]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - fs/dcache.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux
[mirror_ubuntu-zesty-kernel.git] / fs / dcache.c
1 /*
2 * fs/dcache.c
3 *
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
8
9 /*
10 * Notes on the allocation strategy:
11 *
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
15 */
16
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/export.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <asm/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/rculist_bl.h>
38 #include <linux/prefetch.h>
39 #include <linux/ratelimit.h>
40 #include "internal.h"
41 #include "mount.h"
42
43 /*
44 * Usage:
45 * dcache->d_inode->i_lock protects:
46 * - i_dentry, d_alias, d_inode of aliases
47 * dcache_hash_bucket lock protects:
48 * - the dcache hash table
49 * s_anon bl list spinlock protects:
50 * - the s_anon list (see __d_drop)
51 * dcache_lru_lock protects:
52 * - the dcache lru lists and counters
53 * d_lock protects:
54 * - d_flags
55 * - d_name
56 * - d_lru
57 * - d_count
58 * - d_unhashed()
59 * - d_parent and d_subdirs
60 * - childrens' d_child and d_parent
61 * - d_alias, d_inode
62 *
63 * Ordering:
64 * dentry->d_inode->i_lock
65 * dentry->d_lock
66 * dcache_lru_lock
67 * dcache_hash_bucket lock
68 * s_anon lock
69 *
70 * If there is an ancestor relationship:
71 * dentry->d_parent->...->d_parent->d_lock
72 * ...
73 * dentry->d_parent->d_lock
74 * dentry->d_lock
75 *
76 * If no ancestor relationship:
77 * if (dentry1 < dentry2)
78 * dentry1->d_lock
79 * dentry2->d_lock
80 */
81 int sysctl_vfs_cache_pressure __read_mostly = 100;
82 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
83
84 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_lru_lock);
85 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
86
87 EXPORT_SYMBOL(rename_lock);
88
89 static struct kmem_cache *dentry_cache __read_mostly;
90
91 /**
92 * read_seqbegin_or_lock - begin a sequence number check or locking block
93 * lock: sequence lock
94 * seq : sequence number to be checked
95 *
96 * First try it once optimistically without taking the lock. If that fails,
97 * take the lock. The sequence number is also used as a marker for deciding
98 * whether to be a reader (even) or writer (odd).
99 * N.B. seq must be initialized to an even number to begin with.
100 */
101 static inline void read_seqbegin_or_lock(seqlock_t *lock, int *seq)
102 {
103 if (!(*seq & 1)) /* Even */
104 *seq = read_seqbegin(lock);
105 else /* Odd */
106 write_seqlock(lock);
107 }
108
109 static inline int need_seqretry(seqlock_t *lock, int seq)
110 {
111 return !(seq & 1) && read_seqretry(lock, seq);
112 }
113
114 static inline void done_seqretry(seqlock_t *lock, int seq)
115 {
116 if (seq & 1)
117 write_sequnlock(lock);
118 }
119
120 /*
121 * This is the single most critical data structure when it comes
122 * to the dcache: the hashtable for lookups. Somebody should try
123 * to make this good - I've just made it work.
124 *
125 * This hash-function tries to avoid losing too many bits of hash
126 * information, yet avoid using a prime hash-size or similar.
127 */
128 #define D_HASHBITS d_hash_shift
129 #define D_HASHMASK d_hash_mask
130
131 static unsigned int d_hash_mask __read_mostly;
132 static unsigned int d_hash_shift __read_mostly;
133
134 static struct hlist_bl_head *dentry_hashtable __read_mostly;
135
136 static inline struct hlist_bl_head *d_hash(const struct dentry *parent,
137 unsigned int hash)
138 {
139 hash += (unsigned long) parent / L1_CACHE_BYTES;
140 hash = hash + (hash >> D_HASHBITS);
141 return dentry_hashtable + (hash & D_HASHMASK);
142 }
143
144 /* Statistics gathering. */
145 struct dentry_stat_t dentry_stat = {
146 .age_limit = 45,
147 };
148
149 static DEFINE_PER_CPU(unsigned int, nr_dentry);
150
151 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
152 static int get_nr_dentry(void)
153 {
154 int i;
155 int sum = 0;
156 for_each_possible_cpu(i)
157 sum += per_cpu(nr_dentry, i);
158 return sum < 0 ? 0 : sum;
159 }
160
161 int proc_nr_dentry(ctl_table *table, int write, void __user *buffer,
162 size_t *lenp, loff_t *ppos)
163 {
164 dentry_stat.nr_dentry = get_nr_dentry();
165 return proc_dointvec(table, write, buffer, lenp, ppos);
166 }
167 #endif
168
169 /*
170 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
171 * The strings are both count bytes long, and count is non-zero.
172 */
173 #ifdef CONFIG_DCACHE_WORD_ACCESS
174
175 #include <asm/word-at-a-time.h>
176 /*
177 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
178 * aligned allocation for this particular component. We don't
179 * strictly need the load_unaligned_zeropad() safety, but it
180 * doesn't hurt either.
181 *
182 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
183 * need the careful unaligned handling.
184 */
185 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
186 {
187 unsigned long a,b,mask;
188
189 for (;;) {
190 a = *(unsigned long *)cs;
191 b = load_unaligned_zeropad(ct);
192 if (tcount < sizeof(unsigned long))
193 break;
194 if (unlikely(a != b))
195 return 1;
196 cs += sizeof(unsigned long);
197 ct += sizeof(unsigned long);
198 tcount -= sizeof(unsigned long);
199 if (!tcount)
200 return 0;
201 }
202 mask = ~(~0ul << tcount*8);
203 return unlikely(!!((a ^ b) & mask));
204 }
205
206 #else
207
208 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
209 {
210 do {
211 if (*cs != *ct)
212 return 1;
213 cs++;
214 ct++;
215 tcount--;
216 } while (tcount);
217 return 0;
218 }
219
220 #endif
221
222 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
223 {
224 const unsigned char *cs;
225 /*
226 * Be careful about RCU walk racing with rename:
227 * use ACCESS_ONCE to fetch the name pointer.
228 *
229 * NOTE! Even if a rename will mean that the length
230 * was not loaded atomically, we don't care. The
231 * RCU walk will check the sequence count eventually,
232 * and catch it. And we won't overrun the buffer,
233 * because we're reading the name pointer atomically,
234 * and a dentry name is guaranteed to be properly
235 * terminated with a NUL byte.
236 *
237 * End result: even if 'len' is wrong, we'll exit
238 * early because the data cannot match (there can
239 * be no NUL in the ct/tcount data)
240 */
241 cs = ACCESS_ONCE(dentry->d_name.name);
242 smp_read_barrier_depends();
243 return dentry_string_cmp(cs, ct, tcount);
244 }
245
246 static void __d_free(struct rcu_head *head)
247 {
248 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
249
250 WARN_ON(!hlist_unhashed(&dentry->d_alias));
251 if (dname_external(dentry))
252 kfree(dentry->d_name.name);
253 kmem_cache_free(dentry_cache, dentry);
254 }
255
256 /*
257 * no locks, please.
258 */
259 static void d_free(struct dentry *dentry)
260 {
261 BUG_ON((int)dentry->d_lockref.count > 0);
262 this_cpu_dec(nr_dentry);
263 if (dentry->d_op && dentry->d_op->d_release)
264 dentry->d_op->d_release(dentry);
265
266 /* if dentry was never visible to RCU, immediate free is OK */
267 if (!(dentry->d_flags & DCACHE_RCUACCESS))
268 __d_free(&dentry->d_u.d_rcu);
269 else
270 call_rcu(&dentry->d_u.d_rcu, __d_free);
271 }
272
273 /**
274 * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
275 * @dentry: the target dentry
276 * After this call, in-progress rcu-walk path lookup will fail. This
277 * should be called after unhashing, and after changing d_inode (if
278 * the dentry has not already been unhashed).
279 */
280 static inline void dentry_rcuwalk_barrier(struct dentry *dentry)
281 {
282 assert_spin_locked(&dentry->d_lock);
283 /* Go through a barrier */
284 write_seqcount_barrier(&dentry->d_seq);
285 }
286
287 /*
288 * Release the dentry's inode, using the filesystem
289 * d_iput() operation if defined. Dentry has no refcount
290 * and is unhashed.
291 */
292 static void dentry_iput(struct dentry * dentry)
293 __releases(dentry->d_lock)
294 __releases(dentry->d_inode->i_lock)
295 {
296 struct inode *inode = dentry->d_inode;
297 if (inode) {
298 dentry->d_inode = NULL;
299 hlist_del_init(&dentry->d_alias);
300 spin_unlock(&dentry->d_lock);
301 spin_unlock(&inode->i_lock);
302 if (!inode->i_nlink)
303 fsnotify_inoderemove(inode);
304 if (dentry->d_op && dentry->d_op->d_iput)
305 dentry->d_op->d_iput(dentry, inode);
306 else
307 iput(inode);
308 } else {
309 spin_unlock(&dentry->d_lock);
310 }
311 }
312
313 /*
314 * Release the dentry's inode, using the filesystem
315 * d_iput() operation if defined. dentry remains in-use.
316 */
317 static void dentry_unlink_inode(struct dentry * dentry)
318 __releases(dentry->d_lock)
319 __releases(dentry->d_inode->i_lock)
320 {
321 struct inode *inode = dentry->d_inode;
322 dentry->d_inode = NULL;
323 hlist_del_init(&dentry->d_alias);
324 dentry_rcuwalk_barrier(dentry);
325 spin_unlock(&dentry->d_lock);
326 spin_unlock(&inode->i_lock);
327 if (!inode->i_nlink)
328 fsnotify_inoderemove(inode);
329 if (dentry->d_op && dentry->d_op->d_iput)
330 dentry->d_op->d_iput(dentry, inode);
331 else
332 iput(inode);
333 }
334
335 /*
336 * dentry_lru_(add|del|prune|move_tail) must be called with d_lock held.
337 */
338 static void dentry_lru_add(struct dentry *dentry)
339 {
340 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST))) {
341 spin_lock(&dcache_lru_lock);
342 dentry->d_flags |= DCACHE_LRU_LIST;
343 list_add(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
344 dentry->d_sb->s_nr_dentry_unused++;
345 dentry_stat.nr_unused++;
346 spin_unlock(&dcache_lru_lock);
347 }
348 }
349
350 static void __dentry_lru_del(struct dentry *dentry)
351 {
352 list_del_init(&dentry->d_lru);
353 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
354 dentry->d_sb->s_nr_dentry_unused--;
355 dentry_stat.nr_unused--;
356 }
357
358 /*
359 * Remove a dentry with references from the LRU.
360 */
361 static void dentry_lru_del(struct dentry *dentry)
362 {
363 if (!list_empty(&dentry->d_lru)) {
364 spin_lock(&dcache_lru_lock);
365 __dentry_lru_del(dentry);
366 spin_unlock(&dcache_lru_lock);
367 }
368 }
369
370 static void dentry_lru_move_list(struct dentry *dentry, struct list_head *list)
371 {
372 spin_lock(&dcache_lru_lock);
373 if (list_empty(&dentry->d_lru)) {
374 dentry->d_flags |= DCACHE_LRU_LIST;
375 list_add_tail(&dentry->d_lru, list);
376 dentry->d_sb->s_nr_dentry_unused++;
377 dentry_stat.nr_unused++;
378 } else {
379 list_move_tail(&dentry->d_lru, list);
380 }
381 spin_unlock(&dcache_lru_lock);
382 }
383
384 /**
385 * d_kill - kill dentry and return parent
386 * @dentry: dentry to kill
387 * @parent: parent dentry
388 *
389 * The dentry must already be unhashed and removed from the LRU.
390 *
391 * If this is the root of the dentry tree, return NULL.
392 *
393 * dentry->d_lock and parent->d_lock must be held by caller, and are dropped by
394 * d_kill.
395 */
396 static struct dentry *d_kill(struct dentry *dentry, struct dentry *parent)
397 __releases(dentry->d_lock)
398 __releases(parent->d_lock)
399 __releases(dentry->d_inode->i_lock)
400 {
401 list_del(&dentry->d_u.d_child);
402 /*
403 * Inform try_to_ascend() that we are no longer attached to the
404 * dentry tree
405 */
406 dentry->d_flags |= DCACHE_DENTRY_KILLED;
407 if (parent)
408 spin_unlock(&parent->d_lock);
409 dentry_iput(dentry);
410 /*
411 * dentry_iput drops the locks, at which point nobody (except
412 * transient RCU lookups) can reach this dentry.
413 */
414 d_free(dentry);
415 return parent;
416 }
417
418 /*
419 * Unhash a dentry without inserting an RCU walk barrier or checking that
420 * dentry->d_lock is locked. The caller must take care of that, if
421 * appropriate.
422 */
423 static void __d_shrink(struct dentry *dentry)
424 {
425 if (!d_unhashed(dentry)) {
426 struct hlist_bl_head *b;
427 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
428 b = &dentry->d_sb->s_anon;
429 else
430 b = d_hash(dentry->d_parent, dentry->d_name.hash);
431
432 hlist_bl_lock(b);
433 __hlist_bl_del(&dentry->d_hash);
434 dentry->d_hash.pprev = NULL;
435 hlist_bl_unlock(b);
436 }
437 }
438
439 /**
440 * d_drop - drop a dentry
441 * @dentry: dentry to drop
442 *
443 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
444 * be found through a VFS lookup any more. Note that this is different from
445 * deleting the dentry - d_delete will try to mark the dentry negative if
446 * possible, giving a successful _negative_ lookup, while d_drop will
447 * just make the cache lookup fail.
448 *
449 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
450 * reason (NFS timeouts or autofs deletes).
451 *
452 * __d_drop requires dentry->d_lock.
453 */
454 void __d_drop(struct dentry *dentry)
455 {
456 if (!d_unhashed(dentry)) {
457 __d_shrink(dentry);
458 dentry_rcuwalk_barrier(dentry);
459 }
460 }
461 EXPORT_SYMBOL(__d_drop);
462
463 void d_drop(struct dentry *dentry)
464 {
465 spin_lock(&dentry->d_lock);
466 __d_drop(dentry);
467 spin_unlock(&dentry->d_lock);
468 }
469 EXPORT_SYMBOL(d_drop);
470
471 /*
472 * Finish off a dentry we've decided to kill.
473 * dentry->d_lock must be held, returns with it unlocked.
474 * If ref is non-zero, then decrement the refcount too.
475 * Returns dentry requiring refcount drop, or NULL if we're done.
476 */
477 static inline struct dentry *dentry_kill(struct dentry *dentry)
478 __releases(dentry->d_lock)
479 {
480 struct inode *inode;
481 struct dentry *parent;
482
483 inode = dentry->d_inode;
484 if (inode && !spin_trylock(&inode->i_lock)) {
485 relock:
486 spin_unlock(&dentry->d_lock);
487 cpu_relax();
488 return dentry; /* try again with same dentry */
489 }
490 if (IS_ROOT(dentry))
491 parent = NULL;
492 else
493 parent = dentry->d_parent;
494 if (parent && !spin_trylock(&parent->d_lock)) {
495 if (inode)
496 spin_unlock(&inode->i_lock);
497 goto relock;
498 }
499
500 /*
501 * The dentry is now unrecoverably dead to the world.
502 */
503 lockref_mark_dead(&dentry->d_lockref);
504
505 /*
506 * inform the fs via d_prune that this dentry is about to be
507 * unhashed and destroyed.
508 */
509 if ((dentry->d_flags & DCACHE_OP_PRUNE) && !d_unhashed(dentry))
510 dentry->d_op->d_prune(dentry);
511
512 dentry_lru_del(dentry);
513 /* if it was on the hash then remove it */
514 __d_drop(dentry);
515 return d_kill(dentry, parent);
516 }
517
518 /*
519 * This is dput
520 *
521 * This is complicated by the fact that we do not want to put
522 * dentries that are no longer on any hash chain on the unused
523 * list: we'd much rather just get rid of them immediately.
524 *
525 * However, that implies that we have to traverse the dentry
526 * tree upwards to the parents which might _also_ now be
527 * scheduled for deletion (it may have been only waiting for
528 * its last child to go away).
529 *
530 * This tail recursion is done by hand as we don't want to depend
531 * on the compiler to always get this right (gcc generally doesn't).
532 * Real recursion would eat up our stack space.
533 */
534
535 /*
536 * dput - release a dentry
537 * @dentry: dentry to release
538 *
539 * Release a dentry. This will drop the usage count and if appropriate
540 * call the dentry unlink method as well as removing it from the queues and
541 * releasing its resources. If the parent dentries were scheduled for release
542 * they too may now get deleted.
543 */
544 void dput(struct dentry *dentry)
545 {
546 if (unlikely(!dentry))
547 return;
548
549 repeat:
550 if (lockref_put_or_lock(&dentry->d_lockref))
551 return;
552
553 /* Unreachable? Get rid of it */
554 if (unlikely(d_unhashed(dentry)))
555 goto kill_it;
556
557 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
558 if (dentry->d_op->d_delete(dentry))
559 goto kill_it;
560 }
561
562 dentry->d_flags |= DCACHE_REFERENCED;
563 dentry_lru_add(dentry);
564
565 dentry->d_lockref.count--;
566 spin_unlock(&dentry->d_lock);
567 return;
568
569 kill_it:
570 dentry = dentry_kill(dentry);
571 if (dentry)
572 goto repeat;
573 }
574 EXPORT_SYMBOL(dput);
575
576 /**
577 * d_invalidate - invalidate a dentry
578 * @dentry: dentry to invalidate
579 *
580 * Try to invalidate the dentry if it turns out to be
581 * possible. If there are other dentries that can be
582 * reached through this one we can't delete it and we
583 * return -EBUSY. On success we return 0.
584 *
585 * no dcache lock.
586 */
587
588 int d_invalidate(struct dentry * dentry)
589 {
590 /*
591 * If it's already been dropped, return OK.
592 */
593 spin_lock(&dentry->d_lock);
594 if (d_unhashed(dentry)) {
595 spin_unlock(&dentry->d_lock);
596 return 0;
597 }
598 /*
599 * Check whether to do a partial shrink_dcache
600 * to get rid of unused child entries.
601 */
602 if (!list_empty(&dentry->d_subdirs)) {
603 spin_unlock(&dentry->d_lock);
604 shrink_dcache_parent(dentry);
605 spin_lock(&dentry->d_lock);
606 }
607
608 /*
609 * Somebody else still using it?
610 *
611 * If it's a directory, we can't drop it
612 * for fear of somebody re-populating it
613 * with children (even though dropping it
614 * would make it unreachable from the root,
615 * we might still populate it if it was a
616 * working directory or similar).
617 * We also need to leave mountpoints alone,
618 * directory or not.
619 */
620 if (dentry->d_lockref.count > 1 && dentry->d_inode) {
621 if (S_ISDIR(dentry->d_inode->i_mode) || d_mountpoint(dentry)) {
622 spin_unlock(&dentry->d_lock);
623 return -EBUSY;
624 }
625 }
626
627 __d_drop(dentry);
628 spin_unlock(&dentry->d_lock);
629 return 0;
630 }
631 EXPORT_SYMBOL(d_invalidate);
632
633 /* This must be called with d_lock held */
634 static inline void __dget_dlock(struct dentry *dentry)
635 {
636 dentry->d_lockref.count++;
637 }
638
639 static inline void __dget(struct dentry *dentry)
640 {
641 lockref_get(&dentry->d_lockref);
642 }
643
644 struct dentry *dget_parent(struct dentry *dentry)
645 {
646 int gotref;
647 struct dentry *ret;
648
649 /*
650 * Do optimistic parent lookup without any
651 * locking.
652 */
653 rcu_read_lock();
654 ret = ACCESS_ONCE(dentry->d_parent);
655 gotref = lockref_get_not_zero(&ret->d_lockref);
656 rcu_read_unlock();
657 if (likely(gotref)) {
658 if (likely(ret == ACCESS_ONCE(dentry->d_parent)))
659 return ret;
660 dput(ret);
661 }
662
663 repeat:
664 /*
665 * Don't need rcu_dereference because we re-check it was correct under
666 * the lock.
667 */
668 rcu_read_lock();
669 ret = dentry->d_parent;
670 spin_lock(&ret->d_lock);
671 if (unlikely(ret != dentry->d_parent)) {
672 spin_unlock(&ret->d_lock);
673 rcu_read_unlock();
674 goto repeat;
675 }
676 rcu_read_unlock();
677 BUG_ON(!ret->d_lockref.count);
678 ret->d_lockref.count++;
679 spin_unlock(&ret->d_lock);
680 return ret;
681 }
682 EXPORT_SYMBOL(dget_parent);
683
684 /**
685 * d_find_alias - grab a hashed alias of inode
686 * @inode: inode in question
687 * @want_discon: flag, used by d_splice_alias, to request
688 * that only a DISCONNECTED alias be returned.
689 *
690 * If inode has a hashed alias, or is a directory and has any alias,
691 * acquire the reference to alias and return it. Otherwise return NULL.
692 * Notice that if inode is a directory there can be only one alias and
693 * it can be unhashed only if it has no children, or if it is the root
694 * of a filesystem.
695 *
696 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
697 * any other hashed alias over that one unless @want_discon is set,
698 * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
699 */
700 static struct dentry *__d_find_alias(struct inode *inode, int want_discon)
701 {
702 struct dentry *alias, *discon_alias;
703
704 again:
705 discon_alias = NULL;
706 hlist_for_each_entry(alias, &inode->i_dentry, d_alias) {
707 spin_lock(&alias->d_lock);
708 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
709 if (IS_ROOT(alias) &&
710 (alias->d_flags & DCACHE_DISCONNECTED)) {
711 discon_alias = alias;
712 } else if (!want_discon) {
713 __dget_dlock(alias);
714 spin_unlock(&alias->d_lock);
715 return alias;
716 }
717 }
718 spin_unlock(&alias->d_lock);
719 }
720 if (discon_alias) {
721 alias = discon_alias;
722 spin_lock(&alias->d_lock);
723 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
724 if (IS_ROOT(alias) &&
725 (alias->d_flags & DCACHE_DISCONNECTED)) {
726 __dget_dlock(alias);
727 spin_unlock(&alias->d_lock);
728 return alias;
729 }
730 }
731 spin_unlock(&alias->d_lock);
732 goto again;
733 }
734 return NULL;
735 }
736
737 struct dentry *d_find_alias(struct inode *inode)
738 {
739 struct dentry *de = NULL;
740
741 if (!hlist_empty(&inode->i_dentry)) {
742 spin_lock(&inode->i_lock);
743 de = __d_find_alias(inode, 0);
744 spin_unlock(&inode->i_lock);
745 }
746 return de;
747 }
748 EXPORT_SYMBOL(d_find_alias);
749
750 /*
751 * Try to kill dentries associated with this inode.
752 * WARNING: you must own a reference to inode.
753 */
754 void d_prune_aliases(struct inode *inode)
755 {
756 struct dentry *dentry;
757 restart:
758 spin_lock(&inode->i_lock);
759 hlist_for_each_entry(dentry, &inode->i_dentry, d_alias) {
760 spin_lock(&dentry->d_lock);
761 if (!dentry->d_lockref.count) {
762 /*
763 * inform the fs via d_prune that this dentry
764 * is about to be unhashed and destroyed.
765 */
766 if ((dentry->d_flags & DCACHE_OP_PRUNE) &&
767 !d_unhashed(dentry))
768 dentry->d_op->d_prune(dentry);
769
770 __dget_dlock(dentry);
771 __d_drop(dentry);
772 spin_unlock(&dentry->d_lock);
773 spin_unlock(&inode->i_lock);
774 dput(dentry);
775 goto restart;
776 }
777 spin_unlock(&dentry->d_lock);
778 }
779 spin_unlock(&inode->i_lock);
780 }
781 EXPORT_SYMBOL(d_prune_aliases);
782
783 /*
784 * Try to throw away a dentry - free the inode, dput the parent.
785 * Requires dentry->d_lock is held, and dentry->d_count == 0.
786 * Releases dentry->d_lock.
787 *
788 * This may fail if locks cannot be acquired no problem, just try again.
789 */
790 static void try_prune_one_dentry(struct dentry *dentry)
791 __releases(dentry->d_lock)
792 {
793 struct dentry *parent;
794
795 parent = dentry_kill(dentry);
796 /*
797 * If dentry_kill returns NULL, we have nothing more to do.
798 * if it returns the same dentry, trylocks failed. In either
799 * case, just loop again.
800 *
801 * Otherwise, we need to prune ancestors too. This is necessary
802 * to prevent quadratic behavior of shrink_dcache_parent(), but
803 * is also expected to be beneficial in reducing dentry cache
804 * fragmentation.
805 */
806 if (!parent)
807 return;
808 if (parent == dentry)
809 return;
810
811 /* Prune ancestors. */
812 dentry = parent;
813 while (dentry) {
814 if (lockref_put_or_lock(&dentry->d_lockref))
815 return;
816 dentry = dentry_kill(dentry);
817 }
818 }
819
820 static void shrink_dentry_list(struct list_head *list)
821 {
822 struct dentry *dentry;
823
824 rcu_read_lock();
825 for (;;) {
826 dentry = list_entry_rcu(list->prev, struct dentry, d_lru);
827 if (&dentry->d_lru == list)
828 break; /* empty */
829 spin_lock(&dentry->d_lock);
830 if (dentry != list_entry(list->prev, struct dentry, d_lru)) {
831 spin_unlock(&dentry->d_lock);
832 continue;
833 }
834
835 /*
836 * We found an inuse dentry which was not removed from
837 * the LRU because of laziness during lookup. Do not free
838 * it - just keep it off the LRU list.
839 */
840 if (dentry->d_lockref.count) {
841 dentry_lru_del(dentry);
842 spin_unlock(&dentry->d_lock);
843 continue;
844 }
845
846 rcu_read_unlock();
847
848 try_prune_one_dentry(dentry);
849
850 rcu_read_lock();
851 }
852 rcu_read_unlock();
853 }
854
855 /**
856 * prune_dcache_sb - shrink the dcache
857 * @sb: superblock
858 * @count: number of entries to try to free
859 *
860 * Attempt to shrink the superblock dcache LRU by @count entries. This is
861 * done when we need more memory an called from the superblock shrinker
862 * function.
863 *
864 * This function may fail to free any resources if all the dentries are in
865 * use.
866 */
867 void prune_dcache_sb(struct super_block *sb, int count)
868 {
869 struct dentry *dentry;
870 LIST_HEAD(referenced);
871 LIST_HEAD(tmp);
872
873 relock:
874 spin_lock(&dcache_lru_lock);
875 while (!list_empty(&sb->s_dentry_lru)) {
876 dentry = list_entry(sb->s_dentry_lru.prev,
877 struct dentry, d_lru);
878 BUG_ON(dentry->d_sb != sb);
879
880 if (!spin_trylock(&dentry->d_lock)) {
881 spin_unlock(&dcache_lru_lock);
882 cpu_relax();
883 goto relock;
884 }
885
886 if (dentry->d_flags & DCACHE_REFERENCED) {
887 dentry->d_flags &= ~DCACHE_REFERENCED;
888 list_move(&dentry->d_lru, &referenced);
889 spin_unlock(&dentry->d_lock);
890 } else {
891 list_move_tail(&dentry->d_lru, &tmp);
892 dentry->d_flags |= DCACHE_SHRINK_LIST;
893 spin_unlock(&dentry->d_lock);
894 if (!--count)
895 break;
896 }
897 cond_resched_lock(&dcache_lru_lock);
898 }
899 if (!list_empty(&referenced))
900 list_splice(&referenced, &sb->s_dentry_lru);
901 spin_unlock(&dcache_lru_lock);
902
903 shrink_dentry_list(&tmp);
904 }
905
906 /**
907 * shrink_dcache_sb - shrink dcache for a superblock
908 * @sb: superblock
909 *
910 * Shrink the dcache for the specified super block. This is used to free
911 * the dcache before unmounting a file system.
912 */
913 void shrink_dcache_sb(struct super_block *sb)
914 {
915 LIST_HEAD(tmp);
916
917 spin_lock(&dcache_lru_lock);
918 while (!list_empty(&sb->s_dentry_lru)) {
919 list_splice_init(&sb->s_dentry_lru, &tmp);
920 spin_unlock(&dcache_lru_lock);
921 shrink_dentry_list(&tmp);
922 spin_lock(&dcache_lru_lock);
923 }
924 spin_unlock(&dcache_lru_lock);
925 }
926 EXPORT_SYMBOL(shrink_dcache_sb);
927
928 /*
929 * destroy a single subtree of dentries for unmount
930 * - see the comments on shrink_dcache_for_umount() for a description of the
931 * locking
932 */
933 static void shrink_dcache_for_umount_subtree(struct dentry *dentry)
934 {
935 struct dentry *parent;
936
937 BUG_ON(!IS_ROOT(dentry));
938
939 for (;;) {
940 /* descend to the first leaf in the current subtree */
941 while (!list_empty(&dentry->d_subdirs))
942 dentry = list_entry(dentry->d_subdirs.next,
943 struct dentry, d_u.d_child);
944
945 /* consume the dentries from this leaf up through its parents
946 * until we find one with children or run out altogether */
947 do {
948 struct inode *inode;
949
950 /*
951 * inform the fs that this dentry is about to be
952 * unhashed and destroyed.
953 */
954 if ((dentry->d_flags & DCACHE_OP_PRUNE) &&
955 !d_unhashed(dentry))
956 dentry->d_op->d_prune(dentry);
957
958 dentry_lru_del(dentry);
959 __d_shrink(dentry);
960
961 if (dentry->d_lockref.count != 0) {
962 printk(KERN_ERR
963 "BUG: Dentry %p{i=%lx,n=%s}"
964 " still in use (%d)"
965 " [unmount of %s %s]\n",
966 dentry,
967 dentry->d_inode ?
968 dentry->d_inode->i_ino : 0UL,
969 dentry->d_name.name,
970 dentry->d_lockref.count,
971 dentry->d_sb->s_type->name,
972 dentry->d_sb->s_id);
973 BUG();
974 }
975
976 if (IS_ROOT(dentry)) {
977 parent = NULL;
978 list_del(&dentry->d_u.d_child);
979 } else {
980 parent = dentry->d_parent;
981 parent->d_lockref.count--;
982 list_del(&dentry->d_u.d_child);
983 }
984
985 inode = dentry->d_inode;
986 if (inode) {
987 dentry->d_inode = NULL;
988 hlist_del_init(&dentry->d_alias);
989 if (dentry->d_op && dentry->d_op->d_iput)
990 dentry->d_op->d_iput(dentry, inode);
991 else
992 iput(inode);
993 }
994
995 d_free(dentry);
996
997 /* finished when we fall off the top of the tree,
998 * otherwise we ascend to the parent and move to the
999 * next sibling if there is one */
1000 if (!parent)
1001 return;
1002 dentry = parent;
1003 } while (list_empty(&dentry->d_subdirs));
1004
1005 dentry = list_entry(dentry->d_subdirs.next,
1006 struct dentry, d_u.d_child);
1007 }
1008 }
1009
1010 /*
1011 * destroy the dentries attached to a superblock on unmounting
1012 * - we don't need to use dentry->d_lock because:
1013 * - the superblock is detached from all mountings and open files, so the
1014 * dentry trees will not be rearranged by the VFS
1015 * - s_umount is write-locked, so the memory pressure shrinker will ignore
1016 * any dentries belonging to this superblock that it comes across
1017 * - the filesystem itself is no longer permitted to rearrange the dentries
1018 * in this superblock
1019 */
1020 void shrink_dcache_for_umount(struct super_block *sb)
1021 {
1022 struct dentry *dentry;
1023
1024 if (down_read_trylock(&sb->s_umount))
1025 BUG();
1026
1027 dentry = sb->s_root;
1028 sb->s_root = NULL;
1029 dentry->d_lockref.count--;
1030 shrink_dcache_for_umount_subtree(dentry);
1031
1032 while (!hlist_bl_empty(&sb->s_anon)) {
1033 dentry = hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash);
1034 shrink_dcache_for_umount_subtree(dentry);
1035 }
1036 }
1037
1038 /*
1039 * This tries to ascend one level of parenthood, but
1040 * we can race with renaming, so we need to re-check
1041 * the parenthood after dropping the lock and check
1042 * that the sequence number still matches.
1043 */
1044 static struct dentry *try_to_ascend(struct dentry *old, unsigned seq)
1045 {
1046 struct dentry *new = old->d_parent;
1047
1048 rcu_read_lock();
1049 spin_unlock(&old->d_lock);
1050 spin_lock(&new->d_lock);
1051
1052 /*
1053 * might go back up the wrong parent if we have had a rename
1054 * or deletion
1055 */
1056 if (new != old->d_parent ||
1057 (old->d_flags & DCACHE_DENTRY_KILLED) ||
1058 need_seqretry(&rename_lock, seq)) {
1059 spin_unlock(&new->d_lock);
1060 new = NULL;
1061 }
1062 rcu_read_unlock();
1063 return new;
1064 }
1065
1066 /**
1067 * enum d_walk_ret - action to talke during tree walk
1068 * @D_WALK_CONTINUE: contrinue walk
1069 * @D_WALK_QUIT: quit walk
1070 * @D_WALK_NORETRY: quit when retry is needed
1071 * @D_WALK_SKIP: skip this dentry and its children
1072 */
1073 enum d_walk_ret {
1074 D_WALK_CONTINUE,
1075 D_WALK_QUIT,
1076 D_WALK_NORETRY,
1077 D_WALK_SKIP,
1078 };
1079
1080 /**
1081 * d_walk - walk the dentry tree
1082 * @parent: start of walk
1083 * @data: data passed to @enter() and @finish()
1084 * @enter: callback when first entering the dentry
1085 * @finish: callback when successfully finished the walk
1086 *
1087 * The @enter() and @finish() callbacks are called with d_lock held.
1088 */
1089 static void d_walk(struct dentry *parent, void *data,
1090 enum d_walk_ret (*enter)(void *, struct dentry *),
1091 void (*finish)(void *))
1092 {
1093 struct dentry *this_parent;
1094 struct list_head *next;
1095 unsigned seq = 0;
1096 enum d_walk_ret ret;
1097 bool retry = true;
1098
1099 again:
1100 read_seqbegin_or_lock(&rename_lock, &seq);
1101 this_parent = parent;
1102 spin_lock(&this_parent->d_lock);
1103
1104 ret = enter(data, this_parent);
1105 switch (ret) {
1106 case D_WALK_CONTINUE:
1107 break;
1108 case D_WALK_QUIT:
1109 case D_WALK_SKIP:
1110 goto out_unlock;
1111 case D_WALK_NORETRY:
1112 retry = false;
1113 break;
1114 }
1115 repeat:
1116 next = this_parent->d_subdirs.next;
1117 resume:
1118 while (next != &this_parent->d_subdirs) {
1119 struct list_head *tmp = next;
1120 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1121 next = tmp->next;
1122
1123 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1124
1125 ret = enter(data, dentry);
1126 switch (ret) {
1127 case D_WALK_CONTINUE:
1128 break;
1129 case D_WALK_QUIT:
1130 spin_unlock(&dentry->d_lock);
1131 goto out_unlock;
1132 case D_WALK_NORETRY:
1133 retry = false;
1134 break;
1135 case D_WALK_SKIP:
1136 spin_unlock(&dentry->d_lock);
1137 continue;
1138 }
1139
1140 if (!list_empty(&dentry->d_subdirs)) {
1141 spin_unlock(&this_parent->d_lock);
1142 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1143 this_parent = dentry;
1144 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1145 goto repeat;
1146 }
1147 spin_unlock(&dentry->d_lock);
1148 }
1149 /*
1150 * All done at this level ... ascend and resume the search.
1151 */
1152 if (this_parent != parent) {
1153 struct dentry *child = this_parent;
1154 this_parent = try_to_ascend(this_parent, seq);
1155 if (!this_parent)
1156 goto rename_retry;
1157 next = child->d_u.d_child.next;
1158 goto resume;
1159 }
1160 if (need_seqretry(&rename_lock, seq)) {
1161 spin_unlock(&this_parent->d_lock);
1162 goto rename_retry;
1163 }
1164 if (finish)
1165 finish(data);
1166
1167 out_unlock:
1168 spin_unlock(&this_parent->d_lock);
1169 done_seqretry(&rename_lock, seq);
1170 return;
1171
1172 rename_retry:
1173 if (!retry)
1174 return;
1175 seq = 1;
1176 goto again;
1177 }
1178
1179 /*
1180 * Search for at least 1 mount point in the dentry's subdirs.
1181 * We descend to the next level whenever the d_subdirs
1182 * list is non-empty and continue searching.
1183 */
1184
1185 /**
1186 * have_submounts - check for mounts over a dentry
1187 * @parent: dentry to check.
1188 *
1189 * Return true if the parent or its subdirectories contain
1190 * a mount point
1191 */
1192
1193 static enum d_walk_ret check_mount(void *data, struct dentry *dentry)
1194 {
1195 int *ret = data;
1196 if (d_mountpoint(dentry)) {
1197 *ret = 1;
1198 return D_WALK_QUIT;
1199 }
1200 return D_WALK_CONTINUE;
1201 }
1202
1203 int have_submounts(struct dentry *parent)
1204 {
1205 int ret = 0;
1206
1207 d_walk(parent, &ret, check_mount, NULL);
1208
1209 return ret;
1210 }
1211 EXPORT_SYMBOL(have_submounts);
1212
1213 /*
1214 * Called by mount code to set a mountpoint and check if the mountpoint is
1215 * reachable (e.g. NFS can unhash a directory dentry and then the complete
1216 * subtree can become unreachable).
1217 *
1218 * Only one of check_submounts_and_drop() and d_set_mounted() must succeed. For
1219 * this reason take rename_lock and d_lock on dentry and ancestors.
1220 */
1221 int d_set_mounted(struct dentry *dentry)
1222 {
1223 struct dentry *p;
1224 int ret = -ENOENT;
1225 write_seqlock(&rename_lock);
1226 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1227 /* Need exclusion wrt. check_submounts_and_drop() */
1228 spin_lock(&p->d_lock);
1229 if (unlikely(d_unhashed(p))) {
1230 spin_unlock(&p->d_lock);
1231 goto out;
1232 }
1233 spin_unlock(&p->d_lock);
1234 }
1235 spin_lock(&dentry->d_lock);
1236 if (!d_unlinked(dentry)) {
1237 dentry->d_flags |= DCACHE_MOUNTED;
1238 ret = 0;
1239 }
1240 spin_unlock(&dentry->d_lock);
1241 out:
1242 write_sequnlock(&rename_lock);
1243 return ret;
1244 }
1245
1246 /*
1247 * Search the dentry child list of the specified parent,
1248 * and move any unused dentries to the end of the unused
1249 * list for prune_dcache(). We descend to the next level
1250 * whenever the d_subdirs list is non-empty and continue
1251 * searching.
1252 *
1253 * It returns zero iff there are no unused children,
1254 * otherwise it returns the number of children moved to
1255 * the end of the unused list. This may not be the total
1256 * number of unused children, because select_parent can
1257 * drop the lock and return early due to latency
1258 * constraints.
1259 */
1260
1261 struct select_data {
1262 struct dentry *start;
1263 struct list_head dispose;
1264 int found;
1265 };
1266
1267 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1268 {
1269 struct select_data *data = _data;
1270 enum d_walk_ret ret = D_WALK_CONTINUE;
1271
1272 if (data->start == dentry)
1273 goto out;
1274
1275 /*
1276 * move only zero ref count dentries to the dispose list.
1277 *
1278 * Those which are presently on the shrink list, being processed
1279 * by shrink_dentry_list(), shouldn't be moved. Otherwise the
1280 * loop in shrink_dcache_parent() might not make any progress
1281 * and loop forever.
1282 */
1283 if (dentry->d_lockref.count) {
1284 dentry_lru_del(dentry);
1285 } else if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) {
1286 dentry_lru_move_list(dentry, &data->dispose);
1287 dentry->d_flags |= DCACHE_SHRINK_LIST;
1288 data->found++;
1289 ret = D_WALK_NORETRY;
1290 }
1291 /*
1292 * We can return to the caller if we have found some (this
1293 * ensures forward progress). We'll be coming back to find
1294 * the rest.
1295 */
1296 if (data->found && need_resched())
1297 ret = D_WALK_QUIT;
1298 out:
1299 return ret;
1300 }
1301
1302 /**
1303 * shrink_dcache_parent - prune dcache
1304 * @parent: parent of entries to prune
1305 *
1306 * Prune the dcache to remove unused children of the parent dentry.
1307 */
1308 void shrink_dcache_parent(struct dentry *parent)
1309 {
1310 for (;;) {
1311 struct select_data data;
1312
1313 INIT_LIST_HEAD(&data.dispose);
1314 data.start = parent;
1315 data.found = 0;
1316
1317 d_walk(parent, &data, select_collect, NULL);
1318 if (!data.found)
1319 break;
1320
1321 shrink_dentry_list(&data.dispose);
1322 cond_resched();
1323 }
1324 }
1325 EXPORT_SYMBOL(shrink_dcache_parent);
1326
1327 static enum d_walk_ret check_and_collect(void *_data, struct dentry *dentry)
1328 {
1329 struct select_data *data = _data;
1330
1331 if (d_mountpoint(dentry)) {
1332 data->found = -EBUSY;
1333 return D_WALK_QUIT;
1334 }
1335
1336 return select_collect(_data, dentry);
1337 }
1338
1339 static void check_and_drop(void *_data)
1340 {
1341 struct select_data *data = _data;
1342
1343 if (d_mountpoint(data->start))
1344 data->found = -EBUSY;
1345 if (!data->found)
1346 __d_drop(data->start);
1347 }
1348
1349 /**
1350 * check_submounts_and_drop - prune dcache, check for submounts and drop
1351 *
1352 * All done as a single atomic operation relative to has_unlinked_ancestor().
1353 * Returns 0 if successfully unhashed @parent. If there were submounts then
1354 * return -EBUSY.
1355 *
1356 * @dentry: dentry to prune and drop
1357 */
1358 int check_submounts_and_drop(struct dentry *dentry)
1359 {
1360 int ret = 0;
1361
1362 /* Negative dentries can be dropped without further checks */
1363 if (!dentry->d_inode) {
1364 d_drop(dentry);
1365 goto out;
1366 }
1367
1368 for (;;) {
1369 struct select_data data;
1370
1371 INIT_LIST_HEAD(&data.dispose);
1372 data.start = dentry;
1373 data.found = 0;
1374
1375 d_walk(dentry, &data, check_and_collect, check_and_drop);
1376 ret = data.found;
1377
1378 if (!list_empty(&data.dispose))
1379 shrink_dentry_list(&data.dispose);
1380
1381 if (ret <= 0)
1382 break;
1383
1384 cond_resched();
1385 }
1386
1387 out:
1388 return ret;
1389 }
1390 EXPORT_SYMBOL(check_submounts_and_drop);
1391
1392 /**
1393 * __d_alloc - allocate a dcache entry
1394 * @sb: filesystem it will belong to
1395 * @name: qstr of the name
1396 *
1397 * Allocates a dentry. It returns %NULL if there is insufficient memory
1398 * available. On a success the dentry is returned. The name passed in is
1399 * copied and the copy passed in may be reused after this call.
1400 */
1401
1402 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1403 {
1404 struct dentry *dentry;
1405 char *dname;
1406
1407 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1408 if (!dentry)
1409 return NULL;
1410
1411 /*
1412 * We guarantee that the inline name is always NUL-terminated.
1413 * This way the memcpy() done by the name switching in rename
1414 * will still always have a NUL at the end, even if we might
1415 * be overwriting an internal NUL character
1416 */
1417 dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1418 if (name->len > DNAME_INLINE_LEN-1) {
1419 dname = kmalloc(name->len + 1, GFP_KERNEL);
1420 if (!dname) {
1421 kmem_cache_free(dentry_cache, dentry);
1422 return NULL;
1423 }
1424 } else {
1425 dname = dentry->d_iname;
1426 }
1427
1428 dentry->d_name.len = name->len;
1429 dentry->d_name.hash = name->hash;
1430 memcpy(dname, name->name, name->len);
1431 dname[name->len] = 0;
1432
1433 /* Make sure we always see the terminating NUL character */
1434 smp_wmb();
1435 dentry->d_name.name = dname;
1436
1437 dentry->d_lockref.count = 1;
1438 dentry->d_flags = 0;
1439 spin_lock_init(&dentry->d_lock);
1440 seqcount_init(&dentry->d_seq);
1441 dentry->d_inode = NULL;
1442 dentry->d_parent = dentry;
1443 dentry->d_sb = sb;
1444 dentry->d_op = NULL;
1445 dentry->d_fsdata = NULL;
1446 INIT_HLIST_BL_NODE(&dentry->d_hash);
1447 INIT_LIST_HEAD(&dentry->d_lru);
1448 INIT_LIST_HEAD(&dentry->d_subdirs);
1449 INIT_HLIST_NODE(&dentry->d_alias);
1450 INIT_LIST_HEAD(&dentry->d_u.d_child);
1451 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1452
1453 this_cpu_inc(nr_dentry);
1454
1455 return dentry;
1456 }
1457
1458 /**
1459 * d_alloc - allocate a dcache entry
1460 * @parent: parent of entry to allocate
1461 * @name: qstr of the name
1462 *
1463 * Allocates a dentry. It returns %NULL if there is insufficient memory
1464 * available. On a success the dentry is returned. The name passed in is
1465 * copied and the copy passed in may be reused after this call.
1466 */
1467 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1468 {
1469 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1470 if (!dentry)
1471 return NULL;
1472
1473 spin_lock(&parent->d_lock);
1474 /*
1475 * don't need child lock because it is not subject
1476 * to concurrency here
1477 */
1478 __dget_dlock(parent);
1479 dentry->d_parent = parent;
1480 list_add(&dentry->d_u.d_child, &parent->d_subdirs);
1481 spin_unlock(&parent->d_lock);
1482
1483 return dentry;
1484 }
1485 EXPORT_SYMBOL(d_alloc);
1486
1487 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1488 {
1489 struct dentry *dentry = __d_alloc(sb, name);
1490 if (dentry)
1491 dentry->d_flags |= DCACHE_DISCONNECTED;
1492 return dentry;
1493 }
1494 EXPORT_SYMBOL(d_alloc_pseudo);
1495
1496 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1497 {
1498 struct qstr q;
1499
1500 q.name = name;
1501 q.len = strlen(name);
1502 q.hash = full_name_hash(q.name, q.len);
1503 return d_alloc(parent, &q);
1504 }
1505 EXPORT_SYMBOL(d_alloc_name);
1506
1507 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1508 {
1509 WARN_ON_ONCE(dentry->d_op);
1510 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
1511 DCACHE_OP_COMPARE |
1512 DCACHE_OP_REVALIDATE |
1513 DCACHE_OP_WEAK_REVALIDATE |
1514 DCACHE_OP_DELETE ));
1515 dentry->d_op = op;
1516 if (!op)
1517 return;
1518 if (op->d_hash)
1519 dentry->d_flags |= DCACHE_OP_HASH;
1520 if (op->d_compare)
1521 dentry->d_flags |= DCACHE_OP_COMPARE;
1522 if (op->d_revalidate)
1523 dentry->d_flags |= DCACHE_OP_REVALIDATE;
1524 if (op->d_weak_revalidate)
1525 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1526 if (op->d_delete)
1527 dentry->d_flags |= DCACHE_OP_DELETE;
1528 if (op->d_prune)
1529 dentry->d_flags |= DCACHE_OP_PRUNE;
1530
1531 }
1532 EXPORT_SYMBOL(d_set_d_op);
1533
1534 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1535 {
1536 spin_lock(&dentry->d_lock);
1537 if (inode) {
1538 if (unlikely(IS_AUTOMOUNT(inode)))
1539 dentry->d_flags |= DCACHE_NEED_AUTOMOUNT;
1540 hlist_add_head(&dentry->d_alias, &inode->i_dentry);
1541 }
1542 dentry->d_inode = inode;
1543 dentry_rcuwalk_barrier(dentry);
1544 spin_unlock(&dentry->d_lock);
1545 fsnotify_d_instantiate(dentry, inode);
1546 }
1547
1548 /**
1549 * d_instantiate - fill in inode information for a dentry
1550 * @entry: dentry to complete
1551 * @inode: inode to attach to this dentry
1552 *
1553 * Fill in inode information in the entry.
1554 *
1555 * This turns negative dentries into productive full members
1556 * of society.
1557 *
1558 * NOTE! This assumes that the inode count has been incremented
1559 * (or otherwise set) by the caller to indicate that it is now
1560 * in use by the dcache.
1561 */
1562
1563 void d_instantiate(struct dentry *entry, struct inode * inode)
1564 {
1565 BUG_ON(!hlist_unhashed(&entry->d_alias));
1566 if (inode)
1567 spin_lock(&inode->i_lock);
1568 __d_instantiate(entry, inode);
1569 if (inode)
1570 spin_unlock(&inode->i_lock);
1571 security_d_instantiate(entry, inode);
1572 }
1573 EXPORT_SYMBOL(d_instantiate);
1574
1575 /**
1576 * d_instantiate_unique - instantiate a non-aliased dentry
1577 * @entry: dentry to instantiate
1578 * @inode: inode to attach to this dentry
1579 *
1580 * Fill in inode information in the entry. On success, it returns NULL.
1581 * If an unhashed alias of "entry" already exists, then we return the
1582 * aliased dentry instead and drop one reference to inode.
1583 *
1584 * Note that in order to avoid conflicts with rename() etc, the caller
1585 * had better be holding the parent directory semaphore.
1586 *
1587 * This also assumes that the inode count has been incremented
1588 * (or otherwise set) by the caller to indicate that it is now
1589 * in use by the dcache.
1590 */
1591 static struct dentry *__d_instantiate_unique(struct dentry *entry,
1592 struct inode *inode)
1593 {
1594 struct dentry *alias;
1595 int len = entry->d_name.len;
1596 const char *name = entry->d_name.name;
1597 unsigned int hash = entry->d_name.hash;
1598
1599 if (!inode) {
1600 __d_instantiate(entry, NULL);
1601 return NULL;
1602 }
1603
1604 hlist_for_each_entry(alias, &inode->i_dentry, d_alias) {
1605 /*
1606 * Don't need alias->d_lock here, because aliases with
1607 * d_parent == entry->d_parent are not subject to name or
1608 * parent changes, because the parent inode i_mutex is held.
1609 */
1610 if (alias->d_name.hash != hash)
1611 continue;
1612 if (alias->d_parent != entry->d_parent)
1613 continue;
1614 if (alias->d_name.len != len)
1615 continue;
1616 if (dentry_cmp(alias, name, len))
1617 continue;
1618 __dget(alias);
1619 return alias;
1620 }
1621
1622 __d_instantiate(entry, inode);
1623 return NULL;
1624 }
1625
1626 struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1627 {
1628 struct dentry *result;
1629
1630 BUG_ON(!hlist_unhashed(&entry->d_alias));
1631
1632 if (inode)
1633 spin_lock(&inode->i_lock);
1634 result = __d_instantiate_unique(entry, inode);
1635 if (inode)
1636 spin_unlock(&inode->i_lock);
1637
1638 if (!result) {
1639 security_d_instantiate(entry, inode);
1640 return NULL;
1641 }
1642
1643 BUG_ON(!d_unhashed(result));
1644 iput(inode);
1645 return result;
1646 }
1647
1648 EXPORT_SYMBOL(d_instantiate_unique);
1649
1650 struct dentry *d_make_root(struct inode *root_inode)
1651 {
1652 struct dentry *res = NULL;
1653
1654 if (root_inode) {
1655 static const struct qstr name = QSTR_INIT("/", 1);
1656
1657 res = __d_alloc(root_inode->i_sb, &name);
1658 if (res)
1659 d_instantiate(res, root_inode);
1660 else
1661 iput(root_inode);
1662 }
1663 return res;
1664 }
1665 EXPORT_SYMBOL(d_make_root);
1666
1667 static struct dentry * __d_find_any_alias(struct inode *inode)
1668 {
1669 struct dentry *alias;
1670
1671 if (hlist_empty(&inode->i_dentry))
1672 return NULL;
1673 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_alias);
1674 __dget(alias);
1675 return alias;
1676 }
1677
1678 /**
1679 * d_find_any_alias - find any alias for a given inode
1680 * @inode: inode to find an alias for
1681 *
1682 * If any aliases exist for the given inode, take and return a
1683 * reference for one of them. If no aliases exist, return %NULL.
1684 */
1685 struct dentry *d_find_any_alias(struct inode *inode)
1686 {
1687 struct dentry *de;
1688
1689 spin_lock(&inode->i_lock);
1690 de = __d_find_any_alias(inode);
1691 spin_unlock(&inode->i_lock);
1692 return de;
1693 }
1694 EXPORT_SYMBOL(d_find_any_alias);
1695
1696 /**
1697 * d_obtain_alias - find or allocate a dentry for a given inode
1698 * @inode: inode to allocate the dentry for
1699 *
1700 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1701 * similar open by handle operations. The returned dentry may be anonymous,
1702 * or may have a full name (if the inode was already in the cache).
1703 *
1704 * When called on a directory inode, we must ensure that the inode only ever
1705 * has one dentry. If a dentry is found, that is returned instead of
1706 * allocating a new one.
1707 *
1708 * On successful return, the reference to the inode has been transferred
1709 * to the dentry. In case of an error the reference on the inode is released.
1710 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1711 * be passed in and will be the error will be propagate to the return value,
1712 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1713 */
1714 struct dentry *d_obtain_alias(struct inode *inode)
1715 {
1716 static const struct qstr anonstring = QSTR_INIT("/", 1);
1717 struct dentry *tmp;
1718 struct dentry *res;
1719
1720 if (!inode)
1721 return ERR_PTR(-ESTALE);
1722 if (IS_ERR(inode))
1723 return ERR_CAST(inode);
1724
1725 res = d_find_any_alias(inode);
1726 if (res)
1727 goto out_iput;
1728
1729 tmp = __d_alloc(inode->i_sb, &anonstring);
1730 if (!tmp) {
1731 res = ERR_PTR(-ENOMEM);
1732 goto out_iput;
1733 }
1734
1735 spin_lock(&inode->i_lock);
1736 res = __d_find_any_alias(inode);
1737 if (res) {
1738 spin_unlock(&inode->i_lock);
1739 dput(tmp);
1740 goto out_iput;
1741 }
1742
1743 /* attach a disconnected dentry */
1744 spin_lock(&tmp->d_lock);
1745 tmp->d_inode = inode;
1746 tmp->d_flags |= DCACHE_DISCONNECTED;
1747 hlist_add_head(&tmp->d_alias, &inode->i_dentry);
1748 hlist_bl_lock(&tmp->d_sb->s_anon);
1749 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1750 hlist_bl_unlock(&tmp->d_sb->s_anon);
1751 spin_unlock(&tmp->d_lock);
1752 spin_unlock(&inode->i_lock);
1753 security_d_instantiate(tmp, inode);
1754
1755 return tmp;
1756
1757 out_iput:
1758 if (res && !IS_ERR(res))
1759 security_d_instantiate(res, inode);
1760 iput(inode);
1761 return res;
1762 }
1763 EXPORT_SYMBOL(d_obtain_alias);
1764
1765 /**
1766 * d_splice_alias - splice a disconnected dentry into the tree if one exists
1767 * @inode: the inode which may have a disconnected dentry
1768 * @dentry: a negative dentry which we want to point to the inode.
1769 *
1770 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1771 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1772 * and return it, else simply d_add the inode to the dentry and return NULL.
1773 *
1774 * This is needed in the lookup routine of any filesystem that is exportable
1775 * (via knfsd) so that we can build dcache paths to directories effectively.
1776 *
1777 * If a dentry was found and moved, then it is returned. Otherwise NULL
1778 * is returned. This matches the expected return value of ->lookup.
1779 *
1780 * Cluster filesystems may call this function with a negative, hashed dentry.
1781 * In that case, we know that the inode will be a regular file, and also this
1782 * will only occur during atomic_open. So we need to check for the dentry
1783 * being already hashed only in the final case.
1784 */
1785 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
1786 {
1787 struct dentry *new = NULL;
1788
1789 if (IS_ERR(inode))
1790 return ERR_CAST(inode);
1791
1792 if (inode && S_ISDIR(inode->i_mode)) {
1793 spin_lock(&inode->i_lock);
1794 new = __d_find_alias(inode, 1);
1795 if (new) {
1796 BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED));
1797 spin_unlock(&inode->i_lock);
1798 security_d_instantiate(new, inode);
1799 d_move(new, dentry);
1800 iput(inode);
1801 } else {
1802 /* already taking inode->i_lock, so d_add() by hand */
1803 __d_instantiate(dentry, inode);
1804 spin_unlock(&inode->i_lock);
1805 security_d_instantiate(dentry, inode);
1806 d_rehash(dentry);
1807 }
1808 } else {
1809 d_instantiate(dentry, inode);
1810 if (d_unhashed(dentry))
1811 d_rehash(dentry);
1812 }
1813 return new;
1814 }
1815 EXPORT_SYMBOL(d_splice_alias);
1816
1817 /**
1818 * d_add_ci - lookup or allocate new dentry with case-exact name
1819 * @inode: the inode case-insensitive lookup has found
1820 * @dentry: the negative dentry that was passed to the parent's lookup func
1821 * @name: the case-exact name to be associated with the returned dentry
1822 *
1823 * This is to avoid filling the dcache with case-insensitive names to the
1824 * same inode, only the actual correct case is stored in the dcache for
1825 * case-insensitive filesystems.
1826 *
1827 * For a case-insensitive lookup match and if the the case-exact dentry
1828 * already exists in in the dcache, use it and return it.
1829 *
1830 * If no entry exists with the exact case name, allocate new dentry with
1831 * the exact case, and return the spliced entry.
1832 */
1833 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
1834 struct qstr *name)
1835 {
1836 struct dentry *found;
1837 struct dentry *new;
1838
1839 /*
1840 * First check if a dentry matching the name already exists,
1841 * if not go ahead and create it now.
1842 */
1843 found = d_hash_and_lookup(dentry->d_parent, name);
1844 if (unlikely(IS_ERR(found)))
1845 goto err_out;
1846 if (!found) {
1847 new = d_alloc(dentry->d_parent, name);
1848 if (!new) {
1849 found = ERR_PTR(-ENOMEM);
1850 goto err_out;
1851 }
1852
1853 found = d_splice_alias(inode, new);
1854 if (found) {
1855 dput(new);
1856 return found;
1857 }
1858 return new;
1859 }
1860
1861 /*
1862 * If a matching dentry exists, and it's not negative use it.
1863 *
1864 * Decrement the reference count to balance the iget() done
1865 * earlier on.
1866 */
1867 if (found->d_inode) {
1868 if (unlikely(found->d_inode != inode)) {
1869 /* This can't happen because bad inodes are unhashed. */
1870 BUG_ON(!is_bad_inode(inode));
1871 BUG_ON(!is_bad_inode(found->d_inode));
1872 }
1873 iput(inode);
1874 return found;
1875 }
1876
1877 /*
1878 * Negative dentry: instantiate it unless the inode is a directory and
1879 * already has a dentry.
1880 */
1881 new = d_splice_alias(inode, found);
1882 if (new) {
1883 dput(found);
1884 found = new;
1885 }
1886 return found;
1887
1888 err_out:
1889 iput(inode);
1890 return found;
1891 }
1892 EXPORT_SYMBOL(d_add_ci);
1893
1894 /*
1895 * Do the slow-case of the dentry name compare.
1896 *
1897 * Unlike the dentry_cmp() function, we need to atomically
1898 * load the name and length information, so that the
1899 * filesystem can rely on them, and can use the 'name' and
1900 * 'len' information without worrying about walking off the
1901 * end of memory etc.
1902 *
1903 * Thus the read_seqcount_retry() and the "duplicate" info
1904 * in arguments (the low-level filesystem should not look
1905 * at the dentry inode or name contents directly, since
1906 * rename can change them while we're in RCU mode).
1907 */
1908 enum slow_d_compare {
1909 D_COMP_OK,
1910 D_COMP_NOMATCH,
1911 D_COMP_SEQRETRY,
1912 };
1913
1914 static noinline enum slow_d_compare slow_dentry_cmp(
1915 const struct dentry *parent,
1916 struct dentry *dentry,
1917 unsigned int seq,
1918 const struct qstr *name)
1919 {
1920 int tlen = dentry->d_name.len;
1921 const char *tname = dentry->d_name.name;
1922
1923 if (read_seqcount_retry(&dentry->d_seq, seq)) {
1924 cpu_relax();
1925 return D_COMP_SEQRETRY;
1926 }
1927 if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
1928 return D_COMP_NOMATCH;
1929 return D_COMP_OK;
1930 }
1931
1932 /**
1933 * __d_lookup_rcu - search for a dentry (racy, store-free)
1934 * @parent: parent dentry
1935 * @name: qstr of name we wish to find
1936 * @seqp: returns d_seq value at the point where the dentry was found
1937 * Returns: dentry, or NULL
1938 *
1939 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
1940 * resolution (store-free path walking) design described in
1941 * Documentation/filesystems/path-lookup.txt.
1942 *
1943 * This is not to be used outside core vfs.
1944 *
1945 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
1946 * held, and rcu_read_lock held. The returned dentry must not be stored into
1947 * without taking d_lock and checking d_seq sequence count against @seq
1948 * returned here.
1949 *
1950 * A refcount may be taken on the found dentry with the d_rcu_to_refcount
1951 * function.
1952 *
1953 * Alternatively, __d_lookup_rcu may be called again to look up the child of
1954 * the returned dentry, so long as its parent's seqlock is checked after the
1955 * child is looked up. Thus, an interlocking stepping of sequence lock checks
1956 * is formed, giving integrity down the path walk.
1957 *
1958 * NOTE! The caller *has* to check the resulting dentry against the sequence
1959 * number we've returned before using any of the resulting dentry state!
1960 */
1961 struct dentry *__d_lookup_rcu(const struct dentry *parent,
1962 const struct qstr *name,
1963 unsigned *seqp)
1964 {
1965 u64 hashlen = name->hash_len;
1966 const unsigned char *str = name->name;
1967 struct hlist_bl_head *b = d_hash(parent, hashlen_hash(hashlen));
1968 struct hlist_bl_node *node;
1969 struct dentry *dentry;
1970
1971 /*
1972 * Note: There is significant duplication with __d_lookup_rcu which is
1973 * required to prevent single threaded performance regressions
1974 * especially on architectures where smp_rmb (in seqcounts) are costly.
1975 * Keep the two functions in sync.
1976 */
1977
1978 /*
1979 * The hash list is protected using RCU.
1980 *
1981 * Carefully use d_seq when comparing a candidate dentry, to avoid
1982 * races with d_move().
1983 *
1984 * It is possible that concurrent renames can mess up our list
1985 * walk here and result in missing our dentry, resulting in the
1986 * false-negative result. d_lookup() protects against concurrent
1987 * renames using rename_lock seqlock.
1988 *
1989 * See Documentation/filesystems/path-lookup.txt for more details.
1990 */
1991 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1992 unsigned seq;
1993
1994 seqretry:
1995 /*
1996 * The dentry sequence count protects us from concurrent
1997 * renames, and thus protects parent and name fields.
1998 *
1999 * The caller must perform a seqcount check in order
2000 * to do anything useful with the returned dentry.
2001 *
2002 * NOTE! We do a "raw" seqcount_begin here. That means that
2003 * we don't wait for the sequence count to stabilize if it
2004 * is in the middle of a sequence change. If we do the slow
2005 * dentry compare, we will do seqretries until it is stable,
2006 * and if we end up with a successful lookup, we actually
2007 * want to exit RCU lookup anyway.
2008 */
2009 seq = raw_seqcount_begin(&dentry->d_seq);
2010 if (dentry->d_parent != parent)
2011 continue;
2012 if (d_unhashed(dentry))
2013 continue;
2014
2015 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
2016 if (dentry->d_name.hash != hashlen_hash(hashlen))
2017 continue;
2018 *seqp = seq;
2019 switch (slow_dentry_cmp(parent, dentry, seq, name)) {
2020 case D_COMP_OK:
2021 return dentry;
2022 case D_COMP_NOMATCH:
2023 continue;
2024 default:
2025 goto seqretry;
2026 }
2027 }
2028
2029 if (dentry->d_name.hash_len != hashlen)
2030 continue;
2031 *seqp = seq;
2032 if (!dentry_cmp(dentry, str, hashlen_len(hashlen)))
2033 return dentry;
2034 }
2035 return NULL;
2036 }
2037
2038 /**
2039 * d_lookup - search for a dentry
2040 * @parent: parent dentry
2041 * @name: qstr of name we wish to find
2042 * Returns: dentry, or NULL
2043 *
2044 * d_lookup searches the children of the parent dentry for the name in
2045 * question. If the dentry is found its reference count is incremented and the
2046 * dentry is returned. The caller must use dput to free the entry when it has
2047 * finished using it. %NULL is returned if the dentry does not exist.
2048 */
2049 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2050 {
2051 struct dentry *dentry;
2052 unsigned seq;
2053
2054 do {
2055 seq = read_seqbegin(&rename_lock);
2056 dentry = __d_lookup(parent, name);
2057 if (dentry)
2058 break;
2059 } while (read_seqretry(&rename_lock, seq));
2060 return dentry;
2061 }
2062 EXPORT_SYMBOL(d_lookup);
2063
2064 /**
2065 * __d_lookup - search for a dentry (racy)
2066 * @parent: parent dentry
2067 * @name: qstr of name we wish to find
2068 * Returns: dentry, or NULL
2069 *
2070 * __d_lookup is like d_lookup, however it may (rarely) return a
2071 * false-negative result due to unrelated rename activity.
2072 *
2073 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2074 * however it must be used carefully, eg. with a following d_lookup in
2075 * the case of failure.
2076 *
2077 * __d_lookup callers must be commented.
2078 */
2079 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2080 {
2081 unsigned int len = name->len;
2082 unsigned int hash = name->hash;
2083 const unsigned char *str = name->name;
2084 struct hlist_bl_head *b = d_hash(parent, hash);
2085 struct hlist_bl_node *node;
2086 struct dentry *found = NULL;
2087 struct dentry *dentry;
2088
2089 /*
2090 * Note: There is significant duplication with __d_lookup_rcu which is
2091 * required to prevent single threaded performance regressions
2092 * especially on architectures where smp_rmb (in seqcounts) are costly.
2093 * Keep the two functions in sync.
2094 */
2095
2096 /*
2097 * The hash list is protected using RCU.
2098 *
2099 * Take d_lock when comparing a candidate dentry, to avoid races
2100 * with d_move().
2101 *
2102 * It is possible that concurrent renames can mess up our list
2103 * walk here and result in missing our dentry, resulting in the
2104 * false-negative result. d_lookup() protects against concurrent
2105 * renames using rename_lock seqlock.
2106 *
2107 * See Documentation/filesystems/path-lookup.txt for more details.
2108 */
2109 rcu_read_lock();
2110
2111 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2112
2113 if (dentry->d_name.hash != hash)
2114 continue;
2115
2116 spin_lock(&dentry->d_lock);
2117 if (dentry->d_parent != parent)
2118 goto next;
2119 if (d_unhashed(dentry))
2120 goto next;
2121
2122 /*
2123 * It is safe to compare names since d_move() cannot
2124 * change the qstr (protected by d_lock).
2125 */
2126 if (parent->d_flags & DCACHE_OP_COMPARE) {
2127 int tlen = dentry->d_name.len;
2128 const char *tname = dentry->d_name.name;
2129 if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
2130 goto next;
2131 } else {
2132 if (dentry->d_name.len != len)
2133 goto next;
2134 if (dentry_cmp(dentry, str, len))
2135 goto next;
2136 }
2137
2138 dentry->d_lockref.count++;
2139 found = dentry;
2140 spin_unlock(&dentry->d_lock);
2141 break;
2142 next:
2143 spin_unlock(&dentry->d_lock);
2144 }
2145 rcu_read_unlock();
2146
2147 return found;
2148 }
2149
2150 /**
2151 * d_hash_and_lookup - hash the qstr then search for a dentry
2152 * @dir: Directory to search in
2153 * @name: qstr of name we wish to find
2154 *
2155 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2156 */
2157 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2158 {
2159 /*
2160 * Check for a fs-specific hash function. Note that we must
2161 * calculate the standard hash first, as the d_op->d_hash()
2162 * routine may choose to leave the hash value unchanged.
2163 */
2164 name->hash = full_name_hash(name->name, name->len);
2165 if (dir->d_flags & DCACHE_OP_HASH) {
2166 int err = dir->d_op->d_hash(dir, name);
2167 if (unlikely(err < 0))
2168 return ERR_PTR(err);
2169 }
2170 return d_lookup(dir, name);
2171 }
2172 EXPORT_SYMBOL(d_hash_and_lookup);
2173
2174 /**
2175 * d_validate - verify dentry provided from insecure source (deprecated)
2176 * @dentry: The dentry alleged to be valid child of @dparent
2177 * @dparent: The parent dentry (known to be valid)
2178 *
2179 * An insecure source has sent us a dentry, here we verify it and dget() it.
2180 * This is used by ncpfs in its readdir implementation.
2181 * Zero is returned in the dentry is invalid.
2182 *
2183 * This function is slow for big directories, and deprecated, do not use it.
2184 */
2185 int d_validate(struct dentry *dentry, struct dentry *dparent)
2186 {
2187 struct dentry *child;
2188
2189 spin_lock(&dparent->d_lock);
2190 list_for_each_entry(child, &dparent->d_subdirs, d_u.d_child) {
2191 if (dentry == child) {
2192 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
2193 __dget_dlock(dentry);
2194 spin_unlock(&dentry->d_lock);
2195 spin_unlock(&dparent->d_lock);
2196 return 1;
2197 }
2198 }
2199 spin_unlock(&dparent->d_lock);
2200
2201 return 0;
2202 }
2203 EXPORT_SYMBOL(d_validate);
2204
2205 /*
2206 * When a file is deleted, we have two options:
2207 * - turn this dentry into a negative dentry
2208 * - unhash this dentry and free it.
2209 *
2210 * Usually, we want to just turn this into
2211 * a negative dentry, but if anybody else is
2212 * currently using the dentry or the inode
2213 * we can't do that and we fall back on removing
2214 * it from the hash queues and waiting for
2215 * it to be deleted later when it has no users
2216 */
2217
2218 /**
2219 * d_delete - delete a dentry
2220 * @dentry: The dentry to delete
2221 *
2222 * Turn the dentry into a negative dentry if possible, otherwise
2223 * remove it from the hash queues so it can be deleted later
2224 */
2225
2226 void d_delete(struct dentry * dentry)
2227 {
2228 struct inode *inode;
2229 int isdir = 0;
2230 /*
2231 * Are we the only user?
2232 */
2233 again:
2234 spin_lock(&dentry->d_lock);
2235 inode = dentry->d_inode;
2236 isdir = S_ISDIR(inode->i_mode);
2237 if (dentry->d_lockref.count == 1) {
2238 if (!spin_trylock(&inode->i_lock)) {
2239 spin_unlock(&dentry->d_lock);
2240 cpu_relax();
2241 goto again;
2242 }
2243 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2244 dentry_unlink_inode(dentry);
2245 fsnotify_nameremove(dentry, isdir);
2246 return;
2247 }
2248
2249 if (!d_unhashed(dentry))
2250 __d_drop(dentry);
2251
2252 spin_unlock(&dentry->d_lock);
2253
2254 fsnotify_nameremove(dentry, isdir);
2255 }
2256 EXPORT_SYMBOL(d_delete);
2257
2258 static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b)
2259 {
2260 BUG_ON(!d_unhashed(entry));
2261 hlist_bl_lock(b);
2262 entry->d_flags |= DCACHE_RCUACCESS;
2263 hlist_bl_add_head_rcu(&entry->d_hash, b);
2264 hlist_bl_unlock(b);
2265 }
2266
2267 static void _d_rehash(struct dentry * entry)
2268 {
2269 __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
2270 }
2271
2272 /**
2273 * d_rehash - add an entry back to the hash
2274 * @entry: dentry to add to the hash
2275 *
2276 * Adds a dentry to the hash according to its name.
2277 */
2278
2279 void d_rehash(struct dentry * entry)
2280 {
2281 spin_lock(&entry->d_lock);
2282 _d_rehash(entry);
2283 spin_unlock(&entry->d_lock);
2284 }
2285 EXPORT_SYMBOL(d_rehash);
2286
2287 /**
2288 * dentry_update_name_case - update case insensitive dentry with a new name
2289 * @dentry: dentry to be updated
2290 * @name: new name
2291 *
2292 * Update a case insensitive dentry with new case of name.
2293 *
2294 * dentry must have been returned by d_lookup with name @name. Old and new
2295 * name lengths must match (ie. no d_compare which allows mismatched name
2296 * lengths).
2297 *
2298 * Parent inode i_mutex must be held over d_lookup and into this call (to
2299 * keep renames and concurrent inserts, and readdir(2) away).
2300 */
2301 void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
2302 {
2303 BUG_ON(!mutex_is_locked(&dentry->d_parent->d_inode->i_mutex));
2304 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2305
2306 spin_lock(&dentry->d_lock);
2307 write_seqcount_begin(&dentry->d_seq);
2308 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
2309 write_seqcount_end(&dentry->d_seq);
2310 spin_unlock(&dentry->d_lock);
2311 }
2312 EXPORT_SYMBOL(dentry_update_name_case);
2313
2314 static void switch_names(struct dentry *dentry, struct dentry *target)
2315 {
2316 if (dname_external(target)) {
2317 if (dname_external(dentry)) {
2318 /*
2319 * Both external: swap the pointers
2320 */
2321 swap(target->d_name.name, dentry->d_name.name);
2322 } else {
2323 /*
2324 * dentry:internal, target:external. Steal target's
2325 * storage and make target internal.
2326 */
2327 memcpy(target->d_iname, dentry->d_name.name,
2328 dentry->d_name.len + 1);
2329 dentry->d_name.name = target->d_name.name;
2330 target->d_name.name = target->d_iname;
2331 }
2332 } else {
2333 if (dname_external(dentry)) {
2334 /*
2335 * dentry:external, target:internal. Give dentry's
2336 * storage to target and make dentry internal
2337 */
2338 memcpy(dentry->d_iname, target->d_name.name,
2339 target->d_name.len + 1);
2340 target->d_name.name = dentry->d_name.name;
2341 dentry->d_name.name = dentry->d_iname;
2342 } else {
2343 /*
2344 * Both are internal. Just copy target to dentry
2345 */
2346 memcpy(dentry->d_iname, target->d_name.name,
2347 target->d_name.len + 1);
2348 dentry->d_name.len = target->d_name.len;
2349 return;
2350 }
2351 }
2352 swap(dentry->d_name.len, target->d_name.len);
2353 }
2354
2355 static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2356 {
2357 /*
2358 * XXXX: do we really need to take target->d_lock?
2359 */
2360 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2361 spin_lock(&target->d_parent->d_lock);
2362 else {
2363 if (d_ancestor(dentry->d_parent, target->d_parent)) {
2364 spin_lock(&dentry->d_parent->d_lock);
2365 spin_lock_nested(&target->d_parent->d_lock,
2366 DENTRY_D_LOCK_NESTED);
2367 } else {
2368 spin_lock(&target->d_parent->d_lock);
2369 spin_lock_nested(&dentry->d_parent->d_lock,
2370 DENTRY_D_LOCK_NESTED);
2371 }
2372 }
2373 if (target < dentry) {
2374 spin_lock_nested(&target->d_lock, 2);
2375 spin_lock_nested(&dentry->d_lock, 3);
2376 } else {
2377 spin_lock_nested(&dentry->d_lock, 2);
2378 spin_lock_nested(&target->d_lock, 3);
2379 }
2380 }
2381
2382 static void dentry_unlock_parents_for_move(struct dentry *dentry,
2383 struct dentry *target)
2384 {
2385 if (target->d_parent != dentry->d_parent)
2386 spin_unlock(&dentry->d_parent->d_lock);
2387 if (target->d_parent != target)
2388 spin_unlock(&target->d_parent->d_lock);
2389 }
2390
2391 /*
2392 * When switching names, the actual string doesn't strictly have to
2393 * be preserved in the target - because we're dropping the target
2394 * anyway. As such, we can just do a simple memcpy() to copy over
2395 * the new name before we switch.
2396 *
2397 * Note that we have to be a lot more careful about getting the hash
2398 * switched - we have to switch the hash value properly even if it
2399 * then no longer matches the actual (corrupted) string of the target.
2400 * The hash value has to match the hash queue that the dentry is on..
2401 */
2402 /*
2403 * __d_move - move a dentry
2404 * @dentry: entry to move
2405 * @target: new dentry
2406 *
2407 * Update the dcache to reflect the move of a file name. Negative
2408 * dcache entries should not be moved in this way. Caller must hold
2409 * rename_lock, the i_mutex of the source and target directories,
2410 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2411 */
2412 static void __d_move(struct dentry * dentry, struct dentry * target)
2413 {
2414 if (!dentry->d_inode)
2415 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2416
2417 BUG_ON(d_ancestor(dentry, target));
2418 BUG_ON(d_ancestor(target, dentry));
2419
2420 dentry_lock_for_move(dentry, target);
2421
2422 write_seqcount_begin(&dentry->d_seq);
2423 write_seqcount_begin(&target->d_seq);
2424
2425 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2426
2427 /*
2428 * Move the dentry to the target hash queue. Don't bother checking
2429 * for the same hash queue because of how unlikely it is.
2430 */
2431 __d_drop(dentry);
2432 __d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
2433
2434 /* Unhash the target: dput() will then get rid of it */
2435 __d_drop(target);
2436
2437 list_del(&dentry->d_u.d_child);
2438 list_del(&target->d_u.d_child);
2439
2440 /* Switch the names.. */
2441 switch_names(dentry, target);
2442 swap(dentry->d_name.hash, target->d_name.hash);
2443
2444 /* ... and switch the parents */
2445 if (IS_ROOT(dentry)) {
2446 dentry->d_parent = target->d_parent;
2447 target->d_parent = target;
2448 INIT_LIST_HEAD(&target->d_u.d_child);
2449 } else {
2450 swap(dentry->d_parent, target->d_parent);
2451
2452 /* And add them back to the (new) parent lists */
2453 list_add(&target->d_u.d_child, &target->d_parent->d_subdirs);
2454 }
2455
2456 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2457
2458 write_seqcount_end(&target->d_seq);
2459 write_seqcount_end(&dentry->d_seq);
2460
2461 dentry_unlock_parents_for_move(dentry, target);
2462 spin_unlock(&target->d_lock);
2463 fsnotify_d_move(dentry);
2464 spin_unlock(&dentry->d_lock);
2465 }
2466
2467 /*
2468 * d_move - move a dentry
2469 * @dentry: entry to move
2470 * @target: new dentry
2471 *
2472 * Update the dcache to reflect the move of a file name. Negative
2473 * dcache entries should not be moved in this way. See the locking
2474 * requirements for __d_move.
2475 */
2476 void d_move(struct dentry *dentry, struct dentry *target)
2477 {
2478 write_seqlock(&rename_lock);
2479 __d_move(dentry, target);
2480 write_sequnlock(&rename_lock);
2481 }
2482 EXPORT_SYMBOL(d_move);
2483
2484 /**
2485 * d_ancestor - search for an ancestor
2486 * @p1: ancestor dentry
2487 * @p2: child dentry
2488 *
2489 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2490 * an ancestor of p2, else NULL.
2491 */
2492 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2493 {
2494 struct dentry *p;
2495
2496 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2497 if (p->d_parent == p1)
2498 return p;
2499 }
2500 return NULL;
2501 }
2502
2503 /*
2504 * This helper attempts to cope with remotely renamed directories
2505 *
2506 * It assumes that the caller is already holding
2507 * dentry->d_parent->d_inode->i_mutex, inode->i_lock and rename_lock
2508 *
2509 * Note: If ever the locking in lock_rename() changes, then please
2510 * remember to update this too...
2511 */
2512 static struct dentry *__d_unalias(struct inode *inode,
2513 struct dentry *dentry, struct dentry *alias)
2514 {
2515 struct mutex *m1 = NULL, *m2 = NULL;
2516 struct dentry *ret = ERR_PTR(-EBUSY);
2517
2518 /* If alias and dentry share a parent, then no extra locks required */
2519 if (alias->d_parent == dentry->d_parent)
2520 goto out_unalias;
2521
2522 /* See lock_rename() */
2523 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2524 goto out_err;
2525 m1 = &dentry->d_sb->s_vfs_rename_mutex;
2526 if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
2527 goto out_err;
2528 m2 = &alias->d_parent->d_inode->i_mutex;
2529 out_unalias:
2530 if (likely(!d_mountpoint(alias))) {
2531 __d_move(alias, dentry);
2532 ret = alias;
2533 }
2534 out_err:
2535 spin_unlock(&inode->i_lock);
2536 if (m2)
2537 mutex_unlock(m2);
2538 if (m1)
2539 mutex_unlock(m1);
2540 return ret;
2541 }
2542
2543 /*
2544 * Prepare an anonymous dentry for life in the superblock's dentry tree as a
2545 * named dentry in place of the dentry to be replaced.
2546 * returns with anon->d_lock held!
2547 */
2548 static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon)
2549 {
2550 struct dentry *dparent;
2551
2552 dentry_lock_for_move(anon, dentry);
2553
2554 write_seqcount_begin(&dentry->d_seq);
2555 write_seqcount_begin(&anon->d_seq);
2556
2557 dparent = dentry->d_parent;
2558
2559 switch_names(dentry, anon);
2560 swap(dentry->d_name.hash, anon->d_name.hash);
2561
2562 dentry->d_parent = dentry;
2563 list_del_init(&dentry->d_u.d_child);
2564 anon->d_parent = dparent;
2565 list_move(&anon->d_u.d_child, &dparent->d_subdirs);
2566
2567 write_seqcount_end(&dentry->d_seq);
2568 write_seqcount_end(&anon->d_seq);
2569
2570 dentry_unlock_parents_for_move(anon, dentry);
2571 spin_unlock(&dentry->d_lock);
2572
2573 /* anon->d_lock still locked, returns locked */
2574 anon->d_flags &= ~DCACHE_DISCONNECTED;
2575 }
2576
2577 /**
2578 * d_materialise_unique - introduce an inode into the tree
2579 * @dentry: candidate dentry
2580 * @inode: inode to bind to the dentry, to which aliases may be attached
2581 *
2582 * Introduces an dentry into the tree, substituting an extant disconnected
2583 * root directory alias in its place if there is one. Caller must hold the
2584 * i_mutex of the parent directory.
2585 */
2586 struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
2587 {
2588 struct dentry *actual;
2589
2590 BUG_ON(!d_unhashed(dentry));
2591
2592 if (!inode) {
2593 actual = dentry;
2594 __d_instantiate(dentry, NULL);
2595 d_rehash(actual);
2596 goto out_nolock;
2597 }
2598
2599 spin_lock(&inode->i_lock);
2600
2601 if (S_ISDIR(inode->i_mode)) {
2602 struct dentry *alias;
2603
2604 /* Does an aliased dentry already exist? */
2605 alias = __d_find_alias(inode, 0);
2606 if (alias) {
2607 actual = alias;
2608 write_seqlock(&rename_lock);
2609
2610 if (d_ancestor(alias, dentry)) {
2611 /* Check for loops */
2612 actual = ERR_PTR(-ELOOP);
2613 spin_unlock(&inode->i_lock);
2614 } else if (IS_ROOT(alias)) {
2615 /* Is this an anonymous mountpoint that we
2616 * could splice into our tree? */
2617 __d_materialise_dentry(dentry, alias);
2618 write_sequnlock(&rename_lock);
2619 __d_drop(alias);
2620 goto found;
2621 } else {
2622 /* Nope, but we must(!) avoid directory
2623 * aliasing. This drops inode->i_lock */
2624 actual = __d_unalias(inode, dentry, alias);
2625 }
2626 write_sequnlock(&rename_lock);
2627 if (IS_ERR(actual)) {
2628 if (PTR_ERR(actual) == -ELOOP)
2629 pr_warn_ratelimited(
2630 "VFS: Lookup of '%s' in %s %s"
2631 " would have caused loop\n",
2632 dentry->d_name.name,
2633 inode->i_sb->s_type->name,
2634 inode->i_sb->s_id);
2635 dput(alias);
2636 }
2637 goto out_nolock;
2638 }
2639 }
2640
2641 /* Add a unique reference */
2642 actual = __d_instantiate_unique(dentry, inode);
2643 if (!actual)
2644 actual = dentry;
2645 else
2646 BUG_ON(!d_unhashed(actual));
2647
2648 spin_lock(&actual->d_lock);
2649 found:
2650 _d_rehash(actual);
2651 spin_unlock(&actual->d_lock);
2652 spin_unlock(&inode->i_lock);
2653 out_nolock:
2654 if (actual == dentry) {
2655 security_d_instantiate(dentry, inode);
2656 return NULL;
2657 }
2658
2659 iput(inode);
2660 return actual;
2661 }
2662 EXPORT_SYMBOL_GPL(d_materialise_unique);
2663
2664 static int prepend(char **buffer, int *buflen, const char *str, int namelen)
2665 {
2666 *buflen -= namelen;
2667 if (*buflen < 0)
2668 return -ENAMETOOLONG;
2669 *buffer -= namelen;
2670 memcpy(*buffer, str, namelen);
2671 return 0;
2672 }
2673
2674 /**
2675 * prepend_name - prepend a pathname in front of current buffer pointer
2676 * buffer: buffer pointer
2677 * buflen: allocated length of the buffer
2678 * name: name string and length qstr structure
2679 *
2680 * With RCU path tracing, it may race with d_move(). Use ACCESS_ONCE() to
2681 * make sure that either the old or the new name pointer and length are
2682 * fetched. However, there may be mismatch between length and pointer.
2683 * The length cannot be trusted, we need to copy it byte-by-byte until
2684 * the length is reached or a null byte is found. It also prepends "/" at
2685 * the beginning of the name. The sequence number check at the caller will
2686 * retry it again when a d_move() does happen. So any garbage in the buffer
2687 * due to mismatched pointer and length will be discarded.
2688 */
2689 static int prepend_name(char **buffer, int *buflen, struct qstr *name)
2690 {
2691 const char *dname = ACCESS_ONCE(name->name);
2692 u32 dlen = ACCESS_ONCE(name->len);
2693 char *p;
2694
2695 if (*buflen < dlen + 1)
2696 return -ENAMETOOLONG;
2697 *buflen -= dlen + 1;
2698 p = *buffer -= dlen + 1;
2699 *p++ = '/';
2700 while (dlen--) {
2701 char c = *dname++;
2702 if (!c)
2703 break;
2704 *p++ = c;
2705 }
2706 return 0;
2707 }
2708
2709 /**
2710 * prepend_path - Prepend path string to a buffer
2711 * @path: the dentry/vfsmount to report
2712 * @root: root vfsmnt/dentry
2713 * @buffer: pointer to the end of the buffer
2714 * @buflen: pointer to buffer length
2715 *
2716 * The function tries to write out the pathname without taking any lock other
2717 * than the RCU read lock to make sure that dentries won't go away. It only
2718 * checks the sequence number of the global rename_lock as any change in the
2719 * dentry's d_seq will be preceded by changes in the rename_lock sequence
2720 * number. If the sequence number had been change, it will restart the whole
2721 * pathname back-tracing sequence again. It performs a total of 3 trials of
2722 * lockless back-tracing sequences before falling back to take the
2723 * rename_lock.
2724 */
2725 static int prepend_path(const struct path *path,
2726 const struct path *root,
2727 char **buffer, int *buflen)
2728 {
2729 struct dentry *dentry = path->dentry;
2730 struct vfsmount *vfsmnt = path->mnt;
2731 struct mount *mnt = real_mount(vfsmnt);
2732 int error = 0;
2733 unsigned seq = 0;
2734 char *bptr;
2735 int blen;
2736
2737 rcu_read_lock();
2738 restart:
2739 bptr = *buffer;
2740 blen = *buflen;
2741 read_seqbegin_or_lock(&rename_lock, &seq);
2742 while (dentry != root->dentry || vfsmnt != root->mnt) {
2743 struct dentry * parent;
2744
2745 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
2746 /* Global root? */
2747 if (mnt_has_parent(mnt)) {
2748 dentry = mnt->mnt_mountpoint;
2749 mnt = mnt->mnt_parent;
2750 vfsmnt = &mnt->mnt;
2751 continue;
2752 }
2753 /*
2754 * Filesystems needing to implement special "root names"
2755 * should do so with ->d_dname()
2756 */
2757 if (IS_ROOT(dentry) &&
2758 (dentry->d_name.len != 1 ||
2759 dentry->d_name.name[0] != '/')) {
2760 WARN(1, "Root dentry has weird name <%.*s>\n",
2761 (int) dentry->d_name.len,
2762 dentry->d_name.name);
2763 }
2764 if (!error)
2765 error = is_mounted(vfsmnt) ? 1 : 2;
2766 break;
2767 }
2768 parent = dentry->d_parent;
2769 prefetch(parent);
2770 error = prepend_name(&bptr, &blen, &dentry->d_name);
2771 if (error)
2772 break;
2773
2774 dentry = parent;
2775 }
2776 if (!(seq & 1))
2777 rcu_read_unlock();
2778 if (need_seqretry(&rename_lock, seq)) {
2779 seq = 1;
2780 goto restart;
2781 }
2782 done_seqretry(&rename_lock, seq);
2783
2784 if (error >= 0 && bptr == *buffer) {
2785 if (--blen < 0)
2786 error = -ENAMETOOLONG;
2787 else
2788 *--bptr = '/';
2789 }
2790 *buffer = bptr;
2791 *buflen = blen;
2792 return error;
2793 }
2794
2795 /**
2796 * __d_path - return the path of a dentry
2797 * @path: the dentry/vfsmount to report
2798 * @root: root vfsmnt/dentry
2799 * @buf: buffer to return value in
2800 * @buflen: buffer length
2801 *
2802 * Convert a dentry into an ASCII path name.
2803 *
2804 * Returns a pointer into the buffer or an error code if the
2805 * path was too long.
2806 *
2807 * "buflen" should be positive.
2808 *
2809 * If the path is not reachable from the supplied root, return %NULL.
2810 */
2811 char *__d_path(const struct path *path,
2812 const struct path *root,
2813 char *buf, int buflen)
2814 {
2815 char *res = buf + buflen;
2816 int error;
2817
2818 prepend(&res, &buflen, "\0", 1);
2819 br_read_lock(&vfsmount_lock);
2820 error = prepend_path(path, root, &res, &buflen);
2821 br_read_unlock(&vfsmount_lock);
2822
2823 if (error < 0)
2824 return ERR_PTR(error);
2825 if (error > 0)
2826 return NULL;
2827 return res;
2828 }
2829
2830 char *d_absolute_path(const struct path *path,
2831 char *buf, int buflen)
2832 {
2833 struct path root = {};
2834 char *res = buf + buflen;
2835 int error;
2836
2837 prepend(&res, &buflen, "\0", 1);
2838 br_read_lock(&vfsmount_lock);
2839 error = prepend_path(path, &root, &res, &buflen);
2840 br_read_unlock(&vfsmount_lock);
2841
2842 if (error > 1)
2843 error = -EINVAL;
2844 if (error < 0)
2845 return ERR_PTR(error);
2846 return res;
2847 }
2848
2849 /*
2850 * same as __d_path but appends "(deleted)" for unlinked files.
2851 */
2852 static int path_with_deleted(const struct path *path,
2853 const struct path *root,
2854 char **buf, int *buflen)
2855 {
2856 prepend(buf, buflen, "\0", 1);
2857 if (d_unlinked(path->dentry)) {
2858 int error = prepend(buf, buflen, " (deleted)", 10);
2859 if (error)
2860 return error;
2861 }
2862
2863 return prepend_path(path, root, buf, buflen);
2864 }
2865
2866 static int prepend_unreachable(char **buffer, int *buflen)
2867 {
2868 return prepend(buffer, buflen, "(unreachable)", 13);
2869 }
2870
2871 /**
2872 * d_path - return the path of a dentry
2873 * @path: path to report
2874 * @buf: buffer to return value in
2875 * @buflen: buffer length
2876 *
2877 * Convert a dentry into an ASCII path name. If the entry has been deleted
2878 * the string " (deleted)" is appended. Note that this is ambiguous.
2879 *
2880 * Returns a pointer into the buffer or an error code if the path was
2881 * too long. Note: Callers should use the returned pointer, not the passed
2882 * in buffer, to use the name! The implementation often starts at an offset
2883 * into the buffer, and may leave 0 bytes at the start.
2884 *
2885 * "buflen" should be positive.
2886 */
2887 char *d_path(const struct path *path, char *buf, int buflen)
2888 {
2889 char *res = buf + buflen;
2890 struct path root;
2891 int error;
2892
2893 /*
2894 * We have various synthetic filesystems that never get mounted. On
2895 * these filesystems dentries are never used for lookup purposes, and
2896 * thus don't need to be hashed. They also don't need a name until a
2897 * user wants to identify the object in /proc/pid/fd/. The little hack
2898 * below allows us to generate a name for these objects on demand:
2899 */
2900 if (path->dentry->d_op && path->dentry->d_op->d_dname)
2901 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
2902
2903 get_fs_root(current->fs, &root);
2904 br_read_lock(&vfsmount_lock);
2905 error = path_with_deleted(path, &root, &res, &buflen);
2906 br_read_unlock(&vfsmount_lock);
2907 if (error < 0)
2908 res = ERR_PTR(error);
2909 path_put(&root);
2910 return res;
2911 }
2912 EXPORT_SYMBOL(d_path);
2913
2914 /*
2915 * Helper function for dentry_operations.d_dname() members
2916 */
2917 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
2918 const char *fmt, ...)
2919 {
2920 va_list args;
2921 char temp[64];
2922 int sz;
2923
2924 va_start(args, fmt);
2925 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
2926 va_end(args);
2927
2928 if (sz > sizeof(temp) || sz > buflen)
2929 return ERR_PTR(-ENAMETOOLONG);
2930
2931 buffer += buflen - sz;
2932 return memcpy(buffer, temp, sz);
2933 }
2934
2935 char *simple_dname(struct dentry *dentry, char *buffer, int buflen)
2936 {
2937 char *end = buffer + buflen;
2938 /* these dentries are never renamed, so d_lock is not needed */
2939 if (prepend(&end, &buflen, " (deleted)", 11) ||
2940 prepend(&end, &buflen, dentry->d_name.name, dentry->d_name.len) ||
2941 prepend(&end, &buflen, "/", 1))
2942 end = ERR_PTR(-ENAMETOOLONG);
2943 return end;
2944 }
2945
2946 /*
2947 * Write full pathname from the root of the filesystem into the buffer.
2948 */
2949 static char *__dentry_path(struct dentry *dentry, char *buf, int buflen)
2950 {
2951 char *end, *retval;
2952 int len, seq = 0;
2953 int error = 0;
2954
2955 rcu_read_lock();
2956 restart:
2957 end = buf + buflen;
2958 len = buflen;
2959 prepend(&end, &len, "\0", 1);
2960 if (buflen < 1)
2961 goto Elong;
2962 /* Get '/' right */
2963 retval = end-1;
2964 *retval = '/';
2965 read_seqbegin_or_lock(&rename_lock, &seq);
2966 while (!IS_ROOT(dentry)) {
2967 struct dentry *parent = dentry->d_parent;
2968 int error;
2969
2970 prefetch(parent);
2971 error = prepend_name(&end, &len, &dentry->d_name);
2972 if (error)
2973 break;
2974
2975 retval = end;
2976 dentry = parent;
2977 }
2978 if (!(seq & 1))
2979 rcu_read_unlock();
2980 if (need_seqretry(&rename_lock, seq)) {
2981 seq = 1;
2982 goto restart;
2983 }
2984 done_seqretry(&rename_lock, seq);
2985 if (error)
2986 goto Elong;
2987 return retval;
2988 Elong:
2989 return ERR_PTR(-ENAMETOOLONG);
2990 }
2991
2992 char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
2993 {
2994 return __dentry_path(dentry, buf, buflen);
2995 }
2996 EXPORT_SYMBOL(dentry_path_raw);
2997
2998 char *dentry_path(struct dentry *dentry, char *buf, int buflen)
2999 {
3000 char *p = NULL;
3001 char *retval;
3002
3003 if (d_unlinked(dentry)) {
3004 p = buf + buflen;
3005 if (prepend(&p, &buflen, "//deleted", 10) != 0)
3006 goto Elong;
3007 buflen++;
3008 }
3009 retval = __dentry_path(dentry, buf, buflen);
3010 if (!IS_ERR(retval) && p)
3011 *p = '/'; /* restore '/' overriden with '\0' */
3012 return retval;
3013 Elong:
3014 return ERR_PTR(-ENAMETOOLONG);
3015 }
3016
3017 /*
3018 * NOTE! The user-level library version returns a
3019 * character pointer. The kernel system call just
3020 * returns the length of the buffer filled (which
3021 * includes the ending '\0' character), or a negative
3022 * error value. So libc would do something like
3023 *
3024 * char *getcwd(char * buf, size_t size)
3025 * {
3026 * int retval;
3027 *
3028 * retval = sys_getcwd(buf, size);
3029 * if (retval >= 0)
3030 * return buf;
3031 * errno = -retval;
3032 * return NULL;
3033 * }
3034 */
3035 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
3036 {
3037 int error;
3038 struct path pwd, root;
3039 char *page = (char *) __get_free_page(GFP_USER);
3040
3041 if (!page)
3042 return -ENOMEM;
3043
3044 get_fs_root_and_pwd(current->fs, &root, &pwd);
3045
3046 error = -ENOENT;
3047 br_read_lock(&vfsmount_lock);
3048 if (!d_unlinked(pwd.dentry)) {
3049 unsigned long len;
3050 char *cwd = page + PAGE_SIZE;
3051 int buflen = PAGE_SIZE;
3052
3053 prepend(&cwd, &buflen, "\0", 1);
3054 error = prepend_path(&pwd, &root, &cwd, &buflen);
3055 br_read_unlock(&vfsmount_lock);
3056
3057 if (error < 0)
3058 goto out;
3059
3060 /* Unreachable from current root */
3061 if (error > 0) {
3062 error = prepend_unreachable(&cwd, &buflen);
3063 if (error)
3064 goto out;
3065 }
3066
3067 error = -ERANGE;
3068 len = PAGE_SIZE + page - cwd;
3069 if (len <= size) {
3070 error = len;
3071 if (copy_to_user(buf, cwd, len))
3072 error = -EFAULT;
3073 }
3074 } else {
3075 br_read_unlock(&vfsmount_lock);
3076 }
3077
3078 out:
3079 path_put(&pwd);
3080 path_put(&root);
3081 free_page((unsigned long) page);
3082 return error;
3083 }
3084
3085 /*
3086 * Test whether new_dentry is a subdirectory of old_dentry.
3087 *
3088 * Trivially implemented using the dcache structure
3089 */
3090
3091 /**
3092 * is_subdir - is new dentry a subdirectory of old_dentry
3093 * @new_dentry: new dentry
3094 * @old_dentry: old dentry
3095 *
3096 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
3097 * Returns 0 otherwise.
3098 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3099 */
3100
3101 int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
3102 {
3103 int result;
3104 unsigned seq;
3105
3106 if (new_dentry == old_dentry)
3107 return 1;
3108
3109 do {
3110 /* for restarting inner loop in case of seq retry */
3111 seq = read_seqbegin(&rename_lock);
3112 /*
3113 * Need rcu_readlock to protect against the d_parent trashing
3114 * due to d_move
3115 */
3116 rcu_read_lock();
3117 if (d_ancestor(old_dentry, new_dentry))
3118 result = 1;
3119 else
3120 result = 0;
3121 rcu_read_unlock();
3122 } while (read_seqretry(&rename_lock, seq));
3123
3124 return result;
3125 }
3126
3127 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
3128 {
3129 struct dentry *root = data;
3130 if (dentry != root) {
3131 if (d_unhashed(dentry) || !dentry->d_inode)
3132 return D_WALK_SKIP;
3133
3134 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3135 dentry->d_flags |= DCACHE_GENOCIDE;
3136 dentry->d_lockref.count--;
3137 }
3138 }
3139 return D_WALK_CONTINUE;
3140 }
3141
3142 void d_genocide(struct dentry *parent)
3143 {
3144 d_walk(parent, parent, d_genocide_kill, NULL);
3145 }
3146
3147 void d_tmpfile(struct dentry *dentry, struct inode *inode)
3148 {
3149 inode_dec_link_count(inode);
3150 BUG_ON(dentry->d_name.name != dentry->d_iname ||
3151 !hlist_unhashed(&dentry->d_alias) ||
3152 !d_unlinked(dentry));
3153 spin_lock(&dentry->d_parent->d_lock);
3154 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3155 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3156 (unsigned long long)inode->i_ino);
3157 spin_unlock(&dentry->d_lock);
3158 spin_unlock(&dentry->d_parent->d_lock);
3159 d_instantiate(dentry, inode);
3160 }
3161 EXPORT_SYMBOL(d_tmpfile);
3162
3163 static __initdata unsigned long dhash_entries;
3164 static int __init set_dhash_entries(char *str)
3165 {
3166 if (!str)
3167 return 0;
3168 dhash_entries = simple_strtoul(str, &str, 0);
3169 return 1;
3170 }
3171 __setup("dhash_entries=", set_dhash_entries);
3172
3173 static void __init dcache_init_early(void)
3174 {
3175 unsigned int loop;
3176
3177 /* If hashes are distributed across NUMA nodes, defer
3178 * hash allocation until vmalloc space is available.
3179 */
3180 if (hashdist)
3181 return;
3182
3183 dentry_hashtable =
3184 alloc_large_system_hash("Dentry cache",
3185 sizeof(struct hlist_bl_head),
3186 dhash_entries,
3187 13,
3188 HASH_EARLY,
3189 &d_hash_shift,
3190 &d_hash_mask,
3191 0,
3192 0);
3193
3194 for (loop = 0; loop < (1U << d_hash_shift); loop++)
3195 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3196 }
3197
3198 static void __init dcache_init(void)
3199 {
3200 unsigned int loop;
3201
3202 /*
3203 * A constructor could be added for stable state like the lists,
3204 * but it is probably not worth it because of the cache nature
3205 * of the dcache.
3206 */
3207 dentry_cache = KMEM_CACHE(dentry,
3208 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
3209
3210 /* Hash may have been set up in dcache_init_early */
3211 if (!hashdist)
3212 return;
3213
3214 dentry_hashtable =
3215 alloc_large_system_hash("Dentry cache",
3216 sizeof(struct hlist_bl_head),
3217 dhash_entries,
3218 13,
3219 0,
3220 &d_hash_shift,
3221 &d_hash_mask,
3222 0,
3223 0);
3224
3225 for (loop = 0; loop < (1U << d_hash_shift); loop++)
3226 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3227 }
3228
3229 /* SLAB cache for __getname() consumers */
3230 struct kmem_cache *names_cachep __read_mostly;
3231 EXPORT_SYMBOL(names_cachep);
3232
3233 EXPORT_SYMBOL(d_genocide);
3234
3235 void __init vfs_caches_init_early(void)
3236 {
3237 dcache_init_early();
3238 inode_init_early();
3239 }
3240
3241 void __init vfs_caches_init(unsigned long mempages)
3242 {
3243 unsigned long reserve;
3244
3245 /* Base hash sizes on available memory, with a reserve equal to
3246 150% of current kernel size */
3247
3248 reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
3249 mempages -= reserve;
3250
3251 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
3252 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3253
3254 dcache_init();
3255 inode_init();
3256 files_init(mempages);
3257 mnt_init();
3258 bdev_cache_init();
3259 chrdev_init();
3260 }