]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/dcache.c
Merge tag 'stable/for-linus-3.17-b-rc4-tag' of git://git.kernel.org/pub/scm/linux...
[mirror_ubuntu-artful-kernel.git] / fs / dcache.c
1 /*
2 * fs/dcache.c
3 *
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
8
9 /*
10 * Notes on the allocation strategy:
11 *
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
15 */
16
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/export.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <asm/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/rculist_bl.h>
38 #include <linux/prefetch.h>
39 #include <linux/ratelimit.h>
40 #include <linux/list_lru.h>
41 #include "internal.h"
42 #include "mount.h"
43
44 /*
45 * Usage:
46 * dcache->d_inode->i_lock protects:
47 * - i_dentry, d_alias, d_inode of aliases
48 * dcache_hash_bucket lock protects:
49 * - the dcache hash table
50 * s_anon bl list spinlock protects:
51 * - the s_anon list (see __d_drop)
52 * dentry->d_sb->s_dentry_lru_lock protects:
53 * - the dcache lru lists and counters
54 * d_lock protects:
55 * - d_flags
56 * - d_name
57 * - d_lru
58 * - d_count
59 * - d_unhashed()
60 * - d_parent and d_subdirs
61 * - childrens' d_child and d_parent
62 * - d_alias, d_inode
63 *
64 * Ordering:
65 * dentry->d_inode->i_lock
66 * dentry->d_lock
67 * dentry->d_sb->s_dentry_lru_lock
68 * dcache_hash_bucket lock
69 * s_anon lock
70 *
71 * If there is an ancestor relationship:
72 * dentry->d_parent->...->d_parent->d_lock
73 * ...
74 * dentry->d_parent->d_lock
75 * dentry->d_lock
76 *
77 * If no ancestor relationship:
78 * if (dentry1 < dentry2)
79 * dentry1->d_lock
80 * dentry2->d_lock
81 */
82 int sysctl_vfs_cache_pressure __read_mostly = 100;
83 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
84
85 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
86
87 EXPORT_SYMBOL(rename_lock);
88
89 static struct kmem_cache *dentry_cache __read_mostly;
90
91 /*
92 * This is the single most critical data structure when it comes
93 * to the dcache: the hashtable for lookups. Somebody should try
94 * to make this good - I've just made it work.
95 *
96 * This hash-function tries to avoid losing too many bits of hash
97 * information, yet avoid using a prime hash-size or similar.
98 */
99
100 static unsigned int d_hash_mask __read_mostly;
101 static unsigned int d_hash_shift __read_mostly;
102
103 static struct hlist_bl_head *dentry_hashtable __read_mostly;
104
105 static inline struct hlist_bl_head *d_hash(const struct dentry *parent,
106 unsigned int hash)
107 {
108 hash += (unsigned long) parent / L1_CACHE_BYTES;
109 hash = hash + (hash >> d_hash_shift);
110 return dentry_hashtable + (hash & d_hash_mask);
111 }
112
113 /* Statistics gathering. */
114 struct dentry_stat_t dentry_stat = {
115 .age_limit = 45,
116 };
117
118 static DEFINE_PER_CPU(long, nr_dentry);
119 static DEFINE_PER_CPU(long, nr_dentry_unused);
120
121 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
122
123 /*
124 * Here we resort to our own counters instead of using generic per-cpu counters
125 * for consistency with what the vfs inode code does. We are expected to harvest
126 * better code and performance by having our own specialized counters.
127 *
128 * Please note that the loop is done over all possible CPUs, not over all online
129 * CPUs. The reason for this is that we don't want to play games with CPUs going
130 * on and off. If one of them goes off, we will just keep their counters.
131 *
132 * glommer: See cffbc8a for details, and if you ever intend to change this,
133 * please update all vfs counters to match.
134 */
135 static long get_nr_dentry(void)
136 {
137 int i;
138 long sum = 0;
139 for_each_possible_cpu(i)
140 sum += per_cpu(nr_dentry, i);
141 return sum < 0 ? 0 : sum;
142 }
143
144 static long get_nr_dentry_unused(void)
145 {
146 int i;
147 long sum = 0;
148 for_each_possible_cpu(i)
149 sum += per_cpu(nr_dentry_unused, i);
150 return sum < 0 ? 0 : sum;
151 }
152
153 int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer,
154 size_t *lenp, loff_t *ppos)
155 {
156 dentry_stat.nr_dentry = get_nr_dentry();
157 dentry_stat.nr_unused = get_nr_dentry_unused();
158 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
159 }
160 #endif
161
162 /*
163 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
164 * The strings are both count bytes long, and count is non-zero.
165 */
166 #ifdef CONFIG_DCACHE_WORD_ACCESS
167
168 #include <asm/word-at-a-time.h>
169 /*
170 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
171 * aligned allocation for this particular component. We don't
172 * strictly need the load_unaligned_zeropad() safety, but it
173 * doesn't hurt either.
174 *
175 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
176 * need the careful unaligned handling.
177 */
178 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
179 {
180 unsigned long a,b,mask;
181
182 for (;;) {
183 a = *(unsigned long *)cs;
184 b = load_unaligned_zeropad(ct);
185 if (tcount < sizeof(unsigned long))
186 break;
187 if (unlikely(a != b))
188 return 1;
189 cs += sizeof(unsigned long);
190 ct += sizeof(unsigned long);
191 tcount -= sizeof(unsigned long);
192 if (!tcount)
193 return 0;
194 }
195 mask = bytemask_from_count(tcount);
196 return unlikely(!!((a ^ b) & mask));
197 }
198
199 #else
200
201 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
202 {
203 do {
204 if (*cs != *ct)
205 return 1;
206 cs++;
207 ct++;
208 tcount--;
209 } while (tcount);
210 return 0;
211 }
212
213 #endif
214
215 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
216 {
217 const unsigned char *cs;
218 /*
219 * Be careful about RCU walk racing with rename:
220 * use ACCESS_ONCE to fetch the name pointer.
221 *
222 * NOTE! Even if a rename will mean that the length
223 * was not loaded atomically, we don't care. The
224 * RCU walk will check the sequence count eventually,
225 * and catch it. And we won't overrun the buffer,
226 * because we're reading the name pointer atomically,
227 * and a dentry name is guaranteed to be properly
228 * terminated with a NUL byte.
229 *
230 * End result: even if 'len' is wrong, we'll exit
231 * early because the data cannot match (there can
232 * be no NUL in the ct/tcount data)
233 */
234 cs = ACCESS_ONCE(dentry->d_name.name);
235 smp_read_barrier_depends();
236 return dentry_string_cmp(cs, ct, tcount);
237 }
238
239 static void __d_free(struct rcu_head *head)
240 {
241 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
242
243 WARN_ON(!hlist_unhashed(&dentry->d_alias));
244 if (dname_external(dentry))
245 kfree(dentry->d_name.name);
246 kmem_cache_free(dentry_cache, dentry);
247 }
248
249 static void dentry_free(struct dentry *dentry)
250 {
251 /* if dentry was never visible to RCU, immediate free is OK */
252 if (!(dentry->d_flags & DCACHE_RCUACCESS))
253 __d_free(&dentry->d_u.d_rcu);
254 else
255 call_rcu(&dentry->d_u.d_rcu, __d_free);
256 }
257
258 /**
259 * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
260 * @dentry: the target dentry
261 * After this call, in-progress rcu-walk path lookup will fail. This
262 * should be called after unhashing, and after changing d_inode (if
263 * the dentry has not already been unhashed).
264 */
265 static inline void dentry_rcuwalk_barrier(struct dentry *dentry)
266 {
267 assert_spin_locked(&dentry->d_lock);
268 /* Go through a barrier */
269 write_seqcount_barrier(&dentry->d_seq);
270 }
271
272 /*
273 * Release the dentry's inode, using the filesystem
274 * d_iput() operation if defined. Dentry has no refcount
275 * and is unhashed.
276 */
277 static void dentry_iput(struct dentry * dentry)
278 __releases(dentry->d_lock)
279 __releases(dentry->d_inode->i_lock)
280 {
281 struct inode *inode = dentry->d_inode;
282 if (inode) {
283 dentry->d_inode = NULL;
284 hlist_del_init(&dentry->d_alias);
285 spin_unlock(&dentry->d_lock);
286 spin_unlock(&inode->i_lock);
287 if (!inode->i_nlink)
288 fsnotify_inoderemove(inode);
289 if (dentry->d_op && dentry->d_op->d_iput)
290 dentry->d_op->d_iput(dentry, inode);
291 else
292 iput(inode);
293 } else {
294 spin_unlock(&dentry->d_lock);
295 }
296 }
297
298 /*
299 * Release the dentry's inode, using the filesystem
300 * d_iput() operation if defined. dentry remains in-use.
301 */
302 static void dentry_unlink_inode(struct dentry * dentry)
303 __releases(dentry->d_lock)
304 __releases(dentry->d_inode->i_lock)
305 {
306 struct inode *inode = dentry->d_inode;
307 __d_clear_type(dentry);
308 dentry->d_inode = NULL;
309 hlist_del_init(&dentry->d_alias);
310 dentry_rcuwalk_barrier(dentry);
311 spin_unlock(&dentry->d_lock);
312 spin_unlock(&inode->i_lock);
313 if (!inode->i_nlink)
314 fsnotify_inoderemove(inode);
315 if (dentry->d_op && dentry->d_op->d_iput)
316 dentry->d_op->d_iput(dentry, inode);
317 else
318 iput(inode);
319 }
320
321 /*
322 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
323 * is in use - which includes both the "real" per-superblock
324 * LRU list _and_ the DCACHE_SHRINK_LIST use.
325 *
326 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
327 * on the shrink list (ie not on the superblock LRU list).
328 *
329 * The per-cpu "nr_dentry_unused" counters are updated with
330 * the DCACHE_LRU_LIST bit.
331 *
332 * These helper functions make sure we always follow the
333 * rules. d_lock must be held by the caller.
334 */
335 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
336 static void d_lru_add(struct dentry *dentry)
337 {
338 D_FLAG_VERIFY(dentry, 0);
339 dentry->d_flags |= DCACHE_LRU_LIST;
340 this_cpu_inc(nr_dentry_unused);
341 WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
342 }
343
344 static void d_lru_del(struct dentry *dentry)
345 {
346 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
347 dentry->d_flags &= ~DCACHE_LRU_LIST;
348 this_cpu_dec(nr_dentry_unused);
349 WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
350 }
351
352 static void d_shrink_del(struct dentry *dentry)
353 {
354 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
355 list_del_init(&dentry->d_lru);
356 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
357 this_cpu_dec(nr_dentry_unused);
358 }
359
360 static void d_shrink_add(struct dentry *dentry, struct list_head *list)
361 {
362 D_FLAG_VERIFY(dentry, 0);
363 list_add(&dentry->d_lru, list);
364 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
365 this_cpu_inc(nr_dentry_unused);
366 }
367
368 /*
369 * These can only be called under the global LRU lock, ie during the
370 * callback for freeing the LRU list. "isolate" removes it from the
371 * LRU lists entirely, while shrink_move moves it to the indicated
372 * private list.
373 */
374 static void d_lru_isolate(struct dentry *dentry)
375 {
376 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
377 dentry->d_flags &= ~DCACHE_LRU_LIST;
378 this_cpu_dec(nr_dentry_unused);
379 list_del_init(&dentry->d_lru);
380 }
381
382 static void d_lru_shrink_move(struct dentry *dentry, struct list_head *list)
383 {
384 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
385 dentry->d_flags |= DCACHE_SHRINK_LIST;
386 list_move_tail(&dentry->d_lru, list);
387 }
388
389 /*
390 * dentry_lru_(add|del)_list) must be called with d_lock held.
391 */
392 static void dentry_lru_add(struct dentry *dentry)
393 {
394 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
395 d_lru_add(dentry);
396 }
397
398 /**
399 * d_drop - drop a dentry
400 * @dentry: dentry to drop
401 *
402 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
403 * be found through a VFS lookup any more. Note that this is different from
404 * deleting the dentry - d_delete will try to mark the dentry negative if
405 * possible, giving a successful _negative_ lookup, while d_drop will
406 * just make the cache lookup fail.
407 *
408 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
409 * reason (NFS timeouts or autofs deletes).
410 *
411 * __d_drop requires dentry->d_lock.
412 */
413 void __d_drop(struct dentry *dentry)
414 {
415 if (!d_unhashed(dentry)) {
416 struct hlist_bl_head *b;
417 /*
418 * Hashed dentries are normally on the dentry hashtable,
419 * with the exception of those newly allocated by
420 * d_obtain_alias, which are always IS_ROOT:
421 */
422 if (unlikely(IS_ROOT(dentry)))
423 b = &dentry->d_sb->s_anon;
424 else
425 b = d_hash(dentry->d_parent, dentry->d_name.hash);
426
427 hlist_bl_lock(b);
428 __hlist_bl_del(&dentry->d_hash);
429 dentry->d_hash.pprev = NULL;
430 hlist_bl_unlock(b);
431 dentry_rcuwalk_barrier(dentry);
432 }
433 }
434 EXPORT_SYMBOL(__d_drop);
435
436 void d_drop(struct dentry *dentry)
437 {
438 spin_lock(&dentry->d_lock);
439 __d_drop(dentry);
440 spin_unlock(&dentry->d_lock);
441 }
442 EXPORT_SYMBOL(d_drop);
443
444 static void __dentry_kill(struct dentry *dentry)
445 {
446 struct dentry *parent = NULL;
447 bool can_free = true;
448 if (!IS_ROOT(dentry))
449 parent = dentry->d_parent;
450
451 /*
452 * The dentry is now unrecoverably dead to the world.
453 */
454 lockref_mark_dead(&dentry->d_lockref);
455
456 /*
457 * inform the fs via d_prune that this dentry is about to be
458 * unhashed and destroyed.
459 */
460 if ((dentry->d_flags & DCACHE_OP_PRUNE) && !d_unhashed(dentry))
461 dentry->d_op->d_prune(dentry);
462
463 if (dentry->d_flags & DCACHE_LRU_LIST) {
464 if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
465 d_lru_del(dentry);
466 }
467 /* if it was on the hash then remove it */
468 __d_drop(dentry);
469 list_del(&dentry->d_u.d_child);
470 /*
471 * Inform d_walk() that we are no longer attached to the
472 * dentry tree
473 */
474 dentry->d_flags |= DCACHE_DENTRY_KILLED;
475 if (parent)
476 spin_unlock(&parent->d_lock);
477 dentry_iput(dentry);
478 /*
479 * dentry_iput drops the locks, at which point nobody (except
480 * transient RCU lookups) can reach this dentry.
481 */
482 BUG_ON((int)dentry->d_lockref.count > 0);
483 this_cpu_dec(nr_dentry);
484 if (dentry->d_op && dentry->d_op->d_release)
485 dentry->d_op->d_release(dentry);
486
487 spin_lock(&dentry->d_lock);
488 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
489 dentry->d_flags |= DCACHE_MAY_FREE;
490 can_free = false;
491 }
492 spin_unlock(&dentry->d_lock);
493 if (likely(can_free))
494 dentry_free(dentry);
495 }
496
497 /*
498 * Finish off a dentry we've decided to kill.
499 * dentry->d_lock must be held, returns with it unlocked.
500 * If ref is non-zero, then decrement the refcount too.
501 * Returns dentry requiring refcount drop, or NULL if we're done.
502 */
503 static struct dentry *dentry_kill(struct dentry *dentry)
504 __releases(dentry->d_lock)
505 {
506 struct inode *inode = dentry->d_inode;
507 struct dentry *parent = NULL;
508
509 if (inode && unlikely(!spin_trylock(&inode->i_lock)))
510 goto failed;
511
512 if (!IS_ROOT(dentry)) {
513 parent = dentry->d_parent;
514 if (unlikely(!spin_trylock(&parent->d_lock))) {
515 if (inode)
516 spin_unlock(&inode->i_lock);
517 goto failed;
518 }
519 }
520
521 __dentry_kill(dentry);
522 return parent;
523
524 failed:
525 spin_unlock(&dentry->d_lock);
526 cpu_relax();
527 return dentry; /* try again with same dentry */
528 }
529
530 static inline struct dentry *lock_parent(struct dentry *dentry)
531 {
532 struct dentry *parent = dentry->d_parent;
533 if (IS_ROOT(dentry))
534 return NULL;
535 if (unlikely((int)dentry->d_lockref.count < 0))
536 return NULL;
537 if (likely(spin_trylock(&parent->d_lock)))
538 return parent;
539 rcu_read_lock();
540 spin_unlock(&dentry->d_lock);
541 again:
542 parent = ACCESS_ONCE(dentry->d_parent);
543 spin_lock(&parent->d_lock);
544 /*
545 * We can't blindly lock dentry until we are sure
546 * that we won't violate the locking order.
547 * Any changes of dentry->d_parent must have
548 * been done with parent->d_lock held, so
549 * spin_lock() above is enough of a barrier
550 * for checking if it's still our child.
551 */
552 if (unlikely(parent != dentry->d_parent)) {
553 spin_unlock(&parent->d_lock);
554 goto again;
555 }
556 rcu_read_unlock();
557 if (parent != dentry)
558 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
559 else
560 parent = NULL;
561 return parent;
562 }
563
564 /*
565 * This is dput
566 *
567 * This is complicated by the fact that we do not want to put
568 * dentries that are no longer on any hash chain on the unused
569 * list: we'd much rather just get rid of them immediately.
570 *
571 * However, that implies that we have to traverse the dentry
572 * tree upwards to the parents which might _also_ now be
573 * scheduled for deletion (it may have been only waiting for
574 * its last child to go away).
575 *
576 * This tail recursion is done by hand as we don't want to depend
577 * on the compiler to always get this right (gcc generally doesn't).
578 * Real recursion would eat up our stack space.
579 */
580
581 /*
582 * dput - release a dentry
583 * @dentry: dentry to release
584 *
585 * Release a dentry. This will drop the usage count and if appropriate
586 * call the dentry unlink method as well as removing it from the queues and
587 * releasing its resources. If the parent dentries were scheduled for release
588 * they too may now get deleted.
589 */
590 void dput(struct dentry *dentry)
591 {
592 if (unlikely(!dentry))
593 return;
594
595 repeat:
596 if (lockref_put_or_lock(&dentry->d_lockref))
597 return;
598
599 /* Unreachable? Get rid of it */
600 if (unlikely(d_unhashed(dentry)))
601 goto kill_it;
602
603 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
604 if (dentry->d_op->d_delete(dentry))
605 goto kill_it;
606 }
607
608 if (!(dentry->d_flags & DCACHE_REFERENCED))
609 dentry->d_flags |= DCACHE_REFERENCED;
610 dentry_lru_add(dentry);
611
612 dentry->d_lockref.count--;
613 spin_unlock(&dentry->d_lock);
614 return;
615
616 kill_it:
617 dentry = dentry_kill(dentry);
618 if (dentry)
619 goto repeat;
620 }
621 EXPORT_SYMBOL(dput);
622
623 /**
624 * d_invalidate - invalidate a dentry
625 * @dentry: dentry to invalidate
626 *
627 * Try to invalidate the dentry if it turns out to be
628 * possible. If there are other dentries that can be
629 * reached through this one we can't delete it and we
630 * return -EBUSY. On success we return 0.
631 *
632 * no dcache lock.
633 */
634
635 int d_invalidate(struct dentry * dentry)
636 {
637 /*
638 * If it's already been dropped, return OK.
639 */
640 spin_lock(&dentry->d_lock);
641 if (d_unhashed(dentry)) {
642 spin_unlock(&dentry->d_lock);
643 return 0;
644 }
645 /*
646 * Check whether to do a partial shrink_dcache
647 * to get rid of unused child entries.
648 */
649 if (!list_empty(&dentry->d_subdirs)) {
650 spin_unlock(&dentry->d_lock);
651 shrink_dcache_parent(dentry);
652 spin_lock(&dentry->d_lock);
653 }
654
655 /*
656 * Somebody else still using it?
657 *
658 * If it's a directory, we can't drop it
659 * for fear of somebody re-populating it
660 * with children (even though dropping it
661 * would make it unreachable from the root,
662 * we might still populate it if it was a
663 * working directory or similar).
664 * We also need to leave mountpoints alone,
665 * directory or not.
666 */
667 if (dentry->d_lockref.count > 1 && dentry->d_inode) {
668 if (S_ISDIR(dentry->d_inode->i_mode) || d_mountpoint(dentry)) {
669 spin_unlock(&dentry->d_lock);
670 return -EBUSY;
671 }
672 }
673
674 __d_drop(dentry);
675 spin_unlock(&dentry->d_lock);
676 return 0;
677 }
678 EXPORT_SYMBOL(d_invalidate);
679
680 /* This must be called with d_lock held */
681 static inline void __dget_dlock(struct dentry *dentry)
682 {
683 dentry->d_lockref.count++;
684 }
685
686 static inline void __dget(struct dentry *dentry)
687 {
688 lockref_get(&dentry->d_lockref);
689 }
690
691 struct dentry *dget_parent(struct dentry *dentry)
692 {
693 int gotref;
694 struct dentry *ret;
695
696 /*
697 * Do optimistic parent lookup without any
698 * locking.
699 */
700 rcu_read_lock();
701 ret = ACCESS_ONCE(dentry->d_parent);
702 gotref = lockref_get_not_zero(&ret->d_lockref);
703 rcu_read_unlock();
704 if (likely(gotref)) {
705 if (likely(ret == ACCESS_ONCE(dentry->d_parent)))
706 return ret;
707 dput(ret);
708 }
709
710 repeat:
711 /*
712 * Don't need rcu_dereference because we re-check it was correct under
713 * the lock.
714 */
715 rcu_read_lock();
716 ret = dentry->d_parent;
717 spin_lock(&ret->d_lock);
718 if (unlikely(ret != dentry->d_parent)) {
719 spin_unlock(&ret->d_lock);
720 rcu_read_unlock();
721 goto repeat;
722 }
723 rcu_read_unlock();
724 BUG_ON(!ret->d_lockref.count);
725 ret->d_lockref.count++;
726 spin_unlock(&ret->d_lock);
727 return ret;
728 }
729 EXPORT_SYMBOL(dget_parent);
730
731 /**
732 * d_find_alias - grab a hashed alias of inode
733 * @inode: inode in question
734 *
735 * If inode has a hashed alias, or is a directory and has any alias,
736 * acquire the reference to alias and return it. Otherwise return NULL.
737 * Notice that if inode is a directory there can be only one alias and
738 * it can be unhashed only if it has no children, or if it is the root
739 * of a filesystem.
740 *
741 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
742 * any other hashed alias over that one.
743 */
744 static struct dentry *__d_find_alias(struct inode *inode)
745 {
746 struct dentry *alias, *discon_alias;
747
748 again:
749 discon_alias = NULL;
750 hlist_for_each_entry(alias, &inode->i_dentry, d_alias) {
751 spin_lock(&alias->d_lock);
752 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
753 if (IS_ROOT(alias) &&
754 (alias->d_flags & DCACHE_DISCONNECTED)) {
755 discon_alias = alias;
756 } else {
757 __dget_dlock(alias);
758 spin_unlock(&alias->d_lock);
759 return alias;
760 }
761 }
762 spin_unlock(&alias->d_lock);
763 }
764 if (discon_alias) {
765 alias = discon_alias;
766 spin_lock(&alias->d_lock);
767 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
768 __dget_dlock(alias);
769 spin_unlock(&alias->d_lock);
770 return alias;
771 }
772 spin_unlock(&alias->d_lock);
773 goto again;
774 }
775 return NULL;
776 }
777
778 struct dentry *d_find_alias(struct inode *inode)
779 {
780 struct dentry *de = NULL;
781
782 if (!hlist_empty(&inode->i_dentry)) {
783 spin_lock(&inode->i_lock);
784 de = __d_find_alias(inode);
785 spin_unlock(&inode->i_lock);
786 }
787 return de;
788 }
789 EXPORT_SYMBOL(d_find_alias);
790
791 /*
792 * Try to kill dentries associated with this inode.
793 * WARNING: you must own a reference to inode.
794 */
795 void d_prune_aliases(struct inode *inode)
796 {
797 struct dentry *dentry;
798 restart:
799 spin_lock(&inode->i_lock);
800 hlist_for_each_entry(dentry, &inode->i_dentry, d_alias) {
801 spin_lock(&dentry->d_lock);
802 if (!dentry->d_lockref.count) {
803 /*
804 * inform the fs via d_prune that this dentry
805 * is about to be unhashed and destroyed.
806 */
807 if ((dentry->d_flags & DCACHE_OP_PRUNE) &&
808 !d_unhashed(dentry))
809 dentry->d_op->d_prune(dentry);
810
811 __dget_dlock(dentry);
812 __d_drop(dentry);
813 spin_unlock(&dentry->d_lock);
814 spin_unlock(&inode->i_lock);
815 dput(dentry);
816 goto restart;
817 }
818 spin_unlock(&dentry->d_lock);
819 }
820 spin_unlock(&inode->i_lock);
821 }
822 EXPORT_SYMBOL(d_prune_aliases);
823
824 static void shrink_dentry_list(struct list_head *list)
825 {
826 struct dentry *dentry, *parent;
827
828 while (!list_empty(list)) {
829 struct inode *inode;
830 dentry = list_entry(list->prev, struct dentry, d_lru);
831 spin_lock(&dentry->d_lock);
832 parent = lock_parent(dentry);
833
834 /*
835 * The dispose list is isolated and dentries are not accounted
836 * to the LRU here, so we can simply remove it from the list
837 * here regardless of whether it is referenced or not.
838 */
839 d_shrink_del(dentry);
840
841 /*
842 * We found an inuse dentry which was not removed from
843 * the LRU because of laziness during lookup. Do not free it.
844 */
845 if ((int)dentry->d_lockref.count > 0) {
846 spin_unlock(&dentry->d_lock);
847 if (parent)
848 spin_unlock(&parent->d_lock);
849 continue;
850 }
851
852
853 if (unlikely(dentry->d_flags & DCACHE_DENTRY_KILLED)) {
854 bool can_free = dentry->d_flags & DCACHE_MAY_FREE;
855 spin_unlock(&dentry->d_lock);
856 if (parent)
857 spin_unlock(&parent->d_lock);
858 if (can_free)
859 dentry_free(dentry);
860 continue;
861 }
862
863 inode = dentry->d_inode;
864 if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
865 d_shrink_add(dentry, list);
866 spin_unlock(&dentry->d_lock);
867 if (parent)
868 spin_unlock(&parent->d_lock);
869 continue;
870 }
871
872 __dentry_kill(dentry);
873
874 /*
875 * We need to prune ancestors too. This is necessary to prevent
876 * quadratic behavior of shrink_dcache_parent(), but is also
877 * expected to be beneficial in reducing dentry cache
878 * fragmentation.
879 */
880 dentry = parent;
881 while (dentry && !lockref_put_or_lock(&dentry->d_lockref)) {
882 parent = lock_parent(dentry);
883 if (dentry->d_lockref.count != 1) {
884 dentry->d_lockref.count--;
885 spin_unlock(&dentry->d_lock);
886 if (parent)
887 spin_unlock(&parent->d_lock);
888 break;
889 }
890 inode = dentry->d_inode; /* can't be NULL */
891 if (unlikely(!spin_trylock(&inode->i_lock))) {
892 spin_unlock(&dentry->d_lock);
893 if (parent)
894 spin_unlock(&parent->d_lock);
895 cpu_relax();
896 continue;
897 }
898 __dentry_kill(dentry);
899 dentry = parent;
900 }
901 }
902 }
903
904 static enum lru_status
905 dentry_lru_isolate(struct list_head *item, spinlock_t *lru_lock, void *arg)
906 {
907 struct list_head *freeable = arg;
908 struct dentry *dentry = container_of(item, struct dentry, d_lru);
909
910
911 /*
912 * we are inverting the lru lock/dentry->d_lock here,
913 * so use a trylock. If we fail to get the lock, just skip
914 * it
915 */
916 if (!spin_trylock(&dentry->d_lock))
917 return LRU_SKIP;
918
919 /*
920 * Referenced dentries are still in use. If they have active
921 * counts, just remove them from the LRU. Otherwise give them
922 * another pass through the LRU.
923 */
924 if (dentry->d_lockref.count) {
925 d_lru_isolate(dentry);
926 spin_unlock(&dentry->d_lock);
927 return LRU_REMOVED;
928 }
929
930 if (dentry->d_flags & DCACHE_REFERENCED) {
931 dentry->d_flags &= ~DCACHE_REFERENCED;
932 spin_unlock(&dentry->d_lock);
933
934 /*
935 * The list move itself will be made by the common LRU code. At
936 * this point, we've dropped the dentry->d_lock but keep the
937 * lru lock. This is safe to do, since every list movement is
938 * protected by the lru lock even if both locks are held.
939 *
940 * This is guaranteed by the fact that all LRU management
941 * functions are intermediated by the LRU API calls like
942 * list_lru_add and list_lru_del. List movement in this file
943 * only ever occur through this functions or through callbacks
944 * like this one, that are called from the LRU API.
945 *
946 * The only exceptions to this are functions like
947 * shrink_dentry_list, and code that first checks for the
948 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be
949 * operating only with stack provided lists after they are
950 * properly isolated from the main list. It is thus, always a
951 * local access.
952 */
953 return LRU_ROTATE;
954 }
955
956 d_lru_shrink_move(dentry, freeable);
957 spin_unlock(&dentry->d_lock);
958
959 return LRU_REMOVED;
960 }
961
962 /**
963 * prune_dcache_sb - shrink the dcache
964 * @sb: superblock
965 * @nr_to_scan : number of entries to try to free
966 * @nid: which node to scan for freeable entities
967 *
968 * Attempt to shrink the superblock dcache LRU by @nr_to_scan entries. This is
969 * done when we need more memory an called from the superblock shrinker
970 * function.
971 *
972 * This function may fail to free any resources if all the dentries are in
973 * use.
974 */
975 long prune_dcache_sb(struct super_block *sb, unsigned long nr_to_scan,
976 int nid)
977 {
978 LIST_HEAD(dispose);
979 long freed;
980
981 freed = list_lru_walk_node(&sb->s_dentry_lru, nid, dentry_lru_isolate,
982 &dispose, &nr_to_scan);
983 shrink_dentry_list(&dispose);
984 return freed;
985 }
986
987 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
988 spinlock_t *lru_lock, void *arg)
989 {
990 struct list_head *freeable = arg;
991 struct dentry *dentry = container_of(item, struct dentry, d_lru);
992
993 /*
994 * we are inverting the lru lock/dentry->d_lock here,
995 * so use a trylock. If we fail to get the lock, just skip
996 * it
997 */
998 if (!spin_trylock(&dentry->d_lock))
999 return LRU_SKIP;
1000
1001 d_lru_shrink_move(dentry, freeable);
1002 spin_unlock(&dentry->d_lock);
1003
1004 return LRU_REMOVED;
1005 }
1006
1007
1008 /**
1009 * shrink_dcache_sb - shrink dcache for a superblock
1010 * @sb: superblock
1011 *
1012 * Shrink the dcache for the specified super block. This is used to free
1013 * the dcache before unmounting a file system.
1014 */
1015 void shrink_dcache_sb(struct super_block *sb)
1016 {
1017 long freed;
1018
1019 do {
1020 LIST_HEAD(dispose);
1021
1022 freed = list_lru_walk(&sb->s_dentry_lru,
1023 dentry_lru_isolate_shrink, &dispose, UINT_MAX);
1024
1025 this_cpu_sub(nr_dentry_unused, freed);
1026 shrink_dentry_list(&dispose);
1027 } while (freed > 0);
1028 }
1029 EXPORT_SYMBOL(shrink_dcache_sb);
1030
1031 /**
1032 * enum d_walk_ret - action to talke during tree walk
1033 * @D_WALK_CONTINUE: contrinue walk
1034 * @D_WALK_QUIT: quit walk
1035 * @D_WALK_NORETRY: quit when retry is needed
1036 * @D_WALK_SKIP: skip this dentry and its children
1037 */
1038 enum d_walk_ret {
1039 D_WALK_CONTINUE,
1040 D_WALK_QUIT,
1041 D_WALK_NORETRY,
1042 D_WALK_SKIP,
1043 };
1044
1045 /**
1046 * d_walk - walk the dentry tree
1047 * @parent: start of walk
1048 * @data: data passed to @enter() and @finish()
1049 * @enter: callback when first entering the dentry
1050 * @finish: callback when successfully finished the walk
1051 *
1052 * The @enter() and @finish() callbacks are called with d_lock held.
1053 */
1054 static void d_walk(struct dentry *parent, void *data,
1055 enum d_walk_ret (*enter)(void *, struct dentry *),
1056 void (*finish)(void *))
1057 {
1058 struct dentry *this_parent;
1059 struct list_head *next;
1060 unsigned seq = 0;
1061 enum d_walk_ret ret;
1062 bool retry = true;
1063
1064 again:
1065 read_seqbegin_or_lock(&rename_lock, &seq);
1066 this_parent = parent;
1067 spin_lock(&this_parent->d_lock);
1068
1069 ret = enter(data, this_parent);
1070 switch (ret) {
1071 case D_WALK_CONTINUE:
1072 break;
1073 case D_WALK_QUIT:
1074 case D_WALK_SKIP:
1075 goto out_unlock;
1076 case D_WALK_NORETRY:
1077 retry = false;
1078 break;
1079 }
1080 repeat:
1081 next = this_parent->d_subdirs.next;
1082 resume:
1083 while (next != &this_parent->d_subdirs) {
1084 struct list_head *tmp = next;
1085 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1086 next = tmp->next;
1087
1088 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1089
1090 ret = enter(data, dentry);
1091 switch (ret) {
1092 case D_WALK_CONTINUE:
1093 break;
1094 case D_WALK_QUIT:
1095 spin_unlock(&dentry->d_lock);
1096 goto out_unlock;
1097 case D_WALK_NORETRY:
1098 retry = false;
1099 break;
1100 case D_WALK_SKIP:
1101 spin_unlock(&dentry->d_lock);
1102 continue;
1103 }
1104
1105 if (!list_empty(&dentry->d_subdirs)) {
1106 spin_unlock(&this_parent->d_lock);
1107 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1108 this_parent = dentry;
1109 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1110 goto repeat;
1111 }
1112 spin_unlock(&dentry->d_lock);
1113 }
1114 /*
1115 * All done at this level ... ascend and resume the search.
1116 */
1117 if (this_parent != parent) {
1118 struct dentry *child = this_parent;
1119 this_parent = child->d_parent;
1120
1121 rcu_read_lock();
1122 spin_unlock(&child->d_lock);
1123 spin_lock(&this_parent->d_lock);
1124
1125 /*
1126 * might go back up the wrong parent if we have had a rename
1127 * or deletion
1128 */
1129 if (this_parent != child->d_parent ||
1130 (child->d_flags & DCACHE_DENTRY_KILLED) ||
1131 need_seqretry(&rename_lock, seq)) {
1132 spin_unlock(&this_parent->d_lock);
1133 rcu_read_unlock();
1134 goto rename_retry;
1135 }
1136 rcu_read_unlock();
1137 next = child->d_u.d_child.next;
1138 goto resume;
1139 }
1140 if (need_seqretry(&rename_lock, seq)) {
1141 spin_unlock(&this_parent->d_lock);
1142 goto rename_retry;
1143 }
1144 if (finish)
1145 finish(data);
1146
1147 out_unlock:
1148 spin_unlock(&this_parent->d_lock);
1149 done_seqretry(&rename_lock, seq);
1150 return;
1151
1152 rename_retry:
1153 if (!retry)
1154 return;
1155 seq = 1;
1156 goto again;
1157 }
1158
1159 /*
1160 * Search for at least 1 mount point in the dentry's subdirs.
1161 * We descend to the next level whenever the d_subdirs
1162 * list is non-empty and continue searching.
1163 */
1164
1165 static enum d_walk_ret check_mount(void *data, struct dentry *dentry)
1166 {
1167 int *ret = data;
1168 if (d_mountpoint(dentry)) {
1169 *ret = 1;
1170 return D_WALK_QUIT;
1171 }
1172 return D_WALK_CONTINUE;
1173 }
1174
1175 /**
1176 * have_submounts - check for mounts over a dentry
1177 * @parent: dentry to check.
1178 *
1179 * Return true if the parent or its subdirectories contain
1180 * a mount point
1181 */
1182 int have_submounts(struct dentry *parent)
1183 {
1184 int ret = 0;
1185
1186 d_walk(parent, &ret, check_mount, NULL);
1187
1188 return ret;
1189 }
1190 EXPORT_SYMBOL(have_submounts);
1191
1192 /*
1193 * Called by mount code to set a mountpoint and check if the mountpoint is
1194 * reachable (e.g. NFS can unhash a directory dentry and then the complete
1195 * subtree can become unreachable).
1196 *
1197 * Only one of check_submounts_and_drop() and d_set_mounted() must succeed. For
1198 * this reason take rename_lock and d_lock on dentry and ancestors.
1199 */
1200 int d_set_mounted(struct dentry *dentry)
1201 {
1202 struct dentry *p;
1203 int ret = -ENOENT;
1204 write_seqlock(&rename_lock);
1205 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1206 /* Need exclusion wrt. check_submounts_and_drop() */
1207 spin_lock(&p->d_lock);
1208 if (unlikely(d_unhashed(p))) {
1209 spin_unlock(&p->d_lock);
1210 goto out;
1211 }
1212 spin_unlock(&p->d_lock);
1213 }
1214 spin_lock(&dentry->d_lock);
1215 if (!d_unlinked(dentry)) {
1216 dentry->d_flags |= DCACHE_MOUNTED;
1217 ret = 0;
1218 }
1219 spin_unlock(&dentry->d_lock);
1220 out:
1221 write_sequnlock(&rename_lock);
1222 return ret;
1223 }
1224
1225 /*
1226 * Search the dentry child list of the specified parent,
1227 * and move any unused dentries to the end of the unused
1228 * list for prune_dcache(). We descend to the next level
1229 * whenever the d_subdirs list is non-empty and continue
1230 * searching.
1231 *
1232 * It returns zero iff there are no unused children,
1233 * otherwise it returns the number of children moved to
1234 * the end of the unused list. This may not be the total
1235 * number of unused children, because select_parent can
1236 * drop the lock and return early due to latency
1237 * constraints.
1238 */
1239
1240 struct select_data {
1241 struct dentry *start;
1242 struct list_head dispose;
1243 int found;
1244 };
1245
1246 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1247 {
1248 struct select_data *data = _data;
1249 enum d_walk_ret ret = D_WALK_CONTINUE;
1250
1251 if (data->start == dentry)
1252 goto out;
1253
1254 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1255 data->found++;
1256 } else {
1257 if (dentry->d_flags & DCACHE_LRU_LIST)
1258 d_lru_del(dentry);
1259 if (!dentry->d_lockref.count) {
1260 d_shrink_add(dentry, &data->dispose);
1261 data->found++;
1262 }
1263 }
1264 /*
1265 * We can return to the caller if we have found some (this
1266 * ensures forward progress). We'll be coming back to find
1267 * the rest.
1268 */
1269 if (!list_empty(&data->dispose))
1270 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1271 out:
1272 return ret;
1273 }
1274
1275 /**
1276 * shrink_dcache_parent - prune dcache
1277 * @parent: parent of entries to prune
1278 *
1279 * Prune the dcache to remove unused children of the parent dentry.
1280 */
1281 void shrink_dcache_parent(struct dentry *parent)
1282 {
1283 for (;;) {
1284 struct select_data data;
1285
1286 INIT_LIST_HEAD(&data.dispose);
1287 data.start = parent;
1288 data.found = 0;
1289
1290 d_walk(parent, &data, select_collect, NULL);
1291 if (!data.found)
1292 break;
1293
1294 shrink_dentry_list(&data.dispose);
1295 cond_resched();
1296 }
1297 }
1298 EXPORT_SYMBOL(shrink_dcache_parent);
1299
1300 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
1301 {
1302 /* it has busy descendents; complain about those instead */
1303 if (!list_empty(&dentry->d_subdirs))
1304 return D_WALK_CONTINUE;
1305
1306 /* root with refcount 1 is fine */
1307 if (dentry == _data && dentry->d_lockref.count == 1)
1308 return D_WALK_CONTINUE;
1309
1310 printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1311 " still in use (%d) [unmount of %s %s]\n",
1312 dentry,
1313 dentry->d_inode ?
1314 dentry->d_inode->i_ino : 0UL,
1315 dentry,
1316 dentry->d_lockref.count,
1317 dentry->d_sb->s_type->name,
1318 dentry->d_sb->s_id);
1319 WARN_ON(1);
1320 return D_WALK_CONTINUE;
1321 }
1322
1323 static void do_one_tree(struct dentry *dentry)
1324 {
1325 shrink_dcache_parent(dentry);
1326 d_walk(dentry, dentry, umount_check, NULL);
1327 d_drop(dentry);
1328 dput(dentry);
1329 }
1330
1331 /*
1332 * destroy the dentries attached to a superblock on unmounting
1333 */
1334 void shrink_dcache_for_umount(struct super_block *sb)
1335 {
1336 struct dentry *dentry;
1337
1338 WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
1339
1340 dentry = sb->s_root;
1341 sb->s_root = NULL;
1342 do_one_tree(dentry);
1343
1344 while (!hlist_bl_empty(&sb->s_anon)) {
1345 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash));
1346 do_one_tree(dentry);
1347 }
1348 }
1349
1350 static enum d_walk_ret check_and_collect(void *_data, struct dentry *dentry)
1351 {
1352 struct select_data *data = _data;
1353
1354 if (d_mountpoint(dentry)) {
1355 data->found = -EBUSY;
1356 return D_WALK_QUIT;
1357 }
1358
1359 return select_collect(_data, dentry);
1360 }
1361
1362 static void check_and_drop(void *_data)
1363 {
1364 struct select_data *data = _data;
1365
1366 if (d_mountpoint(data->start))
1367 data->found = -EBUSY;
1368 if (!data->found)
1369 __d_drop(data->start);
1370 }
1371
1372 /**
1373 * check_submounts_and_drop - prune dcache, check for submounts and drop
1374 *
1375 * All done as a single atomic operation relative to has_unlinked_ancestor().
1376 * Returns 0 if successfully unhashed @parent. If there were submounts then
1377 * return -EBUSY.
1378 *
1379 * @dentry: dentry to prune and drop
1380 */
1381 int check_submounts_and_drop(struct dentry *dentry)
1382 {
1383 int ret = 0;
1384
1385 /* Negative dentries can be dropped without further checks */
1386 if (!dentry->d_inode) {
1387 d_drop(dentry);
1388 goto out;
1389 }
1390
1391 for (;;) {
1392 struct select_data data;
1393
1394 INIT_LIST_HEAD(&data.dispose);
1395 data.start = dentry;
1396 data.found = 0;
1397
1398 d_walk(dentry, &data, check_and_collect, check_and_drop);
1399 ret = data.found;
1400
1401 if (!list_empty(&data.dispose))
1402 shrink_dentry_list(&data.dispose);
1403
1404 if (ret <= 0)
1405 break;
1406
1407 cond_resched();
1408 }
1409
1410 out:
1411 return ret;
1412 }
1413 EXPORT_SYMBOL(check_submounts_and_drop);
1414
1415 /**
1416 * __d_alloc - allocate a dcache entry
1417 * @sb: filesystem it will belong to
1418 * @name: qstr of the name
1419 *
1420 * Allocates a dentry. It returns %NULL if there is insufficient memory
1421 * available. On a success the dentry is returned. The name passed in is
1422 * copied and the copy passed in may be reused after this call.
1423 */
1424
1425 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1426 {
1427 struct dentry *dentry;
1428 char *dname;
1429
1430 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1431 if (!dentry)
1432 return NULL;
1433
1434 /*
1435 * We guarantee that the inline name is always NUL-terminated.
1436 * This way the memcpy() done by the name switching in rename
1437 * will still always have a NUL at the end, even if we might
1438 * be overwriting an internal NUL character
1439 */
1440 dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1441 if (name->len > DNAME_INLINE_LEN-1) {
1442 dname = kmalloc(name->len + 1, GFP_KERNEL);
1443 if (!dname) {
1444 kmem_cache_free(dentry_cache, dentry);
1445 return NULL;
1446 }
1447 } else {
1448 dname = dentry->d_iname;
1449 }
1450
1451 dentry->d_name.len = name->len;
1452 dentry->d_name.hash = name->hash;
1453 memcpy(dname, name->name, name->len);
1454 dname[name->len] = 0;
1455
1456 /* Make sure we always see the terminating NUL character */
1457 smp_wmb();
1458 dentry->d_name.name = dname;
1459
1460 dentry->d_lockref.count = 1;
1461 dentry->d_flags = 0;
1462 spin_lock_init(&dentry->d_lock);
1463 seqcount_init(&dentry->d_seq);
1464 dentry->d_inode = NULL;
1465 dentry->d_parent = dentry;
1466 dentry->d_sb = sb;
1467 dentry->d_op = NULL;
1468 dentry->d_fsdata = NULL;
1469 INIT_HLIST_BL_NODE(&dentry->d_hash);
1470 INIT_LIST_HEAD(&dentry->d_lru);
1471 INIT_LIST_HEAD(&dentry->d_subdirs);
1472 INIT_HLIST_NODE(&dentry->d_alias);
1473 INIT_LIST_HEAD(&dentry->d_u.d_child);
1474 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1475
1476 this_cpu_inc(nr_dentry);
1477
1478 return dentry;
1479 }
1480
1481 /**
1482 * d_alloc - allocate a dcache entry
1483 * @parent: parent of entry to allocate
1484 * @name: qstr of the name
1485 *
1486 * Allocates a dentry. It returns %NULL if there is insufficient memory
1487 * available. On a success the dentry is returned. The name passed in is
1488 * copied and the copy passed in may be reused after this call.
1489 */
1490 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1491 {
1492 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1493 if (!dentry)
1494 return NULL;
1495
1496 spin_lock(&parent->d_lock);
1497 /*
1498 * don't need child lock because it is not subject
1499 * to concurrency here
1500 */
1501 __dget_dlock(parent);
1502 dentry->d_parent = parent;
1503 list_add(&dentry->d_u.d_child, &parent->d_subdirs);
1504 spin_unlock(&parent->d_lock);
1505
1506 return dentry;
1507 }
1508 EXPORT_SYMBOL(d_alloc);
1509
1510 /**
1511 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1512 * @sb: the superblock
1513 * @name: qstr of the name
1514 *
1515 * For a filesystem that just pins its dentries in memory and never
1516 * performs lookups at all, return an unhashed IS_ROOT dentry.
1517 */
1518 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1519 {
1520 return __d_alloc(sb, name);
1521 }
1522 EXPORT_SYMBOL(d_alloc_pseudo);
1523
1524 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1525 {
1526 struct qstr q;
1527
1528 q.name = name;
1529 q.len = strlen(name);
1530 q.hash = full_name_hash(q.name, q.len);
1531 return d_alloc(parent, &q);
1532 }
1533 EXPORT_SYMBOL(d_alloc_name);
1534
1535 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1536 {
1537 WARN_ON_ONCE(dentry->d_op);
1538 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
1539 DCACHE_OP_COMPARE |
1540 DCACHE_OP_REVALIDATE |
1541 DCACHE_OP_WEAK_REVALIDATE |
1542 DCACHE_OP_DELETE ));
1543 dentry->d_op = op;
1544 if (!op)
1545 return;
1546 if (op->d_hash)
1547 dentry->d_flags |= DCACHE_OP_HASH;
1548 if (op->d_compare)
1549 dentry->d_flags |= DCACHE_OP_COMPARE;
1550 if (op->d_revalidate)
1551 dentry->d_flags |= DCACHE_OP_REVALIDATE;
1552 if (op->d_weak_revalidate)
1553 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1554 if (op->d_delete)
1555 dentry->d_flags |= DCACHE_OP_DELETE;
1556 if (op->d_prune)
1557 dentry->d_flags |= DCACHE_OP_PRUNE;
1558
1559 }
1560 EXPORT_SYMBOL(d_set_d_op);
1561
1562 static unsigned d_flags_for_inode(struct inode *inode)
1563 {
1564 unsigned add_flags = DCACHE_FILE_TYPE;
1565
1566 if (!inode)
1567 return DCACHE_MISS_TYPE;
1568
1569 if (S_ISDIR(inode->i_mode)) {
1570 add_flags = DCACHE_DIRECTORY_TYPE;
1571 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1572 if (unlikely(!inode->i_op->lookup))
1573 add_flags = DCACHE_AUTODIR_TYPE;
1574 else
1575 inode->i_opflags |= IOP_LOOKUP;
1576 }
1577 } else if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1578 if (unlikely(inode->i_op->follow_link))
1579 add_flags = DCACHE_SYMLINK_TYPE;
1580 else
1581 inode->i_opflags |= IOP_NOFOLLOW;
1582 }
1583
1584 if (unlikely(IS_AUTOMOUNT(inode)))
1585 add_flags |= DCACHE_NEED_AUTOMOUNT;
1586 return add_flags;
1587 }
1588
1589 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1590 {
1591 unsigned add_flags = d_flags_for_inode(inode);
1592
1593 spin_lock(&dentry->d_lock);
1594 __d_set_type(dentry, add_flags);
1595 if (inode)
1596 hlist_add_head(&dentry->d_alias, &inode->i_dentry);
1597 dentry->d_inode = inode;
1598 dentry_rcuwalk_barrier(dentry);
1599 spin_unlock(&dentry->d_lock);
1600 fsnotify_d_instantiate(dentry, inode);
1601 }
1602
1603 /**
1604 * d_instantiate - fill in inode information for a dentry
1605 * @entry: dentry to complete
1606 * @inode: inode to attach to this dentry
1607 *
1608 * Fill in inode information in the entry.
1609 *
1610 * This turns negative dentries into productive full members
1611 * of society.
1612 *
1613 * NOTE! This assumes that the inode count has been incremented
1614 * (or otherwise set) by the caller to indicate that it is now
1615 * in use by the dcache.
1616 */
1617
1618 void d_instantiate(struct dentry *entry, struct inode * inode)
1619 {
1620 BUG_ON(!hlist_unhashed(&entry->d_alias));
1621 if (inode)
1622 spin_lock(&inode->i_lock);
1623 __d_instantiate(entry, inode);
1624 if (inode)
1625 spin_unlock(&inode->i_lock);
1626 security_d_instantiate(entry, inode);
1627 }
1628 EXPORT_SYMBOL(d_instantiate);
1629
1630 /**
1631 * d_instantiate_unique - instantiate a non-aliased dentry
1632 * @entry: dentry to instantiate
1633 * @inode: inode to attach to this dentry
1634 *
1635 * Fill in inode information in the entry. On success, it returns NULL.
1636 * If an unhashed alias of "entry" already exists, then we return the
1637 * aliased dentry instead and drop one reference to inode.
1638 *
1639 * Note that in order to avoid conflicts with rename() etc, the caller
1640 * had better be holding the parent directory semaphore.
1641 *
1642 * This also assumes that the inode count has been incremented
1643 * (or otherwise set) by the caller to indicate that it is now
1644 * in use by the dcache.
1645 */
1646 static struct dentry *__d_instantiate_unique(struct dentry *entry,
1647 struct inode *inode)
1648 {
1649 struct dentry *alias;
1650 int len = entry->d_name.len;
1651 const char *name = entry->d_name.name;
1652 unsigned int hash = entry->d_name.hash;
1653
1654 if (!inode) {
1655 __d_instantiate(entry, NULL);
1656 return NULL;
1657 }
1658
1659 hlist_for_each_entry(alias, &inode->i_dentry, d_alias) {
1660 /*
1661 * Don't need alias->d_lock here, because aliases with
1662 * d_parent == entry->d_parent are not subject to name or
1663 * parent changes, because the parent inode i_mutex is held.
1664 */
1665 if (alias->d_name.hash != hash)
1666 continue;
1667 if (alias->d_parent != entry->d_parent)
1668 continue;
1669 if (alias->d_name.len != len)
1670 continue;
1671 if (dentry_cmp(alias, name, len))
1672 continue;
1673 __dget(alias);
1674 return alias;
1675 }
1676
1677 __d_instantiate(entry, inode);
1678 return NULL;
1679 }
1680
1681 struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1682 {
1683 struct dentry *result;
1684
1685 BUG_ON(!hlist_unhashed(&entry->d_alias));
1686
1687 if (inode)
1688 spin_lock(&inode->i_lock);
1689 result = __d_instantiate_unique(entry, inode);
1690 if (inode)
1691 spin_unlock(&inode->i_lock);
1692
1693 if (!result) {
1694 security_d_instantiate(entry, inode);
1695 return NULL;
1696 }
1697
1698 BUG_ON(!d_unhashed(result));
1699 iput(inode);
1700 return result;
1701 }
1702
1703 EXPORT_SYMBOL(d_instantiate_unique);
1704
1705 /**
1706 * d_instantiate_no_diralias - instantiate a non-aliased dentry
1707 * @entry: dentry to complete
1708 * @inode: inode to attach to this dentry
1709 *
1710 * Fill in inode information in the entry. If a directory alias is found, then
1711 * return an error (and drop inode). Together with d_materialise_unique() this
1712 * guarantees that a directory inode may never have more than one alias.
1713 */
1714 int d_instantiate_no_diralias(struct dentry *entry, struct inode *inode)
1715 {
1716 BUG_ON(!hlist_unhashed(&entry->d_alias));
1717
1718 spin_lock(&inode->i_lock);
1719 if (S_ISDIR(inode->i_mode) && !hlist_empty(&inode->i_dentry)) {
1720 spin_unlock(&inode->i_lock);
1721 iput(inode);
1722 return -EBUSY;
1723 }
1724 __d_instantiate(entry, inode);
1725 spin_unlock(&inode->i_lock);
1726 security_d_instantiate(entry, inode);
1727
1728 return 0;
1729 }
1730 EXPORT_SYMBOL(d_instantiate_no_diralias);
1731
1732 struct dentry *d_make_root(struct inode *root_inode)
1733 {
1734 struct dentry *res = NULL;
1735
1736 if (root_inode) {
1737 static const struct qstr name = QSTR_INIT("/", 1);
1738
1739 res = __d_alloc(root_inode->i_sb, &name);
1740 if (res)
1741 d_instantiate(res, root_inode);
1742 else
1743 iput(root_inode);
1744 }
1745 return res;
1746 }
1747 EXPORT_SYMBOL(d_make_root);
1748
1749 static struct dentry * __d_find_any_alias(struct inode *inode)
1750 {
1751 struct dentry *alias;
1752
1753 if (hlist_empty(&inode->i_dentry))
1754 return NULL;
1755 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_alias);
1756 __dget(alias);
1757 return alias;
1758 }
1759
1760 /**
1761 * d_find_any_alias - find any alias for a given inode
1762 * @inode: inode to find an alias for
1763 *
1764 * If any aliases exist for the given inode, take and return a
1765 * reference for one of them. If no aliases exist, return %NULL.
1766 */
1767 struct dentry *d_find_any_alias(struct inode *inode)
1768 {
1769 struct dentry *de;
1770
1771 spin_lock(&inode->i_lock);
1772 de = __d_find_any_alias(inode);
1773 spin_unlock(&inode->i_lock);
1774 return de;
1775 }
1776 EXPORT_SYMBOL(d_find_any_alias);
1777
1778 static struct dentry *__d_obtain_alias(struct inode *inode, int disconnected)
1779 {
1780 static const struct qstr anonstring = QSTR_INIT("/", 1);
1781 struct dentry *tmp;
1782 struct dentry *res;
1783 unsigned add_flags;
1784
1785 if (!inode)
1786 return ERR_PTR(-ESTALE);
1787 if (IS_ERR(inode))
1788 return ERR_CAST(inode);
1789
1790 res = d_find_any_alias(inode);
1791 if (res)
1792 goto out_iput;
1793
1794 tmp = __d_alloc(inode->i_sb, &anonstring);
1795 if (!tmp) {
1796 res = ERR_PTR(-ENOMEM);
1797 goto out_iput;
1798 }
1799
1800 spin_lock(&inode->i_lock);
1801 res = __d_find_any_alias(inode);
1802 if (res) {
1803 spin_unlock(&inode->i_lock);
1804 dput(tmp);
1805 goto out_iput;
1806 }
1807
1808 /* attach a disconnected dentry */
1809 add_flags = d_flags_for_inode(inode);
1810
1811 if (disconnected)
1812 add_flags |= DCACHE_DISCONNECTED;
1813
1814 spin_lock(&tmp->d_lock);
1815 tmp->d_inode = inode;
1816 tmp->d_flags |= add_flags;
1817 hlist_add_head(&tmp->d_alias, &inode->i_dentry);
1818 hlist_bl_lock(&tmp->d_sb->s_anon);
1819 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1820 hlist_bl_unlock(&tmp->d_sb->s_anon);
1821 spin_unlock(&tmp->d_lock);
1822 spin_unlock(&inode->i_lock);
1823 security_d_instantiate(tmp, inode);
1824
1825 return tmp;
1826
1827 out_iput:
1828 if (res && !IS_ERR(res))
1829 security_d_instantiate(res, inode);
1830 iput(inode);
1831 return res;
1832 }
1833
1834 /**
1835 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
1836 * @inode: inode to allocate the dentry for
1837 *
1838 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1839 * similar open by handle operations. The returned dentry may be anonymous,
1840 * or may have a full name (if the inode was already in the cache).
1841 *
1842 * When called on a directory inode, we must ensure that the inode only ever
1843 * has one dentry. If a dentry is found, that is returned instead of
1844 * allocating a new one.
1845 *
1846 * On successful return, the reference to the inode has been transferred
1847 * to the dentry. In case of an error the reference on the inode is released.
1848 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1849 * be passed in and the error will be propagated to the return value,
1850 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1851 */
1852 struct dentry *d_obtain_alias(struct inode *inode)
1853 {
1854 return __d_obtain_alias(inode, 1);
1855 }
1856 EXPORT_SYMBOL(d_obtain_alias);
1857
1858 /**
1859 * d_obtain_root - find or allocate a dentry for a given inode
1860 * @inode: inode to allocate the dentry for
1861 *
1862 * Obtain an IS_ROOT dentry for the root of a filesystem.
1863 *
1864 * We must ensure that directory inodes only ever have one dentry. If a
1865 * dentry is found, that is returned instead of allocating a new one.
1866 *
1867 * On successful return, the reference to the inode has been transferred
1868 * to the dentry. In case of an error the reference on the inode is
1869 * released. A %NULL or IS_ERR inode may be passed in and will be the
1870 * error will be propagate to the return value, with a %NULL @inode
1871 * replaced by ERR_PTR(-ESTALE).
1872 */
1873 struct dentry *d_obtain_root(struct inode *inode)
1874 {
1875 return __d_obtain_alias(inode, 0);
1876 }
1877 EXPORT_SYMBOL(d_obtain_root);
1878
1879 /**
1880 * d_add_ci - lookup or allocate new dentry with case-exact name
1881 * @inode: the inode case-insensitive lookup has found
1882 * @dentry: the negative dentry that was passed to the parent's lookup func
1883 * @name: the case-exact name to be associated with the returned dentry
1884 *
1885 * This is to avoid filling the dcache with case-insensitive names to the
1886 * same inode, only the actual correct case is stored in the dcache for
1887 * case-insensitive filesystems.
1888 *
1889 * For a case-insensitive lookup match and if the the case-exact dentry
1890 * already exists in in the dcache, use it and return it.
1891 *
1892 * If no entry exists with the exact case name, allocate new dentry with
1893 * the exact case, and return the spliced entry.
1894 */
1895 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
1896 struct qstr *name)
1897 {
1898 struct dentry *found;
1899 struct dentry *new;
1900
1901 /*
1902 * First check if a dentry matching the name already exists,
1903 * if not go ahead and create it now.
1904 */
1905 found = d_hash_and_lookup(dentry->d_parent, name);
1906 if (unlikely(IS_ERR(found)))
1907 goto err_out;
1908 if (!found) {
1909 new = d_alloc(dentry->d_parent, name);
1910 if (!new) {
1911 found = ERR_PTR(-ENOMEM);
1912 goto err_out;
1913 }
1914
1915 found = d_splice_alias(inode, new);
1916 if (found) {
1917 dput(new);
1918 return found;
1919 }
1920 return new;
1921 }
1922
1923 /*
1924 * If a matching dentry exists, and it's not negative use it.
1925 *
1926 * Decrement the reference count to balance the iget() done
1927 * earlier on.
1928 */
1929 if (found->d_inode) {
1930 if (unlikely(found->d_inode != inode)) {
1931 /* This can't happen because bad inodes are unhashed. */
1932 BUG_ON(!is_bad_inode(inode));
1933 BUG_ON(!is_bad_inode(found->d_inode));
1934 }
1935 iput(inode);
1936 return found;
1937 }
1938
1939 /*
1940 * Negative dentry: instantiate it unless the inode is a directory and
1941 * already has a dentry.
1942 */
1943 new = d_splice_alias(inode, found);
1944 if (new) {
1945 dput(found);
1946 found = new;
1947 }
1948 return found;
1949
1950 err_out:
1951 iput(inode);
1952 return found;
1953 }
1954 EXPORT_SYMBOL(d_add_ci);
1955
1956 /*
1957 * Do the slow-case of the dentry name compare.
1958 *
1959 * Unlike the dentry_cmp() function, we need to atomically
1960 * load the name and length information, so that the
1961 * filesystem can rely on them, and can use the 'name' and
1962 * 'len' information without worrying about walking off the
1963 * end of memory etc.
1964 *
1965 * Thus the read_seqcount_retry() and the "duplicate" info
1966 * in arguments (the low-level filesystem should not look
1967 * at the dentry inode or name contents directly, since
1968 * rename can change them while we're in RCU mode).
1969 */
1970 enum slow_d_compare {
1971 D_COMP_OK,
1972 D_COMP_NOMATCH,
1973 D_COMP_SEQRETRY,
1974 };
1975
1976 static noinline enum slow_d_compare slow_dentry_cmp(
1977 const struct dentry *parent,
1978 struct dentry *dentry,
1979 unsigned int seq,
1980 const struct qstr *name)
1981 {
1982 int tlen = dentry->d_name.len;
1983 const char *tname = dentry->d_name.name;
1984
1985 if (read_seqcount_retry(&dentry->d_seq, seq)) {
1986 cpu_relax();
1987 return D_COMP_SEQRETRY;
1988 }
1989 if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
1990 return D_COMP_NOMATCH;
1991 return D_COMP_OK;
1992 }
1993
1994 /**
1995 * __d_lookup_rcu - search for a dentry (racy, store-free)
1996 * @parent: parent dentry
1997 * @name: qstr of name we wish to find
1998 * @seqp: returns d_seq value at the point where the dentry was found
1999 * Returns: dentry, or NULL
2000 *
2001 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2002 * resolution (store-free path walking) design described in
2003 * Documentation/filesystems/path-lookup.txt.
2004 *
2005 * This is not to be used outside core vfs.
2006 *
2007 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2008 * held, and rcu_read_lock held. The returned dentry must not be stored into
2009 * without taking d_lock and checking d_seq sequence count against @seq
2010 * returned here.
2011 *
2012 * A refcount may be taken on the found dentry with the d_rcu_to_refcount
2013 * function.
2014 *
2015 * Alternatively, __d_lookup_rcu may be called again to look up the child of
2016 * the returned dentry, so long as its parent's seqlock is checked after the
2017 * child is looked up. Thus, an interlocking stepping of sequence lock checks
2018 * is formed, giving integrity down the path walk.
2019 *
2020 * NOTE! The caller *has* to check the resulting dentry against the sequence
2021 * number we've returned before using any of the resulting dentry state!
2022 */
2023 struct dentry *__d_lookup_rcu(const struct dentry *parent,
2024 const struct qstr *name,
2025 unsigned *seqp)
2026 {
2027 u64 hashlen = name->hash_len;
2028 const unsigned char *str = name->name;
2029 struct hlist_bl_head *b = d_hash(parent, hashlen_hash(hashlen));
2030 struct hlist_bl_node *node;
2031 struct dentry *dentry;
2032
2033 /*
2034 * Note: There is significant duplication with __d_lookup_rcu which is
2035 * required to prevent single threaded performance regressions
2036 * especially on architectures where smp_rmb (in seqcounts) are costly.
2037 * Keep the two functions in sync.
2038 */
2039
2040 /*
2041 * The hash list is protected using RCU.
2042 *
2043 * Carefully use d_seq when comparing a candidate dentry, to avoid
2044 * races with d_move().
2045 *
2046 * It is possible that concurrent renames can mess up our list
2047 * walk here and result in missing our dentry, resulting in the
2048 * false-negative result. d_lookup() protects against concurrent
2049 * renames using rename_lock seqlock.
2050 *
2051 * See Documentation/filesystems/path-lookup.txt for more details.
2052 */
2053 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2054 unsigned seq;
2055
2056 seqretry:
2057 /*
2058 * The dentry sequence count protects us from concurrent
2059 * renames, and thus protects parent and name fields.
2060 *
2061 * The caller must perform a seqcount check in order
2062 * to do anything useful with the returned dentry.
2063 *
2064 * NOTE! We do a "raw" seqcount_begin here. That means that
2065 * we don't wait for the sequence count to stabilize if it
2066 * is in the middle of a sequence change. If we do the slow
2067 * dentry compare, we will do seqretries until it is stable,
2068 * and if we end up with a successful lookup, we actually
2069 * want to exit RCU lookup anyway.
2070 */
2071 seq = raw_seqcount_begin(&dentry->d_seq);
2072 if (dentry->d_parent != parent)
2073 continue;
2074 if (d_unhashed(dentry))
2075 continue;
2076
2077 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
2078 if (dentry->d_name.hash != hashlen_hash(hashlen))
2079 continue;
2080 *seqp = seq;
2081 switch (slow_dentry_cmp(parent, dentry, seq, name)) {
2082 case D_COMP_OK:
2083 return dentry;
2084 case D_COMP_NOMATCH:
2085 continue;
2086 default:
2087 goto seqretry;
2088 }
2089 }
2090
2091 if (dentry->d_name.hash_len != hashlen)
2092 continue;
2093 *seqp = seq;
2094 if (!dentry_cmp(dentry, str, hashlen_len(hashlen)))
2095 return dentry;
2096 }
2097 return NULL;
2098 }
2099
2100 /**
2101 * d_lookup - search for a dentry
2102 * @parent: parent dentry
2103 * @name: qstr of name we wish to find
2104 * Returns: dentry, or NULL
2105 *
2106 * d_lookup searches the children of the parent dentry for the name in
2107 * question. If the dentry is found its reference count is incremented and the
2108 * dentry is returned. The caller must use dput to free the entry when it has
2109 * finished using it. %NULL is returned if the dentry does not exist.
2110 */
2111 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2112 {
2113 struct dentry *dentry;
2114 unsigned seq;
2115
2116 do {
2117 seq = read_seqbegin(&rename_lock);
2118 dentry = __d_lookup(parent, name);
2119 if (dentry)
2120 break;
2121 } while (read_seqretry(&rename_lock, seq));
2122 return dentry;
2123 }
2124 EXPORT_SYMBOL(d_lookup);
2125
2126 /**
2127 * __d_lookup - search for a dentry (racy)
2128 * @parent: parent dentry
2129 * @name: qstr of name we wish to find
2130 * Returns: dentry, or NULL
2131 *
2132 * __d_lookup is like d_lookup, however it may (rarely) return a
2133 * false-negative result due to unrelated rename activity.
2134 *
2135 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2136 * however it must be used carefully, eg. with a following d_lookup in
2137 * the case of failure.
2138 *
2139 * __d_lookup callers must be commented.
2140 */
2141 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2142 {
2143 unsigned int len = name->len;
2144 unsigned int hash = name->hash;
2145 const unsigned char *str = name->name;
2146 struct hlist_bl_head *b = d_hash(parent, hash);
2147 struct hlist_bl_node *node;
2148 struct dentry *found = NULL;
2149 struct dentry *dentry;
2150
2151 /*
2152 * Note: There is significant duplication with __d_lookup_rcu which is
2153 * required to prevent single threaded performance regressions
2154 * especially on architectures where smp_rmb (in seqcounts) are costly.
2155 * Keep the two functions in sync.
2156 */
2157
2158 /*
2159 * The hash list is protected using RCU.
2160 *
2161 * Take d_lock when comparing a candidate dentry, to avoid races
2162 * with d_move().
2163 *
2164 * It is possible that concurrent renames can mess up our list
2165 * walk here and result in missing our dentry, resulting in the
2166 * false-negative result. d_lookup() protects against concurrent
2167 * renames using rename_lock seqlock.
2168 *
2169 * See Documentation/filesystems/path-lookup.txt for more details.
2170 */
2171 rcu_read_lock();
2172
2173 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2174
2175 if (dentry->d_name.hash != hash)
2176 continue;
2177
2178 spin_lock(&dentry->d_lock);
2179 if (dentry->d_parent != parent)
2180 goto next;
2181 if (d_unhashed(dentry))
2182 goto next;
2183
2184 /*
2185 * It is safe to compare names since d_move() cannot
2186 * change the qstr (protected by d_lock).
2187 */
2188 if (parent->d_flags & DCACHE_OP_COMPARE) {
2189 int tlen = dentry->d_name.len;
2190 const char *tname = dentry->d_name.name;
2191 if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
2192 goto next;
2193 } else {
2194 if (dentry->d_name.len != len)
2195 goto next;
2196 if (dentry_cmp(dentry, str, len))
2197 goto next;
2198 }
2199
2200 dentry->d_lockref.count++;
2201 found = dentry;
2202 spin_unlock(&dentry->d_lock);
2203 break;
2204 next:
2205 spin_unlock(&dentry->d_lock);
2206 }
2207 rcu_read_unlock();
2208
2209 return found;
2210 }
2211
2212 /**
2213 * d_hash_and_lookup - hash the qstr then search for a dentry
2214 * @dir: Directory to search in
2215 * @name: qstr of name we wish to find
2216 *
2217 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2218 */
2219 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2220 {
2221 /*
2222 * Check for a fs-specific hash function. Note that we must
2223 * calculate the standard hash first, as the d_op->d_hash()
2224 * routine may choose to leave the hash value unchanged.
2225 */
2226 name->hash = full_name_hash(name->name, name->len);
2227 if (dir->d_flags & DCACHE_OP_HASH) {
2228 int err = dir->d_op->d_hash(dir, name);
2229 if (unlikely(err < 0))
2230 return ERR_PTR(err);
2231 }
2232 return d_lookup(dir, name);
2233 }
2234 EXPORT_SYMBOL(d_hash_and_lookup);
2235
2236 /**
2237 * d_validate - verify dentry provided from insecure source (deprecated)
2238 * @dentry: The dentry alleged to be valid child of @dparent
2239 * @dparent: The parent dentry (known to be valid)
2240 *
2241 * An insecure source has sent us a dentry, here we verify it and dget() it.
2242 * This is used by ncpfs in its readdir implementation.
2243 * Zero is returned in the dentry is invalid.
2244 *
2245 * This function is slow for big directories, and deprecated, do not use it.
2246 */
2247 int d_validate(struct dentry *dentry, struct dentry *dparent)
2248 {
2249 struct dentry *child;
2250
2251 spin_lock(&dparent->d_lock);
2252 list_for_each_entry(child, &dparent->d_subdirs, d_u.d_child) {
2253 if (dentry == child) {
2254 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
2255 __dget_dlock(dentry);
2256 spin_unlock(&dentry->d_lock);
2257 spin_unlock(&dparent->d_lock);
2258 return 1;
2259 }
2260 }
2261 spin_unlock(&dparent->d_lock);
2262
2263 return 0;
2264 }
2265 EXPORT_SYMBOL(d_validate);
2266
2267 /*
2268 * When a file is deleted, we have two options:
2269 * - turn this dentry into a negative dentry
2270 * - unhash this dentry and free it.
2271 *
2272 * Usually, we want to just turn this into
2273 * a negative dentry, but if anybody else is
2274 * currently using the dentry or the inode
2275 * we can't do that and we fall back on removing
2276 * it from the hash queues and waiting for
2277 * it to be deleted later when it has no users
2278 */
2279
2280 /**
2281 * d_delete - delete a dentry
2282 * @dentry: The dentry to delete
2283 *
2284 * Turn the dentry into a negative dentry if possible, otherwise
2285 * remove it from the hash queues so it can be deleted later
2286 */
2287
2288 void d_delete(struct dentry * dentry)
2289 {
2290 struct inode *inode;
2291 int isdir = 0;
2292 /*
2293 * Are we the only user?
2294 */
2295 again:
2296 spin_lock(&dentry->d_lock);
2297 inode = dentry->d_inode;
2298 isdir = S_ISDIR(inode->i_mode);
2299 if (dentry->d_lockref.count == 1) {
2300 if (!spin_trylock(&inode->i_lock)) {
2301 spin_unlock(&dentry->d_lock);
2302 cpu_relax();
2303 goto again;
2304 }
2305 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2306 dentry_unlink_inode(dentry);
2307 fsnotify_nameremove(dentry, isdir);
2308 return;
2309 }
2310
2311 if (!d_unhashed(dentry))
2312 __d_drop(dentry);
2313
2314 spin_unlock(&dentry->d_lock);
2315
2316 fsnotify_nameremove(dentry, isdir);
2317 }
2318 EXPORT_SYMBOL(d_delete);
2319
2320 static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b)
2321 {
2322 BUG_ON(!d_unhashed(entry));
2323 hlist_bl_lock(b);
2324 entry->d_flags |= DCACHE_RCUACCESS;
2325 hlist_bl_add_head_rcu(&entry->d_hash, b);
2326 hlist_bl_unlock(b);
2327 }
2328
2329 static void _d_rehash(struct dentry * entry)
2330 {
2331 __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
2332 }
2333
2334 /**
2335 * d_rehash - add an entry back to the hash
2336 * @entry: dentry to add to the hash
2337 *
2338 * Adds a dentry to the hash according to its name.
2339 */
2340
2341 void d_rehash(struct dentry * entry)
2342 {
2343 spin_lock(&entry->d_lock);
2344 _d_rehash(entry);
2345 spin_unlock(&entry->d_lock);
2346 }
2347 EXPORT_SYMBOL(d_rehash);
2348
2349 /**
2350 * dentry_update_name_case - update case insensitive dentry with a new name
2351 * @dentry: dentry to be updated
2352 * @name: new name
2353 *
2354 * Update a case insensitive dentry with new case of name.
2355 *
2356 * dentry must have been returned by d_lookup with name @name. Old and new
2357 * name lengths must match (ie. no d_compare which allows mismatched name
2358 * lengths).
2359 *
2360 * Parent inode i_mutex must be held over d_lookup and into this call (to
2361 * keep renames and concurrent inserts, and readdir(2) away).
2362 */
2363 void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
2364 {
2365 BUG_ON(!mutex_is_locked(&dentry->d_parent->d_inode->i_mutex));
2366 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2367
2368 spin_lock(&dentry->d_lock);
2369 write_seqcount_begin(&dentry->d_seq);
2370 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
2371 write_seqcount_end(&dentry->d_seq);
2372 spin_unlock(&dentry->d_lock);
2373 }
2374 EXPORT_SYMBOL(dentry_update_name_case);
2375
2376 static void switch_names(struct dentry *dentry, struct dentry *target)
2377 {
2378 if (dname_external(target)) {
2379 if (dname_external(dentry)) {
2380 /*
2381 * Both external: swap the pointers
2382 */
2383 swap(target->d_name.name, dentry->d_name.name);
2384 } else {
2385 /*
2386 * dentry:internal, target:external. Steal target's
2387 * storage and make target internal.
2388 */
2389 memcpy(target->d_iname, dentry->d_name.name,
2390 dentry->d_name.len + 1);
2391 dentry->d_name.name = target->d_name.name;
2392 target->d_name.name = target->d_iname;
2393 }
2394 } else {
2395 if (dname_external(dentry)) {
2396 /*
2397 * dentry:external, target:internal. Give dentry's
2398 * storage to target and make dentry internal
2399 */
2400 memcpy(dentry->d_iname, target->d_name.name,
2401 target->d_name.len + 1);
2402 target->d_name.name = dentry->d_name.name;
2403 dentry->d_name.name = dentry->d_iname;
2404 } else {
2405 /*
2406 * Both are internal.
2407 */
2408 unsigned int i;
2409 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2410 for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2411 swap(((long *) &dentry->d_iname)[i],
2412 ((long *) &target->d_iname)[i]);
2413 }
2414 }
2415 }
2416 swap(dentry->d_name.len, target->d_name.len);
2417 }
2418
2419 static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2420 {
2421 /*
2422 * XXXX: do we really need to take target->d_lock?
2423 */
2424 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2425 spin_lock(&target->d_parent->d_lock);
2426 else {
2427 if (d_ancestor(dentry->d_parent, target->d_parent)) {
2428 spin_lock(&dentry->d_parent->d_lock);
2429 spin_lock_nested(&target->d_parent->d_lock,
2430 DENTRY_D_LOCK_NESTED);
2431 } else {
2432 spin_lock(&target->d_parent->d_lock);
2433 spin_lock_nested(&dentry->d_parent->d_lock,
2434 DENTRY_D_LOCK_NESTED);
2435 }
2436 }
2437 if (target < dentry) {
2438 spin_lock_nested(&target->d_lock, 2);
2439 spin_lock_nested(&dentry->d_lock, 3);
2440 } else {
2441 spin_lock_nested(&dentry->d_lock, 2);
2442 spin_lock_nested(&target->d_lock, 3);
2443 }
2444 }
2445
2446 static void dentry_unlock_parents_for_move(struct dentry *dentry,
2447 struct dentry *target)
2448 {
2449 if (target->d_parent != dentry->d_parent)
2450 spin_unlock(&dentry->d_parent->d_lock);
2451 if (target->d_parent != target)
2452 spin_unlock(&target->d_parent->d_lock);
2453 }
2454
2455 /*
2456 * When switching names, the actual string doesn't strictly have to
2457 * be preserved in the target - because we're dropping the target
2458 * anyway. As such, we can just do a simple memcpy() to copy over
2459 * the new name before we switch.
2460 *
2461 * Note that we have to be a lot more careful about getting the hash
2462 * switched - we have to switch the hash value properly even if it
2463 * then no longer matches the actual (corrupted) string of the target.
2464 * The hash value has to match the hash queue that the dentry is on..
2465 */
2466 /*
2467 * __d_move - move a dentry
2468 * @dentry: entry to move
2469 * @target: new dentry
2470 * @exchange: exchange the two dentries
2471 *
2472 * Update the dcache to reflect the move of a file name. Negative
2473 * dcache entries should not be moved in this way. Caller must hold
2474 * rename_lock, the i_mutex of the source and target directories,
2475 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2476 */
2477 static void __d_move(struct dentry *dentry, struct dentry *target,
2478 bool exchange)
2479 {
2480 if (!dentry->d_inode)
2481 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2482
2483 BUG_ON(d_ancestor(dentry, target));
2484 BUG_ON(d_ancestor(target, dentry));
2485
2486 dentry_lock_for_move(dentry, target);
2487
2488 write_seqcount_begin(&dentry->d_seq);
2489 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
2490
2491 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2492
2493 /*
2494 * Move the dentry to the target hash queue. Don't bother checking
2495 * for the same hash queue because of how unlikely it is.
2496 */
2497 __d_drop(dentry);
2498 __d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
2499
2500 /*
2501 * Unhash the target (d_delete() is not usable here). If exchanging
2502 * the two dentries, then rehash onto the other's hash queue.
2503 */
2504 __d_drop(target);
2505 if (exchange) {
2506 __d_rehash(target,
2507 d_hash(dentry->d_parent, dentry->d_name.hash));
2508 }
2509
2510 list_del(&dentry->d_u.d_child);
2511 list_del(&target->d_u.d_child);
2512
2513 /* Switch the names.. */
2514 switch_names(dentry, target);
2515 swap(dentry->d_name.hash, target->d_name.hash);
2516
2517 /* ... and switch the parents */
2518 if (IS_ROOT(dentry)) {
2519 dentry->d_parent = target->d_parent;
2520 target->d_parent = target;
2521 INIT_LIST_HEAD(&target->d_u.d_child);
2522 } else {
2523 swap(dentry->d_parent, target->d_parent);
2524
2525 /* And add them back to the (new) parent lists */
2526 list_add(&target->d_u.d_child, &target->d_parent->d_subdirs);
2527 }
2528
2529 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2530
2531 write_seqcount_end(&target->d_seq);
2532 write_seqcount_end(&dentry->d_seq);
2533
2534 dentry_unlock_parents_for_move(dentry, target);
2535 if (exchange)
2536 fsnotify_d_move(target);
2537 spin_unlock(&target->d_lock);
2538 fsnotify_d_move(dentry);
2539 spin_unlock(&dentry->d_lock);
2540 }
2541
2542 /*
2543 * d_move - move a dentry
2544 * @dentry: entry to move
2545 * @target: new dentry
2546 *
2547 * Update the dcache to reflect the move of a file name. Negative
2548 * dcache entries should not be moved in this way. See the locking
2549 * requirements for __d_move.
2550 */
2551 void d_move(struct dentry *dentry, struct dentry *target)
2552 {
2553 write_seqlock(&rename_lock);
2554 __d_move(dentry, target, false);
2555 write_sequnlock(&rename_lock);
2556 }
2557 EXPORT_SYMBOL(d_move);
2558
2559 /*
2560 * d_exchange - exchange two dentries
2561 * @dentry1: first dentry
2562 * @dentry2: second dentry
2563 */
2564 void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2565 {
2566 write_seqlock(&rename_lock);
2567
2568 WARN_ON(!dentry1->d_inode);
2569 WARN_ON(!dentry2->d_inode);
2570 WARN_ON(IS_ROOT(dentry1));
2571 WARN_ON(IS_ROOT(dentry2));
2572
2573 __d_move(dentry1, dentry2, true);
2574
2575 write_sequnlock(&rename_lock);
2576 }
2577
2578 /**
2579 * d_ancestor - search for an ancestor
2580 * @p1: ancestor dentry
2581 * @p2: child dentry
2582 *
2583 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2584 * an ancestor of p2, else NULL.
2585 */
2586 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2587 {
2588 struct dentry *p;
2589
2590 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2591 if (p->d_parent == p1)
2592 return p;
2593 }
2594 return NULL;
2595 }
2596
2597 /*
2598 * This helper attempts to cope with remotely renamed directories
2599 *
2600 * It assumes that the caller is already holding
2601 * dentry->d_parent->d_inode->i_mutex, inode->i_lock and rename_lock
2602 *
2603 * Note: If ever the locking in lock_rename() changes, then please
2604 * remember to update this too...
2605 */
2606 static struct dentry *__d_unalias(struct inode *inode,
2607 struct dentry *dentry, struct dentry *alias)
2608 {
2609 struct mutex *m1 = NULL, *m2 = NULL;
2610 struct dentry *ret = ERR_PTR(-EBUSY);
2611
2612 /* If alias and dentry share a parent, then no extra locks required */
2613 if (alias->d_parent == dentry->d_parent)
2614 goto out_unalias;
2615
2616 /* See lock_rename() */
2617 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2618 goto out_err;
2619 m1 = &dentry->d_sb->s_vfs_rename_mutex;
2620 if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
2621 goto out_err;
2622 m2 = &alias->d_parent->d_inode->i_mutex;
2623 out_unalias:
2624 if (likely(!d_mountpoint(alias))) {
2625 __d_move(alias, dentry, false);
2626 ret = alias;
2627 }
2628 out_err:
2629 spin_unlock(&inode->i_lock);
2630 if (m2)
2631 mutex_unlock(m2);
2632 if (m1)
2633 mutex_unlock(m1);
2634 return ret;
2635 }
2636
2637 /*
2638 * Prepare an anonymous dentry for life in the superblock's dentry tree as a
2639 * named dentry in place of the dentry to be replaced.
2640 * returns with anon->d_lock held!
2641 */
2642 static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon)
2643 {
2644 struct dentry *dparent;
2645
2646 dentry_lock_for_move(anon, dentry);
2647
2648 write_seqcount_begin(&dentry->d_seq);
2649 write_seqcount_begin_nested(&anon->d_seq, DENTRY_D_LOCK_NESTED);
2650
2651 dparent = dentry->d_parent;
2652
2653 switch_names(dentry, anon);
2654 swap(dentry->d_name.hash, anon->d_name.hash);
2655
2656 dentry->d_parent = dentry;
2657 list_del_init(&dentry->d_u.d_child);
2658 anon->d_parent = dparent;
2659 list_move(&anon->d_u.d_child, &dparent->d_subdirs);
2660
2661 write_seqcount_end(&dentry->d_seq);
2662 write_seqcount_end(&anon->d_seq);
2663
2664 dentry_unlock_parents_for_move(anon, dentry);
2665 spin_unlock(&dentry->d_lock);
2666
2667 /* anon->d_lock still locked, returns locked */
2668 }
2669
2670 /**
2671 * d_splice_alias - splice a disconnected dentry into the tree if one exists
2672 * @inode: the inode which may have a disconnected dentry
2673 * @dentry: a negative dentry which we want to point to the inode.
2674 *
2675 * If inode is a directory and has an IS_ROOT alias, then d_move that in
2676 * place of the given dentry and return it, else simply d_add the inode
2677 * to the dentry and return NULL.
2678 *
2679 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
2680 * we should error out: directories can't have multiple aliases.
2681 *
2682 * This is needed in the lookup routine of any filesystem that is exportable
2683 * (via knfsd) so that we can build dcache paths to directories effectively.
2684 *
2685 * If a dentry was found and moved, then it is returned. Otherwise NULL
2686 * is returned. This matches the expected return value of ->lookup.
2687 *
2688 * Cluster filesystems may call this function with a negative, hashed dentry.
2689 * In that case, we know that the inode will be a regular file, and also this
2690 * will only occur during atomic_open. So we need to check for the dentry
2691 * being already hashed only in the final case.
2692 */
2693 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
2694 {
2695 struct dentry *new = NULL;
2696
2697 if (IS_ERR(inode))
2698 return ERR_CAST(inode);
2699
2700 if (inode && S_ISDIR(inode->i_mode)) {
2701 spin_lock(&inode->i_lock);
2702 new = __d_find_any_alias(inode);
2703 if (new) {
2704 if (!IS_ROOT(new)) {
2705 spin_unlock(&inode->i_lock);
2706 dput(new);
2707 return ERR_PTR(-EIO);
2708 }
2709 if (d_ancestor(new, dentry)) {
2710 spin_unlock(&inode->i_lock);
2711 dput(new);
2712 return ERR_PTR(-EIO);
2713 }
2714 write_seqlock(&rename_lock);
2715 __d_materialise_dentry(dentry, new);
2716 write_sequnlock(&rename_lock);
2717 __d_drop(new);
2718 _d_rehash(new);
2719 spin_unlock(&new->d_lock);
2720 spin_unlock(&inode->i_lock);
2721 security_d_instantiate(new, inode);
2722 iput(inode);
2723 } else {
2724 /* already taking inode->i_lock, so d_add() by hand */
2725 __d_instantiate(dentry, inode);
2726 spin_unlock(&inode->i_lock);
2727 security_d_instantiate(dentry, inode);
2728 d_rehash(dentry);
2729 }
2730 } else {
2731 d_instantiate(dentry, inode);
2732 if (d_unhashed(dentry))
2733 d_rehash(dentry);
2734 }
2735 return new;
2736 }
2737 EXPORT_SYMBOL(d_splice_alias);
2738
2739 /**
2740 * d_materialise_unique - introduce an inode into the tree
2741 * @dentry: candidate dentry
2742 * @inode: inode to bind to the dentry, to which aliases may be attached
2743 *
2744 * Introduces an dentry into the tree, substituting an extant disconnected
2745 * root directory alias in its place if there is one. Caller must hold the
2746 * i_mutex of the parent directory.
2747 */
2748 struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
2749 {
2750 struct dentry *actual;
2751
2752 BUG_ON(!d_unhashed(dentry));
2753
2754 if (!inode) {
2755 actual = dentry;
2756 __d_instantiate(dentry, NULL);
2757 d_rehash(actual);
2758 goto out_nolock;
2759 }
2760
2761 spin_lock(&inode->i_lock);
2762
2763 if (S_ISDIR(inode->i_mode)) {
2764 struct dentry *alias;
2765
2766 /* Does an aliased dentry already exist? */
2767 alias = __d_find_alias(inode);
2768 if (alias) {
2769 actual = alias;
2770 write_seqlock(&rename_lock);
2771
2772 if (d_ancestor(alias, dentry)) {
2773 /* Check for loops */
2774 actual = ERR_PTR(-ELOOP);
2775 spin_unlock(&inode->i_lock);
2776 } else if (IS_ROOT(alias)) {
2777 /* Is this an anonymous mountpoint that we
2778 * could splice into our tree? */
2779 __d_materialise_dentry(dentry, alias);
2780 write_sequnlock(&rename_lock);
2781 __d_drop(alias);
2782 goto found;
2783 } else {
2784 /* Nope, but we must(!) avoid directory
2785 * aliasing. This drops inode->i_lock */
2786 actual = __d_unalias(inode, dentry, alias);
2787 }
2788 write_sequnlock(&rename_lock);
2789 if (IS_ERR(actual)) {
2790 if (PTR_ERR(actual) == -ELOOP)
2791 pr_warn_ratelimited(
2792 "VFS: Lookup of '%s' in %s %s"
2793 " would have caused loop\n",
2794 dentry->d_name.name,
2795 inode->i_sb->s_type->name,
2796 inode->i_sb->s_id);
2797 dput(alias);
2798 }
2799 goto out_nolock;
2800 }
2801 }
2802
2803 /* Add a unique reference */
2804 actual = __d_instantiate_unique(dentry, inode);
2805 if (!actual)
2806 actual = dentry;
2807 else
2808 BUG_ON(!d_unhashed(actual));
2809
2810 spin_lock(&actual->d_lock);
2811 found:
2812 _d_rehash(actual);
2813 spin_unlock(&actual->d_lock);
2814 spin_unlock(&inode->i_lock);
2815 out_nolock:
2816 if (actual == dentry) {
2817 security_d_instantiate(dentry, inode);
2818 return NULL;
2819 }
2820
2821 iput(inode);
2822 return actual;
2823 }
2824 EXPORT_SYMBOL_GPL(d_materialise_unique);
2825
2826 static int prepend(char **buffer, int *buflen, const char *str, int namelen)
2827 {
2828 *buflen -= namelen;
2829 if (*buflen < 0)
2830 return -ENAMETOOLONG;
2831 *buffer -= namelen;
2832 memcpy(*buffer, str, namelen);
2833 return 0;
2834 }
2835
2836 /**
2837 * prepend_name - prepend a pathname in front of current buffer pointer
2838 * @buffer: buffer pointer
2839 * @buflen: allocated length of the buffer
2840 * @name: name string and length qstr structure
2841 *
2842 * With RCU path tracing, it may race with d_move(). Use ACCESS_ONCE() to
2843 * make sure that either the old or the new name pointer and length are
2844 * fetched. However, there may be mismatch between length and pointer.
2845 * The length cannot be trusted, we need to copy it byte-by-byte until
2846 * the length is reached or a null byte is found. It also prepends "/" at
2847 * the beginning of the name. The sequence number check at the caller will
2848 * retry it again when a d_move() does happen. So any garbage in the buffer
2849 * due to mismatched pointer and length will be discarded.
2850 */
2851 static int prepend_name(char **buffer, int *buflen, struct qstr *name)
2852 {
2853 const char *dname = ACCESS_ONCE(name->name);
2854 u32 dlen = ACCESS_ONCE(name->len);
2855 char *p;
2856
2857 *buflen -= dlen + 1;
2858 if (*buflen < 0)
2859 return -ENAMETOOLONG;
2860 p = *buffer -= dlen + 1;
2861 *p++ = '/';
2862 while (dlen--) {
2863 char c = *dname++;
2864 if (!c)
2865 break;
2866 *p++ = c;
2867 }
2868 return 0;
2869 }
2870
2871 /**
2872 * prepend_path - Prepend path string to a buffer
2873 * @path: the dentry/vfsmount to report
2874 * @root: root vfsmnt/dentry
2875 * @buffer: pointer to the end of the buffer
2876 * @buflen: pointer to buffer length
2877 *
2878 * The function will first try to write out the pathname without taking any
2879 * lock other than the RCU read lock to make sure that dentries won't go away.
2880 * It only checks the sequence number of the global rename_lock as any change
2881 * in the dentry's d_seq will be preceded by changes in the rename_lock
2882 * sequence number. If the sequence number had been changed, it will restart
2883 * the whole pathname back-tracing sequence again by taking the rename_lock.
2884 * In this case, there is no need to take the RCU read lock as the recursive
2885 * parent pointer references will keep the dentry chain alive as long as no
2886 * rename operation is performed.
2887 */
2888 static int prepend_path(const struct path *path,
2889 const struct path *root,
2890 char **buffer, int *buflen)
2891 {
2892 struct dentry *dentry;
2893 struct vfsmount *vfsmnt;
2894 struct mount *mnt;
2895 int error = 0;
2896 unsigned seq, m_seq = 0;
2897 char *bptr;
2898 int blen;
2899
2900 rcu_read_lock();
2901 restart_mnt:
2902 read_seqbegin_or_lock(&mount_lock, &m_seq);
2903 seq = 0;
2904 rcu_read_lock();
2905 restart:
2906 bptr = *buffer;
2907 blen = *buflen;
2908 error = 0;
2909 dentry = path->dentry;
2910 vfsmnt = path->mnt;
2911 mnt = real_mount(vfsmnt);
2912 read_seqbegin_or_lock(&rename_lock, &seq);
2913 while (dentry != root->dentry || vfsmnt != root->mnt) {
2914 struct dentry * parent;
2915
2916 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
2917 struct mount *parent = ACCESS_ONCE(mnt->mnt_parent);
2918 /* Global root? */
2919 if (mnt != parent) {
2920 dentry = ACCESS_ONCE(mnt->mnt_mountpoint);
2921 mnt = parent;
2922 vfsmnt = &mnt->mnt;
2923 continue;
2924 }
2925 /*
2926 * Filesystems needing to implement special "root names"
2927 * should do so with ->d_dname()
2928 */
2929 if (IS_ROOT(dentry) &&
2930 (dentry->d_name.len != 1 ||
2931 dentry->d_name.name[0] != '/')) {
2932 WARN(1, "Root dentry has weird name <%.*s>\n",
2933 (int) dentry->d_name.len,
2934 dentry->d_name.name);
2935 }
2936 if (!error)
2937 error = is_mounted(vfsmnt) ? 1 : 2;
2938 break;
2939 }
2940 parent = dentry->d_parent;
2941 prefetch(parent);
2942 error = prepend_name(&bptr, &blen, &dentry->d_name);
2943 if (error)
2944 break;
2945
2946 dentry = parent;
2947 }
2948 if (!(seq & 1))
2949 rcu_read_unlock();
2950 if (need_seqretry(&rename_lock, seq)) {
2951 seq = 1;
2952 goto restart;
2953 }
2954 done_seqretry(&rename_lock, seq);
2955
2956 if (!(m_seq & 1))
2957 rcu_read_unlock();
2958 if (need_seqretry(&mount_lock, m_seq)) {
2959 m_seq = 1;
2960 goto restart_mnt;
2961 }
2962 done_seqretry(&mount_lock, m_seq);
2963
2964 if (error >= 0 && bptr == *buffer) {
2965 if (--blen < 0)
2966 error = -ENAMETOOLONG;
2967 else
2968 *--bptr = '/';
2969 }
2970 *buffer = bptr;
2971 *buflen = blen;
2972 return error;
2973 }
2974
2975 /**
2976 * __d_path - return the path of a dentry
2977 * @path: the dentry/vfsmount to report
2978 * @root: root vfsmnt/dentry
2979 * @buf: buffer to return value in
2980 * @buflen: buffer length
2981 *
2982 * Convert a dentry into an ASCII path name.
2983 *
2984 * Returns a pointer into the buffer or an error code if the
2985 * path was too long.
2986 *
2987 * "buflen" should be positive.
2988 *
2989 * If the path is not reachable from the supplied root, return %NULL.
2990 */
2991 char *__d_path(const struct path *path,
2992 const struct path *root,
2993 char *buf, int buflen)
2994 {
2995 char *res = buf + buflen;
2996 int error;
2997
2998 prepend(&res, &buflen, "\0", 1);
2999 error = prepend_path(path, root, &res, &buflen);
3000
3001 if (error < 0)
3002 return ERR_PTR(error);
3003 if (error > 0)
3004 return NULL;
3005 return res;
3006 }
3007
3008 char *d_absolute_path(const struct path *path,
3009 char *buf, int buflen)
3010 {
3011 struct path root = {};
3012 char *res = buf + buflen;
3013 int error;
3014
3015 prepend(&res, &buflen, "\0", 1);
3016 error = prepend_path(path, &root, &res, &buflen);
3017
3018 if (error > 1)
3019 error = -EINVAL;
3020 if (error < 0)
3021 return ERR_PTR(error);
3022 return res;
3023 }
3024
3025 /*
3026 * same as __d_path but appends "(deleted)" for unlinked files.
3027 */
3028 static int path_with_deleted(const struct path *path,
3029 const struct path *root,
3030 char **buf, int *buflen)
3031 {
3032 prepend(buf, buflen, "\0", 1);
3033 if (d_unlinked(path->dentry)) {
3034 int error = prepend(buf, buflen, " (deleted)", 10);
3035 if (error)
3036 return error;
3037 }
3038
3039 return prepend_path(path, root, buf, buflen);
3040 }
3041
3042 static int prepend_unreachable(char **buffer, int *buflen)
3043 {
3044 return prepend(buffer, buflen, "(unreachable)", 13);
3045 }
3046
3047 static void get_fs_root_rcu(struct fs_struct *fs, struct path *root)
3048 {
3049 unsigned seq;
3050
3051 do {
3052 seq = read_seqcount_begin(&fs->seq);
3053 *root = fs->root;
3054 } while (read_seqcount_retry(&fs->seq, seq));
3055 }
3056
3057 /**
3058 * d_path - return the path of a dentry
3059 * @path: path to report
3060 * @buf: buffer to return value in
3061 * @buflen: buffer length
3062 *
3063 * Convert a dentry into an ASCII path name. If the entry has been deleted
3064 * the string " (deleted)" is appended. Note that this is ambiguous.
3065 *
3066 * Returns a pointer into the buffer or an error code if the path was
3067 * too long. Note: Callers should use the returned pointer, not the passed
3068 * in buffer, to use the name! The implementation often starts at an offset
3069 * into the buffer, and may leave 0 bytes at the start.
3070 *
3071 * "buflen" should be positive.
3072 */
3073 char *d_path(const struct path *path, char *buf, int buflen)
3074 {
3075 char *res = buf + buflen;
3076 struct path root;
3077 int error;
3078
3079 /*
3080 * We have various synthetic filesystems that never get mounted. On
3081 * these filesystems dentries are never used for lookup purposes, and
3082 * thus don't need to be hashed. They also don't need a name until a
3083 * user wants to identify the object in /proc/pid/fd/. The little hack
3084 * below allows us to generate a name for these objects on demand:
3085 *
3086 * Some pseudo inodes are mountable. When they are mounted
3087 * path->dentry == path->mnt->mnt_root. In that case don't call d_dname
3088 * and instead have d_path return the mounted path.
3089 */
3090 if (path->dentry->d_op && path->dentry->d_op->d_dname &&
3091 (!IS_ROOT(path->dentry) || path->dentry != path->mnt->mnt_root))
3092 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
3093
3094 rcu_read_lock();
3095 get_fs_root_rcu(current->fs, &root);
3096 error = path_with_deleted(path, &root, &res, &buflen);
3097 rcu_read_unlock();
3098
3099 if (error < 0)
3100 res = ERR_PTR(error);
3101 return res;
3102 }
3103 EXPORT_SYMBOL(d_path);
3104
3105 /*
3106 * Helper function for dentry_operations.d_dname() members
3107 */
3108 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
3109 const char *fmt, ...)
3110 {
3111 va_list args;
3112 char temp[64];
3113 int sz;
3114
3115 va_start(args, fmt);
3116 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
3117 va_end(args);
3118
3119 if (sz > sizeof(temp) || sz > buflen)
3120 return ERR_PTR(-ENAMETOOLONG);
3121
3122 buffer += buflen - sz;
3123 return memcpy(buffer, temp, sz);
3124 }
3125
3126 char *simple_dname(struct dentry *dentry, char *buffer, int buflen)
3127 {
3128 char *end = buffer + buflen;
3129 /* these dentries are never renamed, so d_lock is not needed */
3130 if (prepend(&end, &buflen, " (deleted)", 11) ||
3131 prepend(&end, &buflen, dentry->d_name.name, dentry->d_name.len) ||
3132 prepend(&end, &buflen, "/", 1))
3133 end = ERR_PTR(-ENAMETOOLONG);
3134 return end;
3135 }
3136 EXPORT_SYMBOL(simple_dname);
3137
3138 /*
3139 * Write full pathname from the root of the filesystem into the buffer.
3140 */
3141 static char *__dentry_path(struct dentry *d, char *buf, int buflen)
3142 {
3143 struct dentry *dentry;
3144 char *end, *retval;
3145 int len, seq = 0;
3146 int error = 0;
3147
3148 if (buflen < 2)
3149 goto Elong;
3150
3151 rcu_read_lock();
3152 restart:
3153 dentry = d;
3154 end = buf + buflen;
3155 len = buflen;
3156 prepend(&end, &len, "\0", 1);
3157 /* Get '/' right */
3158 retval = end-1;
3159 *retval = '/';
3160 read_seqbegin_or_lock(&rename_lock, &seq);
3161 while (!IS_ROOT(dentry)) {
3162 struct dentry *parent = dentry->d_parent;
3163
3164 prefetch(parent);
3165 error = prepend_name(&end, &len, &dentry->d_name);
3166 if (error)
3167 break;
3168
3169 retval = end;
3170 dentry = parent;
3171 }
3172 if (!(seq & 1))
3173 rcu_read_unlock();
3174 if (need_seqretry(&rename_lock, seq)) {
3175 seq = 1;
3176 goto restart;
3177 }
3178 done_seqretry(&rename_lock, seq);
3179 if (error)
3180 goto Elong;
3181 return retval;
3182 Elong:
3183 return ERR_PTR(-ENAMETOOLONG);
3184 }
3185
3186 char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
3187 {
3188 return __dentry_path(dentry, buf, buflen);
3189 }
3190 EXPORT_SYMBOL(dentry_path_raw);
3191
3192 char *dentry_path(struct dentry *dentry, char *buf, int buflen)
3193 {
3194 char *p = NULL;
3195 char *retval;
3196
3197 if (d_unlinked(dentry)) {
3198 p = buf + buflen;
3199 if (prepend(&p, &buflen, "//deleted", 10) != 0)
3200 goto Elong;
3201 buflen++;
3202 }
3203 retval = __dentry_path(dentry, buf, buflen);
3204 if (!IS_ERR(retval) && p)
3205 *p = '/'; /* restore '/' overriden with '\0' */
3206 return retval;
3207 Elong:
3208 return ERR_PTR(-ENAMETOOLONG);
3209 }
3210
3211 static void get_fs_root_and_pwd_rcu(struct fs_struct *fs, struct path *root,
3212 struct path *pwd)
3213 {
3214 unsigned seq;
3215
3216 do {
3217 seq = read_seqcount_begin(&fs->seq);
3218 *root = fs->root;
3219 *pwd = fs->pwd;
3220 } while (read_seqcount_retry(&fs->seq, seq));
3221 }
3222
3223 /*
3224 * NOTE! The user-level library version returns a
3225 * character pointer. The kernel system call just
3226 * returns the length of the buffer filled (which
3227 * includes the ending '\0' character), or a negative
3228 * error value. So libc would do something like
3229 *
3230 * char *getcwd(char * buf, size_t size)
3231 * {
3232 * int retval;
3233 *
3234 * retval = sys_getcwd(buf, size);
3235 * if (retval >= 0)
3236 * return buf;
3237 * errno = -retval;
3238 * return NULL;
3239 * }
3240 */
3241 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
3242 {
3243 int error;
3244 struct path pwd, root;
3245 char *page = __getname();
3246
3247 if (!page)
3248 return -ENOMEM;
3249
3250 rcu_read_lock();
3251 get_fs_root_and_pwd_rcu(current->fs, &root, &pwd);
3252
3253 error = -ENOENT;
3254 if (!d_unlinked(pwd.dentry)) {
3255 unsigned long len;
3256 char *cwd = page + PATH_MAX;
3257 int buflen = PATH_MAX;
3258
3259 prepend(&cwd, &buflen, "\0", 1);
3260 error = prepend_path(&pwd, &root, &cwd, &buflen);
3261 rcu_read_unlock();
3262
3263 if (error < 0)
3264 goto out;
3265
3266 /* Unreachable from current root */
3267 if (error > 0) {
3268 error = prepend_unreachable(&cwd, &buflen);
3269 if (error)
3270 goto out;
3271 }
3272
3273 error = -ERANGE;
3274 len = PATH_MAX + page - cwd;
3275 if (len <= size) {
3276 error = len;
3277 if (copy_to_user(buf, cwd, len))
3278 error = -EFAULT;
3279 }
3280 } else {
3281 rcu_read_unlock();
3282 }
3283
3284 out:
3285 __putname(page);
3286 return error;
3287 }
3288
3289 /*
3290 * Test whether new_dentry is a subdirectory of old_dentry.
3291 *
3292 * Trivially implemented using the dcache structure
3293 */
3294
3295 /**
3296 * is_subdir - is new dentry a subdirectory of old_dentry
3297 * @new_dentry: new dentry
3298 * @old_dentry: old dentry
3299 *
3300 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
3301 * Returns 0 otherwise.
3302 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3303 */
3304
3305 int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
3306 {
3307 int result;
3308 unsigned seq;
3309
3310 if (new_dentry == old_dentry)
3311 return 1;
3312
3313 do {
3314 /* for restarting inner loop in case of seq retry */
3315 seq = read_seqbegin(&rename_lock);
3316 /*
3317 * Need rcu_readlock to protect against the d_parent trashing
3318 * due to d_move
3319 */
3320 rcu_read_lock();
3321 if (d_ancestor(old_dentry, new_dentry))
3322 result = 1;
3323 else
3324 result = 0;
3325 rcu_read_unlock();
3326 } while (read_seqretry(&rename_lock, seq));
3327
3328 return result;
3329 }
3330
3331 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
3332 {
3333 struct dentry *root = data;
3334 if (dentry != root) {
3335 if (d_unhashed(dentry) || !dentry->d_inode)
3336 return D_WALK_SKIP;
3337
3338 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3339 dentry->d_flags |= DCACHE_GENOCIDE;
3340 dentry->d_lockref.count--;
3341 }
3342 }
3343 return D_WALK_CONTINUE;
3344 }
3345
3346 void d_genocide(struct dentry *parent)
3347 {
3348 d_walk(parent, parent, d_genocide_kill, NULL);
3349 }
3350
3351 void d_tmpfile(struct dentry *dentry, struct inode *inode)
3352 {
3353 inode_dec_link_count(inode);
3354 BUG_ON(dentry->d_name.name != dentry->d_iname ||
3355 !hlist_unhashed(&dentry->d_alias) ||
3356 !d_unlinked(dentry));
3357 spin_lock(&dentry->d_parent->d_lock);
3358 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3359 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3360 (unsigned long long)inode->i_ino);
3361 spin_unlock(&dentry->d_lock);
3362 spin_unlock(&dentry->d_parent->d_lock);
3363 d_instantiate(dentry, inode);
3364 }
3365 EXPORT_SYMBOL(d_tmpfile);
3366
3367 static __initdata unsigned long dhash_entries;
3368 static int __init set_dhash_entries(char *str)
3369 {
3370 if (!str)
3371 return 0;
3372 dhash_entries = simple_strtoul(str, &str, 0);
3373 return 1;
3374 }
3375 __setup("dhash_entries=", set_dhash_entries);
3376
3377 static void __init dcache_init_early(void)
3378 {
3379 unsigned int loop;
3380
3381 /* If hashes are distributed across NUMA nodes, defer
3382 * hash allocation until vmalloc space is available.
3383 */
3384 if (hashdist)
3385 return;
3386
3387 dentry_hashtable =
3388 alloc_large_system_hash("Dentry cache",
3389 sizeof(struct hlist_bl_head),
3390 dhash_entries,
3391 13,
3392 HASH_EARLY,
3393 &d_hash_shift,
3394 &d_hash_mask,
3395 0,
3396 0);
3397
3398 for (loop = 0; loop < (1U << d_hash_shift); loop++)
3399 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3400 }
3401
3402 static void __init dcache_init(void)
3403 {
3404 unsigned int loop;
3405
3406 /*
3407 * A constructor could be added for stable state like the lists,
3408 * but it is probably not worth it because of the cache nature
3409 * of the dcache.
3410 */
3411 dentry_cache = KMEM_CACHE(dentry,
3412 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
3413
3414 /* Hash may have been set up in dcache_init_early */
3415 if (!hashdist)
3416 return;
3417
3418 dentry_hashtable =
3419 alloc_large_system_hash("Dentry cache",
3420 sizeof(struct hlist_bl_head),
3421 dhash_entries,
3422 13,
3423 0,
3424 &d_hash_shift,
3425 &d_hash_mask,
3426 0,
3427 0);
3428
3429 for (loop = 0; loop < (1U << d_hash_shift); loop++)
3430 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3431 }
3432
3433 /* SLAB cache for __getname() consumers */
3434 struct kmem_cache *names_cachep __read_mostly;
3435 EXPORT_SYMBOL(names_cachep);
3436
3437 EXPORT_SYMBOL(d_genocide);
3438
3439 void __init vfs_caches_init_early(void)
3440 {
3441 dcache_init_early();
3442 inode_init_early();
3443 }
3444
3445 void __init vfs_caches_init(unsigned long mempages)
3446 {
3447 unsigned long reserve;
3448
3449 /* Base hash sizes on available memory, with a reserve equal to
3450 150% of current kernel size */
3451
3452 reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
3453 mempages -= reserve;
3454
3455 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
3456 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3457
3458 dcache_init();
3459 inode_init();
3460 files_init(mempages);
3461 mnt_init();
3462 bdev_cache_init();
3463 chrdev_init();
3464 }