
798 * Nevertheless, there are two cases that we should kill
799 * the dentry anyway.
800 * 1. free disconnected dentries as soon as their refcount
801 * reached zero.
802 * 2. free dentries if they should not be cached.
803 */
804 smp_rmb();
805 d_flags = READ_ONCE(dentry->d_flags);
806 d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST |
807 DCACHE_DISCONNECTED | DCACHE_DONTCACHE;
808
809 /* Nothing to do? Dropping the reference was all we needed? */
810 if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry))
811 return true;
812
813 /*
814 * Not the fast normal case? Get the lock. We've already decremented
815 * the refcount, but we'll need to re-check the situation after
816 * getting the lock.
817 */
818 spin_lock(&dentry->d_lock);
819
820 /*
821 * Did somebody else grab a reference to it in the meantime, and
822 * we're no longer the last user after all? Alternatively, somebody
823 * else could have killed it and marked it dead. Either way, we
824 * don't need to do anything else.
825 */
826 if (dentry->d_lockref.count) {
827 spin_unlock(&dentry->d_lock);
828 return true;
829 }
830
831 /*
832 * Re-get the reference we optimistically dropped. We hold the
833 * lock, and we just tested that it was zero, so we can just
834 * set it to 1.
835 */
836 dentry->d_lockref.count = 1;
837 return false;
838 }
839
840
841 /*
842 * This is dput
843 *
844 * This is complicated by the fact that we do not want to put
845 * dentries that are no longer on any hash chain on the unused
846 * list: we'd much rather just get rid of them immediately.
847 *
848 * However, that implies that we have to traverse the dentry
849 * tree upwards to the parents which might _also_ now be
850 * scheduled for deletion (it may have been only waiting for
851 * its last child to go away).
852 *
853 * This tail recursion is done by hand as we don't want to depend
854 * on the compiler to always get this right (gcc generally doesn't).
855 * Real recursion would eat up our stack space.
856 */
857
858 /*
859 * dput - release a dentry
860 * @dentry: dentry to release
861 *
862 * Release a dentry. This will drop the usage count and if appropriate
863 * call the dentry unlink method as well as removing it from the queues and
864 * releasing its resources. If the parent dentries were scheduled for release
865 * they too may now get deleted.
866 */
867 void dput(struct dentry *dentry)
868 {
869 while (dentry) {
870 might_sleep();
871
872 rcu_read_lock();
873 if (likely(fast_dput(dentry))) {
874 rcu_read_unlock();
875 return;
876 }
877
878 /* Slow case: now with the dentry lock held */
879 rcu_read_unlock();
880
881 if (likely(retain_dentry(dentry))) {
882 spin_unlock(&dentry->d_lock);
883 return;
884 }
885
886 dentry = dentry_kill(dentry);
887 }
888 }
889 EXPORT_SYMBOL(dput);
890
891 static void __dput_to_list(struct dentry *dentry, struct list_head *list)
892 __must_hold(&dentry->d_lock)
893 {
894 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
895 /* let the owner of the list it's on deal with it */
896 --dentry->d_lockref.count;
897 } else {
898 if (dentry->d_flags & DCACHE_LRU_LIST)
899 d_lru_del(dentry);
900 if (!--dentry->d_lockref.count)
901 d_shrink_add(dentry, list);
902 }
903 }
904
905 void dput_to_list(struct dentry *dentry, struct list_head *list)
906 {
907 rcu_read_lock();
908 if (likely(fast_dput(dentry))) {
909 rcu_read_unlock();
910 return;
911 }
912 rcu_read_unlock();
913 if (!retain_dentry(dentry))
914 __dput_to_list(dentry, list);
915 spin_unlock(&dentry->d_lock);
916 }
917
918 /* This must be called with d_lock held */
919 static inline void __dget_dlock(struct dentry *dentry)
920 {
921 dentry->d_lockref.count++;
922 }
923
924 static inline void __dget(struct dentry *dentry)
925 {
926 lockref_get(&dentry->d_lockref);
927 }
928
929 struct dentry *dget_parent(struct dentry *dentry)
930 {
931 int gotref;
932 struct dentry *ret;
933 unsigned seq;
934
935 /*
936 * Do optimistic parent lookup without any
937 * locking.
938 */
939 rcu_read_lock();
940 seq = raw_seqcount_begin(&dentry->d_seq);
941 ret = READ_ONCE(dentry->d_parent);
942 gotref = lockref_get_not_zero(&ret->d_lockref);
943 rcu_read_unlock();
944 if (likely(gotref)) {
945 if (!read_seqcount_retry(&dentry->d_seq, seq))
946 return ret;
947 dput(ret);
948 }
949
950 repeat:
951 /*
952 * Don't need rcu_dereference because we re-check it was correct under
953 * the lock.
954 */
955 rcu_read_lock();
956 ret = dentry->d_parent;
957 spin_lock(&ret->d_lock);
958 if (unlikely(ret != dentry->d_parent)) {
959 spin_unlock(&ret->d_lock);
960 rcu_read_unlock();
961 goto repeat;
962 }
963 rcu_read_unlock();
964 BUG_ON(!ret->d_lockref.count);
965 ret->d_lockref.count++;
966 spin_unlock(&ret->d_lock);
967 return ret;
968 }
969 EXPORT_SYMBOL(dget_parent);
970
971 static struct dentry * __d_find_any_alias(struct inode *inode)
972 {
973 struct dentry *alias;
974
975 if (hlist_empty(&inode->i_dentry))
976 return NULL;
977 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
978 __dget(alias);
979 return alias;
980 }
981
982 /**
983 * d_find_any_alias - find any alias for a given inode
984 * @inode: inode to find an alias for
985 *
986 * If any aliases exist for the given inode, take and return a
987 * reference for one of them. If no aliases exist, return %NULL.
988 */
989 struct dentry *d_find_any_alias(struct inode *inode)
990 {
991 struct dentry *de;
992
993 spin_lock(&inode->i_lock);
994 de = __d_find_any_alias(inode);
995 spin_unlock(&inode->i_lock);
996 return de;
997 }
998 EXPORT_SYMBOL(d_find_any_alias);
999
1000 static struct dentry *__d_find_alias(struct inode *inode)
1001 {
1002 struct dentry *alias;
1003
1004 if (S_ISDIR(inode->i_mode))
1005 return __d_find_any_alias(inode);
1006
1007 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
1008 spin_lock(&alias->d_lock);
1009 if (!d_unhashed(alias)) {
1010 __dget_dlock(alias);
1011 spin_unlock(&alias->d_lock);
1012 return alias;
1013 }
1014 spin_unlock(&alias->d_lock);
1015 }
1016 return NULL;
1017 }
1018
1019 /**
1020 * d_find_alias - grab a hashed alias of inode
1021 * @inode: inode in question
1022 *
1023 * If inode has a hashed alias, or is a directory and has any alias,
1024 * acquire the reference to alias and return it. Otherwise return NULL.
1025 * Notice that if inode is a directory there can be only one alias and
1026 * it can be unhashed only if it has no children, or if it is the root
1027 * of a filesystem, or if the directory was renamed and d_revalidate
1028 * was the first vfs operation to notice.
1029 *
1030 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
1031 * any other hashed alias over that one.
1032 */
1033 struct dentry *d_find_alias(struct inode *inode)
1034 {
1035 struct dentry *de = NULL;
1036
1037 if (!hlist_empty(&inode->i_dentry)) {
1038 spin_lock(&inode->i_lock);
1039 de = __d_find_alias(inode);
1040 spin_unlock(&inode->i_lock);
1041 }
1042 return de;
1043 }
1044 EXPORT_SYMBOL(d_find_alias);
1045
1046 /*
1047 * Caller MUST be holding rcu_read_lock() and be guaranteed
1048 * that inode won't get freed until rcu_read_unlock().
1049 */
1050 struct dentry *d_find_alias_rcu(struct inode *inode)
1051 {
1052 struct hlist_head *l = &inode->i_dentry;
1053 struct dentry *de = NULL;
1054
1055 spin_lock(&inode->i_lock);
1056 // ->i_dentry and ->i_rcu are colocated, but the latter won't be
1057 // used without having I_FREEING set, which means no aliases left
1058 if (likely(!(inode->i_state & I_FREEING) && !hlist_empty(l))) {
1059 if (S_ISDIR(inode->i_mode)) {
1060 de = hlist_entry(l->first, struct dentry, d_u.d_alias);
1061 } else {
1062 hlist_for_each_entry(de, l, d_u.d_alias)
1063 if (!d_unhashed(de))
1064 break;
1065 }
1066 }
1067 spin_unlock(&inode->i_lock);
1068 return de;
1069 }
1070
1071 /*
1072 * Try to kill dentries associated with this inode.
1073 * WARNING: you must own a reference to inode.
1074 */
1075 void d_prune_aliases(struct inode *inode)
1076 {
1077 struct dentry *dentry;
1078 restart:
1079 spin_lock(&inode->i_lock);
1080 hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
1081 spin_lock(&dentry->d_lock);
1082 if (!dentry->d_lockref.count) {
1083 struct dentry *parent = lock_parent(dentry);
1084 if (likely(!dentry->d_lockref.count)) {
1085 __dentry_kill(dentry);
1086 dput(parent);
1087 goto restart;
1088 }
1089 if (parent)
1090 spin_unlock(&parent->d_lock);
1091 }
1092 spin_unlock(&dentry->d_lock);
1093 }
1094 spin_unlock(&inode->i_lock);
1095 }
1096 EXPORT_SYMBOL(d_prune_aliases);
1097
1098 /*
1099 * Lock a dentry from shrink list.
1100 * Called under rcu_read_lock() and dentry->d_lock; the former
1101 * guarantees that nothing we access will be freed under us.
1102 * Note that dentry is *not* protected from concurrent dentry_kill(),
1103 * d_delete(), etc.
1104 *
1105 * Return false if dentry has been disrupted or grabbed, leaving
1106 * the caller to kick it off-list. Otherwise, return true and have
1107 * that dentry's inode and parent both locked.
1108 */
1109 static bool shrink_lock_dentry(struct dentry *dentry)
1110 {
1111 struct inode *inode;
1112 struct dentry *parent;
1113
1114 if (dentry->d_lockref.count)
1115 return false;
1116
1117 inode = dentry->d_inode;
1118 if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
1119 spin_unlock(&dentry->d_lock);
1120 spin_lock(&inode->i_lock);
1121 spin_lock(&dentry->d_lock);
1122 if (unlikely(dentry->d_lockref.count))
1123 goto out;
1124 /* changed inode means that somebody had grabbed it */
1125 if (unlikely(inode != dentry->d_inode))
1126 goto out;
1127 }
1128
1129 parent = dentry->d_parent;
1130 if (IS_ROOT(dentry) || likely(spin_trylock(&parent->d_lock)))
1131 return true;
1132
1133 spin_unlock(&dentry->d_lock);
1134 spin_lock(&parent->d_lock);
1135 if (unlikely(parent != dentry->d_parent)) {
1136 spin_unlock(&parent->d_lock);
1137 spin_lock(&dentry->d_lock);
1138 goto out;
1139 }
1140 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1141 if (likely(!dentry->d_lockref.count))
1142 return true;
1143 spin_unlock(&parent->d_lock);
1144 out:
1145 if (inode)
1146 spin_unlock(&inode->i_lock);
1147 return false;
1148 }
1149
1150 void shrink_dentry_list(struct list_head *list)
1151 {
1152 while (!list_empty(list)) {
1153 struct dentry *dentry, *parent;
1154
1155 dentry = list_entry(list->prev, struct dentry, d_lru);
1156 spin_lock(&dentry->d_lock);
1157 rcu_read_lock();
1158 if (!shrink_lock_dentry(dentry)) {
1159 bool can_free = false;
1160 rcu_read_unlock();
1161 d_shrink_del(dentry);
1162 if (dentry->d_lockref.count < 0)
1163 can_free = dentry->d_flags & DCACHE_MAY_FREE;
1164 spin_unlock(&dentry->d_lock);
1165 if (can_free)
1166 dentry_free(dentry);
1167 continue;
1168 }
1169 rcu_read_unlock();
1170 d_shrink_del(dentry);
1171 parent = dentry->d_parent;
1172 if (parent != dentry)
1173 __dput_to_list(parent, list);
1174 __dentry_kill(dentry);
1175 }
1176 }
1177
1178 static enum lru_status dentry_lru_isolate(struct list_head *item,
1179 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1180 {
1181 struct list_head *freeable = arg;
1182 struct dentry *dentry = container_of(item, struct dentry, d_lru);
1183
1184
1185 /*
1186 * we are inverting the lru lock/dentry->d_lock here,
1187 * so use a trylock. If we fail to get the lock, just skip
1188 * it
1189 */
1190 if (!spin_trylock(&dentry->d_lock))
1191 return LRU_SKIP;
1192
1193 /*
1194 * Referenced dentries are still in use. If they have active
1195 * counts, just remove them from the LRU. Otherwise give them
1196 * another pass through the LRU.
1197 */
1198 if (dentry->d_lockref.count) {
1199 d_lru_isolate(lru, dentry);
1200 spin_unlock(&dentry->d_lock);
1201 return LRU_REMOVED;
1202 }
1203
1204 if (dentry->d_flags & DCACHE_REFERENCED) {
1205 dentry->d_flags &= ~DCACHE_REFERENCED;
1206 spin_unlock(&dentry->d_lock);
1207
1208 /*
1209 * The list move itself will be made by the common LRU code. At
1210 * this point, we've dropped the dentry->d_lock but keep the
1211 * lru lock. This is safe to do, since every list movement is
1212 * protected by the lru lock even if both locks are held.
1213 *
1214 * This is guaranteed by the fact that all LRU management
1215 * functions are intermediated by the LRU API calls like
1216 * list_lru_add and list_lru_del. List movement in this file
1217 * only ever occur through this functions or through callbacks
1218 * like this one, that are called from the LRU API.
1219 *
1220 * The only exceptions to this are functions like
1221 * shrink_dentry_list, and code that first checks for the
1222 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be
1223 * operating only with stack provided lists after they are
1224 * properly isolated from the main list. It is thus, always a
1225 * local access.
1226 */
1227 return LRU_ROTATE;
1228 }
1229
1230 d_lru_shrink_move(lru, dentry, freeable);
1231 spin_unlock(&dentry->d_lock);
1232
1233 return LRU_REMOVED;
1234 }
1235
1236 /**
1237 * prune_dcache_sb - shrink the dcache
1238 * @sb: superblock
1239 * @sc: shrink control, passed to list_lru_shrink_walk()
1240 *
1241 * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1242 * is done when we need more memory and called from the superblock shrinker
1243 * function.
1244 *
1245 * This function may fail to free any resources if all the dentries are in
1246 * use.
1247 */
1248 long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
1249 {
1250 LIST_HEAD(dispose);
1251 long freed;
1252
1253 freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1254 dentry_lru_isolate, &dispose);
1255 shrink_dentry_list(&dispose);
1256 return freed;
1257 }
1258
1259 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
1260 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1261 {
1262 struct list_head *freeable = arg;
1263 struct dentry *dentry = container_of(item, struct dentry, d_lru);
1264
1265 /*
1266 * we are inverting the lru lock/dentry->d_lock here,
1267 * so use a trylock. If we fail to get the lock, just skip
1268 * it
1269 */
1270 if (!spin_trylock(&dentry->d_lock))
1271 return LRU_SKIP;
1272
1273 d_lru_shrink_move(lru, dentry, freeable);
1274 spin_unlock(&dentry->d_lock);
1275
1276 return LRU_REMOVED;
1277 }
1278
1279
1280 /**
1281 * shrink_dcache_sb - shrink dcache for a superblock
1282 * @sb: superblock
1283 *
1284 * Shrink the dcache for the specified super block. This is used to free
1285 * the dcache before unmounting a file system.
1286 */
1287 void shrink_dcache_sb(struct super_block *sb)
1288 {
1289 do {
1290 LIST_HEAD(dispose);
1291
1292 list_lru_walk(&sb->s_dentry_lru,
1293 dentry_lru_isolate_shrink, &dispose, 1024);
1294 shrink_dentry_list(&dispose);
1295 } while (list_lru_count(&sb->s_dentry_lru) > 0);
1296 }
1297 EXPORT_SYMBOL(shrink_dcache_sb);
1298
1299 /**
1300 * enum d_walk_ret - action to talke during tree walk
1301 * @D_WALK_CONTINUE: contrinue walk
1302 * @D_WALK_QUIT: quit walk
1303 * @D_WALK_NORETRY: quit when retry is needed
1304 * @D_WALK_SKIP: skip this dentry and its children
1305 */
1306 enum d_walk_ret {
1307 D_WALK_CONTINUE,
1308 D_WALK_QUIT,
1309 D_WALK_NORETRY,
1310 D_WALK_SKIP,
1311 };
1312
1313 /**
1314 * d_walk - walk the dentry tree
1315 * @parent: start of walk
1316 * @data: data passed to @enter() and @finish()
1317 * @enter: callback when first entering the dentry
1318 *
1319 * The @enter() callbacks are called with d_lock held.
1320 */
1321 static void d_walk(struct dentry *parent, void *data,
1322 enum d_walk_ret (*enter)(void *, struct dentry *))
1323 {
1324 struct dentry *this_parent;
1325 struct list_head *next;
1326 unsigned seq = 0;
1327 enum d_walk_ret ret;
1328 bool retry = true;
1329
1330 again:
1331 read_seqbegin_or_lock(&rename_lock, &seq);
1332 this_parent = parent;
1333 spin_lock(&this_parent->d_lock);
1334
1335 ret = enter(data, this_parent);
1336 switch (ret) {
1337 case D_WALK_CONTINUE:
1338 break;
1339 case D_WALK_QUIT:
1340 case D_WALK_SKIP:
1341 goto out_unlock;
1342 case D_WALK_NORETRY:
1343 retry = false;
1344 break;
1345 }
1346 repeat:
1347 next = this_parent->d_subdirs.next;
1348 resume:
1349 while (next != &this_parent->d_subdirs) {
1350 struct list_head *tmp = next;
1351 struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1352 next = tmp->next;
1353
1354 if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR))
1355 continue;
1356
1357 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1358
1359 ret = enter(data, dentry);
1360 switch (ret) {
1361 case D_WALK_CONTINUE:
1362 break;
1363 case D_WALK_QUIT:
1364 spin_unlock(&dentry->d_lock);
1365 goto out_unlock;
1366 case D_WALK_NORETRY:
1367 retry = false;
1368 break;
1369 case D_WALK_SKIP:
1370 spin_unlock(&dentry->d_lock);
1371 continue;
1372 }
1373
1374 if (!list_empty(&dentry->d_subdirs)) {
1375 spin_unlock(&this_parent->d_lock);
1376 spin_release(&dentry->d_lock.dep_map, _RET_IP_);
1377 this_parent = dentry;
1378 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1379 goto repeat;
1380 }
1381 spin_unlock(&dentry->d_lock);
1382 }
1383 /*
1384 * All done at this level ... ascend and resume the search.
1385 */
1386 rcu_read_lock();
1387 ascend:
1388 if (this_parent != parent) {
1389 struct dentry *child = this_parent;
1390 this_parent = child->d_parent;
1391
1392 spin_unlock(&child->d_lock);
1393 spin_lock(&this_parent->d_lock);
1394
1395 /* might go back up the wrong parent if we have had a rename. */
1396 if (need_seqretry(&rename_lock, seq))
1397 goto rename_retry;
1398 /* go into the first sibling still alive */
1399 do {
1400 next = child->d_child.next;
1401 if (next == &this_parent->d_subdirs)
1402 goto ascend;
1403 child = list_entry(next, struct dentry, d_child);
1404 } while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED));
1405 rcu_read_unlock();
1406 goto resume;
1407 }
1408 if (need_seqretry(&rename_lock, seq))
1409 goto rename_retry;
1410 rcu_read_unlock();
1411
1412 out_unlock:
1413 spin_unlock(&this_parent->d_lock);
1414 done_seqretry(&rename_lock, seq);
1415 return;
1416
1417 rename_retry:
1418 spin_unlock(&this_parent->d_lock);
1419 rcu_read_unlock();
1420 BUG_ON(seq & 1);
1421 if (!retry)
1422 return;
1423 seq = 1;
1424 goto again;
1425 }
1426
1427 struct check_mount {
1428 struct vfsmount *mnt;
1429 unsigned int mounted;
1430 };
1431
1432 static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry)
1433 {
1434 struct check_mount *info = data;
1435 struct path path = { .mnt = info->mnt, .dentry = dentry };
1436
1437 if (likely(!d_mountpoint(dentry)))
1438 return D_WALK_CONTINUE;
1439 if (__path_is_mountpoint(&path)) {
1440 info->mounted = 1;
1441 return D_WALK_QUIT;
1442 }
1443 return D_WALK_CONTINUE;
1444 }
1445
1446 /**
1447 * path_has_submounts - check for mounts over a dentry in the
1448 * current namespace.
1449 * @parent: path to check.
1450 *
1451 * Return true if the parent or its subdirectories contain
1452 * a mount point in the current namespace.
1453 */
1454 int path_has_submounts(const struct path *parent)
1455 {
1456 struct check_mount data = { .mnt = parent->mnt, .mounted = 0 };
1457
1458 read_seqlock_excl(&mount_lock);
1459 d_walk(parent->dentry, &data, path_check_mount);
1460 read_sequnlock_excl(&mount_lock);
1461
1462 return data.mounted;
1463 }
1464 EXPORT_SYMBOL(path_has_submounts);
1465
1466 /*
1467 * Called by mount code to set a mountpoint and check if the mountpoint is
1468 * reachable (e.g. NFS can unhash a directory dentry and then the complete
1469 * subtree can become unreachable).
1470 *
1471 * Only one of d_invalidate() and d_set_mounted() must succeed. For
1472 * this reason take rename_lock and d_lock on dentry and ancestors.
1473 */
1474 int d_set_mounted(struct dentry *dentry)
1475 {
1476 struct dentry *p;
1477 int ret = -ENOENT;
1478 write_seqlock(&rename_lock);
1479 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1480 /* Need exclusion wrt. d_invalidate() */
1481 spin_lock(&p->d_lock);
1482 if (unlikely(d_unhashed(p))) {
1483 spin_unlock(&p->d_lock);
1484 goto out;
1485 }
1486 spin_unlock(&p->d_lock);
1487 }
1488 spin_lock(&dentry->d_lock);
1489 if (!d_unlinked(dentry)) {
1490 ret = -EBUSY;
1491 if (!d_mountpoint(dentry)) {
1492 dentry->d_flags |= DCACHE_MOUNTED;
1493 ret = 0;
1494 }
1495 }
1496 spin_unlock(&dentry->d_lock);
1497 out:
1498 write_sequnlock(&rename_lock);
1499 return ret;
1500 }
1501
1502 /*
1503 * Search the dentry child list of the specified parent,
1504 * and move any unused dentries to the end of the unused
1505 * list for prune_dcache(). We descend to the next level
1506 * whenever the d_subdirs list is non-empty and continue
1507 * searching.
1508 *
1509 * It returns zero iff there are no unused children,
1510 * otherwise it returns the number of children moved to
1511 * the end of the unused list. This may not be the total
1512 * number of unused children, because select_parent can
1513 * drop the lock and return early due to latency
1514 * constraints.
1515 */
1516
1517 struct select_data {
1518 struct dentry *start;
1519 union {
1520 long found;
1521 struct dentry *victim;
1522 };
1523 struct list_head dispose;
1524 };
1525
1526 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1527 {
1528 struct select_data *data = _data;
1529 enum d_walk_ret ret = D_WALK_CONTINUE;
1530
1531 if (data->start == dentry)
1532 goto out;
1533
1534 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1535 data->found++;
1536 } else {
1537 if (dentry->d_flags & DCACHE_LRU_LIST)
1538 d_lru_del(dentry);
1539 if (!dentry->d_lockref.count) {
1540 d_shrink_add(dentry, &data->dispose);
1541 data->found++;
1542 }
1543 }
1544 /*
1545 * We can return to the caller if we have found some (this
1546 * ensures forward progress). We'll be coming back to find
1547 * the rest.
1548 */
1549 if (!list_empty(&data->dispose))
1550 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1551 out:
1552 return ret;
1553 }
1554
1555 static enum d_walk_ret select_collect2(void *_data, struct dentry *dentry)
1556 {
1557 struct select_data *data = _data;
1558 enum d_walk_ret ret = D_WALK_CONTINUE;
1559
1560 if (data->start == dentry)
1561 goto out;
1562
1563 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1564 if (!dentry->d_lockref.count) {
1565 rcu_read_lock();
1566 data->victim = dentry;
1567 return D_WALK_QUIT;
1568 }
1569 } else {
1570 if (dentry->d_flags & DCACHE_LRU_LIST)
1571 d_lru_del(dentry);
1572 if (!dentry->d_lockref.count)
1573 d_shrink_add(dentry, &data->dispose);
1574 }
1575 /*
1576 * We can return to the caller if we have found some (this
1577 * ensures forward progress). We'll be coming back to find
1578 * the rest.
1579 */
1580 if (!list_empty(&data->dispose))
1581 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1582 out:
1583 return ret;
1584 }
1585
1586 /**
1587 * shrink_dcache_parent - prune dcache
1588 * @parent: parent of entries to prune
1589 *
1590 * Prune the dcache to remove unused children of the parent dentry.
1591 */
1592 void shrink_dcache_parent(struct dentry *parent)
1593 {
1594 for (;;) {
1595 struct select_data data = {.start = parent};
1596
1597 INIT_LIST_HEAD(&data.dispose);
1598 d_walk(parent, &data, select_collect);
1599
1600 if (!list_empty(&data.dispose)) {
1601 shrink_dentry_list(&data.dispose);
1602 continue;
1603 }
1604
1605 cond_resched();
1606 if (!data.found)
1607 break;
1608 data.victim = NULL;
1609 d_walk(parent, &data, select_collect2);
1610 if (data.victim) {
1611 struct dentry *parent;
1612 spin_lock(&data.victim->d_lock);
1613 if (!shrink_lock_dentry(data.victim)) {
1614 spin_unlock(&data.victim->d_lock);
1615 rcu_read_unlock();
1616 } else {
1617 rcu_read_unlock();
1618 parent = data.victim->d_parent;
1619 if (parent != data.victim)
1620 __dput_to_list(parent, &data.dispose);
1621 __dentry_kill(data.victim);
1622 }
1623 }
1624 if (!list_empty(&data.dispose))
1625 shrink_dentry_list(&data.dispose);
1626 }
1627 }
1628 EXPORT_SYMBOL(shrink_dcache_parent);
1629
1630 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
1631 {
1632 /* it has busy descendents; complain about those instead */
1633 if (!list_empty(&dentry->d_subdirs))
1634 return D_WALK_CONTINUE;
1635
1636 /* root with refcount 1 is fine */
1637 if (dentry == _data && dentry->d_lockref.count == 1)
1638 return D_WALK_CONTINUE;
1639
1640 printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1641 " still in use (%d) [unmount of %s %s]\n",
1642 dentry,
1643 dentry->d_inode ?
1644 dentry->d_inode->i_ino : 0UL,
1645 dentry,
1646 dentry->d_lockref.count,
1647 dentry->d_sb->s_type->name,
1648 dentry->d_sb->s_id);
1649 WARN_ON(1);
1650 return D_WALK_CONTINUE;
1651 }
1652
1653 static void do_one_tree(struct dentry *dentry)
1654 {
1655 shrink_dcache_parent(dentry);
1656 d_walk(dentry, dentry, umount_check);
1657 d_drop(dentry);
1658 dput(dentry);
1659 }
1660
1661 /*
1662 * destroy the dentries attached to a superblock on unmounting
1663 */
1664 void shrink_dcache_for_umount(struct super_block *sb)
1665 {
1666 struct dentry *dentry;
1667
1668 WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
1669
1670 dentry = sb->s_root;
1671 sb->s_root = NULL;
1672 do_one_tree(dentry);
1673
1674 while (!hlist_bl_empty(&sb->s_roots)) {
1675 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_roots), struct dentry, d_hash));
1676 do_one_tree(dentry);
1677 }
1678 }
1679
1680 static enum d_walk_ret find_submount(void *_data, struct dentry *dentry)
1681 {
1682 struct dentry **victim = _data;
1683 if (d_mountpoint(dentry)) {
1684 __dget_dlock(dentry);
1685 *victim = dentry;
1686 return D_WALK_QUIT;
1687 }
1688 return D_WALK_CONTINUE;
1689 }
1690
1691 /**
1692 * d_invalidate - detach submounts, prune dcache, and drop
1693 * @dentry: dentry to invalidate (aka detach, prune and drop)
1694 */
1695 void d_invalidate(struct dentry *dentry)
1696 {
1697 bool had_submounts = false;
1698 spin_lock(&dentry->d_lock);
1699 if (d_unhashed(dentry)) {
1700 spin_unlock(&dentry->d_lock);
1701 return;
1702 }
1703 __d_drop(dentry);
1704 spin_unlock(&dentry->d_lock);
1705
1706 /* Negative dentries can be dropped without further checks */
1707 if (!dentry->d_inode)
1708 return;
1709
1710 shrink_dcache_parent(dentry);
1711 for (;;) {
1712 struct dentry *victim = NULL;
1713 d_walk(dentry, &victim, find_submount);
1714 if (!victim) {
1715 if (had_submounts)
1716 shrink_dcache_parent(dentry);
1717 return;
1718 }
1719 had_submounts = true;
1720 detach_mounts(victim);
1721 dput(victim);
1722 }
1723 }
1724 EXPORT_SYMBOL(d_invalidate);
1725
1726 /**
1727 * __d_alloc - allocate a dcache entry
1728 * @sb: filesystem it will belong to
1729 * @name: qstr of the name
1730 *
1731 * Allocates a dentry. It returns %NULL if there is insufficient memory
1732 * available. On a success the dentry is returned. The name passed in is
1733 * copied and the copy passed in may be reused after this call.
1734 */
1735
1736 static struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1737 {
1738 struct dentry *dentry;
1739 char *dname;
1740 int err;
1741
1742 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1743 if (!dentry)
1744 return NULL;
1745
1746 /*
1747 * We guarantee that the inline name is always NUL-terminated.
1748 * This way the memcpy() done by the name switching in rename
1749 * will still always have a NUL at the end, even if we might
1750 * be overwriting an internal NUL character
1751 */
1752 dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1753 if (unlikely(!name)) {
1754 name = &slash_name;
1755 dname = dentry->d_iname;
1756 } else if (name->len > DNAME_INLINE_LEN-1) {
1757 size_t size = offsetof(struct external_name, name[1]);
1758 struct external_name *p = kmalloc(size + name->len,
1759 GFP_KERNEL_ACCOUNT |
1760 __GFP_RECLAIMABLE);
1761 if (!p) {
1762 kmem_cache_free(dentry_cache, dentry);
1763 return NULL;
1764 }
1765 atomic_set(&p->u.count, 1);
1766 dname = p->name;
1767 } else {
1768 dname = dentry->d_iname;
1769 }
1770
1771 dentry->d_name.len = name->len;
1772 dentry->d_name.hash = name->hash;
1773 memcpy(dname, name->name, name->len);
1774 dname[name->len] = 0;
1775
1776 /* Make sure we always see the terminating NUL character */
1777 smp_store_release(&dentry->d_name.name, dname); /* ^^^ */
1778
1779 dentry->d_lockref.count = 1;
1780 dentry->d_flags = 0;
1781 spin_lock_init(&dentry->d_lock);
1782 seqcount_spinlock_init(&dentry->d_seq, &dentry->d_lock);
1783 dentry->d_inode = NULL;
1784 dentry->d_parent = dentry;
1785 dentry->d_sb = sb;
1786 dentry->d_op = NULL;
1787 dentry->d_fsdata = NULL;
1788 INIT_HLIST_BL_NODE(&dentry->d_hash);
1789 INIT_LIST_HEAD(&dentry->d_lru);
1790 INIT_LIST_HEAD(&dentry->d_subdirs);
1791 INIT_HLIST_NODE(&dentry->d_u.d_alias);
1792 INIT_LIST_HEAD(&dentry->d_child);
1793 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1794
1795 if (dentry->d_op && dentry->d_op->d_init) {
1796 err = dentry->d_op->d_init(dentry);
1797 if (err) {
1798 if (dname_external(dentry))
1799 kfree(external_name(dentry));
1800 kmem_cache_free(dentry_cache, dentry);
1801 return NULL;
1802 }
1803 }
1804
1805 this_cpu_inc(nr_dentry);
1806
1807 return dentry;
1808 }
1809
1810 /**
1811 * d_alloc - allocate a dcache entry
1812 * @parent: parent of entry to allocate
1813 * @name: qstr of the name
1814 *
1815 * Allocates a dentry. It returns %NULL if there is insufficient memory
1816 * available. On a success the dentry is returned. The name passed in is
1817 * copied and the copy passed in may be reused after this call.
1818 */
1819 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1820 {
1821 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1822 if (!dentry)
1823 return NULL;
1824 spin_lock(&parent->d_lock);
1825 /*
1826 * don't need child lock because it is not subject
1827 * to concurrency here
1828 */
1829 __dget_dlock(parent);
1830 dentry->d_parent = parent;
1831 list_add(&dentry->d_child, &parent->d_subdirs);
1832 spin_unlock(&parent->d_lock);
1833
1834 return dentry;
1835 }
1836 EXPORT_SYMBOL(d_alloc);
1837
1838 struct dentry *d_alloc_anon(struct super_block *sb)
1839 {
1840 return __d_alloc(sb, NULL);
1841 }
1842 EXPORT_SYMBOL(d_alloc_anon);
1843
1844 struct dentry *d_alloc_cursor(struct dentry * parent)
1845 {
1846 struct dentry *dentry = d_alloc_anon(parent->d_sb);
1847 if (dentry) {
1848 dentry->d_flags |= DCACHE_DENTRY_CURSOR;
1849 dentry->d_parent = dget(parent);
1850 }
1851 return dentry;
1852 }
1853
1854 /**
1855 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1856 * @sb: the superblock
1857 * @name: qstr of the name
1858 *
1859 * For a filesystem that just pins its dentries in memory and never
1860 * performs lookups at all, return an unhashed IS_ROOT dentry.
1861 * This is used for pipes, sockets et.al. - the stuff that should
1862 * never be anyone's children or parents. Unlike all other
1863 * dentries, these will not have RCU delay between dropping the
1864 * last reference and freeing them.
1865 *
1866 * The only user is alloc_file_pseudo() and that's what should
1867 * be considered a public interface. Don't use directly.
1868 */
1869 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1870 {
1871 struct dentry *dentry = __d_alloc(sb, name);
1872 if (likely(dentry))
1873 dentry->d_flags |= DCACHE_NORCU;
1874 return dentry;
1875 }
1876
1877 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1878 {
1879 struct qstr q;
1880
1881 q.name = name;
1882 q.hash_len = hashlen_string(parent, name);
1883 return d_alloc(parent, &q);
1884 }
1885 EXPORT_SYMBOL(d_alloc_name);
1886
1887 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1888 {
1889 WARN_ON_ONCE(dentry->d_op);
1890 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
1891 DCACHE_OP_COMPARE |
1892 DCACHE_OP_REVALIDATE |
1893 DCACHE_OP_WEAK_REVALIDATE |
1894 DCACHE_OP_DELETE |
1895 DCACHE_OP_REAL));
1896 dentry->d_op = op;
1897 if (!op)
1898 return;
1899 if (op->d_hash)
1900 dentry->d_flags |= DCACHE_OP_HASH;
1901 if (op->d_compare)
1902 dentry->d_flags |= DCACHE_OP_COMPARE;
1903 if (op->d_revalidate)
1904 dentry->d_flags |= DCACHE_OP_REVALIDATE;
1905 if (op->d_weak_revalidate)
1906 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1907 if (op->d_delete)
1908 dentry->d_flags |= DCACHE_OP_DELETE;
1909 if (op->d_prune)
1910 dentry->d_flags |= DCACHE_OP_PRUNE;
1911 if (op->d_real)
1912 dentry->d_flags |= DCACHE_OP_REAL;
1913
1914 }
1915 EXPORT_SYMBOL(d_set_d_op);
1916
1917
1918 /*
1919 * d_set_fallthru - Mark a dentry as falling through to a lower layer
1920 * @dentry - The dentry to mark
1921 *
1922 * Mark a dentry as falling through to the lower layer (as set with
1923 * d_pin_lower()). This flag may be recorded on the medium.
1924 */
1925 void d_set_fallthru(struct dentry *dentry)
1926 {
1927 spin_lock(&dentry->d_lock);
1928 dentry->d_flags |= DCACHE_FALLTHRU;
1929 spin_unlock(&dentry->d_lock);
1930 }
1931 EXPORT_SYMBOL(d_set_fallthru);
1932
1933 static unsigned d_flags_for_inode(struct inode *inode)
1934 {
1935 unsigned add_flags = DCACHE_REGULAR_TYPE;
1936
1937 if (!inode)
1938 return DCACHE_MISS_TYPE;
1939
1940 if (S_ISDIR(inode->i_mode)) {
1941 add_flags = DCACHE_DIRECTORY_TYPE;
1942 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1943 if (unlikely(!inode->i_op->lookup))
1944 add_flags = DCACHE_AUTODIR_TYPE;
1945 else
1946 inode->i_opflags |= IOP_LOOKUP;
1947 }
1948 goto type_determined;
1949 }
1950
1951 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1952 if (unlikely(inode->i_op->get_link)) {
1953 add_flags = DCACHE_SYMLINK_TYPE;
1954 goto type_determined;
1955 }
1956 inode->i_opflags |= IOP_NOFOLLOW;
1957 }
1958
1959 if (unlikely(!S_ISREG(inode->i_mode)))
1960 add_flags = DCACHE_SPECIAL_TYPE;
1961
1962 type_determined:
1963 if (unlikely(IS_AUTOMOUNT(inode)))
1964 add_flags |= DCACHE_NEED_AUTOMOUNT;
1965 return add_flags;
1966 }
1967
1968 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1969 {
1970 unsigned add_flags = d_flags_for_inode(inode);
1971 WARN_ON(d_in_lookup(dentry));
1972
1973 spin_lock(&dentry->d_lock);
1974 /*
1975 * Decrement negative dentry count if it was in the LRU list.
1976 */
1977 if (dentry->d_flags & DCACHE_LRU_LIST)
1978 this_cpu_dec(nr_dentry_negative);
1979 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
1980 raw_write_seqcount_begin(&dentry->d_seq);
1981 __d_set_inode_and_type(dentry, inode, add_flags);
1982 raw_write_seqcount_end(&dentry->d_seq);
1983 fsnotify_update_flags(dentry);
1984 spin_unlock(&dentry->d_lock);
1985 }
1986
1987 /**
1988 * d_instantiate - fill in inode information for a dentry
1989 * @entry: dentry to complete
1990 * @inode: inode to attach to this dentry
1991 *
1992 * Fill in inode information in the entry.
1993 *
1994 * This turns negative dentries into productive full members
1995 * of society.
1996 *
1997 * NOTE! This assumes that the inode count has been incremented
1998 * (or otherwise set) by the caller to indicate that it is now
1999 * in use by the dcache.
2000 */
2001
2002 void d_instantiate(struct dentry *entry, struct inode * inode)
2003 {
2004 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
2005 if (inode) {
2006 security_d_instantiate(entry, inode);
2007 spin_lock(&inode->i_lock);
2008 __d_instantiate(entry, inode);
2009 spin_unlock(&inode->i_lock);
2010 }
2011 }
2012 EXPORT_SYMBOL(d_instantiate);
2013
2014 /*
2015 * This should be equivalent to d_instantiate() + unlock_new_inode(),
2016 * with lockdep-related part of unlock_new_inode() done before
2017 * anything else. Use that instead of open-coding d_instantiate()/
2018 * unlock_new_inode() combinations.
2019 */
2020 void d_instantiate_new(struct dentry *entry, struct inode *inode)
2021 {
2022 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
2023 BUG_ON(!inode);
2024 lockdep_annotate_inode_mutex_key(inode);
2025 security_d_instantiate(entry, inode);
2026 spin_lock(&inode->i_lock);
2027 __d_instantiate(entry, inode);
2028 WARN_ON(!(inode->i_state & I_NEW));
2029 inode->i_state &= ~I_NEW & ~I_CREATING;
2030 smp_mb();
2031 wake_up_bit(&inode->i_state, __I_NEW);
2032 spin_unlock(&inode->i_lock);
2033 }
2034 EXPORT_SYMBOL(d_instantiate_new);
2035
2036 struct dentry *d_make_root(struct inode *root_inode)
2037 {
2038 struct dentry *res = NULL;
2039
2040 if (root_inode) {
2041 res = d_alloc_anon(root_inode->i_sb);
2042 if (res)
2043 d_instantiate(res, root_inode);
2044 else
2045 iput(root_inode);
2046 }
2047 return res;
2048 }
2049 EXPORT_SYMBOL(d_make_root);
2050
2051 static struct dentry *__d_instantiate_anon(struct dentry *dentry,
2052 struct inode *inode,
2053 bool disconnected)
2054 {
2055 struct dentry *res;
2056 unsigned add_flags;
2057
2058 security_d_instantiate(dentry, inode);
2059 spin_lock(&inode->i_lock);
2060 res = __d_find_any_alias(inode);
2061 if (res) {
2062 spin_unlock(&inode->i_lock);
2063 dput(dentry);
2064 goto out_iput;
2065 }
2066
2067 /* attach a disconnected dentry */
2068 add_flags = d_flags_for_inode(inode);
2069
2070 if (disconnected)
2071 add_flags |= DCACHE_DISCONNECTED;
2072
2073 spin_lock(&dentry->d_lock);
2074 __d_set_inode_and_type(dentry, inode, add_flags);
2075 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2076 if (!disconnected) {
2077 hlist_bl_lock(&dentry->d_sb->s_roots);
2078 hlist_bl_add_head(&dentry->d_hash, &dentry->d_sb->s_roots);
2079 hlist_bl_unlock(&dentry->d_sb->s_roots);
2080 }
2081 spin_unlock(&dentry->d_lock);
2082 spin_unlock(&inode->i_lock);
2083
2084 return dentry;
2085
2086 out_iput:
2087 iput(inode);
2088 return res;
2089 }
2090
2091 struct dentry *d_instantiate_anon(struct dentry *dentry, struct inode *inode)
2092 {
2093 return __d_instantiate_anon(dentry, inode, true);
2094 }
2095 EXPORT_SYMBOL(d_instantiate_anon);
2096
2097 static struct dentry *__d_obtain_alias(struct inode *inode, bool disconnected)
2098 {
2099 struct dentry *tmp;
2100 struct dentry *res;
2101
2102 if (!inode)
2103 return ERR_PTR(-ESTALE);
2104 if (IS_ERR(inode))
2105 return ERR_CAST(inode);
2106
2107 res = d_find_any_alias(inode);
2108 if (res)
2109 goto out_iput;
2110
2111 tmp = d_alloc_anon(inode->i_sb);
2112 if (!tmp) {
2113 res = ERR_PTR(-ENOMEM);
2114 goto out_iput;
2115 }
2116
2117 return __d_instantiate_anon(tmp, inode, disconnected);
2118
2119 out_iput:
2120 iput(inode);
2121 return res;
2122 }
2123
2124 /**
2125 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
2126 * @inode: inode to allocate the dentry for
2127 *
2128 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
2129 * similar open by handle operations. The returned dentry may be anonymous,
2130 * or may have a full name (if the inode was already in the cache).
2131 *
2132 * When called on a directory inode, we must ensure that the inode only ever
2133 * has one dentry. If a dentry is found, that is returned instead of
2134 * allocating a new one.
2135 *
2136 * On successful return, the reference to the inode has been transferred
2137 * to the dentry. In case of an error the reference on the inode is released.
2138 * To make it easier to use in export operations a %NULL or IS_ERR inode may
2139 * be passed in and the error will be propagated to the return value,
2140 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
2141 */
2142 struct dentry *d_obtain_alias(struct inode *inode)
2143 {
2144 return __d_obtain_alias(inode, true);
2145 }
2146 EXPORT_SYMBOL(d_obtain_alias);
2147
2148 /**
2149 * d_obtain_root - find or allocate a dentry for a given inode
2150 * @inode: inode to allocate the dentry for
2151 *
2152 * Obtain an IS_ROOT dentry for the root of a filesystem.
2153 *
2154 * We must ensure that directory inodes only ever have one dentry. If a
2155 * dentry is found, that is returned instead of allocating a new one.
2156 *
2157 * On successful return, the reference to the inode has been transferred
2158 * to the dentry. In case of an error the reference on the inode is
2159 * released. A %NULL or IS_ERR inode may be passed in and will be the
2160 * error will be propagate to the return value, with a %NULL @inode
2161 * replaced by ERR_PTR(-ESTALE).
2162 */
2163 struct dentry *d_obtain_root(struct inode *inode)
2164 {
2165 return __d_obtain_alias(inode, false);
2166 }
2167 EXPORT_SYMBOL(d_obtain_root);
2168
2169 /**
2170 * d_add_ci - lookup or allocate new dentry with case-exact name
2171 * @inode: the inode case-insensitive lookup has found
2172 * @dentry: the negative dentry that was passed to the parent's lookup func
2173 * @name: the case-exact name to be associated with the returned dentry
2174 *
2175 * This is to avoid filling the dcache with case-insensitive names to the
2176 * same inode, only the actual correct case is stored in the dcache for
2177 * case-insensitive filesystems.
2178 *
2179 * For a case-insensitive lookup match and if the case-exact dentry
2180 * already exists in the dcache, use it and return it.
2181 *
2182 * If no entry exists with the exact case name, allocate new dentry with
2183 * the exact case, and return the spliced entry.
2184 */
2185 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
2186 struct qstr *name)
2187 {
2188 struct dentry *found, *res;
2189
2190 /*
2191 * First check if a dentry matching the name already exists,
2192 * if not go ahead and create it now.
2193 */
2194 found = d_hash_and_lookup(dentry->d_parent, name);
2195 if (found) {
2196 iput(inode);
2197 return found;
2198 }
2199 if (d_in_lookup(dentry)) {
2200 found = d_alloc_parallel(dentry->d_parent, name,
2201 dentry->d_wait);
2202 if (IS_ERR(found) || !d_in_lookup(found)) {
2203 iput(inode);
2204 return found;
2205 }
2206 } else {
2207 found = d_alloc(dentry->d_parent, name);
2208 if (!found) {
2209 iput(inode);
2210 return ERR_PTR(-ENOMEM);
2211 }
2212 }
2213 res = d_splice_alias(inode, found);
2214 if (res) {
2215 dput(found);
2216 return res;
2217 }
2218 return found;
2219 }
2220 EXPORT_SYMBOL(d_add_ci);
2221
2222
2223 static inline bool d_same_name(const struct dentry *dentry,
2224 const struct dentry *parent,
2225 const struct qstr *name)
2226 {
2227 if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) {
2228 if (dentry->d_name.len != name->len)
2229 return false;
2230 return dentry_cmp(dentry, name->name, name->len) == 0;
2231 }
2232 return parent->d_op->d_compare(dentry,
2233 dentry->d_name.len, dentry->d_name.name,
2234 name) == 0;
2235 }
2236
2237 /**
2238 * __d_lookup_rcu - search for a dentry (racy, store-free)
2239 * @parent: parent dentry
2240 * @name: qstr of name we wish to find
2241 * @seqp: returns d_seq value at the point where the dentry was found
2242 * Returns: dentry, or NULL
2243 *
2244 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2245 * resolution (store-free path walking) design described in
2246 * Documentation/filesystems/path-lookup.txt.
2247 *
2248 * This is not to be used outside core vfs.
2249 *
2250 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2251 * held, and rcu_read_lock held. The returned dentry must not be stored into
2252 * without taking d_lock and checking d_seq sequence count against @seq
2253 * returned here.
2254 *
2255 * A refcount may be taken on the found dentry with the d_rcu_to_refcount
2256 * function.
2257 *
2258 * Alternatively, __d_lookup_rcu may be called again to look up the child of
2259 * the returned dentry, so long as its parent's seqlock is checked after the
2260 * child is looked up. Thus, an interlocking stepping of sequence lock checks
2261 * is formed, giving integrity down the path walk.
2262 *
2263 * NOTE! The caller *has* to check the resulting dentry against the sequence
2264 * number we've returned before using any of the resulting dentry state!
2265 */
2266 struct dentry *__d_lookup_rcu(const struct dentry *parent,
2267 const struct qstr *name,
2268 unsigned *seqp)
2269 {
2270 u64 hashlen = name->hash_len;
2271 const unsigned char *str = name->name;
2272 struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen));
2273 struct hlist_bl_node *node;
2274 struct dentry *dentry;
2275
2276 /*
2277 * Note: There is significant duplication with __d_lookup_rcu which is
2278 * required to prevent single threaded performance regressions
2279 * especially on architectures where smp_rmb (in seqcounts) are costly.
2280 * Keep the two functions in sync.
2281 */
2282
2283 /*
2284 * The hash list is protected using RCU.
2285 *
2286 * Carefully use d_seq when comparing a candidate dentry, to avoid
2287 * races with d_move().
2288 *
2289 * It is possible that concurrent renames can mess up our list
2290 * walk here and result in missing our dentry, resulting in the
2291 * false-negative result. d_lookup() protects against concurrent
2292 * renames using rename_lock seqlock.
2293 *
2294 * See Documentation/filesystems/path-lookup.txt for more details.
2295 */
2296 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2297 unsigned seq;
2298
2299 seqretry:
2300 /*
2301 * The dentry sequence count protects us from concurrent
2302 * renames, and thus protects parent and name fields.
2303 *
2304 * The caller must perform a seqcount check in order
2305 * to do anything useful with the returned dentry.
2306 *
2307 * NOTE! We do a "raw" seqcount_begin here. That means that
2308 * we don't wait for the sequence count to stabilize if it
2309 * is in the middle of a sequence change. If we do the slow
2310 * dentry compare, we will do seqretries until it is stable,
2311 * and if we end up with a successful lookup, we actually
2312 * want to exit RCU lookup anyway.
2313 *
2314 * Note that raw_seqcount_begin still *does* smp_rmb(), so
2315 * we are still guaranteed NUL-termination of ->d_name.name.
2316 */
2317 seq = raw_seqcount_begin(&dentry->d_seq);
2318 if (dentry->d_parent != parent)
2319 continue;
2320 if (d_unhashed(dentry))
2321 continue;
2322
2323 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
2324 int tlen;
2325 const char *tname;
2326 if (dentry->d_name.hash != hashlen_hash(hashlen))
2327 continue;
2328 tlen = dentry->d_name.len;
2329 tname = dentry->d_name.name;
2330 /* we want a consistent (name,len) pair */
2331 if (read_seqcount_retry(&dentry->d_seq, seq)) {
2332 cpu_relax();
2333 goto seqretry;
2334 }
2335 if (parent->d_op->d_compare(dentry,
2336 tlen, tname, name) != 0)
2337 continue;
2338 } else {
2339 if (dentry->d_name.hash_len != hashlen)
2340 continue;
2341 if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0)
2342 continue;
2343 }
2344 *seqp = seq;
2345 return dentry;
2346 }
2347 return NULL;
2348 }
2349
2350 /**
2351 * d_lookup - search for a dentry
2352 * @parent: parent dentry
2353 * @name: qstr of name we wish to find
2354 * Returns: dentry, or NULL
2355 *
2356 * d_lookup searches the children of the parent dentry for the name in
2357 * question. If the dentry is found its reference count is incremented and the
2358 * dentry is returned. The caller must use dput to free the entry when it has
2359 * finished using it. %NULL is returned if the dentry does not exist.
2360 */
2361 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2362 {
2363 struct dentry *dentry;
2364 unsigned seq;
2365
2366 do {
2367 seq = read_seqbegin(&rename_lock);
2368 dentry = __d_lookup(parent, name);
2369 if (dentry)
2370 break;
2371 } while (read_seqretry(&rename_lock, seq));
2372 return dentry;
2373 }
2374 EXPORT_SYMBOL(d_lookup);
2375
2376 /**
2377 * __d_lookup - search for a dentry (racy)
2378 * @parent: parent dentry
2379 * @name: qstr of name we wish to find
2380 * Returns: dentry, or NULL
2381 *
2382 * __d_lookup is like d_lookup, however it may (rarely) return a
2383 * false-negative result due to unrelated rename activity.
2384 *
2385 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2386 * however it must be used carefully, eg. with a following d_lookup in
2387 * the case of failure.
2388 *
2389 * __d_lookup callers must be commented.
2390 */
2391 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2392 {
2393 unsigned int hash = name->hash;
2394 struct hlist_bl_head *b = d_hash(hash);
2395 struct hlist_bl_node *node;
2396 struct dentry *found = NULL;
2397 struct dentry *dentry;
2398
2399 /*
2400 * Note: There is significant duplication with __d_lookup_rcu which is
2401 * required to prevent single threaded performance regressions
2402 * especially on architectures where smp_rmb (in seqcounts) are costly.
2403 * Keep the two functions in sync.
2404 */
2405
2406 /*
2407 * The hash list is protected using RCU.
2408 *
2409 * Take d_lock when comparing a candidate dentry, to avoid races
2410 * with d_move().
2411 *
2412 * It is possible that concurrent renames can mess up our list
2413 * walk here and result in missing our dentry, resulting in the
2414 * false-negative result. d_lookup() protects against concurrent
2415 * renames using rename_lock seqlock.
2416 *
2417 * See Documentation/filesystems/path-lookup.txt for more details.
2418 */
2419 rcu_read_lock();
2420
2421 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2422
2423 if (dentry->d_name.hash != hash)
2424 continue;
2425
2426 spin_lock(&dentry->d_lock);
2427 if (dentry->d_parent != parent)
2428 goto next;
2429 if (d_unhashed(dentry))
2430 goto next;
2431
2432 if (!d_same_name(dentry, parent, name))
2433 goto next;
2434
2435 dentry->d_lockref.count++;
2436 found = dentry;
2437 spin_unlock(&dentry->d_lock);
2438 break;
2439 next:
2440 spin_unlock(&dentry->d_lock);
2441 }
2442 rcu_read_unlock();
2443
2444 return found;
2445 }
2446
2447 /**
2448 * d_hash_and_lookup - hash the qstr then search for a dentry
2449 * @dir: Directory to search in
2450 * @name: qstr of name we wish to find
2451 *
2452 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2453 */
2454 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2455 {
2456 /*
2457 * Check for a fs-specific hash function. Note that we must
2458 * calculate the standard hash first, as the d_op->d_hash()
2459 * routine may choose to leave the hash value unchanged.
2460 */
2461 name->hash = full_name_hash(dir, name->name, name->len);
2462 if (dir->d_flags & DCACHE_OP_HASH) {
2463 int err = dir->d_op->d_hash(dir, name);
2464 if (unlikely(err < 0))
2465 return ERR_PTR(err);
2466 }
2467 return d_lookup(dir, name);
2468 }
2469 EXPORT_SYMBOL(d_hash_and_lookup);
2470
2471 /*
2472 * When a file is deleted, we have two options:
2473 * - turn this dentry into a negative dentry
2474 * - unhash this dentry and free it.
2475 *
2476 * Usually, we want to just turn this into
2477 * a negative dentry, but if anybody else is
2478 * currently using the dentry or the inode
2479 * we can't do that and we fall back on removing
2480 * it from the hash queues and waiting for
2481 * it to be deleted later when it has no users
2482 */
2483
2484 /**
2485 * d_delete - delete a dentry
2486 * @dentry: The dentry to delete
2487 *
2488 * Turn the dentry into a negative dentry if possible, otherwise
2489 * remove it from the hash queues so it can be deleted later
2490 */
2491
2492 void d_delete(struct dentry * dentry)
2493 {
2494 struct inode *inode = dentry->d_inode;
2495
2496 spin_lock(&inode->i_lock);
2497 spin_lock(&dentry->d_lock);
2498 /*
2499 * Are we the only user?
2500 */
2501 if (dentry->d_lockref.count == 1) {
2502 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2503 dentry_unlink_inode(dentry);
2504 } else {
2505 __d_drop(dentry);
2506 spin_unlock(&dentry->d_lock);
2507 spin_unlock(&inode->i_lock);
2508 }
2509 }
2510 EXPORT_SYMBOL(d_delete);
2511
2512 static void __d_rehash(struct dentry *entry)
2513 {
2514 struct hlist_bl_head *b = d_hash(entry->d_name.hash);
2515
2516 hlist_bl_lock(b);
2517 hlist_bl_add_head_rcu(&entry->d_hash, b);
2518 hlist_bl_unlock(b);
2519 }
2520
2521 /**
2522 * d_rehash - add an entry back to the hash
2523 * @entry: dentry to add to the hash
2524 *
2525 * Adds a dentry to the hash according to its name.
2526 */
2527
2528 void d_rehash(struct dentry * entry)
2529 {
2530 spin_lock(&entry->d_lock);
2531 __d_rehash(entry);
2532 spin_unlock(&entry->d_lock);
2533 }
2534 EXPORT_SYMBOL(d_rehash);
2535
2536 static inline unsigned start_dir_add(struct inode *dir)
2537 {
2538
2539 for (;;) {
2540 unsigned n = dir->i_dir_seq;
2541 if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n)
2542 return n;
2543 cpu_relax();
2544 }
2545 }
2546
2547 static inline void end_dir_add(struct inode *dir, unsigned n)
2548 {
2549 smp_store_release(&dir->i_dir_seq, n + 2);
2550 }
2551
2552 static void d_wait_lookup(struct dentry *dentry)
2553 {
2554 if (d_in_lookup(dentry)) {
2555 DECLARE_WAITQUEUE(wait, current);
2556 add_wait_queue(dentry->d_wait, &wait);
2557 do {
2558 set_current_state(TASK_UNINTERRUPTIBLE);
2559 spin_unlock(&dentry->d_lock);
2560 schedule();
2561 spin_lock(&dentry->d_lock);
2562 } while (d_in_lookup(dentry));
2563 }
2564 }
2565
2566 struct dentry *d_alloc_parallel(struct dentry *parent,
2567 const struct qstr *name,
2568 wait_queue_head_t *wq)
2569 {
2570 unsigned int hash = name->hash;
2571 struct hlist_bl_head *b = in_lookup_hash(parent, hash);
2572 struct hlist_bl_node *node;
2573 struct dentry *new = d_alloc(parent, name);
2574 struct dentry *dentry;
2575 unsigned seq, r_seq, d_seq;
2576
2577 if (unlikely(!new))
2578 return ERR_PTR(-ENOMEM);
2579
2580 retry:
2581 rcu_read_lock();
2582 seq = smp_load_acquire(&parent->d_inode->i_dir_seq);
2583 r_seq = read_seqbegin(&rename_lock);
2584 dentry = __d_lookup_rcu(parent, name, &d_seq);
2585 if (unlikely(dentry)) {
2586 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2587 rcu_read_unlock();
2588 goto retry;
2589 }
2590 if (read_seqcount_retry(&dentry->d_seq, d_seq)) {
2591 rcu_read_unlock();
2592 dput(dentry);
2593 goto retry;
2594 }
2595 rcu_read_unlock();
2596 dput(new);
2597 return dentry;
2598 }
2599 if (unlikely(read_seqretry(&rename_lock, r_seq))) {
2600 rcu_read_unlock();
2601 goto retry;
2602 }
2603
2604 if (unlikely(seq & 1)) {
2605 rcu_read_unlock();
2606 goto retry;
2607 }
2608
2609 hlist_bl_lock(b);
2610 if (unlikely(READ_ONCE(parent->d_inode->i_dir_seq) != seq)) {
2611 hlist_bl_unlock(b);
2612 rcu_read_unlock();
2613 goto retry;
2614 }
2615 /*
2616 * No changes for the parent since the beginning of d_lookup().
2617 * Since all removals from the chain happen with hlist_bl_lock(),
2618 * any potential in-lookup matches are going to stay here until
2619 * we unlock the chain. All fields are stable in everything
2620 * we encounter.
2621 */
2622 hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) {
2623 if (dentry->d_name.hash != hash)
2624 continue;
2625 if (dentry->d_parent != parent)
2626 continue;
2627 if (!d_same_name(dentry, parent, name))
2628 continue;
2629 hlist_bl_unlock(b);
2630 /* now we can try to grab a reference */
2631 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2632 rcu_read_unlock();
2633 goto retry;
2634 }
2635
2636 rcu_read_unlock();
2637 /*
2638 * somebody is likely to be still doing lookup for it;
2639 * wait for them to finish
2640 */
2641 spin_lock(&dentry->d_lock);
2642 d_wait_lookup(dentry);
2643 /*
2644 * it's not in-lookup anymore; in principle we should repeat
2645 * everything from dcache lookup, but it's likely to be what
2646 * d_lookup() would've found anyway. If it is, just return it;
2647 * otherwise we really have to repeat the whole thing.
2648 */
2649 if (unlikely(dentry->d_name.hash != hash))
2650 goto mismatch;
2651 if (unlikely(dentry->d_parent != parent))
2652 goto mismatch;
2653 if (unlikely(d_unhashed(dentry)))
2654 goto mismatch;
2655 if (unlikely(!d_same_name(dentry, parent, name)))
2656 goto mismatch;
2657 /* OK, it *is* a hashed match; return it */
2658 spin_unlock(&dentry->d_lock);
2659 dput(new);
2660 return dentry;
2661 }
2662 rcu_read_unlock();
2663 /* we can't take ->d_lock here; it's OK, though. */
2664 new->d_flags |= DCACHE_PAR_LOOKUP;
2665 new->d_wait = wq;
2666 hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b);
2667 hlist_bl_unlock(b);
2668 return new;
2669 mismatch:
2670 spin_unlock(&dentry->d_lock);
2671 dput(dentry);
2672 goto retry;
2673 }
2674 EXPORT_SYMBOL(d_alloc_parallel);
2675
2676 void __d_lookup_done(struct dentry *dentry)
2677 {
2678 struct hlist_bl_head *b = in_lookup_hash(dentry->d_parent,
2679 dentry->d_name.hash);
2680 hlist_bl_lock(b);
2681 dentry->d_flags &= ~DCACHE_PAR_LOOKUP;
2682 __hlist_bl_del(&dentry->d_u.d_in_lookup_hash);
2683 wake_up_all(dentry->d_wait);
2684 dentry->d_wait = NULL;
2685 hlist_bl_unlock(b);
2686 INIT_HLIST_NODE(&dentry->d_u.d_alias);
2687 INIT_LIST_HEAD(&dentry->d_lru);
2688 }
2689 EXPORT_SYMBOL(__d_lookup_done);
2690
2691 /* inode->i_lock held if inode is non-NULL */
2692
2693 static inline void __d_add(struct dentry *dentry, struct inode *inode)
2694 {
2695 struct inode *dir = NULL;
2696 unsigned n;
2697 spin_lock(&dentry->d_lock);
2698 if (unlikely(d_in_lookup(dentry))) {
2699 dir = dentry->d_parent->d_inode;
2700 n = start_dir_add(dir);
2701 __d_lookup_done(dentry);
2702 }
2703 if (inode) {
2704 unsigned add_flags = d_flags_for_inode(inode);
2705 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2706 raw_write_seqcount_begin(&dentry->d_seq);
2707 __d_set_inode_and_type(dentry, inode, add_flags);
2708 raw_write_seqcount_end(&dentry->d_seq);
2709 fsnotify_update_flags(dentry);
2710 }
2711 __d_rehash(dentry);
2712 if (dir)
2713 end_dir_add(dir, n);
2714 spin_unlock(&dentry->d_lock);
2715 if (inode)
2716 spin_unlock(&inode->i_lock);
2717 }
2718
2719 /**
2720 * d_add - add dentry to hash queues
2721 * @entry: dentry to add
2722 * @inode: The inode to attach to this dentry
2723 *
2724 * This adds the entry to the hash queues and initializes @inode.
2725 * The entry was actually filled in earlier during d_alloc().
2726 */
2727
2728 void d_add(struct dentry *entry, struct inode *inode)
2729 {
2730 if (inode) {
2731 security_d_instantiate(entry, inode);
2732 spin_lock(&inode->i_lock);
2733 }
2734 __d_add(entry, inode);
2735 }
2736 EXPORT_SYMBOL(d_add);
2737
2738 /**
2739 * d_exact_alias - find and hash an exact unhashed alias
2740 * @entry: dentry to add
2741 * @inode: The inode to go with this dentry
2742 *
2743 * If an unhashed dentry with the same name/parent and desired
2744 * inode already exists, hash and return it. Otherwise, return
2745 * NULL.
2746 *
2747 * Parent directory should be locked.
2748 */
2749 struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode)
2750 {
2751 struct dentry *alias;
2752 unsigned int hash = entry->d_name.hash;
2753
2754 spin_lock(&inode->i_lock);
2755 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
2756 /*
2757 * Don't need alias->d_lock here, because aliases with
2758 * d_parent == entry->d_parent are not subject to name or
2759 * parent changes, because the parent inode i_mutex is held.
2760 */
2761 if (alias->d_name.hash != hash)
2762 continue;
2763 if (alias->d_parent != entry->d_parent)
2764 continue;
2765 if (!d_same_name(alias, entry->d_parent, &entry->d_name))
2766 continue;
2767 spin_lock(&alias->d_lock);
2768 if (!d_unhashed(alias)) {
2769 spin_unlock(&alias->d_lock);
2770 alias = NULL;
2771 } else {
2772 __dget_dlock(alias);
2773 __d_rehash(alias);
2774 spin_unlock(&alias->d_lock);
2775 }
2776 spin_unlock(&inode->i_lock);
2777 return alias;
2778 }
2779 spin_unlock(&inode->i_lock);
2780 return NULL;
2781 }
2782 EXPORT_SYMBOL(d_exact_alias);
2783
2784 static void swap_names(struct dentry *dentry, struct dentry *target)
2785 {
2786 if (unlikely(dname_external(target))) {
2787 if (unlikely(dname_external(dentry))) {
2788 /*
2789 * Both external: swap the pointers
2790 */
2791 swap(target->d_name.name, dentry->d_name.name);
2792 } else {
2793 /*
2794 * dentry:internal, target:external. Steal target's
2795 * storage and make target internal.
2796 */
2797 memcpy(target->d_iname, dentry->d_name.name,
2798 dentry->d_name.len + 1);
2799 dentry->d_name.name = target->d_name.name;
2800 target->d_name.name = target->d_iname;
2801 }
2802 } else {
2803 if (unlikely(dname_external(dentry))) {
2804 /*
2805 * dentry:external, target:internal. Give dentry's
2806 * storage to target and make dentry internal
2807 */
2808 memcpy(dentry->d_iname, target->d_name.name,
2809 target->d_name.len + 1);
2810 target->d_name.name = dentry->d_name.name;
2811 dentry->d_name.name = dentry->d_iname;
2812 } else {
2813 /*
2814 * Both are internal.
2815 */
2816 unsigned int i;
2817 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2818 for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2819 swap(((long *) &dentry->d_iname)[i],
2820 ((long *) &target->d_iname)[i]);
2821 }
2822 }
2823 }
2824 swap(dentry->d_name.hash_len, target->d_name.hash_len);
2825 }
2826
2827 static void copy_name(struct dentry *dentry, struct dentry *target)
2828 {
2829 struct external_name *old_name = NULL;
2830 if (unlikely(dname_external(dentry)))
2831 old_name = external_name(dentry);
2832 if (unlikely(dname_external(target))) {
2833 atomic_inc(&external_name(target)->u.count);
2834 dentry->d_name = target->d_name;
2835 } else {
2836 memcpy(dentry->d_iname, target->d_name.name,
2837 target->d_name.len + 1);
2838 dentry->d_name.name = dentry->d_iname;
2839 dentry->d_name.hash_len = target->d_name.hash_len;
2840 }
2841 if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2842 kfree_rcu(old_name, u.head);
2843 }
2844
2845 /*
2846 * __d_move - move a dentry
2847 * @dentry: entry to move
2848 * @target: new dentry
2849 * @exchange: exchange the two dentries
2850 *
2851 * Update the dcache to reflect the move of a file name. Negative
2852 * dcache entries should not be moved in this way. Caller must hold
2853 * rename_lock, the i_mutex of the source and target directories,
2854 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2855 */
2856 static void __d_move(struct dentry *dentry, struct dentry *target,
2857 bool exchange)
2858 {
2859 struct dentry *old_parent, *p;
2860 struct inode *dir = NULL;
2861 unsigned n;
2862
2863 WARN_ON(!dentry->d_inode);
2864 if (WARN_ON(dentry == target))
2865 return;
2866
2867 BUG_ON(d_ancestor(target, dentry));
2868 old_parent = dentry->d_parent;
2869 p = d_ancestor(old_parent, target);
2870 if (IS_ROOT(dentry)) {
2871 BUG_ON(p);
2872 spin_lock(&target->d_parent->d_lock);
2873 } else if (!p) {
2874 /* target is not a descendent of dentry->d_parent */
2875 spin_lock(&target->d_parent->d_lock);
2876 spin_lock_nested(&old_parent->d_lock, DENTRY_D_LOCK_NESTED);
2877 } else {
2878 BUG_ON(p == dentry);
2879 spin_lock(&old_parent->d_lock);
2880 if (p != target)
2881 spin_lock_nested(&target->d_parent->d_lock,
2882 DENTRY_D_LOCK_NESTED);
2883 }
2884 spin_lock_nested(&dentry->d_lock, 2);
2885 spin_lock_nested(&target->d_lock, 3);
2886
2887 if (unlikely(d_in_lookup(target))) {
2888 dir = target->d_parent->d_inode;
2889 n = start_dir_add(dir);
2890 __d_lookup_done(target);
2891 }
2892
2893 write_seqcount_begin(&dentry->d_seq);
2894 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
2895
2896 /* unhash both */
2897 if (!d_unhashed(dentry))
2898 ___d_drop(dentry);
2899 if (!d_unhashed(target))
2900 ___d_drop(target);
2901
2902 /* ... and switch them in the tree */
2903 dentry->d_parent = target->d_parent;
2904 if (!exchange) {
2905 copy_name(dentry, target);
2906 target->d_hash.pprev = NULL;
2907 dentry->d_parent->d_lockref.count++;
2908 if (dentry != old_parent) /* wasn't IS_ROOT */
2909 WARN_ON(!--old_parent->d_lockref.count);
2910 } else {
2911 target->d_parent = old_parent;
2912 swap_names(dentry, target);
2913 list_move(&target->d_child, &target->d_parent->d_subdirs);
2914 __d_rehash(target);
2915 fsnotify_update_flags(target);
2916 }
2917 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2918 __d_rehash(dentry);
2919 fsnotify_update_flags(dentry);
2920 fscrypt_handle_d_move(dentry);
2921
2922 write_seqcount_end(&target->d_seq);
2923 write_seqcount_end(&dentry->d_seq);
2924
2925 if (dir)
2926 end_dir_add(dir, n);
2927
2928 if (dentry->d_parent != old_parent)
2929 spin_unlock(&dentry->d_parent->d_lock);
2930 if (dentry != old_parent)
2931 spin_unlock(&old_parent->d_lock);
2932 spin_unlock(&target->d_lock);
2933 spin_unlock(&dentry->d_lock);
2934 }
2935
2936 /*
2937 * d_move - move a dentry
2938 * @dentry: entry to move
2939 * @target: new dentry
2940 *
2941 * Update the dcache to reflect the move of a file name. Negative
2942 * dcache entries should not be moved in this way. See the locking
2943 * requirements for __d_move.
2944 */
2945 void d_move(struct dentry *dentry, struct dentry *target)
2946 {
2947 write_seqlock(&rename_lock);
2948 __d_move(dentry, target, false);
2949 write_sequnlock(&rename_lock);
2950 }
2951 EXPORT_SYMBOL(d_move);
2952
2953 /*
2954 * d_exchange - exchange two dentries
2955 * @dentry1: first dentry
2956 * @dentry2: second dentry
2957 */
2958 void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2959 {
2960 write_seqlock(&rename_lock);
2961
2962 WARN_ON(!dentry1->d_inode);
2963 WARN_ON(!dentry2->d_inode);
2964 WARN_ON(IS_ROOT(dentry1));
2965 WARN_ON(IS_ROOT(dentry2));
2966
2967 __d_move(dentry1, dentry2, true);
2968
2969 write_sequnlock(&rename_lock);
2970 }
2971
2972 /**
2973 * d_ancestor - search for an ancestor
2974 * @p1: ancestor dentry
2975 * @p2: child dentry
2976 *
2977 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2978 * an ancestor of p2, else NULL.
2979 */
2980 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2981 {
2982 struct dentry *p;
2983
2984 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2985 if (p->d_parent == p1)
2986 return p;
2987 }
2988 return NULL;
2989 }
2990
2991 /*
2992 * This helper attempts to cope with remotely renamed directories
2993 *
2994 * It assumes that the caller is already holding
2995 * dentry->d_parent->d_inode->i_mutex, and rename_lock
2996 *
2997 * Note: If ever the locking in lock_rename() changes, then please
2998 * remember to update this too...
2999 */
3000 static int __d_unalias(struct inode *inode,
3001 struct dentry *dentry, struct dentry *alias)
3002 {
3003 struct mutex *m1 = NULL;
3004 struct rw_semaphore *m2 = NULL;
3005 int ret = -ESTALE;
3006
3007 /* If alias and dentry share a parent, then no extra locks required */
3008 if (alias->d_parent == dentry->d_parent)
3009 goto out_unalias;
3010
3011 /* See lock_rename() */
3012 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
3013 goto out_err;
3014 m1 = &dentry->d_sb->s_vfs_rename_mutex;
3015 if (!inode_trylock_shared(alias->d_parent->d_inode))
3016 goto out_err;
3017 m2 = &alias->d_parent->d_inode->i_rwsem;
3018 out_unalias:
3019 __d_move(alias, dentry, false);
3020 ret = 0;
3021 out_err:
3022 if (m2)
3023 up_read(m2);
3024 if (m1)
3025 mutex_unlock(m1);
3026 return ret;
3027 }
3028
3029 /**
3030 * d_splice_alias - splice a disconnected dentry into the tree if one exists
3031 * @inode: the inode which may have a disconnected dentry
3032 * @dentry: a negative dentry which we want to point to the inode.
3033 *
3034 * If inode is a directory and has an IS_ROOT alias, then d_move that in
3035 * place of the given dentry and return it, else simply d_add the inode
3036 * to the dentry and return NULL.
3037 *
3038 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
3039 * we should error out: directories can't have multiple aliases.
3040 *
3041 * This is needed in the lookup routine of any filesystem that is exportable
3042 * (via knfsd) so that we can build dcache paths to directories effectively.
3043 *
3044 * If a dentry was found and moved, then it is returned. Otherwise NULL
3045 * is returned. This matches the expected return value of ->lookup.
3046 *
3047 * Cluster filesystems may call this function with a negative, hashed dentry.
3048 * In that case, we know that the inode will be a regular file, and also this
3049 * will only occur during atomic_open. So we need to check for the dentry
3050 * being already hashed only in the final case.
3051 */
3052 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
3053 {
3054 if (IS_ERR(inode))
3055 return ERR_CAST(inode);
3056
3057 BUG_ON(!d_unhashed(dentry));
3058
3059 if (!inode)
3060 goto out;
3061
3062 security_d_instantiate(dentry, inode);
3063 spin_lock(&inode->i_lock);
3064 if (S_ISDIR(inode->i_mode)) {
3065 struct dentry *new = __d_find_any_alias(inode);
3066 if (unlikely(new)) {
3067 /* The reference to new ensures it remains an alias */
3068 spin_unlock(&inode->i_lock);
3069 write_seqlock(&rename_lock);
3070 if (unlikely(d_ancestor(new, dentry))) {
3071 write_sequnlock(&rename_lock);
3072 dput(new);
3073 new = ERR_PTR(-ELOOP);
3074 pr_warn_ratelimited(
3075 "VFS: Lookup of '%s' in %s %s"
3076 " would have caused loop\n",
3077 dentry->d_name.name,
3078 inode->i_sb->s_type->name,
3079 inode->i_sb->s_id);
3080 } else if (!IS_ROOT(new)) {
3081 struct dentry *old_parent = dget(new->d_parent);
3082 int err = __d_unalias(inode, dentry, new);
3083 write_sequnlock(&rename_lock);
3084 if (err) {
3085 dput(new);
3086 new = ERR_PTR(err);
3087 }
3088 dput(old_parent);
3089 } else {
3090 __d_move(new, dentry, false);
3091 write_sequnlock(&rename_lock);
3092 }
3093 iput(inode);
3094 return new;
3095 }
3096 }
3097 out:
3098 __d_add(dentry, inode);
3099 return NULL;
3100 }
3101 EXPORT_SYMBOL(d_splice_alias);
3102
3103 /*
3104 * Test whether new_dentry is a subdirectory of old_dentry.
3105 *
3106 * Trivially implemented using the dcache structure
3107 */
3108
3109 /**
3110 * is_subdir - is new dentry a subdirectory of old_dentry
3111 * @new_dentry: new dentry
3112 * @old_dentry: old dentry
3113 *
3114 * Returns true if new_dentry is a subdirectory of the parent (at any depth).
3115 * Returns false otherwise.
3116 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3117 */
3118
3119 bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
3120 {
3121 bool result;
3122 unsigned seq;
3123
3124 if (new_dentry == old_dentry)
3125 return true;
3126
3127 do {
3128 /* for restarting inner loop in case of seq retry */
3129 seq = read_seqbegin(&rename_lock);
3130 /*
3131 * Need rcu_readlock to protect against the d_parent trashing
3132 * due to d_move
3133 */
3134 rcu_read_lock();
3135 if (d_ancestor(old_dentry, new_dentry))
3136 result = true;
3137 else
3138 result = false;
3139 rcu_read_unlock();
3140 } while (read_seqretry(&rename_lock, seq));
3141
3142 return result;
3143 }
3144 EXPORT_SYMBOL(is_subdir);
3145
3146 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
3147 {
3148 struct dentry *root = data;
3149 if (dentry != root) {
3150 if (d_unhashed(dentry) || !dentry->d_inode)
3151 return D_WALK_SKIP;
3152
3153 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3154 dentry->d_flags |= DCACHE_GENOCIDE;
3155 dentry->d_lockref.count--;
3156 }
3157 }
3158 return D_WALK_CONTINUE;
3159 }
3160
3161 void d_genocide(struct dentry *parent)
3162 {
3163 d_walk(parent, parent, d_genocide_kill);
3164 }
3165
3166 EXPORT_SYMBOL(d_genocide);
3167
3168 void d_tmpfile(struct dentry *dentry, struct inode *inode)
3169 {
3170 inode_dec_link_count(inode);
3171 BUG_ON(dentry->d_name.name != dentry->d_iname ||
3172 !hlist_unhashed(&dentry->d_u.d_alias) ||
3173 !d_unlinked(dentry));
3174 spin_lock(&dentry->d_parent->d_lock);
3175 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3176 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3177 (unsigned long long)inode->i_ino);
3178 spin_unlock(&dentry->d_lock);
3179 spin_unlock(&dentry->d_parent->d_lock);
3180 d_instantiate(dentry, inode);
3181 }
3182 EXPORT_SYMBOL(d_tmpfile);
3183
3184 static __initdata unsigned long dhash_entries;
3185 static int __init set_dhash_entries(char *str)
3186 {
3187 if (!str)
3188 return 0;
3189 dhash_entries = simple_strtoul(str, &str, 0);
3190 return 1;
3191 }
3192 __setup("dhash_entries=", set_dhash_entries);
3193
3194 static void __init dcache_init_early(void)
3195 {
3196 /* If hashes are distributed across NUMA nodes, defer
3197 * hash allocation until vmalloc space is available.
3198 */
3199 if (hashdist)
3200 return;
3201
3202 dentry_hashtable =
3203 alloc_large_system_hash("Dentry cache",
3204 sizeof(struct hlist_bl_head),
3205 dhash_entries,
3206 13,
3207 HASH_EARLY | HASH_ZERO,
3208 &d_hash_shift,
3209 NULL,
3210 0,
3211 0);
3212 d_hash_shift = 32 - d_hash_shift;
3213 }
3214
3215 static void __init dcache_init(void)
3216 {
3217 /*
3218 * A constructor could be added for stable state like the lists,
3219 * but it is probably not worth it because of the cache nature
3220 * of the dcache.
3221 */
3222 dentry_cache = KMEM_CACHE_USERCOPY(dentry,
3223 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT,
3224 d_iname);
3225
3226 /* Hash may have been set up in dcache_init_early */
3227 if (!hashdist)
3228 return;
3229
3230 dentry_hashtable =
3231 alloc_large_system_hash("Dentry cache",
3232 sizeof(struct hlist_bl_head),
3233 dhash_entries,
3234 13,
3235 HASH_ZERO,
3236 &d_hash_shift,
3237 NULL,
3238 0,
3239 0);
3240 d_hash_shift = 32 - d_hash_shift;
3241 }
3242
3243 /* SLAB cache for __getname() consumers */
3244 struct kmem_cache *names_cachep __read_mostly;
3245 EXPORT_SYMBOL(names_cachep);
3246
3247 void __init vfs_caches_init_early(void)
3248 {
3249 int i;
3250
3251 for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++)
3252 INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]);
3253
3254 dcache_init_early();
3255 inode_init_early();
3256 }
3257
3258 void __init vfs_caches_init(void)
3259 {
3260 names_cachep = kmem_cache_create_usercopy("names_cache", PATH_MAX, 0,
3261 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 0, PATH_MAX, NULL);
3262
3263 dcache_init();
3264 inode_init();
3265 files_init();
3266 files_maxfiles_init();
3267 mnt_init();
3268 bdev_cache_init();
3269 chrdev_init();
3270 }